forked from hideakitai/MPU9250
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MPU9250.h
856 lines (718 loc) · 42.5 KB
/
MPU9250.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
#pragma once
#ifndef MPU9250_H
#define MPU9250_H
#ifdef TEENSYDUINO
#include <i2c_t3.h>
#else
#include <Wire.h>
#endif
#include "MPU9250/MPU9250RegisterMap.h"
#include "MPU9250/QuaternionFilter.h"
enum class AFS { A2G, A4G, A8G, A16G };
enum class GFS { G250DPS, G500DPS, G1000DPS, G2000DPS };
enum class MFS { M14BITS, M16BITS }; // 0.6mG, 0.15mG per LSB
template <typename WireType, AFS AFSSEL = AFS::A16G, GFS GFSSEL = GFS::G2000DPS, MFS MFSSEL = MFS::M16BITS>
class MPU9250_
{
const uint8_t MPU9250_ADDRESS {0x68}; // Device address when ADO = 0
const uint8_t AK8963_ADDRESS {0x0C}; // Address of magnetometer
const uint8_t MPU9250_WHOAMI_DEFAULT_VALUE {0x73}; // was originally 0x71 and was changed by Markus to 73 which my device showed
const uint8_t AK8963_WHOAMI_DEFAULT_VALUE {0x48};
// Set initial input parameters
// const uint8_t Mmode {0x02}; // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read
const uint8_t Mmode {0x06}; // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read
const float aRes {getAres()}; // scale resolutions per LSB for the sensors
const float gRes {getGres()}; // scale resolutions per LSB for the sensors
const float mRes {getMres()}; // scale resolutions per LSB for the sensors
float magCalibration[3] = {0, 0, 0}; // factory mag calibration
float magBias[3] = {0, 0, 0};
float magScale[3] = {1.0, 1.0, 1.0}; // Bias corrections for gyro and accelerometer
float gyroBias[3] = {0, 0, 0}; // bias corrections
float accelBias[3] = {0, 0, 0}; // bias corrections
int16_t tempCount; // temperature raw count output
float temperature; // Stores the real internal chip temperature in degrees Celsius
float SelfTestResult[6]; // holds results of gyro and accelerometer self test
float a[3], g[3], m[3];
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float pitch, yaw, roll;
float a12, a22, a31, a32, a33; // rotation matrix coefficients for Euler angles and gravity components
float lin_ax, lin_ay, lin_az; // linear acceleration (acceleration with gravity component subtracted)
QuaternionFilter qFilter;
float magnetic_declination = +12.61; // Sydney 11.12.2019
public:
MPU9250_() : aRes(getAres()), gRes(getGres()), mRes(getMres()) {}
bool setup(WireType& w = Wire)
{
wire = &w;
bool err=0;
uint8_t m_whoami = 0x00;
uint8_t a_whoami = 0x00;
m_whoami = isConnectedMPU9250();
if (m_whoami)
{
//Serial.println("MPU9250 is online...");
initMPU9250();
a_whoami = isConnectedAK8963();
if (a_whoami)
{
initAK8963(magCalibration);
}
else
{
//Serial.print("Could not connect to AK8963: 0x");
//Serial.println(a_whoami);
err = true;
}
//SelfTest();
}
else
{
//Serial.print("Could not connect to MPU9250: 0x");
//Serial.println(m_whoami);
err = true;
}
return err;
}
void calibrateAccelGyro()
{
calibrateMPU9250(gyroBias, accelBias);
}
void calibrateMag()
{
magcalMPU9250(magBias, magScale);
}
bool isConnectedMPU9250()
{
byte c = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);
Serial.print("MPU9250 WHO AM I = ");
Serial.println(c, HEX);
return (c == MPU9250_WHOAMI_DEFAULT_VALUE);
}
bool isConnectedAK8963()
{
byte c = readByte(AK8963_ADDRESS, AK8963_WHO_AM_I);
Serial.print("AK8963 WHO AM I = ");
Serial.println(c, HEX);
return (c == AK8963_WHOAMI_DEFAULT_VALUE);
}
bool available()
{
return (readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01);
}
void update()
{
if (available())
{ // On interrupt, check if data ready interrupt
updateAccelGyro();
updateMag(); // TODO: set to 30fps?
