-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathDsuite_utils.cpp
834 lines (700 loc) · 36.2 KB
/
Dsuite_utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
//
// Dsuite_utils.cpp
// Dsuite
//
// Created by Milan Malinsky on 02/04/2019.
//
#include "Dsuite_utils.h"
long double normalCDF(double x) // Phi(-∞, x) aka N(x)
{
return erfcl(-x/std::sqrt(2))/2;
}
double Fd_Denom_perVariant(double p1, double p2, double p3, double pO) {
double Fd_Denom = 0;
if (p2 > p3) Fd_Denom = ((1-p1)*p2*p2*(1-pO)) - (p1*(1-p2)*p2*(1-pO));
else Fd_Denom = ((1-p1)*p3*p3*(1-pO)) - (p1*(1-p3)*p3*(1-pO));
return Fd_Denom;
}
double fG_Denom_perVariant(double p1, double p3a, double p3b, double pO) {
double fG_Denom = ((1-p1)*p3a*p3b*(1-pO)) - (p1*(1-p3a)*p3b*(1-pO));
return fG_Denom;
}
// As per Patterson et al. (2012)
double f4_perVariant(double p1, double p2, double p3, double p4) {
double f4 = (p2-p1)*(p3-p4);
return f4;
}
double FdM_Denom_perVariant(double p1, double p2, double p3, double pO) {
double FdM_Denom = 0;
if (p1 <= p2) {
if (p2 > p3) FdM_Denom = ((1-p1) * p2 * p2 * (1-pO)) - (p1 * (1-p2) * p2 * (1-pO));
else FdM_Denom = ((1-p1) * p3 * p3 * (1-pO)) - (p1 * (1-p3) * p3 * (1-pO));
} else {
if (p1 > p3) FdM_Denom = -(((1-p1)*p2*p1*(1-pO)) - (p1*(1-p2)*p1*(1-pO)));
else FdM_Denom = -(((1-p3)*p2*p3*(1-pO)) - (p3*(1-p2)*p3*(1-pO)));
}
return FdM_Denom;
}
// Works only on biallelic markers
void GeneralSetCounts::getSetVariantCounts(const std::vector<std::string>& genotypes, const std::map<size_t, string>& posToSpeciesMap) {
getBasicCounts(genotypes, posToSpeciesMap);
// If at least one of the outgroup individuals has non-missing data
// Find out what is the "ancestral allele" - i.e. the one more common in the outgroup
try {
if (setAlleleCounts.at("Outgroup") > 0) {
if ((double)setAltCounts.at("Outgroup")/setAlleleCounts.at("Outgroup") < 0.5) { AAint = AncestralAlleleRef; }
else { AAint = AncestralAlleleAlt; }
}
} catch (std::out_of_range& e) { AAint = AncestralAlleleMissing; }
// Now fill in the allele frequencies
double totalAAF = 0; double totalDAF = 0; int numNonZeroCounts = 0;
for(std::map<string,int>::iterator it = setAltCounts.begin(); it != setAltCounts.end(); ++it) {
if (setAlleleCounts.at(it->first) > 0) {
numNonZeroCounts++;
double thisAAF = (double)setAltCounts.at(it->first)/setAlleleCounts.at(it->first);
setAAFs[it->first] = thisAAF; totalAAF += thisAAF;
if (AAint == 0) { // Ancestral allele seems to be the ref, so derived is alt
setDAFs[it->first] = thisAAF; totalDAF += thisAAF;
} else if (AAint == 1) { // Ancestral allele seems to be alt, so derived is ref
setDAFs[it->first] = (1 - thisAAF); totalDAF += (1 - thisAAF);
}
}
}
averageAAF = totalAAF/numNonZeroCounts; averageDAF = totalDAF/numNonZeroCounts;
}
int GeneralSetCounts::returnFormatTagPosition(std::vector<std::string>& format, const std::string& tag) {
// Find the position of GQ (genotype quality) in the genotypeData vector below
std::vector<std::string>::iterator TAGit; int TAGi = std::numeric_limits<int>::min();
TAGit = find (format.begin(), format.end(), tag);
if (TAGit == format.end()) {
// std::cerr << "This variant hasn't got associated per-sample GQ info" << std::endl;
} else {
TAGi = (int)std::distance( format.begin(), TAGit );
//hasGQ = true;
}
return TAGi;
}
int GeneralSetCounts::checkForGenotypeLikelihoodsOrProbabilities(const std::vector<std::string>& vcfLineFields) {
std::vector<std::string> format = split(vcfLineFields[8], ':');
if (format.size() == 1) return LikelihoodsProbabilitiesAbsent; // The GT tag must be present in the first place
int likelihoodsOrProbabilitiesTagPosition = returnFormatTagPosition(format, "GP");
if (likelihoodsOrProbabilitiesTagPosition != std::numeric_limits<int>::min()) { likelihoodsProbabilitiesType = LikelihoodsProbabilitiesGP; }
else {
likelihoodsOrProbabilitiesTagPosition = returnFormatTagPosition(format, "GL");
