-
Notifications
You must be signed in to change notification settings - Fork 0
/
serial.cpp
255 lines (210 loc) · 9.74 KB
/
serial.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include "common.h"
#include<vector>
#define density 0.0005
#define CELL_SIZE 0.02
// Function applies forces of particles of one cell to particles in another cell
void apply_forces_to_cell(std::vector<particle_t*> &src, std::vector<particle_t*> & cell, int* navg, double* dmin, double* davg){
for(int i = 0; i < src.size(); i++) {
//int xOrg = src[i]->x;
//int yOrg = src[i]->y;
for(int j = 0; j < cell.size(); j++)
apply_force(*(src[i]), *(cell[j]),dmin,davg,navg);
//assert(src[i]->x != xOrg);
//assert(src[i]->y != yOrg);
}
}
void initCellParticles(std::vector<particle_t*> &src) {
for(int i = 0; i < src.size(); i++)
src[i]->ax = src[i]->ay = 0;
}
//
// benchmarking program
//
int main( int argc, char **argv )
{
int navg,nabsavg=0;
double davg,dmin, absmin=1.0, absavg=0.0;
if( find_option( argc, argv, "-h" ) >= 0 )
{
printf( "Options:\n" );
printf( "-h to see this help\n" );
printf( "-n <int> to set the number of particles\n" );
printf( "-o <filename> to specify the output file name\n" );
printf( "-s <filename> to specify a summary file name\n" );
printf( "-no turns off all correctness checks and particle output\n");
return 0;
}
int n = read_int( argc, argv, "-n", 1000 );
char *savename = read_string( argc, argv, "-o", NULL );
char *sumname = read_string( argc, argv, "-s", NULL );
FILE *fsave = savename ? fopen( savename, "w" ) : NULL;
FILE *fsum = sumname ? fopen ( sumname, "a" ) : NULL;
particle_t *particles = (particle_t*) malloc( n * sizeof(particle_t) );
set_size( n );
init_particles( n, particles );
double size = sqrt(density * n);
int numCells = ceil(size/CELL_SIZE);
//assume that grid is numCells x numCells
//
//XXX: use malloc instead of iteration
std::vector<particle_t*> cells[numCells][numCells];
// for(int i = 0; i < numCells; i++){
// for(int j=0; j < numCells; j++){
// cells[i][j] = std::vector<particle_t* >();
// }
// }
for(int i = 0; i < n; i++){
//TODO: partition particles into cells
int cell_i = floor(particles[i].x / CELL_SIZE);
int cell_j = floor(particles[i].y / CELL_SIZE);
cells[cell_i][cell_j].push_back(&particles[i]);
}
//
// simulate a number of time steps
//
double simulation_time = read_timer( );
for( int step = 0; step < NSTEPS; step++ )
{
navg = 0;
davg = 0.0;
dmin = 1.0;
//
// compute forces
//
for(int i = 0; i < numCells; i++){
for(int j = 0; j < numCells; j++){
initCellParticles(cells[i][j]); // initialize particles in current cell
//unrolling
//TODO: apply forces for subgrids
apply_forces_to_cell(cells[i][j],cells[i][j], &navg, &dmin, &davg);
if(i==0 && j==0){
apply_forces_to_cell(cells[i][j],cells[1][0], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[0][1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[1][1], &navg, &dmin, &davg);
} else if(i == numCells -1 && j == numCells - 1){
apply_forces_to_cell(cells[i][j],cells[i-1][j-1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i][j-1], &navg, &dmin, &davg);
} else if(i == numCells - 1 && j == 0){
apply_forces_to_cell(cells[i][j],cells[i][j+1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j+1], &navg, &dmin, &davg);
} else if(i == 0 && j == numCells -1){
apply_forces_to_cell(cells[i][j],cells[i][j-1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i+1][j-1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i+1][j], &navg, &dmin, &davg);
}else if(i == numCells -1){
apply_forces_to_cell(cells[i][j],cells[i][j+1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i][j-1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j+1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j-1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j], &navg, &dmin, &davg);
}else if(j == numCells -1){
apply_forces_to_cell(cells[i][j],cells[i+1][j], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i+1][j-1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j-1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i][j-1], &navg, &dmin, &davg);
}else if(i == 0){
apply_forces_to_cell(cells[i][j],cells[i][j-1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i][j+1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i+1][j], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i+1][j-1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i+1][j+1], &navg, &dmin, &davg);
}else if(j == 0){
apply_forces_to_cell(cells[i][j],cells[i-1][j], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i+1][j], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j+1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i][j+1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i+1][j+1], &navg, &dmin, &davg);
}else{
apply_forces_to_cell(cells[i][j],cells[i][j+1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i][j-1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j+1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i-1][j-1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i+1][j+1], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i+1][j], &navg, &dmin, &davg);
apply_forces_to_cell(cells[i][j],cells[i+1][j-1], &navg, &dmin, &davg);
}
} // end of j loop
} // end of i loop
//
// move particles
//
for( int i = 0; i < n; i++ )
move( particles[i] );
// clearing the bins
for(int i = 0; i < numCells; i++){
for(int j=0; j < numCells; j++){
cells[i][j].clear();
}
}
// re-constructing bins
for(int i = 0; i < n; i++){
//TODO: partition particles into cells
int cell_i = floor(particles[i].x / CELL_SIZE);
int cell_j = floor(particles[i].y / CELL_SIZE);
cells[cell_i][cell_j].push_back(&particles[i]);
}
// assert for no of particles
/* int sum = 0;
for(int i = 0; i < numCells; i++){
for(int j=0; j < numCells; j++){
sum += cells[i][j].size();
}
}
assert(sum==n);*/
if( find_option( argc, argv, "-no" ) == -1 )
{
//
// Computing statistical data
//
if (navg) {
absavg += davg/navg;
nabsavg++;
}
if (dmin < absmin) absmin = dmin;
//
// save if necessary
//
if( fsave && (step%SAVEFREQ) == 0 )
save( fsave, n, particles );
}
} // end of NSTEPS iteration
simulation_time = read_timer( ) - simulation_time;
printf( "n = %d, simulation time = %g seconds", n, simulation_time);
if( find_option( argc, argv, "-no" ) == -1 )
{
if (nabsavg) absavg /= nabsavg;
//
// -the minimum distance absmin between 2 particles during the run of the simulation
// -A Correct simulation will have particles stay at greater than 0.4 (of cutoff) with typical values between .7-.8
// -A simulation were particles don't interact correctly will be less than 0.4 (of cutoff) with typical values between .01-.05
//
// -The average distance absavg is ~.95 when most particles are interacting correctly and ~.66 when no particles are interacting
//
printf( ", absmin = %lf, absavg = %lf", absmin, absavg);
if (absmin < 0.4) printf ("\nThe minimum distance is below 0.4 meaning that some particle is not interacting");
if (absavg < 0.8) printf ("\nThe average distance is below 0.8 meaning that most particles are not interacting");
}
printf("\n");
//
// Printing summary data
//
if( fsum)
fprintf(fsum,"%d %g\n",n,simulation_time);
//
// Clearing space
//
if( fsum )
fclose( fsum );
free( particles );
if( fsave )
fclose( fsave );
return 0;
}