}
// Madgwick function needs to be fed North, East, and Down direction like
// (AN, AE, AD, GN, GE, GD, MN, ME, MD)
// Accel and Gyro direction is Right-Hand, X-Forward, Z-Up
// Magneto direction is Right-Hand, Y-Forward, Z-Down
// So to adopt to the general Aircraft coordinate system (Right-Hand, X-Forward, Z-Down),
// we need to feed (ax, -ay, -az, gx, -gy, -gz, my, -mx, mz)
// but we pass (-ax, ay, az, gx, -gy, -gz, my, -mx, mz)
// because gravity is by convention positive down, we need to ivnert the accel data
// get quaternion based on aircraft coordinate (Right-Hand, X-Forward, Z-Down)
// acc[mg], gyro[deg/s], mag [mG]
// gyro will be convert from [deg/s] to [rad/s] inside of this function
// changed by Markus, because the MPU9250 is mounted vertical
//qFilter.update(-a[0], a[1], a[2], g[0], -g[1], -g[2], m[1], -m[0], m[2], q);
qFilter.update(-a[0], -a[2], a[1], g[0], g[2], -g[1], m[1], -m[2], -m[0], q);
if (!b_ahrs)
{
tempCount = readTempData(); // Read the adc values
temperature = ((float) tempCount) / 333.87 + 21.0; // Temperature in degrees Centigrade
}
else
{
// Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
// In this coordinate system, the positive z-axis is down toward Earth.
// Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
// Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
// Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
// These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
// Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
// applied in the correct order which for this configuration is yaw, pitch, and then roll.
// For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
updateRPY();
}
}
void setI2CAddress(uint8_t addr) {} // TODO:
// TODO: more efficient getter, const refrerence of struct??
float getRoll() const { return roll; }
float getPitch() const { return pitch; }
float getYaw() const { return yaw; }
float getQuaternion(uint8_t i) const { return (i < 4) ? q[i] : 0.f; }
float getAcc(uint8_t i) const { return (i < 3) ? a[i] : 0.f; }
float getGyro(uint8_t i) const { return (i < 3) ? g[i] : 0.f; }
float getMag(uint8_t i) const { return (i < 3) ? m[i] : 0.f; }
float getAccBias(uint8_t i) const { return (i < 3) ? accelBias[i] : 0.f; }
float getGyroBias(uint8_t i) const { return (i < 3) ? gyroBias[i] : 0.f; }
float getMagBias(uint8_t i) const { return (i < 3) ? magBias[i] : 0.f; }
float getMagScale(uint8_t i) const { return (i < 3) ? magScale[i] : 0.f; }
void setAccBias(uint8_t i, float v) { if (i < 3) accelBias[i] = v; }
void setGyroBias(uint8_t i, float v) { if (i < 3) gyroBias[i] = v; }
void setMagBias(uint8_t i, float v) { if (i < 3) magBias[i] = v; }
void setMagScale(uint8_t i, float v) { if (i < 3) magScale[i] = v; }
void setMagneticDeclination(const float d) { magnetic_declination = d; }
void print() const
{
printRawData();
printRollPitchYaw();
printCalibration();
}
void printRawData() const
{
// Print acceleration values in milligs!
