From 7aa97fac5898d7b52611fd90812ca05c3d3b0d81 Mon Sep 17 00:00:00 2001 From: Marc Mezzarobba Date: Tue, 20 Feb 2024 14:47:38 +0100 Subject: [PATCH] #37377 fix/improve docs based on reviewer comments --- src/sage/rings/fraction_field_FpT.pyx | 3 ++- src/sage/rings/polynomial/polynomial_modn_dense_ntl.pyx | 2 +- src/sage/rings/polynomial/polynomial_ring.py | 6 +++--- 3 files changed, 6 insertions(+), 5 deletions(-) diff --git a/src/sage/rings/fraction_field_FpT.pyx b/src/sage/rings/fraction_field_FpT.pyx index c0b4367f00e..75675060c69 100644 --- a/src/sage/rings/fraction_field_FpT.pyx +++ b/src/sage/rings/fraction_field_FpT.pyx @@ -44,7 +44,8 @@ class FpT(FractionField_1poly_field): """ INPUT: - - ``R`` -- A dense polynomial ring over a finite field of prime order `p` with `2 < p < 2^16` + - ``R`` -- a dense polynomial ring over a finite field of prime order + `p` with `2 < p < 2^{16}` EXAMPLES:: diff --git a/src/sage/rings/polynomial/polynomial_modn_dense_ntl.pyx b/src/sage/rings/polynomial/polynomial_modn_dense_ntl.pyx index 35c453338c8..42db7d258c7 100644 --- a/src/sage/rings/polynomial/polynomial_modn_dense_ntl.pyx +++ b/src/sage/rings/polynomial/polynomial_modn_dense_ntl.pyx @@ -864,7 +864,7 @@ cdef class Polynomial_dense_modn_ntl_zz(Polynomial_dense_mod_n): sage: type(R(0)^0) == type(R(0)) True - Negative powers work (over prime fields) but use a generic + Negative powers work (over prime fields) but use the generic implementation of fraction fields:: sage: R. = PolynomialRing(Integers(101), implementation='NTL') diff --git a/src/sage/rings/polynomial/polynomial_ring.py b/src/sage/rings/polynomial/polynomial_ring.py index 129bce3942f..1e9838e0a67 100644 --- a/src/sage/rings/polynomial/polynomial_ring.py +++ b/src/sage/rings/polynomial/polynomial_ring.py @@ -2456,7 +2456,7 @@ def lagrange_polynomial(self, points, algorithm="divided_difference", previous_r @cached_method def fraction_field(self): """ - Returns the fraction field of self. + Return the fraction field of ``self``. EXAMPLES:: @@ -2482,7 +2482,7 @@ def fraction_field(self): sage: t(x) x - Issue :issue:`37374`: + Fixed :issue:`37374`:: sage: x = PolynomialRing(GF(37), ['x'], sparse=True).fraction_field().gen() sage: type(x.numerator()) @@ -3565,7 +3565,7 @@ def irreducible_element(self, n, algorithm=None): @cached_method def fraction_field(self): """ - Returns the fraction field of self. + Return the fraction field of ``self``. EXAMPLES::