if (likelihoodsOrProbabilitiesTagPosition != std::numeric_limits<int>::min()) { likelihoodsProbabilitiesType = LikelihoodsProbabilitiesGL; }
else {
likelihoodsOrProbabilitiesTagPosition = returnFormatTagPosition(format, "PL");
if (likelihoodsOrProbabilitiesTagPosition != std::numeric_limits<int>::min()) { likelihoodsProbabilitiesType = LikelihoodsProbabilitiesPL; }
}
}
return likelihoodsOrProbabilitiesTagPosition;
}
double getExpectedGenotype(const std::vector<double>& thisProbabilities) {
double Egenotype = thisProbabilities[1] + 2*thisProbabilities[2];
return Egenotype;
}
void transformFromPhred(std::vector<double>& thisLikelihoods) {
thisLikelihoods[0] = pow(10,-(thisLikelihoods[0]/10.0));
thisLikelihoods[1] = pow(10,-(thisLikelihoods[1]/10.0));
thisLikelihoods[2] = pow(10,-(thisLikelihoods[2]/10.0));
}
void transformFromGL(std::vector<double>& thisLikelihoods) {
thisLikelihoods[0] = pow(10,(thisLikelihoods[0]/10.0));
thisLikelihoods[1] = pow(10,(thisLikelihoods[1]/10.0));
thisLikelihoods[2] = pow(10,(thisLikelihoods[2]/10.0));
}
std::vector<double> GeneralSetCounts::probabilitiesFromLikelihoods(const std::vector<double>& thisLikelihoods, const string& species) {
std::vector<double> thisProbabilities; thisProbabilities.assign(3, 0.0);
double multiple0 = thisLikelihoods[0]*setHWEpriorsFromAAFfromGT[species][0];
double multiple1 = thisLikelihoods[1]*setHWEpriorsFromAAFfromGT[species][1];
double multiple2 = thisLikelihoods[2]*setHWEpriorsFromAAFfromGT[species][2];
double sum = multiple0 + multiple1 + multiple2;
thisProbabilities[0] = multiple0/sum;
thisProbabilities[1] = multiple1/sum;
thisProbabilities[2] = multiple2/sum;
return thisProbabilities;
}
void GeneralSetCounts::setHWEpriorsFromAFfromGT() {
double AF;
// Alternative allele frequencies
for(std::map<string,double>::iterator it = setAAFs.begin(); it != setAAFs.end(); ++it) {
if (it->second >= 0) AF = it->second; else AF = averageAAF; // This should be average of AFs across populations where it is known
setHWEpriorsFromAAFfromGT[it->first][0] = pow((1-AF),2);
setHWEpriorsFromAAFfromGT[it->first][1] = AF*(1-AF);
setHWEpriorsFromAAFfromGT[it->first][2] = pow(AF,2);
}
// Derived allele frequencies
for(std::map<string,double>::iterator it = setDAFs.begin(); it != setDAFs.end(); ++it) {
if (it->second >= 0) AF = it->second; else AF = averageDAF; // This should be average of AFs across populations
setHWEpriorsFromDAFfromGT[it->first][0] = pow((1-AF),2);
setHWEpriorsFromDAFfromGT[it->first][1] = AF*(1-AF);
setHWEpriorsFromDAFfromGT[it->first][2] = pow(AF,2);
}
}
void GeneralSetCounts::getAFsFromGenotypeLikelihoodsOrProbabilities(const std::vector<std::string>& genotypeFields, const std::map<size_t, string>& posToSpeciesMap, const int likelihoodsOrProbabilitiesTagPosition) {
if (likelihoodsProbabilitiesType == LikelihoodsProbabilitiesPL || likelihoodsProbabilitiesType == LikelihoodsProbabilitiesGL) {
setHWEpriorsFromAFfromGT();
}
for (std::vector<std::string>::size_type i = 0; i < genotypeFields.size(); i++) {
std::string species; try { species = posToSpeciesMap.at(i); } catch (const std::out_of_range& oor) {
continue;
}
// std::cerr << genotypeFields[i] << std::endl;
std::string thisLikelihoodsOrProbabilitiesString = split(genotypeFields[i], ':')[likelihoodsOrProbabilitiesTagPosition];
if (thisLikelihoodsOrProbabilitiesString == ".") continue;
else {
setAlleleProbCounts.at(species) += 2;
std::vector<double> thisLikelihoodsOrProbabilities = splitToDouble(thisLikelihoodsOrProbabilitiesString,',');
std::vector<double> thisProbabilities;
switch (likelihoodsProbabilitiesType)
{
case LikelihoodsProbabilitiesPL:
transformFromPhred(thisLikelihoodsOrProbabilities);
// print_vector(thisLikelihoodsOrProbabilities, std::cerr);
thisProbabilities = probabilitiesFromLikelihoods(thisLikelihoodsOrProbabilities,species);
break;
case LikelihoodsProbabilitiesGL: transformFromGL(thisLikelihoodsOrProbabilities);
