forked from insarlab/MintPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
writefile.py
850 lines (702 loc) · 30.1 KB
/
writefile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
"""Utilities to write files."""
############################################################
# Program is part of MintPy #
# Copyright (c) 2013, Zhang Yunjun, Heresh Fattahi #
# Author: Zhang Yunjun, Heresh Fattahi, 2013 #
############################################################
# Recommend import:
# from mintpy.utils import writefile
import os
import shutil
import h5py
import numpy as np
from mintpy.utils import readfile
def write(datasetDict, out_file, metadata=None, ref_file=None, compression=None, ds_unit_dict=None, print_msg=True):
""" Write one file.
Parameters: datasetDict - dict of dataset, with key = datasetName and value = 2D/3D array, e.g.:
{'height' : np.ones(( 200,300), dtype=np.int16),
'incidenceAngle': np.ones(( 200,300), dtype=np.float32),
'bperp' : np.ones((80,200,300), dtype=np.float32),
...}
out_file - str, output file name
metadata - dict of attributes
ref_file - str, reference file to get auxliary info
compression - str, compression while writing to HDF5 file, None, "lzf", "gzip"
ds_unit_dict - dict, top-level dataset unit definition
{dname : dunit,
dname : dunit,
...
}
Returns: out_file - strs
Examples: dsDict = dict()
dsDict['velocity'] = np.ones((200,300), dtype=np.float32)
write(datasetDict=dsDict, out_file='velocity.h5', metadata=atr)
"""
vprint = print if print_msg else lambda *args, **kwargs: None
# copy metadata to meta
if metadata:
meta = {key: value for key, value in metadata.items()}
elif ref_file:
meta = readfile.read_attribute(ref_file)
else:
raise ValueError('No metadata or reference file input.')
# convert ndarray input into dict type
if isinstance(datasetDict, np.ndarray):
data = np.array(datasetDict, datasetDict.dtype)
datasetDict = dict()
datasetDict[meta['FILE_TYPE']] = data
# file extension
fbase, fext = os.path.splitext(out_file)
# ignore certain meaningless file extensions
while fext in ['.geo', '.rdr', '.full', '.wgs84']:
fbase, fext = os.path.splitext(fbase)
if not fext:
fext = fbase
fext = fext.lower()
# output file info
out_dir = os.path.dirname(os.path.abspath(out_file))
if not os.path.isdir(out_dir):
os.makedirs(out_dir)
vprint(f'create directory: {out_dir}')
# HDF5 File
if fext in ['.h5', '.he5']:
# grab info from reference h5 file
if ref_file and os.path.splitext(ref_file)[1] in ['.h5', '.he5']:
# compression
if compression is None:
compression = readfile.get_hdf5_compression(ref_file)
# list of auxiliary datasets
shape2d = (int(meta['LENGTH']), int(meta['WIDTH']))
with h5py.File(ref_file, 'r') as fr:
auxDsNames = [i for i in fr.keys()
if (i not in list(datasetDict.keys())
and isinstance(fr[i], h5py.Dataset)
and fr[i].shape[-2:] != shape2d)]
else:
auxDsNames = []
# check required datasets
dsNames = list(datasetDict.keys()) + auxDsNames
if meta['FILE_TYPE'] in ['timeseries', 'ifgramStack']:
if 'date' not in dsNames:
raise Exception("Can not write {} file without 'date' dataset!".format(meta['FILE_TYPE']))
# remove existing file
if os.path.isfile(out_file):
os.remove(out_file)
vprint(f'delete exsited file: {out_file}')
# writing
print(f'create HDF5 file: {out_file} with w mode')
maxDigit = max(len(i) for i in dsNames)
with h5py.File(out_file, 'w') as f:
# 1. write input datasets
for dsName in datasetDict.keys():
data = datasetDict[dsName]
vprint(('create dataset /{d:<{w}} of {t:<10} in size of {s:<20} '
'with compression={c}').format(d=dsName,
w=maxDigit,
