-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathl10-16.Rnw
812 lines (690 loc) · 20.2 KB
/
l10-16.Rnw
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
% File: l8.Rnw
% Time-stamp: <>
% $Id$
%
% Author: Martin Corley
\documentclass[compress,11pt,aspectratio=1610]{beamer}
\usetheme{Luebeck}
\usecolortheme{crane}
\setbeamertemplate{navigation symbols}{}
\usepackage{luebeck-numbers}
\usepackage{tabto}
%
\usepackage{nbeamer}
\usepackage{centeredimage}
%\usepackage{mathptmx,helvet,courier}
%\usepackage{cmbright}
\usepackage{lmodern}
\usepackage[T1]{fontenc}
\usepackage{microtype}
%\usepackage{colortbl}
\usepackage{url}
\urlstyle{same}
\usepackage[normalem]{ulem}
%\usepackage{multimedia}
\newcommand*{\ars}[1]{\atright{\mbox{\tiny #1}}\\}
%\renewcommand{\term}[1]{\textbf{\textcolor{red!50!black}{#1}}}
\renewcommand{\term}[1]{\textbf{\usebeamercolor[fg]{titlelike}{#1}}}
\newcommand*{\spc}[1][1em]{\vspace*{#1}\par}
\usepackage{xspace}
\renewenvironment{knitrout}{\setlength{\topsep}{0mm}}{}
\newcommand{\R}[1]{\colorbox{shadecolor}{\texttt{\hlstd{\small #1}}}} % R code, requires knitr defs
\newcommand*{\Resize}[2]{\resizebox{#1}{!}{$#2$}}%
<<setup, include=FALSE>>=
require(knitr)
# this bit makes the tildes lower
.hook_source = knit_hooks$get('source')
knit_hooks$set(source = function(x, options) {
txt = .hook_source(x, options)
# extend the default source hook
gsub('~', '\\\\textasciitilde{}', txt)
})
#
knit_hooks$set(par=function(before, options, envir){
if (before && options$fig.show!='none') par(mar=c(5.1,4.1,2.1,2.1))
}, crop=hook_pdfcrop)
#
opts_chunk$set(fig.path='img/auto-',fig.align='center',fig.show='hide',size='scriptsize',warning=FALSE,tidy=TRUE,tidy.opts=list(keep.blank.line=FALSE, width.cutoff=70),fig.width=5,fig.height=4.15,par=TRUE)
# set everything to handlable numbers of digits (reclaim screen space!)
options(replace.assign=TRUE,width=70,digits=2)
#options(mar=c(5.1,4.1,1.1,2.1),cex=2,cex.text=2)
source('R/preamble.R') # useful functions
### apparent issue with Rscript
require(methods)
set.seed(271271)
@
\title[USMR~10]{Ae fareweel, alas\footnote{\url{https://en.wikipedia.org/wiki/Ae_Fond_Kiss}}}
\subtitle{ANOVA, Analysis, Reporting}
\author{Martin Corley}
\date{}
\begin{document}
\begin{frame}[plain]
\titlepage
\end{frame}
\begin{frame}
\frametitle{Today}
\tableofcontents[part=1]
\tableofcontents[part=2]
\tableofcontents[part=3]
\end{frame}
\part{ANOVA and GLM}
\section{ANOVA and GLM}
\subsection{Concepts}
\begin{frame}[plain]
\partpage
\end{frame}
\begin{frame}
\frametitle{ANOVA and GLM}
\begin{AQuote}{Cohen (1968)}
If you should say to a mathematical statistician that you have
discovered that linear multiple regression analysis and the analysis
of variance (and covariance) are identical systems, he would mutter
something like, ``Of course---general linear model,'' and you might
have trouble maintaining his attention. If you should say this to a
typical psychologist, you would be met with incredulity, or
worse. Yet it is true, and in its truth lie possibilities for more
relevant and therefore more powerful exploitation of research data.
