-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspatial.go
220 lines (190 loc) · 4.79 KB
/
spatial.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
package main
import (
"flag"
"fmt"
"log"
"math"
"github.com/barnex/fftw"
"github.com/barnex/matrix"
"github.com/mumax/3/data"
"github.com/mumax/3/httpfs"
"github.com/mumax/3/oommf"
)
func mainSpatial() {
// time points
Nt := flag.NArg()
if Nt < 2 {
log.Fatal("need at least 2 inputs")
}
go loadloop()
// select one component
comp := 0 // todo
// get size, time span from first and last file
data1, meta1 := oommf.MustReadFile(flag.Args()[0])
_, metaL := oommf.MustReadFile(flag.Args()[Nt-1])
t0 := float32(meta1.Time)
t1 := float32(metaL.Time)
deltaT := t1 - t0
deltaF := 1 / deltaT // frequency resolution
size := data1.Size()
Nx := size[0]
Ny := size[1]
Nz := size[2]
// allocate buffer for everything
dataList := make([]complex64, Nt*Nx*Ny*Nz)
dataLists := matrix.ReshapeC2(dataList, [2]int{Nt, Nz * Ny * Nx})
// interpolate non-equidistant time points
// make complex in the meanwhile
time0 := t0 // start time, not neccesarily 0
si := 0 // source index
for di := 0; di < Nt; di++ { // dst index
want := time0 + float32(di)*deltaT/float32(Nt) // wanted time
for si < Nt-1 && !(time(si) <= want && time(si+1) > want && time(si) != time(si+1)) {
si++
}
x := (want - time(si)) / (time(si+1) - time(si))
if x < 0 || x > 1 {
panic(fmt.Sprint("x=", x))
}
interp3D(dataLists[di], 1-x, file(si).Host()[comp], x, file(si + 1).Host()[comp])
}
log.Println("FFT")
fftMany(dataList, Nt, Nx*Ny*Nz)
spectrum := magSpectrum(dataLists)
freqs := make([]float32, len(spectrum))
for i := range freqs {
freqs[i] = float32(i) * deltaF
}
header := []string{"f (Hz)", "Mag ()"}
f := httpfs.MustCreate("spectrum.txt")
writeTable(f, header, [][]float32{freqs, spectrum})
f.Close()
log.Println("normalize")
normalize(dataLists)
log.Println("output")
for _, o := range outputs {
if *o.Enabled {
output3D(dataLists, o.Filter, size, "fft_"+o.Name, deltaF)
}
}
}
func magSpectrum(dataLists [][]complex64) []float32 {
Nf := len(dataLists) / 2
spec := make([]float32, Nf)
for f := range spec {
sum := 0.
for _, v := range dataLists[f] {
sum += float64(real(v)*real(v) + imag(v)*imag(v))
}
sum = math.Sqrt(sum)
spec[f] = float32(sum)
}
return spec
}
// normalize all but DC
func normalize(dataList [][]complex64) {
var max float32
for j := 1; j < len(dataList); j++ { // skip DC
for i := range dataList[j] {
v := dataList[j][i]
norm2 := real(v)*real(v) + imag(v)*imag(v)
if norm2 > max {
max = norm2
}
}
}
norm := complex(float32(1/math.Sqrt(float64(max))), 0)
for _, dataList := range dataList {
for i := range dataList {
dataList[i] *= norm
}
}
}
func fftMany(dataList []complex64, Nt, Nc int) {
howmany := Nc
n := []int{Nt}
in := dataList
out := dataList
istride := Nc
idist := 1
inembed := n
ostride := istride
odist := idist
onembed := inembed
plan := fftw.PlanManyC2C(n, howmany, in, inembed, istride, idist, out, onembed, ostride, odist, fftw.FORWARD, fftw.ESTIMATE)
plan.Execute()
//plan.Destroy()
}
func output3D(D [][]complex64, reduce func(complex64) float32, size [3]int, prefix string, deltaF float32) {
const NCOMP = 1
for i := 0; i < len(D)/2; i++ {
d := D[i]
MHz := int((float32(i) * deltaF) / 1e6)
fname := fmt.Sprintf("%sf%06dMHz.ovf", prefix, MHz)
slice := data.NewSlice(NCOMP, size)
doReduce(slice.Host()[0], d, reduce)
meta := data.Meta{}
log.Println(fname)
f := httpfs.MustCreate(fname)
oommf.WriteOVF2(f, slice, meta, "binary")
f.Close()
}
}
func doReduce(dst []float32, src []complex64, f func(complex64) float32) {
for i := range dst {
dst[i] = f(src[i])
}
}
func interp3D(dst []complex64, w1 float32, src1 []float32, w2 float32, src2 []float32) {
for i := range dst {
dst[i] = complex(w1*src1[i]+w2*src2[i], 0)
}
}
var (
prevData *data.Slice
prevMeta data.Meta
cachedData *data.Slice
cachedMeta data.Meta
cachedIndex int = -1
)
func file(i int) *data.Slice {
d, _ := loadFile(i)
return d
}
func time(i int) float32 {
_, m := loadFile(i)
return float32(m.Time)
}
func loadFile(i int) (*data.Slice, data.Meta) {
if i > cachedIndex+1 || i < cachedIndex-1 {
panic(fmt.Sprintf("index out-of-order: %v (previous: %v)", i, cachedIndex))
}
if i == cachedIndex-1 {
return prevData, prevMeta
}
if i == cachedIndex {
return cachedData, cachedMeta
}
if i == cachedIndex+1 {
prevData, prevMeta = cachedData, cachedMeta
cachedIndex++
inp := <-inpipe
cachedData = inp.D
cachedMeta = inp.M
return cachedData, cachedMeta
}
panic("bug")
}
var inpipe = make(chan inp, 2)
func loadloop() {
for _, fname := range flag.Args() {
log.Println("loading", fname)
cachedData, cachedMeta = oommf.MustReadFile(fname) // TODO: preprocess here
inpipe <- inp{cachedData, cachedMeta}
}
close(inpipe)
}
type inp struct {
D *data.Slice
M data.Meta
}