t=str(data.dtype),
s=str(data.shape),
c=compression))
ds = f.create_dataset(dsName,
data=data,
chunks=True,
compression=compression)
# 2. Write extra/auxliary datasets from ref_file
if len(auxDsNames) > 0:
with h5py.File(ref_file, 'r') as fr:
for dsName in auxDsNames:
ds = fr[dsName]
vprint(('create dataset /{d:<{w}} of {t:<10} in size of {s:<10} '
'with compression={c}').format(d=dsName,
w=maxDigit,
t=str(ds.dtype),
s=str(ds.shape),
c=compression))
f.create_dataset(dsName,
data=ds[:],
chunks=True,
compression=compression)
# 3. metadata
for key, value in meta.items():
try:
f.attrs[key] = str(value)
except:
f.attrs[key] = str(value.encode('utf-8'))
# write attributes in dataset level
if ds_unit_dict is not None:
for key, value in ds_unit_dict.items():
if key in f.keys() and value is not None:
f[key].attrs['UNIT'] = value
vprint(f'add /{key:<{maxDigit}} attribute: UNIT = {value}')
vprint(f'finished writing to {out_file}')
# ISCE / ROI_PAC GAMMA / Image product
else:
# basic info
key_list = list(datasetDict.keys())
data_list = list(datasetDict.values())
meta['BANDS'] = len(key_list)
meta['INTERLEAVE'] = meta.get('INTERLEAVE', 'BIL').upper()
# data type
meta['DATA_TYPE'] = meta.get('DATA_TYPE', 'float32').lower()
DATA_TYPE_DICT = {'float' : 'float32',
'short' : 'int16',
'byte' : 'int8'}
if meta['DATA_TYPE'] in DATA_TYPE_DICT.keys():
meta['DATA_TYPE'] = DATA_TYPE_DICT[meta['DATA_TYPE']]
# adjust for pre-defined files determined by fext
if fext in ['.unw']:
meta['DATA_TYPE'] = 'float32'
meta['INTERLEAVE'] = 'BIL'
if key_list != ['magnitude', 'phase']:
data_list = [data_list[0], data_list[0]]
meta['BANDS'] = 2
elif fext in ['.cor']:
# remove .hgt as it can be float64 in isce2.
meta['DATA_TYPE'] = 'float32'
meta['INTERLEAVE'] = 'BIL'
if meta.get('PROCESSOR', 'isce') == 'roipac':
data_list = [data_list[0], data_list[0]]
elif fext == '.dem':
meta['DATA_TYPE'] = 'int16'
elif fext in ['.trans']:
# ROI_PAC lookup table
meta['DATA_TYPE'] = 'float32'
meta['INTERLEAVE'] = 'BIL'
elif fext.endswith(('to_rdc', '2_rdc', '2rdc')):
# Gamma lookup table
meta['BANDS'] = 2
meta['DATA_TYPE'] = 'float32'
meta['INTERLEAVE'] = 'BIP'
elif fext in ['.mli', '.flt']:
meta['DATA_TYPE'] = 'float32'
elif fext == '.slc':
# SLC: complex 64 or 32
meta['BANDS'] = 1
elif fext == '.int':
# wrapped interferogram: complex 64
meta['BANDS'] = 1
meta['DATA_TYPE'] = 'complex64'
if key_list == ['magnitude', 'phase']:
data_list[0] = data_list[0] * np.exp(1j * data_list[1])
elif fext == '.msk':
meta['DATA_TYPE'] = 'int8'
data_types = ['bool', 'int8', 'uint8', 'int16', 'float32', 'float64', 'complex32', 'complex64', 'complex128']
if meta['DATA_TYPE'] not in data_types:
msg = 'Un-supported file type "{}" with data type "{}"!'.format(fext, meta['DATA_TYPE'])
msg += f'\nSupported data type list: {data_types}'
raise ValueError(msg)
# write binary file
write_binary(data_list, out_file, data_type=meta['DATA_TYPE'], interleave=meta['INTERLEAVE'])
vprint(f'write file: {out_file}')
# write metadata file
write_roipac_rsc(meta, out_file+'.rsc', print_msg=print_msg)
return out_file
#########################################################################
def layout_hdf5(fname, ds_name_dict=None, metadata=None, ds_unit_dict=None, ref_file=None, compression=None, print_msg=True):
"""Create HDF5 file with defined metadata and (empty) dataset structure
Parameters: fname - str, HDF5 file path
ds_name_dict - dict, dataset structure definition
{dname : [dtype, dshape],
dname : [dtype, dshape, None],
dname : [dtype, dshape, 1/2/3/4D np.ndarray], #for aux data
...
