forked from sqlp/sedumi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bwblkslv2.c
138 lines (134 loc) · 5.74 KB
/
bwblkslv2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include "mex.h"
#include "blkchol.h"
/* ============================================================
BACKWARD SOLVE:
============================================================ */
/* ************************************************************
PROCEDURE bwsolve -- Solve y from L'*y = b, where
L is lower-triangular.
INPUT
Ljc, Lir, Lpr - sparse lower triangular matrix
xsuper - starting column in L for each (dense) supernode.
nsuper - number of super nodes
UPDATED
y - full xsuper[nsuper]-vector, yOUTPUT = L' \ yINPUT.
************************************************************ */
void bwsolve(double *y, const mwIndex *Ljc, const mwIndex *Lir, const double *Lpr,
const mwIndex *xsuper, const mwIndex nsuper)
{
mwIndex jsup,j,inz,k;
double yj, ljj;
/* ------------------------------------------------------------
For each supernode jsup:
------------------------------------------------------------ */
j = xsuper[nsuper]; /* column after current snode (j=m)*/
for(jsup = nsuper; jsup > 0; jsup--){
for(k = 0; k < xsuper[jsup] - xsuper[jsup-1]; k++){
/* ------------------------------------------------------------
The equation L(:,j)'*yNEW = yOLD(j), yields
y(j) -= L(j+1:m,j)'*y.
------------------------------------------------------------ */
inz = Ljc[j-1];
inz++; /* jump over diagonal entry */
yj = realdot(Lpr+inz, y+j, k);
for(inz += k; inz < Ljc[j]; inz++)
yj += Lpr[inz] * y[Lir[inz]];
y[--j] -= yj;
}
}
}
/* ************************************************************
PROCEDURE partbwsolve -- Solve y from L(0:m-1,0:m-1)'*y = b, where
L is lower-triangular.
INPUT
L=(ljc,lpr,xlindx,lindx) - sparse lower triangular matrix
xsuper - starting column in L for each (dense) supernode.
nsuper - number of super nodes (for NW-subblock)
m - order of L'- (sub) block, xsuper[nsuper-1] < m <= xsuper[nsuper]
To solve with the complete L, choose m = xsuper[nsuper].
UPDATED
y - full m-vector, yOUT = L(0:m-1,0:m-1)'\yIN.
************************************************************ */
void partbwsolve(double *y, const mwIndex *ljc, const double *lpr,
const mwIndex *xlindx, const mwIndex *lindx, const mwIndex *xsuper,
const mwIndex nsuper, const mwIndex m)
{
mwIndex jsup,j,inz,k,i, ixfirst,ixnz;
double yj;
/* ------------------------------------------------------------
For each supernode jsup:
Let ixfirst point to the 1st row-subscript below current supernode.
------------------------------------------------------------ */
j = m; /* column/row after current entry */
for(jsup = nsuper; jsup > 0; jsup--){
ixfirst = xlindx[jsup-1] + (xsuper[jsup] - xsuper[jsup-1]);
/* ------------------------------------------------------------
Case 1: L has sparse nonzeros below current supernode, but not
beyond m:
------------------------------------------------------------ */
if(ixfirst < xlindx[jsup])
if(lindx[xlindx[jsup] - 1] < m)
for(k = 0; j > xsuper[jsup-1]; k++){
/* ------------------------------------------------------------
The equation L(:,j)'*y=b(j), yields
y(j) = b(j)-L(j+1:m,j)'*y.
------------------------------------------------------------ */
inz = ljc[j-1] + 1; /* jump over diagonal entry */
yj = realdot(lpr+inz, y+j, k);
for(inz += k, ixnz = ixfirst; inz < ljc[j]; inz++, ixnz++)
yj += lpr[inz] * y[lindx[ixnz]];
y[--j] -= yj;
}
else
/* ------------------------------------------------------------
2nd CASE: L(:,j) has nonzeros beyond the requested order m,
so use while i < m.
------------------------------------------------------------ */
for(k = 0; j > xsuper[jsup-1]; k++){
inz = ljc[j-1] + 1; /* jump over diagonal entry */
yj = realdot(lpr+inz, y+j, k);
inz += k; ixnz = ixfirst;
for(i=lindx[ixnz]; i < m; i = lindx[++ixnz])
yj += lpr[inz++] * y[i];
y[--j] -= yj;
}
else
/* ------------------------------------------------------------
3rd CASE: L(:,j) has only nonzeros in snode jsup: purely dense.
------------------------------------------------------------ */
for(k = 1, --j; j > xsuper[jsup-1]; k++){
yj = realdot(lpr + ljc[j-1] + 1, y+j, k);
y[--j] -= yj;
}
}
}