thisProbabilities = probabilitiesFromLikelihoods(thisLikelihoodsOrProbabilities,species);
break;
case LikelihoodsProbabilitiesGP:
thisProbabilities = thisLikelihoodsOrProbabilities;
break;
}
if (setAAFsFromLikelihoods.at(species) == -1) setAAFsFromLikelihoods.at(species) = 0;
setAAFsFromLikelihoods.at(species) += getExpectedGenotype(thisProbabilities);
}
}
for(std::map<string,double>::iterator it = setAAFsFromLikelihoods.begin(); it != setAAFsFromLikelihoods.end(); ++it) {
if (setAAFsFromLikelihoods.at(it->first) != -1) {
double AF = it->second/setAlleleProbCounts.at(it->first);
it->second = AF;
if (AAint == AncestralAlleleRef) {
setDAFsFromLikelihoods.at(it->first) = AF;
} else if (AAint == AncestralAlleleAlt) {
setDAFsFromLikelihoods.at(it->first) = (1 - AF);
}
}
}
}
void GeneralSetCounts::getAFsFromADtag(const std::vector<std::string>& genotypeFields, const std::map<string, std::vector<size_t>>& setsToPosMap, const int ADTagPosition, const int minDepth) {
for (std::vector<std::string>::size_type i = 0; i < genotypeFields.size(); i++) {
// std::cerr << genotypeFields[i] << std::endl;
std::string thisADstring = split(genotypeFields[i], ':')[ADTagPosition];
if (thisADstring == ".") {
std::cerr << "The AD tag info appears to be missing: " << thisADstring << " ; Exiting ..." << std::endl;
exit(1);
}
else {
std::vector<double> ADs = splitToDouble(thisADstring,',');
if (ADs.size() != 2) {
std::cerr << "This AD tag appears malformed: " << thisADstring << " ; Exiting ..." << std::endl;
exit(1);
}
int overallDepth = ADs[0] + ADs[1];
if (overallDepth >= minDepth) {
individualPoolAAFs[i] = ADs[0]/(overallDepth);
}
}
}
for(std::map<string, std::vector<size_t>>::const_iterator it = setsToPosMap.begin(); it != setsToPosMap.end(); ++it) {
int individualsInThisSet = (int) it->second.size();
assert(individualsInThisSet > 0);
if (individualsInThisSet == 1) {
int pos = (int) it->second[0];
setPoolAAFs.at(it->first) = individualPoolAAFs[pos];
} else {
std::vector<double> thisSetAFs;
for (int i = 0; i < individualsInThisSet; i++) {
int pos = (int) it->second[i];
if (individualPoolAAFs[pos] != -1.0) thisSetAFs.push_back(individualPoolAAFs[pos]);
}
setPoolAAFs.at(it->first) = vector_average(thisSetAFs);
}
if (AAint == AncestralAlleleRef) {
setPoolDAFs.at(it->first) = setPoolAAFs.at(it->first);
} else if (AAint == AncestralAlleleAlt && setPoolAAFs.at(it->first) != -1.0) {
setPoolDAFs.at(it->first) = (1 - setPoolAAFs.at(it->first));
}
}
}
void GeneralSetCountsWithSplits::getAFsFromADtagWithSplits(const std::vector<std::string>& genotypeFields, const std::map<string, std::vector<size_t>>& setsToPosMap, const int ADTagPosition, const int minDepth) {
for (std::vector<std::string>::size_type i = 0; i < genotypeFields.size(); i++) {
// std::cerr << genotypeFields[i] << std::endl;
std::string thisADstring = split(genotypeFields[i], ':')[ADTagPosition];
if (thisADstring == ".") {
std::cerr << "The AD tag info appears to be missing: " << thisADstring << " ; Exiting ..." << std::endl;
exit(1);
}
else {
std::vector<double> ADs = splitToDouble(thisADstring,',');
if (ADs.size() != 2) {
std::cerr << "This AD tag appears malformed: " << thisADstring << " ; Exiting ..." << std::endl;
exit(1);
}
int overallDepth = ADs[0] + ADs[1];
if (overallDepth >= minDepth) {
individualPoolAAFs[i] = ADs[0]/(overallDepth);
}
}
}
for(std::map<string, std::vector<size_t>>::const_iterator it = setsToPosMap.begin(); it != setsToPosMap.end(); ++it) {
int individualsInThisSet = (int) it->second.size();
assert(individualsInThisSet > 0);
if (individualsInThisSet == 1) {
int pos = (int) it->second[0];
setPoolAAFs.at(it->first) = individualPoolAAFs[pos];
setPoolAAFsplit1.at(it->first) = individualPoolAAFs[pos];
setPoolAAFsplit2.at(it->first) = individualPoolAAFs[pos];
} else {
std::vector<double> thisSetAFs;
for (int i = 0; i < individualsInThisSet; i++) {
