-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCrdDsc.py
36 lines (29 loc) · 875 Bytes
/
CrdDsc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
import pickle
import os
from sklearn import linear_model
if __name__ == "__main__":
# Import Data
xy = open('mystery.dat', 'r').read()
no_of_data = len(xy.split("\n")) - 1
XY_vec_str = []
for i in xrange(no_of_data):
XY_vec_str.append([])
XY_vec_str[i] = xy.split("\n")[i].split(",")
XY_vec = []
for i in xrange(no_of_data):
XY_vec.append([])
for j in xrange(101):
XY_vec[i].append(float(XY_vec_str[i][j]))
X, Y = [], []
for i in xrange(no_of_data):
X.append([])
Y.append([])
X[i] = XY_vec[i][0:100]
X[i].append(1)
Y[i] = XY_vec[i][100]
X, Y = np.array(X), np.array(Y)
L = linear_model.Lasso(alpha = 0.5)
L.fit(X,Y)
idx = L.coef_.argsort()[-10:][::-1]
print np.sort([idx[i]+1 for i in xrange(len(idx))])