-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathWUE_optimal_model.R
203 lines (179 loc) · 6.64 KB
/
WUE_optimal_model.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Estimate IWUE based on an optimal model
#
# Input - monthly/daily/ data
# Ca - CO2 concentrations, umol mol-1
# VPD (D) - vapor pressure deficit, Pa
# Ta - air temprature, K
# z - elevation, km
# (Optional) P - air pressure, Pa; Can be derived from Ta and z
# Output -
# modelled iWUE, umol mol-1
rm(list = ls())
library(lubridate)
library(raster)
library(ncdf4)
# Set parameters ----------------------------------------------------------
R <- 8.314 # gas constant, J mol-1 K-1
# beta <- 356.51 # a constant
# beta <- 244.03 # the constant derived from Beni Stocker
mfill <- -9999.0 # the filling value
# Define functions --------------------------------------------------------
# coefficient of Rubisco or photorespiratory compensation
# the unit of K is dependent on 'x25'
K_fun <- function(dH, Ta, x25) {
# dH, J mol-1 K-1
# Ta, K
# x25, Pa or umol mol-1
R <- 8.314
K <- x25 * exp((dH*(Ta-298.15))/(298.15*R*Ta))
return(K)
}
# viscosity of water: eta
# Wang Han et. al., 2017, NPlants
eta_fun <- function(Ta) {
# Ta, K
A <- 3.719
B <- 580
C <- -138
eta <- 0.001*exp(A + B/(C+Ta))
return(eta)
}
# O2 partial pressure
# Wang Han et. al., 2017, NPlants
Po_fun <- function(elev) {
# elev, elevation, km
# Po, pressure of O2, Pa
Po <- 21000 * exp(-0.114*elev)
return(Po)
}
Po_fun1 <- function(Press) {
# input - press, surface pressure, Pa
# Po, partial pressure of O2, Pa
Po <- Press*0.21
return(Po)
}
# Estimate the IWUE from the environmental variables
# Model_iWUE_fun <- function(Tk, D, Ca, elev)
Model_iWUE_fun1 <- function(Tk, D, Ca, Press) {
# Comments: the model does not consider the impact of soil moisture.
# Tk, temperature, (K)
# D, VPD, (Pa)
# Ca, CO2 concentration, ppm, umol mol-1
# elev, elevation, km (to estimate O2 partial pressure)
# Press, atmospheric pressure, Pa (the second method to estimate O2 partial pressure)
# iWUE, umol mol-1
Po <- Po_fun1(Press) # unit - Pa; or a function of elevation
beta <- 244.03 # a constant noted by Beni Stocker
###
Ko <- K_fun(36.38*1000, Tk, 27480) # Pa
Kc <- K_fun(79.43*1000, Tk, 39.97) # Pa
gamma_star <- K_fun(37830, Tk, 4.22) # Pa
K <- Kc*(1 + Po/Ko)
reta <- eta_fun(Tk)/eta_fun(25+273.15)
# xi <- (beta*K / (1.6*reta))^0.5 # Pa^0.5
### A full model
xi <- (beta*(K+gamma_star)/(1.6*reta))^0.5
###
# an approximation
# iWUE <- Ca / 1.6 / (xi / D^0.5 + 1)
# a complete model
Capa <- Ca*Press*10^(-6) # Pa
chi <- gamma_star/Capa + (1-gamma_star/Capa) * xi/(xi+D^0.5)
iWUE <- Ca / 1.6 * (1-chi)
return(iWUE)
}
# file paths and names --------------------------------------------------
infilename1 <- '/Volumes/Land/Data_proj_wuecu/CRUNCEP_Ta_monthly_05d_post.nc' # air temperature, K
infilename2 <- '/Volumes/Land/Data_proj_wuecu/CRUNCEP_VPD_monthly_05d_post.nc' # vapor pressure deficit, kPa
infilename3 <- '/Volumes/Land/Data_proj_wuecu/mstmip_co2_monthly_05d_post.nc' # atmospheric CO2, umol/mol
infilename4 <- '/Volumes/Land/Data_proj_wuecu/GIMMS_fPAR_monthly_05d_post.nc' # fAPAR, /
infilename5 <- '/Volumes/Land/Data_proj_wuecu/CRUNCEP_Press_monthly_05d_post.nc' # Air press, Pa
outfilepath1 <- '/Volumes/Land/Data_proj_wuecu/'
# Load data ---------------------------------------------------------------
data1 <- brick(infilename1)
data2 <- brick(infilename2) # VPD need a unit transformation
data2 <- data2*1000 # kPa -> Pa
data3 <- brick(infilename3)
data4 <- brick(infilename4)
data5 <- brick(infilename5)