int pos = (int) it->second[i];
thisSetAFs.push_back(individualPoolAAFs[pos]);
}
setPoolAAFs.at(it->first) = vector_average(thisSetAFs);
// Take care of the splits by random sampling with replacement:
std::random_device rd; // only used once to initialise (seed) engine
std::mt19937 rng(rd()); // random-number engine used (Mersenne-Twister in this case)
std::uniform_int_distribution<int> uni(0,(individualsInThisSet - 1)); // guaranteed unbiased
std::vector<double> thisSetAFsplit1; std::vector<double> thisSetAFsplit2;
for (int i = 0; i < individualsInThisSet; i++) {
int random_pos_s1 = uni(rng);
int random_pos_s2 = uni(rng);
thisSetAFsplit1.push_back(individualPoolAAFs[random_pos_s1]);
thisSetAFsplit2.push_back(individualPoolAAFs[random_pos_s2]);
}
setPoolAAFsplit1.at(it->first) = vector_average(thisSetAFsplit1);
setPoolAAFsplit2.at(it->first) = vector_average(thisSetAFsplit2);
}
if (AAint == AncestralAlleleRef) {
setPoolDAFs.at(it->first) = setPoolAAFs.at(it->first);
setPoolDAFsplit1.at(it->first) = setPoolAAFsplit1.at(it->first);
setPoolDAFsplit2.at(it->first) = setPoolAAFsplit2.at(it->first);
} else if (AAint == AncestralAlleleAlt && setPoolAAFs.at(it->first) != -1.0) {
setPoolDAFs.at(it->first) = (1 - setPoolAAFs.at(it->first));
setPoolDAFsplit1.at(it->first) = (1 - setPoolAAFsplit1.at(it->first));
setPoolDAFsplit2.at(it->first) = (1 - setPoolAAFsplit2.at(it->first));
}
}
}
// Only works for diploids for now!!!
void GeneralSetCountsWithSplits::getAFsFromGenotypeLikelihoodsOrProbabilitiesWithSplits(const std::vector<std::string>& genotypeFields, const std::map<size_t, string>& posToSpeciesMap, const int likelihoodsOrProbabilitiesTagPosition, const int pos) {
if (likelihoodsProbabilitiesType == LikelihoodsProbabilitiesPL || likelihoodsProbabilitiesType == LikelihoodsProbabilitiesGL) {
setHWEpriorsFromAFfromGT();
}
getBasicCountsFromLikelihoodsOrProbabilities(genotypeFields, posToSpeciesMap, likelihoodsOrProbabilitiesTagPosition);
// Now fill in the allele frequencies
for(std::map<string,std::vector<double>>::iterator it = setIndividualExpectedGenotypes.begin(); it != setIndividualExpectedGenotypes.end(); ++it) {
if (it->first == "") {
std::cerr << "it->first " << it->first << "\t"; print_vector(it->second, std::cerr); std::cerr << std::endl;
}
std::vector<double> thisSetExpectedGenotypes = it->second;
if (thisSetExpectedGenotypes.size() > 0) {
double thisAAF = (double)vector_sum(thisSetExpectedGenotypes)/(2*thisSetExpectedGenotypes.size());
/* Debug stuff
if(pos == 1180 || pos == 1046) {
std::cerr << "pos: " << pos << std::endl;
std::cerr << "it->first: " << it->first << std::endl;
print_vector(thisSetExpectedGenotypes, std::cerr);
std::cerr << "thisAAF: " << thisAAF << std::endl;
}
*/
//std::cerr << "species: " << it->first << std::endl;
// print_vector(thisSetExpectedGenotypes, std::cerr);
// std::cerr << "thisAAF: " << thisAAF << std::endl;
setAAFsFromLikelihoods.at(it->first) = thisAAF;
// Take care of the splits by random sampling with replacement:
std::random_device rd; // only used once to initialise (seed) engine
std::mt19937 rng(rd()); // random-number engine used (Mersenne-Twister in this case)
std::uniform_int_distribution<int> uniAFs(0,((int)thisSetExpectedGenotypes.size() - 1)); // guaranteed unbiased
std::vector<double> thisSetIndividualExpectedGenotypesSampledSplit1;
std::vector<double> thisSetIndividualExpectedGenotypesSampledSplit2;
for (int i = 0; i < thisSetExpectedGenotypes.size(); i++) {
int random_pos_s1 = uniAFs(rng);
int random_pos_s2 = uniAFs(rng);
thisSetIndividualExpectedGenotypesSampledSplit1.push_back(thisSetExpectedGenotypes[random_pos_s1]);
thisSetIndividualExpectedGenotypesSampledSplit2.push_back(thisSetExpectedGenotypes[random_pos_s2]);
}
double thisAAFsplit1 = (double)vector_sum(thisSetIndividualExpectedGenotypesSampledSplit1)/(2*thisSetExpectedGenotypes.size());
