forked from sqlp/sedumi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
asmDxq.m
69 lines (67 loc) · 2.63 KB
/
asmDxq.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
function [y,t] = asmDxq(d, x, K, ddotx)
% y = asmDxq(d, x, K [, ddotx])
%
% ASMDXQ Assemble y = D(d)x for x in Lorentz part of K.
% [y,t] = AasmDxq(d, x, K [, ddotx]) then y[k]+t(k)*d[k] = D(dk)xk.
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
if isempty(K.q)
y = zeros(0,1);
t = zeros(0,1);
else
% ------------------------------------------------------------
% Let i1, i2 such that x(i1:i2-1) = "x1", i.e. Lorentz trace part.
% ------------------------------------------------------------
if length(x) >= K.lq
i1 = K.mainblks(1); i2 = K.mainblks(2);
else
i1 = 1; i2 = length(K.q)+1;
end
t = x(i1:i2-1);
if nargin < 4
ddotx = d.q1.*t + ddot(d.q2,x,K.qblkstart);
end
% --------------------------------------------------
% Since d^{1/2} = (d+sqrt(det d)*iota) / trace(d^{1/2}),
% and d.auxtr = trace(d^{1/2})^2, d.auxdet = sqrt(2*det d),
% We have P(d)^{1/2}x = t*d + t*auxdet*e_1 - sqrt(det d)*Jx,
% where t = (d'*x + x(1)*auxdet)/auxtr.
% --------------------------------------------------
t = (ddotx + t.* d.auxdet) ./ d.auxtr; % old t = x1
sdet = sqrt(d.det);
y = [t.*(d.auxdet) - sdet .* x(i1:i2-1); qblkmul(sdet,x,K.qblkstart)];
if nargout < 2
y = y + [t.*d.q1; qblkmul(t,d.q2,K.qblkstart)];
end
end