-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_metadataset.py
326 lines (287 loc) · 17 KB
/
run_metadataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import torch
import torchvision
import numpy as np
import argparse
import os
import time
import random
import collections
from readers.meta_dataset_reader import MetaDatasetReader
from metrics import calibration
import backbones
# Run these commands before training/testing:
# ulimit -n 50000
# export META_DATASET_ROOT=/path_to_metadataset_folder
#
# Example command for testing:
# python run_metadataset.py --model=uppercase --backbone=EfficientNetB0 --data_path=/path_to_metadataset_records --log_path=./logs/uppercase_EfficientNetB0_seed1_`date +%F_%H%M%S`.csv --image_size=224 --num_test_tasks=1200 --mode=test
def topk(output, target, ks=(1,)):
_, pred = output.topk(max(ks), 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
return [correct[:k].max(0)[0] for k in ks]
def shuffle(images, labels):
permutation = np.random.permutation(images.shape[0])
return images[permutation], labels[permutation]
def prepare_task(task_dict):
context_images_np, context_labels_np = task_dict['context_images'], task_dict['context_labels']
target_images_np, target_labels_np = task_dict['target_images'], task_dict['target_labels']
# Prepare context
context_images_np = context_images_np.transpose([0, 3, 1, 2])
context_images_np, context_labels_np = shuffle(context_images_np, context_labels_np)
context_images = torch.from_numpy(context_images_np)
context_labels = torch.from_numpy(context_labels_np)
# Prepare target
target_images_np = target_images_np.transpose([0, 3, 1, 2])
target_images_np, target_labels_np = shuffle(target_images_np, target_labels_np)
target_images = torch.from_numpy(target_images_np)
target_labels = torch.from_numpy(target_labels_np).type(torch.LongTensor)
# Done!
return context_images, target_images, context_labels, target_labels
def log_write(file, line, mode="a", newline=True, verbose=True):
with open(file, mode) as f:
if(newline): f.write(line+"\n")
else: f.write(line)
if(verbose): print(line)
def save(backbone, file_path="./checkpoint.dat"):
backbone_state_dict = backbone.state_dict()
torch.save({"backbone": backbone_state_dict}, file_path)
def count_parameters(model, adapter, verbose=True):
params_total = 0
params_backbone = 0
params_adapters = 0
# Count adapter parameters
for module_name, module in model.named_modules():
for parameter in module.parameters():
if(type(module) is adapter): params_adapters += parameter.numel()
# Count all parameters
for parameter in model.parameters():
params_total += parameter.numel()
# Subtract to get the backbone parameters (with no adapters)
params_backbone = params_total - params_adapters
# Done, printing
info_str = f"params-backbone .... {params_backbone} ({(params_backbone/1e6):.2f} M)\n" \
f"params-adapters .... {params_adapters} ({(params_adapters/1e6):.2f} M)\n" \
f"params-total ....... {params_backbone+params_adapters} ({((params_backbone+params_adapters)/1e6):.2f} M)\n"
if(verbose): print(info_str)
return params_backbone, params_adapters
def train(args, model, dataset, dataset_list, image_transform, eval_every=5000):
best_accuracy = 0.0
best_iteration = 0
train_accuracy_deque = collections.deque(maxlen=100)
for task_idx in range(args.num_train_tasks):
# Gather and normalize
task_dict = dataset.get_train_task()
context_images, target_images, context_labels, target_labels = prepare_task(task_dict)
context_images = context_images.to(args.device)
target_images = target_images.to(args.device)
context_labels = context_labels.long().to(args.device)
target_labels = target_labels.long().to(args.device)
context_images = (context_images + 1.0) / 2.0
target_images = (target_images + 1.0) / 2.0
context_images = image_transform(context_images)
target_images = image_transform(target_images)
task_way = torch.max(context_labels).item() + 1
task_tot_images = context_images.shape[0]
task_avg_shot = task_tot_images / task_way
log_probs = model.learn(task_idx, args.num_train_tasks, context_images, context_labels, target_images, target_labels)
nll = torch.nn.NLLLoss(reduction='none')(log_probs, target_labels)
top1, = topk(log_probs, target_labels, ks=(1,))
task_top1 = (top1.float().detach().cpu().numpy() * 100.0).mean()
task_nll = nll.mean().detach().cpu().numpy().mean()
train_accuracy_deque.append(task_top1)
line = f"[{task_idx+1}|{args.num_train_tasks}] {args.model}; {args.backbone}; " \
f"Tot-imgs: {task_tot_images}; Avg-Shot: {task_avg_shot:.1f}; Way: {task_way}; " \
f"Task-NLL: {task_nll:.5f}; " \
f"Task-Acc: {task_top1:.1f}; " \
f"Train-Acc: {np.mean(list(train_accuracy_deque)):.1f}"
print(line)
# Validation
if(task_idx%eval_every==0 and task_idx>0):
print("*Validation...")