}
metadata - dict, metadata
ds_unit_dict - dict, top-level dataset unit definition
{dname : dunit,
dname : dunit,
...
}
ref_file - str, reference file for the data structure
compression - str, HDF5 compression type
Returns: fname - str, HDF5 file path
Example: layout_hdf5('timeseries_ERA5.h5', ref_file='timeseries.h5')
layout_hdf5('timeseries_ERA5.5h', ds_name_dict, metadata)
# structure for ifgramStack
ds_name_dict = {
"date" : [np.dtype('S8'), (num_ifgram, 2)],
"dropIfgram" : [np.bool_, (num_ifgram,)],
"bperp" : [np.float32, (num_ifgram,)],
"unwrapPhase" : [np.float32, (num_ifgram, length, width)],
"coherence" : [np.float32, (num_ifgram, length, width)],
"connectComponent" : [np.int16, (num_ifgram, length, width)],
}
# structure for geometry
ds_name_dict = {
"height" : [np.float32, (length, width), None],
"incidenceAngle" : [np.float32, (length, width), None],
"slantRangeDistance" : [np.float32, (length, width), None],
}
# structure for timeseries
dates = np.array(date_list, np.string_)
ds_name_dict = {
"date" : [np.dtype("S8"), (num_date,), dates],
"bperp" : [np.float32, (num_date,), pbase],
"timeseries" : [np.float32, (num_date, length, width)],
}
"""
vprint = print if print_msg else lambda *args, **kwargs: None
vprint('-'*50)
# get meta from metadata and ref_file
if metadata:
meta = {key: value for key, value in metadata.items()}
elif ref_file:
with h5py.File(ref_file, 'r') as fr:
meta = {key: value for key, value in fr.attrs.items()}
vprint(f'grab metadata from ref_file: {ref_file}')
else:
raise ValueError('No metadata or ref_file found.')
# check ds_name_dict
if ds_name_dict is None:
if not ref_file or not os.path.isfile(ref_file):
raise FileNotFoundError('No ds_name_dict or ref_file found!')
else:
vprint(f'grab dataset structure from ref_file: {ref_file}')
ds_name_dict = {}
fext = os.path.splitext(ref_file)[1]
shape2d = (int(meta['LENGTH']), int(meta['WIDTH']))
if fext in ['.h5', '.he5']:
# copy dset structure from HDF5 file
with h5py.File(ref_file, 'r') as fr:
# in case output mat size is different from the input ref file mat size
shape2d_orig = (int(fr.attrs['LENGTH']), int(fr.attrs['WIDTH']))
for key in fr.keys():
ds = fr[key]
if isinstance(ds, h5py.Dataset):
# auxliary dataset
if ds.shape[-2:] != shape2d_orig:
ds_name_dict[key] = [ds.dtype, ds.shape, ds[:]]
# dataset
else:
ds_shape = list(ds.shape)
ds_shape[-2:] = shape2d
ds_name_dict[key] = [ds.dtype, tuple(ds_shape), None]
else:
# construct dset structure from binary file
ds_names = readfile.get_slice_list(ref_file)
ds_dtype = meta['DATA_TYPE']
for ds_name in ds_names:
ds_name_dict[ds_name] = [ds_dtype, tuple(shape2d), None]
# directory
fdir = os.path.dirname(os.path.abspath(fname))
if not os.path.isdir(fdir):
os.makedirs(fdir)
vprint(f'crerate directory: {fdir}')
