-
Notifications
You must be signed in to change notification settings - Fork 3
/
coco_data_loader.py
409 lines (319 loc) · 17.1 KB
/
coco_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import sys
import cv2
import math
import random
import numpy as np
from chainer.dataset import DatasetMixin
from pycocotools.coco import COCO
from entity import JointType, params
def overlay_paf(img, paf):
hue = ((np.arctan2(paf[1], paf[0]) / np.pi) / -2 + 0.5)
saturation = np.sqrt(paf[0] ** 2 + paf[1] ** 2)
saturation[saturation > 1.0] = 1.0
value = saturation.copy()
hsv_paf = np.vstack((hue[np.newaxis], saturation[np.newaxis], value[np.newaxis])).transpose(1, 2, 0)
rgb_paf = cv2.cvtColor((hsv_paf * 255).astype(np.uint8), cv2.COLOR_HSV2BGR)
img = cv2.addWeighted(img, 0.6, rgb_paf, 0.4, 0)
return img
def overlay_pafs(img, pafs):
mix_paf = np.zeros((2,) + img.shape[:-1])
paf_flags = np.zeros(mix_paf.shape) # for constant paf
for paf in pafs.reshape((int(pafs.shape[0] / 2), 2,) + pafs.shape[1:]):
paf_flags = paf != 0
paf_flags += np.broadcast_to(paf_flags[0] | paf_flags[1], paf.shape)
mix_paf += paf
mix_paf[paf_flags > 0] /= paf_flags[paf_flags > 0]
img = overlay_paf(img, mix_paf)
return img
def get_pose_bboxes(poses):
pose_bboxes = []
for pose in poses:
x1 = pose[pose[:, 2] > 0][:, 0].min()
y1 = pose[pose[:, 2] > 0][:, 1].min()
x2 = pose[pose[:, 2] > 0][:, 0].max()
y2 = pose[pose[:, 2] > 0][:, 1].max()
pose_bboxes.append([x1, y1, x2, y2])
pose_bboxes = np.array(pose_bboxes)
return pose_bboxes
def random_rotate_img(img, mask, poses):
h, w, _ = img.shape
# degree = (random.random() - 0.5) * 2 * params['max_rotate_degree']
degree = np.random.randn() / 3 * params['max_rotate_degree']
rad = degree * math.pi / 180
center = (w / 2, h / 2)
R = cv2.getRotationMatrix2D(center, degree, 1)
bbox = (w * abs(math.cos(rad)) + h * abs(math.sin(rad)), w * abs(math.sin(rad)) + h * abs(math.cos(rad)))
R[0, 2] += bbox[0] / 2 - center[0]
R[1, 2] += bbox[1] / 2 - center[1]
rotate_img = cv2.warpAffine(img, R, (int(bbox[0] + 0.5), int(bbox[1] + 0.5)), flags=cv2.INTER_CUBIC,
borderMode=cv2.BORDER_CONSTANT, borderValue=[127.5, 127.5, 127.5])
rotate_mask = cv2.warpAffine(mask.astype('uint8') * 255, R, (int(bbox[0] + 0.5), int(bbox[1] + 0.5))) > 0
tmp_poses = np.ones_like(poses)
tmp_poses[:, :, :2] = poses[:, :, :2].copy()
tmp_rotate_poses = np.dot(tmp_poses, R.T) # apply rotation matrix to the poses
rotate_poses = poses.copy() # to keep visibility flag
rotate_poses[:, :, :2] = tmp_rotate_poses
return rotate_img, rotate_mask, rotate_poses
def distort_color(img):
img_max = np.broadcast_to(np.array(255, dtype=np.uint8), img.shape[:-1])
img_min = np.zeros(img.shape[:-1], dtype=np.uint8)
hsv_img = cv2.cvtColor(img.copy(), cv2.COLOR_BGR2HSV).astype(np.int32)
hsv_img[:, :, 0] = np.maximum(np.minimum(hsv_img[:, :, 0] - 10 + np.random.randint(20 + 1), img_max),
img_min) # hue
