This repository has been archived by the owner on Aug 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 621
/
Copy pathqueue.cpp
875 lines (720 loc) · 25.8 KB
/
queue.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include <utcommon.h>
#include <k4ainternal/allocator.h>
#include <k4ainternal/image.h>
#include <k4ainternal/queue.h>
#include <k4ainternal/common.h>
#include <gtest/gtest.h>
#include <azure_c_shared_utility/lock.h>
#include <azure_c_shared_utility/tickcounter.h>
#include <azure_c_shared_utility/threadapi.h>
int main(int argc, char **argv)
{
return k4a_test_common_main(argc, argv);
}
#define GTEST_LOG_ERROR std::cout << "[ ERROR ] "
#define GTEST_LOG_WARNING std::cout << "[ WARNING ] "
#define GTEST_LOG_INFO std::cout << "[ INFO ] "
#define THREAD_YEILD_TIME (1)
#define TEST_EXECUTION_TIME (5000)
#define TEST_RETURN_VALUE (22)
#define MAX_QUEUE_DEPTH_LENGTH (10000)
#define TEST_QUEUE_DEPTH 7
static int32_t g_timeout = 100;
typedef struct _threaded_queue_data_t
{
queue_t queue;
uint32_t pattern_start;
uint32_t pattern_offset;
uint32_t error;
uint32_t dropped;
LOCK_HANDLE lock;
volatile uint32_t done_event;
} threaded_queue_data_t;
static k4a_capture_t capture_manufacture(size_t size)
{
k4a_result_t result;
k4a_capture_t capture = NULL;
k4a_image_t image = NULL;
result = TRACE_CALL(capture_create(&capture));
if (K4A_SUCCEEDED(result))
{
result = TRACE_CALL(image_create_empty_internal(ALLOCATION_SOURCE_IMU, size, &image));
}
if (K4A_SUCCEEDED(result))
{
capture_set_color_image(capture, image);
}
if (K4A_FAILED(result))
{
capture_dec_ref(capture);
capture = NULL;
}
if (image)
{
image_dec_ref(image);
image = NULL;
}
return capture;
}
static uint8_t *get_raw_byte_ptr(k4a_capture_t capture, size_t *size)
{
k4a_image_t image;
k4a_result_t result;
uint8_t *buffer = NULL;
result = K4A_RESULT_FROM_BOOL((image = capture_get_color_image(capture)) != NULL);
if (K4A_SUCCEEDED(result))
{
buffer = image_get_buffer(image);
if (size)
{
*size = image_get_size(image);
}
image_dec_ref(image);
}
return buffer;
}
static k4a_result_t fill_queue(queue_t queue, uint32_t starting_value, uint32_t number_of_entries)
{
k4a_capture_t capture;
size_t size;
uint64_t time;
for (uint32_t loop = 0; loop < number_of_entries; loop++)
{
k4a_image_t image;
uint32_t payload = loop + starting_value;
size = sizeof(uint32_t) * ((payload) % 4 + 1);
time = (uint64_t)(sizeof(uint32_t) * ((payload) % 4 + 1));
capture = capture_manufacture(size);
EXPECT_NE(capture, (k4a_capture_t)NULL);
if (capture == NULL)
{
return K4A_RESULT_FAILED;
}
image = capture_get_color_image(capture);
if (image == NULL)
{
return K4A_RESULT_FAILED;
}
memcpy(image_get_buffer(image), &payload, sizeof(payload));
// Set attributes
image_set_size(image, size);
image_set_device_timestamp_usec(image, time);
queue_push(queue, capture);
// queue owns the memory now
image_dec_ref(image);
capture_dec_ref(capture);
}
return K4A_RESULT_SUCCEEDED;
}
static k4a_wait_result_t drain_queue(queue_t queue, uint32_t starting_value, uint32_t number_to_drain)
{
k4a_capture_t capture;
size_t size;
size_t expected_size;
k4a_wait_result_t wresult;
for (uint32_t loop = 0; loop < number_to_drain; loop++)
{
wresult = queue_pop(queue, 0, &capture);
if (wresult != K4A_WAIT_RESULT_SUCCEEDED)
{
EXPECT_NE(capture, (k4a_capture_t)NULL);
return wresult;
}
// validate capture contents.
