forked from libertyeagle/GeoSAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
222 lines (191 loc) · 7.31 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import json
import torch
from torch.utils.data import Sampler
from torch.nn.utils.rnn import pad_sequence
import torch
import numpy as np
import random
import math
try:
import cPickle as _pickle
except ImportError:
import pickle as _pickle
EarthRadius = 6378137
MinLatitude = -85.05112878
MaxLatitude = 85.05112878
MinLongitude = -180
MaxLongitude = 180
def generate_square_mask(sz, device):
mask = (torch.triu(torch.ones(sz, sz).to(device)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def generate_decoder_mask(sz, ds, device, last_n=5, test=False):
mask = (torch.triu(torch.ones(sz, sz).to(device)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
mask_front = torch.tril(torch.ones(sz, sz).to(device) == 1, diagonal=-last_n)
mask_front = mask_front.float().masked_fill(mask_front == 1, float('-inf')).masked_fill(mask_front == 0, float(0.0))
mask = mask.unsqueeze(0).repeat(len(ds), 1, 1)
for idx in range(len(ds)):
if not test:
mask[idx, :ds[idx], :] += mask_front[:ds[idx], :]
else:
mask[idx, 0, :] = mask[idx, ds[idx] - 1, :] + mask_front[ds[idx] - 1, :]
if test:
mask = mask[:, 0, :].unsqueeze(1)
return mask
def generate_test_mask(trg_len, src_len, device):
assert src_len > trg_len
m1 = generate_square_mask(trg_len, device)
m2 = torch.zeros(trg_len, src_len - trg_len).to(device)
return torch.cat([m2, m1], 1)
def serialize(obj, path, in_json=False):
if in_json:
with open(path, "w") as file:
json.dump(obj, file, indent=2)
else:
with open(path, 'wb') as file:
_pickle.dump(obj, file)
def unserialize(path):
suffix = os.path.basename(path).split(".")[-1]
if suffix == "json":
with open(path, "r") as file:
return json.load(file)
else:
with open(path, 'rb') as file:
return _pickle.load(file)
def collect_fn(batch, data_source, sampler, k=5):
src, trg = zip(*batch)
user, loc, time, region = [], [], [], []
data_size = []
trg_ = []
trg_probs_= []
for e in src:
u_, l_, t_, r_, b_ = zip(*e)
data_size.append(len(u_))
user.append(torch.tensor(u_))
loc.append(torch.tensor(l_))
time.append(torch.tensor(t_))
region.append(torch.tensor(r_))
user_ = pad_sequence(user, batch_first=True)
loc_ = pad_sequence(loc, batch_first=True)
time_ = pad_sequence(time, batch_first=True)
region_ = pad_sequence(region, batch_first=True)
for i, seq in enumerate(trg):
pos = torch.tensor([[e[1]] for e in seq])
neg, probs = sampler(seq, k, user=seq[0][0])
trg_.append(torch.cat([pos, neg], dim=-1))
trg_probs_.append(probs)
trg_ = pad_sequence(trg_, batch_first=True)
trg_probs_ = pad_sequence(trg_probs_, batch_first=True, padding_value=1.0)
trg_ = trg_.permute(2, 1, 0).contiguous().view(-1, trg_.size(0))
trg_nov_ = [[not e[-1] for e in seq] for seq in trg]
return user_.t(), loc_.t(), time_.t(), region_.t(), trg_, trg_nov_, trg_probs_, data_size
def collect_fn_neg_included(batch, data_source):
src, trg, neg_samples = zip(*batch)
user, loc, time, region = [], [], [], []
data_size = []
trg_ = []
trg_probs_= []
for e in src:
u_, l_, t_, r_, b_ = zip(*e)
data_size.append(len(u_))
user.append(torch.tensor(u_))
loc.append(torch.tensor(l_))
time.append(torch.tensor(t_))