validation_accuracy_list = list()
for val_idx in range(args.num_validation_tasks):
# Gather and normalize
dataset_name = random.choice(dataset_list)
task_dict = dataset.get_validation_task(dataset_name)
context_images, target_images, context_labels, target_labels = prepare_task(task_dict)
context_images = context_images.to(args.device)
target_images = target_images.to(args.device)
context_labels = context_labels.long().to(args.device)
target_labels = target_labels.long().to(args.device)
context_images = (context_images + 1.0) / 2.0
target_images = (target_images + 1.0) / 2.0
context_images = image_transform(context_images)
target_images = image_transform(target_images)
# Evaluate
log_probs = model.predict(context_images, context_labels, target_images)
top1, = topk(log_probs, target_labels, ks=(1,))
task_top1 = (top1.float().detach().cpu().numpy() * 100.0).mean()
validation_accuracy_list.append(task_top1)
# Printing stuff
if((val_idx+1)%(args.num_validation_tasks//10)==0 or (val_idx+1)==args.num_validation_tasks):
line = f"*Validation [{val_idx+1}|{args.num_validation_tasks}] " \
f"accuracy: {np.mean(validation_accuracy_list):.1f} " \
f"(best: {best_accuracy:.1f} at {best_iteration}); "
print(line)
if(np.mean(validation_accuracy_list)>best_accuracy):
checkpoint_path = args.checkpoint_path + "/best_" + args.model + "_" + args.backbone + ".dat"
print("Best model! Saving in:", checkpoint_path)
save(model.backbone, file_path=checkpoint_path)
best_accuracy = np.mean(validation_accuracy_list)
best_iteration = task_idx+1
def main(args):
if(args.device==""):
args.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print("[INFO] Using device:", str(args.device))
if(args.adapter == "case"):
from adapters.case import CaSE
adapter = CaSE
train_set = ['ilsvrc_2012', 'omniglot', 'aircraft', 'cu_birds', 'dtd', 'quickdraw', 'fungi', 'mnist']
validation_set = ['omniglot', 'aircraft', 'cu_birds', 'dtd', 'quickdraw', 'fungi', 'mscoco']
test_set = ["omniglot", "aircraft", "cu_birds", "dtd", "quickdraw", "fungi", "traffic_sign", "mscoco"]
if(args.backbone=="ResNet18"):
from backbones import resnet
backbone = resnet.resnet18(pretrained=True, progress=True, norm_layer=torch.nn.BatchNorm2d, adaptive_layer=adapter)
normalize = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
elif(args.backbone=="EfficientNetB0"):
from backbones import efficientnet
backbone = efficientnet.efficientnet_b0(pretrained=True, progress=True, norm_layer=torch.nn.BatchNorm2d, adaptive_layer=adapter)
normalize = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
elif(args.backbone=="BiT-S-R50x1"):
from backbones import bit_resnet
backbone = bit_resnet.KNOWN_MODELS[args.backbone](adaptive_layer=adapter)
if(args.resume_from!=""):
checkpoint = torch.load(args.resume_from)
backbone.load_state_dict(checkpoint['backbone'])
print("[INFO] Loaded checkpoint from:", args.resume_from)
else:
backbone.load_from(np.load(f"{args.backbone}.npz"))
normalize = torchvision.transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
else:
print(f"[ERROR] backbone {args.backbone} not supported!")
