-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathjacob.m
50 lines (44 loc) · 1.24 KB
/
jacob.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
function J = jacob(fun,x,theta,h,varargin)
%function J = jacob(fun,x,theta,h,varargin)
% JACOB calculates the numerical Jacobian matrix
% fun the function, called as y = fun(x,theta,varargin)
% x the observation points
% theta parameter vector
% h relative step size for numerical differentiation
% or h(1): relative step size, h(2): minimal absolute step size
% (default h = [1e-6 1e-12])
% J the n*p Jacobian matrix, n=size(x,1), p=length(theta),
% J(i,j) = d fun(x(i,:), theta) / d theta(j)
% Based on the jacob.m in the DATANA toolbox by ProfMath Oy
% Marko Laine <[email protected]>
% $Revision: 1.3 $ $Date: 2012/09/27 11:47:37 $
if isstruct(x)
xx = x.ydata(:,1);
else
xx = x;
end
n = size(xx,1);
p = length(theta);
hrel = 1e-6;
habs = 1e-12;
if nargin > 3 && length(h)>0
hrel = h(1);
if length(h) > 1, habs = h(2); end
end
for i = 1:p
hi = zeros(size(theta));
hi(i) = max(hrel*theta(i),habs);
JJ = (feval(fun,xx,theta+hi,varargin{:}) - ...
feval(fun,xx,theta-hi,varargin{:})) ./ (2*hi(i));
if i == 1
[m,ny]=size(JJ);
J = zeros(m*ny,p);
end
% handle multi response y
if (ny==1)
J(:,i) = JJ;
elseif ny>1
JJ=JJ'; JJ=JJ(:);
J(:,i) = JJ;
end
end