Skip to content

Latest commit

 

History

History
46 lines (31 loc) · 1 KB

README.md

File metadata and controls

46 lines (31 loc) · 1 KB

Machine and Deep Learning for DDoS Detection

Marcos V. O. Assis ([email protected])


Published Results:

  • A GRU deep learning system against attacks in software defined networks

  • https://doi.org/10.1016/j.jnca.2020.102942

  • *Update - 06/2022 - improved detection results through better data cleaning process. Updated results on Git.

Objectives

  1. Evaluate different Machine and Deep Learning methods for anomaly detection.
  2. Detection of Distributed Denial of Service Attacks

Dataset

Evaluated Methods

  • Gated Recurrent Units (GRU)
  • Long-Short Term Memory (LSTM)
  • Convolutional Neural Network (CNN)
  • Deep Neural Network (DNN)
  • Support Vector Machine (SVM)
  • Logistic Regression (LR)
  • Gradient Descent (GD)
  • k Nearest Neighbors (kNN)

Environment Config.

  • Python 3.7.13
  • Numpy 1.16.4
  • Scikit-learn 0.21.2
  • Pandas 0.24.2
  • Tensorflow 1.14.0
  • Keras 2.2.4
  • Matplotlib 3.1.0
  • Seaborn 0.11.2