From 556fbaf7186c52fc788d3591d88ef86df35fa266 Mon Sep 17 00:00:00 2001 From: Marc Mezzarobba Date: Sun, 15 Oct 2023 12:55:50 +0200 Subject: [PATCH] update tests for flint3 --- src/sage/rings/complex_arb.pyx | 7 ++++--- src/sage/rings/real_arb.pyx | 4 ++-- 2 files changed, 6 insertions(+), 5 deletions(-) diff --git a/src/sage/rings/complex_arb.pyx b/src/sage/rings/complex_arb.pyx index a22ce3c5e53..15be37734af 100644 --- a/src/sage/rings/complex_arb.pyx +++ b/src/sage/rings/complex_arb.pyx @@ -1360,12 +1360,13 @@ cdef class ComplexBall(RingElement): sage: CBF100(-3r) -3.000000000000000000000000000000 - sage: ComplexBall(CBF100, 10^100) - 1.000000000000000000000000000000e+100 sage: ComplexBall(CBF100, CIF(1, 2)) 1.000000000000000000000000000000 + 2.000000000000000000000000000000*I sage: ComplexBall(CBF100, RBF(1/3), RBF(1)) [0.3333333333333333 +/- ...e-17] + 1.000000000000000000000000000000*I + sage: ComplexBall(CBF100, 10^100) + [1.000000000000000000000000000000e+100 +/- ...] + sage: NF. = QuadraticField(-1, embedding=CC(0, -1)) sage: CBF(a) -1.000000000000000*I @@ -3009,7 +3010,7 @@ cdef class ComplexBall(RingElement): sage: CBF(1).rising_factorial(2**64) [+/- ...e+347382171326740403407] sage: ComplexBallField(128)(1).rising_factorial(2**64) - [2.343691126796861348e+347382171305201285713 +/- ...e+347382171305201285694] + [2.34369112679686134...e+347382171305201285713 +/- ...] sage: CBF(1/2).rising_factorial(CBF(2,3)) # abs tol 1e-15 [-0.123060451458124 +/- 3.06e-16] + [0.0406412631676552 +/- 7.57e-17]*I diff --git a/src/sage/rings/real_arb.pyx b/src/sage/rings/real_arb.pyx index 17859068273..14baa5bc5aa 100644 --- a/src/sage/rings/real_arb.pyx +++ b/src/sage/rings/real_arb.pyx @@ -898,7 +898,7 @@ class RealBallField(UniqueRepresentation, sage.rings.abc.RealBallField): sage: RBF.gamma(5) 24.00000000000000 sage: RBF.gamma(10**20) - [+/- ...e+1956570552410610660600] + [1.932849514310098...+1956570551809674817225 +/- ...] sage: RBF.gamma(1/3) [2.678938534707747 +/- ...e-16] sage: RBF.gamma(-5) @@ -1102,7 +1102,7 @@ class RealBallField(UniqueRepresentation, sage.rings.abc.RealBallField): 15.00000000000000, 48.00000000000000] sage: RBF.double_factorial(2**20) - [1.4483729903e+2928836 +/- ...e+2928825] + [1.448372990...e+2928836 +/- ...] sage: RBF.double_factorial(2**1000) Traceback (most recent call last): ...