uint32_t integer = 0;
uint8_t *memory = get_raw_byte_ptr(capture, &size);
memcpy(&integer, memory, sizeof(integer));
if (integer != loop + starting_value)
{
EXPECT_EQ(integer, loop + starting_value);
return K4A_WAIT_RESULT_FAILED;
}
expected_size = (integer % 4 + 1) * sizeof(uint32_t);
if (size != expected_size)
{
EXPECT_EQ(size, expected_size);
return K4A_WAIT_RESULT_FAILED;
}
// remove the ref we now own
capture_dec_ref(capture);
}
return K4A_WAIT_RESULT_SUCCEEDED;
}
static uint32_t find_queue_depth(queue_t queue)
{
k4a_result_t result;
k4a_wait_result_t wresult;
k4a_capture_t capture;
uint32_t depth;
size_t capture_size;
queue_enable(queue);
result = fill_queue(queue, 0, MAX_QUEUE_DEPTH_LENGTH);
EXPECT_EQ(result, K4A_RESULT_SUCCEEDED);
wresult = queue_pop(queue, 0, &capture);
EXPECT_EQ(wresult, K4A_WAIT_RESULT_SUCCEEDED);
EXPECT_NE((k4a_capture_t)NULL, capture);
// we pushed 0 in the first element above, if we get it back it is
// because our test didn't find the max depth to cause data to
// be dropped.
uint32_t integer = 0;
uint64_t time = 0;
size_t size;
k4a_image_t image = capture_get_color_image(capture);
EXPECT_NE((k4a_image_t)NULL, image);
memcpy(&integer, image_get_buffer(image), sizeof(integer));
capture_size = image_get_size(image);
size = (size_t)(sizeof(uint32_t) * ((integer) % 4 + 1));
time = (uint64_t)(sizeof(uint32_t) * ((integer) % 4 + 1));
EXPECT_NE(integer, (uint32_t)0);
EXPECT_LT(integer, (uint32_t)MAX_QUEUE_DEPTH_LENGTH);
EXPECT_EQ(size, capture_size);
EXPECT_EQ(time, image_get_device_timestamp_usec(image));
depth = MAX_QUEUE_DEPTH_LENGTH - integer;
image_dec_ref(image);
capture_dec_ref(capture); // free the pop memory
return depth;
}
TEST(queue_ut, queue_find_depth)
{
queue_t queue;
uint32_t queue_depth_to_test = 8;
ASSERT_EQ(queue_create(queue_depth_to_test, "queue_test", &queue), K4A_RESULT_SUCCEEDED);
ASSERT_EQ(find_queue_depth(queue), queue_depth_to_test);
queue_destroy(queue);
queue_depth_to_test = 13;
ASSERT_EQ(queue_create(queue_depth_to_test, "queue_test", &queue), K4A_RESULT_SUCCEEDED);
ASSERT_EQ(find_queue_depth(queue), queue_depth_to_test);
queue_destroy(queue);
queue_depth_to_test = 97;
ASSERT_EQ(queue_create(queue_depth_to_test, "queue_test", &queue), K4A_RESULT_SUCCEEDED);
ASSERT_EQ(find_queue_depth(queue), queue_depth_to_test);
queue_destroy(queue);
queue_depth_to_test = 100;
ASSERT_EQ(queue_create(queue_depth_to_test, "queue_test", &queue), K4A_RESULT_SUCCEEDED);
ASSERT_EQ(find_queue_depth(queue), queue_depth_to_test);
queue_destroy(queue);
queue_depth_to_test = 1999;
ASSERT_EQ(queue_create(queue_depth_to_test, "queue_test", &queue), K4A_RESULT_SUCCEEDED);
ASSERT_EQ(find_queue_depth(queue), queue_depth_to_test);
queue_destroy(queue);
ASSERT_EQ(allocator_test_for_leaks(), 0);
}
typedef struct
{
int32_t pop_api_timeout;
int32_t push_api_delay;
} pop_empty_queue_thread_tests_t;
static pop_empty_queue_thread_tests_t g_empty_queue_thread_test_data[] = {
{ 0, K4A_WAIT_INFINITE }, // zero based timeout (to)
{ 500, K4A_WAIT_INFINITE }, // thread blocked based to
{ K4A_WAIT_INFINITE, 0 }, // successful read
{ K4A_WAIT_INFINITE, 500 }, // successful read
};
typedef struct
{