# create file
with h5py.File(fname, "w") as f:
vprint(f'create HDF5 file: {fname} with w mode')
# initiate dataset
max_digit = max(len(i) for i in ds_name_dict.keys())
for key in ds_name_dict.keys():
data_type = ds_name_dict[key][0]
data_shape = ds_name_dict[key][1]
# turn ON compression for conn comp
ds_comp = compression
if key in ['connectComponent']:
ds_comp = 'lzf'
# changeable dataset shape
if len(data_shape) == 3:
max_shape = (None, data_shape[1], data_shape[2])
else:
max_shape = data_shape
# create empty dataset
vprint(("create dataset : {d:<{w}} of {t:<25} in size of {s:<20} with "
"compression = {c}").format(d=key,
w=max_digit,
t=str(data_type),
s=str(data_shape),
c=ds_comp))
ds = f.create_dataset(key,
shape=data_shape,
maxshape=max_shape,
dtype=data_type,
chunks=True,
compression=ds_comp)
# write auxliary data
if len(ds_name_dict[key]) > 2 and ds_name_dict[key][2] is not None:
ds[:] = np.array(ds_name_dict[key][2])
# write attributes in root level
for key, value in meta.items():
f.attrs[key] = str(value)
# write attributes in dataset level
if ds_unit_dict is not None:
for key, value in ds_unit_dict.items():
if key in f.keys() and value is not None:
f[key].attrs['UNIT'] = value
vprint(f'add /{key:<{max_digit}} attribute: UNIT = {value}')
vprint(f'close HDF5 file: {fname}')
return fname
def write_hdf5_block(fname, data, datasetName, block=None, mode='a', print_msg=True):
"""Write data to existing HDF5 dataset in disk block by block.
Parameters: data - np.ndarray 1/2/3/4D matrix
datasetName - str, dataset name
block - list of 2/4/6/8 int, for
[d1Start, d1End,
d2Start, d2End,
yStart, yEnd,
xStart, xEnd]
mode - str, open mode
Returns: fname
"""
# default block value
if block is None:
# data shape
if isinstance(data, list):
shape=(len(data),)
else:
shape = data.shape
# set default block as the entire data
if len(shape) ==1:
block = [0, shape[0]]
elif len(shape) == 2:
block = [0, shape[0],
0, shape[1]]
elif len(shape) == 3:
block = [0, shape[0],
0, shape[1],
0, shape[2]]
elif len(shape) == 4:
block = [0, shape[0],
0, shape[1],
0, shape[2],
0, shape[3]]
# write
if print_msg:
print('-'*50)
print(f'open HDF5 file {fname} in {mode} mode')
print(f"writing dataset /{datasetName:<25} block: {block}")
with h5py.File(fname, mode) as f:
if len(block) == 8:
f[datasetName][block[0]:block[1],
block[2]:block[3],
block[4]:block[5],
block[6]:block[7]] = data
elif len(block) == 6:
f[datasetName][block[0]:block[1],
block[2]:block[3],
block[4]:block[5]] = data
elif len(block) == 4:
f[datasetName][block[0]:block[1],
block[2]:block[3]] = data
elif len(block) == 2:
f[datasetName][block[0]:block[1]] = data
if print_msg:
print(f'close HDF5 file {fname}.')
return fname
def remove_hdf5_dataset(fname, datasetNames, print_msg=True):
"""Remove an existing dataset from an HDF5 file.