quit()
# Print number of params
count_parameters(backbone, adapter=adapter, verbose=True)
# Call reset method to impose CaSE -> identity-output
for name, module in backbone.named_modules():
if(type(module) is adapter):
module.reset_parameters()
if(args.resume_from!=""):
checkpoint = torch.load(args.resume_from)
backbone.load_state_dict(checkpoint['backbone'], strict=True)
print("[INFO] Loaded checkpoint from:", args.resume_from)
backbone = backbone.to(args.device)
test_transform = torchvision.transforms.Compose([normalize])
if(args.model=="uppercase"):
from models.uppercase import UpperCaSE
model = UpperCaSE(backbone, adapter, args.device, tot_iterations=500, start_lr=1e-3, stop_lr=1e-5)
else:
print("[ERROR] The model", args.model, "is not implemented!")
print("[INFO] Defined a", args.model, "model")
print("[INFO] Preparing MetaDatasetReader...")
dataset = MetaDatasetReader(
data_path=args.data_path,
mode=args.mode,
train_set=train_set,
validation_set=validation_set,
test_set=test_set,
max_way_train=args.max_way_train,
max_way_test=50,
max_support_train=args.max_support_train,
max_support_test=500,
max_query_train=10,
max_query_test=10,
image_size=args.image_size)
if(args.mode=="train" or args.mode=="train_test"):
print("[INFO] Start training...\n")
train(args, model, dataset, dataset_list=validation_set, image_transform=test_transform)
# Saving the checkpoint
checkpoint_path = args.checkpoint_path + "/" + args.model + "_" + args.backbone + ".dat"
print("Saving model in:", checkpoint_path)
save(model.backbone, file_path=checkpoint_path)
if(args.mode == "train"): quit()
print("[INFO] Start evaluating...\n")
line = "method,backbone,dataset,task-idx,task-tot-images,task-avg-shot,task-way,task-loss,task-gce,task-ece,task-ace,task-tace,task-sce,task-rmsce,task-top1,all-top1-mean,all-top1-95ci,time"
log_write(args.log_path, line, mode="w", verbose=True)
for dataset_name in test_set:
all_ce, all_top1 = [], []
all_gce, all_ece, all_ace, all_tace, all_sce, all_rmsce = [], [], [], [], [], []
dataset_time = time.time()
for task_idx in range(args.num_test_tasks):
task_time = time.time()
task_dict = dataset.get_test_task(dataset_name)
context_images, target_images, context_labels, target_labels = prepare_task(task_dict)
context_images = context_images.to(args.device)
target_images = target_images.to(args.device)
context_labels = context_labels.long().to(args.device)
target_labels = target_labels.long().to(args.device)
# Brings back to range [0,1] then normalize
context_images = (context_images + 1.0) / 2.0
target_images = (target_images + 1.0) / 2.0
context_images = test_transform(context_images)
target_images = test_transform(target_images)
task_way = torch.max(context_labels).item() + 1
task_tot_images = context_images.shape[0]
task_avg_shot = task_tot_images / task_way
log_probs = model.predict(context_images, context_labels, target_images)
nll = torch.nn.NLLLoss(reduction='none')(log_probs, target_labels)
top1, = topk(log_probs, target_labels, ks=(1,))
task_top1 = (top1.float().detach().cpu().numpy() * 100.0).mean()
task_nll = nll.mean().detach().cpu().numpy().mean()
all_top1.append(task_top1)
# Compute the 95% confidence intervals over the tasks accuracies
# From: https://github.com/cambridge-mlg/LITE/blob/6e6499b3cfe561a963d9439755be0a37357c7729/src/run.py#L287
accuracies = np.array(all_top1) / 100.0
all_top1_confidence = (196.0 * np.std(accuracies)) / np.sqrt(len(accuracies))