int32_t pop_api_timeout;
int32_t push_api_delay;
k4a_capture_t capture;
LOCK_HANDLE lock;
queue_t queue;
} empty_queue_read_write_data_t;
static int thread_pop_empty_queue_reader(void *param)
{
empty_queue_read_write_data_t *data = (empty_queue_read_write_data_t *)param;
k4a_capture_t capture = NULL;
k4a_wait_result_t wresult;
// sync test start
Lock(data->lock);
Unlock(data->lock);
wresult = queue_pop(data->queue, data->pop_api_timeout, &capture);
if (capture)
{
capture_dec_ref(capture);
}
return wresult;
}
static int thread_pop_empty_queue_writer(void *param)
{
empty_queue_read_write_data_t *data = (empty_queue_read_write_data_t *)param;
// sync test start
Lock(data->lock);
Unlock(data->lock);
if (K4A_WAIT_INFINITE != data->push_api_delay)
{
ThreadAPI_Sleep((unsigned int)data->push_api_delay);
queue_push(data->queue, data->capture);
return K4A_RESULT_SUCCEEDED;
}
return K4A_RESULT_SUCCEEDED;
}
TEST(queue_ut, queue_pop_on_empty_queue)
{
queue_t queue;
k4a_capture_t capture;
uint32_t queue_depth = TEST_QUEUE_DEPTH;
ASSERT_EQ(queue_create(queue_depth, "queue_test", &queue), K4A_RESULT_SUCCEEDED);
queue_enable(queue);
// Queue pop should timeout on multiple timeouts
ASSERT_EQ(queue_pop(queue, 0, &capture), K4A_WAIT_RESULT_TIMEOUT);
ASSERT_EQ(queue_pop(queue, 100, &capture), K4A_WAIT_RESULT_TIMEOUT);
ASSERT_EQ(queue_pop(queue, 200, &capture), K4A_WAIT_RESULT_TIMEOUT);
ASSERT_EQ(queue_pop(queue, 300, &capture), K4A_WAIT_RESULT_TIMEOUT);
ASSERT_EQ(queue_pop(queue, 400, &capture), K4A_WAIT_RESULT_TIMEOUT);
empty_queue_read_write_data_t data;
data.queue = queue;
data.capture = capture_manufacture(10);
data.lock = Lock_Init();
ASSERT_NE(data.capture, (k4a_capture_t)NULL);
ASSERT_NE(data.lock, (LOCK_HANDLE)NULL);
for (uint32_t x = 0; x < COUNTOF(g_empty_queue_thread_test_data); x++)
{
THREAD_HANDLE t1, t2;
GTEST_LOG_INFO << "test iteration " << x << "\n";
data.pop_api_timeout = g_empty_queue_thread_test_data[x].pop_api_timeout;
data.push_api_delay = g_empty_queue_thread_test_data[x].push_api_delay;
// prevent the threads from running
Lock(data.lock);
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Create(&t1, thread_pop_empty_queue_writer, &data));
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Create(&t2, thread_pop_empty_queue_reader, &data));
Unlock(data.lock);
int write_result, read_result;
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Join(t1, &write_result));
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Join(t2, &read_result));
if ((((int64_t)data.push_api_delay >= (int64_t)data.pop_api_timeout) &&
(data.pop_api_timeout != K4A_WAIT_INFINITE)) ||
(data.push_api_delay == K4A_WAIT_INFINITE))
{
ASSERT_EQ((k4a_wait_result_t)read_result, K4A_WAIT_RESULT_TIMEOUT);
}
else
{
ASSERT_EQ((k4a_wait_result_t)read_result, K4A_WAIT_RESULT_SUCCEEDED);
}
ASSERT_EQ((k4a_wait_result_t)write_result, K4A_WAIT_RESULT_SUCCEEDED);
}
capture_dec_ref(data.capture);
// Verify all our allocations were released
ASSERT_EQ(allocator_test_for_leaks(), 0);
Lock_Deinit(data.lock);
queue_destroy(queue);
}
TEST(queue_ut, test_queue_push_w_dropped)
{
queue_t queue;
k4a_capture_t capture1;
k4a_capture_t capture2;