Parameters: fname : str, HDF5 file name/path
datasetName : (list of) str, dataset name(s)
Returns: fname : str,
Example: remove_hdf5_dataset('./inputs/ifgramStack.h5', 'unwrapPhase_phaseClosure')
remove_hdf5_dataset('./inputs/ifgramStack.h5', ['unwrapPhase_phaseClosure',
'unwrapPhase_bridging'])
"""
vprint = print if print_msg else lambda *args, **kwargs: None
if isinstance(datasetNames, str):
datasetNames = list(datasetNames)
vprint(f'delete {datasetNames} from file {fname}')
# 1. rename the file to a temporary file
temp_file = os.path.join(os.path.dirname(fname), f'tmp_{os.path.basename(fname)}')
shutil.move(fname, temp_file)
vprint(f'move {fname} to {temp_file}')
# 2. write a new file with all data except for the one to be deleted
vprint(f'read HDF5 file: {temp_file} with r mode')
vprint(f'create HDF5 file: {fname} with w mode')
with h5py.File(temp_file, 'r') as fi:
with h5py.File(fname, 'w') as fo:
# datasets
compression = None
maxDigit = max(len(i) for i in list(fi.keys()))
for dsName in [i for i in fi.keys() if i not in datasetNames]:
ds = fi[dsName]
msg = f'create dataset /{dsName:<{maxDigit}} of {str(ds.dtype):<10}'
msg += f' in size of {str(ds.shape):<20} with compression={compression}'
vprint(msg)
fo.create_dataset(dsName, data=ds[:], chunks=True, compression=compression)
# metadata
for key, value in fi.attrs.items():
fo.attrs[key] = str(value)
vprint(f'finished writing to {fname}')
vprint(f'old file is now saved as: {temp_file}. Use rm command to delete it.')
return fname
#########################################################################
def write_roipac_rsc(metadata, out_file, update_mode=False, print_msg=False):
"""Write attribute dict into ROI_PAC .rsc file
Inputs:
metadata : dict, attributes dictionary
out_file : rsc file name, to which attribute is written
update_mode : bool, skip writing if
1) output file existed AND
2) no new metadata key/value
print_msg : bool, print message
Output:
out_file
"""
run = True
if update_mode:
rsc_dict = dict()
if os.path.isfile(out_file):
rsc_dict = readfile.read_roipac_rsc(out_file)
# update .rsc file only if there are new metadata key/value
if set(metadata.items()).issubset(set(rsc_dict.items())):
run = False
if run:
# Convert MintPy attributes to ROI_PAC attributes
if 'LENGTH' in metadata.keys():
metadata['FILE_LENGTH'] = metadata['LENGTH']
# Convert 3.333e-4 to 0.0003333
if 'X_STEP' in metadata.keys():
metadata['X_STEP'] = str(float(metadata['X_STEP']))
metadata['Y_STEP'] = str(float(metadata['Y_STEP']))
metadata['X_FIRST'] = str(float(metadata['X_FIRST']))
metadata['Y_FIRST'] = str(float(metadata['Y_FIRST']))
# writing .rsc file
if print_msg:
print(f'write file: {out_file}')
maxDigit = max([len(key) for key in metadata.keys()]+[2])
with open(out_file, 'w') as f:
for key in sorted(metadata.keys()):
f.write('{k:<{d}} {v}\n'.format(k=str(key),
d=maxDigit,
v=str(metadata[key])))
return out_file
def write_gdal_vrt(meta, out_file):
"""Write GDAL VRT file.
!!! This function is NOT RIGHT. DO NOT USE IT. Keep here as a placeholder ONLY. !!!
It needs more work.