hsv_img[:, :, 1] = np.maximum(np.minimum(hsv_img[:, :, 1] - 40 + np.random.randint(80 + 1), img_max),
img_min) # saturation
hsv_img[:, :, 2] = np.maximum(np.minimum(hsv_img[:, :, 2] - 30 + np.random.randint(60 + 1), img_max),
img_min) # value
hsv_img = hsv_img.astype(np.uint8)
distorted_img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
return distorted_img
def flip_img(img, mask, poses):
flipped_img = cv2.flip(img, 1)
flipped_mask = cv2.flip(mask.astype(np.uint8), 1).astype('bool')
poses[:, :, 0] = img.shape[1] - 1 - poses[:, :, 0]
def swap_joints(poses, joint_type_1, joint_type_2):
tmp = poses[:, joint_type_1].copy()
poses[:, joint_type_1] = poses[:, joint_type_2]
poses[:, joint_type_2] = tmp
swap_joints(poses, JointType.LeftEye, JointType.RightEye)
swap_joints(poses, JointType.LeftEar, JointType.RightEar)
swap_joints(poses, JointType.LeftShoulder, JointType.RightShoulder)
swap_joints(poses, JointType.LeftElbow, JointType.RightElbow)
swap_joints(poses, JointType.LeftHand, JointType.RightHand)
swap_joints(poses, JointType.LeftWaist, JointType.RightWaist)
swap_joints(poses, JointType.LeftKnee, JointType.RightKnee)
swap_joints(poses, JointType.LeftFoot, JointType.RightFoot)
return flipped_img, flipped_mask, poses
def generate_gaussian_heatmap(shape, joint, sigma):
x, y = joint
grid_x = np.tile(np.arange(shape[1]), (shape[0], 1))
grid_y = np.tile(np.arange(shape[0]), (shape[1], 1)).transpose()
grid_distance = (grid_x - x) ** 2 + (grid_y - y) ** 2
gaussian_heatmap = np.exp(-0.5 * grid_distance / sigma ** 2)
return gaussian_heatmap
def generate_heatmaps(img, poses, heatmap_sigma):
heatmaps = np.zeros((0,) + img.shape[:-1])
sum_heatmap = np.zeros(img.shape[:-1])
for joint_index in range(len(JointType)):
heatmap = np.zeros(img.shape[:-1])
for pose in poses:
if pose[joint_index, 2] > 0:
jointmap = generate_gaussian_heatmap(img.shape[:-1], pose[joint_index][:2], heatmap_sigma)
heatmap[jointmap > heatmap] = jointmap[jointmap > heatmap]
sum_heatmap[jointmap > sum_heatmap] = jointmap[jointmap > sum_heatmap]
heatmaps = np.vstack((heatmaps, heatmap.reshape((1,) + heatmap.shape)))
bg_heatmap = 1 - sum_heatmap # background channel
heatmaps = np.vstack((heatmaps, bg_heatmap[None]))
return heatmaps.astype('f')
def generate_constant_paf(shape, joint_from, joint_to, paf_width):
if np.array_equal(joint_from, joint_to): # same joint
return np.zeros((2,) + shape[:-1])
joint_distance = np.linalg.norm(joint_to - joint_from)
unit_vector = (joint_to - joint_from) / joint_distance
rad = np.pi / 2
rot_matrix = np.array([[np.cos(rad), np.sin(rad)], [-np.sin(rad), np.cos(rad)]])
vertical_unit_vector = np.dot(rot_matrix, unit_vector)
grid_x = np.tile(np.arange(shape[1]), (shape[0], 1))
grid_y = np.tile(np.arange(shape[0]), (shape[1], 1)).transpose()
horizontal_inner_product = unit_vector[0] * (grid_x - joint_from[0]) + unit_vector[1] * (grid_y - joint_from[1])
horizontal_paf_flag = (0 <= horizontal_inner_product) & (horizontal_inner_product <= joint_distance)