k4a_capture_t capture_dropped;
ASSERT_EQ(queue_create(1, "queue_test", &queue), K4A_RESULT_SUCCEEDED);
capture1 = capture_manufacture(10);
ASSERT_NE(capture1, (k4a_capture_t)NULL);
capture2 = capture_manufacture(10);
ASSERT_NE(capture2, (k4a_capture_t)NULL);
// all expected to fail
queue_push_w_dropped(NULL, NULL, NULL);
queue_push_w_dropped(queue, NULL, NULL);
queue_push_w_dropped(NULL, capture1, NULL);
// queue is empty, so capture_dropped should be NULL
capture_dropped = NULL;
queue_push_w_dropped(queue, capture1, &capture_dropped);
ASSERT_EQ(capture_dropped, (k4a_capture_t)NULL);
// queue is full, so capture_dropped should be capture_1
capture_dropped = NULL;
queue_push_w_dropped(queue, capture2, &capture_dropped);
ASSERT_EQ(capture_dropped, (k4a_capture_t)NULL);
capture_dec_ref(capture_dropped);
// queue is empty, dropped lock should not be touched
queue_push_w_dropped(queue, capture1, NULL);
ASSERT_EQ(capture_dropped, (k4a_capture_t)NULL);
// queue is full, dropped logic is NULL and should deal with it internally
capture_dropped = NULL;
queue_push_w_dropped(queue, capture2, NULL);
ASSERT_EQ(capture_dropped, (k4a_capture_t)NULL);
capture_dec_ref(capture1);
capture_dec_ref(capture2);
queue_enable(queue);
queue_destroy(queue);
ASSERT_EQ(allocator_test_for_leaks(), 0);
}
TEST(queue_ut, queue_multiple_queues)
{
queue_t queue1, queue2, queue3;
uint32_t starting_sequence1, starting_sequence2, starting_sequence3;
uint32_t size;
k4a_capture_t capture;
uint32_t queue_depth = TEST_QUEUE_DEPTH;
size = queue_depth + 1;
starting_sequence1 = 10;
starting_sequence2 = 10;
starting_sequence3 = 10;
ASSERT_EQ(queue_create(queue_depth, "queue_test", &queue1), K4A_RESULT_SUCCEEDED);
ASSERT_EQ(queue_create(queue_depth, "queue_test", &queue2), K4A_RESULT_SUCCEEDED);
ASSERT_EQ(queue_create(queue_depth, "queue_test", &queue3), K4A_RESULT_SUCCEEDED);
queue_enable(queue1);
queue_enable(queue2);
queue_enable(queue3);
ASSERT_EQ(fill_queue(queue1, starting_sequence1, size), K4A_RESULT_SUCCEEDED);
ASSERT_EQ(fill_queue(queue2, starting_sequence2, size), K4A_RESULT_SUCCEEDED);
ASSERT_EQ(fill_queue(queue3, starting_sequence3, size), K4A_RESULT_SUCCEEDED);
// expected starting seq is +1 from base due to writeing queue_depth + 1
starting_sequence1++;
starting_sequence2++;
starting_sequence3++;
ASSERT_EQ(drain_queue(queue1, starting_sequence1, size / 2), K4A_WAIT_RESULT_SUCCEEDED);
ASSERT_EQ(drain_queue(queue3, starting_sequence3, size / 2), K4A_WAIT_RESULT_SUCCEEDED);
ASSERT_EQ(drain_queue(queue2, starting_sequence2, size / 2), K4A_WAIT_RESULT_SUCCEEDED);
starting_sequence1 += size / 2;
starting_sequence2 += size / 2;
starting_sequence3 += size / 2;
ASSERT_EQ(drain_queue(queue2, starting_sequence2, size / 2 - 1), K4A_WAIT_RESULT_SUCCEEDED);
ASSERT_EQ(drain_queue(queue1, starting_sequence1, size / 2 - 1), K4A_WAIT_RESULT_SUCCEEDED);
ASSERT_EQ(drain_queue(queue3, starting_sequence3, size / 2 - 1), K4A_WAIT_RESULT_SUCCEEDED);
queue_t queues[] = { queue1, queue2, queue3 };
for (uint32_t x = 0; x < COUNTOF(queues); x++)
{
int32_t timeout = g_timeout;
ASSERT_EQ(queue_pop(queues[x], timeout, &capture), K4A_WAIT_RESULT_TIMEOUT);
}
queue_destroy(queue1);
queue_destroy(queue2);
queue_destroy(queue3);
// Verify all our allocations were released
ASSERT_EQ(allocator_test_for_leaks(), 0);
}
static int thread_write_queue(void *param)
{
threaded_queue_data_t *data = (threaded_queue_data_t *)param;
uint32_t loop = data->pattern_start;
tickcounter_ms_t start_time_ms, now;
TICK_COUNTER_HANDLE tick = NULL;
// Sync start - its go time when we get this lock
Lock(data->lock);
Unlock(data->lock);
tick = tickcounter_create();
if (tick == NULL)
{
GTEST_LOG_ERROR << "tickcounter_create failed in thread_write_queue\n";
data->error = 1;
goto exit;
}
if (0 != tickcounter_get_current_ms(tick, &start_time_ms))
{
GTEST_LOG_ERROR << "tickcounter_get_current_ms[1] failed in thread_write_queue\n";
data->error = 1;
goto exit;
}
now = start_time_ms;
do
{
k4a_capture_t capture = capture_manufacture(sizeof(uint32_t));
memcpy(get_raw_byte_ptr(capture, NULL), &loop, sizeof(loop));
queue_push(data->queue, capture);
capture_dec_ref(capture);
ThreadAPI_Sleep(1);
if (0 != tickcounter_get_current_ms(tick, &now))
{
GTEST_LOG_ERROR << "tickcounter_get_current_ms[2] failed in thread_write_queue\n";
data->error = 1;
goto exit;
}
loop += data->pattern_offset;
} while ((now - start_time_ms) < TEST_EXECUTION_TIME);
exit:
data->done_event = 1;
if (tick)
{
tickcounter_destroy(tick);
}
return TEST_RETURN_VALUE;
}
static int thread_read_queue(void *param)
{
threaded_queue_data_t *reader = (threaded_queue_data_t *)param;
TICK_COUNTER_HANDLE tick = NULL;
// Sync start - its go time when we get this lock
Lock(reader->lock);
Unlock(reader->lock);
uint32_t t1_expected_data = 1;
uint32_t t2_expected_data = 2;
uint32_t t3_expected_data = 3;
uint32_t *expected_data;
uint32_t max_sample = 0;
tickcounter_ms_t start_time_ms, now;
tick = tickcounter_create();
if (tick == NULL)
{
GTEST_LOG_ERROR << "tickcounter_create failed in thread_read_queue\n";
reader->error = 1;
goto exit;
}
if (0 != tickcounter_get_current_ms(tick, &start_time_ms))
{
GTEST_LOG_ERROR << "tickcounter_get_current_ms[1] failed in thread_read_queue\n";
reader->error = 1;
goto exit;
}
now = start_time_ms;
do
{
k4a_capture_t capture;
size_t size;
k4a_wait_result_t wresult;
wresult = queue_pop(reader->queue, 0, &capture);
if (wresult != K4A_WAIT_RESULT_SUCCEEDED)
{
if (wresult != K4A_WAIT_RESULT_TIMEOUT)
{
GTEST_LOG_ERROR << "queue_pop returned unexpected error\n";
reader->error = 1;
break;
}
else
{
ThreadAPI_Sleep(THREAD_YEILD_TIME); // quick 1ms yield
}
}
else
{
uint32_t queue_int = 0;
uint8_t *buffer = get_raw_byte_ptr(capture, &size);
if (size != sizeof(uint32_t))
{
EXPECT_EQ(size, sizeof(uint32_t));
reader->error = 1;
}
memcpy(&queue_int, buffer, sizeof(queue_int));
switch (queue_int % 3)
{
case 0:
expected_data = &t3_expected_data;
break;
case 1:
expected_data = &t1_expected_data;
break;
default:
expected_data = &t2_expected_data;
break;
}
if (*expected_data == queue_int)
{
*expected_data = queue_int + reader->pattern_offset;
}
else
{
EXPECT_GT(queue_int, *expected_data);
// If this failed then we have the error we are testing for. We might drop a couple samples in the queue
// due to thread starvation, but the pattern should be maintained.