\end{AQuote}
\end{frame}
\begin{frame}
\frametitle{History: ANOVA and Multiple Regression}
\begin{block}{Multiple Regression}
\begin{itemize}
\item Introduced c.\@ 1900 in biological and behavioural sciences
\item aligned to ``natural variation''
\end{itemize}
\end{block}
\spc
\begin{block}{ANOVA}
\begin{itemize}
\item Introduced c.\@ 1920 in agricultural research
\item aligned to experimentation and manipulation
\item much simpler to calculate (can easily be done by hand)
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{History: ANOVA and Multiple Regression}
\begin{itemize}
\item ANOVA tells us that groups $(g_1, g_2, \ldots, g_n)$ have
different means ($\bar{x}$)
\item MR tells us that means ($\bar{y}$) are related to groups $(g_1, g_2, \ldots, g_n)$
\item both produce $F$-ratios, discussed using different language, but identical \end{itemize}
\spc\pause
\begin{block}{Why teach ANOVA separately?}
\begin{itemize}
\item you can make students do ANOVA by hand
\item it can be useful to explain experimental design
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Why prefer GLM/Regression?}
\begin{itemize}
\item GLM has less restrictive assumptions
\begin{itemize}
\item especially true for unbalanced designs/missing data
\end{itemize}
\spc \item GLM is far better at dealing with covariates
\begin{itemize}
\item can arbitrarily mix continuous and discrete predictors
\end{itemize}
\pause
\spc \item<alert@2> GLM is the gateway to other powerful tools
\begin{itemize}
\item mixed models and factor analysis\atright{\ra{} MSMR}
\item structural equation models
\end{itemize}
\end{itemize}
\end{frame}
\subsection{Examples}
\begin{frame}[fragile]
\frametitle{ANOVA in R}
\framesubtitle{Which Apples are Tastiest?}
<<maked>>=
apples <- data.frame(
colour = gl(2,2,8,labels=c('green','red')),
taste = runif(8,1,7)
)
apples
@
\pause
\begin{itemize}
\item linear model, and ANOVA
\end{itemize}
<<doit>>=
r.mod <- lm(taste ~ colour, data = apples)
## alternative ANOVA command
a.mod <- aov(taste ~ colour, data = apples)
@
\end{frame}
\begin{frame}[fragile]
\frametitle{lm() vs.\@ aov()}
\begin{itemize}
\item linear model:
\end{itemize}
<<showme.l>>=
anova(r.mod)
@
\begin{itemize}
\item ANOVA:
\end{itemize}
<<showme.a>>=
summary(a.mod)
@
\begin{itemize}
\item NB: can't inspect coefficients!
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{lm() vs.\@ aov()}
\begin{itemize}
\item linear model:
\end{itemize}
<<showme.l2f,eval=FALSE>>=
summary(r.mod)
@
<<showme.l2,echo=FALSE>>=
.pp(summary(r.mod),l=list(0,c(10:12),0))
@
\begin{itemize}
\item ANOVA:
\end{itemize}
<<showme.a2>>=
model.tables(a.mod)
@
\end{frame}
{\usebackgroundtemplate{\includegraphics[width=\paperwidth]{img/elephant}}
\begin{frame}[t,plain]
\transdissolve
\vspace*{8.2cm}
\begin{center}
{\huge \textbf{\textcolor{white}{The Elephant In The Room}}}
\end{center}
\end{frame}}
\begin{frame}{The Elephant is Repeated Measures}
\begin{itemize}
\item so far, \emph{every} model we've looked at has been `one
observation per participant' (or `one observation per word')
\item however, most experiments have a \emph{structure}
\spc
\item some observations are `more related' to each other than others
\item for example, because they come from the same person
(repeated measures)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Mixed Models (looking ahead)}
\begin{block}{The Regression Equation}
\[ y_{i\visible<2->{\alert<2>{j}}} = b_{0\visible<2->{\alert<2>{j}}} +
b_{1\visible<2->{\alert<2>{j}}}x_{1i\visible<2->{\alert<2>{j}}} +
\epsilon_{i\visible<2->{\alert<2>{j}}}
\]
\pause[3]\spc[.5em]
\[ b_{0j} = \gamma_{00} + \upsilon_{0j} \]
\[ b_{1j} = \gamma_{01} + \upsilon_{1j} \]
\end{block}
\pause[4]
\begin{itemize}
\item relatedness accounted for by more regression equations
\item all part of the linear model \atright{\alert{\ra{} NEXT TERM}}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{ANOVA reading}
\begin{itemize}
\item brief introduction: Navarro (pp.\@ 523--534, v0.5)
\item Cohen, J.\@ (1968). Multiple Regression as a General
Data-Analytic System. \textit{Psychological Bulletin, 70,}
426--443.
\item Chapter 16 of Howell, D.~C.\@ (2002). \textit{Statistical Methods for
Psychology,} 5th Edn. Duxbury, CA: Duxbury Thomson Learning.