region.append(torch.tensor(r_))
user_ = pad_sequence(user, batch_first=True)
loc_ = pad_sequence(loc, batch_first=True)
time_ = pad_sequence(time, batch_first=True)
region_ = pad_sequence(region, batch_first=True)
for seq, neg in zip(trg, neg_samples):
pos = torch.tensor([[e[1]] for e in seq])
neg = torch.tensor(np.expand_dims(neg, axis=0), dtype=torch.long)
trg_.append(torch.cat([pos, neg], dim=-1))
trg_ = pad_sequence(trg_, batch_first=True)
trg_ = trg_.permute(2, 1, 0).contiguous().view(-1, trg_.size(0))
return user_.t(), loc_.t(), time_.t(), region_.t(), trg_, None, None, data_size
def collect_fn_export(batch, data_source, sampler, k=5):
src, trg = zip(*batch)
user, loc, time, region = [], [], [], []
data_size = []
trg_ = []
for e in src:
u_, l_, t_, r_, b_ = zip(*e)
data_size.append(len(u_))
user.append(np.array(u_))
loc.append(np.array(l_))
time.append(np.array(t_))
region.append(np.array(r_))
for seq in trg:
pos = np.array([[e[1]] for e in seq])
neg, _ = sampler(seq, k)
neg = neg.numpy()
trg_.append(np.concatenate([pos, neg], axis=-1))
return user, loc, time, region, trg_, data_size
def get_visited_locs(dataset):
user_visited_locs = {}
for u in range(len(dataset.user_seq)):
seq = dataset.user_seq[u]
user = seq[0][0]
user_visited_locs[user] = set()
for i in reversed(range(len(seq))):
if not seq[i][4]:
break
user_visited_locs[user].add(seq[i][1])
seq = seq[:i]
for check_in in seq:
user_visited_locs[user].add(check_in[1])
return user_visited_locs
class LadderSampler(Sampler):
def __init__(self, data_source, batch_sz, fix_order=False):
super(LadderSampler, self).__init__(data_source)
self.data = [len(e[0]) for e in data_source]
self.batch_size = batch_sz * 100
self.fix_order = fix_order
def __iter__(self):
if self.fix_order:
d = zip(self.data, np.arange(len(self.data)), np.arange(len(self.data)))
else:
d = zip(self.data, np.random.permutation(len(self.data)), np.arange(len(self.data)))
d = sorted(d, key=lambda e: (e[1] // self.batch_size, e[0]), reverse=True)
return iter(e[2] for e in d)
def __len__(self):
return len(self.data)
def reset_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def clip(n, minValue, maxValue):
return min(max(n, minValue), maxValue)
def map_size(levelOfDetail):
return 256 << levelOfDetail
def latlon2pxy(latitude, longitude, levelOfDetail):
latitude = clip(latitude, MinLatitude, MaxLatitude)
longitude = clip(longitude, MinLongitude, MaxLongitude)
x = (longitude + 180) / 360
sinLatitude = math.sin(latitude * math.pi / 180)
y = 0.5 - math.log((1 + sinLatitude) / (1 - sinLatitude)) / (4 * math.pi)
mapSize = map_size(levelOfDetail)
pixelX = int(clip(x * mapSize + 0.5, 0, mapSize - 1))
pixelY = int(clip(y * mapSize + 0.5, 0, mapSize - 1))
return pixelX, pixelY
def txy2quadkey(tileX, tileY, levelOfDetail):
quadKey = []
for i in range(levelOfDetail, 0, -1):
digit = 0
mask = 1 << (i - 1)
if (tileX & mask) != 0:
digit += 1
if (tileY & mask) != 0:
digit += 2
quadKey.append(str(digit))
return ''.join(quadKey)
def pxy2txy(pixelX, pixelY):
tileX = pixelX // 256
tileY = pixelY // 256
return tileX, tileY
def latlon2quadkey(lat,lon,level):
pixelX, pixelY = latlon2pxy(lat, lon, level)
tileX, tileY = pxy2txy(pixelX, pixelY)
return txy2quadkey(tileX, tileY,level)