if ((queue_int - *expected_data) % 3 != 0)
{
EXPECT_EQ(*expected_data, queue_int);
reader->error = 1;
}
else
{
// attempt to recover from the data that was dropped
reader->dropped += ((queue_int - *expected_data) / reader->pattern_offset);
*expected_data = queue_int + reader->pattern_offset;
}
}
if (max_sample < queue_int)
{
max_sample = queue_int;
}
capture_dec_ref(capture);
}
if (0 != tickcounter_get_current_ms(tick, &now))
{
GTEST_LOG_ERROR << "tickcounter_get_current_ms[2] failed in thread_read_queue\n";
reader->error = 1;
goto exit;
}
} while ((now - start_time_ms) <= TEST_EXECUTION_TIME);
exit:
if (tick)
{
tickcounter_destroy(tick);
}
reader->done_event = 1;
GTEST_LOG_INFO << "Test Complete after getting " << max_sample << " samples\n";
return TEST_RETURN_VALUE;
}
TEST(queue_ut, queue_threaded)
{
queue_t queue;
LOCK_HANDLE lock;
threaded_queue_data_t data1, data2, data3, reader;
THREAD_HANDLE t1, t2, t3, r1;
ASSERT_EQ(queue_create(TEST_QUEUE_DEPTH, "queue_test", &queue), K4A_RESULT_SUCCEEDED);
queue_enable(queue);
ASSERT_NE((lock = Lock_Init()), (LOCK_HANDLE)NULL);
data1.queue = queue;
data1.pattern_start = 1;
data1.pattern_offset = 3;
data1.done_event = 0;
data1.error = 0;
data1.lock = lock;
data2.queue = queue;
data2.pattern_start = 2;
data2.pattern_offset = 3;
data2.done_event = 0;
data2.error = 0;
data2.lock = lock;
data3.queue = queue;
data3.pattern_start = 3;
data3.pattern_offset = 3;
data3.done_event = 0;
data3.error = 0;
data3.lock = lock;
reader.queue = queue;
reader.pattern_offset = 3;
reader.done_event = 0;
reader.error = 0;
reader.dropped = 0;
reader.lock = lock;
// prevent the threads from running
Lock(lock);
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Create(&t1, thread_write_queue, &data1));
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Create(&t2, thread_write_queue, &data2));
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Create(&t3, thread_write_queue, &data3));
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Create(&r1, thread_read_queue, &reader));
Unlock(lock);
int32_t total_sleep_time = 0;
while (data1.done_event == 0 || data2.done_event == 0 || data3.done_event == 0 || reader.done_event == 0)
{
ThreadAPI_Sleep(500);
total_sleep_time += 500;
};
// Wait for the thread to terminate
int result1, result2, result3, result4;
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Join(t1, &result1));
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Join(t2, &result2));
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Join(t3, &result3));
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Join(r1, &result4));
ASSERT_EQ(result1, TEST_RETURN_VALUE);
ASSERT_EQ(result2, TEST_RETURN_VALUE);
ASSERT_EQ(result3, TEST_RETURN_VALUE);
ASSERT_EQ(result4, TEST_RETURN_VALUE);
ASSERT_EQ(data1.error, (uint32_t)0);
ASSERT_EQ(data2.error, (uint32_t)0);
ASSERT_EQ(data3.error, (uint32_t)0);
ASSERT_EQ(reader.error, (uint32_t)0);
if (reader.dropped != 0)
{
GTEST_LOG_WARNING << "WARNING: queue dropped " << reader.dropped << " samples \n";
}
queue_destroy(queue);
// Verify all our allocations were released
ASSERT_EQ(allocator_test_for_leaks(), 0);
Lock_Deinit(lock);
}
TEST(queue_ut, queue_enable_disable)
{
queue_t queue;
k4a_capture_t capture, capture_read;