# Estimate the error metrics for calibration
target_labels_np = target_labels.detach().cpu().numpy()
probs_np = torch.exp(log_probs).detach().cpu().numpy()
task_gce = calibration.compute_all_metrics(labels=target_labels_np, probs=probs_np, num_bins=15, return_mean=True)
task_ece = calibration.ece(labels=target_labels_np, probs=probs_np, num_bins=15)
task_ace = calibration.ace(labels=target_labels_np, probs=probs_np, num_bins=15)
task_tace = calibration.tace(labels=target_labels_np, probs=probs_np, num_bins=15, threshold=0.01)
task_sce = calibration.sce(labels=target_labels_np, probs=probs_np, num_bins=15)
task_rmsce = calibration.rmsce(labels=target_labels_np, probs=probs_np, num_bins=15)
all_gce.append(task_gce)
all_ece.append(task_ece)
all_ace.append(task_ace)
all_tace.append(task_tace)
all_sce.append(task_sce)
all_rmsce.append(task_rmsce)
stop_time = time.time()
line = f"{args.model},{args.backbone},{dataset_name}," \
f"{task_idx+1},{task_tot_images},{task_avg_shot:.1f},{task_way}," \
f"{task_nll:.5f}," \
f"{task_gce*100:.2f},{task_ece*100:.2f}," \
f"{task_ace*100:.2f},{task_tace*100:.2f}," \
f"{task_sce*100:.2f},{task_rmsce*100:.2f}," \
f"{task_top1:.2f}," \
f"{np.mean(all_top1):.2f},{all_top1_confidence:.2f}," \
f"{(time.time() - task_time):.2f}"
log_write(args.log_path, line, mode="a", verbose=True)
# Finished with this dataset, estimate the final statistics
print(f"*{dataset_name} Accuracy: {np.mean(all_top1):.2f}+-{all_top1_confidence:.2f}, GCE: {np.mean(all_gce)*100.0:.2f}, ECE: {np.mean(all_ece)*100.0:.2f}, ACE: {np.mean(all_ace)*100.0:.2f}, TACE: {np.mean(all_tace)*100.0:.2f}, SCE: {np.mean(all_sce)*100.0:.2f}, RMSCE: {np.mean(all_rmsce)*100.0:.2f}, Episodes: {task_idx+1}, Time: {(time.time() - dataset_time):.2f} sec\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", choices=["uppercase"], default="uppercase", help="The model used for the evaluation.")
parser.add_argument("--backbone", choices=["BiT-S-R50x1", "ResNet18", "EfficientNetB0"], default="EfficientNetB0", help="The backbone used for the evaluation.")
parser.add_argument("--adapter", choices=["case"], default="case", help="The adapted used.")
parser.add_argument("--data_path", default="../datasets", help="Path to Meta-Dataset records.")
parser.add_argument("--log_path", default="./log.csv", help="Path to log CSV file for the run.")
parser.add_argument("--checkpoint_path", default="./checkpoints", help="Path to Meta-Dataset records.")
parser.add_argument("--mode", choices=["train", "test", "train_test"], default="test",
help="Whether to run meta-training only, meta-testing only,"
"both meta-training and meta-testing.")
parser.add_argument("--max_way_train", type=int, default=50, help="Maximum way of meta-train task.")
parser.add_argument("--max_support_train", type=int, default=500,
help="Maximum support set size of meta-train task.")
parser.add_argument("--image_size", type=int, default=224, help="Image height and width.")
parser.add_argument("--num_train_tasks", type=int, default=10000, help="Number of train tasks.")
parser.add_argument("--num_test_tasks", type=int, default=600, help="Number of test tasks.")
parser.add_argument("--num_validation_tasks", type=int, default=700, help="Number of validation tasks.")
parser.add_argument("--resume_from", default="", help="Checkpoint path for the backbone.")
parser.add_argument("--device", default="", help="Device to use.")
args = parser.parse_args()
print(os.path.abspath(os.environ['META_DATASET_ROOT']))
main(args)