-
Notifications
You must be signed in to change notification settings - Fork 1
/
generate_candidate.py
47 lines (34 loc) · 1.4 KB
/
generate_candidate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from os import TMP_MAX
import torch
import torch.nn as nn
import numpy as np
from optimizer import optim
from pathlib import Path
# from plot import trainTestPlot
from utils import compute_multiclass_auc
from tqdm import tqdm
import warnings
warnings.filterwarnings('ignore')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class Gen:
def __init__(self, model, test_dataloader):
self.model = model
self.test_dataloader = test_dataloader
def runner(self):
self.model.eval()
with torch.no_grad():
soft_predict_bank = []
for index, [images, labels, index] in enumerate(tqdm(self.test_dataloader)):
images = images.to(device)
# labels = labels.to(device)
images = images.view(images.shape[0], 32, -1)
images = torch.repeat_interleave(images.unsqueeze(dim=1), repeats=3, dim=1) # batch_size*3*32*12
outputs = self.model(images)
softmax_f = nn.Softmax()
predicted_soft = softmax_f(outputs)
soft_predict_bank.append(predicted_soft.cpu().detach().numpy())
index = [b for a in soft_predict_bank for b in a]
score = np.array(index) # return unlabeled pool score
# np.save('./soft_predict_bank_0.01_model49.npy', bbb)
# bbb is all unlabeled score
return score