\end{itemize}
\end{frame}
\part{Analysis}
\section{Analysis}
\subsection[Logic]{The Logic of Analysis}
\begin{frame}[plain]
\partpage
\end{frame}
\begin{frame}
\frametitle{Analytical Steps}
\begin{itemize}
\item steps typically needed for an analysis \textcolor{gray}{(cough: lab~9, exam)}
\end{itemize}
\spc
\begin{enumerate}
\item specify research questions and hypotheses
\item operationalize variables
\item clean and prepare data
\item describe and visualise data
\item select and run statistics
\item check test and data assumptions
\item interpret results
\end{enumerate}
\end{frame}
\subsection[Data]{Questions and Data}
\begin{frame}
\frametitle{Research Questions and Hypotheses}
\begin{Quote}
produce some graphics and statistics to indicate what the
relationship is between where people live, their politics, and their
attitudes towards fox-hunting
\end{Quote}
\spc
\begin{itemize}
\item relational statement (relationship)
\begin{itemize}
\item can be extended to think about prediction (correlation \ra{}
regression)
\end{itemize}
\item variables
\begin{itemize}
\item where people live, politics, attitudes to fox-hunting
\item[\ra] need to be \term{operationalized}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Operationalizing Variables}
\begin{Quote}
politics, using the Stone-Corley Wingedness Inventory, which
returns a score along the political spectrum ranging from -100
(extremely left-wing, socialist) to 100 (extremely right-wing, conservative)
\end{Quote}
\begin{itemize}
\item continuous, self-rated
\end{itemize}
\spc
\pause
\begin{Quote}
where participants lived (urban, suburban, country)
\end{Quote}
\begin{itemize}
\item nominal category with 3~levels
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Cleaning Data}
\begin{enumerate}
\item are there any impossible values?
\begin{itemize}
\item recode them as something sensible; usually \R{NA}
\end{itemize}
\spc
\pause
\item are there any outliers?
\begin{itemize}
\item what test/critical values will be use?
\item are outliers exerting influence?
\end{itemize}
\spc
\pause
\item are categorical variables appropriately encoded?
\begin{itemize}
\item does \R{R} recognise them as \R{factor}s?
\item are the levels labelled? Remember how \R{R} deals with labels\ldots
\end{itemize}
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Describing and Visualising Data}
\begin{itemize}
\item descriptions depend on variable types
\spc
\item \R{politics}: continuous \ra{} mean, SD, (skew, kurtosis),
histogram or density?
\spc
\item \R{home}: nominal category \ra{} frequencies, mosaic plot?
\end{itemize}
\end{frame}
\subsection[Stats]{Statistics}
\begin{frame}
\frametitle{Statistics!}
\begin{itemize}
\item \term{$t$-test:} mean difference
\item \term{correlation:} association
\item \term{regression:} `prediction'
\end{itemize}
\spc
\pause
\begin{itemize}
\item choice depends on relational statement in question
\item calculation depends on DV~type etc.
\spc
\item how does this method treat missing data? (\R{na.rm=T}?)
\item what is the key output (from \R{summary()}, for example?)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Checking Assumptions}
\begin{block}{For Linear Models: Required}
\begin{itemize}
\item \term{linearity} of relationships(!)
\item for the \emph{residuals}:
\begin{itemize}
\item \term{normality}
\item \term{homogeneity of variance}
\item \term{independence}
\end{itemize}
\end{itemize}
\end{block}
\spc[.5em]
\pause[2]
\begin{block}{For Linear Models: Desirable}
\begin{itemize}
\item uncorrelated predictors (no collinearity)
\item no `bad' (overly influential) observations
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Logit Regression Assumptions}
\begin{block}{For Binomial DVs, Assumptions are Different}
\begin{itemize}
\item \term{linearity} of relationships between IVs and log-odds
\item for the \emph{residuals}:
\begin{itemize}
\item \sout{normality}
\item \sout{homogeneity of variance}
\item \term{independence}
\end{itemize}
\end{itemize}
\end{block}
\spc[.5em]
\pause[2]
\begin{block}{Desirable}
\begin{itemize}
\item uncorrelated predictors (no collinearity)
\item no `bad' (overly influential) observations
\item large samples (due to maximum likelihood fitting)
\end{itemize}
\end{block}
\end{frame}
{ \definecolor{mycolor}{HTML}{FEF5DA}
\setbeamercolor{background canvas}{bg=mycolor}
\begin{frame}{EXAM INFO}
\begin{itemize}
\item for the exam, we do not expect a full suite of assumption
checks for any \R{glm(\ldots{} family=binomial)} regressions you
do
\spc
\item please provide a rationale for using these regressions based
on the types of variables you are analysing
\end{itemize}
\end{frame}}
\subsection{Interpretation}
\begin{frame}[fragile]
\frametitle{Interpretation: Linear Models}
<<intslop,echo=F>>=
curve(5+2*x,from=-1,to=4,ylim=c(0,14),frame.plot=F,ylab='y=5+2x')
arrows(0,0,0,5,lwd=3,col='red',code=3,length=0.15)
text(0.1,2,pos=4,"intercept",col='red')
lines(x=c(1,2.5),y=c(7,7),lty='dashed',lwd=2,col='blue')
arrows(2,7,2,9,lwd=3,col='blue',code=3,length=0.15)
text(2.1,8,pos=4,"slope",col='blue')
@
\cimage[.45\linewidth]{img/auto-intslop-1}
\pause
\begin{block}{Linear Model}
\centering{$\hat{y_i}={b_0}\visible<1-2>{\cdot\textcolor<2>{red}{1}} + b_1\cdot\textcolor<2-3>{blue}{x_i}$\\
\visible<2-3>{\texttt{y \textasciitilde{} \visible<2>{\textcolor{red}{1} +} \visible<2-3>{\textcolor{blue}{x}}}}}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Interpretation: Linear Models}
\cimage[.8\linewidth]{img/extrapolating.png}
\end{frame}
\begin{frame}
\frametitle{Interpretation: Decisions}
\begin{enumerate}
\item is the intercept meaningful?
