forked from Azure/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeploy-custom-container-torchserve-densenet.sh
114 lines (91 loc) · 3.61 KB
/
deploy-custom-container-torchserve-densenet.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#/bin/bash
set -e
BASE_PATH=endpoints/online/custom-container/torchserve/densenet
ENDPOINT_NAME=endpt-torchserve-`echo $RANDOM`
# Get name of workspace ACR, build image
WORKSPACE=$(az config get --query "defaults[?name == 'workspace'].value" -o tsv)
ACR_NAME=$(az ml workspace show --name $WORKSPACE --query container_registry -o tsv | cut -d'/' -f9-)
if [[ $ACR_NAME == "" ]]; then
echo "ACR login failed, exiting"
exit 1
fi
cleanTestingFiles() {
rm -r $BASE_PATH/torchserve
rm $BASE_PATH/kitten_small.jpg
rm $BASE_PATH/torchserve-deployment.yml_
}
# <download_model>
echo "Downling model and config file..."
mkdir $BASE_PATH/torchserve
wget --progress=dot:mega https://aka.ms/torchserve-densenet161 -O $BASE_PATH/torchserve/densenet161.mar
# </download_model>
# <build_image>
az acr login -n $ACR_NAME
IMAGE_TAG=${ACR_NAME}.azurecr.io/torchserve:1
az acr build -f $BASE_PATH/torchserve.dockerfile -t $IMAGE_TAG -r $ACR_NAME $BASE_PATH
# <build_image>
# <run_image_locally>
docker run --rm -d -p 8080:8080 --name torchserve-test \
-e AZUREML_MODEL_DIR=/var/azureml-app/azureml-models/ \
-e TORCHSERVE_MODELS="densenet161=densenet161.mar" \
-v $PWD/$BASE_PATH/torchserve:/var/azureml-app/azureml-models/torchserve $IMAGE_TAG
# </run_image_locally>
sleep 10
# <test_locally>
echo "Checking Torchserve health..."
curl http://localhost:8080/ping
echo "Downloading test image..."
wget https://aka.ms/torchserve-test-image -O $BASE_PATH/kitten_small.jpg
echo "Uploading testing image, the scoring is..."
curl http://localhost:8080/predictions/densenet161 -T $BASE_PATH/kitten_small.jpg
docker stop torchserve-test
# </test_locally>
# <create_endpoint>
az ml online-endpoint create --name $ENDPOINT_NAME -f $BASE_PATH/torchserve-endpoint.yml
# </create_endpoint>
# <check_endpoint_status>
ENDPOINT_STATUS=$(az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv)
echo "Endpoint status is $ENDPOINT_STATUS"
if [[ $ENDPOINT_STATUS == "Succeeded" ]]; then
echo "Endpoint created successfully"
else
echo "Something went wrong when creating endpoint. Cleaning up..."
az ml online-endpoint delete --name $ENDPOINT_NAME
exit 1
fi
# </check_endpoint_status>
# <create_deployment>
cp $BASE_PATH/torchserve-deployment.yml $BASE_PATH/torchserve-deployment.yml_
sed -e "s/{{ACR_NAME}}/$ACR_NAME/g" -i $BASE_PATH/torchserve-deployment.yml_
az ml online-deployment create -e $ENDPOINT_NAME -f $BASE_PATH/torchserve-deployment.yml_ --all-traffic
# </create_deployment>
# <check_deployment_status>
deploy_status=$(az ml online-deployment show --name torchserve-deployment --endpoint $ENDPOINT_NAME --query "provisioning_state" -o tsv)
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]; then
echo "Deployment completed successfully"
else
echo "Deployment failed"
cleanTestingFiles
az ml online-endpoint delete -n $ENDPOINT_NAME --yes
az ml model archive -n $AML_MODEL_NAME --version 1
exit 1
fi
# </check_deployment_status>
# <get_endpoint_details>
echo "Getting access token..."
TOKEN=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME --query accessToken -o tsv)
echo "Getting scoring url..."
SCORING_URL=$(az ml online-endpoint show -n $ENDPOINT_NAME --query scoring_uri -o tsv)
echo "Scoring url is $SCORING_URL"
# </get_endpoint_details>
# <test_endpoint>
echo "Uploading testing image, the scoring is..."
curl -H "Authorization: {Bearer $TOKEN}" -T $BASE_PATH/kitten_small.jpg $SCORING_URL
# </test_endpoint>
echo "Tested successfully, cleaning up"
cleanTestingFiles
# <delete_endpoint>
echo "Deleting endpoint..."
az ml online-endpoint delete -n $ENDPOINT_NAME --yes
# </delete_endpoint>