# Present data ------------------------------------------------------------
# In the fPAR data, the missing values were transformed into 'NA'
### test
## comment: this seems not a good way to deal with the problem ...
## that fPAR data have no geographical information
# data3value <- values(data3)
# data3mat <- as.matrix(data3)
# data4mat <- as.matrix(data4)
# data3matmasked <- data3mat[,1]
# data3matmasked[is.na(data4mat[,1])] <- NA
# dim(data3matmasked) <- c(360, 720)
# data3masked <- raster((data3matmasked))
###
## This works after the geographical information was added
# data3test <- data3[[1:3]]
# data4test <- data4[[1:3]]
# data3test[is.na(data4test)] <- NA
# Clean data first! -------------------------------------------------------
# Criteria:
# fPAR > 0.2 (?)
# Ta > 5 K (?)
# D > 0 Pa
data1masked <- data1
data2masked <- data2
data3masked <- data3
data4masked <- data4
data5masked <- data5
# Mask invalid data
mask1 <- is.na(data1)|is.na(data2)|is.na(data3)|is.na(data4)|
data4<0.2|data1<(5+273.15)|data2<0
data1masked[mask1] <- NA
data2masked[mask1] <- NA
data3masked[mask1] <- NA
data4masked[mask1] <- NA
data5masked[mask1] <- NA
# Model simulations ------------------------------------------------------------
# a full simulation
iwue_full <- Model_iWUE_fun1(data1masked, data2masked, data3masked, data5masked)
# gpp_globe <- Model_GPP_fun()
# simulation 1: warming or not; Ta
# create a stack
meanstack_fun <- function(n, data1) {
# n - the number of layers
# data1 - the raster
if (n == 2) {
dataout <- stack(data1, data1)
return(dataout)
}
if (n > 2) {
dataout <- stack(meanstack_fun((n-1), data1), data1)
return(dataout)
}
}
data1clim <- calc(data1, mean, na.rm = T) # Or mean of multiple years for each month?
data1climstack <- meanstack_fun(nlayers(data1), data1clim)
data1climstack[mask1] <- NA
iwue_sim1_ta <- Model_iWUE_fun1(data1climstack, data2masked, data3masked, data5masked)
# simulation 2: elevated CO2 or not
data3clim <- calc(data3, mean, na.rm = T)
data3climstack <- meanstack_fun(nlayers(data3), data3clim)
data3climstack[mask1] <- NA
iwue_sim2_co2 <- Model_iWUE_fun1(data1masked, data2masked, data3climstack, data5masked)
# simulation 3: increasing atmospheric water demand or not (D)
data2clim <- calc(data2, mean, na.rm = T)
data2climstack <- meanstack_fun(nlayers(data2), data2clim)
data2climstack[mask1] <- NA
iwue_sim3_vpd <- Model_iWUE_fun1(data1masked, data2climstack, data3masked, data5masked)
# Save the results --------------------------------------------------------
writeRaster(iwue_full, paste0(outfilepath1, 'iWUE_monthly_full_05d.nc'),
varname = 'iWUE_monthly', NAflag = mfill,
overwrite = T)
# This would be done in a separate program
# writeRaster(iwue_sim1_ta, paste0(outfilepath1, 'iWUE_monthly_ta_constant_05d.nc'),
# varname = 'iWUE_monthly_ta_const', NAflag = mfill,
# overwrite = T)
# writeRaster(iwue_sim2_co2, paste0(outfilepath1, 'iWUE_monthly_co2_constant_05d.nc'),
# varname = 'iWUE_monthly_co2_const', NAflag = mfill,
# overwrite = T)
# writeRaster(iwue_sim3_vpd, paste0(outfilepath1, 'iWUE_monthly_vpd_constant_05d.nc'),
# varname = 'iWUE_monthly_vpd_const', NAflag = mfill,
# overwrite = T)