ASSERT_EQ(queue_create(TEST_QUEUE_DEPTH, "queue_test", &queue), K4A_RESULT_SUCCEEDED);
// multiple calls should not crash
queue_enable(queue);
queue_enable(queue);
queue_enable(queue);
// multiple calls should not crash
queue_disable(queue);
queue_disable(queue);
queue_disable(queue);
ASSERT_NE((capture = capture_manufacture(10)), (k4a_capture_t)NULL);
// disabled
{
queue_disable(queue);
queue_push(queue, capture);
queue_push(queue, capture);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_FAILED);
}
// enabled
{
queue_enable(queue);
queue_push(queue, capture);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_SUCCEEDED);
ASSERT_EQ(capture, capture_read);
capture_dec_ref(capture_read);
// there should only be 1 capture in the queue.
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_TIMEOUT);
}
// enabled, put captures in, disable, veriry no captures, enable, verify still no captures
{
queue_enable(queue);
queue_push(queue, capture);
queue_push(queue, capture);
queue_push(queue, capture);
queue_disable(queue);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_FAILED);
// the queue should have been purged when disabled;
queue_enable(queue);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_TIMEOUT);
}
// disable, put captures in, enable, veriry no captures,
{
queue_disable(queue);
queue_push(queue, capture);
queue_push(queue, capture);
queue_push(queue, capture);
queue_enable(queue);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_TIMEOUT);
// the queue should have never received captures
queue_disable(queue);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_FAILED);
}
capture_dec_ref(capture);
queue_destroy(queue);
ASSERT_EQ(allocator_test_for_leaks(), 0);
}
TEST(queue_ut, queue_stop)
{
queue_t queue;
k4a_capture_t capture, capture_read;
ASSERT_EQ(queue_create(TEST_QUEUE_DEPTH, "queue_test", &queue), K4A_RESULT_SUCCEEDED);
ASSERT_NE((capture = capture_manufacture(10)), (k4a_capture_t)NULL);
// stop
{
queue_stop(queue);
queue_push(queue, capture);
queue_push(queue, capture);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_FAILED);
}
// enabled
{
queue_enable(queue);
queue_push(queue, capture);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_SUCCEEDED);
ASSERT_EQ(capture, capture_read);
capture_dec_ref(capture_read);
// there should only be 1 capture in the queue.
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_TIMEOUT);
}
// enabled, put captures in, stop, veriry no captures, enable, verify still no captures
{
queue_enable(queue);
queue_push(queue, capture);
queue_push(queue, capture);
queue_push(queue, capture);
queue_stop(queue);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_FAILED);
// the queue should have been purged when disabled;
queue_enable(queue);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_TIMEOUT);
}
// disable, put captures in, enable, veriry no captures,
{
queue_stop(queue);
queue_push(queue, capture);
queue_push(queue, capture);
queue_push(queue, capture);
queue_enable(queue);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_TIMEOUT);
// the queue should have never received captures
queue_stop(queue);
ASSERT_EQ(queue_pop(queue, 0, &capture_read), K4A_WAIT_RESULT_FAILED);
}
capture_dec_ref(capture);
queue_destroy(queue);
ASSERT_EQ(allocator_test_for_leaks(), 0);
}