// std::cerr << "thisAAFsplit1: " << thisAAFsplit1 << std::endl;
double thisAAFsplit2 = (double)vector_sum(thisSetIndividualExpectedGenotypesSampledSplit2)/(2*thisSetExpectedGenotypes.size());
// std::cerr << "thisAAFsplit2: " << thisAAFsplit2 << std::endl;
// std::cerr << "it->first " << it->first << std::endl;
try {
setAAFsplit1fromLikelihoods.at(it->first) = thisAAFsplit1; setAAFsplit2fromLikelihoods.at(it->first) = thisAAFsplit2;
if (AAint == AncestralAlleleRef) { // Ancestral allele seems to be the ref, so derived is alt
setDAFsFromLikelihoods.at(it->first) = thisAAF;
setDAFsplit1fromLikelihoods.at(it->first) = thisAAFsplit1;
setDAFsplit2fromLikelihoods.at(it->first) = thisAAFsplit2;
} else if (AAint == AncestralAlleleAlt) { // Ancestral allele seems to be alt, so derived is ref
setDAFsFromLikelihoods.at(it->first) = (1 - thisAAF);
setDAFsplit1fromLikelihoods.at(it->first) = 1 - thisAAFsplit1;
setDAFsplit2fromLikelihoods.at(it->first) = 1 - thisAAFsplit2;
}
} catch (std::out_of_range& e) { std::cerr << "The trouble was here" << it->first << std::endl; }
}
}
}
// Works only on biallelic markers
void GeneralSetCounts::getSetVariantCountsSimple(const std::vector<std::string>& genotypes, const std::map<size_t, string>& posToSpeciesMap) {
// std::cerr << fields[0] << "\t" << fields[1] << std::endl;
getBasicCounts(genotypes, posToSpeciesMap);
// Now fill in the allele frequencies
for(std::map<string,int>::iterator it = setAltCounts.begin(); it != setAltCounts.end(); ++it) {
if (setAlleleCounts.at(it->first) > 0) {
setAAFs[it->first] = (double)setAltCounts.at(it->first)/setAlleleCounts.at(it->first);
}
}
}
void GeneralSetCounts::getBasicCounts(const std::vector<std::string>& genotypes, const std::map<size_t, string>& posToSpeciesMap) {
// Go through the genotypes - only biallelic markers are allowed
for (std::vector<std::string>::size_type i = 0; i != genotypes.size(); i++) {
bool speciesDefined = true;
std::string species; try { species = posToSpeciesMap.at(i); } catch (const std::out_of_range& oor) {
speciesDefined = false;
}
// The first allele in this individual
if (genotypes[i][0] == '1') { overall++; individualsWithVariant[i]++; }
if (genotypes[i][2] == '1') { overall++; individualsWithVariant[i]++; }
if (speciesDefined) {
if (genotypes[i][0] == '1') {
setAltCounts[species]++; setAlleleCounts[species]++;
} else if (genotypes[i][0] == '0') {
setAlleleCounts[species]++;
}
// The second allele in this individual
if (genotypes[i][2] == '1') {
setAltCounts[species]++; setAlleleCounts[species]++;
} else if (genotypes[i][2] == '0') {
setAlleleCounts[species]++;
}
}
}
}
void GeneralSetCountsWithSplits::getBasicCountsWithSplitsNew(const std::vector<std::string>& genotypes, const std::map<size_t, string>& posToSpeciesMap) {
// Go through the genotypes - only biallelic markers are allowed
for (std::vector<std::string>::size_type i = 0; i != genotypes.size(); i++) {
bool speciesDefined = true;
std::string species; try { species = posToSpeciesMap.at(i); } catch (const std::out_of_range& oor) {
speciesDefined = false;
}
if (speciesDefined) {
string onlyGenotypeCalls = split(genotypes[i], ':')[0]; // The string with 0/0, 0/1, 1/0, 1/1, or e.g. 0/0/1/1 for a tetraploid
if (onlyGenotypeCalls[0] == '.') {
continue; // Ignore missing data
}
// Find ploidy
int l = (int)onlyGenotypeCalls.length();
int numGTs = (l/2)+1;
setAlleleCounts[species] += numGTs;
// Go through the genotypes and fill in the data structure "GeneralSetCountsWithSplits"
for (std::vector<std::string>::size_type j = 0; j <= l; j = j+2) {
// std::cerr << "genotypes[i][j]: " << genotypes[i][j] << std::endl;
setGenotypes[species].push_back(genotypes[i][j] - '0');
if (genotypes[i][j] == '1') {
overall++; individualsWithVariant[i]++;
setAltCounts[species]++;
}
}
double individualAF = (double)individualsWithVariant[i]/numGTs;
/* std::cerr << "onlyGenotypeCalls: " << onlyGenotypeCalls << std::endl;