vertical_inner_product = vertical_unit_vector[0] * (grid_x - joint_from[0]) + vertical_unit_vector[1] * (
grid_y - joint_from[1])
vertical_paf_flag = np.abs(vertical_inner_product) <= paf_width
paf_flag = horizontal_paf_flag & vertical_paf_flag
constant_paf = np.stack((paf_flag, paf_flag)) * np.broadcast_to(unit_vector, shape[:-1] + (2,)).transpose(2, 0,
1)
return constant_paf
def generate_pafs(img, poses, paf_sigma):
pafs = np.zeros((0,) + img.shape[:-1])
for limb in params['limbs_point']:
paf = np.zeros((2,) + img.shape[:-1])
paf_flags = np.zeros(paf.shape) # for constant paf
for pose in poses:
joint_from, joint_to = pose[limb]
if joint_from[2] > 0 and joint_to[2] > 0:
limb_paf = generate_constant_paf(img.shape, joint_from[:2], joint_to[:2], paf_sigma)
limb_paf_flags = limb_paf != 0
paf_flags += np.broadcast_to(limb_paf_flags[0] | limb_paf_flags[1], limb_paf.shape)
paf += limb_paf
paf[paf_flags > 0] /= paf_flags[paf_flags > 0]
pafs = np.vstack((pafs, paf))
return pafs.astype('f')
def parse_coco_annotation(annotations):
"""coco annotation data의 어노테이션을 poses 배열로 변환"""
poses = np.zeros((0, len(JointType), 3), dtype=np.int32)
for ann in annotations:
ann_pose = np.array(ann['keypoints']).reshape(-1, 3)
pose = np.zeros((1, len(JointType), 3), dtype=np.int32)
# convert poses position
for i, joint_index in enumerate(params['coco_joint_indices']):
pose[0][joint_index] = ann_pose[i]
# compute neck position
if pose[0][JointType.LeftShoulder][2] > 0 and pose[0][JointType.RightShoulder][2] > 0:
pose[0][JointType.Neck][0] = int(
(pose[0][JointType.LeftShoulder][0] + pose[0][JointType.RightShoulder][0]) / 2)
pose[0][JointType.Neck][1] = int(
(pose[0][JointType.LeftShoulder][1] + pose[0][JointType.RightShoulder][1]) / 2)
pose[0][JointType.Neck][2] = 2
poses = np.vstack((poses, pose))
gt_pose = np.array(ann['keypoints']).reshape(-1, 3)
return poses
def random_resize_img(img, ignore_mask, poses):
h, w, _ = img.shape
joint_bboxes = get_pose_bboxes(poses)
bbox_sizes = ((joint_bboxes[:, 2:] - joint_bboxes[:, :2] + 1) ** 2).sum(axis=1) ** 0.5
min_scale = params['min_box_size'] / bbox_sizes.min()
max_scale = params['max_box_size'] / bbox_sizes.max()
# print(len(bbox_sizes))
# print('min: {}, max: {}'.format(min_scale, max_scale))
min_scale = min(max(min_scale, params['min_scale']), 1)
max_scale = min(max(max_scale, 1), params['max_scale'])
# print('min: {}, max: {}'.format(min_scale, max_scale))
scale = float((max_scale - min_scale) * random.random() + min_scale)
shape = (round(w * scale), round(h * scale))
# print(scale)
resized_img, resized_mask, resized_poses = resize_data(img, ignore_mask, poses, shape)
return resized_img, resized_mask, poses
class CocoDataLoader(DatasetMixin):
def __init__(self, coco, insize, mode='train', n_samples=None):
self.coco = coco
assert mode in ['train', 'val', 'eval'], 'Data loading mode is invalid.'
