diff --git a/api/backend/enterprises/enterprises_routes.py b/api/backend/enterprises/enterprises_routes.py new file mode 100644 index 0000000..ce1b458 --- /dev/null +++ b/api/backend/enterprises/enterprises_routes.py @@ -0,0 +1,176 @@ +######################################################## +# Sample customers blueprint of endpoints +# Remove this file if you are not using it in your project +######################################################## + +from flask import Blueprint, request, jsonify, make_response, current_app +import json +from backend.db_connection import db + + +enterprises = Blueprint('enterprises', __name__) + +# get all of the enterprise tags from database +@enterprises.route('/tags', methods=['GET']) +def get_tags(): + # get a cursor object from the database + cursor = db.get_db().cursor() + + cursor.execute(''' + SELECT description + FROM EmissionTags + WHERE EmissionTags.id IN ( + SELECT tag_id + FROM EntTags + WHERE EntTags.enterprise_id = 1 + ); +''') + + # grab the column headers from the returned data + column_headers = [x[0] for x in cursor.description] + + # create an empty dictionary object to use in + # putting column headers together with data + json_data = [] + + # fetch all the data from the cursor + theData = cursor.fetchall() + + # for each of the rows, zip the data elements together with + # the column headers. + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) + + +# get all of the matching NGO's based on tags +@enterprises.route('/NGOMatch', methods=['GET']) +def get_matches(): + # get a cursor object from the database + cursor = db.get_db().cursor() + + cursor.execute(''' + SELECT NGO.name, EmissionTags.description + FROM NGO + JOIN NGOTags ON NGO.id = NGOTags.ngo_id + JOIN EmissionTags ON NGOTags.tag_id = EmissionTags.id + WHERE EmissionTags.id IN ( + SELECT tag_id + FROM EntTags + WHERE EntTags.enterprise_id = 1 + ); +''') + + # grab the column headers from the returned data + column_headers = [x[0] for x in cursor.description] + + # create an empty dictionary object to use in + # putting column headers together with data + json_data = [] + + # fetch all the data from the cursor + theData = cursor.fetchall() + + # for each of the rows, zip the data elements together with + # the column headers. + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) + + +# get my emissions, my country's, and avg other companies in same country emissions +@enterprises.route('/EntCompare', methods=['GET']) +def get_comparison(): + # get a cursor object from the database + cursor = db.get_db().cursor() + + cursor.execute(''' + SELECT AVG(Enterprises.emission_result) AS 'Average Emission (by Country)', + Country.name AS 'Country', + (SELECT e2.emission_result + FROM Enterprises e2 + WHERE e2.id = 1) AS 'Your Emissions' + FROM Enterprises + JOIN Country ON Enterprises.country_id = Country.id + WHERE Country.name = + (SELECT Country.name + FROM Enterprises + JOIN Country ON Enterprises.country_id = Country.id + WHERE Enterprises.id = 1 + LIMIT 1) + GROUP BY Country.name; + ''') + + # grab the column headers from the returned data + column_headers = [x[0] for x in cursor.description] + + # create an empty dictionary object to use in + # putting column headers together with data + json_data = [] + + # fetch all the data from the cursor + theData = cursor.fetchall() + + # for each of the rows, zip the data elements together with + # the column headers. + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) + + +# Get all the supply chain history for this enterprise +@enterprises.route('/EntSupplyChain', methods=['GET']) +def get_supplychain(): + cursor = db.get_db().cursor() + + cursor.execute('SELECT * FROM SupplyChain WHERE SupplyChain.enterprise_id = 1') + + column_headers = [x[0] for x in cursor.description] + + json_data = [] + + theData = cursor.fetchall() + + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) + +# Get all the operating cost history for this enterprise +@enterprises.route('/EntCosts', methods=['GET']) +def get_costs(): + cursor = db.get_db().cursor() + + cursor.execute('SELECT * FROM operatingEmission WHERE operatingEmission.enterprise_id = 1') + + column_headers = [x[0] for x in cursor.description] + + json_data = [] + + theData = cursor.fetchall() + + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) + +# Get all the flights history for this enterprise +@enterprises.route('/EntFlights', methods=['GET']) +def get_flights(): + cursor = db.get_db().cursor() + + cursor.execute('SELECT * FROM Flight WHERE Flight.enterprise_id = 1') + + column_headers = [x[0] for x in cursor.description] + + json_data = [] + + theData = cursor.fetchall() + + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) \ No newline at end of file diff --git a/eda/clean.ipynb b/api/backend/ml_models/__init__.py similarity index 100% rename from eda/clean.ipynb rename to api/backend/ml_models/__init__.py diff --git a/api/backend/ml_models/model_alpha.py b/api/backend/ml_models/model_alpha.py new file mode 100644 index 0000000..78d4f12 --- /dev/null +++ b/api/backend/ml_models/model_alpha.py @@ -0,0 +1,212 @@ +""" +The Train, Test, and Predict functions for the CO2 Emission Linear Regression +ML Model +""" + +import numpy as np +import pandas as pd +import pandasdmx as sdmx +from sklearn.metrics import r2_score +from functools import reduce +import pandasdmx as sdmx + +def train() -> np.array: + """ + Calculates the slopes for the CO2 emissions regression model. + + :returns: An array with the slopes in shape (3,) + """ + estat = sdmx.Request("ESTAT") + resp = estat.data( + "ENV_AIR_GGE", + key={ + "unit": "THS_T", + "freq": "A", + "src_crf": "TOTX4_MEMONIA", + "airpol": "GHG" + } + ) + emission_df = (resp + .to_pandas(datetime={'dim': 'TIME_PERIOD'}) + .droplevel(level=['unit', 'freq', 'src_crf', 'airpol'], axis=1)) + melted_emissions_df = melt_smdx_dataframe(emission_df) + + resp = estat.data( + "NRG_D_HHQ", + key={ + "siec": "TOTAL", + "unit": "TJ", + "nrg_bal": "FC_OTH_HH_E", + "freq": "A", + } + ) + household_energy_df = (resp + .to_pandas(datetime={'dim': 'TIME_PERIOD', 'freq': 'freq'}) + .droplevel(level=["siec", "unit", "nrg_bal"], axis=1)) + melted_household_energy_df = melt_smdx_dataframe(household_energy_df) + + resp = estat.data( + "TEN00127", + key={ + "unit": "KTOE", + "freq": "A", + "siec": "O4652XR5210B", + "nrg_bal": "FC_TRA_ROAD_E" + } + ) + gas_df = (resp + .to_pandas(datetime={'dim': 'TIME_PERIOD'}) + .droplevel(level=['unit', 'freq', 'siec', "nrg_bal"], axis=1)) + melted_gas_df = melt_smdx_dataframe(gas_df) + + merged_df = merge_dataframes([melted_emissions_df, + melted_household_energy_df, + melted_gas_df]) + merged_df.columns = ["year", "geo", "emissions", "energy", "gas"] + merged_df = merged_df.drop(merged_df[(merged_df.geo == "EU27_2020") | + (merged_df.geo == "EU20")].index) + merged_df = merged_df.drop("year", axis=1) + standard_df = standardize(merged_df) + + df_dummies = pd.get_dummies(standard_df, dtype=int, columns=["geo"]) + df_dummies = df_dummies.fillna(0) + + #X = np.pad(df_dummies.iloc[:, 1:].to_numpy(dtype=np.float64), + # ((0,0), (1,0)), mode="constant", constant_values=1) + X = np.pad(standard_df.iloc[:,1:3].to_numpy(dtype=np.float64), + ((0,0), (1,0)), mode="constant", constant_values=1) + y = np.array(df_dummies["emissions"], dtype=np.float64) + + m = np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, y)) + + return m + + +def test(X: np.array, y: np.array) -> any: + """ + Tests the CO2 emissions regression model + + :param X: The padded X features + :param y: The y features + :returns: The R2 value of the model w/ LOO-CV + """ + np_remove = lambda a, i: np.concatenate([a[:i,], a[i + 1:,]]) + lin_reg = lambda X, Y: np.matmul(np.linalg.inv(np.matmul(X.T, X)), + np.matmul(X.T, Y)) + + y_pred = [] + for i in range(len(X)): + holdout_X = X[i] + + loo_X = np_remove(X, i) + loo_y = np_remove(y, i) + loo_b = lin_reg(loo_X, loo_y) + + y_hat = np.matmul(holdout_X, loo_b) + y_pred.append(y_hat) + + r2 = r2_score(y, y_pred) + + return r2 + + +def predict(feats:list[float], beta:list[float]) -> float: + """ + Predicts the Greenhouse Gas Emissions for an inividual user in ktonnes. + + :param feats: The unpadded input features from the user: + - Motor Gassoline in ktoes + - Household Energy in TJ + :param beta: The slopes (and intercept) for the trained model of shape: (3,) + :returns: The predicted greenhouse gass emission in CO2 equiventlents + measured in ktonnes + """ + x = np.concatenate([[1], np.array(feats, dtype=np.float64)]) + beta = np.array(beta, dtype=np.float64) + y_hat = np.matmul(x, beta) + + return y_hat + + + +def melt_smdx_dataframe(df: pd.DataFrame) -> pd.DataFrame: + """ + Given an ESTAT smdx dataframe, convert the datetimes to years and melt + + :param df: The raw SDMX parsed dataframe from ESTAT + :returns: A melted dataframe with the columns of: + `year` - the year of the observation + `geo` - the country of the observation + `value` - the value of the observation + """ + df = df.reset_index() + df["year"] = df["TIME_PERIOD"].dt.year + df = df.drop("TIME_PERIOD", axis=1) + return pd.melt(df, id_vars="year") + +def merge_dataframes(dataframes: list[pd.DataFrame]) -> pd.DataFrame: + """ + """ + for i, df in enumerate(dataframes): + df.columns = ["geo", "year", i] + + merged_df = reduce(lambda l, r: pd.merge(l, r, left_on=["year", "geo"], right_on=["year", "geo"]), dataframes) + return merged_df + +def fill_holes(df: pd.DataFrame) -> pd.DataFrame: + """ + """ + lin_reg = lambda X, Y: np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, Y)) + + dfs = [] + + for name, group in df.groupby('geo'): + cols = [[name for _ in range(len(group.index))]] + for i in range(1, len(group.columns)): + d = group.iloc[:, i:i+1].to_numpy() + + missing_mask = np.isnan(d) | (d == 0) + present_mask = ~missing_mask + + missing_mask = missing_mask.reshape(1, -1)[0] + present_mask = present_mask.reshape(1, -1)[0] + + if not np.any(missing_mask): + d = d.reshape(1, -1)[0] + cols.append(d) + continue + + if not np.any(present_mask): + d = d.reshape(1, -1)[0] + cols.append(d) + continue + + x_present = np.pad(np.arange(len(d))[present_mask].reshape(-1, 1), ((0, 0), (1, 0)), mode="constant", constant_values=1) + y_present = d[present_mask] + + w = lin_reg(x_present, y_present) + + x_missing = np.pad(np.arange(len(d))[missing_mask].reshape(-1, 1), ((0, 0), (1, 0)), mode="constant", constant_values=1) + y_missing_pred = np.matmul(x_missing, w) + + d[missing_mask] = y_missing_pred + d = d.reshape(1, -1)[0] + + cols.append(d) + + dfs.append(pd.DataFrame(cols).T) + + df_unswissed = pd.concat(dfs, axis=0) + df_unswissed.columns = df.columns + return df_unswissed + +def standardize(df: pd.DataFrame) -> pd.DataFrame: + """ + """ + df_standard = pd.DataFrame() + for feat in df.columns: + if feat == "geo": continue + df_standard[f'{feat}'] = ((df[feat] - df[feat].mean()) / df[feat].std()) + df_standard["geo"] = df["geo"] + + return df_standard \ No newline at end of file diff --git a/api/backend/ml_models/train_helpers.py b/api/backend/ml_models/train_helpers.py new file mode 100644 index 0000000..ae60e13 --- /dev/null +++ b/api/backend/ml_models/train_helpers.py @@ -0,0 +1,88 @@ +""" +""" + +import pandas as pd +import numpy as np +from functools import reduce + +def melt_smdx_dataframe(df: pd.DataFrame) -> pd.DataFrame: + """ + Given an ESTAT smdx dataframe, convert the datetimes to years and melt + + :param df: The raw SDMX parsed dataframe from ESTAT + :returns: A melted dataframe with the columns of: + `year` - the year of the observation + `geo` - the country of the observation + `value` - the value of the observation + """ + df = df.reset_index() + df["year"] = df["TIME_PERIOD"].dt.year + df = df.drop("TIME_PERIOD", axis=1) + return pd.melt(df, id_vars="year") + +def merge_dataframes(dataframes: list[pd.DataFrame]) -> pd.DataFrame: + """ + """ + for i, df in enumerate(dataframes): + df.columns = ["geo", "year", i] + + merged_df = reduce(lambda l, r: pd.merge(l, r, left_on=["year", "geo"], right_on=["year", "geo"]), dataframes) + return merged_df + +def fill_holes(df: pd.DataFrame) -> pd.DataFrame: + """ + """ + lin_reg = lambda X, Y: np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, Y)) + + dfs = [] + + for name, group in df.groupby('geo'): + cols = [[name for _ in range(len(group.index))]] + for i in range(1, len(group.columns)): + d = group.iloc[:, i:i+1].to_numpy() + + missing_mask = np.isnan(d) | (d == 0) + present_mask = ~missing_mask + + missing_mask = missing_mask.reshape(1, -1)[0] + present_mask = present_mask.reshape(1, -1)[0] + + if not np.any(missing_mask): + d = d.reshape(1, -1)[0] + cols.append(d) + continue + + if not np.any(present_mask): + d = d.reshape(1, -1)[0] + cols.append(d) + continue + + x_present = np.pad(np.arange(len(d))[present_mask].reshape(-1, 1), ((0, 0), (1, 0)), mode="constant", constant_values=1) + y_present = d[present_mask] + + w = lin_reg(x_present, y_present) + + x_missing = np.pad(np.arange(len(d))[missing_mask].reshape(-1, 1), ((0, 0), (1, 0)), mode="constant", constant_values=1) + y_missing_pred = np.matmul(x_missing, w) + + d[missing_mask] = y_missing_pred + d = d.reshape(1, -1)[0] + + cols.append(d) + + dfs.append(pd.DataFrame(cols).T) + + df_unswissed = pd.concat(dfs, axis=0) + df_unswissed.columns = df.columns + return df_unswissed + +def standardize(df: pd.DataFrame) -> pd.DataFrame: + """ + """ + df_standard = pd.DataFrame() + for feat in df.columns: + if feat == "geo": continue + df_standard[f'{feat}'] = ((df[feat] - df[feat].mean()) / df[feat].std()) + df_standard["geo"] = df["geo"] + + return df_standard \ No newline at end of file diff --git a/api/backend/ngo/ngo_routes.py b/api/backend/ngo/ngo_routes.py new file mode 100644 index 0000000..c9dbcb9 --- /dev/null +++ b/api/backend/ngo/ngo_routes.py @@ -0,0 +1,263 @@ + +from flask import Blueprint, request, jsonify, make_response, current_app +import json +from backend.db_connection import db + + +ngo = Blueprint('ngo', __name__) +current_id = 1 + + +# Gets my ngo data +@ngo.route('/ngomine', methods=['GET']) +def get_mine(): + cursor = db.get_db().cursor() + + + cursor.execute('SELECT * FROM NGO WHERE id = 1') + + + column_headers = [x[0] for x in cursor.description] + + + json_data = [] + + + theData = cursor.fetchall() + + + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + + return jsonify(json_data) + + +# updates an ngo to the NGO table given filled out data +@ngo.route('/NGOupdate', methods=['PUT']) +def add_new_NGO(): + current_app.logger.info('ngo_routes.py: POST /NGOadd') + + recieved_data = request.json + current_app.logger.info(recieved_data) + + + name = recieved_data['name'] + website = recieved_data['website'] + email = recieved_data['email'] + + + query = 'UPDATE NGO SET website = %s, name = %s, contact = %s WHERE id = 1' + + + data = (name, website, email) + cursor = db.get_db().cursor() + cursor.execute(query, data) + db.get_db().commit() + + + # new_id = cursor.lastrowid + + # selected_tags = recieved_data.get('tags', []) + # if selected_tags: + # insert_query = 'INSERT INTO NGOTags (ngo_id, tag_id) VALUES (%s, %s)' + # # for each tag gets the tag_id from the emission tags table, :) + # # also inserts into NGO tags + # for tag_name in selected_tags: + # tag_query = 'SELECT id FROM EmissionTags WHERE description = %s' + # cursor.execute(tag_query, (tag_name,)) + # tag_row = cursor.fetchone() + # tag_id = tag_row[0] + # cursor.execute(insert_query, (new_id, tag_id)) + # db.get_db().commit() + + + return 'Success' + + +@ngo.route('/tags', methods=['GET']) +def get_tags(): + # get a cursor object from the database + cursor = db.get_db().cursor() + cursor.execute(''' + SELECT description + FROM EmissionTags + WHERE EmissionTags.id IN ( + SELECT tag_id + FROM NGOTags + WHERE NGOTags.ngo_id = 1 + ); + ''') + + # grab the column headers from the returned data + column_headers = [x[0] for x in cursor.description] + + + # create an empty dictionary object to use in + # putting column headers together with data + json_data = [] + + + # fetch all the data from the cursor + theData = cursor.fetchall() + + + # for each of the rows, zip the data elements together with + # the column headers. + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + + return jsonify(json_data) + + + + +# get all of the matching Enterprises based on tags +@ngo.route('/EnterpriseMatch', methods=['GET']) +def get_matches(): + # get a cursor object from the database + cursor = db.get_db().cursor() + + + cursor.execute(''' + SELECT Enterprises.name, EmissionTags.description + FROM Enterprises + JOIN EntTags ON Enterprises.id = EntTags.enterprise_id + JOIN EmissionTags ON EntTags.tag_id = EmissionTags.id + WHERE EmissionTags.id IN ( + SELECT tag_id + FROM EntTags + WHERE EntTags.enterprise_id = 1 + ); +''') + + # grab the column headers from the returned data + column_headers = [x[0] for x in cursor.description] + + + # create an empty dictionary object to use in + # putting column headers together with data + json_data = [] + + + # fetch all the data from the cursor + theData = cursor.fetchall() + + + # for each of the rows, zip the data elements together with + # the column headers. + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + + return jsonify(json_data) + + +@ngo.route('/NGOadd', methods=['POST']) +def add_tags(): + current_app.logger.info('POST /ngo/tags route') + + + info = request.json + tag_description = info.get('tag') + + + cursor = db.get_db().cursor() + + + select_query = ''' + SELECT + ET.id AS tag_id + FROM + EmissionTags ET + WHERE + ET.description = %s + ''' + cursor.execute(select_query, (tag_description,)) + tag_row = cursor.fetchone() + + + if tag_row is None: + return jsonify({"error": "Tag not found"}), 404 + + + new_tag_id = tag_row[0] + + + insert_query = 'INSERT INTO NGOTags (ngo_id, tag_id) VALUES (1, %s)' + cursor.execute(insert_query, (new_tag_id,)) + db.get_db().commit() + + + return jsonify({"message": "Success"}), 200 + + + +@ngo.route('/TagDelete', methods=['DELETE']) +def delete_tags(): + current_app.logger.info('DELETE /ngo/tags route') + + info = request.json + tag_description = info.get('tag') + + cursor = db.get_db().cursor() + + + select_query = ''' + SELECT id FROM EmissionTags WHERE description = %s; + ''' + cursor.execute(select_query, (tag_description,)) + tag_row = cursor.fetchone() + current_app.logger.info(select_query) + + if tag_row is None: + current_app.logger.info(f'Tag not found: {tag_description}') + return jsonify({"error": "Tag not found"}), 404 + + tag_id = tag_row[0] + + delete_query = ''' + DELETE FROM NGOTags WHERE ngo_id = 1 AND tag_id = %s; + ''' + cursor.execute(delete_query, (tag_id,)) + db.get_db().commit() + + current_app.logger.info(f'Successfully deleted tag: {tag_description} for NGO ID: {ngo_id}') + return 'Success' + + + + +# get all of the matching users based on tags +@ngo.route('/UserMatch', methods=['GET']) +def get_usermatches(): + # get a cursor object from the database + cursor = db.get_db().cursor() + + cursor.execute(''' + SELECT DISTINCT UserTags.user_id + FROM UserTags + WHERE UserTags.tag_id IN ( + SELECT tag_id + FROM NGOTags + WHERE NGOTags.ngo_id = 1 + ); +''') + + # grab the column headers from the returned data + column_headers = [x[0] for x in cursor.description] + + # create an empty dictionary object to use in + # putting column headers together with data + json_data = [] + + # fetch all the data from the cursor + theData = cursor.fetchall() + + # for each of the rows, zip the data elements together with + # the column headers. + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) diff --git a/api/backend/rest_entry.py b/api/backend/rest_entry.py index fe522c5..ce13cf4 100644 --- a/api/backend/rest_entry.py +++ b/api/backend/rest_entry.py @@ -4,8 +4,10 @@ from flask import Flask from backend.db_connection import db -from backend.customers.customer_routes import customers -from backend.products.products_routes import products +from backend.test.test_routes import test +from backend.enterprises.enterprises_routes import enterprises +from backend.ngo.ngo_routes import ngo +from backend.user.user_routes import user import os from dotenv import load_dotenv @@ -60,8 +62,10 @@ def getData(): app.logger.info('current_app(): registering blueprints with app object.') # Register the routes from each Blueprint with the app object # and give a url prefix to each - app.register_blueprint(customers, url_prefix='/c') - app.register_blueprint(products, url_prefix='/p') + app.register_blueprint(test, url_prefix='/t') + app.register_blueprint(enterprises, url_prefix='/e') + app.register_blueprint(ngo, url_prefix='/n') + app.register_blueprint(user, url_prefix='/u') # Don't forget to return the app object return app diff --git a/api/backend/test/test_routes.py b/api/backend/test/test_routes.py new file mode 100644 index 0000000..fea64f4 --- /dev/null +++ b/api/backend/test/test_routes.py @@ -0,0 +1,39 @@ +######################################################## +# Sample customers blueprint of endpoints +# Remove this file if you are not using it in your project +######################################################## + +from flask import Blueprint, request, jsonify, make_response, current_app +import json +from backend.db_connection import db + + +test = Blueprint('test', __name__) + +# Get all the products from the database +@test.route('/test', methods=['GET']) +def get_testdata(): + # get a cursor object from the database + cursor = db.get_db().cursor() + + # use cursor to query the database for a list of products + cursor.execute('SELECT id FROM Country') + + # grab the column headers from the returned data + column_headers = [x[0] for x in cursor.description] + + # create an empty dictionary object to use in + # putting column headers together with data + json_data = [] + + # fetch all the data from the cursor + theData = cursor.fetchall() + + # for each of the rows, zip the data elements together with + # the column headers. + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) + + diff --git a/api/backend/user/user_routes.py b/api/backend/user/user_routes.py new file mode 100644 index 0000000..17bffec --- /dev/null +++ b/api/backend/user/user_routes.py @@ -0,0 +1,198 @@ +from flask import Blueprint, request, jsonify, make_response, current_app +import json +from backend.db_connection import db +from backend.ml_models.model_alpha import predict, train + +user = Blueprint('user', __name__) + +@user.route('/UserPrediction/', methods=['GET']) +def predict_value(): + cursor = db.get_db().cursor() + + select_heating_query = ''' + SELECT heating FROM ResData; + ''' + cursor.execute(select_heating_query) + heating = cursor.fetchone()[0] + current_app.logger.info("THIS IS HEATING", heating) + + # select_water_query = ''' + # SELECT water_heating FROM ResData WHERE user_id = 1; + # ''' + # cursor.execute(select_water_query) + # water_heating = cursor.fetchone()[0] + # current_app.logger.info(select_water_query) + + # select_cooking_query = ''' + # SELECT cooking_gas FROM ResData WHERE user_id = 1; + # ''' + # cursor.execute(select_cooking_query) + # cooking_gas = cursor.fetchone()[0] + # current_app.logger.info(select_cooking_query) + + select_car_query = ''' + SELECT fuel_used FROM Cars WHERE user_id = 1; + ''' + cursor.execute(select_car_query) + fuel_used = cursor.fetchone()[0] + current_app.logger.info(select_car_query) + + select_beta_query = ''' + SELECT user_values FROM Beta_User ORDER BY id DESC LIMIT 1; + ''' + + cursor.execute(select_beta_query) + betaValue = cursor.fetchone()[0].split(', ') + current_app.logger.info(select_beta_query) + + if betaValue is None: + current_app.logger.info(f'Beta Value not Found: {betaValue}') + return jsonify({"error": "BV not found"}), 404 + + feats = [heating, fuel_used] + returnVal = predict(feats, betaValue) + return_dict = {'result': returnVal} + + the_response = make_response(jsonify(return_dict)) + the_response.status_code = 200 + the_response.mimetype = 'application/json' + + betavals = train() + current_app.logger.info("betavals: ", betavals) + return the_response + + + +# Get all the cars history for this user +@user.route('/UserCars', methods=['GET']) +def get_cars(): + cursor = db.get_db().cursor() + + cursor.execute('SELECT * FROM Cars WHERE Cars.user_id = 1') + + column_headers = [x[0] for x in cursor.description] + + json_data = [] + + theData = cursor.fetchall() + + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) + +# Get all the residential history for this user +@user.route('/UserAddCar', methods=['PUT']) +def add_car(): + current_app.logger.info('user_routes.py: PUT /UserAddCar') + + received_data = request.json + current_app.logger.info(received_data) + + fuel_type = received_data['fuel_type'] + fuel_used = received_data['fuel_used'] + + query = "UPDATE Cars SET emission_tags = 'car', fuel_type = %s, fuel_used = %s WHERE user_id = 1" + + data = (fuel_type, fuel_used) + cursor = db.get_db().cursor() + cursor.execute(query, data) + db.get_db().commit() + return "success" + + + +# Get all the residential history for this user +@user.route('/UserResidential', methods=['GET']) +def get_residential(): + cursor = db.get_db().cursor() + + cursor.execute('SELECT * FROM ResData WHERE ResData.user_id = 1') + + column_headers = [x[0] for x in cursor.description] + + json_data = [] + + theData = cursor.fetchall() + + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) + +# Get all the residential history for this user +@user.route('/UserAddRes', methods=['PUT']) +def add_residential(): + current_app.logger.info('user_routes.py: PUT /UserAddRes') + + received_data = request.json + current_app.logger.info(received_data) + + elec_usage = received_data['elec_usage'] + heating = received_data['heating'] + water_heating = received_data['water_heating'] + cooking_gas = received_data['cooking_gas'] + + query = "UPDATE ResData SET emission_tags = 'residential', elec_usage = %s, heating = %s, water_heating = %s, cooking_gas = %s WHERE user_id = 1" + + data = (elec_usage, heating, water_heating, cooking_gas) + cursor = db.get_db().cursor() + cursor.execute(query, data) + db.get_db().commit() + return "success" + + +# # Get all the residential history for this user +# @user.route('/UserCountry', methods=['PUT']) +# def add_country(): +# current_app.logger.info('user_routes.py: PUT /UserCountry') + +# recieved_data = request.json +# current_app.logger.info(recieved_data) + +# name = recieved_data['name'] +# emissions = recieved_data['website'] + +# query = 'UPDATE NGO SET website = %s, name = %s, contact = %s WHERE id = 1' + +# data = (name, website, email) +# cursor = db.get_db().cursor() +# cursor.execute(query, data) +# db.get_db().commit() + + +# Get all the flight history for this user +@user.route('/UserFlights', methods=['GET']) +def get_flights(): + cursor = db.get_db().cursor() + + cursor.execute('SELECT * FROM Flight WHERE Flight.user_id = 1') + + column_headers = [x[0] for x in cursor.description] + + json_data = [] + + theData = cursor.fetchall() + + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) + +# Get all the public transport history for this user +@user.route('/UserTransport', methods=['GET']) +def get_transport(): + cursor = db.get_db().cursor() + + cursor.execute('SELECT * FROM PublicTransport WHERE PublicTransport.user_id = 1') + + column_headers = [x[0] for x in cursor.description] + + json_data = [] + + theData = cursor.fetchall() + + for row in theData: + json_data.append(dict(zip(column_headers, row))) + + return jsonify(json_data) \ No newline at end of file diff --git a/api/requirements.txt b/api/requirements.txt index 23ea575..1f62ccb 100644 --- a/api/requirements.txt +++ b/api/requirements.txt @@ -1,7 +1,32 @@ +blinker==1.8.2 +certifi==2024.6.2 +charset-normalizer==3.3.2 +click==8.1.7 +colorama==0.4.6 +idna==3.7 +itsdangerous==2.2.0 +Jinja2==3.1.4 +joblib==1.4.2 +lxml==5.2.2 +MarkupSafe==2.1.5 +numpy==1.26.4 +pandas==2.2.2 +pandaSDMX==1.10.0 +pydantic==1.10.15 +python-dateutil==2.9.0.post0 +pytz==2024.1 +requests==2.32.3 +scikit-learn==1.5.0 +scipy==1.13.1 +six==1.16.0 +threadpoolctl==3.5.0 +typing_extensions==4.12.1 +tzdata==2024.1 +urllib3==2.2.1 werkzeug==2.3.8 flask==2.3.3 flask-restful==0.3.9 flask-login==0.6.2 flask-mysql==1.5.2 cryptography==38.0.1 -python-dotenv==1.0.1 +python-dotenv==1.0.1 \ No newline at end of file diff --git a/app/requirements.txt b/app/requirements.txt index ceef4d5..604aa12 100644 --- a/app/requirements.txt +++ b/app/requirements.txt @@ -37,4 +37,4 @@ toolz==0.12.1 tornado==6.4 typing_extensions==4.12.0 tzdata==2024.1 -urllib3==2.2.1 +urllib3==2.2.1 \ No newline at end of file diff --git a/app/src/App.py b/app/src/App.py index 47825df..e17900f 100644 --- a/app/src/App.py +++ b/app/src/App.py @@ -1,9 +1,14 @@ import streamlit as st +from modules.nav import SideBarLinks + + +st.session_state['authenticated'] = False +SideBarLinks(show_home=True) def App(): st.title('Welcome to Carbon Connect!') - st.header('Choose your persona below') + st.header('Act as...') st.write('') @@ -11,18 +16,28 @@ def App(): col1, col2, col3 = st.columns(3) with col1: - if st.button("General User"): + if st.button("Natalie Allard"): + st.session_state['authenticated'] = True + st.session_state['role'] = 'General User' + st.session_state['first_name'] = 'Natalie' st.switch_page("pages/01_userhome.py") st.image('https://cdn-icons-png.freepik.com/256/552/552848.png?ga=GA1.1.1507691374.1717099387', width = 100) + with col2: - if st.button("Enterprise"): - st.switch_page("pages/02_enterprisehome.py") + if st.button("EcoForward Enterprises"): + st.session_state['authenticated'] = True + st.session_state['role'] = 'Enterprise' + st.session_state['first_name'] = 'EcoForward' + st.switch_page("pages/10_enterprisehome.py") st.image('https://cdn-icons-png.freepik.com/256/834/834504.png?ga=GA1.1.1507691374.1717099387', width = 100) with col3: - if st.button("NGO"): - st.switch_page("pages/03_NGOhome.py") + if st.button("EcoUnity Europe"): + st.session_state['authenticated'] = True + st.session_state['role'] = 'NGO' + st.session_state['first_name'] = 'EcoUnity' + st.switch_page("pages/20_NGOhome.py") st.image('https://cdn-icons-png.freepik.com/256/3101/3101045.png?ga=GA1.1.1507691374.1717099387', width = 100) diff --git a/app/src/modules/nav.py b/app/src/modules/nav.py new file mode 100644 index 0000000..6707e4c --- /dev/null +++ b/app/src/modules/nav.py @@ -0,0 +1,103 @@ +# Idea borrowed from https://github.com/fsmosca/sample-streamlit-authenticator + +import streamlit as st + +#### ------------------------ General ------------------------ +def HomeNav(): + st.sidebar.page_link("App.py", label="Home", icon='🏠') + +def AboutPageNav(): + st.sidebar.page_link("pages/30_about.py", label="About") + +def testAPINav(): + st.sidebar.page_link("pages/31_apiPage.py", label="Test API") + +# user role + +def UserHomeNav(): + st.sidebar.page_link("pages/01_userhome.py", label="General User Home") + +def UserSurveyNav(): + st.sidebar.page_link("pages/02_userSurvey.py", label="General User Survey") + +def UserHistoryNav(): + st.sidebar.page_link("pages/03_userHistory.py", label="General User Survey History") + +def UserMatchNav(): + st.sidebar.page_link("pages/04_userMatch.py", label="NGO Suggestions") + +# enterprise role + +def EnterpriseHomeNav(): + st.sidebar.page_link("pages/10_enterprisehome.py", label="Enterprise Home") + +def EnterpriseMatchNav(): + st.sidebar.page_link("pages/12_enterpriseMatch.py", label="NGO Match") + +def EnterpriseSurveyNav(): + st.sidebar.page_link("pages/11_enterpriseSurvey.py", label="Enterprise Survey") + +def EnterpriseHistoryNav(): + st.sidebar.page_link("pages/13_enterpriseHistory.py", label="Enterprise Survey History") + +# NGO role + +def NGOHomeNav(): + st.sidebar.page_link("pages/20_NGOhome.py", label="NGO Home") + +def NGOInfoNav(): + st.sidebar.page_link("pages/21_NGOInfo.py", label="NGO Info") + +def NGOMatchNav(): + st.sidebar.page_link("pages/22_NGOMatch.py", label="Enterprise/User Match") + +# --------------------------------Links Function ----------------------------------------------- +def SideBarLinks(show_home=False): + """ + This function handles adding links to the sidebar of the app based upon the logged-in user's role, which was put in the streamlit session_state object when logging in. + """ + + # add a logo to the sidebar always + # st.sidebar.image("assets/logo.png", width = 150) + + # If there is no logged in user, redirect to the Home (Landing) page + if 'authenticated' not in st.session_state: + st.session_state.authenticated = False + st.switch_page('App.py') + + if show_home: + # Show the Home page link (the landing page) + HomeNav() + testAPINav() + + # Show the other page navigators depending on the users' role. + if st.session_state["authenticated"]: + + if st.session_state['role'] == 'General User': + UserHomeNav() + UserSurveyNav() + UserHistoryNav() + UserMatchNav() + + if st.session_state['role'] == 'Enterprise': + EnterpriseHomeNav() + EnterpriseMatchNav() + EnterpriseSurveyNav() + EnterpriseHistoryNav() + + if st.session_state['role'] == 'NGO': + NGOHomeNav() + NGOInfoNav() + NGOMatchNav() + + + # Always show the About page at the bottom of the list of links + AboutPageNav() + + if st.session_state["authenticated"]: + # Always show a logout button if there is a logged in user + if st.sidebar.button("Logout"): + del st.session_state['role'] + del st.session_state['authenticated'] + st.switch_page('App.py') + diff --git a/app/src/pages/01_userhome.py b/app/src/pages/01_userhome.py index 58277ce..0229803 100644 --- a/app/src/pages/01_userhome.py +++ b/app/src/pages/01_userhome.py @@ -1,7 +1,25 @@ import streamlit as st +from modules.nav import SideBarLinks -def App(): - st.write("User home page") +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() - -App() +col1, col2, col3 = st.columns(3) + +with col1: + st.write("Logged in as:") + st.write(f"{st.session_state['role']} {st.session_state['first_name']}") + st.image('https://cdn-icons-png.freepik.com/256/552/552848.png?ga=GA1.1.1507691374.1717099387', width = 50) + +st.write("# Navigate to your desired tool") +st.write('') +st.write('') + +if st.button('Retake user general emissions survey'): + st.switch_page('pages/02_userSurvey.py') +st.write('') +if st.button('See my survey history'): + st.switch_page('pages/03_userHistory.py') +st.write('') +if st.button('See my NGO recommendations'): + st.switch_page('pages/04_userMatch.py') diff --git a/app/src/pages/02_enterprisehome.py b/app/src/pages/02_enterprisehome.py deleted file mode 100644 index 7725169..0000000 --- a/app/src/pages/02_enterprisehome.py +++ /dev/null @@ -1,7 +0,0 @@ -import streamlit as st - -def App(): - st.write("Enterprise home page") - - -App() diff --git a/app/src/pages/02_userSurvey.py b/app/src/pages/02_userSurvey.py new file mode 100644 index 0000000..9261102 --- /dev/null +++ b/app/src/pages/02_userSurvey.py @@ -0,0 +1,145 @@ +import streamlit as st +from modules.nav import SideBarLinks +import requests +import json + +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() + +st.header("User Survey") +st.write("##### Let's take a look at your Carbon Footprint!") +st.write("Please complete the survey to the best of your ability.") +country = st.selectbox( + "Country :flag-eu:", + ("Austria 🇦🇹", "Belgium 🇧🇪", "Bulgaria 🇧🇬", "Croatia 🇭🇷", "Cyprus 🇨🇾", "Czechia 🇨🇿", "Denmark 🇩🇰", "Estonia 🇪🇪", "Finland 🇫🇮", "France 🇫🇷", "Germany 🇩🇪", "Greece 🇬🇷", "Hungary 🇭🇺", "Ireland 🇮🇪", "Italy 🇮🇹", "Latvia 🇱🇻", "Lithuania 🇱🇹", "Luxembourg 🇱🇺", "Malta 🇲🇹", "Netherlands 🇳🇱", "Poland 🇵🇱", "Portugal 🇵🇹", "Romania 🇷🇴", "Slovakia 🇸🇰", "Slovenia 🇸🇮", "Spain 🇪🇸", "Sweden 🇸🇪", "Iceland 🇮🇸", "Liechtenstein 🇱🇮", "Norway 🇳🇴", "Switzerland 🇨🇭")) +st.write("You selected:", country) + +with st.expander("Residential Data"): + + household_members = st.number_input("How many people live in your household?", 1, None, 2) + + electricity_usage = 0.0000036 * 12 * st.number_input("How much electricity does your household use per month (kWh)?", 0.0, None, 6320.0) + st.write("I use approximately ", electricity_usage / household_members , "terajoules per year.") + + heating = 0.0000036 * 12 * st.number_input("How much heating does your household use per month (kWh)?", 0.0, None, 3000.0) + st.write("I use approximately ", heating / household_members, "terajoules per year.") + + water_heating = 0.0000036 * 12 * st.number_input("How much water heating does your household use per month (kWh)?", 0.0, None, 2000.0) + st.write("I use approximately ", water_heating / household_members, "terajoules per year.") + + cooking_gas = 0.0000036 * 12 * st.number_input("Per month, how much energy is used cooking? (kWh)?", 0.0, None, 2000.0) + st.write("I use approximately ", cooking_gas / household_members, "terajoules per year.") + + st.write("Total Residential Usage (TJ): ", (electricity_usage + heating + water_heating + cooking_gas) / household_members) + + if st.button("Submit Residential Data"): + if household_members and electricity_usage and heating and water_heating and cooking_gas: + api_url = "http://api:4000/u/UserAddRes" + data = { + "elec_usage": electricity_usage, + "heating": heating, + "water_heating": water_heating, + "cooking_gas": cooking_gas} + + try: + response = requests.put(api_url, json=data) + if response.status_code == 201 or response.status_code == 200: + st.success("Data successfully inserted!") + else: + try: + error_message = response.json().get('error', 'No error message provided') + except json.JSONDecodeError: + error_message = response.text # Raw response if not JSON + + st.error(f"Failed to insert data. Status code: {response.status_code}, Error: {error_message}") + except Exception as e: + st.error(f"An error occurred: {e}") + else: + st.error("Please fill in all the fields before submitting.") + +# data = {} +# try: +# data = requests.get('http://api:4000/u/UserResidential').json() +# except: +# st.write("**Important**: Could not connect to sample api, so using dummy data.") +# data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} +# st.dataframe(data) + +with st.expander("Car Data"): + + # numCars = st.number_input("How many cars do you own?", 0) + # if (numCars > 0): + fuel_type = st.select_slider( + "Fuel Type", + options=["Gasoline/Hybrid", "Diesel", "Electric"]) + + if (fuel_type == "Gasoline/Hybrid"): + fuel_capacity = st.number_input("How many liters of gasoline does your vehicle hold?", 0.0, None, 50.0) + fuel_used_monthly = st.slider("How many times a month do you fill up your tank?", 0, 10, 5) + fuel_used = st.number_input("Total fuel used per year (liters): ", 0.0, None, fuel_capacity * fuel_used_monthly * 12) * 1.11302E-6 + elif (fuel_type == "Diesel"): + fuel_capacity = st.number_input("How many liters of diesel does your vehicle hold?", 0.0, None, 50.0) + fuel_used_monthly = st.slider("How many times a month do you fill up your tank?", 0, 10, 5) + fuel_used = st.number_input("Total fuel used per year (liters): ", 0.0, None, fuel_capacity * fuel_used_monthly * 12) * 1.1571E-6 + + elif (fuel_type == "Electric"): + st.write("Please include charging data in residential data.") + + if st.button("Submit Car Data"): + if fuel_type and fuel_used: + api_url = "http://api:4000/u/UserAddCar" + data = { + "fuel_type": fuel_type, + "fuel_used": fuel_used } + try: + response = requests.put(api_url, json=data) + if response.status_code == 201 or response.status_code == 200: + st.success("Data successfully inserted!") + else: + try: + error_message = response.json().get('error', 'No error message provided') + except json.JSONDecodeError: + error_message = response.text # Raw response if not JSON + + st.error(f"Failed to insert data. Status code: {response.status_code}, Error: {error_message}") + except Exception as e: + st.error(f"An error occurred: {e}") + else: + st.error("Please fill in all the fields before submitting.") + +# # View Car Data +# data = {} +# try: +# data = requests.get('http://api:4000/u/UserCars').json() +# except: +# st.write("**Important**: Could not connect to sample api, so using dummy data.") +# data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +# st.dataframe(data) + + +if st.button("View Prediction"): + api_url = "http://api:4000/u/UserPrediction/" + try: + response = requests.get(api_url) + responseJSON = response.json() + finalCarbon = responseJSON['result'] + st.write("Estimated Carbon Footprint (tonnes of CO2): ", finalCarbon) + + # HEY PROFS: THIS IS THE ML PREDICTION + if response.status_code == 201 or response.status_code == 200: + st.success("Successfully Predicted!") + + + else: + try: + error_message = response.json().get('error', 'No error message provided') + except json.JSONDecodeError: + error_message = response.text # Raw response if not JSON + + st.error(f"Failed to insert data. Status code: {response.status_code}, Error: {error_message}") + except Exception as e: + st.error(f"An error occurred: {e}") + + + diff --git a/app/src/pages/03_NGOhome.py b/app/src/pages/03_NGOhome.py deleted file mode 100644 index a0dbb5b..0000000 --- a/app/src/pages/03_NGOhome.py +++ /dev/null @@ -1,7 +0,0 @@ -import streamlit as st - -def App(): - st.write("NGO home page") - - -App() diff --git a/app/src/pages/03_userHistory.py b/app/src/pages/03_userHistory.py new file mode 100644 index 0000000..a761453 --- /dev/null +++ b/app/src/pages/03_userHistory.py @@ -0,0 +1,44 @@ +import streamlit as st +from modules.nav import SideBarLinks +import requests + +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() + +st.write("# User history") + +data = {} +try: + data = requests.get('http://api:4000/u/UserCars').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) + +data = {} +try: + data = requests.get('http://api:4000/u/UserResidential').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) + +data = {} +try: + data = requests.get('http://api:4000/u/UserFlights').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) + +data = {} +try: + data = requests.get('http://api:4000/u/UserTransport').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) \ No newline at end of file diff --git a/app/src/pages/04_userMatch.py b/app/src/pages/04_userMatch.py new file mode 100644 index 0000000..c80f041 --- /dev/null +++ b/app/src/pages/04_userMatch.py @@ -0,0 +1,7 @@ +import streamlit as st +from modules.nav import SideBarLinks + +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() + +st.write("# User match") \ No newline at end of file diff --git a/app/src/pages/10_enterprisehome.py b/app/src/pages/10_enterprisehome.py new file mode 100644 index 0000000..74e8667 --- /dev/null +++ b/app/src/pages/10_enterprisehome.py @@ -0,0 +1,25 @@ +import streamlit as st +from modules.nav import SideBarLinks + +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() + +col1, col2, col3 = st.columns(3) + +with col1: + st.write("Logged in as:") + st.write(f"{st.session_state['role']} {st.session_state['first_name']}") + st.image('https://cdn-icons-png.freepik.com/256/834/834504.png?ga=GA1.1.1507691374.1717099387', width = 50) + +st.write("# Navigate to your desired tool") +st.write('') +st.write('') + +if st.button('Retake the enterprise general emissions survey'): + st.switch_page('pages/11_enterpriseSurvey.py') +st.write('') +if st.button('See my survey history'): + st.switch_page('pages/13_enterpriseHistory.py') +st.write('') +if st.button('See my tags, matches, and comparison to average country'): + st.switch_page('pages/12_enterpriseMatch.py') diff --git a/app/src/pages/11_enterpriseSurvey.py b/app/src/pages/11_enterpriseSurvey.py new file mode 100644 index 0000000..ebd6d44 --- /dev/null +++ b/app/src/pages/11_enterpriseSurvey.py @@ -0,0 +1,7 @@ +import streamlit as st +from modules.nav import SideBarLinks + +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() + +st.write("# Enterprise survey") \ No newline at end of file diff --git a/app/src/pages/12_enterpriseMatch.py b/app/src/pages/12_enterpriseMatch.py new file mode 100644 index 0000000..1b2eaf6 --- /dev/null +++ b/app/src/pages/12_enterpriseMatch.py @@ -0,0 +1,46 @@ +import streamlit as st +from modules.nav import SideBarLinks +import requests + +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() + +st.write("# NGO suggestions") + +st.write('') +st.write('') + +st.write("## Your emission tags are: ") + +data = {} +try: + data = requests.get('http://api:4000/e/tags').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) + +st.write("## NGOs with these tags are: ") + +data = {} +try: + data = requests.get('http://api:4000/e/NGOMatch').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) + +st.write('## Comparison to average company in your country') + +st.write('') + +data = {} +try: + data = requests.get('http://api:4000/e/EntCompare').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) \ No newline at end of file diff --git a/app/src/pages/13_enterpriseHistory.py b/app/src/pages/13_enterpriseHistory.py new file mode 100644 index 0000000..d1d2eeb --- /dev/null +++ b/app/src/pages/13_enterpriseHistory.py @@ -0,0 +1,35 @@ +import streamlit as st +from modules.nav import SideBarLinks +import requests + +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() + +st.write("# Enterprise history") + +data = {} +try: + data = requests.get('http://api:4000/e/EntSupplyChain').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) + +data = {} +try: + data = requests.get('http://api:4000/e/EntCosts').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) + +data = {} +try: + data = requests.get('http://api:4000/e/EntFlights').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) \ No newline at end of file diff --git a/app/src/pages/20_NGOhome.py b/app/src/pages/20_NGOhome.py new file mode 100644 index 0000000..bad0d07 --- /dev/null +++ b/app/src/pages/20_NGOhome.py @@ -0,0 +1,24 @@ +import streamlit as st +from modules.nav import SideBarLinks + +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() + +col1, col2, col3 = st.columns(3) + +with col1: + st.write("Logged in as:") + st.write(f"{st.session_state['role']} {st.session_state['first_name']}") + st.image('https://cdn-icons-png.freepik.com/256/3101/3101045.png?ga=GA1.1.1507691374.1717099387', width = 50) + +st.write("# Navigate to your desired tool") +st.write('') +st.write('') + +if st.button('Update NGO information questions'): + st.switch_page('pages/21_NGOInfo.py') + +st.write('') + +if st.button('View my user and enterprise matches'): + st.switch_page('pages/22_NGOMatch.py') diff --git a/app/src/pages/21_NGOInfo.py b/app/src/pages/21_NGOInfo.py new file mode 100644 index 0000000..fc0f007 --- /dev/null +++ b/app/src/pages/21_NGOInfo.py @@ -0,0 +1,126 @@ +import streamlit as st +from modules.nav import SideBarLinks +import requests +import json + +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() + +col1, col2, col3 = st.columns(3) + +with col1: + st.write("Logged in as:") + st.write("NGO") + st.image('https://cdn-icons-png.freepik.com/256/3101/3101045.png?ga=GA1.1.1507691374.1717099387', width = 50) + +st.write("# Edit your info if so desired") + +st.write('') + +NGO_name = st.text_input("NGO name") + +Website_link = st.text_input("Website link:") + +Contact_email = st.text_input("Head contact email:") + +# Multiselect tags option +# options = ["Transport", "Flights", "Energy", "Heat"] + +# selected_tags = st.multiselect("Select your associated tags", options) + +# st.write("Selected tags:", selected_tags) + + +if st.button("Submit"): + if NGO_name and Website_link and Contact_email: + + api_url = "http://api:4000/n/NGOupdate" + data = { + "name": NGO_name, + "website": Website_link, + "email": Contact_email } + + try: + response = requests.put(api_url, json=data) + + if response.status_code == 201 or response.status_code == 200: + st.success("Data successfully inserted!") + else: + try: + error_message = response.json().get('error', 'No error message provided') + except json.JSONDecodeError: + error_message = response.text # Raw response if not JSON + + st.error(f"Failed to insert data. Status code: {response.status_code}, Error: {error_message}") + except Exception as e: + st.error(f"An error occurred: {e}") + else: + st.error("Please fill in all the fields before submitting.") + +st.write('## My NGO data') + +data = {} +try: + data = requests.get('http://api:4000/n/ngomine').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + + +st.dataframe(data) + +def add_tags(): + st.write('### Add New NGO Tags') + + options = ["Transport", "Flights", "Energy", "Heat"] + + selected_tags = st.selectbox("Select your associated tags", options) + + if st.button("Add Tags"): + add_tags_api_url = "http://api:4000/n/NGOadd" + tag_data = {"tag": selected_tags} + try: + response = requests.post(add_tags_api_url, json=tag_data) + if response.status_code == 200: + st.success("Tags successfully added!") + else: + st.error(f"Failed to add tags. Status code: {response.status_code}") + except Exception as e: + st.error(f"An error occurred while adding tags: {e}") + +add_tags() +st.write("Display my current tags") +data = {} +try: + data = requests.get('http://api:4000/n/tags').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} +st.dataframe(data) + + +if st.button('Proceed to tools'): + st.switch_page('pages/22_NGOTools.py') + + +def delete_tags(): + st.write('### Delete NGO Tags') + + options = ["Transport", "Flights", "Energy", "Heat"] + + selected_tag = st.selectbox("Select tags to delete", options) + + if st.button("Delete Tags"): + delete_tags_api_url = "http://api:4000/n/TagDelete" + tag_data = {"tag": selected_tag} + + try: + response = requests.delete(delete_tags_api_url, json=tag_data) + if response.status_code == 200: + st.success("Tags successfully deleted!") + + except Exception as e: + st.error(f"An error occurred while deleting tags: {e}") + +delete_tags() + diff --git a/app/src/pages/22_NGOMatch.py b/app/src/pages/22_NGOMatch.py new file mode 100644 index 0000000..2960604 --- /dev/null +++ b/app/src/pages/22_NGOMatch.py @@ -0,0 +1,45 @@ +import streamlit as st +from modules.nav import SideBarLinks +import requests + +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() + +st.write("# NGO suggestions") + +st.write('') +st.write('') + +st.write("## Your emission tags are: ") + +data = {} +try: + data = requests.get('http://api:4000/n/tags').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + + +st.dataframe(data) + +st.write("## Enterprises with these tags are: ") + +data = {} +try: + data = requests.get('http://api:4000/n/EnterpriseMatch').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) + +st.write("## Users you matched with") + +data = {} +try: + data = requests.get('http://api:4000/n/UserMatch').