-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoutput-header.py
45 lines (36 loc) · 938 Bytes
/
output-header.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
r"""
Sage script which contains precomputed data on q-chromatic symmetric functions.
"""
from sage.combinat.sf.sfa import zee
R, q = QQ['q'].objgen()
sym = SymmetricFunctions(R)
e = sym.e()
h = sym.h()
m = sym.m()
p = sym.p()
s = sym.s()
# q-chromatic symmetric functions for unit interval orders.
# There is one of each for each Dyck path.
#--------------------------------
# conjecture
#--------------------------------
# The q-csf is e-positive
# (so that it should actually be a graded permutation representation).
def is_e_positive(symfunc):
return all(
coefficient >= 0
for partition, polynomial in e(symfunc)
for coefficient in polynomial
)
def test_conjecture():
r"""
Test whether q-csf is e-positive.
"""
return all(
is_e_positive(csf[path])
for path in csf
)
#--------------------------------
# data
#--------------------------------
csf = {}