-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapi.py
executable file
·214 lines (190 loc) · 9.62 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""API module for GLocalX."""
import sys
import os
import time
import pickle
import json
from callbacks import print_cb, full_cb, final_rule_dump_cb
from glocalx import GLocalX
from generators import TrePanGenerator, BudgedExhaustedException
# Shut up, tensorflow!
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import click
import logzero
import numpy as np
from tensorflow.keras.models import load_model as load_tf_model
from logzero import logger
from models import Rule
@click.command()
# Compulsory arguments: input rules, TR set, TS set, oracle
@click.argument('rules', type=click.Path(exists=True))
@click.argument('tr', type=click.Path(exists=True))
@click.option('-o', '--oracle', type=click.Path(exists=True))
# Input descriptions
@click.option('-cbs', '--callbacks', default=0.1, help='Callback step, either int or float. Defaults to 0.1')
# Output file
@click.option('-m', '--name', default=None, help='Name of the log files.')
# Use synthetic data
@click.option('--generate', default=None, help='Number of records to generate, if given. Defaults to None.')
# Rule collision
@click.option('-i', '--intersect', default='coverage', help='Whether to use coverage intersection '
'(\'coverage\') or polyhedra intersection '
'(\'polyhedra\'). Defaults to \'coverage\'.')
# Weight the BIC function
@click.option('-f', '--fidelity_weight', default=1., help='Fidelity weight. Defaults to 1.')
@click.option('-c', '--complexity_weight', default=1., help='Complexity weight. Defaults to 1.')
# Running options
@click.option('-a', '--alpha', default=.5, help='Pruning factor. Defaults to 0.5')
@click.option('-b', '--batch', default=128, help='Batch size. Set to -1 for full batch. Defaults to 128.')
@click.option('-u', '--undersample', default=1., help='Undersample size, to use a percentage of the rules. '
'Defaults to 1.0 (No undersample).')
# Merge options
@click.option('--strict_join', is_flag=True, help='Use to use high concordance.')
@click.option('--strict_cut', is_flag=True, help='Use to use the strong cut.')
@click.option('--global_direction', is_flag=True, help='Use to use the global search direction.')
# Set debug class
@click.option('-d', '--debug', default=20, help='Debug level.')
def cl_run(rules, tr, generate=None, oracle=None, batch=128, alpha=0.5, undersample=1.0,
fidelity_weight=1., complexity_weight=1., global_direction=False,
intersect='coverage', strict_join=False, strict_cut=False,
callbacks=0.1, name=None, debug=20):
run(rules, tr=tr, oracle=oracle, generate=generate,
intersecting=intersect, batch_size=batch, alpha=alpha, undersample=undersample,
strict_join=strict_join, strict_cut=strict_cut, global_direction=global_direction,
fidelity_weight=fidelity_weight, complexity_weight=complexity_weight,
callbacks_step=callbacks,
name=name, debug=debug)
def run(rules, tr, oracle=None, generate=None,
intersecting='coverage', batch_size=128, alpha=0.5, undersample=1.,
strict_join=False, strict_cut=False, global_direction=False,
fidelity_weight=1, complexity_weight=1,
name=None, callbacks_step=0.1, debug=20):
"""Run the GLocalX framework on a set of rules.
Arguments:
rules (str): JSON file with the train set.
tr (str): Validation set.
oracle (str): Path to the oracle to use. None to use the dataset labels.
generate (Union(int, float, None)): Size of the synthetic dataset to use, if not using the training set.
Use float to give size w.r.t. the TR to use.
Defaults to None (use training set).
intersecting (str): Whether to use coverage intersection ('coverage') or polyhedra intersection ('polyhedra').
Defaults to 'coverage'.
global_direction (bool): False to compute the BIC on the merged theory, True to compute it on the whole model.
Defaults to False.
batch_size (int): Batch size. Defaults to 128.
fidelity_weight (float): Fidelity weight. Defaults to 1.
complexity_weight (float): Complexity weight. Defaults to 1.
alpha (float): Pruning factor. Defaults to 0.5.
undersample (float): Percentage of rules to use, if < 1, irrelevant otherwise. Defaults to 1.
name (str): Name for the output logs.
callbacks_step (Union(int, float)): Callback step, either int or float (percentage). Defaults to 0.1.
debug (int): Minimum debug level.
strict_join (bool): If True, join is less stringent: only features on both rules
are merged, others are removed
If False, join is less stringent: features on both rules are merged.