Serial.print("ax = "); Serial.print((int)1000 * a[0]);
Serial.print(" ay = "); Serial.print((int)1000 * a[1]);
Serial.print(" az = "); Serial.print((int)1000 * a[2]); Serial.println(" mg");
// Print gyro values in degree/sec
Serial.print("gx = "); Serial.print(g[0], 2);
Serial.print(" gy = "); Serial.print(g[1], 2);
Serial.print(" gz = "); Serial.print(g[2], 2); Serial.println(" deg/s");
// Print mag values in degree/sec
Serial.print("mx = "); Serial.print((int)m[0]);
Serial.print(" my = "); Serial.print((int)m[1]);
Serial.print(" mz = "); Serial.print((int)m[2]); Serial.println(" mG");
Serial.print("q0 = "); Serial.print(q[0]);
Serial.print(" qx = "); Serial.print(q[1]);
Serial.print(" qy = "); Serial.print(q[2]);
Serial.print(" qz = "); Serial.println(q[3]);
}
void printRollPitchYaw() const
{
Serial.print("Yaw, Pitch, Roll: ");
Serial.print(yaw, 2);
Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);
}
void printCalibration() const
{
Serial.println("< calibration parameters >");
Serial.println("accel bias [g]: ");
Serial.print(accelBias[0] * 1000.f); Serial.print(", ");
Serial.print(accelBias[1] * 1000.f); Serial.print(", ");
Serial.print(accelBias[2] * 1000.f); Serial.println();
Serial.println("gyro bias [deg/s]: ");
Serial.print(gyroBias[0]); Serial.print(", ");
Serial.print(gyroBias[1]); Serial.print(", ");
Serial.print(gyroBias[2]); Serial.println();
Serial.println("mag bias [mG]: ");
Serial.print(magBias[0]); Serial.print(", ");
Serial.print(magBias[1]); Serial.print(", ");
Serial.print(magBias[2]); Serial.println();
Serial.println("mag scale []: ");
Serial.print(magScale[0]); Serial.print(", ");
Serial.print(magScale[1]); Serial.print(", ");
Serial.print(magScale[2]); Serial.println();
}
private:
float getAres() const
{
switch (AFSSEL)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
case AFS::A2G: return 2.0 / 32768.0;
case AFS::A4G: return 4.0 / 32768.0;
case AFS::A8G: return 8.0 / 32768.0;
case AFS::A16G: return 16.0 / 32768.0;
}
}
float getGres() const
{
switch (GFSSEL)
{
// Possible gyro scales (and their register bit settings) are:
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
case GFS::G250DPS: return 250.0 / 32768.0;
case GFS::G500DPS: return 500.0 / 32768.0;
case GFS::G1000DPS: return 1000.0 / 32768.0;
case GFS::G2000DPS: return 2000.0 / 32768.0;
}
}
float getMres() const
{
switch (MFSSEL)
{
// Possible magnetometer scales (and their register bit settings) are:
// 14 bit resolution (0) and 16 bit resolution (1)
// Proper scale to return milliGauss
case MFS::M14BITS: return 10. * 4912. / 8190.0;
case MFS::M16BITS: return 10. * 4912. / 32760.0;
}
}
void updateAccelGyro()
{
int16_t MPU9250Data[7]; // used to read all 14 bytes at once from the MPU9250 accel/gyro
readMPU9250Data(MPU9250Data); // INT cleared on any read
// Now we'll calculate the accleration value into actual g's
a[0] = (float)MPU9250Data[0] * aRes - accelBias[0]; // get actual g value, this depends on scale being set
a[1] = (float)MPU9250Data[1] * aRes - accelBias[1];
a[2] = (float)MPU9250Data[2] * aRes - accelBias[2];
// Calculate the gyro value into actual degrees per second
g[0] = (float)MPU9250Data[4] * gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
g[1] = (float)MPU9250Data[5] * gRes - gyroBias[1];
g[2] = (float)MPU9250Data[6] * gRes - gyroBias[2];
}
void readMPU9250Data(int16_t * destination)
{
uint8_t rawData[14]; // x/y/z accel register data stored here
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 14, &rawData[0]); // Read the 14 raw data registers into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
destination[3] = ((int16_t)rawData[6] << 8) | rawData[7] ;
destination[4] = ((int16_t)rawData[8] << 8) | rawData[9] ;
destination[5] = ((int16_t)rawData[10] << 8) | rawData[11] ;
destination[6] = ((int16_t)rawData[12] << 8) | rawData[13] ;
}
void updateMag()
{
int16_t magCount[3] = {0, 0, 0}; // Stores the 16-bit signed magnetometer sensor output
readMagData(magCount); // Read the x/y/z adc values
// getMres();
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
m[0] = (float)(magCount[0] * mRes * magCalibration[0] - magBias[0]) * magScale[0]; // get actual magnetometer value, this depends on scale being set
