diff --git a/README.md b/README.md index 00581ddd7c..3883714198 100644 --- a/README.md +++ b/README.md @@ -20,7 +20,7 @@ :fire: [autogen](https://microsoft.github.io/FLAML/docs/Use-Cases/Autogen) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). -:fire: FLAML supports AutoML and Hyperparameter Tuning features in [Microsoft Fabric](https://learn.microsoft.com/en-us/fabric/get-started/microsoft-fabric-overview) private preview. Sign up for these features at: https://aka.ms/fabric/data-science/sign-up. +:fire: FLAML supports Code-First AutoML & Tuning – Private Preview in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/). ## What is FLAML diff --git a/website/docs/Examples/AutoGen-AgentChat.md b/website/docs/Examples/AutoGen-AgentChat.md index a136aa71ef..665930f3d0 100644 --- a/website/docs/Examples/AutoGen-AgentChat.md +++ b/website/docs/Examples/AutoGen-AgentChat.md @@ -1,4 +1,5 @@ # AutoGen - Automated Multi Agent Chat + `flaml.autogen` offers conversable agents powered by LLM, tool or human, which can be used to perform tasks collectively via automated chat. This framwork allows tool use and human participance via multi-agent conversation. Please find documentation about this feature [here](/docs/Use-Cases/Autogen#agents). @@ -13,3 +14,4 @@ Links to notebook examples: * [Automated Chess Game Playing & Chitchatting by GPT-4 Agents](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_agentchat_chess.ipynb) * [Automated Task Solving by Group Chat](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_agentchat_groupchat.ipynb) * [Automated Continual Learning from New Data](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_agentchat_stream.ipynb) +* [Automated Code Generation and Question Answering with Retrieval Augemented Agents](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_agentchat_RetrieveChat.ipynb) diff --git a/website/docs/Use-Cases/Autogen.md b/website/docs/Use-Cases/Autogen.md index 7592e59a4f..d490c92542 100644 --- a/website/docs/Use-Cases/Autogen.md +++ b/website/docs/Use-Cases/Autogen.md @@ -146,6 +146,7 @@ user_proxy.initiate_chat( ``` ### Notebook Examples + *Interested in trying it yourself? Please check the following notebook examples:* * [Automated Task Solving with Code Generation, Execution & Debugging](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_agentchat_auto_feedback_from_code_execution.ipynb) @@ -157,6 +158,7 @@ user_proxy.initiate_chat( * [Automated Chess Game Playing & Chitchatting by GPT-4 Agents](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_agentchat_chess.ipynb) * [Automated Task Solving by Group Chat](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_agentchat_groupchat.ipynb) * [Automated Continual Learning from New Data](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_agentchat_stream.ipynb) +* [Automated Code Generation and Question Answering with Retrieval Augemented Agents](https://github.com/microsoft/FLAML/blob/main/notebook/autogen_agentchat_RetrieveChat.ipynb) ## Enhanced Inference @@ -550,3 +552,4 @@ The compact history is more efficient and the individual API call history contai *Interested in the research that leads to this package? Please check the following papers.* * [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023). * [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023). +* [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework](https://arxiv.org/abs/2308.08155). Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, Chi Wang. ArXiv preprint arXiv:2308.08155 (2023).