Skip to content

Latest commit

 

History

History
82 lines (61 loc) · 3.02 KB

README.md

File metadata and controls

82 lines (61 loc) · 3.02 KB

KoBERT-KorQuAD

  • Korean MRC (KorQuAD) with KoBERT
  • 🤗Huggingface Tranformers🤗 라이브러리를 이용하여 구현

Dependencies

  • torch>=1.1.0
  • transformers==2.9.1
  • tensorboardX>=2.0

How to use KoBERT on Huggingface Transformers Library

  • 기존의 KoBERT를 transformers 라이브러리에서 곧바로 사용할 수 있도록 맞췄습니다.
    • transformers v2.2.2부터 개인이 만든 모델을 transformers를 통해 직접 업로드/다운로드하여 사용할 수 있습니다
  • Tokenizer를 사용하려면 tokenization_kobert.py에서 KoBertTokenizer를 임포트해야 합니다.
from transformers import BertModel
from tokenization_kobert import KoBertTokenizer

model = BertModel.from_pretrained('monologg/kobert')
tokenizer = KoBertTokenizer.from_pretrained('monologg/kobert')

Usage

코드의 경우 Huggingface Transformers의 example 코드를 가져와 사용하였습니다.

1. Training

$ python3 run_squad.py --model_type kobert \
                       --model_name_or_path monologg/kobert \
                       --output_dir models \
                       --data_dir data \
                       --train_file KorQuAD_v1.0_train.json \
                       --predict_file KorQuAD_v1.0_dev.json \
                       --evaluate_during_training \
                       --per_gpu_train_batch_size 8 \
                       --per_gpu_eval_batch_size 8 \
                       --max_seq_length 512 \
                       --logging_steps 4000 \
                       --save_steps 4000 \
                       --do_train
  • train 중간에 진행되는 dev set evaluation에서 official EM/F1 score도 보여주게 하였습니다.

    image

  • DistilKoBert의 경우 argument를 아래와 같이 바꿔주면 됩니다

    • --model_type distilkobert
    • --model_name_or_path monologg/distilkobert

2. Evaluation

$ python3 evaluate_v1_0.py {$data_dir}/KorQuAD_v1.0_dev.json {$output_dir}/predictions_.json

Results

  • Dev set에서 테스트한 결과
  • max_seq_length = 512
  • DistilBert, DistilKoBERT의 경우 fine-tuning할 때 추가적으로 Distilation하지 않았습니다
Exact Match (%) F1 Score (%)
KoBERT 52.81 80.27
DistilKoBERT 54.12 77.80
Bert-multilingual 70.42 90.25
DistilBert-multilingual 64.32 84.78

References