m[1] = (float)(magCount[1] * mRes * magCalibration[1] - magBias[1]) * magScale[1];
m[2] = (float)(magCount[2] * mRes * magCalibration[2] - magBias[2]) * magScale[2];
}
void readMagData(int16_t * destination)
{
uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
uint8_t c = rawData[6]; // End data read by reading ST2 register
if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0]; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2]; // Data stored as little Endian
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4];
}
}
}
void updateRPY()
{
a12 = 2.0f * (q[1] * q[2] + q[0] * q[3]);
a22 = q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3];
a31 = 2.0f * (q[0] * q[1] + q[2] * q[3]);
a32 = 2.0f * (q[1] * q[3] - q[0] * q[2]);
a33 = q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3];
pitch = -asinf(a32);
roll = atan2f(a31, a33);
yaw = atan2f(a12, a22);
pitch *= 180.0f / PI;
roll *= 180.0f / PI;
yaw *= 180.0f / PI;
yaw += magnetic_declination;
if (yaw >= +180.f) yaw -= 360.f;
else if (yaw < -180.f) yaw += 360.f;
lin_ax = a[0] + a31;
lin_ay = a[1] + a32;
lin_az = a[2] - a33;
}
int16_t readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a 16-bit value
}
void initAK8963(float * destination)
{
// First extract the factory calibration for each magnetometer axis
uint8_t rawData[3]; // x/y/z gyro calibration data stored here
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
delay(10);
readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
destination[0] = (float)(rawData[0] - 128)/256. + 1.; // Return x-axis sensitivity adjustment values, etc.
destination[1] = (float)(rawData[1] - 128)/256. + 1.;
destination[2] = (float)(rawData[2] - 128)/256. + 1.;
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(10);
// Configure the magnetometer for continuous read and highest resolution
// set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
// and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
writeByte(AK8963_ADDRESS, AK8963_CNTL, (uint8_t)MFSSEL << 4 | Mmode); // Set magnetometer data resolution and sample ODR
delay(10);
Serial.println("Calibration values: ");
Serial.print("X-Axis sensitivity adjustment value "); Serial.println(destination[0], 2);
Serial.print("Y-Axis sensitivity adjustment value "); Serial.println(destination[1], 2);
Serial.print("Z-Axis sensitivity adjustment value "); Serial.println(destination[2], 2);
Serial.print("X-Axis sensitivity offset value "); Serial.println(magBias[0], 2);
Serial.print("Y-Axis sensitivity offset value "); Serial.println(magBias[1], 2);
Serial.print("Z-Axis sensitivity offset value "); Serial.println(magBias[2], 2);
}
void magcalMPU9250(float * dest1, float * dest2)
{
uint16_t ii = 0, sample_count = 0;
int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0};
int16_t mag_max[3] = {-32767, -32767, -32767}, mag_min[3] = {32767, 32767, 32767}, mag_temp[3] = {0, 0, 0};
Serial.println("Mag Calibration: Wave device in a figure eight until done!");
delay(4000);
// shoot for ~fifteen seconds of mag data
if (Mmode == 0x02) sample_count = 128; // at 8 Hz ODR, new mag data is available every 125 ms
else if (Mmode == 0x06) sample_count = 1500; // at 100 Hz ODR, new mag data is available every 10 ms
for(ii = 0; ii < sample_count; ii++)
{
readMagData(mag_temp); // Read the mag data
for (int jj = 0; jj < 3; jj++)
{
if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
}
if(Mmode == 0x02) delay(135); // at 8 Hz ODR, new mag data is available every 125 ms
if(Mmode == 0x06) delay(12); // at 100 Hz ODR, new mag data is available every 10 ms
}
Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);
// Get hard iron correction
mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
dest1[0] = (float) mag_bias[0]*mRes*magCalibration[0]; // save mag biases in G for main program
dest1[1] = (float) mag_bias[1]*mRes*magCalibration[1];
dest1[2] = (float) mag_bias[2]*mRes*magCalibration[2];
// Get soft iron correction estimate
mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts
mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts
mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts
float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
avg_rad /= 3.0;
dest2[0] = avg_rad/((float)mag_scale[0]);
dest2[1] = avg_rad/((float)mag_scale[1]);
dest2[2] = avg_rad/((float)mag_scale[2]);
Serial.println("Mag Calibration done!");
Serial.println("AK8963 mag biases (mG)");
Serial.print(magBias[0]); Serial.print(", ");
Serial.print(magBias[1]); Serial.print(", ");
Serial.print(magBias[2]); Serial.println();
Serial.println("AK8963 mag scale (mG)");
Serial.print(magScale[0]); Serial.print(", ");
Serial.print(magScale[1]); Serial.print(", ");
Serial.print(magScale[2]); Serial.println();
}
void initMPU9250()
{
// wake up device
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
delay(100); // Wait for all registers to reset
// get stable time source
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else
delay(200);
// Configure Gyro and Thermometer
// Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively;
// minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot
// be higher than 1 / 0.0059 = 170 Hz
// DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
// With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz
writeByte(MPU9250_ADDRESS, MPU_CONFIG, 0x03);
// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; a rate consistent with the filter update rate
// determined inset in CONFIG above
// Set gyroscope full scale range
// Range selects FS_SEL and GFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x03; // Clear Fchoice bits [1:0]
c = c & ~0x18; // Clear GFS bits [4:3]
c = c | (uint8_t)GFSSEL << 3; // Set full scale range for the gyro
// c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
// Set accelerometer full-scale range configuration
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | (uint8_t)AFSSEL << 3; // Set full scale range for the accelerometer
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
// Set accelerometer sample rate configuration
// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
// but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
// Configure Interrupts and Bypass Enable
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
// clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips
// can join the I2C bus and all can be controlled by the Arduino as master
writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
delay(100);
}
// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void calibrateMPU9250(float * dest1, float * dest2)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
delay(100);
// get stable time source; Auto select clock source to be PLL gyroscope reference if ready
// else use the internal oscillator, bits 2:0 = 001
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
delay(200);
// Configure device for bias calculation
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
delay(15);
// Configure MPU6050 gyro and accelerometer for bias calculation
writeByte(MPU9250_ADDRESS, MPU_CONFIG, 0x01); // Set low-pass filter to 188 Hz
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150)
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes
// At end of sample accumulation, turn off FIFO sensor read
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count / 12;// How many sets of full gyro and accelerometer data for averaging
for (ii = 0; ii < packet_count; ii++)
{
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
data[0] = (-gyro_bias[0] / 4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0] / 4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
data[2] = (-gyro_bias[1] / 4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1] / 4) & 0xFF;
data[4] = (-gyro_bias[2] / 4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2] / 4) & 0xFF;
// Push gyro biases to hardware registers
writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
// Output scaled gyro biases for display in the main program
dest1[0] = (float) gyro_bias[0] / (float) gyrosensitivity;
dest1[1] = (float) gyro_bias[1] / (float) gyrosensitivity;
dest1[2] = (float) gyro_bias[2] / (float) gyrosensitivity;
// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.