Parameters: meta - dict, dictionary of metadata
out_file - str, VRT file name to which attributes are written
"""
# data type: mintpy to gdal
dtype_dict = {
'int8' : 'Byte',
'int16' : 'Int16',
'float32' : 'Float32',
'float64' : 'Float64',
'complex64' : 'CFloat32',
'complex128': 'CFloat64',
}
# pixel / line / image offset
pixel_offset_dict = {
'int8' : '2',
'int16' : '4',
'float32' : '8',
'float64' : '16',
'complex64' : '16',
'complex128': '32',
}
pixel_offset = int(pixel_offset_dict[meta['DATA_TYPE']])
length, width = int(meta['LENGTH']), int(meta['WIDTH'])
num_band = int(meta['BANDS'])
interleave = meta['INTERLEAVE']
if interleave == 'BIP':
line_offset = pixel_offset * num_band * width
image_offset = pixel_offset
elif interleave == 'BIL':
line_offset = pixel_offset * width * num_band
image_offset = pixel_offset * width
elif interleave == 'BSQ':
line_offset = pixel_offset * width
image_offset = pixel_offset * width * length
else:
raise ValueError(f'un-recognized band interleave type: {interleave}')
# compose VRT file string
ds_str = '<VRTDataset rasterXSize="{w}" rasterYSize="{l}">\n'.format(w=meta['WIDTH'], l=meta['LENGTH'])
for band in range(num_band):
band_str = '''<VRTRasterBand dataType="{d}" band="{b}" subClass="VRTRawRasterBand">
<SourceFilename relativeToVRT="1">{f}</SourceFilename>
<ByteOrder>LSB</ByteOrder>
<ImageOffset>{io}</ImageOffset>
<PixelOffset>{po}</PixelOffset>
<LineOffset>{lo}</LineOffset>
</VRTRasterBand>
'''.format(
d=dtype_dict[meta['DATA_TYPE']],
b=band+1,
f=os.path.basename(out_file[:-4]),
io=image_offset * band,
po=pixel_offset,
lo=line_offset,
)
ds_str += band_str
ds_str += '</VRTDataset>\n'
# write VRT file
with open(out_file, 'w') as f:
f.write(ds_str)
return out_file
def write_isce_xml(meta, fname, print_msg=True):
"""Write XML metadata file in ISCE-2 format
Parameters: meta - dict, attributes dictionary
fname - str, path of data file, not the metadata file
print_msg - bool, print out message
Examples: write_isce_xml(atr, fname='filt_fine.cor')
"""
import isce
import isceobj
# data type
dtype = readfile.DATA_TYPE_NUMPY2ISCE[meta['DATA_TYPE']]
# write ISCE XML and GDAL VRT files
image_type = meta['FILE_TYPE']
if not image_type: img = isceobj.Image.createImage()
elif image_type == '.slc': img = isceobj.Image.createSlcImage()
elif image_type == '.unw': img = isceobj.Image.createUnwImage()
elif image_type == '.int': img = isceobj.Image.createIntImage()
else: img = isceobj.Image.createImage()
img.setFilename(fname)
img.setWidth(int(meta['WIDTH']))
img.setLength(int(meta['LENGTH']))
img.setAccessMode('READ')
img.bands = int(meta.get('BANDS', '1'))
img.dataType = dtype
img.scheme = meta.get('INTERLEAVE', 'BIL')
img.renderHdr()
img.renderVRT()
if print_msg:
print(f'write file: {fname}.xml')
print(f'write file: {fname}.vrt')
return
def write_isce_file(data, out_file, file_type='isce_unw'):
"""write data to file in ISCE format
Parameters: data - 2D np.ndarray, binary data matrix
out_file - str, path of output binary data file
file_type - str, file type
Returns: out_file - str, path of output binary data file
"""
# fix potential typo
file_type = file_type.replace('-', '_')
# write data to binary file
data.tofile(out_file)
# write isce xml metadata file
length, width = data.shape
meta = {
'LENGTH' : length,
'WIDTH' : width,
}
if file_type == 'isce_unw':
meta['FILE_TYPE'] = '.unw'
meta['BANDS'] = 2
meta['DATA_TYPE'] = 'float32'
meta['INTERLEAVE'] = 'BIL'
meta['WIDTH'] = int(width / 2)
elif file_type == 'isce_int':
meta['FILE_TYPE'] = '.int'
meta['BANDS'] = 1
meta['DATA_TYPE'] = 'complex64'
meta['INTERLEAVE'] = 'BIL'
elif file_type == 'isce_cor':
meta['FILE_TYPE'] = '.cor'
meta['BANDS'] = 1
meta['DATA_TYPE'] = 'float32'
meta['INTERLEAVE'] = 'BIL'
elif file_type == 'isce_slc':
meta['FILE_TYPE'] = '.slc'
meta['BANDS'] = 1
meta['DATA_TYPE'] = 'complex64'
meta['INTERLEAVE'] = 'BIP'
else:
raise ValueError(f'un-recognized ISCE file type: {file_type}')
write_isce_xml(meta, out_file)
return out_file
#########################################################################
def write_binary(data_list, out_file, data_type=None, interleave='BIL'):
"""Write binary file.
