Skip to content

Latest commit

 

History

History

ContiFormer

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

ContiFormer: Continuous-Time Transformer for Irregular Time Series Modeling

This is the code for our NeurIPS 2023 paper "ContiFormer: Continuous-Time Transformer for Irregular Time Series Modeling".

Updates

  • [2024/01/22] Support temporal point process task (Section 4.3).
  • [2023/12/11] Support continuous-time function approximation task (Section 4.1) and UEA classification task (Section 4.2).

Environment Dependencies

ContiFormer is currently part of "PhysioPro" project, please first clone PhysioPro repo and set up the required environment.

Reproduce the experimental result for interpolating continuous-time function

Run the following command, where cc controls the type of spiral, 0 for the first type, 1 for the second type, 2 for mixture (see Appendix C.1.1 for more information).

  • For Neural ODE, please run
python spiral.py --adjoint=1 --visualize=1 --niters=10000 --model_name Neural_ODE --noise_a=0.02 --cc=2 --train_dir ./sprial_neuralode
  • For ContiFormer, please run
python spiral.py --adjoint=1 --visualize=1 --niters=10000 --model_name Contiformer --noise_a=0.02 --cc=2 --train_dir ./spiral_contiformer

The results and visualization data will be saved to ./sprial_neuralode and ./spiral_contiformer.

All the experimental results are averaged, i.e., 27, 42, 1024 (the same random seeds for other tasks), use --seed to set the seed.

Reproduce the experimental result for irregular time series classification

  1. Download the dataset
cd PhysioPro
mkdir data
wget http://www.timeseriesclassification.com/aeon-toolkit/Archives/Multivariate2018_ts.zip -P data

unzip data/Multivariate2018_ts.zip -d data/
rm data/Multivariate2018_ts.zip
  1. Run irregular time series classification task with ContiFormer and Heartbeat dataset.
# create the output directory
mkdir -p outputs/Multivariate_ts/Heartbeat
# run the train task
python -m physiopro.entry.train docs/configs/contiformer_mask_classification.yml --data.mask_ratio 0.3 --data.name Heartbeat
# tensorboard
tensorboard --logdir outputs/

The results will be saved to outputs/Multivariate2018_ts/Heartbeat directory.

Reproducibility

Random seeds selection

To obtain the result for Heartbeat dataset with 0.3 mask ratio under different random seeds, please run the following three commands.

python -m physiopro.entry.train docs/configs/contiformer_mask_classification.yml --data.mask_ratio 0.3 --data.name Heartbeat --runtime.seed 27
python -m physiopro.entry.train docs/configs/contiformer_mask_classification.yml --data.mask_ratio 0.3 --data.name Heartbeat --runtime.seed 42
python -m physiopro.entry.train docs/configs/contiformer_mask_classification.yml --data.mask_ratio 0.3 --data.name Heartbeat --runtime.seed 1024

Hyper-parameter search

We provided hyper-parameter searching for all the compared methods. Taking ContiFormer model as an example, we search activation function in sigmoid and tanh (please refer to Appendix D.4 for more information), and report the best performance for each dataset.

To perform hyper-parameter search for the activation function, please run the following commands:

python -m physiopro.entry.train docs/configs/contiformer_mask_classification.yml --data.mask_ratio 0.3 --data.name Heartbeat --network.actfn_ode sigmoid
python -m physiopro.entry.train docs/configs/contiformer_mask_classification.yml --data.mask_ratio 0.3 --data.name Heartbeat --network.actfn_ode tanh

Reproduce the experimental result for temporal point process

  1. Download the dataset

Please download the dataset from Google Drive Link, and put it under data fold.

  1. Run temporal point process task with ContiFormer on Neonate dataset
# create the output directory
mkdir -p outputs/Temporal_Point_Process/neonate
# run the train task
python -m physiopro.entry.train docs/configs/contiformer_tpp.yml
# tensorboard
tensorboard --logdir outputs/
  1. To change the fold, please add the following parameter
python -m physiopro.entry.train docs/configs/contiformer_tpp.yml --data.fold fold1
  1. For other datasets, please run the following commands
python -m physiopro.entry.train docs/configs/contiformer_tpp.yml --data.name data_synthetic --model.lr 1e-2 --network.add_pe false --network.normalize_before false --network.actfn_ode sigmoid --network.layer_type_ode concatnorm --model.tmax 5 --model.step_size 100 --runtime.output_dir outputs/Temporal_Point_Process/synthetic
python -m physiopro.entry.train docs/configs/contiformer_tpp.yml --data.name data_mimic --model.lr 1e-3 --network.add_pe false --network.normalize_before true --network.actfn_ode sigmoid --network.layer_type_ode concatnorm --model.tmax 10 --model.step_size 20 --runtime.output_dir outputs/Temporal_Point_Process/mimic
python -m physiopro.entry.train docs/configs/contiformer_tpp.yml --data.name data_stackoverflow --model.lr 1e-3 --network.add_pe false --network.normalize_before false --network.actfn_ode sigmoid --network.layer_type_ode concat --model.tmax 10 --model.step_size 20  --runtime.output_dir outputs/Temporal_Point_Process/stackoverflow
python -m physiopro.entry.train docs/configs/contiformer_tpp.yml --data.name data_bookorder --model.lr 1e-3 --network.add_pe true --network.normalize_before false --network.actfn_ode sigmoid --network.layer_type_ode concatnorm --data.clip_max 70 --model.tmax 70 --model.step_size 20 --runtime.output_dir outputs/Temporal_Point_Process/bookorder
python -m physiopro.entry.train docs/configs/contiformer_tpp_neonate.yml --data.name data_neonate --model.lr 1e-2 --network.add_pe false --network.normalize_before false --network.actfn_ode tanh --network.layer_type_ode concat --model.tmax 20 --model.step_size 20  --runtime.output_dir outputs/Temporal_Point_Process/neonate
python -m physiopro.entry.train docs/configs/contiformer_tpp.yml --data.name data_traffic --model.lr 1e-3 --network.add_pe false --network.normalize_before false --network.actfn_ode sigmoid --network.layer_type_ode concat --model.tmax 5 --model.step_size 20  --runtime.output_dir outputs/Temporal_Point_Process/traffic

Reference

You are more than welcome to cite our paper:

@inproceedings{chen2023contiformer,
  title={ContiFormer: Continuous-Time Transformer for Irregular Time Series Modeling},
  author={Chen, Yuqi and Ren, Kan and Wang, Yansen and Fang, Yuchen and Sun, Weiwei and Li, Dongsheng},
  booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
  year={2023}
}