self.mode = mode
self.catIds = coco.getCatIds(catNms=['person'])
self.imgIds = sorted(coco.getImgIds(catIds=self.catIds))
if self.mode in ['val', 'eval'] and n_samples is not None:
self.imgIds = random.sample(self.imgIds, n_samples)
print('{} images: {}'.format(mode, len(self)))
self.insize = insize
def __len__(self):
return len(self.imgIds)
def random_crop_img(self, img, ignore_mask, poses):
h, w, _ = img.shape
insize = self.insize
joint_bboxes = get_pose_bboxes(poses)
bbox = random.choice(joint_bboxes) # select a bbox randomly
bbox_center = bbox[:2] + (bbox[2:] - bbox[:2]) / 2
r_xy = np.random.rand(2)
perturb = ((r_xy - 0.5) * 2 * params['center_perterb_max'])
center = (bbox_center + perturb + 0.5).astype('i')
crop_img = np.zeros((insize, insize, 3), 'uint8') + 127.5
crop_mask = np.zeros((insize, insize), 'bool')
offset = (center - (insize - 1) / 2 + 0.5).astype('i')
offset_ = (center + (insize - 1) / 2 - (w - 1, h - 1) + 0.5).astype('i')
x1, y1 = (center - (insize - 1) / 2 + 0.5).astype('i')
x2, y2 = (center + (insize - 1) / 2 + 0.5).astype('i')
x1 = max(x1, 0)
y1 = max(y1, 0)
x2 = min(x2, w - 1)
y2 = min(y2, h - 1)
x_from = -offset[0] if offset[0] < 0 else 0
y_from = -offset[1] if offset[1] < 0 else 0
x_to = insize - offset_[0] - 1 if offset_[0] >= 0 else insize - 1
y_to = insize - offset_[1] - 1 if offset_[1] >= 0 else insize - 1
crop_img[y_from:y_to + 1, x_from:x_to + 1] = img[y1:y2 + 1, x1:x2 + 1].copy()
crop_mask[y_from:y_to + 1, x_from:x_to + 1] = ignore_mask[y1:y2 + 1, x1:x2 + 1].copy()
poses[:, :, :2] -= offset
return crop_img.astype('uint8'), crop_mask, poses
def augment_data(self, img, ignore_mask, poses):
aug_img = img.copy()
aug_img, ignore_mask, poses = random_resize_img(aug_img, ignore_mask, poses)
aug_img, ignore_mask, poses = random_rotate_img(aug_img, ignore_mask, poses)
aug_img, ignore_mask, poses = self.random_crop_img(aug_img, ignore_mask, poses)
if np.random.randint(2):
aug_img = distort_color(aug_img)
if np.random.randint(2):
aug_img, ignore_mask, poses = flip_img(aug_img, ignore_mask, poses)
return aug_img, ignore_mask, poses
def get_img_annotation(self, ind=None, img_id=None):
"""인덱스, img_id에서 coco annotation data를 추출, 조건이 되지 않으면 None을 반환한다 """
annotations = None
if ind is not None:
img_id = self.imgIds[ind]
anno_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
# annotation for that image
if len(anno_ids) > 0:
annotations_for_img = self.coco.loadAnns(anno_ids)
person_cnt = 0
valid_annotations_for_img = []
for annotation in annotations_for_img:
# if too few keypoints or too small
if annotation['num_keypoints'] >= params['min_keypoints'] and annotation['area'] > params['min_area']:
person_cnt += 1
valid_annotations_for_img.append(annotation)
# if person annotation
if person_cnt > 0:
annotations = valid_annotations_for_img
if self.mode == 'train':
img_path = os.path.join(params['coco_dir'], 'train2017', self.coco.loadImgs([img_id])[0]['file_name'])
mask_path = os.path.join(params['coco_dir'], 'ignore_mask_train2017', '{:012d}.png'.format(img_id))
else:
img_path = os.path.join(params['coco_dir'], 'val2017', self.coco.loadImgs([img_id])[0]['file_name'])
mask_path = os.path.join(params['coco_dir'], 'ignore_mask_val2017', '{:012d}.png'.format(img_id))