std::cerr << "individualsWithVariant[i]: " << individualsWithVariant[i] << std::endl;
std::cerr << "numGTs: " << numGTs << std::endl;
std::cerr << "individualAF: " << individualAF << std::endl;
*/
setIndividualAFs[species].push_back(individualAF);
}
}
}
void GeneralSetCountsWithSplits::getBasicCountsFromLikelihoodsOrProbabilities(const std::vector<std::string>& genotypes, const std::map<size_t, string>& posToSpeciesMap, const int likelihoodsOrProbabilitiesTagPosition) {
// Go through the genotypes - only biallelic markers are allowed
for (std::vector<string>::size_type i = 0; i != genotypes.size(); i++) {
bool speciesDefined = true;
string species; try { species = posToSpeciesMap.at(i); } catch (const std::out_of_range& oor) {
speciesDefined = false;
}
if (speciesDefined) {
string thisLikelihoodsOrProbabilitiesString = split(genotypes[i], ':')[likelihoodsOrProbabilitiesTagPosition];
if (thisLikelihoodsOrProbabilitiesString == ".") continue;
else {
setAlleleProbCounts.at(species) += 2;
std::vector<double> thisLikelihoodsOrProbabilities = splitToDouble(thisLikelihoodsOrProbabilitiesString,',');
std::vector<double> thisProbabilities;
switch (likelihoodsProbabilitiesType)
{
case LikelihoodsProbabilitiesPL:
transformFromPhred(thisLikelihoodsOrProbabilities);
// print_vector(thisLikelihoodsOrProbabilities, std::cerr);
thisProbabilities = probabilitiesFromLikelihoods(thisLikelihoodsOrProbabilities,species);
break;
case LikelihoodsProbabilitiesGL: break;
case LikelihoodsProbabilitiesGP:
thisProbabilities = thisLikelihoodsOrProbabilities;
break;
}
setIndividualExpectedGenotypes[species].push_back(getExpectedGenotype(thisProbabilities));
}
}
}
}
void GeneralSetCountsWithSplits::getSplitCountsNew(const std::vector<std::string>& genotypes, const std::map<size_t, string>& posToSpeciesMap) {
getBasicCountsWithSplitsNew(genotypes, posToSpeciesMap);
// If at least one of the outgroup individuals has non-missing data
// Find out what is the "ancestral allele" - i.e. the one more common in the outgroup
try {
if (setAlleleCounts.at("Outgroup") > 0) {
if ((double)vector_sum(setGenotypes.at("Outgroup"))/setGenotypes.at("Outgroup").size() < 0.5) { AAint = AncestralAlleleRef; }
else { AAint = AncestralAlleleAlt; }
}
} catch (std::out_of_range& e) { AAint = -1; }
// Now fill in the allele frequencies
double totalAAF = 0; int numNonZeroCounts = 0;
for(std::map<string,std::vector<int>>::iterator it = setGenotypes.begin(); it != setGenotypes.end(); ++it) {
if (it->first == "") {
std::cerr << "it->first " << it->first << "\t"; print_vector(it->second, std::cerr); std::cerr << std::endl;
}
std::vector<int> thisSetGenotypes = setGenotypes.at(it->first);
std::vector<double> thisSetIndividualAFs = setIndividualAFs.at(it->first);
if (thisSetGenotypes.size() > 0) {
numNonZeroCounts++;
double thisAAF = (double)vector_sum(thisSetGenotypes)/thisSetGenotypes.size();
// print_vector(thisSetGenotypes, std::cerr);
// std::cerr << "thisAAF: " << thisAAF << std::endl;
setAAFs[it->first] = thisAAF; totalAAF += thisAAF;
// Take care of the splits by random sampling with replacement:
std::random_device rd; // only used once to initialise (seed) engine
std::mt19937 rng(rd()); // random-number engine used (Mersenne-Twister in this case)
std::uniform_int_distribution<int> uni(0,((int)thisSetGenotypes.size() - 1)); // guaranteed unbiased
std::uniform_int_distribution<int> uniAFs(0,((int)thisSetIndividualAFs.size() - 1)); // guaranteed unbiased
/* std::vector<int> thisSetGenotypesSampledSplit1; std::vector<int> thisSetGenotypesSampledSplit2;
for (int i = 0; i < thisSetGenotypes.size(); i++) {
int random_pos_s1 = uni(rng);
int random_pos_s2 = uni(rng);
thisSetGenotypesSampledSplit1.push_back(thisSetGenotypes[random_pos_s1]);
thisSetGenotypesSampledSplit2.push_back(thisSetGenotypes[random_pos_s2]);
}
*/