\begin{itemize}
\item can I make it meaningful using \term{scaling}?\ars{\ra{} lec.6}
\end{itemize}
\spc\pause
\item do the units of $y$ and $b$ aid interpretation?
\begin{itemize}
\item can I help interpretability using
\term{standardisation}?\ars{\ra{} lec.8}
\item often useful to report $b$s and $\beta$s
\end{itemize}
\spc\pause
\item is the coding of nominal variables sensible?
\begin{itemize}
\item right intercept? \ars{\ra{} \R{relevel()} lec.8}
\item \textcolor{gray}{could I use a better coding?}
\end{itemize}
\end{enumerate}
\end{frame}
\begin{frame}[fragile]
\frametitle{Interpretation: Interactions}
\begin{columns}
\column{.49\linewidth}
\begin{itemize}
\item \emph{really} useful to have worked through lab~8 (``One Direction'')
\item<2-> although coffee is more interesting\ldots{}
\end{itemize}
\column{.5\linewidth}
\begin{overprint}
\onslide<1| handout:0>\cimage{img/1d}
\onslide<2-| handout:1>\cimage{img/n_coffee}
\end{overprint}
\end{columns}
\spc\pause[2]
<<coffee,include=F>>=
load('R/l8.Rdata')
coffee <- soup
rm(soup)
@
<<cof2>>=
summary(coffee)
@
\end{frame}
\begin{frame}[fragile]
\frametitle{Two Models}
\begin{itemize}
\item without interaction
\end{itemize}
<<tmod,eval=F>>=
mod.0 <- lm(SAT ~ fl + sc, data=coffee)
summary(mod.0)
@
<<tmod.1,echo=F>>=
mod.0 <- lm(SAT ~ fl + sc, data=coffee)
.pp(summary(mod.0),l=list(c(10:13)))
@
\begin{itemize}
\item with interaction
\end{itemize}
<<tmod.2,eval=F>>=
mod.1 <- lm(SAT ~ fl * sc, data=coffee)
summary(mod.1)
@
<<tmod.3,echo=F>>=
mod.1 <- lm(SAT ~ fl * sc, data=coffee)
.pp(summary(mod.1),l=list(c(10:14)))
@
\end{frame}
\begin{frame}[fragile]
\frametitle{What Do the Models Say?}
<<doplot3,include=F,message=F>>=
require(rsm)
persp(mod.0, fl~sc,main='Coffee Satisfaction',col='red',zlim=c(-15,100))
persp(mod.1, fl~sc,main='Coffee Satisfaction',col='red',zlim=c(-15,100))
@
\begin{columns}
\column{.49\linewidth}
\cimage[.8\linewidth]{img/auto-doplot3-1}
\par
\begin{center}
without interaction
<<c1a,eval=F>>=
coef(mod.0)
@
<<c1,echo=F>>=
t(coef(mod.0))
@
\end{center}
\column{.49\linewidth}
\cimage[.8\linewidth]{img/auto-doplot3-2}
\par
\begin{center}
with interaction
<<c2a,eval=F>>=
coef(mod.1)
@
<<c2,echo=F>>=
t(coef(mod.1))
@
\end{center}
\end{columns}
\atright{\hyperlink{rep}{\beamerskipbutton{skip stuff}}}
\end{frame}
\begin{frame}[fragile]{Some Sample Data}
<<loaddata,cache=F>>=
load(url('https://is.gd/usmrdata'))
# ls()
head(usmr)
@
\begin{itemize}
\item \R{lects}: lectures attended
\item \R{prac}: hours spent on lab work
\item \R{likestats}: whether a student likes stats
\item \R{PASS}: did they pass the course?
