-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathcomponents_NOSET.py
123 lines (111 loc) · 6.65 KB
/
components_NOSET.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""
COMPONENTS DEFINITIONS FOR NOSET baseline
"""
import tensorflow as tf
class OBJECT_EXTRACTOR_NOSET(tf.keras.layers.Layer):
"""noset counterpart for OBJECT_EXTRACTOR"""
def __init__(self, feature_extractor, norm=False, len_hidden=512):
super(OBJECT_EXTRACTOR_NOSET, self).__init__(name='extractor_noset')
self.feature_extractor = feature_extractor
self.type_env, self.type_extractor = self.feature_extractor.type_env, self.feature_extractor.type_extractor
self.convh, self.convw, self.m = self.feature_extractor.convh, self.feature_extractor.convw, self.feature_extractor.m
self.divisor_feature, self.dtype_converted_obs, self.features_learnable = self.feature_extractor.divisor_feature, self.feature_extractor.dtype_converted_obs, self.feature_extractor.features_learnable
self.len_hidden = len_hidden
self.scaler = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.ReLU(),
tf.keras.layers.Dense(self.len_hidden)
])
self.norm = norm
if self.norm: self.layernorm = tf.keras.layers.LayerNormalization(axis=-1)
@tf.function
def __call__(self, obs):
x = self.feature_extractor(obs)
x = self.scaler(x)
return self.layernorm(x) if self.norm else x
class ESTIMATOR_VALUE_NOSET(tf.keras.layers.Layer):
""" noset counterpart for ESTIMATOR_VALUE """
def __init__(self, num_actions, width=64, value_min=-1, value_max=1, atoms=64, transform=False):
super(ESTIMATOR_VALUE_NOSET, self).__init__(name='head_value')
self.num_actions = num_actions
self.value_min, self.value_max, self.atoms, self.transform = float(value_min), float(value_max), int(atoms), bool(transform)
self.head_Q = tf.keras.models.Sequential([
tf.keras.layers.Dense(width, activation='relu'),
tf.keras.layers.Dense(width, activation='relu'),
tf.keras.layers.Dense(num_actions * self.atoms),
])
@tf.function
def __call__(self, features, softmax=True, eval=False):
logits = tf.reshape(self.head_Q(features), (-1, self.num_actions, self.atoms))
if softmax:
return tf.nn.softmax(logits, axis=-1)
else:
return logits
class ESTIMATOR_REWARD_TERM_NOSET(tf.keras.layers.Layer):
def __init__(self, width_pool=128, value_min=-1, value_max=1, atoms=128, transform=False):
super(ESTIMATOR_REWARD_TERM_NOSET, self).__init__(name='estimator_reward_term')
self.value_min, self.value_max, self.atoms, self.transform = float(value_min), float(value_max), int(atoms), bool(transform) # transform not used in the member methods but will be referred by others!
self.pooler_reward = tf.keras.models.Sequential([
tf.keras.layers.Dense(width_pool, activation='relu'),
tf.keras.layers.Dense(width_pool, activation='relu'),
tf.keras.layers.Dense(self.atoms),
tf.keras.layers.Softmax(axis=-1),
])
self.pooler_term = tf.keras.models.Sequential([
tf.keras.layers.Dense(width_pool, activation='relu'),
tf.keras.layers.Dense(width_pool, activation='relu'),
tf.keras.layers.Dense(2),
])
@tf.function
def __call__(self, feature_curr, ebd_action, feature_next, predict_reward=True, predict_term=True):
if not predict_reward and not predict_term: # save time
return None, None
else:
feature_augmented = tf.concat([feature_curr, feature_next, ebd_action], axis=-1)
reward = self.pooler_reward(feature_augmented) if predict_reward else None
term = self.pooler_term(feature_augmented) if predict_term else None
return reward, term
class MODEL_TRANSITION_NOSET(tf.keras.Model):
def __init__(self, n_action_space, len_action, layers_model=3, norm=False, reward_min=-1, reward_max=1, atoms_reward=64, transform_reward=False, signal_predict_action=True, len_hidden=512):
super(MODEL_TRANSITION_NOSET, self).__init__(name='model_transition')
self.n_action_space, self.len_action = n_action_space, len_action
self.norm = norm
self.dynamics = tf.keras.models.Sequential()
for layer in range(layers_model):
if layer < layers_model - 1:
self.dynamics.add(tf.keras.layers.Dense(len_hidden, activation='relu'))
else:
self.dynamics.add(tf.keras.layers.Dense(len_hidden))
if self.norm: self.layernorm = tf.keras.layers.LayerNormalization(axis=-1)
self.embed_actions = tf.keras.layers.Embedding(self.n_action_space, self.len_action, embeddings_initializer='identity', trainable=False)
self.signal_predict_action = bool(signal_predict_action)
if self.signal_predict_action: self.pooler_action_predictor = tf.keras.layers.Dense(n_action_space) # linear and I like it
self.predictor_reward_term = ESTIMATOR_REWARD_TERM_NOSET(value_min=reward_min, value_max=reward_max, atoms=atoms_reward, transform=transform_reward)
@tf.function
def __call__(self, feature_curr, action, predict_reward=True, predict_term=True, eval=False):
ebd_action = self.embed_actions(action)
feature_imagined = self.rollout_dynamics(feature_curr, ebd_action)
reward_dist_imagined, term_logits_imagined = self.predictor_reward_term(feature_curr, ebd_action, feature_imagined, predict_reward=predict_reward, predict_term=predict_term)
return feature_imagined, reward_dist_imagined, term_logits_imagined, None
@tf.function
def _predict_action(self, feature_curr, feature_next):
feature_augmented = tf.concat([feature_curr, feature_next], axis=-1)
logits = self.pooler_action_predictor(feature_augmented)
return logits
@tf.function
def forward_train(self, feature_curr, action):
ebd_action = self.embed_actions(action)
feature_imagined = self.rollout_dynamics(feature_curr, ebd_action)
reward_dist_imagined, term_logits_imagined = self.predictor_reward_term(feature_curr, ebd_action, tf.stop_gradient(feature_imagined))
if self.signal_predict_action:
action_logits_imagined = self._predict_action(feature_curr, tf.stop_gradient(feature_imagined))
else:
action_logits_imagined = None
return feature_imagined, reward_dist_imagined, term_logits_imagined, action_logits_imagined
@tf.function
def rollout_dynamics(self, feature_curr, ebd_action):
features_imagined = self.dynamics(tf.concat([feature_curr, ebd_action], axis=-1))
if self.norm:
return self.layernorm(feature_curr + features_imagined)
else:
return feature_curr + features_imagined