-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathANN.cpp
106 lines (88 loc) · 2.44 KB
/
ANN.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
// Sigmoid activation function
double sigmoid(double x) {
return 1 / (1 + exp(-x));
}
// Derivative of sigmoid function
double sigmoidDerivative(double x) {
return x * (1 - x);
}
// A single neuron
struct Neuron {
vector<double> weights;
double bias;
// Constructor
Neuron(int numWeights) {
// Initialize weights randomly between -1 and 1
for (int i = 0; i < numWeights; i++) {
weights.push_back((double)rand() / RAND_MAX * 2 - 1);
}
// Initialize bias randomly between -1 and 1
bias = (double)rand() / RAND_MAX * 2 - 1;
}
// Feedforward function
double feedforward(vector<double> inputs) {
double sum = bias;
for (int i = 0; i < weights.size(); i++) {
sum += weights[i] * inputs[i];
}
return sigmoid(sum);
}
};
// A layer of neurons
struct NeuronLayer {
vector<Neuron> neurons;
// Constructor
NeuronLayer(int numNeurons, int numInputsPerNeuron) {
for (int i = 0; i < numNeurons; i++) {
neurons.push_back(Neuron(numInputsPerNeuron));
}
}
// Feedforward function
vector<double> feedforward(vector<double> inputs) {
vector<double> outputs;
for (int i = 0; i < neurons.size(); i++) {
outputs.push_back(neurons[i].feedforward(inputs));
}
return outputs;
}
};
// An artificial neural network
struct ANN {
vector<NeuronLayer> layers;
// Constructor
ANN(vector<int> topology) {
for (int i = 1; i < topology.size(); i++) {
layers.push_back(NeuronLayer(topology[i], topology[i - 1]));
}
}
// Feedforward function
vector<double> feedforward(vector<double> inputs) {
vector<double> outputs = inputs;
for (int i = 0; i < layers.size(); i++) {
outputs = layers[i].feedforward(outputs);
}
return outputs;
}
};
int main() {
// Create a new ANN with 2 input neurons, 3 hidden neurons, and 2 output neurons
ANN ann({2, 3, 2});
// Feedforward a test input
// vector<double> outputs = ann.feedforward({1, 2});
float input_1;
cout << "Input-1: ";
cin >> input_1;
float input_2;
cout << "Input-2: ";
cin >> input_2;
vector<double> outputs = ann.feedforward({input_1, input_2});
cout << "Inputs: " << input_1 << " " << input_2 << endl;
cout << "Outputs: ";
// Print the output
cout << outputs[0] << " " << outputs[1] << endl;
return 0;
}