-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
156 lines (143 loc) · 4.46 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import random
from scipy.optimize import linear_sum_assignment
from sklearn import metrics
import numpy as np
import torch
def seed_everything(seed):
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_cluster_acc(y_pred, y_true, return_matching=False):
"""
Calculate clustering accuracy and clustering mean per class accuracy.
Requires scipy installed
# Arguments
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
y_true: true labels, numpy.array with shape `(n_samples,)`
# Return
Accuracy in [0,1]
"""
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
row_ind, col_ind = linear_sum_assignment(w.max() - w)
match = np.array(list(map(lambda i: col_ind[i], y_pred)))
mean_per_class = [0 for i in range(D)]
for c in range(D):
mask = y_true == c
mean_per_class[c] = np.mean((match[mask] == y_true[mask]))
mean_per_class_acc = np.mean(mean_per_class)
if return_matching:
return w[row_ind, col_ind].sum() / y_pred.size, mean_per_class_acc, match
else:
return w[row_ind, col_ind].sum() / y_pred.size, mean_per_class_acc
def get_nmi(y_pred, y_true):
"""
Calculate normalized mutual information. Require scikit-learn installed
# Arguments
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
y_true: true labels, numpy.array with shape `(n_samples,)`
# Return
NMI in [0,1]
"""
nmi = metrics.normalized_mutual_info_score(y_true, y_pred, average_method='geometric')
return nmi
def get_ari(y_pred, y_true):
"""
Calculate adjusted rand index. Require scikit-learn installed
# Arguments
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
y_true: true labels, numpy.array with shape `(n_samples,)`
# Return
ARI in [0,1]
"""
return metrics.adjusted_rand_score(y_true, y_pred)
datasets = [
"food101",
"cifar10",
"cifar100",
"birdsnap",
"sun397",
"cars",
"aircraft",
"dtd",
"pets",
"caltech101",
"flowers",
"mnist",
"fer2013",
"stl10",
"eurosat",
"resisc45",
"gtsrb",
"kitti",
"country211",
"pcam",
"ucf101",
"kinetics700",
"clevr",
"hatefulmemes",
"sst",
"imagenet",
"cub"
]
datasets_to_c = {
"food101": 101,
"cifar10": 10,
"cifar100": 100,
"cifar10020": 20,
"birdsnap": 500,
"sun397": 397,
"cars": 196,
"aircraft": 100,
"dtd": 47,
"pets": 37,
"caltech101": 102,
"flowers": 102,
"mnist": 10,
"fer2013": 7,
"stl10": 10,
"eurosat": 10,
"resisc45": 45,
"gtsrb": 43,
"kitti": 4,
"country211": 211,
"pcam": 2,
"ucf101": 101,
"kinetics700": 700,
"clevr": 8,
"hatefulmemes": 2,
"sst": 2,
"imagenet": 1000,
}
# food101 training set 75750, test set 25250
# cifar10 training set 50000, test set 10000
# cifar100 training set 50000, test set 10000
# birdsnap training set 37221, test set 2500
# sun397 training set 19850, test set 19850
# cars training set 8144, test set 8041
# aircraft training set 6667, test set 3333
# dtd training set 3760, test set 1880
# pets training set 3680, test set 3669
# caltech101 training set 3060, test set 6084
# flowers training set 2040, test set 6149
# mnist training set 60000, test set 10000
# fer2013 training set 28709, test set 3589
# stl10 training set 5000, test set 8000
# eurosat training set 10000, test set 5000
# resisc45 training set 25200, test set 6300
# gtsrb training set 26640, test set 12630
# kitti training set 5985, test set 1496
# country211 training set 42200, test set 21100
# pcam training set 294912, test set 32768
# ucf101 training set 9537, test set 3783
# kinetics700 training set 536485, test set 33966
# clevr training set 2000, test set 500
# hatefulmemes training set 8500, test set 500
# sst training set 7792, test set 1821
# imagenet training set 1281167, test set 50000