std::vector<double> thisSetIndividualAFsSampledSplit1; std::vector<double> thisSetIndividualAFsSampledSplit2;
for (int i = 0; i < thisSetIndividualAFs.size(); i++) {
int random_pos_s1 = uniAFs(rng);
int random_pos_s2 = uniAFs(rng);
thisSetIndividualAFsSampledSplit1.push_back(thisSetIndividualAFs[random_pos_s1]);
thisSetIndividualAFsSampledSplit2.push_back(thisSetIndividualAFs[random_pos_s2]);
}
// double thisAAFsplit1 = vector_average(thisSetGenotypesSampledSplit1);
// double thisAAFsplit2 = vector_average(thisSetGenotypesSampledSplit2);
double thisAAFsplit1 = vector_average(thisSetIndividualAFsSampledSplit1);
double thisAAFsplit2 = vector_average(thisSetIndividualAFsSampledSplit2);
setAAFsplit1[it->first] = thisAAFsplit1; setAAFsplit2[it->first] = thisAAFsplit2;
// Count correction as in admixtools
// double ya = vector_sum(thisSetGenotypes); double yb = thisSetGenotypes.size() - vector_sum(thisSetGenotypes);
// double yt = (double)thisSetGenotypes.size();
// double h = ya * yb / (yt * (yt - 1.0));
//std::cerr << "it->first: " << it->first << std::endl;
//std::cerr << "ya: " << ya << " ; yb: " << yb << " ; yt: " << yt << std::endl;
//std::cerr << "h: " << h << " ; h / yt: " << h / yt << std::endl;
// setCorrectionFactors[it->first] = h / yt;
// std::cerr << "it->first " << it->first << std::endl;
try {
if (AAint == AncestralAlleleRef) { // Ancestral allele seems to be the ref, so derived is alt
setDAFs[it->first] = thisAAF;
setDAFsplit1[it->first] = thisAAFsplit1; setDAFsplit2[it->first] = thisAAFsplit2;
} else if (AAint == AncestralAlleleAlt) { // Ancestral allele seems to be alt, so derived is ref
setDAFs[it->first] = (1 - thisAAF);
setDAFsplit1[it->first] = 1 - thisAAFsplit1;
setDAFsplit2[it->first] = 1 - thisAAFsplit2;
}
} catch (std::out_of_range& e) { std::cerr << "The trouble was here" << it->first << std::endl; }
}
}
averageAAF = totalAAF/numNonZeroCounts;
if (AAint == AncestralAlleleRef) averageDAF = averageAAF;
else if (AAint == AncestralAlleleAlt) averageDAF = (1 - averageAAF);
}
int GeneralSetCounts::findADtagPosition(const std::vector<std::string>& vcfLineFields) {
std::vector<std::string> format = split(vcfLineFields[8], ':');
if (format.size() == 1) return LikelihoodsProbabilitiesAbsent; // The GT tag must be present in the first place
int ADTagPosition = returnFormatTagPosition(format, "AD");
if (ADTagPosition == std::numeric_limits<int>::min()) {
std::cerr << "Could not find the AD tag in the VCF file. This tag is requored to use the pool-seq option. Exiting ...." << std::endl;
exit(1);
}
return ADTagPosition;
}
double calculateOneDs(double ABBAtotal, double BABAtotal) {
// Get the D values
double Dnum1 = ABBAtotal - BABAtotal;
double Ddenom1 = ABBAtotal + BABAtotal;
double D = Dnum1/Ddenom1;
return D;
}
double* calculateThreeDs(double ABBAtotal, double BABAtotal, double BBAAtotal) {
// Get the D values
double Dnum1 = ABBAtotal - BABAtotal;
double Dnum2 = ABBAtotal - BBAAtotal;
double Dnum3 = BBAAtotal - BABAtotal;
double Ddenom1 = ABBAtotal + BABAtotal;
double Ddenom2 = ABBAtotal + BBAAtotal;
double Ddenom3 = BBAAtotal + BABAtotal;
static double Ds[3]; Ds[0] = Dnum1/Ddenom1; Ds[1] = Dnum2/Ddenom2; Ds[2] = Dnum3/Ddenom3;
return Ds;
}
double stringToDouble(std::string s) {
double d;
std::stringstream ss(s); //turn the string into a stream
ss >> d; //convert
return d;
}
// Remove a single file extension from the filename
std::string stripExtension(const std::string& filename)
{
size_t suffixPos = filename.find_last_of('.');
if(suffixPos == std::string::npos)
return filename; // no suffix
else
return filename.substr(0, suffixPos);
}
void split(const std::string &s, char delim, std::vector<std::string> &elems) {
std::stringstream ss(s);
std::string item;
while (std::getline(ss, item, delim)) {
elems.push_back(item);
}
}
std::vector<std::string> split(const std::string &s, char delim) {
std::vector<std::string> elems;
split(s, delim, elems);
return elems;
}
void splitToDouble(const std::string &s, char delim, std::vector<double> &elems) {
std::stringstream ss(s);
std::string item;
while (std::getline(ss, item, delim)) {
elems.push_back(stringToDouble(item));
}
}
std::vector<double> splitToDouble(const std::string &s, char delim) {
std::vector<double> elems;
splitToDouble(s, delim, elems);
return elems;
}
std::vector<std::string> split2(std::string s, string delim) {
std::vector<std::string> elems;
size_t pos = 0;
std::string token;
while ((pos = s.find(delim)) != std::string::npos) {
token = s.substr(0, pos);
elems.push_back(token);
s.erase(0, pos + delim.length());
}
elems.push_back(s);
return elems;
}
std::vector<size_t> locateSet(const std::vector<std::string>& sample_names, const std::vector<std::string>& set) {
std::vector<size_t> setLocs;
for (std::vector<std::string>::size_type i = 0; i != set.size(); i++) {
std::vector<std::string>::const_iterator it = std::find(sample_names.begin(), sample_names.end(), set[i]);
if (it == sample_names.end()) {
std::cerr << "Did not find the sample: \"" << set[i] << "\"" << std::endl;
print_vector(sample_names, std::cerr,',');
} else {
size_t loc = std::distance(sample_names.begin(), it);
setLocs.push_back(loc);
}
}
return setLocs;
}
//
std::string suffix(const std::string& seq, size_t len)
{
assert(seq.length() >= len);
return seq.substr(seq.length() - len);
}
// Returns true if the filename has an extension indicating it is compressed
bool isGzip(const std::string& filename)
{
size_t suffix_length = sizeof(GZIP_EXT) - 1;
// Assume files without an extension are not compressed
if(filename.length() < suffix_length)
return false;
std::string extension = suffix(filename, suffix_length);
return extension == GZIP_EXT;
}
// Ensure a filehandle is open
void assertFileOpen(std::ifstream& fh, const std::string& fn)
{
if(!fh.is_open())
{
std::cerr << "ERROR: Could not open " << fn << " for read\n";
exit(EXIT_FAILURE);
}
}
// Ensure a filehandle is open
void assertFileOpen(std::ofstream& fh, const std::string& fn)
{
if(!fh.is_open())
{
std::cerr << "ERROR: Could not open " << fn << " for write\n";
exit(EXIT_FAILURE);
}
}
void assertGZOpen(gzstreambase& gh, const std::string& fn)
{
if(!gh.good())
{
std::cerr << "ERROR: Could not open " << fn << std::endl;
exit(EXIT_FAILURE);
}
}
void checkGenotypesExist(const std::vector<std::string>& fields, const int variantNum) {
if (fields.size() <= NUM_NON_GENOTYPE_COLUMNS) {
std::cerr << "ERROR: Variant " << variantNum << " in the VCF appears to be truncated." << std::endl;
print_vector(fields, std::cerr);
std::cerr << "Exiting..." << std::endl; exit(1);
}
}
// Open a file that may or may not be gzipped for reading
// The caller is responsible for freeing the handle
std::istream* createReader(const std::string& filename, std::ios_base::openmode mode)
{
if(isGzip(filename))
{
igzstream* pGZ = new igzstream(filename.c_str(), mode);
assertGZOpen(*pGZ, filename);
return pGZ;
}
else
{
std::ifstream* pReader = new std::ifstream(filename.c_str(), mode);
assertFileOpen(*pReader, filename);
return pReader;
}
}
// Open a file that may or may not be gzipped for writing
// The caller is responsible for freeing the handle
std::ostream* createWriter(const std::string& filename,
std::ios_base::openmode mode)
{
if(isGzip(filename))
{
ogzstream* pGZ = new ogzstream(filename.c_str(), mode);
assertGZOpen(*pGZ, filename);
return pGZ;
}
else
{
std::ofstream* pWriter = new std::ofstream(filename.c_str(), mode);
assertFileOpen(*pWriter, filename);
return pWriter;
}
}
bool file_exists(const std::string& name) {
std::ifstream f(name.c_str());
return f.good();
}
void assignSplits01FromAlleleFrequency(const double p, double& splitA, double& splitB) {
double r = ((double) rand() / (RAND_MAX));
if (r <= p) { splitA = 1; }
double r2 = ((double) rand() / (RAND_MAX));
if (r2 <= p) { splitB = 1; }
}