Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Robust estimators #8

Open
mpizenberg opened this issue Jan 26, 2020 · 0 comments
Open

Robust estimators #8

mpizenberg opened this issue Jan 26, 2020 · 0 comments

Comments

@mpizenberg
Copy link
Owner

Black 1996 uses Geman-McClure robust M-estimator.

@article{black1996robust,
  title={The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields},
  author={Black, Michael J and Anandan, Paul},
  journal={Computer vision and image understanding},
  volume={63},
  number={1},
  pages={75--104},
  year={1996},
  publisher={Elsevier}
}

Zhang 1997 presents parameters estimation from noisy data, including robust techniques
such as M-estimators and least median of squares (but not Ransac!).

@article{zhang1997parameter,
  title={Parameter estimation techniques: A tutorial with application to conic fitting},
  author={Zhang, Zhengyou},
  journal={Image and vision Computing},
  volume={15},
  number={1},
  pages={59--76},
  year={1997},
  publisher={Elsevier}
}

Stewart 1999 presents usage of M-estimators and least median squares (LMS)
and RANSAC in the context of computer vision.

@article{stewart1999robust,
  title={Robust parameter estimation in computer vision},
  author={Stewart, Charles V},
  journal={SIAM review},
  volume={41},
  number={3},
  pages={513--537},
  year={1999},
  publisher={SIAM}
}

In part 2 of Baker 2003, the authors show how a robust M-estimator can be used
within an inverse compositional iteratively reweighted least squares (IRLS) algorithm

@inproceedings{baker2003lucas,
  title={Lucas-kanade 20 years on: A unifying framework: Part 2},
  author={Baker, Simon and Gross, Ralph and Ishikawa, Takahiro and Matthews, Iain},
  booktitle={International Journal of Computer Vision},
  year={2003},
  organization={Citeseer}
}

In Audras 2011, the authors use a robust M-estimator

@inproceedings{audras2011real,
  title={Real-time dense appearance-based SLAM for RGB-D sensors},
  author={Audras, Cedric and Comport, A and Meilland, Maxime and Rives, Patrick},
  booktitle={Australasian Conf. on Robotics and Automation},
  volume={2},
  pages={2--2},
  year={2011}
}

Klose 2013 uses robust M-estimator Huber and Tukey.
Removes median abs res, and estimate std before computing weights.
Also introduce global affine illumination changes.

@inproceedings{klose2013efficient,
  title={Efficient compositional approaches for real-time robust direct visual odometry from RGB-D data},
  author={Klose, Sebastian and Heise, Philipp and Knoll, Alois},
  booktitle={2013 IEEE/RSJ International Conference on Intelligent Robots and Systems},
  pages={1100--1106},
  year={2013},
  organization={IEEE}
}

In Kerl 2013, they use a t-distribution instead of M-estimator.

@inproceedings{kerl2013robust,
  title={Robust odometry estimation for RGB-D cameras},
  author={Kerl, Christian and Sturm, J{\"u}rgen and Cremers, Daniel},
  booktitle={2013 IEEE international conference on robotics and automation},
  pages={3748--3754},
  year={2013},
  organization={IEEE}
}

Gutierrez 2015 evaluate huber, tukey and Student t-distribution. Find that t-dist is best and more stable.

@inproceedings{gutierrez2015inverse,
  title={Inverse depth for accurate photometric and geometric error minimisation in RGB-D dense visual odometry},
  author={Guti{\'e}rrez-G{\'o}mez, Daniel and Mayol-Cuevas, Walterio and Guerrero, Josechu J},
  booktitle={2015 IEEE International Conference on Robotics and Automation (ICRA)},
  pages={83--89},
  year={2015},
  organization={IEEE}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant