Releases: mlondschien/changeforest
Releases · mlondschien/changeforest
changeforest 0.6.1
0.6.1 - (2022-04-06)
Bug fixes:
- Fixed a bug in the Python package when passing
random_forest_max_features='sqrt'
toControl
.
changeforest 0.6.0
0.6.0 - (2022-03-17)
Breaking changes:
- The default value for
model_selection_n_permutations
is now 199. - The default value for
model_selection_alpha
is now 0.02. - The default value for
minimal_gain_to_split
, use in thechange_in_mean
setup, is nowlog(n) * (d + 1)
, motivated by the BIC and [1]. - The value for
minimal_gain_to_split
no longer gets automatically multiplied by the number of samplesn
.
[1] Yao, Y.-C. (1988). Estimating the number of change-points via Schwarz’ criterion. Statist. Probab. Lett. 6 181–189. MR0919373
changeforest 0.5.1
0.5.1 - (2022-03-16)
Bug fixes:
- The pseudo-permutation-test now correctly skips the first and last
minimal_relative_segment_length * n
observations when calculating the permuted maximal gains.
Other changes:
- The first three elements of the
result.optimizer_result.gain_results
returned by the two-step search are no longer sorted by their maximal gain.
changeforest 0.5.0
0.5.0 - (2022-03-15)
Breaking changes:
- The parameters
random_forest_mtry
andrandom_forest_n_trees
ofControl
have been renamed torandom_forest_max_features
andrandom_forest_n_estimators
. - The default value for
random_forest_max_features
now isfloor(sqrt(d))
.
New features:
- The parameter
random_forest_max_features
now can be supplied with a fraction0 < f < 1
, an integeri>=1
,None
(Python, Rust) /NULL
(R) and"sqrt"
. Then, for each split, repsectivelyfloor(f d)
,i
,d
orfloor(sqrt(d))
features are considered.
Other changes:
- Bump
biosphere
dependency to 0.3.0
changeforest 0.4.4
0.4.4 - (2022-02-22)
Other changes:
- Bump
biosphere
dependency to 0.2.2.
changeforest 0.4.3
0.4.3 - (2022-01-29)
Other changes:
- The default value for
Control.minimal_gain_to_split
is nowlog(n_samples) * n_features / n_samples
,
motivated by the Bayesian information criterion (BIC). This is relevant forchange_in_mean
only.
changeforest 0.4.2
0.4.2 - (2022-01-21)
Other changes:
- The R-package now makes use of the latest version of
libR-sys
, enabling compilation for Apple silicon onconda-forge
(#86).
Bug fixes:
- Fixed a bug where passing
Control()
tochangeforest
in the Python package overwrote the default value forrandom_forest_max_depth
toNone
. Default values forControl
in the Python package are now"default"
(#87).
changeforest 0.4.1
0.4.1 - (2022-01-13)
Bug fixes:
- Upgrade
biosphere
to0.2.1
fixing a bug inRandomForest
.
Other changes:
- New parameter
model_selection_n_permutations
.
changeforest 0.4.0
0.4.0 - (2022-01-11)
New features:
changeforest
now uses random forests frombiosphere
. This should be faster thansmartcore
used previously and supports parallelization.
changeforest 0.3.0
0.3.0 - (2021-12-15)
New features:
- Implemented trait
Display
forBinarySegmentationResult
. In Pythonstr(result)
now prints a pretty display (#77).
Other changes:
- The
TwoStepSearch
algorithm now only uses valid guesses fromsplit_candidates
(#76).
Bug fixes:
- (R only) The R6 class
Control
now gets correctly exported (#79).