If a feature is present only in one rule, it will be present as-is
in the resulting join.
Defaults to True.
strict_cut (bool): If True, the dominant rule cuts the non-dominant rules on all features.
If False, the dominant rule cuts the non-dominant rules only on shared features.
Defaults to True.
"""
# Set-up debug
if debug == 10:
min_log = logzero.logging.DEBUG
elif debug == 20:
min_log = logzero.logging.INFO
elif debug == 30:
min_log = logzero.logging.WARNING
elif debug == 40:
min_log = logzero.logging.ERROR
elif debug == 50:
min_log = logzero.logging.CRITICAL
else:
min_log = 0
logzero.loglevel(min_log)
if name is None:
name = tr + '_' + str(time.time())
elif os.path.exists(name + '.glocalx.pickle'):
logger.info('GLocalX run already existing: ' + name + '.glocalx.pickle. Exiting!')
return
# Info LOG
logger.info('Rules: ' + str(rules))
logger.info('name: ' + str(name))
logger.info('tr: ' + str(tr))
logger.info('generate: ' + str(generate))
logger.info('oracle: ' + str(oracle))
logger.info('intersect: ' + str(intersecting))
logger.info('global dir.: ' + str(global_direction))
logger.info('alpha: ' + str(alpha))
logger.info('undersample: ' + str(undersample))
# Set up output
output_dic = dict()
output_dic['tr'] = tr
output_dic['oracle'] = oracle
output_dic['global search'] = global_direction
output_dic['alpha'] = alpha
output_dic['generate'] = generate
output_dic['undersample'] = undersample
logger.info('Loading data... ')
# Load data and header
data = np.genfromtxt(tr, delimiter=',', names=True)
names = data.dtype.names
tr_set = data.view(np.float).reshape(data.shape + (-1,))
# Run GLocalX
logger.info('Loading ruleset...')
rules = Rule.from_json(rules, names=names)
rules = list(set(rules))
rules = [r for r in rules if len(r) > 0]
if undersample < 1:
n = len(rules)
sample_indices_space = range(n)
sample_size = int(undersample * n)
sample_indices = np.random.choice(sample_indices_space, (sample_size,))
rules = [rules[i] for i in sample_indices]
logger.info('Loading oracle...')
if oracle is not None:
if oracle.endswith('.h5'):
oracle = load_tf_model(oracle)
elif oracle.endswith('.pickle'):
with open(oracle, 'rb') as log:
oracle = pickle.load(log)
else:
return
oracle_predictions = oracle.predict(tr_set[1:, :-1]).round().reshape((tr_set.shape[0] - 1, 1))
tr_set = np.hstack((tr_set[1:, :-1], oracle_predictions))
# Generate data for GLocalX, if needed
if generate is not None:
logger.debug('Generating data...')
try:
# int
if '.' not in generate:
tr_set = TrePanGenerator(oracle=oracle).generate(sample=tr_set[:, :-1],
size=int(generate), rules=rules)
# float
else:
tr_set = TrePanGenerator(oracle=oracle).generate(sample=tr_set[:, :-1],
size=int(float(generate) * tr_set.shape[0]),
rules=rules)
except BudgedExhaustedException:
logger.info('Budget exhausted, could not generate data.')
logger.info('Exiting.')
sys.exit(-1)
n = len(rules)
actual_callbacks_step = max(callbacks_step if isinstance(callbacks_step, int) else int(n * callbacks_step), n)
logger.info('Merging...')
glocalx = GLocalX(oracle=oracle)
glocalx = glocalx.fit(rules, tr_set,
batch_size=batch_size if batch_size > 0 else tr_set.shape[0],
intersecting=intersecting, global_direction=global_direction,
strict_join=strict_join, strict_cut=strict_cut,
fidelity_weight=fidelity_weight, complexity_weight=complexity_weight,
callback_step=actual_callbacks_step,
callbacks=[print_cb, full_cb, final_rule_dump_cb])
logger.info('Storing output rules ' + name + '...')
output_rules = glocalx.rules(alpha, tr_set)
jsonized_rules = [rule.json() for rule in output_rules]
with open(name + '.rules.glocalx.alpha=' + str(alpha) + '.json', 'w') as log:
json.dump(jsonized_rules, log)
if __name__ == '__main__':
cl_run()