Parameters: data_list - list of 2D np.ndarray matrices
out_file - str, path of the output binary file
data_type - str/np.dtype, numpy data type object
interleave - str, band interleave type, BSQ, BIL, BIP
Returns: out_file - str, path of the output binary file
"""
# data type
if data_type:
data_type = data_type.lower()
if data_type != data_list[0].dtype:
data_list = [np.array(x, dtype=data_type) for x in data_list]
# stack multi-band - reshape
interleave = interleave.upper()
if interleave == 'BIP':
data_list = [x.reshape(-1,1) for x in data_list]
elif interleave == 'BSQ':
data_list = [x.reshape(1,-1) for x in data_list]
# stack multi-band - stack
data = data_list[0]
for datai in data_list[1:]:
data = np.hstack((data, datai))
# write to file
data.tofile(out_file)
return out_file
######################## Obsolete functions #############################
def write_float32(*args):
"""Write ROI_PAC rmg format with float32 precision (BIL)
Format of the binary file is same as roi_pac unw, cor, or hgt data.
should rename to write_rmg_float32()
Example:
write_float32(phase, out_file)
write_float32(amp, phase, out_file)
"""
if len(args) == 2:
amp = args[0]
pha = args[0]
out_file = args[1]
elif len(args) == 3:
amp = args[0]
pha = args[1]
out_file = args[2]
else:
print('Error while getting args: support 2/3 args only.')
return
data = np.hstack((amp, pha)).flatten()
data = np.array(data, dtype=np.float32)
data.tofile(out_file)
return out_file
def write_complex_float32(data, out_file):
"""write complex float32 data into file"""
data = np.array(data, dtype=np.complex64)
data.tofile(out_file)
return out_file
#def write_complex_float32(data, out_file):
# """Writes roi_pac .int data"""
# num_pixel = data.size
# F = np.zeros([2 * num_pixel, 1], np.float32)
# id1 = list(range(0, 2 * num_pixel, 2))
# id2 = list(range(1, 2 * num_pixel, 2))
# F[id1] = np.reshape(np.cos(data), (num_pixel, 1))
# F[id2] = np.reshape(np.sin(data), (num_pixel, 1))
# F.tofile(out_file)
# return out_file
def write_complex_int16(data, out_file):
"""Write gamma scomplex data, i.e. .slc file.
data is complex 2-D matrix
real, imagery, real, ...
Write in this way, because numpy does not have complex int16 directly.
"""
num_pixel = data.size
id1 = list(range(0, 2 * num_pixel, 2))
id2 = list(range(1, 2 * num_pixel, 2))
F = np.zeros([2 * num_pixel, 1], np.int16)
F[id1] = np.reshape(np.array(data.real, np.int16), (num_pixel, 1))
F[id2] = np.reshape(np.array(data.imag, np.int16), (num_pixel, 1))
F.tofile(out_file)
return out_file
def write_real_float64(data, out_file):
"""write isce float data, i.e. hgt.rdr file."""
data = np.array(data, dtype=np.float64)
data.tofile(out_file)
return out_file
def write_real_float32(data, out_file):
"""write gamma float data, i.e. .mli file."""
data = np.array(data, dtype=np.float32)
data.tofile(out_file)
return out_file
def write_real_int16(data, out_file):
data = np.array(data, dtype=np.int16)
data.tofile(out_file)
return out_file
def write_byte(data, out_file):
data = np.array(data, dtype=np.byte)
data.tofile(out_file)
return out_file
def write_bool(data, out_file):
data = np.array(data, dtype=np.bool_)
data.tofile(out_file)
return out_file
#########################################################################