img = cv2.imread(img_path)
ignore_mask = cv2.imread(mask_path, 0)
if ignore_mask is None:
ignore_mask = np.zeros(img.shape[:2], 'bool')
else:
ignore_mask = ignore_mask == 255
if self.mode == 'eval':
return img, img_id, annotations_for_img, ignore_mask
return img, img_id, annotations, ignore_mask
def generate_labels(self, img, poses, ignore_mask):
img, ignore_mask, poses = self.augment_data(img, ignore_mask, poses)
resized_img, ignore_mask, resized_poses = resize_data(img, ignore_mask, poses,
shape=(self.insize, self.insize))
heatmaps = generate_heatmaps(resized_img, resized_poses, params['heatmap_sigma'])
pafs = generate_pafs(resized_img, resized_poses, params['paf_sigma'])
ignore_mask = cv2.morphologyEx(ignore_mask.astype('uint8'), cv2.MORPH_DILATE, np.ones((16, 16))).astype('bool')
return resized_img, pafs, heatmaps, ignore_mask
def get_example(self, i):
img, img_id, annotations, ignore_mask = self.get_img_annotation(ind=i)
if self.mode == 'eval':
# don't need to make heatmaps/pafs
return img, annotations, img_id
# if no annotations are available
while annotations is None:
img_id = self.imgIds[np.random.randint(len(self))]
img, img_id, annotations, ignore_mask = self.get_img_annotation(img_id=img_id)
poses = parse_coco_annotation(annotations)
resized_img, pafs, heatmaps, ignore_mask = self.generate_labels(img, poses, ignore_mask)
return resized_img, pafs, heatmaps, ignore_mask
def resize_data(img, ignore_mask, poses, shape):
"""resize img, mask and annotations"""
img_h, img_w, _ = img.shape
resized_img = cv2.resize(img, shape)
ignore_mask = cv2.resize(ignore_mask.astype(np.uint8), shape).astype('bool')
poses[:, :, :2] = (poses[:, :, :2] * np.array(shape) / np.array((img_w, img_h)))
return resized_img, ignore_mask, poses
def overlay_ignore_mask(img, ignore_mask):
img = img * np.repeat((ignore_mask == 0).astype(np.uint8)[:, :, None], 3, axis=2)
return img
def overlay_heatmap(img, heatmap):
rgb_heatmap = cv2.applyColorMap((heatmap * 255).astype(np.uint8), cv2.COLORMAP_JET)
img = cv2.addWeighted(img, 0.6, rgb_heatmap, 0.4, 0)
return img
if __name__ == '__main__':
mode = 'train'
coco = COCO(os.path.join(params['coco_dir'], 'annotations/person_keypoints_{}2017.json'.format(mode)))
data_loader = CocoDataLoader(coco, params['insize'], mode=mode)
cv2.namedWindow('w', cv2.WINDOW_NORMAL)
for i in range(len(data_loader)):
img, img_id, annotations, ignore_mask = data_loader.get_img_annotation(ind=i)
if annotations is not None:
poses = parse_coco_annotation(annotations)
resized_img, pafs, heatmaps, ignore_mask = data_loader.generate_labels(img, poses, ignore_mask)
# resize to view
shape = (params['insize'],) * 2
pafs = cv2.resize(pafs.transpose(1, 2, 0), shape).transpose(2, 0, 1)
heatmaps = cv2.resize(heatmaps.transpose(1, 2, 0), shape).transpose(2, 0, 1)
ignore_mask = cv2.resize(ignore_mask.astype(np.uint8) * 255, shape) > 0
# overlay labels
img_to_show = resized_img.copy()
img_to_show = overlay_pafs(img_to_show, pafs)
img_to_show = overlay_heatmap(img_to_show, heatmaps[:-1].max(axis=0))
img_to_show = overlay_ignore_mask(img_to_show, ignore_mask)
cv2.imshow('w', np.hstack((resized_img, img_to_show)))
k = cv2.waitKey(0)
if k == ord('q'):
sys.exit()