// int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
// readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
// accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
// readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
// accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
// readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
// accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
// uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
// uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
// for(ii = 0; ii < 3; ii++) {
// if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
// }
// // Construct total accelerometer bias, including calculated average accelerometer bias from above
// accel_bias_reg[0] -= (accel_bias[0] / 8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
// accel_bias_reg[1] -= (accel_bias[1] / 8);
// accel_bias_reg[2] -= (accel_bias[2] / 8);
// data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
// data[1] = (accel_bias_reg[0]) & 0xFF;
// data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
// data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
// data[3] = (accel_bias_reg[1]) & 0xFF;
// data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
// data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
// data[5] = (accel_bias_reg[2]) & 0xFF;
// data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
// Apparently this is not working for the acceleration biases in the MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
// writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
// writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
// writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
// writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
// writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
// writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
// Output scaled accelerometer biases for display in the main program
dest2[0] = (float)accel_bias[0] / (float)accelsensitivity;
dest2[1] = (float)accel_bias[1] / (float)accelsensitivity;
dest2[2] = (float)accel_bias[2] / (float)accelsensitivity;
Serial.println("MPU9250 bias");
Serial.println(" x y z ");
Serial.print((int)(1000 * accelBias[0])); Serial.print(" ");
Serial.print((int)(1000 * accelBias[1])); Serial.print(" ");
Serial.print((int)(1000 * accelBias[2])); Serial.print(" ");
Serial.println("mg");
Serial.print(gyroBias[0], 1); Serial.print(" ");
Serial.print(gyroBias[1], 1); Serial.print(" ");
Serial.print(gyroBias[2], 1); Serial.print(" ");
Serial.println("o/s");
delay(100);
initMPU9250();
delay(1000);
}
// Accelerometer and gyroscope self test; check calibration wrt factory settings
void SelfTest() // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
uint8_t selfTest[6];
int32_t gAvg[3] = {0}, aAvg[3] = {0}, aSTAvg[3] = {0}, gSTAvg[3] = {0};
float factoryTrim[6];
uint8_t FS = 0;
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
writeByte(MPU9250_ADDRESS, MPU_CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, FS << 3); // Set full scale range for the gyro to 250 dps
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, FS << 3); // Set full scale range for the accelerometer to 2 g
for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
aAvg[ii] /= 200;
gAvg[ii] /= 200;
}
// Configure the accelerometer for self-test
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
delay(25); // Delay a while to let the device stabilize
for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
aSTAvg[ii] /= 200;
gSTAvg[ii] /= 200;
}
// Configure the gyro and accelerometer for normal operation
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
delay(25); // Delay a while to let the device stabilize
// Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
// Retrieve factory self-test value from self-test code reads
factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
// To get percent, must multiply by 100
for (int i = 0; i < 3; i++)
{
SelfTestResult[i] = 100.0 * ((float)(aSTAvg[i] - aAvg[i])) / factoryTrim[i] - 100.; // Report percent differences
SelfTestResult[i+3] = 100.0 * ((float)(gSTAvg[i] - gAvg[i])) / factoryTrim[i+3] - 100.; // Report percent differences
}
Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTestResult[0], 1); Serial.println("% of factory value");
Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTestResult[1], 1); Serial.println("% of factory value");
Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTestResult[2], 1); Serial.println("% of factory value");
Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTestResult[3], 1); Serial.println("% of factory value");
Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTestResult[4], 1); Serial.println("% of factory value");
Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTestResult[5], 1); Serial.println("% of factory value");
delay(5000);
}
void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
wire->beginTransmission(address); // Initialize the Tx buffer
wire->write(subAddress); // Put slave register address in Tx buffer
wire->write(data); // Put data in Tx buffer
i2c_err_ = wire->endTransmission(); // Send the Tx buffer
if (i2c_err_) pirntI2CError();
}
uint8_t readByte(uint8_t address, uint8_t subAddress)
{
uint8_t data = 0; // `data` will store the register data
wire->beginTransmission(address); // Initialize the Tx buffer
wire->write(subAddress); // Put slave register address in Tx buffer
i2c_err_ = wire->endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
if (i2c_err_) pirntI2CError();
wire->requestFrom(address, (size_t)1); // Read one byte from slave register address
if (wire->available()) data = wire->read(); // Fill Rx buffer with result
return data; // Return data read from slave register
}
void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{
wire->beginTransmission(address); // Initialize the Tx buffer
wire->write(subAddress); // Put slave register address in Tx buffer
i2c_err_ = wire->endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
if (i2c_err_) pirntI2CError();
uint8_t i = 0;
wire->requestFrom(address, count); // Read bytes from slave register address
while (wire->available())
{
dest[i++] = wire->read();
} // Put read results in the Rx buffer
}
void pirntI2CError()
{
if (i2c_err_ == 7) return; // to avoid stickbreaker-i2c branch's error code
Serial.print("I2C ERROR CODE : ");
Serial.println(i2c_err_);
}
bool b_ahrs {true};
WireType* wire;
uint8_t i2c_err_;
};
#ifdef TEENSYDUINO
using MPU9250 = MPU9250_<i2c_t3>;
#else
using MPU9250 = MPU9250_<TwoWire>;
#endif
#endif // MPU9250_H