\end{itemize}
\end{frame}
\part{Reporting}
\section{Reporting}
\subsection[APA]{APA format}
\begin{frame}[plain,label=rep]
\partpage
\end{frame}
\begin{frame}
\frametitle{Reporting Results: General Formatting}
\begin{itemize}
\item primary source for psychology (and much empirical linguistics)
is the American Psychology Association Publication Manual, 6th Edn.
\item plenty of material on the website: \url{http://www.apastyle.org/}
\end{itemize}
\spc
\pause
\begin{itemize}
\item there are formal ways to present statistical results
\item plenty of good resources, e.g., \url{http://my.ilstu.edu/~jhkahn/apastats.html}
\end{itemize}
\end{frame}
\subsection{Tables}
\begin{frame}
\frametitle{Reporting Results: Tables}
\begin{itemize}
\item basic pointers
\end{itemize}
\spc
\begin{enumerate}
\item if you have fewer than 2 rows/columns, you don't need a table
\item number tables sequentially and refer to them in text
\begin{itemize}
\item \smex{table~1 contains descriptive statistics\ldots}
\end{itemize}
\item be consistent in your formatting
\begin{itemize}
\item consistency is more important than exactly meeting APA standards
\end{itemize}
\item include a brief informative title/caption above the table
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Example Table}
\begin{table}[h]
\centering
\caption{Proportions of trials in which participants referred
disfluently to disfluency images for Experiments 1 and 2. Standard errors are given in parentheses.}\label{tab:disf}
\begin{tabular}{llrr}\hline
\multicolumn{1}{l}{}&
\multicolumn{1}{l}{}&
\multicolumn{1}{c}{Confederate Absent}&
\multicolumn{1}{c}{Confederate Present}
\tabularnewline \hline
Exp.~1&Easy Images&$0.06~(0.06)$&$0.06~(0.06)$\tabularnewline
&Hard Images&$0.12~(0.12)$&$0.12~(0.12)$\tabularnewline
\hline
Exp.~2&Easy Images&$0.10~(0.06)$&$0.11~(0.07)$\tabularnewline
&Hard Images&$0.33~(0.10)$&$0.35~(0.10)$\tabularnewline
\hline
\end{tabular}
\end{table}
\end{frame}
\subsection{Figures}
\begin{frame}{Reporting Results: Figures}
\cimage{img/axes.png}
\end{frame}
\begin{frame}
\frametitle{Reporting Results: Figures}
\begin{itemize}
\item we spent a lot of time in early labs making graphs\ldots
\end{itemize}
\spc
\begin{enumerate}
\item figures include all illustrations that aren't tables (chart,
graph, photograph, drawing\ldots)
\item number figures sequentially and refer to them in text
\begin{itemize}
\item tables and figures have different numbering
\end{itemize}
\item for graphs, make sure
\begin{itemize}
\item axes are labelled appropriately
\item legends are included where necessary
\end{itemize}
\item include a brief informative title/caption \emph{below} the figure
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Example Figure}
\begin{figure}[h]
\cimage{img/stutter_fig}
\caption{Scatterplots showing, for each PWS, total number of onset
errors (x axis) plotted against self ratings of difficulty speaking
fluently in 10 commonly occurring speaking situation (y axis). From
left to right, the three plots show raw numbers of onset errors in
(1) inner speech; (2) overt speech (self-reports); and (3) overt
speech (experimenter ratings). The unbroken regression line depicts
the relationship between the two variables when two outliers (marked
with $\circ$) are excluded.}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Reporting Results: Do's and Don'ts}
\begin{enumerate}
\item don't repeat information (\emph{summarise} figures or tables
in the text)
\item be concise
\item provide rationales for the decisions you make, and be
consistent
\item describe all your steps, but only include full diagnostic
information for key analyses
\end{enumerate}
\end{frame}
\mode<beamer>
{\usebackgroundtemplate{\includegraphics[width=\paperwidth]{img/fin}}
\begin{frame}[plain]
~
\end{frame}}
\mode
<all>
% \begin{frame}
% \frametitle{The End\ldots}
% \begin{itemize}
% \item last lab \emph{3pm today}
% \end{itemize}
% \spc
% \begin{block}{Office Hours}
% \begin{itemize}
% \item Martin \tabto{3cm} Thu \tabto{5cm} ~~9:30--11:00
% \item Alex \tabto{3cm} Mon \tabto{5cm} 14:30--16:30
% \item James \tabto{3cm} Tue, Wed \tabto{5cm} 11:00--12:00
% \end{itemize}
% \end{block}
% \end{frame}
\end{document}