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) \ No newline at end of file diff --git a/app/src/pages/30_about.py b/app/src/pages/30_about.py new file mode 100644 index 0000000..2d2ed84 --- /dev/null +++ b/app/src/pages/30_about.py @@ -0,0 +1,24 @@ +import streamlit as st +from modules.nav import SideBarLinks + +# Show appropriate sidebar links for the role of the currently logged in user +SideBarLinks() + +st.write("# About this app") + + +st.markdown ( + """ + This app is being built as an exemplar for Northeastern University's + Summer 2024 Dialogue of Civilization Program titled *Data and + Software in International Government and Politics*. + + The goal of this project is to allow different user personas to calculate + and see their emission data. It provides different emission related tools + to promote a greener world. + + Check out our blog for feature changes and fun! + + - The Wafflers: Aahil, Anjola, Justin, Michael + """ + ) diff --git a/app/src/pages/31_apiPage.py b/app/src/pages/31_apiPage.py new file mode 100644 index 0000000..92f7986 --- /dev/null +++ b/app/src/pages/31_apiPage.py @@ -0,0 +1,23 @@ +import streamlit as st +import requests +from modules.nav import SideBarLinks + +SideBarLinks() + +st.write("# Accessing a REST API from Within Streamlit") + +""" +Simply retrieving data from a REST api running in a separate Docker Container. + +If the container isn't running, this will be very unhappy. But the Streamlit app +should not totally die. +""" +data = {} +try: + data = requests.get('http://api:4000/t/test').json() +except: + st.write("**Important**: Could not connect to sample api, so using dummy data.") + data = {"a":{"b": "123", "c": "hello"}, "z": {"b": "456", "c": "goodbye"}} + +st.dataframe(data) + diff --git a/blog/content/anjola/phase3.md b/blog/content/anjola/phase3.md new file mode 100644 index 0000000..e69de29 diff --git a/blog/content/justin/phase3.md b/blog/content/justin/phase3.md new file mode 100644 index 0000000..5eb611b --- /dev/null +++ b/blog/content/justin/phase3.md @@ -0,0 +1,13 @@ +--- +title: "Phase III Reflection" +date: 2024-06-06 +draft: false +slug: "3" +tags: ["reflection"] +authors: + - "justin" +--- + +# Phase 3 Dialogue Reflection + +Phase III of the project was a whole other beast and was by far the most time-consuming phase. Perhaps a day after phase II ended, as a team we consulted with Dr. Fontenot due to confusion on how to connect personas based on emission tags. We then changed our ER diagram and made tags a new strong entity with 3 many to many relationships between the personas. The SQL DDL was updated accordingly. I did some work by myself throughout the week based on the wireframe from phase II. I made the initial landing page and figured out page navigation for some pages. Later that week I added NGO enterprise matching functionality with two get API routes which matched NGOs with enterprises based on shared tags. This was my first time working with the API and I was pretty confused about all the things I needed to change with the actual blueprint, making the blueprint in rest_entry.py and calling the route through the API URL. However, it was a great learning experience and I eventually figured it out which made writing future routes a lot easier. Next, I added the Enterprise compare tool which was another get request. This feature shows the logged-in enterprise’s emissions, their country, and the average of all enterprise’s emissions within that country. In my free Sunday in Luxembourg, I tried to add an NGO info section page that would have the NGO user fill out the information to be posted into the table (POST request). This feature took me extremely long for no reason. I thought I had the logistics right with collecting and sending the data but I kept getting an error. I had a back-and-forth Slack conversation with Dr. Fontenot about it and decided to leave it till Monday. It turned out my api url was slightly wrong causing the whole thing to not work. I eventually managed to make the successful POST request and that feature was completed. On the day before phase III was due we met as a group and had a productive conversation about where this app was going to go. We discussed with Dr. Fontenot that the user persona’s logging in should already have survey/info data filled in. However, I had already created the NGO info questionnaire. Thus, we decided to make the info questionnaire a PUT request to edit information and the surveys would also be PUT requests if users wanted to retake their survey. We decided to leave the survey off until the due date because, on the Data Science side, we still needed to finalize what questions we were going to ask (if they actually impacted emissions). I instead worked on adding history pages for each persona (displays survey result history). On the day of the due date, we slaved away. We still didn’t know what survey questions to ask due to the data science side not being done. So I changed the NGO POST route to a PUT route instead given the NGO user is already logged in. After continuing to work on setting up pages, we got news from Michael that there wasn’t a strong correlation between many of the initial factors we anticipated and emissions. In fact, only two features he found were strongly correlated meaning we only could have two emissions questions. This was obviously very disappointing, but there was little we could do. Finishing up the night, we implemented a bunch of the features and I helped Anjola create a POST, and DELETE request for changing and adding NGO tags. I also hard-coded country and emission data into our database, as well as mockarooed some of the entities. I assisted Aahil in the integration of the ML model and the finishing touches. Then, edits were made to the blog and we called it a night. diff --git a/blog/content/micha/phase3.md b/blog/content/micha/phase3.md new file mode 100644 index 0000000..183ad33 --- /dev/null +++ b/blog/content/micha/phase3.md @@ -0,0 +1,19 @@ +--- +title: "Phase III Reflection" +date: 2024-06-06 +draft: false +slug: "3" +tags: ["reflection"] +authors: + - "michael" +--- + +### Project Reflection + +This project phase was dominated by implimentation of the machine learning model that was partially discovered in Phase II. However, as I was building it, nearly every part had to go back to the drawing board. Starting off, the scraper / parser combination I was using to get the data from Eurostat was made for a three dimentional table, not some of the more complex five or six dimentions that some of the new data I found was structured as. As a result, I could either roll my own implementation again or use a library; I choose the later and used fthe SDMX standard after our visit to Eurostat. After discovering some of its odities, such as what needed to be capitalized and what did not, it turned out to be much easier to pull data them my hand rolled solution. After that was switched out, other pieces such as merging the data and standardizing could be pulled from the previous codebase with light moditifcations. + +After getting a new data pipeline constructed, I also went back to the beginning for what data to use in order to draw the conclusion of carbon emissions. First, choosing which interpretation of "Carbon Emissions" had to be made, and, after a little general topic research, I dived into specifics for areas that make up the global carbon emission footprint. These primarily include Energy, Transportation, Agriculture, and Industry. Since we wanted to focus on residential people for this first model, I found great datasets for household energy and transportation, after bouncing ideas off of some of the professors. After finding the data and cleaning it using linear regression within each block of observations, I constructed the model to find that the original set of features insufficiant. To risk repeat myself from the team post, we settled on total household energy rather than by household sector, and used fuel as a proxy for transportation. However, even when using this smaller dataset, we ran into issues of overfitting, caused by the one-hot encoded country data. After dicussion with one of the professors, it was determined that the country was not strictly necessary for the model as the data was linear enough without it. After that, the model was good enough for now, and was tested using LOO-CV to find a final R2. + +### Belgium Reflection + +While not in regards to Belgium, the lecture on the GDPR was one of my favorite guest speakers. Not only was the speaker incredibly knoledgeable, he also operated on a shared basis of understanding, allowing him to skip some of the technical aspects that we already knew. The law and legislation that the EU has been pushing and the reasoning _why_ is super interesting and could potentially give Europe that leg up which the legislators belive it will. I have always admired the digital restraits that the EU puts on companies in favor of people and hearing an expert talk about one specifc one was very interesting. He also aroused something in me that enjoys that type of work where it operates in both a technical aspect as well as, in this case, a legal one. diff --git a/blog/content/team_posts/phase_3/EmissionsVsHouse.jpg b/blog/content/team_posts/phase_3/EmissionsVsHouse.jpg new file mode 100644 index 0000000..9f9a63a Binary files /dev/null and b/blog/content/team_posts/phase_3/EmissionsVsHouse.jpg differ diff --git a/blog/content/team_posts/phase_3/GasVsGreenHouse.jpg b/blog/content/team_posts/phase_3/GasVsGreenHouse.jpg new file mode 100644 index 0000000..0cc8d3c Binary files /dev/null and b/blog/content/team_posts/phase_3/GasVsGreenHouse.jpg differ diff --git a/blog/content/team_posts/phase_3/Image 6-6-24 at 3.46 AM 2.jpg b/blog/content/team_posts/phase_3/Image 6-6-24 at 3.46 AM 2.jpg new file mode 100644 index 0000000..7d610bd Binary files /dev/null and b/blog/content/team_posts/phase_3/Image 6-6-24 at 3.46 AM 2.jpg differ diff --git a/blog/content/team_posts/phase_3/ResiVSConsum.jpg b/blog/content/team_posts/phase_3/ResiVSConsum.jpg new file mode 100644 index 0000000..c6c27cb Binary files /dev/null and b/blog/content/team_posts/phase_3/ResiVSConsum.jpg differ diff --git a/blog/content/team_posts/phase_3/ResiVsGas.jpg b/blog/content/team_posts/phase_3/ResiVsGas.jpg new file mode 100644 index 0000000..6aebe2f Binary files /dev/null and b/blog/content/team_posts/phase_3/ResiVsGas.jpg differ diff --git a/blog/content/team_posts/phase_3/ResidualPlot.jpg b/blog/content/team_posts/phase_3/ResidualPlot.jpg new file mode 100644 index 0000000..06d3dda Binary files /dev/null and b/blog/content/team_posts/phase_3/ResidualPlot.jpg differ diff --git a/blog/content/team_posts/phase_3/carbonfootprint.jpg b/blog/content/team_posts/phase_3/carbonfootprint.jpg new file mode 100644 index 0000000..7d610bd Binary files /dev/null and b/blog/content/team_posts/phase_3/carbonfootprint.jpg differ diff --git a/blog/content/team_posts/phase_3/coolinggraph.jpg b/blog/content/team_posts/phase_3/coolinggraph.jpg new file mode 100644 index 0000000..95bf215 Binary files /dev/null and b/blog/content/team_posts/phase_3/coolinggraph.jpg differ diff --git a/blog/content/team_posts/phase_3/enterprisehome.jpg b/blog/content/team_posts/phase_3/enterprisehome.jpg new file mode 100644 index 0000000..8076ef2 Binary files /dev/null and b/blog/content/team_posts/phase_3/enterprisehome.jpg differ diff --git a/blog/content/team_posts/phase_3/globalddl.png b/blog/content/team_posts/phase_3/globalddl.png new file mode 100644 index 0000000..3f9bb58 Binary files /dev/null and b/blog/content/team_posts/phase_3/globalddl.png differ diff --git a/blog/content/team_posts/phase_3/homepage.jpg b/blog/content/team_posts/phase_3/homepage.jpg new file mode 100644 index 0000000..b84e669 Binary files /dev/null and b/blog/content/team_posts/phase_3/homepage.jpg differ diff --git a/blog/content/team_posts/phase_3/index.md b/blog/content/team_posts/phase_3/index.md new file mode 100644 index 0000000..5bedf93 --- /dev/null +++ b/blog/content/team_posts/phase_3/index.md @@ -0,0 +1,143 @@ +--- +title: "Project - Phase III" +date: 2024-05-28 +draft: false +description: "Implementation" +tags: ["authors", "config", "docs"] +slug: "phase_three" +authors: + - "aahil" + - "anjola" + - "justin" + - "michael" +showAuthorsBadges: false +--- + +# API routes and purposes + +### User Routes + +u/UserCars (GET) +Gets all car survey data history for the user +u/UserAddCar (PUT) +Allows the user to add additional car survey data + +u/UserResidential (GET) +Gets all residential survey data history for the user + +u/UserFlights (GET) +Gets all flight survey data history for the user + +u/UserTransport (GET) +Gets all transport survey data history for the user + +u/UserAddRes (PUT) +Updates this user's residential data based on survey + +### NGO Routes + +n/NGOupdate (PUT) +Updates the NGO given filled out data in NGO table + +n/tags (GET) +Gets the tag description for all tags for the NGO user + +n/EnterpriseMatch (GET) +Gets the all matching enterprise names and descriptions based on tags + +n/ngomine (GET) +Gets all my NGO data from the NGO table + +n/UserMatch (GET) +Gets all of the matching users based on tags + +n/TagDelete (DELETE) +Allows NGOs to delete tags that they were associated with + +n/NGOadd (POST) +Allows NGOs to add tags that they want to be associated with + +### Enterprise Routes + +e/tags (GET) +Gets all of the enterprise’s tags from database + +e/NGOMatch (GET) +Gets all of the matching NGO's based on tags + +e/EntCompare (GET) +Gets my emissions, my country's, and the average of other companies in same country + +e/EntSupplyChain (GET) +Gets all the supply chain history for this enterprise + +e/EntCosts (GET) +Gets all the operating cost history for this enterprise + +e/EntFlights (GET) +Gets all the flights history for this enterprise + +# Application Prototype + + + +| User Homescreen | Enterprise Homescreen | NGO homescreen Diagram | +| -------------------------------------- | ---------------------------------------------- | ------------------------------------ | +| ![User Homescreen](./userhomepage.jpg) | ![Enterprise Homescreen](./enterprisehome.jpg) | ![NGO Homescreen](./ngohomepage.jpg) | + +These are images of each of the user personas. The homescreen for each user persona allows them to implement the features mentioned in their respective user persona stories. The main features for users and enterprises include taking surveys to gather further information, while the NGO persona does not take a survey. Instead, NGOs select the tags they want to be associated with and are matched with users based on these tags. + +| NGO Survey +![NGO Survey](./ngosurvey.jpg) +![NGO Tags](./ngotags.jpg) +In the NGO user persona, NGOs decide which tags they want to be associated with. +NGO users can add or delete tags if they so desire and they can also update their recorded information. + +| Enterprise NGO Match +![NGO Match](./ngomatch.jpg) +Enterprises have a feature where they can match with NGOs with the same tags as displayed in this screenshot. +There is also a comparison to your average company emission within the same country to give enterprises more insight on their emissions. + +| User Survey +![User Survey](./usersurvey.jpg) +![User Survey](./usersurveyres.jpg) +In the general user persona, users take a survey, and based on this survey data, the app interacts with a machine learning model to estimate future carbon emissions and provide data on their current carbon emissions. + +![User History](./userhistory.jpg) +Users can also see their survey history and previous emission data. + +# Machine Learning +The ML model developed is a standard linear regression model used to predict the greenhouse gas emissions of an individual (measured in ktonnes) based on two features: household energy consumption (in TJ) and Motor Gasoline Consumption (in KTOES). + +Originally, household energy consumption was divided into 4 separate categories: heating, cooling, water heating, and cooking. The correlation matrix can be seen below: +![Table](./table.jpg) + + +As observed, all of these features have a strong correlation with carbon, the variable name for what is trying to be predicted. Energy used for cooling (energy_cooling) has the weakest correlation, and, upon being graphed in Figure 2, fails the test of linearity. + +![CoolingGraph](./coolinggraph.jpg) + +Figure 2: A plot of energy used in household cooling against greenhouse gas emissions. Colors represent different countries. + +The was then fitted with the remaining subset features (Energy for heating, water heating, and cooking), reaching an R2 of 0.86 in Leave One Out Cross Validation (LOO-CV). However, the group decided to instead only use the total household value instead of the sub-categories since, for an end user, the total would show up on a power bill rather than each of these categories. Additionally, this is when the Gasoline dataset was added (column name gas) to help incorporate transportation, which is a large share of greenhouse gas emissions. In addition, the countries have been one-hot encoded throughout this process. + +When this model was fit, an R2 of -4476.7 immediately threw red flags. Upon further inspection of the residuals, which summed to -4.196 rather than the expected 0, it was found that the one-hot encoded countries were overfitting the model. With only 12 observations per country, the 28 features (26 for the 27 countries + 2 features) was too much. After fixing this change, the final model produced an R2 of 0.96. The graphs of the residuals can be seen below. + +![ResidualPlot](./ResidualPlot.jpg) + +![Residual vs Gasoline](./ResiVsGas.jpg) + +![Residual vs Consumption](./ResiVSConsum.jpg) + +The residuals generally appear like random noise, and are likewise usually positive. In Figure 5, some autocorrelation can be seen, as some pattern exists. Potentially adding the countries could resolve this, if not for the overfitting issue. In addition, Figure 3 and 4 have some vertical striping, which certainly is not random, but the issue seems minor. + +Finally, the scatterplots for the two features can be seen below. +![Emissions VS House](./EmissionsVsHouse.jpg) + +![Gas Vs Greenhosue](./GasVsGreenHouse.jpg) + +The scatterplots demonstrate that the R2 does make sense and fits given the data, which is extremely linear. As such, all the linear regression conditions are met. + +![Carbon Footprint](./carbonfootprint.jpg) + +This machine learning model predicts the amount of CO2 emissions in tons based on heating and gas usage. This is a rough prediction prone to refinement. \ No newline at end of file diff --git a/blog/content/team_posts/phase_3/ngohomepage.jpg b/blog/content/team_posts/phase_3/ngohomepage.jpg new file mode 100644 index 0000000..00b6b4e Binary files /dev/null and b/blog/content/team_posts/phase_3/ngohomepage.jpg differ diff --git a/blog/content/team_posts/phase_3/ngomatch.jpg b/blog/content/team_posts/phase_3/ngomatch.jpg new file mode 100644 index 0000000..ccb57ad Binary files /dev/null and b/blog/content/team_posts/phase_3/ngomatch.jpg differ diff --git a/blog/content/team_posts/phase_3/ngosurvey.jpg b/blog/content/team_posts/phase_3/ngosurvey.jpg new file mode 100644 index 0000000..333b062 Binary files /dev/null and b/blog/content/team_posts/phase_3/ngosurvey.jpg differ diff --git a/blog/content/team_posts/phase_3/ngotags.jpg b/blog/content/team_posts/phase_3/ngotags.jpg new file mode 100644 index 0000000..e99227f Binary files /dev/null and b/blog/content/team_posts/phase_3/ngotags.jpg differ diff --git a/blog/content/team_posts/phase_3/table.jpg b/blog/content/team_posts/phase_3/table.jpg new file mode 100644 index 0000000..9b4f0e9 Binary files /dev/null and b/blog/content/team_posts/phase_3/table.jpg differ diff --git a/blog/content/team_posts/phase_3/userhistory.jpg b/blog/content/team_posts/phase_3/userhistory.jpg new file mode 100644 index 0000000..0e2aa56 Binary files /dev/null and b/blog/content/team_posts/phase_3/userhistory.jpg differ diff --git a/blog/content/team_posts/phase_3/userhomepage.jpg b/blog/content/team_posts/phase_3/userhomepage.jpg new file mode 100644 index 0000000..baa6248 Binary files /dev/null and b/blog/content/team_posts/phase_3/userhomepage.jpg differ diff --git a/blog/content/team_posts/phase_3/usersurvey.jpg b/blog/content/team_posts/phase_3/usersurvey.jpg new file mode 100644 index 0000000..4b996a0 Binary files /dev/null and b/blog/content/team_posts/phase_3/usersurvey.jpg differ diff --git a/blog/content/team_posts/phase_3/usersurveyres.jpg b/blog/content/team_posts/phase_3/usersurveyres.jpg new file mode 100644 index 0000000..f62f687 Binary files /dev/null and b/blog/content/team_posts/phase_3/usersurveyres.jpg differ diff --git a/database/carbon.sql b/database/00_carbon.sql similarity index 78% rename from database/carbon.sql rename to database/00_carbon.sql index 6ddebce..8251504 100644 --- a/database/carbon.sql +++ b/database/00_carbon.sql @@ -1,23 +1,34 @@ DROP DATABASE IF EXISTS CarbonConnect; CREATE DATABASE IF NOT EXISTS CarbonConnect; -USE CarbonConnect; +Use CarbonConnect; + + +DROP TABLE IF EXISTS Beta_User; +CREATE TABLE IF NOT EXISTS Beta_User ( + id INT PRIMARY KEY AUTO_INCREMENT, + user_values VARCHAR(100) +); + +DROP TABLE IF EXISTS Beta_Enterprise; +CREATE TABLE IF NOT EXISTS Beta_Enterprise ( + id INT PRIMARY KEY AUTO_INCREMENT, + enterprise_values VARCHAR(100) +); DROP TABLE IF EXISTS Country; CREATE TABLE IF NOT EXISTS Country ( - id INT PRIMARY KEY, - emissions VARCHAR(255), + id INT PRIMARY KEY AUTO_INCREMENT, + emissions FLOAT(5), name VARCHAR(50) ); DROP TABLE IF EXISTS NGO; CREATE TABLE IF NOT EXISTS NGO ( - id INT PRIMARY KEY, - logo VARCHAR(255) UNIQUE NOT NULL, - website VARCHAR(255) UNIQUE NOT NULL, + id INT PRIMARY KEY AUTO_INCREMENT, + website VARCHAR(255) NOT NULL, name VARCHAR(50), - mission_tags VARCHAR(50), contact VARCHAR(50) ); @@ -25,7 +36,6 @@ CREATE TABLE IF NOT EXISTS NGO ( DROP TABLE IF EXISTS User; CREATE TABLE IF NOT EXISTS User ( id INT PRIMARY KEY, - tags VARCHAR(255), emission_result INT, country_id INT, FOREIGN KEY (country_id) REFERENCES Country(id) @@ -39,9 +49,8 @@ CREATE TABLE IF NOT EXISTS Enterprises ( id INT PRIMARY KEY, name VARCHAR(50), type VARCHAR(255), - emission_result VARCHAR(255), - emission_tags VARCHAR(255), - misc_emissions VARCHAR(255), + emission_result INT, + misc_emissions INT, country_id INT, FOREIGN KEY (country_id) REFERENCES Country(id) ON UPDATE CASCADE @@ -94,9 +103,8 @@ CREATE TABLE IF NOT EXISTS Flight ( id INT PRIMARY KEY, user_id INT, enterprise_id INT, - Date_taken DATETIME, - origin VARCHAR(250), - destination VARCHAR(250), + date_taken DATETIME, + distance INT, emission_tags VARCHAR(50), aircraft_type VARCHAR(250), FOREIGN KEY (user_id) REFERENCES User(id) @@ -110,11 +118,11 @@ CREATE TABLE IF NOT EXISTS Flight ( DROP TABLE IF EXISTS Cars; CREATE TABLE IF NOT EXISTS Cars ( - id INT PRIMARY KEY, + id INT PRIMARY KEY AUTO_INCREMENT, user_id INT, fuel_type VARCHAR(50), emission_tags VARCHAR(50), - distance INT, + fuel_used FLOAT(20), FOREIGN KEY (user_id) REFERENCES User(id) ON UPDATE CASCADE ON DELETE RESTRICT @@ -123,11 +131,13 @@ CREATE TABLE IF NOT EXISTS Cars ( DROP TABLE IF EXISTS ResData; CREATE TABLE IF NOT EXISTS ResData ( - id INT PRIMARY KEY, + id INT PRIMARY KEY AUTO_INCREMENT, user_id INT, - elec_usage VARCHAR(250), + elec_usage FLOAT(5), emission_tags VARCHAR(250), - heat_gas VARCHAR(50), + heating FLOAT(5), + water_heating FLOAT(5), + cooking_gas FLOAT(5), FOREIGN KEY (user_id) REFERENCES User(id) ON UPDATE CASCADE ON DELETE RESTRICT @@ -188,6 +198,12 @@ CREATE TABLE IF NOT EXISTS CostTags ( ON DELETE RESTRICT ); +DROP TABLE IF EXISTS EmissionTags; +CREATE TABLE IF NOT EXISTS EmissionTags ( + id INT PRIMARY KEY, + description VARCHAR(250) +); + DROP TABLE IF EXISTS EntTags; CREATE TABLE IF NOT EXISTS EntTags ( enterprise_id INT, @@ -201,8 +217,6 @@ CREATE TABLE IF NOT EXISTS EntTags ( ON DELETE RESTRICT ); - - DROP TABLE IF EXISTS UserTags; CREATE TABLE IF NOT EXISTS UserTags ( user_id INT, @@ -216,8 +230,6 @@ CREATE TABLE IF NOT EXISTS UserTags ( ON DELETE RESTRICT ); - - DROP TABLE IF EXISTS NGOTags; CREATE TABLE IF NOT EXISTS NGOTags ( ngo_id INT, @@ -231,15 +243,29 @@ CREATE TABLE IF NOT EXISTS NGOTags ( ON DELETE RESTRICT ); - - - -DROP TABLE IF EXISTS EmissionTags; -CREATE TABLE IF NOT EXISTS EmissionTags ( - id INT PRIMARY KEY, - description VARCHAR(250) +DROP TABLE IF EXISTS NGOEnterprise; +CREATE TABLE IF NOT EXISTS NGOEnterprise ( + ngo_id INT, + enterprise_id INT, + PRIMARY KEY(ngo_id, enterprise_id), + FOREIGN KEY (ngo_id) REFERENCES NGO(id) + ON UPDATE CASCADE + ON DELETE RESTRICT, + FOREIGN KEY (enterprise_id) REFERENCES Enterprises(id) + ON UPDATE CASCADE + ON DELETE RESTRICT +); +DROP TABLE IF EXISTS NGOUser; +CREATE TABLE IF NOT EXISTS NGOUser ( + ngo_id INT, + user_id INT, + PRIMARY KEY(ngo_id, user_id), + FOREIGN KEY (ngo_id) REFERENCES NGO(id) + ON UPDATE CASCADE + ON DELETE RESTRICT, + FOREIGN KEY (user_id) REFERENCES User(id) + ON UPDATE CASCADE + ON DELETE RESTRICT ); - - diff --git a/database/01_carbon-data.sql b/database/01_carbon-data.sql new file mode 100644 index 0000000..2e6ac69 --- /dev/null +++ b/database/01_carbon-data.sql @@ -0,0 +1,424 @@ +USE CarbonConnect; + +INSERT INTO Country (id, emissions, name) VALUES (1, 108871.68, 'Belgium'); +INSERT INTO Country (id, emissions, name) VALUES (2, 59082.72, 'Bulgaria'); +INSERT INTO Country (id, emissions, name) VALUES (3, 118500.35, 'Czechia'); +INSERT INTO Country (id, emissions, name) VALUES (4, 44243.3, 'Denmark'); +INSERT INTO Country (id, emissions, name) VALUES (5, 777380.09, 'Germany'); +INSERT INTO Country (id, emissions, name) VALUES (6, 14125.06, 'Estonia'); +INSERT INTO Country (id, emissions, name) VALUES (7, 63650.14, 'Ireland'); +INSERT INTO Country (id, emissions, name) VALUES (8, 82242.9, 'Greece'); +INSERT INTO Country (id, emissions, name) VALUES (9, 309286.15, 'Spain'); +INSERT INTO Country (id, emissions, name) VALUES (10, 409732.55, 'France'); +INSERT INTO Country (id, emissions, name) VALUES (11, 26258.1, 'Croatia'); +INSERT INTO Country (id, emissions, name) VALUES (12, 419467.07, 'Italy'); +INSERT INTO Country (id, emissions, name) VALUES (13, 9572.78, 'Cyprus'); +INSERT INTO Country (id, emissions, name) VALUES (14, 10568.91, 'Latvia'); +INSERT INTO Country (id, emissions, name) VALUES (15, 19249.2, 'Lithuania'); +INSERT INTO Country (id, emissions, name) VALUES (16, 10145.27, 'Luxembourg'); +INSERT INTO Country (id, emissions, name) VALUES (17, 60331.72, 'Hungary'); +INSERT INTO Country (id, emissions, name) VALUES (18, 2647.72, 'Malta'); +INSERT INTO Country (id, emissions, name) VALUES (19, 162999.6, 'Netherlands'); +INSERT INTO Country (id, emissions, name) VALUES (20, 74825.78, 'Austria'); +INSERT INTO Country (id, emissions, name) VALUES (21, 383434.04, 'Poland'); +INSERT INTO Country (id, emissions, name) VALUES (22, 60581.36, 'Portugal'); +INSERT INTO Country (id, emissions, name) VALUES (23, 109992.76, 'Romania'); +INSERT INTO Country (id, emissions, name) VALUES (24, 15676.64, 'Slovenia'); +INSERT INTO Country (id, emissions, name) VALUES (25, 37183.78, 'Slovakia'); +INSERT INTO Country (id, emissions, name) VALUES (26, 47341.71, 'Finland'); +INSERT INTO Country (id, emissions, name) VALUES (27, 47074.61, 'Sweden'); +INSERT INTO Country (id, emissions, name) VALUES (28, 5402.55, 'Iceland'); +INSERT INTO Country (id, emissions, name) VALUES (29, 50255.43, 'Norway'); +INSERT INTO Country (id, emissions, name) VALUES (30, 45847.17, 'Switzerland'); + +INSERT INTO EmissionTags (id, description) VALUES +(1, 'Transport'), +(2, 'Flights'), +(3, 'Energy'), +(4, 'Heat'); + +insert into NGO (id, website, name, contact) values (1, 'EcoUnity.com', 'EcoUnity Europe', 'Joe@EcoUnity.org'); +insert into NGO (id, website, name, contact) values (2, 'seesaa.net', 'Grimes, Fahey and Mertz', 'rattlee1@accuweather.com'); +insert into NGO (id, website, name, contact) values (3, 'fema.gov', 'Terry-Witting', 'sdand2@angelfire.com'); +insert into NGO (id, website, name, contact) values (4, 'twitpic.com', 'Kub-Anderson', 'swilson3@pinterest.com'); +insert into NGO (id, website, name, contact) values (5, 'netvibes.com', 'Bosco, Davis and Feil', 'baspinal4@example.com'); +insert into NGO (id, website, name, contact) values (6, 'pbs.org', 'Morar LLC', 'lwagg5@answers.com'); +insert into NGO (id, website, name, contact) values (7, 'bloglovin.com', 'Macejkovic-Ebert', 'rmushett6@pbs.org'); +insert into NGO (id, website, name, contact) values (8, 'fda.gov', 'Cormier, Ratke and Koelpin', 'weakins7@wordpress.com'); +insert into NGO (id, website, name, contact) values (9, 'ustream.tv', 'Becker-Brakus', 'mchislett8@imdb.com'); +insert into NGO (id, website, name, contact) values (10, 'elegantthemes.com', 'Miller-O''Conner', 'pchrippes9@auda.org.au'); +insert into NGO (id, website, name, contact) values (11, 'ezinearticles.com', 'Hirthe-Emmerich', 'kmillionsa@tamu.edu'); +insert into NGO (id, website, name, contact) values (12, 'simplemachines.org', 'Jacobson, Torphy and Strosin', 'sgowanlockb@nature.com'); +insert into NGO (id, website, name, contact) values (13, 'bigcartel.com', 'Waters, Legros and Toy', 'npirdyc@sphinn.com'); +insert into NGO (id, website, name, contact) values (14, 'apple.com', 'Ortiz, Pollich and Jerde', 'tiversd@wp.com'); +insert into NGO (id, website, name, contact) values (15, 'slashdot.org', 'Corwin-Shields', 'bbeechcrafte@google.com.br'); +insert into NGO (id, website, name, contact) values (16, 'networksolutions.com', 'Zieme, Bergstrom and Schultz', 'srowswellf@moonfruit.com'); +insert into NGO (id, website, name, contact) values (17, 'un.org', 'Hand-Schroeder', 'rtimbridgeg@mayoclinic.com'); +insert into NGO (id, website, name, contact) values (18, 'phoca.cz', 'Feest-Armstrong', 'tionnh@slashdot.org'); +insert into NGO (id, website, name, contact) values (19, 'blogspot.com', 'Rice Inc', 'struelocki@mtv.com'); +insert into NGO (id, website, name, contact) values (20, 'businessinsider.com', 'Marks Group', 'brothamj@addtoany.com'); +insert into NGO (id, website, name, contact) values (21, 'hud.gov', 'Barrows Inc', 'elownesk@gizmodo.com'); +insert into NGO (id, website, name, contact) values (22, 'goodreads.com', 'Deckow-Adams', 'sbrowettl@blogspot.com'); +insert into NGO (id, website, name, contact) values (23, 'homestead.com', 'Brekke, Hauck and Buckridge', 'cjeevesm@japanpost.jp'); +insert into NGO (id, website, name, contact) values (24, 'blogtalkradio.com', 'Hackett Inc', 'skerrichn@nih.gov'); +insert into NGO (id, website, name, contact) values (25, 'economist.com', 'Veum and Sons', 'jphilbrooko@blogspot.com'); +insert into NGO (id, website, name, contact) values (26, 'ameblo.jp', 'Gutmann-Lockman', 'gharkessp@bandcamp.com'); +insert into NGO (id, website, name, contact) values (27, 'dropbox.com', 'Kutch-Hahn', 'eaveyardq@umn.edu'); +insert into NGO (id, website, name, contact) values (28, 'dedecms.com', 'Fay-Murphy', 'kyellowleesr@omniture.com'); +insert into NGO (id, website, name, contact) values (29, '1und1.de', 'Kohler, Ankunding and Doyle', 'darmells@drupal.org'); +insert into NGO (id, website, name, contact) values (30, 'webnode.com', 'Lueilwitz-McGlynn', 'akeeleyt@cyberchimps.com'); +insert into NGO (id, website, name, contact) values (31, 'prnewswire.com', 'Baumbach-Kemmer', 'ksucreu@imageshack.us'); +insert into NGO (id, website, name, contact) values (32, 'lycos.com', 'Rodriguez, Kassulke and Moore', 'ldallingv@phpbb.com'); +insert into NGO (id, website, name, contact) values (33, 't-online.de', 'Grimes Group', 'fjanotaw@odnoklassniki.ru'); +insert into NGO (id, website, name, contact) values (34, 'drupal.org', 'Schmitt Group', 'jhimsworthx@icio.us'); +insert into NGO (id, website, name, contact) values (35, 'mlb.com', 'Mohr-Huel', 'tcunliffey@geocities.com'); +insert into NGO (id, website, name, contact) values (36, 'uol.com.br', 'Mante, Simonis and Gusikowski', 'mgoodwinz@pcworld.com'); +insert into NGO (id, website, name, contact) values (37, 'utexas.edu', 'Upton LLC', 'hjoska10@theglobeandmail.com'); +insert into NGO (id, website, name, contact) values (38, 'infoseek.co.jp', 'Steuber-Pfannerstill', 'aalsina11@cpanel.net'); +insert into NGO (id, website, name, contact) values (39, 'imgur.com', 'Lockman, Baumbach and Cassin', 'cnassie12@diigo.com'); +insert into NGO (id, website, name, contact) values (40, 'list-manage.com', 'Kreiger-Bednar', 'rfretwell13@cnet.com'); +insert into NGO (id, website, name, contact) values (41, 'netscape.com', 'Lindgren, McLaughlin and Wisoky', 'xhealings14@pinterest.com'); +insert into NGO (id, website, name, contact) values (42, 'wikia.com', 'Ernser LLC', 'tdurrad15@dyndns.org'); +insert into NGO (id, website, name, contact) values (43, 'wordpress.org', 'Becker, Quigley and Grimes', 'awaulker16@360.cn'); +insert into NGO (id, website, name, contact) values (44, 'opensource.org', 'Hudson, Shields and Buckridge', 'cgussie17@blinklist.com'); +insert into NGO (id, website, name, contact) values (45, 'businessinsider.com', 'Schaden-Stanton', 'gmangon18@google.com.au'); +insert into NGO (id, website, name, contact) values (46, 'unicef.org', 'Wunsch and Sons', 'pbullock19@amazonaws.com'); +insert into NGO (id, website, name, contact) values (47, 'salon.com', 'Glover-Herzog', 'gvenney1a@dell.com'); +insert into NGO (id, website, name, contact) values (48, 'mac.com', 'Smitham-Konopelski', 'kpugsley1b@dailymail.co.uk'); +insert into NGO (id, website, name, contact) values (49, 'washingtonpost.com', 'Dickens-Rohan', 'nbartoloma1c@yellowpages.com'); +insert into NGO (id, website, name, contact) values (50, 'istockphoto.com', 'Nader Group', 'jletts1d@bbb.org'); + +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (1, 'EcoForward Enterprises', 'Lighting', 160, 112, 20); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (2, 'Padberg, McKenzie and Ritchie', 'Real Estate Investment Trusts', 144, 94, 1); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (3, 'Batz-Schneider', 'Savings Institutions', 53, 136, 9); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (4, 'Aufderhar Inc', 'Oil/Gas Transmission', 158, 50, 4); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (5, 'Runte-Labadie', 'Investment Bankers/Brokers/Service', 91, 232, 13); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (6, 'Denesik-O''Connell', 'n/a', 16, 272, 1); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (7, 'Adams-Pagac', 'Computer Software: Programming, Data Processing', 229, 195, 4); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (8, 'Gulgowski, Prohaska and Lesch', 'n/a', 73, 198, 22); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (9, 'Windler, Kuhlman and Spencer', 'Biotechnology: Electromedical & Electrotherapeutic Apparatus', 127, 217, 8); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (10, 'Orn LLC', 'Industrial Machinery/Components', 188, 180, 5); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (11, 'Smitham, Rowe and Price', 'Major Pharmaceuticals', 267, 285, 10); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (12, 'Hoppe-Roberts', 'Major Pharmaceuticals', 101, 294, 13); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (13, 'Considine Group', 'Newspapers/Magazines', 93, 181, 24); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (14, 'Kassulke, Stark and O''Kon', 'Major Banks', 300, 164, 1); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (15, 'Lindgren Group', 'Farming/Seeds/Milling', 60, 270, 2); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (16, 'Macejkovic, Ullrich and Auer', 'Oilfield Services/Equipment', 240, 247, 21); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (17, 'Pfannerstill, Weissnat and Haley', 'Coal Mining', 20, 34, 7); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (18, 'Zieme Group', 'Medical/Nursing Services', 274, 273, 17); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (19, 'Buckridge-Rath', 'n/a', 181, 264, 8); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (20, 'Rempel Inc', 'Major Pharmaceuticals', 287, 202, 9); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (21, 'Goldner-Heaney', 'Specialty Chemicals', 264, 285, 22); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (22, 'Kuhic Group', 'Beverages (Production/Distribution)', 111, 238, 8); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (23, 'Brakus, Gottlieb and Rippin', 'Oil & Gas Production', 96, 16, 20); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (24, 'Pacocha-Prohaska', 'Major Pharmaceuticals', 37, 168, 18); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (25, 'Runolfsdottir-Kovacek', 'EDP Services', 155, 71, 19); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (26, 'Veum, Bartoletti and Crona', 'Industrial Specialties', 295, 14, 14); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (27, 'Parker-Green', 'Business Services', 193, 8, 11); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (28, 'Bernhard-Ratke', 'n/a', 239, 220, 28); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (29, 'Stoltenberg-Harris', 'n/a', 203, 140, 11); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (30, 'Reynolds Group', 'Ophthalmic Goods', 67, 181, 12); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (31, 'Pagac-Hermann', 'Electrical Products', 107, 66, 24); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (32, 'Stroman Group', 'n/a', 88, 261, 16); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (33, 'Armstrong-Wilkinson', 'Other Specialty Stores', 238, 99, 16); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (34, 'Waelchi, Witting and Brown', 'n/a', 14, 191, 5); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (35, 'Jakubowski-Haley', 'Hospital/Nursing Management', 127, 140, 9); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (36, 'Friesen, Kutch and Lehner', 'Semiconductors', 209, 175, 20); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (37, 'Ullrich Group', 'Hotels/Resorts', 18, 74, 18); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (38, 'Kertzmann, McGlynn and Halvorson', 'n/a', 248, 42, 20); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (39, 'Davis, Mueller and Tremblay', 'Finance: Consumer Services', 136, 153, 27); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (40, 'Schulist-Shanahan', 'Metal Fabrications', 186, 230, 10); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (41, 'DuBuque and Sons', 'Telecommunications Equipment', 224, 136, 12); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (42, 'Torphy-Rath', 'Homebuilding', 27, 35, 26); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (43, 'Beatty LLC', 'Industrial Machinery/Components', 241, 167, 4); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (44, 'Doyle, Morar and Lehner', 'Major Banks', 253, 198, 12); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (45, 'Crooks Inc', 'Automotive Aftermarket', 158, 4, 20); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (46, 'Hamill Inc', 'Major Pharmaceuticals', 54, 132, 14); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (47, 'Kshlerin and Sons', 'Air Freight/Delivery Services', 53, 257, 1); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (48, 'Schmitt, Swaniawski and Buckridge', 'n/a', 171, 180, 10); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (49, 'Schinner, Sanford and Stark', 'Metal Fabrications', 180, 261, 9); +insert into Enterprises (id, name, type, emission_result, misc_emissions, country_id) values (50, 'Bins, Heller and Ondricka', 'Packaged Foods', 199, 150, 16); + + +insert into User (id, emission_result, country_id) values (1, 10, 17); +insert into User (id, emission_result, country_id) values (2, 45, 20); +insert into User (id, emission_result, country_id) values (3, 51, 23); +insert into User (id, emission_result, country_id) values (4, 20, 24); +insert into User (id, emission_result, country_id) values (5, 36, 9); +insert into User (id, emission_result, country_id) values (6, 69, 1); +insert into User (id, emission_result, country_id) values (7, 20, 5); +insert into User (id, emission_result, country_id) values (8, 91, 6); +insert into User (id, emission_result, country_id) values (9, 81, 29); +insert into User (id, emission_result, country_id) values (10, 84, 26); +insert into User (id, emission_result, country_id) values (11, 85, 11); +insert into User (id, emission_result, country_id) values (12, 16, 12); +insert into User (id, emission_result, country_id) values (13, 90, 24); +insert into User (id, emission_result, country_id) values (14, 29, 29); +insert into User (id, emission_result, country_id) values (15, 68, 7); +insert into User (id, emission_result, country_id) values (16, 30, 5); +insert into User (id, emission_result, country_id) values (17, 19, 15); +insert into User (id, emission_result, country_id) values (18, 86, 22); +insert into User (id, emission_result, country_id) values (19, 80, 16); +insert into User (id, emission_result, country_id) values (20, 39, 8); +insert into User (id, emission_result, country_id) values (21, 36, 19); +insert into User (id, emission_result, country_id) values (22, 16, 9); +insert into User (id, emission_result, country_id) values (23, 43, 15); +insert into User (id, emission_result, country_id) values (24, 55, 10); +insert into User (id, emission_result, country_id) values (25, 6, 11); +insert into User (id, emission_result, country_id) values (26, 53, 21); +insert into User (id, emission_result, country_id) values (27, 93, 5); +insert into User (id, emission_result, country_id) values (28, 68, 11); +insert into User (id, emission_result, country_id) values (29, 63, 23); +insert into User (id, emission_result, country_id) values (30, 100, 23); +insert into User (id, emission_result, country_id) values (31, 81, 19); +insert into User (id, emission_result, country_id) values (32, 34, 23); +insert into User (id, emission_result, country_id) values (33, 59, 25); +insert into User (id, emission_result, country_id) values (34, 56, 22); +insert into User (id, emission_result, country_id) values (35, 16, 4); +insert into User (id, emission_result, country_id) values (36, 48, 23); +insert into User (id, emission_result, country_id) values (37, 51, 9); +insert into User (id, emission_result, country_id) values (38, 69, 17); +insert into User (id, emission_result, country_id) values (39, 11, 29); +insert into User (id, emission_result, country_id) values (40, 58, 19); +insert into User (id, emission_result, country_id) values (41, 59, 14); +insert into User (id, emission_result, country_id) values (42, 68, 8); +insert into User (id, emission_result, country_id) values (43, 51, 1); +insert into User (id, emission_result, country_id) values (44, 5, 20); +insert into User (id, emission_result, country_id) values (45, 76, 2); +insert into User (id, emission_result, country_id) values (46, 8, 30); +insert into User (id, emission_result, country_id) values (47, 42, 4); +insert into User (id, emission_result, country_id) values (48, 76, 9); +insert into User (id, emission_result, country_id) values (49, 88, 27); +insert into User (id, emission_result, country_id) values (50, 51, 10); + +insert into EntTags (enterprise_id, tag_id) values (1, 1); +insert into EntTags (enterprise_id, tag_id) values (1, 2); +insert into EntTags (enterprise_id, tag_id) values (2, 3); +insert into EntTags (enterprise_id, tag_id) values (2, 1); +insert into EntTags (enterprise_id, tag_id) values (3, 2); +insert into EntTags (enterprise_id, tag_id) values (3, 3); +insert into EntTags (enterprise_id, tag_id) values (4, 1); +insert into EntTags (enterprise_id, tag_id) values (4, 2); +insert into EntTags (enterprise_id, tag_id) values (14, 4); +insert into EntTags (enterprise_id, tag_id) values (44, 1); +insert into EntTags (enterprise_id, tag_id) values (17, 1); +insert into EntTags (enterprise_id, tag_id) values (16, 2); +insert into EntTags (enterprise_id, tag_id) values (47, 2); +insert into EntTags (enterprise_id, tag_id) values (19, 2); +insert into EntTags (enterprise_id, tag_id) values (35, 2); +insert into EntTags (enterprise_id, tag_id) values (28, 2); +insert into EntTags (enterprise_id, tag_id) values (1, 3); +insert into EntTags (enterprise_id, tag_id) values (14, 2); +insert into EntTags (enterprise_id, tag_id) values (22, 4); +insert into EntTags (enterprise_id, tag_id) values (31, 1); +insert into EntTags (enterprise_id, tag_id) values (29, 3); +insert into EntTags (enterprise_id, tag_id) values (50, 3); +insert into EntTags (enterprise_id, tag_id) values (36, 1); +insert into EntTags (enterprise_id, tag_id) values (31, 2); +insert into EntTags (enterprise_id, tag_id) values (10, 1); +insert into EntTags (enterprise_id, tag_id) values (3, 1); +insert into EntTags (enterprise_id, tag_id) values (37, 1); +insert into EntTags (enterprise_id, tag_id) values (49, 1); +insert into EntTags (enterprise_id, tag_id) values (16, 3); +insert into EntTags (enterprise_id, tag_id) values (32, 3); +insert into EntTags (enterprise_id, tag_id) values (8, 2); +insert into EntTags (enterprise_id, tag_id) values (34, 2); +insert into EntTags (enterprise_id, tag_id) values (14, 3); +insert into EntTags (enterprise_id, tag_id) values (20, 4); +insert into EntTags (enterprise_id, tag_id) values (44, 2); +insert into EntTags (enterprise_id, tag_id) values (41, 2); +insert into EntTags (enterprise_id, tag_id) values (27, 4); +insert into EntTags (enterprise_id, tag_id) values (28, 3); +insert into EntTags (enterprise_id, tag_id) values (39, 3); +insert into EntTags (enterprise_id, tag_id) values (48, 4); +insert into EntTags (enterprise_id, tag_id) values (36, 3); +insert into EntTags (enterprise_id, tag_id) values (33, 1); +insert into EntTags (enterprise_id, tag_id) values (50, 4); +insert into EntTags (enterprise_id, tag_id) values (32, 2); +insert into EntTags (enterprise_id, tag_id) values (23, 3); +insert into EntTags (enterprise_id, tag_id) values (31, 4); +insert into EntTags (enterprise_id, tag_id) values (38, 2); +insert into EntTags (enterprise_id, tag_id) values (1, 4); +insert into EntTags (enterprise_id, tag_id) values (40, 4); +insert into EntTags (enterprise_id, tag_id) values (9, 1); +insert into EntTags (enterprise_id, tag_id) values (29, 4); +insert into EntTags (enterprise_id, tag_id) values (7, 4); +insert into EntTags (enterprise_id, tag_id) values (24, 2); +insert into EntTags (enterprise_id, tag_id) values (45, 3); +insert into EntTags (enterprise_id, tag_id) values (21, 3); +insert into EntTags (enterprise_id, tag_id) values (6, 3); +insert into EntTags (enterprise_id, tag_id) values (5, 1); +insert into EntTags (enterprise_id, tag_id) values (49, 4); +insert into EntTags (enterprise_id, tag_id) values (36, 2); +insert into EntTags (enterprise_id, tag_id) values (10, 2); +insert into EntTags (enterprise_id, tag_id) values (36, 4); +insert into EntTags (enterprise_id, tag_id) values (11, 4); +insert into EntTags (enterprise_id, tag_id) values (13, 3); +insert into EntTags (enterprise_id, tag_id) values (20, 3); +insert into EntTags (enterprise_id, tag_id) values (46, 2); +insert into EntTags (enterprise_id, tag_id) values (2, 4); +insert into EntTags (enterprise_id, tag_id) values (30, 4); +insert into EntTags (enterprise_id, tag_id) values (17, 3); +insert into EntTags (enterprise_id, tag_id) values (26, 1); +insert into EntTags (enterprise_id, tag_id) values (2, 2); +insert into EntTags (enterprise_id, tag_id) values (30, 1); +insert into EntTags (enterprise_id, tag_id) values (16, 4); +insert into EntTags (enterprise_id, tag_id) values (49, 2); +insert into EntTags (enterprise_id, tag_id) values (45, 4); +insert into EntTags (enterprise_id, tag_id) values (23, 1); +insert into EntTags (enterprise_id, tag_id) values (15, 4); + +insert into NGOTags (ngo_id, tag_id) values (32, 3); +insert into NGOTags (ngo_id, tag_id) values (29, 1); +insert into NGOTags (ngo_id, tag_id) values (9, 1); +insert into NGOTags (ngo_id, tag_id) values (34, 3); +insert into NGOTags (ngo_id, tag_id) values (22, 4); +insert into NGOTags (ngo_id, tag_id) values (17, 3); +insert into NGOTags (ngo_id, tag_id) values (6, 3); +insert into NGOTags (ngo_id, tag_id) values (2, 1); +insert into NGOTags (ngo_id, tag_id) values (17, 2); +insert into NGOTags (ngo_id, tag_id) values (41, 4); +insert into NGOTags (ngo_id, tag_id) values (21, 4); +insert into NGOTags (ngo_id, tag_id) values (40, 4); +insert into NGOTags (ngo_id, tag_id) values (30, 3); +insert into NGOTags (ngo_id, tag_id) values (15, 2); +insert into NGOTags (ngo_id, tag_id) values (25, 4); +insert into NGOTags (ngo_id, tag_id) values (44, 1); +insert into NGOTags (ngo_id, tag_id) values (33, 4); +insert into NGOTags (ngo_id, tag_id) values (37, 4); +insert into NGOTags (ngo_id, tag_id) values (22, 2); +insert into NGOTags (ngo_id, tag_id) values (22, 3); +insert into NGOTags (ngo_id, tag_id) values (9, 2); +insert into NGOTags (ngo_id, tag_id) values (46, 1); +insert into NGOTags (ngo_id, tag_id) values (12, 1); +insert into NGOTags (ngo_id, tag_id) values (43, 3); +insert into NGOTags (ngo_id, tag_id) values (27, 4); +insert into NGOTags (ngo_id, tag_id) values (24, 2); +insert into NGOTags (ngo_id, tag_id) values (44, 3); +insert into NGOTags (ngo_id, tag_id) values (11, 4); +insert into NGOTags (ngo_id, tag_id) values (1, 4); +insert into NGOTags (ngo_id, tag_id) values (18, 1); +insert into NGOTags (ngo_id, tag_id) values (39, 2); +insert into NGOTags (ngo_id, tag_id) values (10, 2); +insert into NGOTags (ngo_id, tag_id) values (38, 2); +insert into NGOTags (ngo_id, tag_id) values (31, 3); +insert into NGOTags (ngo_id, tag_id) values (50, 2); +insert into NGOTags (ngo_id, tag_id) values (30, 4); +insert into NGOTags (ngo_id, tag_id) values (37, 2); +insert into NGOTags (ngo_id, tag_id) values (42, 3); +insert into NGOTags (ngo_id, tag_id) values (35, 3); +insert into NGOTags (ngo_id, tag_id) values (8, 3); +insert into NGOTags (ngo_id, tag_id) values (20, 4); +insert into NGOTags (ngo_id, tag_id) values (45, 3); +insert into NGOTags (ngo_id, tag_id) values (23, 3); +insert into NGOTags (ngo_id, tag_id) values (5, 1); +insert into NGOTags (ngo_id, tag_id) values (38, 1); +insert into NGOTags (ngo_id, tag_id) values (15, 4); +insert into NGOTags (ngo_id, tag_id) values (38, 4); +insert into NGOTags (ngo_id, tag_id) values (49, 2); +insert into NGOTags (ngo_id, tag_id) values (36, 1); +insert into NGOTags (ngo_id, tag_id) values (13, 1); +insert into NGOTags (ngo_id, tag_id) values (28, 1); +insert into NGOTags (ngo_id, tag_id) values (43, 4); +insert into NGOTags (ngo_id, tag_id) values (36, 2); +insert into NGOTags (ngo_id, tag_id) values (33, 3); +insert into NGOTags (ngo_id, tag_id) values (14, 2); +insert into NGOTags (ngo_id, tag_id) values (4, 2); +insert into NGOTags (ngo_id, tag_id) values (50, 4); +insert into NGOTags (ngo_id, tag_id) values (16, 4); +insert into NGOTags (ngo_id, tag_id) values (47, 1); +insert into NGOTags (ngo_id, tag_id) values (48, 3); +insert into NGOTags (ngo_id, tag_id) values (1, 3); +insert into NGOTags (ngo_id, tag_id) values (26, 3); +insert into NGOTags (ngo_id, tag_id) values (42, 1); +insert into NGOTags (ngo_id, tag_id) values (19, 1); +insert into NGOTags (ngo_id, tag_id) values (20, 3); +insert into NGOTags (ngo_id, tag_id) values (7, 4); +insert into NGOTags (ngo_id, tag_id) values (18, 4); +insert into NGOTags (ngo_id, tag_id) values (3, 2); +insert into NGOTags (ngo_id, tag_id) values (14, 4); +insert into NGOTags (ngo_id, tag_id) values (47, 4); +insert into NGOTags (ngo_id, tag_id) values (12, 2); +insert into NGOTags (ngo_id, tag_id) values (31, 1); +insert into NGOTags (ngo_id, tag_id) values (7, 2); +insert into NGOTags (ngo_id, tag_id) values (34, 1); +insert into NGOTags (ngo_id, tag_id) values (8, 1); +insert into NGOTags (ngo_id, tag_id) values (50, 1); +insert into NGOTags (ngo_id, tag_id) values (37, 3); +insert into NGOTags (ngo_id, tag_id) values (13, 3); +insert into NGOTags (ngo_id, tag_id) values (35, 4); +insert into NGOTags (ngo_id, tag_id) values (41, 2); +insert into NGOTags (ngo_id, tag_id) values (10, 4); +insert into NGOTags (ngo_id, tag_id) values (25, 1); +insert into NGOTags (ngo_id, tag_id) values (48, 4); +insert into NGOTags (ngo_id, tag_id) values (24, 4); +insert into NGOTags (ngo_id, tag_id) values (2, 4); +insert into NGOTags (ngo_id, tag_id) values (19, 4); +insert into NGOTags (ngo_id, tag_id) values (5, 4); +insert into NGOTags (ngo_id, tag_id) values (28, 4); +insert into NGOTags (ngo_id, tag_id) values (12, 4); +insert into NGOTags (ngo_id, tag_id) values (3, 1); +insert into NGOTags (ngo_id, tag_id) values (6, 4); +insert into NGOTags (ngo_id, tag_id) values (43, 1); +insert into NGOTags (ngo_id, tag_id) values (39, 4); +insert into NGOTags (ngo_id, tag_id) values (23, 4); +insert into NGOTags (ngo_id, tag_id) values (26, 1); +insert into NGOTags (ngo_id, tag_id) values (4, 3); + +insert into UserTags (user_id, tag_id) values (5, 1); +insert into UserTags (user_id, tag_id) values (33, 3); +insert into UserTags (user_id, tag_id) values (1, 2); +insert into UserTags (user_id, tag_id) values (33, 4); +insert into UserTags (user_id, tag_id) values (24, 4); +insert into UserTags (user_id, tag_id) values (38, 1); +insert into UserTags (user_id, tag_id) values (33, 2); +insert into UserTags (user_id, tag_id) values (11, 4); +insert into UserTags (user_id, tag_id) values (44, 1); +insert into UserTags (user_id, tag_id) values (36, 2); +insert into UserTags (user_id, tag_id) values (29, 4); +insert into UserTags (user_id, tag_id) values (16, 2); +insert into UserTags (user_id, tag_id) values (14, 4); +insert into UserTags (user_id, tag_id) values (35, 3); +insert into UserTags (user_id, tag_id) values (40, 4); +insert into UserTags (user_id, tag_id) values (24, 1); +insert into UserTags (user_id, tag_id) values (50, 1); +insert into UserTags (user_id, tag_id) values (19, 4); +insert into UserTags (user_id, tag_id) values (22, 2); +insert into UserTags (user_id, tag_id) values (38, 3); +insert into UserTags (user_id, tag_id) values (2, 1); +insert into UserTags (user_id, tag_id) values (2, 3); +insert into UserTags (user_id, tag_id) values (48, 2); +insert into UserTags (user_id, tag_id) values (17, 3); +insert into UserTags (user_id, tag_id) values (31, 4); +insert into UserTags (user_id, tag_id) values (15, 4); +insert into UserTags (user_id, tag_id) values (29, 2); +insert into UserTags (user_id, tag_id) values (13, 2); +insert into UserTags (user_id, tag_id) values (15, 1); +insert into UserTags (user_id, tag_id) values (44, 3); +insert into UserTags (user_id, tag_id) values (35, 1); +insert into UserTags (user_id, tag_id) values (48, 4); +insert into UserTags (user_id, tag_id) values (34, 4); +insert into UserTags (user_id, tag_id) values (8, 3); +insert into UserTags (user_id, tag_id) values (5, 4); +insert into UserTags (user_id, tag_id) values (23, 4); +insert into UserTags (user_id, tag_id) values (13, 3); +insert into UserTags (user_id, tag_id) values (36, 1); +insert into UserTags (user_id, tag_id) values (28, 2); +insert into UserTags (user_id, tag_id) values (50, 4); +insert into UserTags (user_id, tag_id) values (14, 3); +insert into UserTags (user_id, tag_id) values (38, 4); +insert into UserTags (user_id, tag_id) values (20, 2); +insert into UserTags (user_id, tag_id) values (22, 4); +insert into UserTags (user_id, tag_id) values (49, 2); +insert into UserTags (user_id, tag_id) values (43, 1); + + +INSERT INTO ResData (id, user_id, elec_usage, emission_tags, heating, water_heating, cooking_gas) VALUES +(200, 1, 1000.0, 'res', 2000.0, 1.0, 11.0); + +INSERT INTO Cars (id, user_id, fuel_type, emission_tags, fuel_used) VALUES +(1, 1, 'Gasoline/Hybrid', 'car', 100.0), +(2, 2, 'Diesel', 'car', 200.0), +(3, 3, 'Electric', 'car', 304.0); + +INSERT INTO Beta_User (id, user_values) VALUES (1, '0.001, 0.3, 0.2'); \ No newline at end of file diff --git a/eda/eda.ipynb b/eda/eda.ipynb index 23eb276..953ac2d 100644 --- a/eda/eda.ipynb +++ b/eda/eda.ipynb @@ -1,9850 +1,9829 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import scraper\n", - "import pandas as pd\n", - "import plotly.express as px\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Get the data\n", - "### Carbon data" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
table1...65country
time1995199619971998199920002001200220032004...201420152016201720182019202020212022
0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...416329.05411485.90413749.45419976.61426307.90416848.48398982.10412683.08384901.69EU27_2020
1NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...705507.53680904.05668832.49646120.22672691.73674474.81601207.60615594.09559118.99BE
2NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...371707.83401866.25435213.07426494.22423259.56393891.37391756.15402387.56386451.29BG
3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...314720.03316332.36329274.64336949.27354343.90350563.81330125.94354575.61323965.99CZ
415662060.6817983724.2216436561.9816404974.3215656406.1615526465.8615575519.9915742121.3117348358.8916463321.94...415245.59421010.26481782.63511782.05503125.28487706.80507731.62502221.23479131.26DK
\n", - "

5 rows × 1821 columns

\n", - "
" - ], - "text/plain": [ - "table 1 \\\n", - "time 1995 1996 1997 1998 1999 \n", - "0 NaN NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN NaN \n", - "4 15662060.68 17983724.22 16436561.98 16404974.32 15656406.16 \n", - "\n", - "table ... \\\n", - "time 2000 2001 2002 2003 2004 ... \n", - "0 NaN NaN NaN NaN NaN ... \n", - "1 NaN NaN NaN NaN NaN ... \n", - "2 NaN NaN NaN NaN NaN ... \n", - "3 NaN NaN NaN NaN NaN ... \n", - "4 15526465.86 15575519.99 15742121.31 17348358.89 16463321.94 ... \n", - "\n", - "table 65 \\\n", - "time 2014 2015 2016 2017 2018 2019 \n", - "0 416329.05 411485.90 413749.45 419976.61 426307.90 416848.48 \n", - "1 705507.53 680904.05 668832.49 646120.22 672691.73 674474.81 \n", - "2 371707.83 401866.25 435213.07 426494.22 423259.56 393891.37 \n", - "3 314720.03 316332.36 329274.64 336949.27 354343.90 350563.81 \n", - "4 415245.59 421010.26 481782.63 511782.05 503125.28 487706.80 \n", - "\n", - "table country \n", - "time 2020 2021 2022 \n", - "0 398982.10 412683.08 384901.69 EU27_2020 \n", - "1 601207.60 615594.09 559118.99 BE \n", - "2 391756.15 402387.56 386451.29 BG \n", - "3 330125.94 354575.61 323965.99 CZ \n", - "4 507731.62 502221.23 479131.26 DK \n", - "\n", - "[5 rows x 1821 columns]" - ] - }, - "execution_count": 75, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "full_carbon_df, tables = scraper.get_eurostat_dataframe(\"env_ac_ainah_r2\", lambda raw: np.arange(1, 66))\n", - "full_carbon_df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
countryEU27_2020BEBGCZDKDEEEIEELES...ROSISKFISEISNOCHRSTR
time
1995NaNNaNNaNNaN15662060.68NaNNaNNaNNaNNaN...NaNNaN8862865.42NaNNaN12571199.07NaN5183706.31NaNNaN
1996NaNNaNNaNNaN17983724.22NaNNaNNaNNaNNaN...NaNNaN8821817.28NaNNaN13419521.77NaN5238820.25NaNNaN
1997NaNNaNNaNNaN16436561.98NaNNaNNaNNaNNaN...NaNNaN8693803.51NaNNaN14045761.23NaN5112279.33NaNNaN
1998NaNNaNNaNNaN16404974.32NaNNaNNaNNaNNaN...NaNNaN8542440.41NaNNaN14424047.34NaN5276437.22NaNNaN
1999NaNNaNNaNNaN15656406.16NaNNaNNaNNaNNaN...NaNNaN8310800.34NaNNaN15414605.09NaN5237620.84NaNNaN
\n", - "

5 rows × 33 columns

\n", - "
" - ], - "text/plain": [ - "country EU27_2020 BE BG CZ DK DE EE IE EL ES ... RO SI \\\n", - "time ... \n", - "1995 NaN NaN NaN NaN 15662060.68 NaN NaN NaN NaN NaN ... NaN NaN \n", - "1996 NaN NaN NaN NaN 17983724.22 NaN NaN NaN NaN NaN ... NaN NaN \n", - "1997 NaN NaN NaN NaN 16436561.98 NaN NaN NaN NaN NaN ... NaN NaN \n", - "1998 NaN NaN NaN NaN 16404974.32 NaN NaN NaN NaN NaN ... NaN NaN \n", - "1999 NaN NaN NaN NaN 15656406.16 NaN NaN NaN NaN NaN ... NaN NaN \n", - "\n", - "country SK FI SE IS NO CH RS TR \n", - "time \n", - "1995 8862865.42 NaN NaN 12571199.07 NaN 5183706.31 NaN NaN \n", - "1996 8821817.28 NaN NaN 13419521.77 NaN 5238820.25 NaN NaN \n", - "1997 8693803.51 NaN NaN 14045761.23 NaN 5112279.33 NaN NaN \n", - "1998 8542440.41 NaN NaN 14424047.34 NaN 5276437.22 NaN NaN \n", - "1999 8310800.34 NaN NaN 15414605.09 NaN 5237620.84 NaN NaN \n", - "\n", - "[5 rows x 33 columns]" - ] - }, - "execution_count": 95, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_carbon_short = full_carbon_df.xs(1, level=\"table\", axis=1).T\n", - "df_carbon_short.columns = full_carbon_df.xs(\"country\", axis=1)\n", - "df_carbon_short.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
countryEU27_2020BEBGCZDKDEEEIEELES...PTROSISKFISEISNORSTR
time
20088626928.759840862.328374278.1012088284.2618472875.7910115618.2615495691.7011599639.0111023011.517309667.12...6489677.156792814.408093935.358115433.1512652929.156147808.4317704691.5912308807.83NaNNaN
20097851179.618740690.237277828.0311049662.4217176547.559321295.5012786692.7710448510.0610354690.726435677.13...6178248.195751828.407375583.007304968.3212003558.205514200.8416180654.3411368305.58NaNNaN
20108024312.009243216.527673499.8511228220.1116767331.749667309.7716307459.7512043627.479989268.716098359.65...5739881.605581717.187437534.557305820.3013441161.426147726.6116184246.7311861900.26NaNNaN
20117901995.318519668.048424931.8210997932.4716608386.029668751.2216334728.6811509752.469620522.326223872.41...5697688.645895533.447280437.247294510.5411997445.755607249.3515554875.7812700895.28NaNNaN
20127728876.398149775.007808042.4310544785.7015347310.629767753.1315694048.4911892306.479558049.096157580.45...5624083.125748566.836938559.086765294.9010873832.795236450.8815875505.9912425877.26NaNNaN
\n", - "

5 rows × 32 columns

\n", - "
" - ], - "text/plain": [ - "country EU27_2020 BE BG CZ DK \\\n", - "time \n", - "2008 8626928.75 9840862.32 8374278.10 12088284.26 18472875.79 \n", - "2009 7851179.61 8740690.23 7277828.03 11049662.42 17176547.55 \n", - "2010 8024312.00 9243216.52 7673499.85 11228220.11 16767331.74 \n", - "2011 7901995.31 8519668.04 8424931.82 10997932.47 16608386.02 \n", - "2012 7728876.39 8149775.00 7808042.43 10544785.70 15347310.62 \n", - "\n", - "country DE EE IE EL ES ... \\\n", - "time ... \n", - "2008 10115618.26 15495691.70 11599639.01 11023011.51 7309667.12 ... \n", - "2009 9321295.50 12786692.77 10448510.06 10354690.72 6435677.13 ... \n", - "2010 9667309.77 16307459.75 12043627.47 9989268.71 6098359.65 ... \n", - "2011 9668751.22 16334728.68 11509752.46 9620522.32 6223872.41 ... \n", - "2012 9767753.13 15694048.49 11892306.47 9558049.09 6157580.45 ... \n", - "\n", - "country PT RO SI SK FI \\\n", - "time \n", - "2008 6489677.15 6792814.40 8093935.35 8115433.15 12652929.15 \n", - "2009 6178248.19 5751828.40 7375583.00 7304968.32 12003558.20 \n", - "2010 5739881.60 5581717.18 7437534.55 7305820.30 13441161.42 \n", - "2011 5697688.64 5895533.44 7280437.24 7294510.54 11997445.75 \n", - "2012 5624083.12 5748566.83 6938559.08 6765294.90 10873832.79 \n", - "\n", - "country SE IS NO RS TR \n", - "time \n", - "2008 6147808.43 17704691.59 12308807.83 NaN NaN \n", - "2009 5514200.84 16180654.34 11368305.58 NaN NaN \n", - "2010 6147726.61 16184246.73 11861900.26 NaN NaN \n", - "2011 5607249.35 15554875.78 12700895.28 NaN NaN \n", - "2012 5236450.88 15875505.99 12425877.26 NaN NaN \n", - "\n", - "[5 rows x 32 columns]" - ] - }, - "execution_count": 96, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Drop the rows until 2008 - when the data really begins\n", - "df_carbon_short.drop([str(i) for i in np.arange(1995, 2008)], inplace=True)\n", - "df_carbon_short = df_carbon_short.drop(\"CH\", axis=1)\n", - "df_carbon_short.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 313, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "country=EU27_2020
time=%{x}
value=%{y}", - "legendgroup": "EU27_2020", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "EU27_2020", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 8626928.75, - 7851179.61, - 8024312, - 7901995.31, - 7728876.39, - 7493978.46, - 7234802.44, - 7299142.02, - 7269867.78, - 7365308.32, - 7224855.15, - 6878667.56, - 6192649.36, - 6543663.17, - 6481157.74 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=BE
time=%{x}
value=%{y}", - "legendgroup": "BE", - "marker": { - "color": "#EF553B", - "symbol": "circle" - }, - "mode": "markers", - "name": "BE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 9840862.32, - 8740690.23, - 9243216.52, - 8519668.04, - 8149775, - 7916208.46, - 7686154.55, - 7876220.88, - 7799071.79, - 7776925.29, - 7879669.22, - 7840274.31, - 7188131.12, - 7139444.92, - 6821002.24 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=BG
time=%{x}
value=%{y}", - "legendgroup": "BG", - "marker": { - "color": "#00cc96", - "symbol": "circle" - }, - "mode": "markers", - "name": "BG", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 8374278.1, - 7277828.03, - 7673499.85, - 8424931.82, - 7808042.43, - 7144298.7, - 7661685.75, - 8111630.72, - 7823731.5, - 8175206.26, - 7600569.84, - 7453706.39, - 6577156.14, - 7510443.21, - 8466050.23 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=CZ
time=%{x}
value=%{y}", - "legendgroup": "CZ", - "marker": { - "color": "#ab63fa", - "symbol": "circle" - }, - "mode": "markers", - "name": "CZ", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 12088284.26, - 11049662.42, - 11228220.11, - 10997932.47, - 10544785.7, - 10067365.75, - 10008261.81, - 9937441.99, - 10111070.44, - 9905885.61, - 9963439.31, - 9416234.22, - 8426277.23, - 9081701.65, - 8901412.74 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=DK
time=%{x}
value=%{y}", - "legendgroup": "DK", - "marker": { - "color": "#FFA15A", - "symbol": "circle" - }, - "mode": "markers", - "name": "DK", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 18472875.79, - 17176547.55, - 16767331.74, - 16608386.02, - 15347310.62, - 15031123.9, - 13930938.79, - 13829349.45, - 14258305.52, - 14200191.24, - 14551202.52, - 13944705.74, - 12272409.09, - 13090825.04, - 12372716.58 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=DE
time=%{x}
value=%{y}", - "legendgroup": "DE", - "marker": { - "color": "#19d3f3", - "symbol": "circle" - }, - "mode": "markers", - "name": "DE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 10115618.26, - 9321295.5, - 9667309.77, - 9668751.22, - 9767753.13, - 9890300.45, - 9336313.94, - 9357887.22, - 9211878.93, - 9040142.72, - 8728757.68, - 7930781.54, - 7039775.03, - 7528067.39, - 7391810.01 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=EE
time=%{x}
value=%{y}", - "legendgroup": "EE", - "marker": { - "color": "#FF6692", - "symbol": "circle" - }, - "mode": "markers", - "name": "EE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 15495691.7, - 12786692.77, - 16307459.75, - 16334728.68, - 15694048.49, - 17544493.57, - 16865413.94, - 14247370.94, - 15078665.84, - 16135658.92, - 15137532.82, - 10604154.24, - 7963695.24, - 8931589.31, - 10226904.55 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=IE
time=%{x}
value=%{y}", - "legendgroup": "IE", - "marker": { - "color": "#B6E880", - "symbol": "circle" - }, - "mode": "markers", - "name": "IE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 11599639.01, - 10448510.06, - 12043627.47, - 11509752.46, - 11892306.47, - 11896561.49, - 11936396.37, - 12350180.53, - 13161418.86, - 13576578.57, - 13664168.02, - 13104135.84, - 10471640.26, - 10935062.67, - 12040447.43 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=EL
time=%{x}
value=%{y}", - "legendgroup": "EL", - "marker": { - "color": "#FF97FF", - "symbol": "circle" - }, - "mode": "markers", - "name": "EL", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 11023011.51, - 10354690.72, - 9989268.71, - 9620522.32, - 9558049.09, - 8893055.91, - 8668780.43, - 8372383.55, - 8222020.74, - 8770312.65, - 8747679.03, - 8190978.34, - 7159125.08, - 7404625.96, - 7486773.65 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=ES
time=%{x}
value=%{y}", - "legendgroup": "ES", - "marker": { - "color": "#FECB52", - "symbol": "circle" - }, - "mode": "markers", - "name": "ES", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 7309667.12, - 6435677.13, - 6098359.65, - 6223872.41, - 6157580.45, - 5582920.07, - 5644578.55, - 5865209.93, - 5597726.47, - 5877877.61, - 5688642.44, - 5286026.97, - 4559963.59, - 4797265.04, - 4925200.55 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=FR
time=%{x}
value=%{y}", - "legendgroup": "FR", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "FR", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 6653317.15, - 6166276.04, - 6234057.62, - 5933114.42, - 5867591.23, - 5772556.79, - 5396696.3, - 5373290.66, - 5339385.7, - 5473355.17, - 5304094.58, - 5167548.92, - 4650664.25, - 4860548.57, - 4860614.98 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=HR
time=%{x}
value=%{y}", - "legendgroup": "HR", - "marker": { - "color": "#EF553B", - "symbol": "circle" - }, - "mode": "markers", - "name": "HR", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 5743596.96, - 5214613.4, - 5173006.91, - 5157442.84, - 4777320.94, - 4573175.93, - 4448445.46, - 4494552.46, - 4522790.09, - 4768416.87, - 4551690.66, - 4631066.6, - 4481239.73, - 4627936.16, - 4606962.81 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=IT
time=%{x}
value=%{y}", - "legendgroup": "IT", - "marker": { - "color": "#00cc96", - "symbol": "circle" - }, - "mode": "markers", - "name": "IT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 7795851.87, - 6741917.65, - 6928656.17, - 6756489.81, - 6487892.06, - 5859784.44, - 5523957.09, - 5594673.93, - 5569147.23, - 5588750.03, - 5513539.82, - 5442001.72, - 4956810.63, - 5379280.59, - 5432207.73 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=CY
time=%{x}
value=%{y}", - "legendgroup": "CY", - "marker": { - "color": "#ab63fa", - "symbol": "circle" - }, - "mode": "markers", - "name": "CY", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 11183735.7, - 10530223.3, - 9810262.08, - 8894269.75, - 8044428.37, - 7322766.43, - 7810898.18, - 7646758, - 8062773.8, - 8306246.6, - 8279133.71, - 7969957.25, - 7682750.74, - 7643435.48, - 7642788.91 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=LV
time=%{x}
value=%{y}", - "legendgroup": "LV", - "marker": { - "color": "#FFA15A", - "symbol": "circle" - }, - "mode": "markers", - "name": "LV", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 5303185.14, - 4731464.3, - 5444515.55, - 5177981.7, - 5116481.72, - 5045809.54, - 5059065.91, - 5242554.97, - 5231307.71, - 5348290.65, - 5636546.19, - 5682612.88, - 4941039.01, - 5131370.03, - 4943358.24 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=LT
time=%{x}
value=%{y}", - "legendgroup": "LT", - "marker": { - "color": "#19d3f3", - "symbol": "circle" - }, - "mode": "markers", - "name": "LT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 6891628.78, - 5657549.19, - 5995297.31, - 6360230.36, - 6383491.21, - 6060614.6, - 6370309.76, - 6671007.22, - 6636496.74, - 6970335.32, - 7278184.08, - 7430063.51, - 8058967.02, - 7399266.99, - 6965986.46 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=LU
time=%{x}
value=%{y}", - "legendgroup": "LU", - "marker": { - "color": "#FF6692", - "symbol": "circle" - }, - "mode": "markers", - "name": "LU", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 16962222.93, - 16693001.57, - 16565861.78, - 14896888.54, - 14301838.85, - 13676485.86, - 13784926.93, - 14970580.29, - 14410054.83, - 14040314.31, - 13997677.98, - 14722531.52, - 13061280.11, - 12776400.75, - 12090519.69 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=HU
time=%{x}
value=%{y}", - "legendgroup": "HU", - "marker": { - "color": "#B6E880", - "symbol": "circle" - }, - "mode": "markers", - "name": "HU", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 6037923.19, - 5429119.41, - 5527873.99, - 5555349.42, - 5118860.96, - 4985632.75, - 5079385.95, - 5309836.06, - 5290183.46, - 5509981.5, - 5565000.66, - 5421994.89, - 5142940.18, - 5222883.12, - 5102020.49 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=MT
time=%{x}
value=%{y}", - "legendgroup": "MT", - "marker": { - "color": "#FF97FF", - "symbol": "circle" - }, - "mode": "markers", - "name": "MT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 7203973, - 6797318.87, - 6960574.76, - 6971615.72, - 7315305.97, - 6447085.64, - 6374488.39, - 4633918.05, - 3874020.46, - 4131167.13, - 4076519.06, - 4161781.55, - 3669234.4, - 3620338.22, - 3708475.74 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=NL
time=%{x}
value=%{y}", - "legendgroup": "NL", - "marker": { - "color": "#FECB52", - "symbol": "circle" - }, - "mode": "markers", - "name": "NL", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 11551381.97, - 11097074.27, - 11499815.64, - 10936273.75, - 10657360.22, - 10592971.51, - 10521613.19, - 10825105.95, - 10711090.87, - 10491467.76, - 10134114.23, - 9903383.22, - 8766733.99, - 8753795.01, - 8227724.75 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=AT
time=%{x}
value=%{y}", - "legendgroup": "AT", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "AT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 8097291.69, - 7308617.85, - 7700611.64, - 7481448.06, - 7098295.69, - 6888255.9, - 6561107.19, - 6612999.9, - 6464018.01, - 6743435.74, - 6412811.44, - 6733225.11, - 6017717.63, - 6421100.46, - 6063695.21 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=PL
time=%{x}
value=%{y}", - "legendgroup": "PL", - "marker": { - "color": "#EF553B", - "symbol": "circle" - }, - "mode": "markers", - "name": "PL", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 9444706.91, - 8924261.65, - 9288855.03, - 9386433.81, - 9140778.57, - 9097624.14, - 8907491.07, - 8976477.85, - 9279493.13, - 9706232.03, - 9670243.48, - 9237050.64, - 8833756.4, - 9706927.16, - 9587311.38 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=PT
time=%{x}
value=%{y}", - "legendgroup": "PT", - "marker": { - "color": "#00cc96", - "symbol": "circle" - }, - "mode": "markers", - "name": "PT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 6489677.15, - 6178248.19, - 5739881.6, - 5697688.64, - 5624083.12, - 5473356.48, - 5493305.31, - 5910803.61, - 5715542.08, - 6229589.51, - 5908588.02, - 5545680.22, - 4810207.6, - 4695760.73, - 4882367.36 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=RO
time=%{x}
value=%{y}", - "legendgroup": "RO", - "marker": { - "color": "#ab63fa", - "symbol": "circle" - }, - "mode": "markers", - "name": "RO", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 6792814.4, - 5751828.4, - 5581717.18, - 5895533.44, - 5748566.83, - 5205389.27, - 5195854.81, - 5160818.36, - 5081315.18, - 5218990.37, - 5256903.6, - 5097506.5, - 4886398.85, - 5009951.1, - 4775516.29 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=SI
time=%{x}
value=%{y}", - "legendgroup": "SI", - "marker": { - "color": "#FFA15A", - "symbol": "circle" - }, - "mode": "markers", - "name": "SI", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 8093935.35, - 7375583, - 7437534.55, - 7280437.24, - 6938559.08, - 6798009.72, - 6112706.6, - 6231363.1, - 6484657.21, - 6547457.12, - 6628001.63, - 6513937.75, - 6220980.69, - 6120319.74, - 5858216.81 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=SK
time=%{x}
value=%{y}", - "legendgroup": "SK", - "marker": { - "color": "#19d3f3", - "symbol": "circle" - }, - "mode": "markers", - "name": "SK", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 8115433.15, - 7304968.32, - 7305820.3, - 7294510.54, - 6765294.9, - 6676739.8, - 6405492.89, - 6471845.72, - 6515747.89, - 6638407.67, - 6633773.77, - 6145982.57, - 5635453.12, - 6232714.86, - 5658962.65 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=FI
time=%{x}
value=%{y}", - "legendgroup": "FI", - "marker": { - "color": "#FF6692", - "symbol": "circle" - }, - "mode": "markers", - "name": "FI", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 12652929.15, - 12003558.2, - 13441161.42, - 11997445.75, - 10873832.79, - 10968185.92, - 10128634.2, - 9511454.86, - 10038993.36, - 9485754.23, - 9694404.22, - 9199287.59, - 7906406.45, - 7919041.52, - 7738452.67 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=SE
time=%{x}
value=%{y}", - "legendgroup": "SE", - "marker": { - "color": "#B6E880", - "symbol": "circle" - }, - "mode": "markers", - "name": "SE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 6147808.43, - 5514200.84, - 6147726.61, - 5607249.35, - 5236450.88, - 5048942.24, - 4857670.07, - 4842247.01, - 4891026.55, - 4694012.44, - 4593367.1, - 4439328.89, - 3917780.22, - 4090756.83, - 3979034.45 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=IS
time=%{x}
value=%{y}", - "legendgroup": "IS", - "marker": { - "color": "#FF97FF", - "symbol": "circle" - }, - "mode": "markers", - "name": "IS", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 17704691.59, - 16180654.34, - 16184246.73, - 15554875.78, - 15875505.99, - 16678380.61, - 16456133.72, - 17975811.18, - 18999182.56, - 19816074.46, - 23787278.23, - 19303335.98, - 13880628.44, - 13663912.76, - 15608271.37 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=NO
time=%{x}
value=%{y}", - "legendgroup": "NO", - "marker": { - "color": "#FECB52", - "symbol": "circle" - }, - "mode": "markers", - "name": "NO", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 12308807.83, - 11368305.58, - 11861900.26, - 12700895.28, - 12425877.26, - 12341836.36, - 12097582.9, - 13324274.85, - 11533448.95, - 11890017.84, - 12376829.9, - 12337209.38, - 11180613.64, - 11028020.94, - 11043629.85 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=RS
time=%{x}
value=%{y}", - "legendgroup": "RS", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "RS", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=TR
time=%{x}
value=%{y}", - "legendgroup": "TR", - "marker": { - "color": "#EF553B", - "symbol": "circle" - }, - "mode": "markers", - "name": "TR", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - } - ], - "layout": { - "legend": { - "title": { - "text": "country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "time" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Plot the carbon emissions scatterplot\n", - "fig = px.scatter(df_carbon_short)\n", - "fig.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 314, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'
'" - ] - }, - "execution_count": 314, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import plotly\n", - "plotly.offline.plot(fig, include_plotlyjs=False, output_type=\"div\")" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAH5oAAB+bCAYAAAA2O16YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde5xfdX3g/3eSyeRCMhNguJdAJOEiEg2oLQSCsSq1aEVT/En1IZDa1VWr1K0C21KvCKyKF+jWugrIWvGxbije0Aq4bECsF4giFTFQS5SrA2SGMMlMSOb3BztDJnP7Xs73e875nOfz8cgfmW8mHDKf1/tzzpnLmTE8PDwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTNzLwPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBqPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM08aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgzTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDNPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM08aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgzTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDNPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM08aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgzTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDNPGg+Q+vXr49Xv/rVceCBB8aMGTPiuuuuq/vvGB4ejo9//ONx+OGHx5w5c+Kggw6KCy+8MPuDBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHLTkfcBpOSpp56K5z//+bF27dp43ete19Df8e53vzu++93vxsc//vE45phj4vHHH4/HH3884yMFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8jRjeHh4OO+DSNGMGTPin//5n+O0004bfdvg4GD8zd/8TVxzzTWxefPmeN7znheXXHJJvOQlL4mIiLvvvjuWL18ed911VxxxxBH5HDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQcjPzPoAqeec73xk/+MEP4itf+Urceeedcfrpp8cf/dEfxcaNGyMi4hvf+EY85znPiW9+85uxZMmSOPTQQ+Mtb3lLPP744zkfOQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAlD5pvk02bNsWVV14ZX/3qV+Okk06Kww47LP76r/86TjzxxLjyyisjIuLf//3f4/7774+vfvWrcfXVV8dVV10Vt99+e/zpn/5pzkcPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZKkj7wOoip///OexY8eOOPzww8e8fXBwMPbee++IiNi5c2cMDg7G1VdfPfrnvvCFL8Rxxx0X99xzTxxxxBFtP24AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgex403yZbtmyJWbNmxe233x6zZs0a89qCBQsiIuKAAw6Ijo6OMQ+jP+qooyIiYtOmTR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAInwoPk2WbFiRezYsSMeffTROOmkkyb8MytXroynn3467rvvvjjssMMiIuJXv/pVREQccsghbTtWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoLVmDA8PD+d9EKnYsmVL3HvvvRHxzIPlL7300li9enXstddesXjx4njTm94U3//+9+MTn/hErFixIn73u9/FTTfdFMuXL49TTz01du7cGS960YtiwYIF8alPfSp27twZ73jHO6Krqyu++93v5vx/BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTFg+YzdPPNN8fq1avHvf3MM8+Mq666KrZv3x4f+chH4uqrr44HHnggenp64g/+4A/igx/8YBxzzDEREfHggw/GX/7lX8Z3v/vd2GOPPeKVr3xlfOITn4i99tqr3f87AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQIt40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAm83M+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqsaD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADazIPmMzA8PBz9/f0xPDyc96EADdIxpEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQctQfjqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGUoPx1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKUhwfNZ+DJJ5+M7u7uePLJJ/M+FKBBOoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGcpPx5AGLUMatAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DOWnY0iDliENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahvLwoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANvOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA286B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDbzoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANvOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA268j7AACANPQNDEXvlqHo37Y9uubNjp49OqN7fmfehwX8PxqFatE8pEHLkAYtw+T0QbtZcwBpMM8hDVqGNGgZyk/HkAYtQxq0TFFYi5AvDQJkx0yFNGgZykWzkDaNQxq0TIqsa6CMzC5Ig5YhDVqGNGgZWkNbQCPMjmrwcQayYJYA1Ma8BIDq8aB5AKBpD27eGueuuzNu2dg7+rZVy3ri4jXL48BF83I8MiBCo1A1moc0aBnSoGWYnD5oN2sOIA3mOaRBy5AGLUP56RjSoGVIg5YpCmsR8qVBgOyYqZAGLUO5aBbSpnFIg5ZJkXUNlJHZBWnQMqRBy5AGLUNraAtohNlRDT7OQBbMEoDamJcAUE0z8z4AAKDc+gaGxt1QiIhYv7E3zlt3Z/QNDOV0ZECERqFqNA9p0DKkQcswOX3QbtYcQBrMc0iDliENWoby0zGkQcuQBi1TFNYi5EuDANkxUyENWoZy0SykTeOQBi2TIusaKCOzC9KgZUiDliENWobW0BbQCLOjGnycgSyYJQC1MS8BoLo8aB4AaErvlqFxNxRGrN/YG71b3FSAPGkUqkXzkAYtQxq0DJPTB+1mzQGkwTyHNGgZ0qBlKD8dQxq0DGnQMkVhLUK+NAiQHTMV0qBlKBfNQto0DmnQMimyroEyMrsgDVqGNGgZ0qBlaA1tAY0wO6rBxxnIglkCUBvzEgCqy4PmAYCm9G/bPuXrT07zOtBaGoVq0TykQcuQBi3D5PRBu1lzAGkwzyENWoY0aBnKT8eQBi1DGrRMUViLkC8NAmTHTIU0aBnKRbOQNo1DGrRMiqxroIzMLkiDliENWoY0aBlaQ1tAI8yOavBxBrJglgDUxrwEgOryoHkAoCldc2dP+frCaV4HWkujUC2ahzRoGdKgZZicPmg3aw4gDeY5pEHLkAYtQ/npGNKgZUiDlikKaxHypUGA7JipkAYtQ7loFtKmcUiDlkmRdQ2UkdkFadAypEHLkAYtQ2toC2iE2VENPs5AFswSgNqYlwBQXR40DwA0pWdBZ6xa1jPha6uW9UTPgs42HxGwK41CtWge0qBlSIOWYXL6oN2sOYA0mOeQBi1DGrQM5adjSIOWIQ1apiisRciXBgGyY6ZCGrQM5aJZSJvGIQ1aJkXWNVBGZhekQcuQBi1DGrQMraEtoBFmRzX4OANZMEsAamNeAkB1edA8ANCU7vmdcfGa5eNuLKxa1hOXrFke3fPdVIA8aRSqRfOQBi1DGrQMk9MH7WbNAaTBPIc0aBnSoGUoPx1DGrQMadAyRWEtQr40CJAdMxXSoGUoF81C2jQOadAyKbKugTIyuyANWoY0aBnSoGVoDW0BjTA7qsHHGciCWQJQG/MSAKprxvDw8HDeB1F2/f390d3dHX19fdHV1ZX34QAN0DE0r29gKHq3DMWT27bHwrmzo2dBZ9tvKGgZJleERmulZWheEZrXMjRPy5AGLcPkitBHmWi5edYcRaBlaF4R5rmWoXlahjTk3bKOoXl5dxyhZciCliENWqYoirAWaY6Wy02DjNAyNK8IM1XL0DwtQ7kUodnJaBmaV4TGtQzN0zIpKsK6rhodQ/OKMLu0DM3TMqRBy5AGLUNrFKGtdtMyNK8Is0PLrVeEjzPp03L6zJJq0DI0rwjzUsuQBi1DeXTkfQAAQBq657vpCkWmUagWzUMatAxp0DJMTh+0mzUHkAbzHNKgZUiDlqH8dAxp0DKkQcsUhbUI+dIgQHbMVEiDlqFcNAtp0zikQcukyLoGysjsgjRoGdKgZUiDlqE1tAU0wuyoBh9nIAtmCUBtzEsAqJ6ZeR9Alnbs2BEXXHBBLFmyJObNmxeHHXZYfPjDH47h4eFJ3+fmm2+OGTNmjPv18MMPt/HIAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCrpyPsAsnTJJZfEP/zDP8QXv/jFOProo+MnP/lJnH322dHd3R3vete7pnzfe+65J7q6ukZ/v++++7b6cAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICKSupB87fddlu85jWviVNPPTUiIg499NC45ppr4kc/+tG077vvvvvGokWLWnyEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIk9aP6EE06Iz33uc/GrX/0qDj/88PjZz34Wt956a1x66aXTvu8LXvCCGBwcjOc973nxgQ98IFauXDnpnx0cHIzBwcHR3/f392dy/ED76BjSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZSg/HUMatAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMpSfjiENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGcprZt4HkKXzzjsv3vCGN8SRRx4Zs2fPjhUrVsQ555wTb3zjGyd9nwMOOCA++9nPxrp162LdunVx8MEHx0te8pK44447Jn2fiy66KLq7u0d/HXzwwa343wFaSMeQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUP56RjSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDlqH8dAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy1BeM4aHh4fzPoisfOUrX4n3vve98bGPfSyOPvro+OlPfxrnnHNOXHrppXHmmWfW/PecfPLJsXjx4vif//N/Tvj64OBgDA4Ojv6+v78/Dj744Ojr64uurq6m/z+A1tMxpEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQctQfjqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGUoPx1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKUV0feB5Cl9773vXHeeefFG97whoiIOOaYY+L++++Piy66qK4Hzb/4xS+OW2+9ddLX58yZE3PmzGn6eIH86BjSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZSg/HUMatAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMpSfjiENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGcprZt4HkKWBgYGYOXPs/9KsWbNi586ddf09P/3pT+OAAw7I8tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARnXkfQBZevWrXx0XXnhhLF68OI4++ujYsGFDXHrppbF27drRP3P++efHAw88EFdffXVERHzqU5+KJUuWxNFHHx3btm2Lz3/+8/G9730vvvvd7+b1vwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkLqkHzV922WVxwQUXxNvf/vZ49NFH48ADD4y3vvWt8Xd/93ejf+ahhx6KTZs2jf5+aGgo/st/+S/xwAMPxPz582P58uVx4403xurVq/P4XwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqIKkHzS9cuDA+9alPxac+9alJ/8xVV1015vfve9/74n3ve19rDwwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgFzPzPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAqvGgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA286B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDbzoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANvOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA286B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDbzoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANvOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA286B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDbzoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANvOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA286B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDbzoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANvOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA286B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDbzoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANvOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA286B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDbzoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANvOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA286B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDbzoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANvOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA286B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDbzoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANvOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA286B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDbryPsAAIDa9Q0MRe+Woejftj265s2Onj06o3t+Z96HBbnSBdAq5guUg1aBepgZkB5dU2TWJ5A3cwgapx8gT2YQjKUJoF7mBhSbRoHJmA9p8/EFoBH2D/JmDQJVZgYCI8wDaIx2SJ01DtWkfWiMdoCyMr+gXDQLpMI8gzRoub38ewPTMScA2sfMBQCy4kHzAFASD27eGueuuzNu2dg7+rZVy3ri4jXL48BF83I8MsiPLoBWMV+gHLQK1MPMgPTomiKzPoG8mUPQOP0AeTKDYCxNAPUyN6DYNApMxnxIm48vAI2wf5A3axCoMjMQGGEeQGO0Q+qscagm7UNjtAOUlfkF5aJZIBXmGaRBy+3l3xuYjjkB0D5mLgCQpZl5H0CWduzYERdccEEsWbIk5s2bF4cddlh8+MMfjuHh4Snf7+abb45jjz025syZE0uXLo2rrrqqPQcMADXqGxgadzMgImL9xt44b92d0TcwlNORQX50AbSK+QLloFWgHmYGpEfXFJn1CeTNHILG6QfIkxkEY2kCqJe5AcWmUWAy5kPafHwBaIT9g7xZg0CVmYHACPMAGqMdUmeNQzVpHxqjHaCszC8oF80CqTDPIA1abi//3sB0zAmA9jFzAYCsJfWg+UsuuST+4R/+IS6//PK4++6745JLLon/9t/+W1x22WWTvs+vf/3rOPXUU2P16tXx05/+NM4555x4y1veEv/yL//SxiMHgKn1bhkadzNgxPqNvdG7xQ0BqkcXQKuYL1AOWgXqYWZAenRNkVmfQN7MIWicfoA8mUEwliaAepkbUGwaBSZjPqTNxxeARtg/yJs1CFSZGQiMMA+gMdohddY4VJP2oTHaAcrK/IJy0SyQCvMM0qDl9vLvDUzHnABoHzMXAMhaR94HkKXbbrstXvOa18Spp54aERGHHnpoXHPNNfGjH/1o0vf57Gc/G0uWLIlPfOITERFx1FFHxa233hqf/OQn45RTTmnLcQPAdPq3bZ/y9SeneR1SpAugVcwXKAetAvUwMyA9uqbIrE8gb+YQNE4/QJ7MIBhLE0C9zA0oNo0CkzEf0ubjC0Aj7B/kzRoEqswMBEaYB9AY7ZA6axyqSfvQGO0AZWV+QbloFkiFeQZp0HJ7+fcGpmNOALSPmQsAZC2pB82fcMIJ8bnPfS5+9atfxeGHHx4/+9nP4tZbb41LL7100vf5wQ9+EC972cvGvO2UU06Jc845Z9L3GRwcjMHBwdHf9/f3N33sQHvpmLLpmjt7ytcXTvN6qrRcbbpIh5YpGvOlMVqm3bTaGlomVVWbGVqmCqrQtZbLqwrrk9ppmTyYQ9nTcnXoJ21apujMoOnpuFo0kS4t0yrmRntpmXpptJi0TBGYD80rcss+vlC7IrcM7Vbm/UPLaSjzGiQbWqbKUpqBWobmFGUeaJmyKUo7RaPldFjj1aXjatN+OrTcXtqhVbRMq5lf7aFlsqLZfGkZspPnPNMyZEfL7eVckBRVseVWMifIi5apohRnrpYhDVqG8pqZ9wFk6bzzzos3vOENceSRR8bs2bNjxYoVcc4558Qb3/jGSd/n4Ycfjv3222/M2/bbb7/o7++PrVu3Tvg+F110UXR3d4/+OvjggzP9/wBaT8eUTc+Czli1rGfC11Yt64meBZ1tPqJi0HK16SIdWqZozJfGaJl202praJlUVW1maJkqqELXWi6vKqxPaqdl8mAOZU/L1aGftGmZojODpqfjatFEurRMq5gb7aVl6qXRYtIyRWA+NK/ILfv4Qu2K3DK0W5n3Dy2nocxrkGxomSpLaQZqGZpTlHmgZcqmKO0UjZbTYY1Xl46rTfvp0HJ7aYdW0TKtZn61h5bJimbzpWXITp7zTMuQHS23l3NBUlTFllvJnCAvWqaKUpy5WoY0aBnKa8bw8PBw3geRla985Svx3ve+Nz72sY/F0UcfHT/96U/jnHPOiUsvvTTOPPPMCd/n8MMPj7PPPjvOP//80bddf/31ceqpp8bAwEDMmzdv3PsMDg7G4ODg6O/7+/vj4IMPjr6+vujq6sr+fwzInI4powc3b43z1t0Z6zf2jr5t1bKeuGTN8jhg0fj9qgq0jC7SoGWKyHypn5bJg1azp2VSVqWZoWWqIvWutVxuqa9Paqdl8mIOZUvL1aKfdGmZMjCDpqbj6tFEmrRMK5kb7aNlGqHR4tEyRWE+NKfoLfv4Qm2K3jK0W1n3Dy2no6xrkGxomapLZQZqGZpXhHmgZcqoCO0UjZbTYo1Xk47Rfhq03H7aoRW0TDuYX62nZbKk2fxoGbKV1zzTMmRLy+3lXJDUVLXlVjInyIOWqarUZq6WIQ1ahvJK6kHzBx98cJx33nnxjne8Y/RtH/nIR+JLX/pS/PKXv5zwfVatWhXHHntsfOpTnxp925VXXhnnnHNO9PX11fTf7e/vj+7ubkMPSkzHlEXfwFD0bhmKJ7dtj4VzZ0fPgs7ont+Z92EVhparSRfp0TJFYb40R8u0i1ZbS8ukpqozQ8ukrEpda7l8qrQ+qZ2WaSdzqHW0nD79VIOWKSozqHY6rgZNpE/LZM3cyIeWqZVGi03L5Ml8yE4RW/bxhfoVsWVotxT2Dy2XWwprkGxomSpKcQZqGRpTtHmgZcqiaO0UjZbLzxpHx9Wk/fRouT20Q6tpmVYxv9pLyzRLs8WgZWheEeaZlqF5Wm6vIvx7Q6tUqeVWMifIm5apkpRnrpYhDVqG8ujI+wCyNDAwEDNnzhzztlmzZsXOnTsnfZ/jjz8+rr/++jFvu+GGG+L4449vyTECQDO656dzAwCyogugVcwXKAetAvUwMyA9uqbIrE8gb+YQNE4/QJ7MIBhLE0C9zA0oNo0CkzEf0ubjC0Aj7B/kzRoEqswMBEaYB9AY7ZA6axyqSfvQGO0AZWV+QbloFkiFeQZp0HJ7+fcGpmNOALSPmQsAZCWpB82/+tWvjgsvvDAWL14cRx99dGzYsCEuvfTSWLt27eifOf/88+OBBx6Iq6++OiIi3va2t8Xll18e73vf+2Lt2rXxve99L/7X//pf8a1vfSuv/w0AWqRvYCh6twxF/7bt0TVvdvTs4eIawGykKqx1SIOWgWaZI5AmbbM7awIoMzMMykOvkD6dQ740CIwwD2AsTUB16R8aox2gLMwrKA+9AlVh3kF+9AftpTkoFk1CcegRyk/HQIRZAFWgc8AcgLRoutp8/AHyYf5CNWkfACiypB40f9lll8UFF1wQb3/72+PRRx+NAw88MN761rfG3/3d343+mYceeig2bdo0+vslS5bEt771rfirv/qr+PSnPx2/93u/F5///OfjlFNOyeN/AYAWeXDz1jh33Z1xy8be0betWtYTF69ZHgcumpfjkQHkx2ykKqx1SIOWgWaZI5AmbbM7awIoMzMMykOvkD6dQ740CIwwD2AsTUB16R8aox2gLMwrKA+9AlVh3kF+9AftpTkoFk1CcegRyk/HQIRZAFWgc8AcgLRoutp8/AHyYf5CNWkfACi6mXkfQJYWLlwYn/rUp+L++++PrVu3xn333Rcf+chHorOzc/TPXHXVVXHzzTePeb+XvOQlsWHDhhgcHIz77rsvzjrrrPYeOAAt1TcwNO7iPCJi/cbeOG/dndE3MJTTkQHkx2ykKqx1SIOWgWaZI5AmbbM7awIoMzMMykOvkD6dQ740CIwwD2AsTUB16R8aox2gLMwrKA+9AlVh3kF+9AftpTkoFk1CcegRyk/HQIRZAFWgc8AcgLRoutp8/AHyYf5CNWkfACiDpB40DwAT6d0yNO7ifMT6jb3Ru8UFOlA9ZiNVYa1DGrQMNMscgTRpm91ZE0CZmWFQHnqF9Okc8qVBYIR5AGNpAqpL/9AY7QBlYV5BeegVqArzDvKjP2gvzUGxaBKKQ49QfjoGIswCqAKdA+YApEXT1ebjD5AP8xeqSfsAQBl05H0AANBq/du2T/n6k9O8HhHRNzAUvVuGon/b9uiaNzt69uiM7vmdWR0iFJJ1n7YsZiOUwXRr/YmBoegbGDLfoOCy3rec50CxtaJR57+Ukf1qetoer+rrxpoAyqzoM6zqewzsKqtedQXF1a592RyAidXaoIYgfUW/VoZ200TrOK+oj3+v9tM/rVCFlrUDlIV5VZ8q7GE0r1XrRK9ASqaaleYd5Kfe/pwfQ3Md2POqxcwsPk1CcaTeoz2BMqp33abeMVCbemaB/RHKyZ4PmANQTpOdf2u62pr5+Lumg3xoLw32X6gm514AQBl40DwAyeuaO3vK1xdO8/qDm7fGuevujFs29o6+bdWynrh4zfI4cNG8TI4Risa6T1+zsxHKYrq13rd1e/zlNRvMNyi4LPct5zlQbK1q1PkvZWO/qo22x7JurAmg3Io8w+wxMFYWveoKiq0d+7I5AJOrpUENQTXM75w15evu91E1Rb5/VGbOK+rj3ysf+idrVWlZO0BZmFe1q8oeRnNauU70CqRiullp3kF+6unP+TE034E9rzrMzHLQJBRHyj3aEyijRtZtyh0Dtat1Ftgfobzs+YA5AOUz1fm3pqut0Y+/azrIh/bSYf+FanLuBQCUwcy8DwAAWq1nQWesWtYz4WurlvVEz4LOSd+3b2Bo3EV6RMT6jb1x3ro7o29gKNNjhSKw7quhmdkIZTLVWl+5dO/Y8JvN5huUQFb7lvMcKLZWNur8lzKxX9VO28+ybp5hTQBlVtQZZo+B8ZrtVVdQfK3el80BmNp0DS6Y26EhqIC+gaG4Y9PmWLl07wlfd7+PKirq/aMyc25eH/9e+dE/WapSy9oBysK8qk2V9jAa1+p1olcgBbXMSvMO8lNrf86PIZsO7HnVYGaWhyahOFLt0Z5AGTW6blPtGKhPLbPA/gjltmBuR5w4yfdcnLh071gwt6PNRwS0mzkA5TLd+feCuR2u5yuskfs5rukgH9pLi/vpUE3OvQCAMvCgeQCS1z2/My5es3zcRfqqZT1xyZrl0T1/8ptzvVuGxl2kj1i/sTd6t7hQJz3WfTU0MxuhTCZb6yuX7h1nr1wSV9z664gw36Dostq3nOdAsbWyUee/lIn9qnbafpZ18wxrAiizos4wewyM12yvuoLia/W+bA7A1KZr8KnBpzUEFdC7ZSg+/M1fxNkrl4x72PzKpXvHh17zPPf7qJyi3j8qM+fm9fHvlR/9k6UqtawdoCzMq9pUaQ+jca1eJ3oFUlDLrDTvID+19uf8GLLpwJ5XDWZmeWgSiiPVHu0JlFGj6zbVjoH61DIL7I9Qbk8NPh1nTfI9F2etXBJPDT6d05EB7WIOQLlMd/791ODTrucrrJH7Oa7pIB/aS4v76VBNzr0AgDLoyPsARjz88MPxwx/+MB5++OGIiNh///3j93//92P//ffP+cgASMGBi+bFZWesiN4tQ/Hktu2xcO7s6FnQOe2Nuf5t26d8/clpXocysu6ro9HZCGUzstYf2Lw1/uOxgZjTMTM2/GZzvOuaDTEwtGP0z5lvUGxZ7FvOc6DYWt2o81/Kwn5VH20/w7p5ljUBlFkRZ5g9BibWTK+6gnJo5b5sDsD0pmpww6YnpnxfDUEa+rdtj4GhHfGuazbE2hOXxNqVS2Lw6Z2jX/PRv3UoIvbI+zCh7Yp4/6jMnJvXx79XvvRPVqrWsnaAsjCvple1PYzGtGOd6BUou1pnpXkH+amlP+fHkF0H9rz0mZnlokkojhR7tCdQRs2s2xQ7Buo33SywP0K59W3dPun3XLzrmg3x5bf8ft6HCLSYOQDlMt35d//W7fGcfRa4nq+weu/nuKaDfGgvPe6nQzU59wIAii73B80/9dRT8da3vjW+8pWvxIwZM2KvvfaKiIjHH388hoeH44wzzoh//Md/jPnz5+d8pACUXff8+m/Gdc2dPeXrC6d5HcrIuq+WRmYjlFH3/M7o3TIUb/+nOyb9M+YbFF+z+5bzHCi2djTq/JcysF/VT9vWze6sCaDMijbD7DEwuUZ71RWUR6v2ZXMAajNZgxqCahhpfWBoR1z+vXvHvf7aFxzU7kOCwija/aMyc15RH/9e+dM/Wahiy9oBysK8mloV9zDq1651olegzOqZleYd5Ge6/pwfQ7Yd2PPSZmaWjyahOFLr0Z5AGTW7blPrGGjMVLPA/gjl1jV39qTfcxGhYagCcwDKpdbzb9fz1VbPx981HeRDe2my/0I1OfcCAIpsZt4H8O53vzt+9KMfxbe+9a3Ytm1bPPLII/HII4/Etm3b4vrrr48f/ehH8e53vzvvwwSgonoWdMaqZT0TvrZqWU/0LHCzj/RY90CqzDfAHIBi0yg8Qws0wroBoFXsMZA9XQHmADRHQ1ANWgfawaypj38vSIOWASgrexi1sE4ApmdWQhq0DDqgdtYKACPsCZSRdQu0mjkD5aZhwByActEsWbOmIB/aA6gm8x8AaLfcHzS/bt26uOqqq+KUU06JWbNmjb591qxZ8YpXvCKuuOKK+N//+3/neIQAVFn3/M64eM3ycRfrq5b1xCVrlkf3fBfqpMe6B1JlvgHmABSbRuEZWqAR1g0ArWKPgezpCjAHoDkagmrQOtAOZk19/HtBGrQMQFnZw6iFdQIwPbMS0qBl0AG1s1YAGGFPoIysW6DVzBkoNw0D5gCUi2bJmjUF+dAeQDWZ/wBAu80YHh4ezvMAuru746abbooXvvCFE77+4x//OF72spdFX19fm4+sdv39/dHd3R19fX3R1dWV9+EADdAx0+kbGIreLUPx5LbtsXDu7OhZ0OkivYC0nC3rnrxomVYz39pDyxSZOVA7LZMHjWZPy+WkBXZXS8vWDRSffZmysseMpWWyoKv8aZm8mQPN03G1aSgdWmYqWi8PLVNmZs2zfD4K0qBlSINzbJhY2fYwLeejbOuE4tMyKarirNQyKdKylqlmBynIo2VrBbJlT6bM7AnP0nJ5WLdMRctkwZzJn5ZphoaLQ8vkxRzIlpZpNc22R5VatqZIWZFb1h7UrsgtQ72qPP+1DGnQMpRHR94H8KpXvSr+03/6T/GFL3whVqxYMea1DRs2xH/+z/85Xv3qV+d0dBTNpk2bore3N+/DmFRPT08sXrw478MAWqB7fnUuzGGEdQ+kynwDzAEoNo3CM7RAI6wbAFrFHgPZ0xVgDkBzNATVoHWgHcya+vj3gjRoGYCysodRC+sEYHpmJaRBy6ADametADDCnkAZWbdAq5kzUG4aBswBKBfNkjVrCvKhPYBqMv8BgHbJ/UHzl19+efzZn/1ZHHfccbHnnnvGvvvuGxERjz76aGzevDlOOeWUuPzyy3M+Sopg06ZNceSRR8XWrQN5H8qk5s2bH7/85d0eNg8N6hsYit4tQ9G/bXt0zZsdPXu4OAZax8yB4tAjFIMWgSozA6EYtEhZWKtA1swVKD6dQto0TplYr0BZmFeUifUK5MHsgfbTHdAMM4Sys4YByJu9iKqx5mFy+oDmaAjIinkC5aFXSIOWoXx0C+zOXIBq0DpFZn0CVWYGAq1kxgAARZT7g+b33HPP+Pa3vx133313/Ou//ms8/PDDERGx//77x/HHHx9HHnlkzkdIUfT29sbWrQPx+2vfH10HHJr34YzT/9B/xA+v+GD09vZ60Dw04MHNW+PcdXfGLRt7R9+2allPXLxmeRy4aF6ORwakyMyB4tAjFIMWgSozA6EYtEhZWKtA1swVKD6dQto0TplYr0BZmFeUifUK5MHsgfbTHdAMM4Sys4YByJu9iKqx5mFy+oDmaAjIinkC5aFXSIOWoXx0C+zOXIBq0DpFZn0CVWYGAq1kxgAARTUz7wMYcdRRR8XZZ58d559/fpx//vlx9tlne8g8E+o64NDYa/ERhfvVdcChef/TQGn1DQyNu2iOiFi/sTfOW3dn9A0M5XRkQIrMHCgOPUIxaBGoMjMQikGLlIW1CmTNXIHi0ymkTeOUifUKlIV5RZlYr0AezB5oP90BzTBDKDtrGIC82YuoGmseJqcPaI6GgKyYJ1AeeoU0aBnKR7fA7swFqAatU2TWJ1BlZiDQSmYMAFBkhXnQ/G9/+9vYsmXLuLdv37491q9fn8MRAdAuvVuGxl00j1i/sTd6t7hwBrJj5kBx6BGKQYtAlZmBUAxapCysVSBr5goUn04hbRqnTKxXoCzMK8rEegXyYPZA++kOaIYZQtlZwwDkzV5E1VjzMDl9QHM0BGTFPIHy0CukQctQProFdmcuQDVonSKzPoEqMwOBVjJjAIAiy/1B8w899FC8+MUvjkMOOSQWLVoUb37zm8c8cP7xxx+P1atX53iEALRa/7btU77+5DSvA9TDzIHi0CMUgxaBKjMDoRi0SFlYq0DWzBUoPp1C2jROmVivQFmYV5SJ9QrkweyB9tMd0AwzhLKzhgHIm72IqrHmYXL6gOZoCMiKeQLloVdIg5ahfHQL7M5cgGrQOkVmfQJVZgYCrWTGAABFlvuD5s8777yYOXNm/PCHP4zvfOc78Ytf/CJWr14dTzzxxOifGR4ezvEIAWi1rrmzp3x94TSvA9TDzIHi0CMUgxaBKjMDoRi0SFlYq0DWzBUoPp1C2jROmVivQFmYV5SJ9QrkweyB9tMd0AwzhLKzhgHIm72IqrHmYXL6gOZoCMiKeQLloVdIg5ahfHQL7M5cgGrQOkVmfQJVZgYCrWTGAABFlvuD5m+88cb4zGc+Ey984QvjZS97WXz/+9+PAw44IF760pfG448/HhERM2bMyPkoAWilngWdsWpZz4SvrVrWEz0LOtt8REDKzBwoDj1CMWgRqDIzEIpBi5SFtQpkzVyB4tMppE3jlIn1CpSFeUWZWK9AHsweaD/dAc0wQyg7axiAvNmLqBprHianD2iOhoCsmCdQHnqFNGgZyke3wO7MBagGrVNk1idQZWYg0EpmDABQZLk/aL6vry/23HPP0d/PmTMnrr322jj00ENj9erV8eijj+Z4dAC0Q/f8zrh4zfJxF8+rlvXEJWuWR/d8F85AdswcKA49QjFoEagyMxCKQYuUhbUKZM1cgeLTKaRN45SJ9QqUhXlFmVivQB7MHmg/3QHNMEMoO2sYgLzZi6gaax4mpw9ojoaArJgnUB56hTRoGcpHt8DuzAWoBq1TZNYnUGVmINBKZgwAUGQzhoeHh/M8gOXLl8f73//+WLNmzZi3P/3003H66afHHXfcEb/97W9jx44dOR3h9Pr7+6O7uzv6+vqiq6sr78NJ1h133BHHHXdcvPxvroy9Fh+R9+GM8/ime+KGC8+O22+/PY499ti8D4c66bgY+gaGonfLUDy5bXssnDs7ehZ0umimLlqmHmZOcWm5evSYJi2XjxaZiJapitRnoJYpi9RbbJaWi8NapRlaZiLmSvlouXp0miYtM0Lj5VXFjq1XUlTFlqvAvKqeMrdsvcKzytxy2Zg9tJKWJ6Y7ykbLxWKG0KiitGwNQ3OK0jKUWRH2Ii3TTkVY86nScvnpgwgtN0NDFIWOy888IULLZaFXpqPlctAy09Fy8eiWRmg5beZCdWi52rSejhRbtj6pohRbpjFmYLlpmaIzY2qjZUiDlqE8OvI+gFe+8pXxuc99btyD5js6OuKrX/1qrFmzJn7729/mdHQAtFP3fBfKQPuYOVAceoRi0CJQZWYgFIMWKQtrFciauQLFp1NIm8YpE+sVKAvzijKxXoE8mD3QfroDmmGGUHbWMAB5sxdRNdY8TE4f0BwNAVkxT6A89App0DKUj26B3ZkLUA1ap8isT6DKzECglcwYAKCIcn/Q/IUXXhgDAwMTvtbR0RHr1q2LBx54oM1HBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA6M/M+gI6Ojujq6pry9UMOOaSNRwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQWrk/aD4i4he/+EW8/e1vjxUrVsQBBxwQBxxwQKxYsSLe/va3xy9+8Yu8Dw8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgUx15H8C3v/3tOO200+LYY4+N17zmNbHffvtFRMQjjzwSN9xwQxx77LHxta99LU455ZScjxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgG7k/aP68886Lc889Nz70oQ+Ne+0DH/hAfOADH4j3vve9HjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJGNm3gfwq1/9Kt74xjdO+voZZ5wRGzdubOMRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRW7g+aP/TQQ+Nb3/rWpK9/61vfikMOOaSNRwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQWh15H8CHPvSh+LM/+7O4+eab42Uve1nst99+ERHxyCOPxE033RTf+c534stf/nLORwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQndwfNH/66afHQQcdFJ/5zGfiE5/4RDz88MMREbH//vvH8ccfHzfffHMcf/zxNf1dhx56aNx///3j3v72t789/v7v/37c26+66qo4++yzx7xtzpw5sW3btgb+TwDoGxiK3i1D0b9te3TNmx09e3RG9/zOvA8LKk+bQKPMD0iDlgGaZ5YC5gC7sh4gDVqGYtAi0EpmDK1gXQF5MHtIhbUMpMZcg+bpCGiWOUIKrGMAamXPgOLSJymzvqE9tAbUy9yA8XQBtJOZA2nQMtAo8wOKSZswNY0ARWdOAe1k5gAARZf7g+YjIk444YQ44YQTmv57fvzjH8eOHTtGf3/XXXfFy1/+8jj99NMnfZ+urq645557Rn8/Y8aMpo8DoIoe3Lw1zl13Z9yysXf0bauW9cTFa5bHgYvm5XhkUG3aBBplfkAatAzQPLMUMAfYlfUAadAyFIMWgVYyY2gF6wrIg9lDKqxlIDXmGjRPR0CzzBFSYB0DUCt7BhSXPkmZ9Q3toTWgXuYGjKcLoJ3MHEiDloFGmR9QTNqEqWkEKDpzCmgnMwcAKIOZeR9AlvbZZ5/Yf//9R39985vfjMMOOyxOPvnkSd9nxowZY95nv/32a+MRA6Shb2Bo3AVwRMT6jb1x3ro7o29gKKcjg2rTJtAo8wPSoGWA5pmlgDnArqwHSIOWoRi0CLSSGUMrWFdAHsweUmEtA6kx16B5OgKaZY6QAusYgFrZM6C49EnKrG9oD60B9TI3YDxdAO1k5kAatAw0yvyAYtImTE0jQNGZU0A7mTkAQFl05H0AERHXX399XHvttbHXXnvF2WefHUcdddToa0888USsWbMmvve979X1dw4NDcWXvvSleM973hMzZsyY9M9t2bIlDjnkkNi5c2cce+yx8dGPfjSOPvroKf/uwcHBGBwcHP19f39/XccG5E/H2erdMjTuAnjE+o290btlKLrnd7b5qKgCLU9Nm5SFlovH/KARWi4eLdMILcNYZZ2lWobs5DkHtFw8Zd0XyJeWi0fLNELL2dMiedBydZgx6cqzY+sKsmNPrp3ZQ5HV07K1DMVlX26MuUbRlLFlHcF4ZWw5T+YIReV6GdJgX6Zo7BmN0TLtoM/W03J+rG+ypOXJaY2y0HFxmBs0I9WWdUHVpNpyWZg5ZEXL+dIyWdFy9ZgfadJy+WmTCC1PRSOUiZaryZxKj5YpMjOndlqGNGgZymtm3gfw5S9/Of7kT/4kHn744fjBD34Qxx57bPzTP/3T6OtDQ0Pxf//v/637773uuuti8+bNcdZZZ036Z4444oi44oor4mtf+1p86Utfip07d8YJJ5wQv/3tb6f8uy+66KLo7u4e/XXwwQfXfXxAvnScrf5t26d8/clpXodGaXlq2qQstFw85geN0HLxaJlGaBnGKuss1TJkJ885oOXiKeu+QL60XDxaphFazp4WyYOWq8OMSVeeHVtXkB17cu3MHoqsnpatZSgu+3JjzDWKpowt6wjGK2PLeTJHKCrXy5AG+zJFY89ojJZpB322npbzY32TJS1PTmuUhY6Lw9ygGam2rAuqJtWWy8LMIStazpeWyYqWq8f8SJOWy0+bRGh5KhqhTLRcTeZUerRMkZk5tdMypEHLUF65P2j+Yx/7WFx66aXxzW9+M2655Zb44he/GG9961vjC1/4QlN/7xe+8IV45StfGQceeOCkf+b444+PN7/5zfGCF7wgTj755Lj22mtjn332iX/8x3+c8u8+//zzo6+vb/TXb37zm6aOFWg/HWera+7sKV9fOM3r0CgtT02blIWWi8f8oBFaLh4t0wgtw1hlnaVahuzkOQe0XDxl3RfIl5aLR8s0QsvZ0yJ50HJ1mDHpyrNj6wqyY0+undlDkdXTsrUMxWVfboy5RtGUsWUdwXhlbDlP5ghF5XoZ0mBfpmjsGY3RMu2gz9bTcn6sb7Kk5clpjbLQcXGYGzQj1ZZ1QdWk2nJZmDlkRcv50jJZ0XL1mB9p0nL5aZMILU9FI5SJlqvJnEqPlikyM6d2WoY0aBnKqyPvA9i4cWO8+tWvHv3961//+thnn33iT/7kT2L79u3x2te+tu6/8/77748bb7wxrr322rreb/bs2bFixYq49957p/xzc+bMiTlz5tR9XEBx6DhbPQs6Y9Wynli/sXfca6uW9UTPgs4cjooq0PLUtElZaLl4zA8aoeXi0TKN0DKMVdZZqmXITp5zQMvFU9Z9gXxpuXi0TCO0nD0tkgctV4cZk648O7auIDv25NqZPRRZPS1by1Bc9uXGmGsUTRlb1hGMV8aW82SOUFSulyEN9mWKxp7RGC3TDvpsPS3nx/omS1qenNYoCx0Xh7lBM1JtWRdUTaotl4WZQ1a0nC8tkxUtV4/5kSYtl582idDyVDRCmWi5msyp9GiZIjNzaqdlSIOWobxm5n0AXV1d8cgjj4x52+rVq+Ob3/xmvPe9743LLrus7r/zyiuvjH333TdOPfXUut5vx44d8fOf/zwOOOCAuv+bAFXWPb8zLl6zPFYt6xnz9lXLeuKSNcuje76LYMiDNoFGmR+QBi0DNM8sBcwBdmU9QBq0DMWgRaCVzBhawboC8mD2kAprGUiNuQbN0xHQLHOEFFjHANTKngHFpU9SZn1De2gNqJe5AePpAmgnMwfSoGWgUeYHFJM2YWoaAYrOnALaycwBAMpixvDw8HCeB3DaaafF85///PjgBz847rWbb745XvWqV8XWrVtjx44dNf19O3fujCVLlsQZZ5wRF1988ZjX3vzmN8dBBx0UF110UUREfOhDH4o/+IM/iKVLl8bmzZvjYx/7WFx33XVx++23x3Of+9ya/x/6+/uju7s7+vr6oqurq+b3oz533HFHHHfccfHyv7ky9lp8RN6HM87jm+6JGy48O26//fY49thj8z4c6qTjbPQNDEXvlqF4ctv2WDh3dvQs6HQBTFtpeWLapGy0XBzmB83QcnFomWZoGZ5R9lmqZWheEeaAloujCOuB8tJycWiZZmg5O1okT1pOnxmTvjw6tq4ge/bk6Zk9lEEtLVvLUHz25fqYaxRVmVrWEUyuTC3nyRyh6FwvQxrsyxSFPaM5WqaV9Nk+Wm4/65tW0PJ4WqNsdJw/c4MspNayLqiq1FouCzOHrGk5H1oma1quDvMjbVouL22yKy2PpxHKSMvVYk6lS8sUkZlTPy1DGrQM5dGR9wH81V/9Vdx2220TvvaSl7wkvvGNb8TVV19d89934403xqZNm2Lt2rXjXtu0aVPMnDlz9PdPPPFE/MVf/EU8/PDDseeee8Zxxx0Xt912W10PmQfgWd3zXfRCEWkTaJT5AWnQMkDzzFLAHGBX1gOkQctQDFoEWsmMoRWsKyAPZg+psJaB1Jhr0DwdAc0yR0iBdQxArewZUFz6JGXWN7SH1oB6mRswni6AdjJzIA1aBhplfkAxaROmphGg6MwpoJ3MHACg6HJ/0PzJJ58cJ5988qSvr169OlavXj36+4svvjje9ra3xaJFiyb88694xStieHh4wtduvvnmMb//5Cc/GZ/85CfrPmYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZuT+oPl6ffSjH43Xv/71kz5oHoDW6BsYit4tQ9G/bXt0zZsdPXt0Rvf8zrwPCyBJZi7tYJ1BvjQIpMhsA9rBrAFqYVawK+sBqkn7UCyahObpCMpHt5A+nQNVZw5C++kOsqUpYCJmA2VhrQLkw/ylzKxfgHSY6ZA9XaXFxxMYYR4AuzMXID/6g2rQOlBEZhM8Sw/AVMwIAIBiKd2D5oeHh/M+BIDKeXDz1jh33Z1xy8be0betWtYTF69ZHgcumpfjkQGkx8ylHawzyJcGgRSZbUA7mDVALcwKdmU9QDVpH4pFk9A8HUH56BbSp3Og6sxBaD/dQbY0BUzEbKAsrFWAfJi/lJn1C5AOMx2yp6u0+HgCI8wDYHfmAuRHf1ANWgeKyGyCZ+kBmIoZAQBQPDPzPgAAiq1vYGjcxXxExPqNvXHeujujb2AopyMDSI+ZSztYZ5AvDQIpMtuAdjBrgFqYFezKeoBq0j4UiyaheTqC8tEtpE/nQNWZg9B+uoNsaQqYiNlAWVirAPkwfykz6xcgHWY6ZE9XafHxBEaYB8DuzAXIj/6gGrQOFJHZBM/SAzAVMwIAoJg8aB6AKfVuGRp3MT9i/cbe6N3igh4gK2Yu7WCdQb40CKTIbAPawawBamFWsCvrAapJ+1AsmoTm6QjKR7eQPp0DVWcOQvvpDrKlKWAiZgNlYa0C5MP8pcysX4B0mOmQPV2lxccTGGEeALszFyA/+oNq0DpQRGYTPEsPwFTMCACAYvKgeQCm1L9t+5SvPznN6wDUzsylHawzyJcGgRSZbUA7mDVALcwKdmU9QDVpH4pFk9A8HUH56BbSp3Og6sxBaD/dQbY0BUzEbKAsrFWAfJi/lJn1C5AOMx2yp6u0+HgCI8wDYHfmAuRHf1ANWgeKyGyCZ+kBmIoZAQBQTB15HwAAxdY1d/aUry+cOzv6Boaid8tQ9G/bHl3zZkfPHp3RPb+zTUcIUF67z88Fc6Y+PV84zUyGWky3t+8xzToEJlbrOXEt59cAZdOq2eZ+A+SniP05j6LqithlEZkV5ZflWrceoJq0D+013d6tScqg6NdbOoLy0S20VhH2bp0DZdKKuWkOwsRaeZ6iO8hWGZoqwrUPtFrR1nkZZgNE5LNWi9YrQB587xRFU8/aca4LjTGjKSIzndQUYdbqqtz8/DYon3bNfvMdqsE9MigH/UE1NNN6Ee4RAdkqStfOQ+BZeqi2osxliivLGWG9AQBkp3RPEDzppJNi3rx5eR8GQGX0LOiMVct6Yv3G3nGvrVrWE3Nnz4x3XrMhbtnl9VXLeuLiNcvjwEXmNcBkHty8Nc5dd+eY+XnR646Jk5b1jHnbiFXLeqJngZugNG+qvX3l0r3jJ/c/EXvM6bCPQx0mmumTnRNPd35t1gNl1IrZVs9sBbJV1P6cR1FlRe2yiMyKcst6rVsPUE1zZ8+ME5fuHbfe+9i417QP2apl77YfU3RluN7SEZTPVN2euHTvmDt7Zg5HBWkoyt5tfwbKolVz0xyE8Vp9nqI7yFbRmyrKtQ+0UhHXedFnA4xo91otYq8AefC9UxRJvWvHuS7Uz4ymqMx0UlKUWaur8vLz26B82jn7zXdIn3tkUB6+zwqqodG9tij3iIDsFKlr1wHwLD1UV5HmMsWV1Yyw3gAAspX7Z1Buv/32uv789ddfHwcccECLjgaA3XXP74yL1yyPVct6xrz9pGU98aHXPC9uu++xuP3+J8a8tn5jb5y37s7oGxhq56ECNKRvYCjue3RLbNj0RNz3uy1tmV19A0PjbnJGRHz4m7+Id6xeOm7mrlrWE5esWR7d832iheZNtrevXLp3nL1ySXz4m7+YcB/PoxUog8lm+mTnxNOdXwOU0WSzbarz2KnOLeqdrUB2suwv62uIRmYNpCC1fbHV9xfMiuKbbA20Yq1bD1AuWewRfQND8f6v/1uctXJJrFy695jXTly6d3z0tcdoHzLQNzAUGx95Mu5+qD/OXrkk3vnSpTG/c1ZEjN+77ccU2UTnoPM7Z8XygxfFf/Q+FXfc/3ghPi+qIyif7vmd8ZHXHhMnLR3/dRlnrVwSH/j6v+U+W6CMWn2vtJ7rUvszUAaP9G+L/+h9Ks548eK44qwXjV6/ZzE3zUF4Vj33ypqhO8hWVk214msgUvs6EdjVSDN33P943P/YU/H8gxeN7psR+a9z+y15qXc/aedatS8BPKuZ+TvRrDdjGVHvuUAja8e5LtTHjJ6anzuSLzOdvGTdfpFmra6Krd7vRfTz26C42jH7d50Zjz01FB997THmASSqke8Jc94H+eme3xkffe0xceJu3/vfzPdZuUcFxdPoz6Kc6DrhJ/c/Ef/3V7+LjY88qXMomVZd/ze697sOoKjyOJ/VQzUV6XNyFFsWP1v+kf5t8Xdfu8t6AwDIUEfeB/CiF70onvOc58TatWvjrLPOigMPPDDvQwJgNwcumheXnbEiHu7fFr99YmtERGz4zeb448/cEisWL4rPnLEi3nXNhhgY2jH6Pus39kbvliE3BYFCe3Dz1nE3uFct64mL1yyPAxfNa9l/t3fL0LibnBERA0M7Yu1VP45vv+ukeHrncDy5bXssnDs7ehZ0mqdk6sBF8+LDr3le3Pu7LTH49M6Y0zEzNvxm8+h+vvs+nlcrUAaTzfSIyc+Jpzq/fuEhe2oLKKWR2da7ZWja89jpzi0ama1ANrLqr1XXEPXMGkhFSvtiu+4vmBXFNdUa2LZ9R0vWuvUA5ZDVHtG7ZShuvPvRuO2+x2LtiUti7colY+6BD+3Y2YrDh0qZqNeVS/ce83Uju+/d9mOKavfrrfmds+IzZ6yIK7//67j8e/eOvr0InxfVEZTLg5u3xoe+flc8f/GiOGvloTH49M7onjc7Fs7tiLVX/Th6twyV6p4OFEUr75U2cl1qfwaK7MHNW+Pc//2zuOXex0bftuv1exafYzIHobF7Zc3QHWSr2aZa9TUQKX2dCOyqln0zIv91br+l3RrdT9q1Vu1LAGM1Mn8nm/Ufes3z4vb7n5jwfczY6mjkXKDR/dm5LtTOefDk/NyRYjDTabdWtF+0WaurYmrkexH9/DYorlbP/olmxsuP2jcuet0xsW37TvMAEtPo94Q574P8DO3YGS9YvGecvdv3/o98zUg95wLuUUFx1bvXTnSdsOu+fv61Px99u86hHFpx/d/s3u86gKLJ83xWD9VTtM/JUWzN/mz5k5b1xJknHBq33ffYmGfXRVhvAACNyv1B8xERL33pS+PTn/50vP/9749TTjkl3vKWt8SrX/3qmDVrVt6HBsAuPvKtu8fdCPr+//vhY2tPXDLmC2oiIp7ctr1txwZQr76BoXE3ICOeudF43ro747IzVrTsZmP/FPNxYGhHPDEwFC9YvGdL/tsw4vGBofjzL/5k0tdH9vE8W4EymGqmR0x9TjzR+bW2gDLrnj/9FwjVcm7RzGwFmpNFf62+hqhl1kBKUtkX231/wawonunWwN++6rlTvn8za916gGLLco8Y2TcHhnaM+9x1RMTLjty3+QOGCpus14m+bmT3vdt+TBHtfr219sQlceX3fz26pkcU5XM3OoJy2HW/vPGXvxvz2sqle8cbXrw4Lv/evaW5pwNF0qp7pc1cl9qfgSIanWu7Xdvsfv2exfmIOUiVNXOvrBm6g2w12lQrvwYila8TgV3Vs29G5L/O7be0S7P7STvWqn0JYLx65u9Us/6Cr9014c9oGWHGpq/Rc4Fm9mfnulAb58ET83NHisVMp11a1X4RZ62uiqWZ70X089ugmFo5+yebGTfc/WgMPr0zLjtjRRy274KG/36geJr5njDnfZCPvq3bJ/2cSETt5wLuUUHx1bPXTnSdUPTv9QamlvX1f1Z7v+sAiqII57N6qJYifk6OYmvmZ8vfsrE3dg4PT/p1kdYbAED9ZuZ9ABERH/nIR+KBBx6Ir3zlKzE8PBx/+qd/GgcddFCce+658atf/SrvwwOolL6Bobjv0S2xYdMTcd/vtkTfwFBERPRuGRp3oT7i+/c+FisOXjTu7Qvnzm7loQJMOrNqMdVcW7+xN3q31P531atrmvloftIO063Dzo6Zcd/vtsSjTw7m1gqUwXQtze2cNeH+lOc+BJCnWuaf82XITxb9Ff08p5l7CTCRVq+pVPbFos8GWm+6NbBz5/CU71/LWjfjoZymmw8P9W+ruedU9k0oqnq+bmSPOR1tOiqozUTnirvvGysOXjTuBw+McN0C1KJvYCge6ttW037p3BTqV881Xz33idy7BLJQpPvTtV6/Ox+harLutJ57ZXqD9mv13tzK6wif76IZRTov3VW935tsnVMVZbgvZV/KX1FnO1RdrW1ONetv2dg74c9oGWHGpq+ec4Fd19y8zllT/r3WDozVyPmU8+CJleEaBqqqldeOrWrfrGU6zX4v4mQ/6wdojVr2olbOfueqUA1T3SPzPWFQfFmdC2T5cwmA/E00G+zrkJ08vu4o6+t/1/ykJqU17Wsby8Hn5GiFRp5dFzHxejNLAACmVpif6NrR0RFr1qyJNWvWxAMPPBBXXHFFXHXVVfHxj388Vq5cGevXr8/7EAGS9+DmrXHuujvHXJSvWtYTF69ZHv3btk/4PvM7Z8XaE5fEPgvnxH9/47Exd/asuGPTE3HPQ/3Rs6CzXYcOJKxvYCh6twxF/7bt0TVvdvTs0Rnd8zunnFkHLpo37d872Vwb8eQ0rzejZ0FnrFrWE+snuAm6almP+Ulb7LoOR/bzFQcvisGnd8ai+bPjob5t8ZfXbIjLzlgx5d/TylagDKaa6SuX7h3fvPOhuPM3m8ftT/XsQ5PthQDNyGu21DL/9lk4J05cunfcOsEX+jpfhtbK4np1pPPdrzNG7hs+NZjfNUSz9xJgd+1YU6ncR8rzXtyuXF/lZ7o1MDC0o6m1vnuP8ztnxQWvem4cu3hRDAzt8PGGAptqPszvnBVbh3bEvz3YH50dM2PPPTqnbDmVfROKZuQc6rGnhuKKs14Ud2x6Iq649dcxMLRjzJ8bfHpnRDxzb/wn9z8Re8zpcK1FIUx27XbR644Zs2+MrOHdjdzjGHx6R2zY9IRzS2BCDzwxEPc/NhAzZsyYdr90bgqNqfWar977to3cu3SfEdhV0T4HOd1ccz7SOPO/vFrRaS2tjfx3ytib9U6Z1dp8M+u8lV8D4fNdNKpo56W7qnXfjCjfOrdn0owy3JeyL+WryLMdyqBVM7OeNqeb9ZMxY9O167qc0zEz3vnSpRN+Xjni2XOB3dfcO1+61PfdQY0aPZ9yHjyxonxfUFW450CtWn3t2Kr2exZ0xkWvOyb2XThnzPcfX3Hrr+OFh+xZ2VnLs5r5XsRdf9bPJWuWx/zOWWYqtFCte1Erz7Mb3a+cc0F5THePbLLvCRvh5/lB/qY6F3j5UfvGgrkdcd+jW6Ztc7p9/99/91R89Ft3+5wqtEjW++hEs6GefR2YXF5fd5T19b/PT+XPNVS2UlnT7Zox1l/zfP0DI7LsqZ7vDxkx0XrzddIAANPL/UHzM2bMGPe2gw46KC644IK44IIL4qabboorrrgihyMDqJa+gaFxF9EREes39sZ56+6MC1713HHvM79zVnzmjBVx5fd/HZd/797Rt5+4dO/46GuPcaMNaNpkN/g++tpj4gPf+LdJZ9ZlZ6yYdgZ1zZ095esLp3m9Gd3zO+PiNcvjvHV3jrm5vmpZT1yyZrn5SVuMrMP3f+2u+P9evHjcfr5y6d7xmTNWxKwJrtl21cpWoAwmm+krl+4dZ69cEu+6ZkMMDO0Ytz/Vug/5ZBfQCnnOlunm3x5zOuL9X/+3OGvlkhiOiO/v8kNv3G+A1svierVr7uxJ7xuuXLp3/Omxv9eSY5/OdPc/a7mXALtq15pK5T5SnvfiRri+ytd0a6B73uyG1/ruPe66D51/7c/H/F0+3lA8k82HkZYv/e49ccsu14ZTtZzKvglFMtE51MjnkEbuf4+Y0zFzzL3xbx+yp2stcjfVtdsHvv5v8dHXHhP/9Z9/Hus39sacjpnj3n+yexzOLYFd/fbxgTj32jvHfE5jsv1y0bzZzk2hQbVc8zVy37bee5fuMwK7KuLnIKeba85HGmP+l1erOp2utTkdM0t7b9p6p8xqbb7Zdd7Kr4Hw+S4aUcTz0l3Vsm9GlG+d2zNpVhnuS9mX8lP02Q5F16qZWW+b083639tz3rgf5GvGpquer8OKeOZcYKI1d8Wtv47PnLEiImLMw+atHRirmfMp58ETK8L3BVWFew7Uqh3Xjq1q/6mhHXH9nQ/FLfeOPTe64qwXxaF7za/srOVZjX4v4q7fzxARcf/jA/H337t3zFozUyE79exFrTzPbmS/cs4F5VHLPbKJvidsV36eH+RvsnOBlx+1b1zwqufGX3/1ZzW1WcvXoPicKrRGK/bRiWZDrfs6MLk8v+4o6+t/n5/Kl2uo7KWwpts1Y6y/bPj6ByKy76mW72He1UTrzddJAwDUJvcHzQ8PD0/5+h/+4R/GH/7hH7bpaACqq3fL0LiL6BHrN/ZG56yZ475Jce2JS+LK7/96zA9IjXjmC23+9rq7XHwDTZnqBt/5//zzeP7Bi+LGux8d937rN/ZG75ahaedPz4LOcXNtxKplPdGzoLXz68BF8+KyM1ZE75aheHLb9lg4d3b0LOg0N2mrAxfNi4+89pj46//103H7+cjv165cEiuX7j3u9Yj2tAJlMDLTH+rbFv/e+1TM6ZgZG36zecwPd9h9f6plH/LJLqAV8p4t082/zlkz48a7H43b7nss1p64JNauXBKDT+8cna1DO3a27NiAZzR7vdqzoDMueNVzJ7xv+P17H4u/+1o+9w2nu/9Zy70E2FU711QK95HyvheX9zkQta2B7vmdDa313Xuc7PNXPt5QTJPNh0ZbTmHfhKKY7Bxq9HNIJy4ZffD2SUv3jn0WzokVi/ccvTfuWosimOra7Ya7H43z//io0X1j5/BwnLSsx7klUJe+gaE4f7eHzEdMsl8u64nD9l0Q+3XNbftxQiqmu+Zr5L5tPfcu3WcEdlfEz0FONdecjzTG/C+3VnU6XWtL91lQyrVhvVN2tTQfEU2v81Z/DYTPd1GvIp6X7mq6fXPxXvPjpvecXKp1bs8kC2W5L2VfykfRZzsUWStnZr1tTjfr9++aa8ZWRD1fhxXx7LnARGtuYGhHvOuaDbH2xCXxt6c+N7Zt32HtwASaPZ9yHjxe3t8XVBXuOVCPdlw7tqL90XV+7/hzo1kzZsRl/++BoVRbPd+LONnP+nnnS5fGZd/b6OvAoYXq3YtadZ5d737lnAvKpZZ7ZLNmzhj3PWEj/Dw/KI6JzgUWzO0Y95D5iMnbnGrfX7l079jwm82j7+9zqpCdVu6jBy6aFx9+zfPi3t9ticGnd8Y+C+fESUv3jlv8DGxoWN5fd5Tl9b/PT+XHNVRrpLCm2zFjrL9s+fqHamtFT9PNssP2XRA3vefkKddb3ucrAABlMTPvA/g//+f/xF577ZX3YQBUXv+27VO+3rd1KC5eszxWLesZfduKgxdN+NDZiLE/fAWgEVPd4LtlY2+sOHjRpO/75DQzLSKie37nuLkW8cwNyEvWLG/LzcPu+Z1x2L4L4gWL94zD9l3ghiW52LLt6Qm/gCbimW/CmjFjRpy9ckmclGMrUAbd8ztj6/Yd8fZ/uiP+/Is/icu/d+/oQ+ZH7Lo/1bIP1frDDgHqkfdsmW7+bd76zH9/YGhHXP69e+PPv/iTMbO1f+v05/pA85q5Xu2e3xnHLi7efcPp7n/Wci8BdtXuNVX2+0h534vL+xyI2tdAI2t99x59/grKZbL5cPxz9m645bLvm1AUU51Dff/ex0Y/X7ty6d5x5sol8YbP/eu4e+OutcjbdNdu/Vu3j+4by/ZbGJf42iigTr1bhqb8mouR/XLVsp74b2uWe6grZGCqa75G7tvWc+/SfUZgd0X8HORUc835SGPM/3JrVafTtXZIzx6lvDdtvVN2tTSfxTpvx9dA+HwX9Sjieemupts3l+23sHTr3J5JFsp0X8q+1H5Fn+1QZK2cmfW2WcusN2Orodavw4oYuz4mW3Mj33e3bfsOawcmkcX5lBk9Vt7fF1QVeV//US7tuHZsRfvWObWo53sRJ/tZP74OHFqv0a/ZzPo8u979yl4E5VLLPbKJvicsws/zgyLa/Vxgy7an62pzsn1/5dK94+yVS+KKW389+jafU4XstHoffXxgaPTnTb7hc/8aZ65cEiuX7j3mz7gXDbUrwtcdZXX97/NT+XEN1RoprOl2zBjrL3u+/qG6WtHTdLNsv6650663IpyvAACUQUfeB3DyySfnfQgARETX3NlTvr7HnNlx4KJ5cdkZK6J3y1A8uW17bN85POX7uPgGmjHdDb7Bp3dO+trCaWbaiN3n2sK5s6NnQacb3FTKdK1t274j/vqrP4tvv+ukeHrnsFZgCtOdU+++P023D/lkF9AKRZgtU82/XR9ENpFaz/WBfE3Xch7nMfWeq8F0rKn65XkvrgjnQLRuDeze41T3jiN8vKGIRubDQ33b4t97n4o5HTNjh89FQ+6mO4daOHd2fOfdJ8U3f/5QvOuaDRNeCzovJm/Nfu7G10YB05luv5zf2RHfefdJcUD3XF9jAW3Q6H3bWu9buc8I7K6ony/y9dHZMv/LrZWdptia9U7Z1dJ8Vus8xRlAeRX1vHRXqTVjzyQr7ksxmTLMdiiqVs7MRtpM7TyIxky3LrvnzY7r3n7CuPVhP4DG6ac17Gut5/qPerRr1mXdvnVOrWpde5O14HsMofWKdN5dz35lL4JyqXXW+Hl+UE6NtDnRzyXY8JvN477P2T1AyE6r99Fd9/uBoR3xrms2xNoTl8TalUti8Omd8ZyePXx/JtShSNfrWfD5qXy4hmqdsq/pdswY6w+y06qemp1lqZ2vAAC0Su4Pmh/x29/+NhYtWhQLFiwY8/bt27fHD37wg1i1alVORwb1ufvuu/M+hEn19PTE4sWL8z4MCqpnQWesWtYT6zf2jntt1bKe6FnwzAV59/xnL87ve3TLlH+ni2+gGdPd4Fs0b+LXd51Ztdh1rkEVTdfanI6Z8cJD9oxF82drBaZR6zn1rqbah3yyC2iFosyWyeZfI7MUKJ6izJpdmS9kzZpqTF734oo4l6qqFWtg9x7ndMyc8s/7eEMxjcyGj15/d6zf2BtfOPOFU/55LUPrTXcOtfcendGzoDPu/M3mCR8y77yYImj2cze+NgqYznT75fDwsB9iAm3UzH3bWu5buc8I7K7Iny/y9dHZMf/LrdWdptaa9U7ZZdF8Pes8tRlAeRX5vHRXKTVjzyRL7ksxkbLMdiiiVs7MRttM6TyIxky3Lvec3xmH7btg3NvtB9A4/bSOfa21XP9Rj3bOuizbt86pRy1rb7IWfI8htF7Rzrtr3a/sRVAu9cwaP88PyqfRNnf/uQS7cw8QstXqfXT3/X5gaEdc/r17I+KZni87Y4X70lCHol2vZ8Hnp9rPNVRrlXlNt2PGWH+QnVb21MwsS/F8BQCgFab+6qc2eOihh+LFL35xHHLIIbFo0aJ485vfHFu2PPvDOR9//PFYvXp1jkcItdna91hEzIg3velNcdxxxxXy15FHHhWbNm3K+5+Kguqe3xkXr1keq5b1jHn7qmU9ccma5VM+/G0iLr6BZk03Yw7Ze35dMwuY2FStrVy6dzz65KCuoEaNnFNPxfk20ApFny1Zz1IgH0WcNeYLWbOmyqWIc4ns7N7jht9sjpVL957wz/p4Q7Ht2rOWIX+1nEM5L6boml2jriWA6Uw1J05cunccsvd8+yG0UavPT50bALtzXVwN5n+56bQ+1jtlV0vz1jkpst+1n1lCu1lz1WO2Q+NaOTO1SaMaXZfWHDROP5SV6z/qUdZZZ52TtclaePTJwTjJWoOWshcB7ZDVrNE+FFMzbZb1XATKqNX7qJ4hW5oiC66hmEw7Zoz1B9kpak/OVwAAajNjeHh4OM8DOPPMM+Oee+6Jyy+/PDZv3hznnXdezJgxI7773e/GnnvuGY888kgccMABsXPnzjwPc0r9/f3R3d0dfX190dXVlffhJOuOO+6I4447Ll7+N1fGXouPyPtwxvmPH/5L/PCKD8YL/uzc2GfJkXkfzjj9D/1H/PCKD8btt98exx57bN6HUzg6flbfwFD0bhmKJ7dtj4VzZ4/+YPDJPLh5a5y37s5Yv7F39G0jF98HLJrXjkOGUVpOz3Qzpt6ZRTlouf0mau2kZT3x4dc8L/acP1tXNKTKLWe5PznfJm9VbjllZZgtzvWzpWXyUNRZU+b5ouViKvOaqpqizCUtt85Ij08Nbo+ueZ3xd1+7K/ePN+nScmv1DQzFY08NxXBEfODr/xa3aJkW0fL0aj2Hcl5MXmrtuJk1WpRrCUhZ2ffkyb7m4qLXHhO/t9f8HI8M2qtILbfy/NS5AakrUstl4ro4fWWb/1oeT6e1K9t6T5mWGzdd89Y57dTOlu137WWWVEsR9mVrrprM9mwVoWXao9UzU5v5KmvLzaxLa44Utatl/VBGZbn+K+uenKIyzrqyrPMqSKnliVp4amiHtUYl5N2yvQiykXfLRZfFrNE+7aDl+jXbZhnPRSg+LY/Xjn1Uz2St6i1rimYV5Rqq6i0XVatnTFHWH9nRcn6K3JPzlfLRMqRBy1AeuT9o/qCDDop//ud/jhe/+MURETE4OBinn356/OY3v4mbbroptm/fHgceeGDs2LEjz8OckqHXHmV50PyJ5/x9HHTUirwPZ5zHN90TN1x4tgfNT0LHzXHxTVFoOU1mTPVoOR9aI2tazo4+yZOW02W2VIuWyYtZky0tQ/OKMJe03D5F+HiTLi23j5ZpJS3XRocUmR84DGlIYU82JyCNlmuleVJWpZahXmWa/1qmWWVa7ynTcmtZ57SLltNmllRHUVq25qA5RWmZ9jAz01Xmlq1LeFaZW4Z2KMOeoWOaVYZ1XgVVaNlaowqq0HIrmA8UjZbbQ/u0mpYbo02KRssT0yplo2VoXhFmv5arqwjrj+xoOV96IitahjRoGcqjI+8D6Ovriz333HP093PmzIlrr702Tj/99Fi9enV86UtfyvHoAKhF93w3AYDWMWOgPbQGxaVPoBXMFqAdzBqgaMylavHxhjRoGfKnQ9ABMD1zAqpF8wDVZP5TJdY7VWCdA1kwS2g3aw6gdmYmRWRdAlArewZVYJ3TLtYaMBnzAapJ+1BM2oRy0CpA9Zj95Mn6g+zoCQCgnGbmfQDPec5z4s477xzzto6OjvjqV78az3nOc+JVr3pVTkcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Bq5P2j+la98ZXzuc58b9/aRh82/4AUvaP9BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRQR94HcOGFF8bAwMCEr3V0dMS6devigQceaPNRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTOzLwPoKOjI7q6uqZ8/ZBDDmnjEQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0VkfeB/C6171uwrd3d3fH4YcfHm95y1tin332afNRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTOzLwPoLu7e8Jfmzdvjv/xP/5HHHHEEXHXXXflfZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmenI+wCuvPLKSV/buXNn/MVf/EWcf/758Y1vfKONRwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQOjPzPoCpzJw5M971rnfF7bffnvehAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGSm0A+aj4jYY489YmBgoKY/e+ihh8aMGTPG/XrHO94x6ft89atfjSOPPDLmzp0bxxxzTFx//fVZHToAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAhAr/oPkbbrghDj/88Jr+7I9//ON46KGHRn/dcMMNERFx+umnT/jnb7vttjjjjDPiz//8z2PDhg1x2mmnxWmnnRZ33XVXZscPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsLuOvA/g61//+oRv7+vri9tvvz0+//nPx+c///ma/q599tlnzO8vvvjiOOyww+Lkk0+e8M9/+tOfjj/6oz+K9773vRER8eEPfzhuuOGGuPzyy+Ozn/1sHf8XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALXL/UHzp5122oRvX7hwYRxxxBHx+c9/Pt7whjfU/fcODQ3Fl770pXjPe94TM2bMmPDP/OAHP4j3vOc9Y952yimnxHXXXTfl3z04OBiDg4Ojv+/v76/7+IB86RjSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZSg/HUMatAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMpSfjiENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGcprZt4HsHPnzgl/9fX1xY9+9KOGHjIfEXHdddfF5s2b46yzzpr0zzz88MOx3377jXnbfvvtFw8//PCUf/dFF10U3d3do78OPvjgho4RyI+OIQ1ahjRoGdKgZUiDliENWoY0aBnSoGVIg5YhDVqG8tMxpEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQcuQBi1D+ekY0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGVIg5ahvGYMDw8P53kAf/zHfxzXXHNNdHd3R0TExRdfHG9729ti0aJFERHx2GOPxUknnRS/+MUv6vp7TznllOjs7IxvfOMbk/6Zzs7O+OIXvxhnnHHG6Nv++3//7/HBD34wHnnkkUnfb3BwMAYHB0d/39/fHwcffHD09fVFV1dXXcdJ7e6444447rjj4uV/c2XstfiIvA9nnP/44b/ED6/4YJx4zt/HQUetyPtwxnl80z1xw4Vnx+233x7HHnts3oeTOx1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAzlp2NIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoby0zGkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUN5deR9AN/5znfGDJCPfvSj8frXv370QfNPP/103HPPPXX9nffff3/ceOONce2110755/bff/9xD5R/5JFHYv/995/y/ebMmRNz5syp65iAYtExpEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQctQfjqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGUoPx1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKU18y8D2B3w8PDTf8dV155Zey7775x6qmnTvnnjj/++LjpppvGvO2GG26I448/vuljAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhM4R4036ydO3fGlVdeGWeeeWZ0dHSMee3Nb35znH/++aO/f/e73x3f+c534hOf+ET88pe/jA984APxk5/8JN75zne2+7ABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACACumY/o+01owZM2LGjBnj3taoG2+8MTZt2hRr164d99qmTZti5syZo78/4YQT4stf/nL87d/+bfzX//pfY9myZXHdddfF8573vIb/+9PZtGlT9Pb2tuzvb1ZPT08sXrw478MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACApOX+oPnh4eE466yzYs6cORERsW3btnjb294We+yxR0REDA4O1vX3veIVr4jh4eEJX7v55pvHve3000+P008/vb6DbtCmTZviyCOPiq1bB9ry32vEvHnz45e/vNvD5oFp9Q0MRe+Woejftj265s2Onj06o3t+Z96HBRSUmQG10wuUn44hTdqG8tIvQL7MYSKsA0iFlqHcNAztozdIm8ah/HQMQCvZZ6gi6x5qpxdoLY1RNdY8UAVmHWRDS8B0zAlIj65JhbUM1MvcgPzpEKpF81A+ugVSYZ5BWjQN2dETAEAacn/Q/Jlnnjnm929605vG/Zk3v/nN7Tqclurt7Y2tWwfi99e+P7oOODTvwxmn/6H/iB9e8cHo7e31oHlgSg9u3hrnrrszbtnYO/q2Vct64uI1y+PARfNyPDKgiMwMqJ1eoPx0DGnSNpSXfgHyZQ4TYR1AKrQM5aZhaB+9Qdo0DuWnYwBayT5DFVn3UDu9QGtpjKqx5oEqMOsgG1oCpmNOQHp0TSqsZaBe5gbkT4dQLZqH8tEtkArzDNKiaciOngAA0jEz7wO48sora/qVkq4DDo29Fh9RuF9dBxya9z8NUAJ9A0PjbgpERKzf2Bvnrbsz+gaGcjoyoIjMDKidXqD8dAxp0jaUl34B8mUOE2EdQCq0DOWmYWgfvUHaNA7lp2MAWsk+QxVZ91A7vUBraYyqseaBKjDrIBtaAqZjTkB6dE0qrGWgXuYG5E+HUC2ah/LRLZAK8wzSomnIjp4AANKS+4PmASiX3i1D424KjFi/sTd6t7gxADzLzIDa6QXKT8eQJm1DeekXIF/mMBHWAaRCy1BuGob20RukTeNQfjoGoJXsM1SRdQ+10wu0lsaoGmseqAKzDrKhJWA65gSkR9ekwloG6mVuQP50CNWieSgf3QKpMM8gLZqG7OgJACAtHjQPQF36t22f8vUnp3kdqBYzA2qnFyg/HUOatA3lpV+AfJnDRFgHkAotQ7lpGNpHb5A2jUP56RiAVrLPUEXWPdROL9BaGqNqrHmgCsw6yIaWgOmYE5AeXZMKaxmol7kB/z97dx9lWV0e+P7ppt/prkKstDZMt6K0gEIrEL0RtIGliZmr3swajC9Xx0SWs5zRxOA1QbiZu0KWY3i5vnBjEh1jBMGJWWb1MpOZzARQBhHDJA6IyBrERk1aoVlJCVR123RVQ9f9g9UN1VXVdc6pffbev2d/Pmv1H12nqvq399nf53dO0c1ung6hWzQP5dEtkIV5BrloGqqjJwCAXNxoHoC+jKxZedTHNyzyONAtZgb0Ti9QPh1DTtqGcukXoFnmMBGuA8hCy1A2DUN99Aa5aRzKp2MAhsk+Qxe57qF3eoHh0hhd45oHusCsg2poCViMOQH56JosXMtAv8wNaJ4OoVs0D+XRLZCFeQa5aBqqoycAgFzcaB6AvoytXxXbt47N+9j2rWMxtn5VzSsC2szMgN7pBcqnY8hJ21Au/QI0yxwmwnUAWWgZyqZhqI/eIDeNQ/l0DMAw2WfoItc99E4vMFwao2tc80AXmHVQDS0BizEnIB9dk4VrGeiXuQHN0yF0i+ahPLoFsjDPIBdNQ3X0BACQixvNA9CX0XWr4soLt8354cD2rWNx1YXbYnSdHwwATzMzoHd6gfLpGHLSNpRLvwDNMoeJcB1AFlqGsmkY6qM3yE3jUD4dAzBM9hm6yHUPvdMLDJfG6BrXPNAFZh1UQ0vAYswJyEfXZOFaBvplbkDzdAjdonkoj26BLMwzyEXTUB09AQDksqLpBQBQnhOOWxuffNuZMb53OvbsPxAb1qyMsfWr/FAAmJeZAb3TC5RPx5CTtqFc+gVoljlMhOsAstAylE3DUB+9QW4ah/LpGIBhss/QRa576J1eYLg0Rte45oEuMOugGloCFmNOQD66JgvXMtAvcwOap0PoFs1DeXQLZGGeQS6ahuroCQAgDzeaB2Ago+v8IADonZkBvdMLlE/HkJO2oVz6BWiWOUyE6wCy0DKUTcNQH71BbhqH8ukYgGGyz9BFrnvonV5guDRG17jmgS4w66AaWgIWY05APromC9cy0C9zA5qnQ+gWzUN5dAtkYZ5BLpqG6ugJACCH5U0vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBr3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGZuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMzeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiZG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MyN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVzo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmrnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDN3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGZuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMzeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiZG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MyN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVzo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmrnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDNVjS9AICum9g3HeN7p2Ny/4EYWbsyxo5dFaPrVjW9LIBamIFk4VqG9tMp5KVvaCdtQrdoHpqnQ8hJ25CTtiE3jUMumob20SWQkdkGlMr86h7POXCIeQBz6QKoglkC+ekcgCqUtJ+UtFagGeYE5KBloFfmBSxMH9Atmod20CLkoGXoJu0DAJCdG80DNOihxx6PD+24J76+c/zwx7ZvHYsrL9wWJxy3tsGVAQyfGUgWrmVoP51CXvqGdtImdIvmoXk6hJy0DTlpG3LTOOSiaWgfXQIZmW1Aqcyv7vGcA4eYBzCXLoAqmCWQn84BqEJJ+0lJawWaYU5ADloGemVewML0Ad2ieWgHLUIOWoZu0j4AAF2wvOkFAHTVxL7pOT94iIi4bed4XLrjnpjYN93QygCGzwwkC9cytJ9OIS99QztpE7pF89A8HUJO2oactA25aRxy0TS0jy6BjMw2oFTmV/d4zoFDzAOYSxdAFcwSyE/nAFShpP2kpLUCzTAnIActA70yL2Bh+oBu0Ty0gxYhBy1DN2kfAICuSHej+QcffDDe8Y53xLOf/exYu3ZtnHHGGfE//+f/XPDzb7311li2bNmcXw8//HCNqwa6aHzv9JwfPBxy287xGN/rhw9AXmYgWbiWof10CnnpG9pJm9Atmofm6RBy0jbkpG3ITeOQi6ahfXQJZGS2AaUyv7rHcw4cYh7AXLoAqmCWQH46B6AKJe0nJa0VaIY5ATloGeiVeQEL0wd0i+ahHbQIOWgZukn7AAB0xYqmF1ClRx99NM4999y44IIL4r/9t/8WP/MzPxM7d+6MZz3rWYt+7f333x8jIyOHf79x48ZhLhUgJvcfOOrjexZ5HKBkZiBZuJah/XQKeekb2kmb0C2ah+bpEHLSNuSkbchN45CLpqF9dAlkZLYBpTK/usdzDhxiHsBcugCqYJZAfjoHoAol7SclrRVohjkBOWgZ6JV5AQvTB3SL5qEdtAg5aBm6SfsAAHRFqhvNX3XVVbF58+a49tprD3/spJNO6ulrN27cGMcdd9yQVgZkMLFvOsb3Tsfk/gMxsnZljB27KkbXrRr4+42sWXnUxzcs8jhAyczA9qp6vyvdYufDtQzVGdb80SmU7WizQd/QTk206X0MNMd+vDCzibrM1+G6VcfERa86Kc7cfFwcODgT3/+nva5BKEw/e6w9B8oxsmblrH166omDsWblMXHXrkfjc7f/sNOvn6F0E/umY+3KY+KP3n7WrK73TT95+HM0DmXxfhvax+tpYCna+jM0/60N6Fdb5pn51R51XROecyjTMGaEeQBzLdTFoZ9lrVl5THxr16Otej8KLKyp9132WBiuNvxMRecA+dWx35S0nwxrrW3Y16Fr/P+AIActQy4lvi42L+BpRzZ8/LpVsW7VMbP+LeIz6QPK4v9jDWUoocUSX/dD3Q61vNC/PR5Z23zLQPVK2McBAKAKqW40/5d/+Zfxute9Ln75l385vva1r8WJJ54Y733ve+Nf/+t/vejXvuxlL4upqak4/fTT4/LLL49zzz13wc+dmpqKqampw7+fnJysZP1Affrt+KHHHo8P7bgnvr5z/PDHtm8diysv3BYnHLd2oDWMrV8V27eOxW3P+J7P/N5j6/2wHhZjTy6XGdhOw9jvetHWlns5H65leNpSWh7m/NEp9KdN+/Jis0HfsLAmW667zabex0Ad2rQvL8R+PD+ziWcadstHdrhu1THx+287M679xg/jD2554PDnuQZhaerel3vdY+050J+mX2OPrV8Vn/vVl8cnb9k5a58+9+Rnx+d+9eWdff0M/Wi64/nMtx+fe/Kz4/ffdma8/4vfin3TT3b6PTLMp40tH8n7bVhcE++VvZ6G6pWwLy9Vm3+G5r+1UZUutEy75pn5NRxt+PeOC/GcQ+/asi8Pa0aYB3RFPy3P14WfKUM7tPk19pHssbCwpb7GbsvPVHRO17Xl/TIMS137TZP7Sb8dD2OtbdnXoWRteq/sNTIMTsuQw6DvlUt9XWxekFVV+/LnfvXlcdF135xzs3l9QD2q+hm2/481NGupf+frkDa0WOrrfqhCvy3//Gkb4y2v2DLn72u+6uRnx1t/dvNQ1wosbJh/T6Tt+zhk4u98QQ5ahnItb3oBVfrBD34Qn/rUp2Lr1q1x4403xr/9t/823v/+98fnP//5Bb9m06ZN8elPfzp27NgRO3bsiM2bN8f5558fd91114Jfc8UVV8To6OjhX5s3++EAlKafjif2Tc/5YXpExG07x+PSHffExL7pgdYwum5VXHnhtti+dWzWx7dvHYurLtwWo+v88AEWY08ulxnYPsPa73rRxpZ7PR+uZXjaoC0Pe/7oFPrTln25l9mgb1hYky3X2WaT72OgDm3Zl4/GfjyX2cSRht3ykR1e9KqT4tpv/DC+8cBPZn2eaxCWpu59uZc91p4D/WvDa+w/vOWBOfv0Nx74Sfzhf39gga8AnqkNHT/TQvvxNx74SVz7jR/GRa86qdPvkWEhbWt5Pt5vw+KaaNnraaheCfvyUrT9Z2j+WxtVyd4y7Ztn5tdwtOHfOy7Ecw69a8O+PMwZYR7QFf20PF8XfqYM7dDm19hHssfCwpbyGrvptp9J53RdG94vw7DUud80uZ/023HVa23Tvg4la9N7Za+RYXBahhwGea9c8uti84KsqtqX//C/PxD/zxtePOvj+oD6VPEzbP8fa2jeUv/OV0Q7Wiz5dT9Uod+WL/8/XjLv39e8/YGfxP/95e9oBhoyzL8n0uZ9HLLxd74gBy1DuZbNzMzMNL2IqqxatSp+9md/Nv7mb/7m8Mfe//73xze/+c244447ev4+5513XmzZsiVuuOGGeR+fmpqKqampw7+fnJyMzZs3x8TERIyMjCz4fe+66644++yz4+d/+9o4fsspPa+nLo/suj9u/si74s4774yzzjqr6eXM0fbz9/d/e2P87ed+N1518R/Giaed2fRy5mj781u3fjr+/j/ujdd8/GsLfq+v/l/nxQs3rh94LRP7pmN873Ts2X8gNqxZGWPrV/nBA/Ro0D2Z9jAD22PY+93RtLHlfs+HaxkGb7mu+aNT6E1b9uV+ZoO+Ya42tFxHm02+j4E6tKHlXtmPn2Y2caS6Wj7U4dQTT8b//vu3L/h5rkEYTFP78tH2WHsO9K/p19i6haVruuMjLdb1X//Gq2PT6JrOvkeGhbSt5aPxfhsWVnfLXk/DcJS0Lw+ilNnhv7WxVNlbpr3zzPyqVpv+veNCPOewuDbsy3XMCPOA7AZp+ZldrFl5TPzi//f1Bb9/W96PQnYlvMY+kj0W5lrKa+y2tP1MOqer2vB+GYalif2mif1k0I6rWmsb93UoURvfK3uNDP3TMuQwyGvsDK+LzQuyqXJfvvkD22P5smX6gAZU8TNs/x9raN5S/85XW1rM8LoflqLfljUD7VTH3xNp4z4O2fg7X5CDlqFcK5peQJU2bdoUL37xi2d97LTTTosdO3b09X1e8YpXxO23L/w/A1y9enWsXr16oDUC7dBPx5P7Dxz18T2LPL6Y0XV+2ACDsieXzwxsj2Hvd0fTxpb7PR+uZRi85brmj06hN23Zl/uZDfqGudrQch1tNvk+BurQhpZ7ZT9+mtnEkepq+VCH39r16FE/zzUIg2lqXz7aHmvPgf41/Rpbt7B0TXd8pMW63n/gSe+XYR5ta/lovN+GhdXdstfTMBwl7cuDKGV2+G9tLFX2lmnvPDO/qtWmf++4EM85LK4N+3IdM8I8ILtBWn5mF36mDO1QwmvsI9ljYa6lvMZuS9vPpHO6qg3vl2FYmthvmthPBu24qrW2cV+HErXxvbLXyNA/LUMOg7zGzvC62Lwgmyr35Z9OPREv2/KsKpYF9KmKn2H7/1hD85b6d77aIsPrfliKflvWDLRTHX9PpI37OGTj73xBDlqGci1vegFVOvfcc+P++++f9bHvfe978bznPa+v73P33XfHpk2bqlwaULCRNSuP+viGRR4HgBLY72ZzPqA+egPmYzYAvTArgDYym2iaaxC6Q+9QHt1CPrqG7tA7NE+HwCDMDiAL84wjuSaAozEjoHk6hPLoFnLSNgB1sN/Uw3mG+ukOctAy5KJpKJuGITeNA1UxT6A/mgEAACCrVDea/8AHPhD/43/8j/i93/u9eOCBB+JP//RP4zOf+Uy8733vO/w5l112Wbzzne88/Ptrrrkm/tN/+k/xwAMPxL333hsXX3xx3HLLLbO+Bui2sfWrYvvWsXkf2751LMbWr6p5RQBQPfvdbM4H1EdvwHzMBqAXZgXQRmYTTXMNQnfoHcqjW8hH19Adeofm6RAYhNkBZGGecSTXBHA0ZgQ0T4dQHt1CTtoGoA72m3o4z1A/3UEOWoZcNA1l0zDkpnGgKuYJ9EczAAAAZJXqRvMvf/nL48tf/nJ88YtfjNNPPz0+/OEPxzXXXBNvf/vbD3/O7t27Y9euXYd/Pz09HR/84AfjjDPOiPPOOy++/e1vx1e+8pV4zWte08QhAC00um5VXHnhtjk/INy+dSyuunBbjK7zw0EAyme/m835gProDZiP2QD0wqwA2shsommuQegOvUN5dAv56Bq6Q+/QPB0CgzA7gCzMM47kmgCOxoyA5ukQyqNbyEnbANTBflMP5xnqpzvIQcuQi6ahbBqG3DQOVMU8gf5oBgAAgKxWNL2Aqr3hDW+IN7zhDQs+ft111836/SWXXBKXXHLJkFcFlO6E49bGJ992ZozvnY49+w/EhjUrY2z9Kj8YBCAV+91szgfUR2/AfMwGoBdmBdBGZhNNcw1Cd+gdyqNbyEfX0B16h+bpEBiE2QFkYZ5xJNcEcDRmBDRPh1Ae3UJO2gagDvabejjPUD/dQQ5ahlw0DWXTMOSmcaAq5gn0RzMAAABklO5G8wDDMrrODwMByM9+N5vzAfXRGzAfswHohVkBtJHZRNNcg9Adeofy6Bby0TV0h96heToEBmF2AFmYZxzJNQEcjRkBzdMhlEe3kJO2AaiD/aYezjPUT3eQg5YhF01D2TQMuWkcqIp5Av3RDAAAANksb3oBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3jRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICarWh6AbTPfffd1/QS5tXWdZWmzedxbGwstmzZ0vQyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhs6N5jns8YmfRMSyeMc73tH0Uo7qwNR000soUgnP79q16+K7373PzeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID03Gieww7s2xMRM/Gy//ND8TMnndr0cubY/Z074t6//Ew88cQTTS+lSG1/fid3/3387ed+N8bHx91oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASM+N5plj/cYtcfyWU5pexhyTu/++6SWk0NbnFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoEuWN70AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK5xo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmrnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDN3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGZuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMzeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjZiqYXAMDTJvZNx/je6ZjcfyBG1q6MsWNXxei6VU0vC1LRGeSgZchBy5CDliEHLUMeeoby6Rhy0DLkoGXIS99QFs0CRzIXgH6YGQD0y95RDecR2k2jMDz6AgZlfkA1tAQ5aBm6SftQNg0DR2NGwNLpCHLTOJRFs5CTtqE79A7to0sAAJjNjeYBWuKhxx6PD+24J76+c/zwx7ZvHYsrL9wWJxy3tsGVQR46gxy0DDloGXLQMuSgZchDz1A+HUMOWoYctAx56RvKolngSOYC0A8zA4B+2Tuq4TxCu2kUhkdfwKDMD6iGliAHLUM3aR/KpmHgaMwIWDodQW4ah7JoFnLSNnSH3qF9dAkAAHMtb3oBAERM7Jue80OLiIjbdo7HpTvuiYl90w2tDPLQGeSgZchBy5CDliEHLUMeeoby6Rhy0DLkoGXIS99QFs0CRzIXgH6YGQD0y95RDecR2k2jMDz6AgZlfkA1tAQ5aBm6SftQNg0DR2NGwNLpCHLTOJRFs5CTtqE79A7to0sAAJifG80DtMD43uk5P7Q45Lad4zG+1w8uYKl0BjloGXLQMuSgZchBy5CHnqF8OoYctAw5aBny0jeURbPAkcwFoB9mBgD9sndUw3mEdtMoDI++gEGZH1ANLUEOWoZu0j6UTcPA0ZgRsHQ6gtw0DmXRLOSkbegOvUP76BIAAObnRvMALTC5/8BRH9+zyOPA4nQGOWgZctAy5KBlyEHLkIeeoXw6hhy0DDloGfLSN5RFs8CRzAWgH2YGAP2yd1TDeYR20ygMj76AQZkfUA0tQQ5ahm7SPpRNw8DRmBGwdDqC3DQOZdEs5KRt6A69Q/voEgAA5udG8wAtMLJm5VEf37DI48DidAY5aBly0DLkoGXIQcuQh56hfDqGHLQMOWgZ8tI3lEWzwJHMBaAfZgYA/bJ3VMN5hHbTKAyPvoBBmR9QDS1BDlqGbtI+lE3DwNGYEbB0OoLcNA5l0SzkpG3oDr1D++gSAADm50bzAC0wtn5VbN86Nu9j27eOxdj6VTWvCPLRGeSgZchBy5CDliEHLUMeeoby6Rhy0DLkoGXIS99QFs0CRzIXgH6YGQD0y95RDecR2k2jMDz6AgZlfkA1tAQ5aBm6SftQNg0DR2NGwNLpCHLTOJRFs5CTtqE79A7to0sAAJifG80DtMDoulVx5YXb5vzwYvvWsbjqwm0xus4PLmCpdAY5aBly0DLkoGXIQcuQh56hfDqGHLQMOWgZ8tI3lEWzwJHMBaAfZgYA/bJ3VMN5hHbTKAyPvoBBmR9QDS1BDlqGbtI+lE3DwNGYEbB0OoLcNA5l0SzkpG3oDr1D++gSAADmt6LpBQDwlBOOWxuffNuZMb53OvbsPxAb1qyMsfWr/NACKqQzyEHLkIOWIQctQw5ahjz0DOXTMeSgZchBy5CXvqEsmgWOZC4A/TAzAOiXvaMaziO0m0ZhePQFDMr8gGpoCXLQMnST9qFsGgaOxoyApdMR5KZxKItmISdtQ3foHdpHlwAAMJcbzQO0yOg6P6iAYdMZ5KBlyEHLkIOWIQctQx56hvLpGHLQMuSgZchL31AWzQJHMheAfpgZAPTL3lEN5xHaTaMwPPoCBmV+QDW0BDloGbpJ+1A2DQNHY0bA0ukIctM4lEWzkJO2oTv0Du2jSwAAmG150wsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Bo3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACo2YqmF5DBzMxMRERMTk4e9fP27t0bERETP/5BHHziyaGvq197//HBiIiYfPjvY/Xq1Q2vZi7rW5q2r2/Pw/8QEU91slhLEREbNmyIZcuWVfbn99oxUC0tQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOVbasY2iGPRly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5ODvb0L57MmQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoXyDduxG8xXYs2dPRERs3ry5p8//u89/eJjLWbJ7/uz/bXoJR2V9S9P29Z133nk9fd7ExESMjIxU9uf22zFQDS1DDlqGHLQMOWgZcqi65Z/85CcRoWWom30ZctAy5KBlyEHLkEOVLesYmmFPhhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5+PubUD57MuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUo36AdL5uZmZkZwno65eDBg/HQQw/Fhg0bYtmyZU0vp/UmJydj8+bN8aMf/ajSzaeLunwuq+5tWB13+Tk6knPxFOdhtmG1PDMzE1u2bEl1nrNeOxmPq4vHVMq+XLWMz/UhWY8t63FFVHNsw2j5/vvvjxe/+MUpz3mvMl93vXIO6j0Hde/Lnl/nIMI5iKj+HFTd8mOPPRbPetazYteuXTE6OlrZ921Stusu2/FE5DumQY6nq++XD8l2DfSjq8ee9bj9HLs32Z5/x9Nu9uXeZXvuh8E5WlybzlFXW36mNj0fS+E42qXu46iyuSo7zvJ81sk5G0yG89aWPTnDuRwG52Vhzs1sbWm5admuC8fTbsM4nra0nO25inBMpchyTG1puQ5ZnrM2cC6r1da/iz1fy5776jiX1ch2HtuwL5d8Tktee4T1N63K9beh5aqU/rwuxHGVp4ljy9RyHTJffwvp2jGXerz+vWN/Sl9/RPnHYP3z8+8qZiv1OrHuerVx3W39+5t1aeNzUiXHV7Zejy/je+Usz22G48hwDBFlHEdJLZdwPo9kzfWw5rJarkKJz3nbOIdLl/nvYs/HNbMw52Z+XT4vbWy5xOejxDVHlLlua55fG1uuUonP+3wcR3u09RjqbLmt5yAL53d4Sji3TezLJZyXYXHs3Tz2iOEff1OvsbM8r46jXbIcR0T/x6LlpXEc7dLV4xi04xWDLI7Zli9fHv/sn/2zppdRnJGRkaIjbRPncumG3bHn6GnOxVOch+E41PLk5GRE5DzPGY8pIudxOabBlfb6OuNzfUjWY8t6XBHtOrbly5fHiSeeGBHtWldTnAPnIKLMc9DrvlzisVXNOXAOItp7DpYvXx4REaOjo61c31K09ZwPKtvxROQ7piaPp7T3y4dkuwb60dVj7+px9yr7z7EdT7s5nuqUti9ne+6HwTlaXMZzVFrLz5Tl+XAc7VLicQyj4xLPQ9Ocs8E4b09basvO5fycl4U5N8NR8uvriHzXheNptzYfj315LsdUhozHtBQl7Mues+o4l9Vq0/lcrOU2rbV0zmU1nMf5LWVfLvmclrz2COtvWhvX34bX2G08L1VwXOUp+dja0HIdSn6OBtW1Y+7a8R6pK//esfT1R5R/DNY/XFn+XYV118u626Xk19dZn5NDHF/Z6j6+NrWc5bnNcBwZjiEiz3H0oo6WSzyf1lwPa65Om/blo2nr+SuJc7h0bT6H/r1jvZyb+TkvS1dlyyU+HyWuOaLMdVvzcLX1NXZJ5/BoHEd7ZDiGo+ml5eznoGnO7/B06dz2sy936bwcybF389gjyjn+fl9jl3Jci3Ec7ZLlOCKaOxYtl81xtMuwj2P50L4zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPNyo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmrnRPLVbvXp1/M7v/E6sXr266aUUz7lsP8/R05yLpzgP9ch4njMeU0TO43JM3ZH5vGQ9tqzHFdHeY2vruurkHDgHEbnPQeZj65Vz4BxEtP8ctH19g8h2TNmOJyLfMWU7njp0+Zx19di7etyDyna+HE+7OZ7ucq4W5xwtzjlqlyzPh+NolyzHsVTOQ/+cs8E4b9VxLufnvCzMuWE+2a4Lx9Nu2Y7nmTIem2MqQ8Zjys5zVh3nslolnc+S1tp2zmU1nMfqlXxOS157hPU3rfT1D0vW8+K4ypP52LLo4nPUtWPu2vEOqvTzVPr6I8o/BuuvV2nrPcS662XdVCX7c+L4ypb9+I4my7FnOI4MxxCR5zjaosTzac31sObucf6Wzjlcuq6dw64dbz+cm/k5L+1S4vNR4pojyly3NXdTlnPoONojwzEslXMwXM7v8Di38+vyeXHs3Tz2iLzHn+W4HEe7ZDmOiHKOpZR1LsZxtIvj6M+ymZmZmaH+CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMsrzpBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0jRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1c6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJq50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzdxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBmbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDM3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComRvNV+i2226LN77xjXHCCSfEsmXL4i/+4i/6/h4zMzPx0Y9+NF70ohfF6tWr48QTT4yPfOQj1S8WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaMyKpheQyU9/+tN46UtfGhdddFH8y3/5Lwf6Hr/xG78RN910U3z0ox+NM844Ix555JF45JFHKl4pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0KRlMzMzM00vIqNly5bFl7/85fgX/+JfHP7Y1NRU/PZv/3Z88YtfjMceeyxOP/30uOqqq+L888+PiIj77rsvtm3bFvfee2+ccsopzSwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGLrlTS+gS37t134t7rjjjvizP/uzuOeee+KXf/mX4xd/8Rdj586dERHxn//zf44XvOAF8V/+y3+Jk046KZ7//OfHu9/97njkkUcaXjkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQJTear8muXbvi2muvjT//8z+PV7/61fHCF74wfvM3fzNe9apXxbXXXhsRET/4wQ/iH/7hH+LP//zP4/rrr4/rrrsu7rzzznjTm97U8OoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAKq1oegFd8Z3vfCeefPLJeNGLXjTr41NTU/HsZz87IiIOHjwYU1NTcf311x/+vD/5kz+Js88+O+6///445ZRTal83AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUD03mq/J3r1745hjjok777wzjjnmmFmPrV+/PiIiNm3aFCtWrJh1M/rTTjstIiJ27drlRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQhBvN1+TMM8+MJ598Mv7xH/8xXv3qV8/7Oeeee2488cQT8f3vfz9e+MIXRkTE9773vYiIeN7znlfbWgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDhWjYzMzPT9CKy2Lt3bzzwwAMR8dSN5T/+8Y/HBRdcEMcff3xs2bIl3vGOd8Q3vvGN+NjHPhZnnnlm/NM//VN89atfjW3btsXrX//6OHjwYLz85S+P9evXxzXXXBMHDx6M973vfTEyMhI33XRTw0cHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVMWN5it06623xgUXXDDn47/yK78S1113XRw4cCD+/b//93H99dfHgw8+GGNjY/FzP/dz8bu/+7txxhlnRETEQw89FL/+678eN910Uxx77LHxz//5P4+Pfexjcfzxx9d9OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCQuNE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM2WN70AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK5xo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmrnRfAVmZmZicnIyZmZmml4KMCAdQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoby6Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlKJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoZyuNF8Bfbs2ROjo6OxZ8+eppcCDEjHkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF8OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZyqdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqEcbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDM3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAarai6QUATOybjvG90zG5/0CMrF0ZY8euitF1q5peFgCkYr+FbtE85KBlyEHLsDB9UDfXHEAO5jnkoGXIQctQPh1DDlqGHLRMW7gWoVkaBKiOmQo5aBnKolnITeOQg5bJyHUNlMjsghy0DDloGXLQMgyHtoBBmB3d4HkGqmCWAPTGvASA7nGjeaBRDz32eHxoxz3x9Z3jhz+2fetYXHnhtjjhuLUNrgwA8rDfQrdoHnLQMuSgZViYPqibaw4gB/McctAy5KBlKJ+OIQctQw5api1ci9AsDQJUx0yFHLQMZdEs5KZxyEHLZOS6BkpkdkEOWoYctAw5aBmGQ1vAIMyObvA8A1UwSwB6Y14CQDctb3oBQHdN7Jue8yYkIuK2neNx6Y57YmLfdEMrA4A87LfQLZqHHLQMOWgZFqYP6uaaA8jBPIcctAw5aBnKp2PIQcuQg5ZpC9ciNEuDANUxUyEHLUNZNAu5aRxy0DIZua6BEpldkIOWIQctQw5ahuHQFjAIs6MbPM9AFcwSgN6YlwDQXW40DzRmfO/0nDchh9y2czzG93ojAgBLZb+FbtE85KBlyEHLsDB9UDfXHEAO5jnkoGXIQctQPh1DDlqGHLRMW7gWoVkaBKiOmQo5aBnKolnITeOQg5bJyHUNlMjsghy0DDloGXLQMgyHtoBBmB3d4HkGqmCWAPTGvASA7nKjeaAxk/sPHPXxPYs8DgAszn4L3aJ5yEHLkIOWYWH6oG6uOYAczHPIQcuQg5ahfDqGHLQMOWiZtnAtQrM0CFAdMxVy0DKURbOQm8YhBy2TkesaKJHZBTloGXLQMuSgZRgObQGDMDu6wfMMVMEsAeiNeQkA3eVG80BjRtasPOrjGxZ5HABYnP0WukXzkIOWIQctw8L0Qd1ccwA5mOeQg5YhBy1D+XQMOWgZctAybeFahGZpEKA6ZirkoGUoi2YhN41DDlomI9c1UCKzC3LQMuSgZchByzAc2gIGYXZ0g+cZqIJZAtAb8xIAusuN5oHGjK1fFdu3js372PatYzG2flXNKwKAfOy30C2ahxy0DDloGRamD+rmmgPIwTyHHLQMOWgZyqdjyEHLkIOWaQvXIjRLgwDVMVMhBy1DWTQLuWkcctAyGbmugRKZXZCDliEHLUMOWobh0BYwCLOjGzzPQBXMEoDemJcA0F1uNA80ZnTdqrjywm1z3oxs3zoWV124LUbXeSMCAEtlv4Vu0TzkoGXIQcuwMH1QN9ccQA7mOeSgZchBy1A+HUMOWoYctExbuBahWRoEqI6ZCjloGcqiWchN45CDlsnIdQ2UyOyCHLQMOWgZctAyDIe2gEGYHd3geQaqYJYA9Ma8BIDuWjYzMzPT9CJKNzk5GaOjozExMREjIyNNLweKM7FvOsb3Tsee/Qdiw5qVMbZ+Ve1vQnQMOWgZFtaG/bZXWoala0PzWoal0zLkoGVYWBv6KImWl841RxtoGZauDfNcy7B0WoYcmm5Zx7B0TXccoWWogpYhBy3TFm24FlkaLZdNgxyiZVi6NsxULcPSaRnK0oZmF6JlWLo2NK5lWDotk1Ebruuu0TEsXRtml5Zh6bQMOWgZctAyDEcb2qqblmHp2jA7tDx8bXieyU/L+Zkl3aBlWLo2zEstQw5ahnKsaHoBAKPr/KAGAIbNfgvdonnIQcuQg5ZhYfqgbq45gBzMc8hBy5CDlqF8OoYctAw5aJm2cC1CszQIUB0zFXLQMpRFs5CbxiEHLZOR6xookdkFOWgZctAy5KBlGA5tAYMwO7rB8wxUwSwB6I15CQDds7zpBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0jRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1c6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJq50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzdxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBmbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDM3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1S3ej+T179sTFF18cz3ve82Lt2rVxzjnnxDe/+c0FP//WW2+NZcuWzfn18MMP17hqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoEtWNL2Aqr373e+Oe++9N2644YY44YQT4gtf+EK89rWvjf/1v/5XnHjiiQt+3f333x8jIyOHf79x48Y6lgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB00PKmF1Clxx9/PHbs2BFXX311bN++PU4++eS4/PLL4+STT45PfepTR/3ajRs3xnOf+9zDv5YvT3VqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBZZ0fQCqvTEE0/Ek08+GWvWrJn18bVr18btt99+1K992cteFlNTU3H66afH5ZdfHueee+6Cnzs1NRVTU1OHfz85Obm0hQO10zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlKJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoby6Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlKNfyphdQpQ0bNsQrX/nK+PCHPxwPPfRQPPnkk/GFL3wh7rjjjti9e/e8X7Np06b49Kc/HTt27IgdO3bE5s2b4/zzz4+77rprwT/niiuuiNHR0cO/Nm/ePKxDAoZEx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfDqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahXMtmZmZmml5Elb7//e/HRRddFLfddlscc8wxcdZZZ8WLXvSiuPPOO+O+++7r6Xucd955sWXLlrjhhhvmfXxqaiqmpqYO/35ycjI2b94cExMTMTIyUslxAMOlY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQrhVNL6BqL3zhC+NrX/ta/PSnP43JycnYtGlTvOUtb4kXvOAFPX+PV7ziFXH77bcv+Pjq1atj9erVVSwXaIiOIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP5dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylE/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUO5lje9gGE59thjY9OmTfHoo4/GjTfeGL/0S7/U89fefffdsWnTpiGuDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiyFU0voGo33nhjzMzMxCmnnBIPPPBA/NZv/Vaceuqp8a53vSsiIi677LJ48MEH4/rrr4+IiGuuuSZOOumkeMlLXhL79++Pz372s3HLLbfETTfd1ORhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAImlu9H8xMREXHbZZfHjH/84jj/++LjwwgvjIx/5SKxcuTIiInbv3h27du06/PnT09PxwQ9+MB588MFYt25dbNu2Lb7yla/EBRdc0NQhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMmlu9H8m9/85njzm9+84OPXXXfdrN9fcsklcckllwx5VQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPW970AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6xo3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM3caB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZiuaXgCwNBP7pmN873RM7j8QI2tXxtixq2J03aqmlwUAtbEXAsNivkAZtAr0w8yAfHRNm7k+gaaZQzA4/QBNMoNgNk0A/TI3oN00CizEfMjN8wvAIOwfNM01CHSZGQgcYh7AYLRDdq5x6Cbtw2C0A5TK/IKyaBbIwjyDHLRcL+cbWIw5AVAfMxcAqIobzUPBHnrs8fjQjnvi6zvHD39s+9axuPLCbXHCcWsbXBkA1MNeCAyL+QJl0CrQDzMD8tE1beb6BJpmDsHg9AM0yQyC2TQB9MvcgHbTKLAQ8yE3zy8Ag7B/0DTXINBlZiBwiHkAg9EO2bnGoZu0D4PRDlAq8wvKolkgC/MMctByvZxvYDHmBEB9zFwAoErLm14AMJiJfdNz3hhERNy2czwu3XFPTOybbmhlAFAPeyEwLOYLlEGrQD/MDMhH17SZ6xNomjkEg9MP0CQzCGbTBNAvcwPaTaPAQsyH3Dy/AAzC/kHTXINAl5mBwCHmAQxGO2TnGodu0j4MRjtAqcwvKItmgSzMM8hBy/VyvoHFmBMA9TFzAYCqudE8FGp87/ScNwaH3LZzPMb3enMAQG72QmBYzBcog1aBfpgZkI+uaTPXJ9A0cwgGpx+gSWYQzKYJoF/mBrSbRoGFmA+5eX4BGIT9g6a5BoEuMwOBQ8wDGIx2yM41Dt2kfRiMdoBSmV9QFs0CWZhnkIOW6+V8A4sxJwDqY+YCAFVzo3ko1OT+A0d9fM8ijwNA6eyFwLCYL1AGrQL9MDMgH13TZq5PoGnmEAxOP0CTzCCYTRNAv8wNaDeNAgsxH3Lz/AIwCPsHTXMNAl1mBgKHmAcwGO2QnWscukn7MBjtAKUyv6AsmgWyMM8gBy3Xy/kGFmNOANTHzAUAquZG81CokTUrj/r4hkUeB4DS2QuBYTFfoAxaBfphZkA+uqbNXJ9A08whGJx+gCaZQTCbJoB+mRvQbhoFFmI+5Ob5BWAQ9g+a5hoEuswMBA4xD2Aw2iE71zh0k/ZhMNoBSmV+QVk0C2RhnkEOWq6X8w0sxpwAqI+ZCwBUzY3moVBj61fF9q1j8z62fetYjK1fVfOKAKBe9kJgWMwXKINWgX6YGZCPrmkz1yfQNHMIBqcfoElmEMymCaBf5ga0m0aBhZgPuXl+ARiE/YOmuQaBLjMDgUPMAxiMdsjONQ7dpH0YjHaAUplfUBbNAlmYZ5CDluvlfAOLMScA6mPmAgBVc6N5KNToulVx5YXb5rxB2L51LK66cFuMrvPmAIDc7IXAsJgvUAatAv0wMyAfXdNmrk+gaeYQDE4/QJPMIJhNE0C/zA1oN40CCzEfcvP8AjAI+wdNcw0CXWYGAoeYBzAY7ZCdaxy6SfswGO0ApTK/oCyaBbIwzyAHLdfL+QYWY04A1MfMBQCqtmxmZmam6UWUbnJyMkZHR2NiYiJGRkaaXg4dM7FvOsb3Tsee/Qdiw5qVMbZ+lTcGA9Ax5KDlbrIX5qNl2sJ8WRotUxetDpeWyaarM0PLZNalrrVcni5dn/ROy9TJHBoeLeenn27QMm1lBvVOx92gify0TNXMjWZomV5ptN20TJPMh+q0sWXPL/SvjS1D3TLsH1ouW4ZrkGpomS7KOAO1DINp2zzQMqVoWztto+XyucbRcTdpPx8t10M7DJuWGRbzq15aZqk02w5ahqVrwzzTMiydluvVhvMNw9KllofJnKBpWqZLMs9cLUMOWoZyrGh6AcDSjK7L82YAAAZhLwSGxXyBMmgV6IeZAfnomjZzfQJNM4dgcPoBmmQGwWyaAPplbkC7aRRYiPmQm+cXgEHYP2iaaxDoMjMQOMQ8gMFoh+xc49BN2ofBaAcolfkFZdEskIV5BjlouV7ON7AYcwKgPmYuAFAVN5oHYF67du2K8fHxWv/MsbGx2LJlS61/JgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMGN5gGYY9euXXHqqafF44/vq/XPXbt2XXz3u/e52TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOm50TwAc4yPj8fjj++L/+2i34mRTc+v5c+c3P338bef+90YHx93o3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANJzo3kAFjSy6flx/JZTml4GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACks7zpBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0Tbobze/ZsycuvvjieN7znhdr166Nc845J775zW8e9WtuvfXWOOuss2L16tVx8sknx3XXXVfPYgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBOSnej+Xe/+91x8803xw033BDf+c534hd+4Rfita99bTz44IPzfv4Pf/jDeP3rXx8XXHBB3H333XHxxRfHu9/97rjxxhtrXjkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQFaluNP/444/Hjh074uqrr47t27fHySefHJdffnmcfPLJ8alPfWrer/n0pz8dJ510UnzsYx+L0047LX7t134t3vSmN8UnPvGJmlcPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdEWqG80/8cQT8eSTT8aaNWtmfXzt2rVx++23z/s1d9xxR7z2ta+d9bHXve51cccddwxtnQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEC3rWh6AVXasGFDvPKVr4wPf/jDcdppp8VznvOc+OIXvxh33HFHnHzyyfN+zcMPPxzPec5zZn3sOc95TkxOTsbjjz8ea9eunfM1U1NTMTU1dfj3k5OT1R4IMHQ6hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAzl0zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUD4dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAzlWt70Aqp2ww03xMzMTJx44omxevXq+P3f//1429veFsuXV3eoV1xxRYyOjh7+tXnz5sq+N1APHUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG8ukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZSifjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGci2bmZmZaXoRw/DTn/40JicnY9OmTfGWt7wl9u7dG3/1V3815/O2b98eZ511VlxzzTWHP3bttdfGxRdfHBMTE/N+76mpqZiamjr8+8nJydi8eXNMTEzEyMhI5ccCVE/HR3fXXXfF2WefHT//29fG8VtOqeXPfGTX/XHzR94Vd955Z5x11lm1/JmUT8uQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUD4dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAzl0zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUK4VTS9gWI499tg49thj49FHH40bb7wxrr766nk/75WvfGX81//6X2d97Oabb45XvvKVC37v1atXx+rVqytdL1AvHUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG8ukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZSifjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGci1vegFVu/HGG+Ov//qv44c//GHcfPPNccEFF8Spp54a73rXuyIi4rLLLot3vvOdhz//3/ybfxM/+MEP4pJLLonvfve78Ud/9EfxpS99KT7wgQ80dQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAculuND8xMRHve9/74tRTT413vvOd8apXvSpuvPHGWLlyZURE7N69O3bt2nX480866aT4q7/6q7j55pvjpS99aXzsYx+Lz372s/G6172uqUMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAklvR9AKq9uY3vzne/OY3L/j4ddddN+dj559/fnzrW98a4qoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnra86QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdI0bzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM1WNL0AIGJi33SM752Oyf0HYmTtyhg7dlWMrlvV9LIA6Dj7E5CV+QaYA9BuGoWnaIFBuG4AGBZ7DFRPV4A5AEujIegGrQN1MGv643xBDloGoFT2MHrhOgFYnFkJOWgZdEDvXCsAHGJPoESuW2DYzBkom4YBcwDKolmq5pqCZmgPoJvMfwCgLm40Dw176LHH40M77omv7xw//LHtW8fiygu3xQnHrW1wZQB0mf0JyMp8A8wBaDeNwlO0wCBcNwAMiz0GqqcrwByApdEQdIPWgTqYNf1xviAHLQNQKnsYvXCdACzOrIQctAw6oHeuFQAOsSdQItctMGzmDJRNw4A5AGXRLFVzTUEztAfQTeY/AFCn5U0vALpsYt/0nBf/ERG37RyPS3fcExP7phtaGQBdZn8CsjLfAHMA2k2j8BQtMAjXDQDDYo+B6ukKMAdgaTQE3aB1oA5mTX+cL8hBywCUyh5GL1wnAIszKyEHLYMO6J1rBYBD7AmUyHULDJs5A2XTMGAOQFk0S9VcU9AM7QF0k/kPANTNjeahQeN7p+e8+D/ktp3jMb7XGwAA6md/ArIy3wBzANpNo/AULTAI1w0Aw2KPgerpCjAHYGk0BN2gdaAOZk1/nC/IQcsAlMoeRi9cJwCLMyshBy2DDuidawWAQ+wJlMh1CwybOQNl0zBgDkBZNEvVXFPQDO0BdJP5DwDUzY3moUGT+w8c9fE9izwOAMNgfwKyMt8AcwDaTaPwFC0wCNcNAMNij4Hq6QowB2BpNATdoHWgDmZNf5wvyEHLAJTKHkYvXCcAizMrIQctgw7onWsFgEPsCZTIdQsMmzkDZdMwYA5AWTRL1VxT0AztAXST+Q8A1M2N5qFBI2tWHvXxDYs8DgDDYH8CsjLfAHMA2k2j8BQtMAjXDQDDYo+B6ukKMAdgaTQE3aB1oA5mTX+cL8hBywCUyh5GL1wnAIszKyEHLYMO6J1rBYBD7AmUyHULDJs5A2XTMGAOQFk0S9VcU9AM7QF0k/kPANTNjeahQWPrV8X2rWPzPrZ961iMrV9V84oAwP4E5GW+AeYAtJtG4SlaYBCuGwCGxR4D1dMVYA7A0mgIukHrQB3Mmv44X5CDlgEolT2MXrhOABZnVkIOWgYd0DvXCgCH2BMokesWGDZzBsqmYcAcgLJolqq5pqAZ2gPoJvMfAKibG81Dg0bXrYorL9w2503A9q1jcdWF22J0nTcAANTP/gRkZb4B5gC0m0bhKVpgEK4bAIbFHgPV0xVgDsDSaAi6QetAHcya/jhfkIOWASiVPYxeuE4AFmdWQg5aBh3QO9cKAIfYEyiR6xYYNnMGyqZhwByAsmiWqrmmoBnaA+gm8x8AqNuymZmZmaYXUbrJyckYHR2NiYmJGBkZaXo5FGhi33SM752OPfsPxIY1K2Ns/Sov/mum49nuuuuuOPvss+Pnf/vaOH7LKbX8mY/suj9u/si74s4774yzzjqrlj+TfLRcLfsTTdEyw2a+1UPLtJk50Dst0wSNVk/LZdICR+qlZdcNtJ99mVLZY2bTMlXQVfO0TNPMgaXTcbdpKA8tczRaL4eWKZlZ8zT/PQpy0DLk4DU2zK+0PUzLzSjtOqH9tExGXZyVWiYjLWuZbnaQQRMtu1agWvZkSmZPeJqWy+G65Wi0TBXMmeZpmaXQcHtomaaYA9XSMsOm2Xp0qWXXFJm1uWXtQe/a3DL0q8vzX8uQg5ahHCuaXgAQMbquOy/4ASiH/QnIynwDzAFoN43CU7TAIFw3AAyLPQaqpyvAHICl0RB0g9aBOpg1/XG+IActA1Aqexi9cJ0ALM6shBy0DDqgd64VAA6xJ1Ai1y0wbOYMlE3DgDkAZdEsVXNNQTO0B9BN5j8AUJflTS8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGvcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZm40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUbEXTCwDmN7FvOsb3Tsfk/gMxsnZljB27KkbXrWp6WQBAMl5z0BWudchBy8BSmSOQk7Y5kmsCKJkZBuXQK+Snc2iWBoFDzAOYTRPQXfqHwWgHKIV5BeXQK9AV5h00R39QL81Bu2gS2kOPUD4dAxFmAXSBzgFzAHLRdLd5/gGaYf5CN2kfAGizVDeaf/LJJ+Pyyy+PL3zhC/Hwww/HCSecEL/6q78a/+7f/btYtmzZvF9z6623xgUXXDDn47t3747nPve5w14yzOuhxx6PD+24J76+c/zwx7ZvHYsrL9wWJxy3tsGVAQCZeM1BV7jWIQctA0tljkBO2uZIrgmgZGYYlEOvkJ/OoVkaBA4xD2A2TUB36R8Gox2gFOYVlEOvQFeYd9Ac/UG9NAftokloDz1C+XQMRJgF0AU6B8wByEXT3eb5B2iG+QvdpH0AoO2WN72AKl111VXxqU99Kv7gD/4g7rvvvrjqqqvi6quvjk9+8pOLfu39998fu3fvPvxr48aNNawY5prYNz3nTURExG07x+PSHffExL7phlYGAGTiNQdd4VqHHLQMLJU5AjlpmyO5JoCSmWFQDr1CfjqHZmkQOMQ8gNk0Ad2lfxiMdoBSmFdQDr0CXWHeQXP0B/XSHLSLJqE99Ajl0zEQYRZAF+gcMAcgF013m+cfoBnmL3ST9gGAEqS60fzf/M3fxC/90i/F61//+nj+858fb3rTm+IXfuEX4u/+7u8W/dqNGzfGc5/73MO/li9PdWooyPje6TlvIg65bed4jO/1RgIAWDqvOegK1zrkoGVgqcwRyEnbHMk1AZTMDINy6BXy0zk0S4PAIeYBzKYJ6C79w2C0A5TCvIJy6BXoCvMOmqM/qJfmoF00Ce2hRyifjoEIswC6QOeAOQC5aLrbPP8AzTB/oZu0DwCUYEXTC6jSOeecE5/5zGfie9/7XrzoRS+Kb3/723H77bfHxz/+8UW/9mUve1lMTU3F6aefHpdffnmce+65C37u1NRUTE1NHf795ORkJeuHiIjJ/QeO+vieRR6nNzqGHLQMg2vTaw4tM0xtutaz0zLDpOX6aJmsujZHtExXZG9by/3Lfk1QJi3TKzOs3bTMM+m1XFqmVzpvLx13gwbz0zK9Mg/aTcv10wTDoOUy6J/FaHl+2qE0Wu4u8yoXLeem1+7QMl2XZd5pmRJl6a9KWmaYNFcfLdMLTbabjrtFj3lpuTt0nJuW6ZVZ0G5apgo6b56WaZo5UA0t0xaaXprSW/b8w1NKb5nymL/DoWXaTvu90TLkoGUo1/KmF1ClSy+9NN761rfGqaeeGitXrowzzzwzLr744nj729++4Nds2rQpPv3pT8eOHTtix44dsXnz5jj//PPjrrvuWvBrrrjiihgdHT38a/PmzcM4HDpqZM3Koz6+YZHH6Y2OIQctw+Da9JpDywxTm6717LTMMGm5Plomq67NES3TFdnb1nL/sl8TlEnL9MoMazct80x6LZeW6ZXO20vH3aDB/LRMr8yDdtNy/TTBMGi5DPpnMVqen3YojZa7y7zKRcu56bU7tEzXZZl3WqZEWfqrkpYZJs3VR8v0QpPtpuNu0WNeWu4OHeemZXplFrSblqmCzpunZZpmDlRDy7SFppem9JY9//CU0lumPObvcGiZttN+b7QMOWgZypXqRvNf+tKX4j/+x/8Yf/qnfxp33XVXfP7zn4+PfvSj8fnPf37BrznllFPiPe95T5x99tlxzjnnxOc+97k455xz4hOf+MSCX3PZZZfFxMTE4V8/+tGPhnE4dNTY+lWxfevYvI9t3zoWY+tX1byinHQMOWgZBtem1xxaZpjadK1np2WGScv10TJZdW2OaJmuyN62lvuX/ZqgTFqmV2ZYu2mZZ9JrubRMr3TeXjruBg3mp2V6ZR60m5brpwmGQctl0D+L0fL8tENptNxd5lUuWs5Nr92hZbouy7zTMiXK0l+VtMwwaa4+WqYXmmw3HXeLHvPScnfoODct0yuzoN20TBV03jwt0zRzoBpapi00vTSlt+z5h6eU3jLlMX+HQ8u0nfZ7o2XIQctQrlQ3mv+t3/qtuPTSS+Otb31rnHHGGfGv/tW/ig984ANxxRVX9PV9XvGKV8QDDzyw4OOrV6+OkZGRWb+gKqPrVsWVF26b82Zi+9axuOrCbTG6zhuJKugYctAyDK5Nrzm0zDC16VrPTssMk5bro2Wy6toc0TJdkb1tLfcv+zVBmbRMr8ywdtMyz6TXcmmZXum8vXTcDRrMT8v0yjxoNy3XTxMMg5bLoH8Wo+X5aYfSaLm7zKtctJybXrtDy3RdlnmnZUqUpb8qaZlh0lx9tEwvNNluOu4WPeal5e7QcW5apldmQbtpmSrovHlapmnmQDW0TFtoemlKb9nzD08pvWXKY/4Oh5ZpO+33RsuQg5ahXCuaXkCV9u3bF8uXL5/1sWOOOSYOHjzY1/e5++67Y9OmTVUuDfpywnFr45NvOzPG907Hnv0HYsOalTG2fpU3EQBApbzmoCtc65CDloGlMkcgJ21zJNcEUDIzDMqhV8hP59AsDQKHmAcwmyagu/QPg9EOUArzCsqhV6ArzDtojv6gXpqDdtEktIceoXw6BiLMAugCnQPmAOSi6W7z/AM0w/yFbtI+ANB2qW40/8Y3vjE+8pGPxJYtW+IlL3lJfOtb34qPf/zjcdFFFx3+nMsuuywefPDBuP766yMi4pprromTTjopXvKSl8T+/fvjs5/9bNxyyy1x0003NXUYEBERo+u8cQAAhs9rDrrCtQ45aBlYKnMEctI2R3JNACUzw6AceoX8dA7N0iBwiHkAs2kCukv/MBjtAKUwr6AcegW6wryD5ugP6qU5aBdNQnvoEcqnYyDCLIAu0DlgDkAumu42zz9AM8xf6CbtAwBttrzpBXzpS1+K6enpw7//8Y9/HAcPHjz8+3379sXVV1/d0/f65Cc/GW9605vive99b5x22mnxm7/5m/Ge97wnPvzhDx/+nN27d8euXbsO/356ejo++MEPxhlnnBHnnXdefPvb346vfOUr8ZrXvKaCowMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYa0XTC3jb294Wu3fvjo0bN0ZExItf/OK4++674wUveEFEROzZsycuu+yyuOSSSxb9Xhs2bIhrrrkmrrnmmgU/57rrrpv1+0suuaSn7w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQleVNL2BmZuaovwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIpvEbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0jRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANRsRdMLiIi48cYbY3R0NCIiDh48GF/96lfj3nvvjYiIxx57rMGVAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSvFTea/5Vf+ZVZv3/Pe94z6/fLli2rczkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ9X4jeYPHjzY9BIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAatX4jeYP+clPfhLPfvazIyLiRz/6UfzxH/9x7N+/P974xjfGq1/96oZXBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCd5U0v4Dvf+U48//nPj40bN8app54ad999d7z85S+PT3ziE/Ef/sN/iAsuuCD+4i/+oullAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSm8RvNX3LJJXHGGWfEbbfdFueff3684Q1viNe//vUxMTERjz76aLznPe+JK6+8sullAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRmRdML+OY3vxm33HJLbNu2LV760pfGZz7zmXjve98by5cvj4iIX//1X4+f+7mfa3iVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANVZ3vQCHnnkkXjuc58bERHr16+PY489Np71rGcdfvxZz3pW7Nmzp6nlAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/P3v3HqVZWR/4/te36u6iu6uBEkNrt7TQooKtDWYyArbRE2IMOmh6WCscXXIZs+JRY4wzBhjvUQeY8RYxl8mKYhwjOUlQZmJy5ngbDoKuJAIRNKgNIm0ExEK6qovqrmq66/zBVNN1fW/73fvZz/581uIPqqqr9vvW8/09e7/1Vr0AAAAAABSu8heaj4hYtmzZkv8PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJOVVR9ARMTFF18cq1evjoiIAwcOxOtf//o45phjIiJicnKyykODnoxOTMXI+FSMHTgYG9auiuFjBmJocKDqwwIAwj4NKdEjpEGLQJOZgZAGLVIX1ipQNHMF0qdTyJvGqRPrFagL84o6sV6BKpg9UD7dAb0wQ6g7axiAqtmLaBprHhanD+iNhoCimCdQH3qFPGgZ6ke3wFzmAjSD1kmZ9Qk0mRkI9JMZAwCkqPIXmr/oootm/f9rXvOaeR/z2te+tqzDgcLcv3d/XHb9HfG13SNH3rZz23BctWt7bNq4tsIjAwDs05AOPUIatAg0mRkIadAidWGtAkUzVyB9OoW8aZw6sV6BujCvqBPrFaiC2QPl0x3QCzOEurOGAaiavYimseZhcfqA3mgIKIp5AvWhV8iDlqF+dAvMZS5AM2idlFmfQJOZgUA/mTEAQKqWV30A1157bVv/QZ2MTkzNuwCIiLhp90hcfv0dMToxVdGRAQD2aUiHHiENWgSazAyENGiRurBWgaKZK5A+nULeNE6dWK9AXZhX1In1ClTB7IHy6Q7ohRlC3VnDAFTNXkTTWPOwOH1AbzQEFMU8gfrQK+RBy1A/ugXmMhegGbROyqxPoMnMQKCfzBgAIGWVv9A85GhkfGreBcCMm3aPxMi4iwAAqIp9GtKhR0iDFoEmMwMhDVqkLqxVoGjmCqRPp5A3jVMn1itQF+YVdWK9AlUwe6B8ugN6YYZQd9YwAFWzF9E01jwsTh/QGw0BRTFPoD70CnnQMtSPboG5zAVoBq2TMusTaDIzEOgnMwYASJkXmoc+GDtwcMn372vxfgCgf+zTkA49Qhq0CDSZGQhp0CJ1Ya0CRTNXIH06hbxpnDqxXoG6MK+oE+sVqILZA+XTHdALM4S6s4YBqJq9iKax5mFx+oDeaAgoinkC9aFXyIOWoX50C8xlLkAzaJ2UWZ9Ak5mBQD+ZMQBAyrzQPPTBhjWrlnz/+hbvBwD6xz4N6dAjpEGLQJOZgZAGLVIX1ipQNHMF0qdTyJvGqRPrFagL84o6sV6BKpg9UD7dAb0wQ6g7axiAqtmLaBprHhanD+iNhoCimCdQH3qFPGgZ6ke3wFzmAjSD1kmZ9Qk0mRkI9JMZAwCkzAvNQx8MrxuInduGF3zfzm3DMbxuoOQjAgBm2KchHXqENGgRaDIzENKgRerCWgWKZq5A+nQKedM4dWK9AnVhXlEn1itQBbMHyqc7oBdmCHVnDQNQNXsRTWPNw+L0Ab3REFAU8wTqQ6+QBy1D/egWmMtcgGbQOimzPoEmMwOBfjJjAICUeaF56IOhwYG4atf2eRcCO7cNx9W7tsfQoIsAAKiKfRrSoUdIgxaBJjMDIQ1apC6sVaBo5gqkT6eQN41TJ9YrUBfmFXVivQJVMHugfLoDemGGUHfWMABVsxfRNNY8LE4f0BsNAUUxT6A+9Ap50DLUj26BucwFaAatkzLrE2gyMxDoJzMGAEjZsunp6emqD6LuxsbGYmhoKEZHR2PDhg1VHw4JGZ2YipHxqdh34GCsX7MqhtcNuABIlI5nu+222+LMM8+Mc99+bRy35dRSvubP9nwvvvSBS+LWW2+NM844o5SvSX60TCfs0+nScvPoMU9arh8tshAt0xS5z0AtUxe5t9grLafDWqUXWmYh5kr9aLl5dJonLTND4/XVxI6tV3LUxJabwLxqnjq3bL3CE+rcct2YPfSTlhemO+pGy2kxQ+hWKi1bw9CbVFqGOkthL9IyZUphzedKy/WnDyK03AsNkQod1595QoSW60KvtKLletAyrWg5PbqlG1rOm7nQHFpuNq3nI8eWrU+aKMeW6Y4ZWG9aJnVmTHu0DHnQMtTHyqoPoEiHDh2K97znPfGZz3wmHnzwwdi0aVNcfPHF8Y53vCOWLVu26L+78cYb461vfWt85zvfic2bN8c73vGOuPjii8s7cLI1NOikHwBSZZ+GdOgR0qBFoMnMQEiDFqkLaxUomrkC6dMp5E3j1In1CtSFeUWdWK9AFcweKJ/ugF6YIdSdNQxA1exFNI01D4vTB/RGQ0BRzBOoD71CHrQM9aNbYC5zAZpB66TM+gSazAwE+smMAQBSlNULzV999dXxR3/0R/Fnf/Zncdppp8U3v/nNuOSSS2JoaCje/OY3L/hv7r333jjvvPPi9a9/ffz5n/95fOUrX4nXve51ceKJJ8ZLX/rSkm8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ARZvdD817/+9Tj//PPjvPPOi4iIk046Ka677rr4h3/4h0X/zR//8R/H1q1b40Mf+lBERDzrWc+Km2++OT7ykY94oXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgL7J6ofmzzjor/uRP/iS+//3vxzOe8Yz41re+FTfffHN8+MMfXvTffOMb34hf+qVfmvW2l770pfGWt7xl0X8zOTkZk5OTR/5/bGys52MHyqVjyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5ah/nQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAx50DLkQctQfzqGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGWor+VVH0CRLr/88vj1X//1eOYznxmrVq2KHTt2xFve8pZ49atfvei/efDBB+PJT37yrLc9+clPjrGxsdi/f/+C/+bKK6+MoaGhI/9t3ry50NsB9J+OIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5YhD1qG+tMx5EHLkActQx60DHnQMuRBy5AHLUMetAx50DLkQcuQBy1D/ekY8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5ahvpZNT09PV30QRfmLv/iLeNvb3hb/5b/8lzjttNPin/7pn+Itb3lLfPjDH46LLrpowX/zjGc8Iy655JK44oorjrzt7/7u7+K8886LiYmJWLt27bx/Mzk5GZOTk0f+f2xsLDZv3hyjo6OxYcOG4m8YUDgdL+22226LM888M859+7Vx3JZTS/maP9vzvfjSBy6JW2+9Nc4444xSvib1p2XIg5YhD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZag/HUMetAx50DLkQcuQBy1DHrQMedAy5EHLkActQx60DHnQMtSfjiEPWoY8aBnyoGXIg5YhD1qGPGgZ8qBlyIOWIQ9ahjxoGeprZdUHUKS3ve1tcfnll8ev//qvR0TEc57znLjvvvviyiuvXPSF5n/u534ufvKTn8x6209+8pPYsGHDgi8yHxGxevXqWL16dbEHTzJGJ6ZiZHwqxg4cjA1rV8XwMQMxNDhQ9WFRMB1DHrTcHnsbqdNyuswPOqHldGmZTmgZFla3WaplKF4Vc0DL6arbvkC1tJwuLdMJLfePFimTlpvHjMlPCh1bV9C7FFquG7OHFHXTsrUM6bEv98ZcIxV1bllH8IQ6t1wlc4TUuF6GPNiXSZU9ozNapkz67B8tV8/6pghabk1rpE7H6TE36EbuLeuCpsi95bowc+iVltOgZXql5eYyP/Ki5Xxos9m03JpGqAMtN5s5lQ8tUwdmTmtahjxoGeorqxean5iYiOXLl89624oVK+Lw4cOL/psXvOAF8Xd/93ez3valL30pXvCCF/TlGEnb/Xv3x2XX3xFf2z1y5G07tw3HVbu2x6aNays8MgDojr0N6Jb5AXnQMkDvzFLAHOBo1gPkQcuQBi0C/WTG0A/WFVAFs4dcWMtAbsw16J2OgF6ZI+TAOgagXfYMSJc+yZn1DeXQGtApcwPm0wVQJjMH8qBloFvmB6RJm7A0jQCpM6eAMpk5AEAdLG/9IfXxile8Ij7wgQ/E3/7t38YPf/jD+PznPx8f/vCH41WvetWRj7niiivita997ZH/f/3rXx8/+MEP4nd/93fju9/9bvzhH/5h/OVf/mX8zu/8ThU3gQ6MTkzFPQ+Nx+17Hol7fjoeoxNTS769nc839wQ+IuKm3SNx+fV3tP15ACAVuext3e7tdZDzbaM+Riem4gc/HY/v/2RffPfBsbjtvp/F7p/si//v+z+NW+97ZNbH1m1+QJn6OdNd5wL9UIdz0RSO0SylqYrqL4WOe2UOcLQq10MOPaXA/Zi+Ir9HS/082WyH6rXbYjdzwbyHYi3VVKq92e/pRDvreHRiKnb/ZF/c9cBYXHL21njTS06JwYEVEWFdAY8r+jnNR39eexo5KHItp3AOmsIxANWq0x5tZhXHfVmsOnXUrpzWSE63hXz1OkdSX+epHx/FyHE/7EQO6zyH20C9VLXmrPXqNX3PgG6UNbtyvzahWGU8T7pI9h+ari57CXlyjsBScpkbM8/N/ccf/iz++f7RuO/hR2tz7KRjZl7edt/P4r6HH43nbt545DneERHfvO+R+P++/9PY/ZN9ZiokIqXzHH/TC+qvl98/Xuz8QcvQX/36/asyORegyfrVahGfV5uwtLIbqdPeztJ8LynL3Dk1OLAi3vSSU+Kis06Kux4Yi90/2Wf99UDLlLkG6rDeXD8AAHWxsuoDKNI111wT73znO+MNb3hDPPTQQ7Fp06b4zd/8zXjXu9515GMeeOCB2LNnz5H/37p1a/zt3/5t/M7v/E78/u//fjz1qU+NP/3TP42XvvSlVdwE2nT/3v3zTrh3bhuO97/y9Pi9L/xzfPmuh2a9/apd22PTxrVLfs6R8al5J/Azbto9EiPjUzE0OFDMDQCAEuSwty2257ezt6cu59tGfdy/d3+8679/O379X22Ja2+5N265++Ej7zv7lOPjYxfuiDdfd3tMTB068va6zA8oUz9nei+fO4dzAaA/6nAumsoxmqU0UVH9pdJxr8wBjlbVesilp6q5H9NX5Pdoqc914OAhsx0S0GpfffjRqXh06lDHc8G8h2It1dSyiPjdRHtzLUe72tk3FvqYuT9Lta6g2frxnOYZ9jRyUdRaTuGaL4VjAKpXlz3azCqO+7J4demoXTmtkZxuC3nrZY6kvs5TPz6Kk9t+2Ikc1nkOt4F6qWrNWetpaPKeAd0oc3blfG1Cscp6nnSRa8f+Q5PVZS8hT84RaCWHuXH/3v1x2V/fEV+7e/Zzc3/rJdviaccNxonWOm1o9RzviIiPXbgjrr3l3rjic3ce+RgzFaqT0nmOv+kF9ddNx+38jliElqFfFmrw3GedEO98+bPj7Td8O4lzhHY4F6Cp+nU+X9Tn1SYsrcxGUrr+pze+l5Tp6Dk1OLDiyOP7H//q3Uc+xvrrjpYpcw3UZb25fgAA6mJ51QdQpPXr18dHP/rRuO+++2L//v1xzz33xPvf//4YGHjixOtTn/pU3HjjjbP+3S/+4i/G7bffHpOTk3HPPffExRdfXO6B05HRial5FwURj59o/8fP3xnPPHHDvLdffv0dMToxteTnHTtwcMn372vxfgBITd33tqX2/Hb29pTlfNuoj5l1+MwTN8x7kfmIiFvufjiuveXeuPScrfP+berzA8rUz5ne6+eu+7kA0B91OBdN6RjNUpqmqP5S6rhX5gBHq2I95NRTldyP6Svye9Tqcz12eHrJf2+2Qzla7auHDk93PBfMeyhWq6Zu/P5Pk+3NtRztaGffWOxjFvpZqnUFzdSv5zTPsKeRiyLWcgrXfCkcA5CGOuzRZlZx3Jf9UYeO2pXTGsnptpC/budI6us89eOjWDnth53IYZ3ncBuol6rWnLWejqbuGdCNsmdXrtcmFKvM50kXuXbsPzRVXfYS8uQcgXbUfW6MTkzNe5H5iMefm3vNV3fHjd//qbVOS+08x/vSc7Yu+De1zFSoRkrnOf6mF9RfNx138jtiEVqGoi3W4KknbogrPn9nEucI7XIuQBP163y+yM+rTVhaWY2kdP1Pb3wvKdvRc8rj+8XRMmWugTqtN9cPAEBdrKz6AMjD6MRUjIxPxdiBg7Fh7aoYPmYghgYH+vK1Rsan5l0UzLj57ofjkrPnvxDmTbtHYmR8aslj2rBm1ZJfd32L9wNAalLa27o5V1hqz29nb09ZzreN3pV1bj2zDi8+66T4+FfvXvBjbrn74bh0gfNr58bwhLkzfXBgRVx6ztbYsXljTD52OB4YOxAR0VXHve4XKZ0LQA7KfPyrn+pwLprSMZqlecil3zIU1V9KHffKHOBoVayHHHpKYQ7ncD/WXat1UOT3qNXnOtzihebNdlhckTO91b566PB0x3PBvIelddpwq6YuOuukRd9XdW+u5WhHO/tGRCz6MXN/lnr0ukrhOgjon6MbXzuwIp67eWPcet8jMTF1aNbH9fKc5hn2NHJRxFou8pqv273adScwow57tJlVnE7vS9eE7alDR+3Kqbdub4t1TxW6nSNVN1vmz85JX077YSf6uc7L/p2shWiVflhozR39+0vff2g8jjtmoPA1b62no6l7BkQU/3yXomdXXa9NKFeZz5Mu8vEb+w9NVZe9pGge502DcwTa0e7cSLXrkfGpeS8yP2PmubnWOkdbaC0//Oji8/Lo53gv9je1zFQoX5nnOf3+mWwq5/CQsn6fi3bT8VL/ZqG/t6llaF87zS/W4I7NG2t33u5cgByk8jPYIj+vNmFpZTVS9s85Un0cPAd+ZkXZhtauije95JTYsXljHDOwMs7Ycmzs2HJsfPLme2f9DQfrrzNabq6ZPfJnE1Nxydlb47mbN/a9pzqtN9cPAEBdeKF5enb/3v1x2fV3zDpZ37ltOK7atT02bVxb+NcbO3BwyfdPPnZ4wbfva/HvhtcNxM5tw3HTAhcdO7cNx/C6NC42AKBdqext3Z4rtNrzW+3tKcv5ttGbMs+tZ9bhYufPM+a+37kxzHb0TB8cWBEfu3BHXHvLvbOetNptx73uF6mcC0AOyn78q5/qcC6a0jGapfWXU79lKKq/lDrulTnA0apYD3XvKZU5XPf7se7aWQdFfo9afa6JqUNmO3Sh6Jneal+dmHpsyX+/0Fww72Fx3TTc7XO0IqrvzbUc7Whn35hu8TlmOjh6XaVyHQT0x0KNn33K8fGxC3fEm6+7fd6LzXf7nOYZ9jRyUcRaLuqar5e92nUnMKMOe7SZVZxO7kvXhO2rQ0ftyqm3bm6LdU9Vup0jVTZb9s/OSV9O+2En+rXOq/idrMVolaLNXXNF//5Su193Lmu9PE3dM6Afz3cpenbV8dqE8pX5POkiH7+x/9BUddlLiuRx3nQ4R6Ad7cyNlLtu5znq1jozFlvL7/43p8XgwIp5z9mc0ervaUWYqVC2ss5zyviZbArn8JCyMs5Fu+m4k9+V1DK0r93mF2uw1bl7iuftzgWou5R+Blvk59UmLK2sRsr8OUfKj4PnwM+sKNvAiuVx+55HZj0ndrG/4WD9tU/LzdTJ30Qpcg3Uab25fgAA6mJ51QdAvY1OTM27OIiIuGn3SFx+/R0xOjFV+NfcsGbVku/ffNxgvOklp8TgwIpZb1/f4t8NDQ7EVbu2x85tw7PevnPbcFy9a3sMDTqJB6BeUtjbejlXaLXnt9rbOznGex4aj9v3PBL3/HS8L+cvc5V126iXss+tZ9bh6pVLXxauXrk8BgdWxJteckp89nW/EL/9f2yLkUenSmkF6uDomX7pOVvj2lvujVvufnjWxyzV8VL7UK/7RQrnApCDKh7/6qdUzkX7Of+KZJbWW279lqGo/lLquFfmAEerYj3Uuael5vBl198R9z38aGmzuM73Y921Wgc/GTsQEcV+j1p9rqG1q8x26FA/zq2P3ldnHoP+xEXPj09c9Px4x3nPbtn9Qu8372Fh3TbcqqmnHrs2Pnnxz3f1PK1+cy1HOxZa40fvSQcPT8faOWt7rtUrl89aVx6Pgrwt1vgtdz8c195yb1x6ztZ5/2ax/bLdvdKeRi6KWMtFXPO12qvvG3l0yecRuu4EZtRhjz5ucCA+cdHz4w9ffUZP5yO0P/9dE3amDh21Y3RiKtauWrFoaxH16q3T8x3rnip1O0eKPK/v5PeR2u3FdUez5LIftmummccOTy+6b0Z0t86r+p2sxWiVTrSzn8xdc938/lI3rPV0NG3PgIj+Pd+l6NnVTp8LzfqhtWZsk7Ral2tWrWj7b12U+fiN/YemSnEv6adO50QVf6OnSVyH0Y5WcyMiCn+srMj2W63z1SuXW+tExP/eo/564bX8nv/xnQWfszlj9crlLf+mlnUG5SrjPOcnYwfisr/+Vt9/Jlv1OTykrKyf27bzO2Gd/j2rmXMHLUP7Oml+sQa7PW+v8jEq5wLUWWo/g13s887s6538DE2bsLSyGunXvJi79/9k7IDfY+gzP7PqLz9znW10Yiqu+Pyd854Tu9jfcLD+2qfl5un0b6L0sgbmzrLjBgcW/P2QIr5W0Vw/AAB1sbLqA6DeRsan5l0czLhp90iMjE8VfvI7vG4gdm4bjpsW+Lpnn3J8/L/feTBu3/NIfOzCHfHm626PialDsXPbcAyva30cmzaujWsu3BEj41Ox78DBWL9mVQyvG3ACD0BtVb239XKusNSe3+7e3sr9e/fPe7Bz57bhuGrX9ti0cW3Pn38xZdw26qfsc+uZdXj7j/bG2accP++HaBGPr8dTTlgXf/Nb58R7/vu34+NfvXvW+/rdCtTB0TN9x+aNszo52kIdt9qHitgvqj4XgBxU8fhXP6VwLlrG/CuSWVpfufVbhqL6W7NqeZxzyvFx8yLXGXW77jUHOFrZ6yG1fbETS83hr+0eibsfGo8/+/oPS3l8oc73Y921Wgf3PDQehw5PF/o9audzDQ0OmO3QgX6dW8/sq49MHIx33nDnrMfWrvy158QLtw0v+HUXmwvmPSys24ZbPUfri//8k/j4V++Os085vqvnafWbazlambvGBwdWxMcu3BHX3nLvkT3pTS85ZdHHOF64bThOedK6uObCHUfWlcejIG9LNX7L3Q/HpWfP/qXKxfbL5z/t2I72Snsaueh1LRdxzddqr777p+Px7/7sm0c+59zHLl13AkdLeY++f+/+eMcN346v3f3EvOrlfKTp2p3/rgk7l3JH7VjoOVCpPlbWrk7Pd6x7qtbNHCnqvL7T30dqtxfXHc1T9/2wXe3smxHdr/OqfidLq/Sq3f1k7prr9PeXumWtp6UpewbM6MfzXfo1u5bqc7FZ/59e9Zw491knxJfueqi046Q6S63Lc045Pr5w5wNH9vZWv79f9uM39h+aKLW9pN86mRNV/Y2eJnEdRruWmhv3PDRe6GNlRbff6jnqD+2bjOc/7diOPy/5eXDswKznPRzta7tH4v960ckLPkb2wm3DseW4wRhYsdxMhYT0+zzn/r3744cjj8bXFvjdj4jifybrehkWVtbPbdv5nbCI9v+e1cz5w1fe+iItQwc6aX6xBm//0d6O/0ZVCo9RORegrlL7GexCn7edfX0x2oSlldFIP+bFQnv/Z1/3C36Poc/8zKp/UjifTU0nf8PB+uuMlpunrJ4Wm2WfvPjn49JP/eOR3w8p4mv1i+sHAKAOlld9ANTb2IGDS75/X4v3d2NocCCu2rU9dm4bnvX2s085Pi45e2t88uZ745a7H45rb7k3Lj1na5z7rBPiyl97ToyMT8Xtex6Je346HqMTU0t+/pNPWBfP23JsnHzCOifwANRelXtbL+cKi+35O7cNx9W7tvd8O0YnpuY9ABnx+A8CL7/+jiXPF3q11G37z7u2R0TEPQ+Nt3XuQj6qOLd++3nPiudvOTbe/YrT4oWnHD/rfTOtbVy7Kt7zP74z7wn0ZbQCdXD0TJ987PCSH3t0xz8ZOxA/HHk0LvxXW+KTF/98vOklp8TgwIpZbRW1F7rOhd5UsUf3Uz/Ps0cnplqex7ZzHt7va4FumKX1lFu/ZSiiv9GJqXj3//hOXHz21jh7znXGOaccH//pVc/p+6zpB3OAo5W5HlLcF9vVag5PPna4b48vzJ0VEVHb+7HuWq2DvfsPxuXX3xERxX2PFuvmhduG4/fOP33Wx5nt0J5+n1u/879/e95j0O/7wj/HG198SkdzYab/c591QrzpJafEJy56fvzhq8+I637jF+LKX+vtPBTqrNuG23mOVkTMep7WYo26liNFc9f4pedsjWtvefy5hzM+efO9cfHZW+OcBX6W+p93bY+nDR8za131c8+sqiPgCe081jHj7FOOj9996TPj+VuOjT989Rnx7855ejw0diDe+29O6+qxCHsauehlLRfxWGknHS/02GW7jzsBzZHiHn3keRlz/tj6zPX7O1/+7MJ+NtKU65R29yDPUehOih21Y7HnQLXzWFmvX7ef3XV6zmXdk4JO58hS5/XtPq+pm99HareXOj9PhO7VdT9sVzv7ZkRv67zIPamd/VarFKGT/WTumuvk95d6Ya2nJ/c9A45W9PNdivz7BAudKyzU51Kz/j9+/s54z785zYxtiMXW5TmnHB8XH/U8rIjWv79fxeM39h+apqrz4Kpaa3dOVPk3epqk3fXXlJ/TsbTF5kbRj5UV3f7MOn/hAs9R/62XbIsXP+NJlZxv6CotoxNT8S+P7F/yY1avWr7gvPwvu7bHCetXx6Hp6Xj3vzlt3lpz3QXV6Pffurns+jti7/6l97hHJqb8TS/os7KeS9TO74RFtP/3rP7zru2x7cnrtQwd6qT5ocGBuPLXnhOffd0vxB+++owjf3vzhz8dj//0que0vS+n9BiVcwHqqIyfwXbyGMtCn7edfX0p2oSl9buRoq//F9v7Wz0GMHeeefy3c5472B8pnM+m2EO7v/tt/XVOy83Ta0+9/m35P/hfd8c7X/7sWW9Peb25fgAAUrey6gOg3jasWbXk+9e3eH+3Nm1cG9dcuCMeGD0QPxh5NFavXB63/2hvvPm622Ni6lBEPP4L5u96+bPj15+/OS7/3J2zLjB2bhuOq3Ztj00b1/bl+ACAx/V6rjCz54+MT8W+Awdj/ZpVMbxuoJAH2UbGp+Y9ADnjpt0jMTI+1dcH8xa7bY9OHYo3XXe7c5cGKvPc+v69+2c9CD84sCLe+fJnx9tf/uyYmDwUQ2ufaO2eh8YrbQXq4Ohr1KXMdHz/3v1x2V9/a9aLZ519yvHxsQt3xJuvu31WW/3cC4H2VPX4Vz/1Y7bMPb+IWPg8tt3zcPOPIuTYbxl67W9kfCq+fNdD8fV7Ho5Lz9kal569NSYfO3zkcfypQ0v/ccultDtrIDd13RdbzeHVK5dHRPGPLyw2K67etb2W92PdtbMOZtbAySesK+x7NNPNg2MHjvxRmdt/tDd+9WNfi+c/7Vh7B3Son+fWi10nTkwdiks/9Y/x/7z5hfHY4em258KmjWvj3a84La743B3x8a/efeTtzhtpsl4aPvpc9JGJqRjdf3Dec7QiHn+e1jvPe3b8xjlb5zXqWo6UHb3GJx87NGvviHh8P3rzdbfHpedsjXec9+w4cPDQkvtRv/ZMHUEaWjX+9OFj4q9f/4IYO/BYDK8biI9++fvx1e/+9Mj7zz7l+Hj/K0+PE3ULXev1sdJ2H7OcsdBjlx53AlK31PMybrn74XjPK04r5Hykadcp7exBnqPQLK1aW+yxsl6U1V0n51zWPXW1aePauPLXnhP3PTwRe/cfPPK8pvf+zXfiveef3rKpbn4fqZNe6vo8EVhMq33z7b/6rHjV857S0zovak/qZL/VKr3qdD85es0deOzQgv9uRpHnYdY6UJWinu9S5Ozq9Nq81aw/cPCwGdsgc9flmlUr4gt3PjDveVgRrZ9fX+TjN2sHVnR/oyBjTToPbnfPrfpv9DRJq/XXtJ/T0bkif37Tr/Y3bVwbH79wRzy0bzJG9x+MwYEVcczAytg4uKqSWaKr9IyMt35hm41rB1r+/bbBgRVx6Tlb4/960cmxetXy2Lh2INs9HeqgX+fZM/vVxWedtOTHje4/GL913e1H5ntTzvmhTGU+l6jV74TNOPq8dVlEvOw5J8ZFZ5105O/gPLRvsrBjgqbppPn79+6f9xoRL9w2HFe+6jnx1OMG296XPUYFven3z2C7eYxloZ+htbOvA+kq8pp7sb1/7u+BzjX3PMTjv93x+Enxqj6fTbWHVucoJx0/GF9564usvy5puVl66amIvy3/td0j8a6XPzu+8tYXWW8AAAXwQvP0ZHjdQOzcNhw3LXACv3PbcAyv69+J+tDgQPxg5NF4w5/ftujHLF+2LK74/J3zLjBu2j0Sl19/R1xz4Q4XEwDQR0WcKwwN9ufBv7EDB5d8/74W7y/C3Ns2OjE17wHUCOcuTVHWufVC62xi6lBc8bk7Y+e24XnrLIVWoA5mumnV8ZEGj3qR+YjH/0BaRMSl52yNj3/17llt9WsvBNpT5eNf/VTkbOnkPLaTcwvzj17l2m8ZeulvpvOJqYV/Ee+XnnlCV5/XNTNNV8d9cak5fPYpx8ftP9p75P+LenxhqVlx2f+eFSefsK6Qr0V72l0HM2ug6LX+/r+9y94BBejnufVS14kTU4fikYmpeN6WY9v+fKMTU48/T2TO42/ap8l6bXhmf759zyPx7/7sm4t+3IGDh+b15VqOOjh6jS9k5jGOX3rmCS33pH7smTqCdLRq/MShNfGDkUfjtj2PxO17HjnyM+AZt9z9cLzrv38nPq5b6Ekvjx918pjljMUeu/S4E5CqVs/LeHTysZ6/RlOvU1rtQZ6j0CytWlvosbJelN1du+dc1j11NToxNe8PF8+YfKx1U938jkWnvdTxeSKwmFbNTD12OJ69aainr1HEntTNfqtVetHNfjKz3v7u2w/G2accP+9x6Ij+nIdZ60AVinq+S1G6OVdoZ9affMI6M7ZBjl6Xt+95ZNEXyYho/fz6Ih6/OfuU4+O2PXvj5zassQ5hAU05D253z/V3R8q12Ppr6s/p6EyRP7/pZ/upzFldpWnswMG4/Ud7F30M7IX/ey23+vttM88D//hX717w72oB5evH/J/Zr5aaGzPPEZ07380EKFbZzyVq9TthM/YdOBijE1Pxuwuc980cm/ME6Fy7zS923fW13SPxHz9/Z0f7sseooDf9/BlsL4+xzP0Z2lJ0DvVQ1DX3Ynv/Uo8BtHMe4vHf9nn8pFhVns+m3EOrc5SnbFxrHfZIy83RbU9F/m35Rycf6+hvBgIAsLjlVR8A9TY0OBBX7doeO7cNz3r7zm3DcfWu7X2/UNywZtWS7z90eHrBH+BHPH4xMjI+1Y/DAgD+t6rPFZbS6jxifYv398PI+JRzlwYrq5dO11mKrUCq2ul4qQZvufvh2LF5Y0RoC1KS8jltKjo5v3BuQZn0W41+de6aGepnsTl89inHxyVnb41P3nzvkbcVdQ5gVqRnZh28sMU66Md5oPUAxennuXXR54/ah/mKaribXjVJnRSxJ/Vjz9QRpKOdxjesWRU7Nm9c8I8TRDz+R5B0C9Xp5DHLGc5zgbop43kZ5uDCPEehWcp+DlSq3Vn31FWvTXUzA/RCk5WxbxbRWKr7Lfnqto2R8al43xf+OS45e2ucfcrxs9539inHx++df7p9BchCaufQ3Zwr+B0qllLW+hgaHIjfO//0Bc8bLjl7a7zvC//sXBcart09176WBo9f0I4iz6Wb0L6u0rRhzar45M33LvoY2PsWeQzM9xOaaWa/WmpuHP0cUfMA+qeqx3XbOW91ngDFa7f5IvtrwnUq9FM/9+qiWtc5cLTFZsLMYwBz/6ZZP89DoAhV7nMp95Da88Sgzrrtyd+WBwBI08qqD4D627RxbVxz4Y4YGZ+KfQcOxvo1q2J43UApF9vD6wZi57bhuGmBi42d24ZjYuqxJf/9vgMH+3VoAMD/VuW5wlJanUcMryv/+MZanJs4d8lfGb10us5SbAVS1qrjVg1OPnZYW5CgVM9pU9HJ+YVzC8qm3/L1q3PXzFBPM3P4oX2TsednExERcfuP9sabr7s9JqYORUSx5wBmRZo2bVwbH7zguXHPQ+Oxd//BWL1y+ax10K/zQOsBitWvc+uizx+1DwsrouFuetUkdVLUnlT0nqkjSEurxofXDcQPH350yc+hW6jW3I6PWb0yvnnfI7Mes5zhPBeoozKel2EOLs5zFJqj7OdApdyddU8d9dpUtzNALzRVWftmr42lvN+Sp27bGDtwMCamDsWbr7s9Lj1na1x69taYfOzwkedkje2fiohj+nz0AOVI6Ry6m3MFv0PFUspcH6P7p2LHlmPnnTfM/HzMuS7Qzp5rX0uDxy9oV1Hn0k1oX1dpGl43EM9/2rELPgb20L7JOHZw4Reo8P2EZjp6v5qZG5f9yjPjXx7ZP+8aeIZ5AP1TxeO67Zy3/mDE73lAP7TTfJHn6U24ToV+69deXVTrOgeOtthMmJg6FP/3P+yJD17w3Bg/8Fgp5yFQhCr3udR7SOl5YlB33fTkb8sDAKTJC81TiKHBai6whwYH4qpd2+Py6++YdQGxc9twXL1r+7w/9jbX+jULP0kQAChWVecKS2l1HlHF8W5ocW7i3KUZ+t1Lp+ssxVYgdUt13KrBjWtXaQsSleI5bSo6Ob9wbkEV9FuufnXumhnqa2YOH7N6Zd/PAcyKdD15w5o4dHi61PNA6wGK149z66LPH7UPi+u14W561SR1UuSeVOSeqSNIz1KNDw0OxFOPXbvkv9ctVG9ux8esXhn/z9OOdZ4LZKGM52WYg0vzHIVmKPs5UKl3Z91TN7021csM0AtNVOa+2Utjqe+35KfbNmbW6sTUofj4V++e9/5XPe8p/TlggIqkcg7dzbmC36FiKWWuj3WrVy143jDDuS4Q0XrPta+lweMXdKKIc+kmtK+rNB299o4+l233sbPF+H5CnubuVx//6t2xY/PGeMOf37bovzEPoL/Kfly3nfPWDWumlvwc5gJ0r1XzRZ6nN+E6FcrQj726qNZ1DhxtqZnwe+efHk/esCaevGHxf+/xQlJT5T5Xhx5SeZ4Y5KDTnvxteQCANHmheWptdGIqDhw8FO94+bPj8PR0TEweiqG1q2J43eMXLKMTU7Fz2/CsC4sZO7cNx/A6Fxd0bs+ePTEyMn9N9dPw8HBs2bKl1K8JUAejE1MxMj4VYwcOxoa1q2L4mM4etNy0cW1cc+GOGBmfin0HDsb6NU+cR1RheN2Acxf6rtU6W7dmZdzz0PisrlJrBVK31P60VIMv3DYcJ5+wLp68YU3ZhwzQk07PY9s5t+j1XB+oVj+uIYq6ZjZfKJo11b4yHl/w+Fra+r0G5va4bs1K6wFqYu58OGb1yhhYsTwe2ncgJg4e6mh/tRdAfy22n0fEvJ8vDQ0OaJJktHvtluLPRXUE9TEza5YvWxYv3DYcX9MtVKbTx207PQewPwNzpfbzon5f25iD1FE/Oi3zcQTdQWdaNV9EUyk+lgipnZcerQ7N2G+pQjdtWKvNkvJsh6bpdv7W4TyI6rS7PnrdD5w/0GTOp4plX6uemc5C+j3rcm9fV+nqdO2NTkzFyuWevwlVSOG8e+7MOHbQfIfctJo1rc4dnPdBdYrur8i/SwAUp4jWZ/b78cmD8b5Xnh5Tjx2ORycfy+7xKChLCtfrRejlMWrXAaSoqp+7FN1DLjMGeFw//rZ8O8wSAICleaF5auv+vfvjsuvvmPVEvp3bhuOqXduPnPQPDQ7EVbu2x+XX3zHrYmTntuG4+qiPg3bt2bMnnvnMZ8X+/ROlft21awfju9+9y4vNAxxlqXOBTRvXtv15hgbTecDQuQtlWGqdvf+Vp8fbP39nfPmuh2a9faYraxBaa7U/tZr1XmQeqKNuzmOXOg8v6lwfqFbR19tFXDObLxTNmupcvx+L8/ha+vq1Bhbq8dxnnRDvf+Xp8Y4bvm09QA3MzIde91d7AfTf3P28VbeapGqd7i0pPYcgwt4GdXH0rBkcWBEfu3BHTE9Px813P3zkY3QL5ej2urKTcwD7M3C0VH9e1M9rG3OQuulnp2U9jqA7aF87zRfVVGqPJdJsqZ6XHi31Zuy3VKXTNqzV5qjDbIcmmZm/c7s8+5Tj4w0vPiUmpg7F0ODi/9Z8ZjGt1kcR+4HzB5rK+VR/2NeqZaYzV1mzLuf2dZW2dtfeTAu33vdIfOzCHXF4ejpu8fxNKEVK591zZ4b5Dvlod9Ysde7gvA+q04/+ivq7BEBxem1dz1Cs3Jrq9jFq1wGkqoqfuxTZQ24zBij+b8u3wywBAGht2fT09HTVB1F3Y2NjMTQ0FKOjo7Fhw4aqD6cRRiem4k3X3T7rZH/Gzm3Dcc2FO2ZdTIxOTMXI+FTsO3Aw1q9ZFcPr8n3CKt1pt+PbbrstzjzzzPiFS98dG048qZxje+CH8feffG/ceuutccYZZ5TyNWdu57lvvzaO23JqKV/zZ3u+F1/6wCWl3k7yY09ujk7PBeqm6ecuWi7H3HW2bs3KeS8yPyOHrihfE1vuZH9q+qynPprYMt0rYrblfq5fFS2Tk25nTQ7zRctpyWFN5Szlay4tF2+pHs991gnx/lc9J8YPPJbkeqC+tNwfRe6vKe8FpEPLvWu3W03SL606zunaTUfkrO578kKzZnBgRVx6ztY46+nHx5pVK2JorW7JXwotl73325/JUQot10lO1xzdMAfTpeUn5Nap7ppFy53ze8ekqIyWc9vvqmY2sJAU92VrNW9me3+k2DL1MjoxFX/37QfjhPWrY/Kxw7F65fK4/Ud745M33xvPf9qx2ixJk1ouej9w/kBK+t2y8ylyl8JMb9KenCqzrlgpdFWFHFqe28LM8zd3bN4YERFbjhuME9avbsT3k+aqquU67EVNne/UUw77cj94jIy60fLiiu6vDuci1JeWu9dN63qmX5rasqbmcx1Qb01tuV967cGMoVtaroey9kyzpL60DHnQMtTHyqoPALoxMj614Ml+RMRNu0diZHxq1gn/0KAH6yjWhhNPKu0F2AGYr9Nzgbpx7kIZ5q6zex4aX/BF5iPy6ArK0Mn+ZNYDOSpituV+rg/0rttZY75QNGsqba65mmWpHr9010Nx+csei5NPWFfyUQHdKHJ/tRdAOdrtVpNUJadrNx1BuhaaNRNTh+LjX707Pv7Vu+Mrb32R61IoSdl7v/0ZyOmaoxvmIHWQW6e6g6X5vWOaKrf9rmpmA3VhrebNbIc0jYxPxRWfu3PB92mTfih6P3D+QJM4nyJ3ZjoRZl3RdFVfc1uYef7mjK+89UW+t9AnddiLzHeoP4+RQT6K7q8O5yLQRN20rmcolqbmcx0AT+i1BzMG8lbWnmmWAAC0Z3nVBwDdGDtwcMn372vxfgCg3pwLQPF0Bb3TEUDvzFKgX8wXimZNQTr0CPnQM9SPbkmdNQqUwayBdOgRKJu5A+nTKTSL5mkqax8gP2Y7pEmblM2ag+7pB2gCsw4epwWojv6AMpg1wGLMB8iHnqFYmgL6yYwBimCWAAC0xwvNU0sb1qxa8v3rW7wfAKg35wJQPF1B73QE0DuzFOgX84WiWVOQDj1CPvQM9aNbUmeNAmUwayAdegTKZu5A+nQKzaJ5msraB8iP2Q5p0iZls+age/oBmsCsg8dpAaqjP6AMZg2wGPMB8qFnKJamgH4yY4AimCUAAO3xQvPU0vC6gdi5bXjB9+3cNhzD6wZKPiIAoEzOBaB4uoLe6Qigd2Yp0C/mC0WzpiAdeoR86BnqR7ekzhoFymDWQDr0CJTN3IH06RSaRfM0lbUPkB+zHdKkTcpmzUH39AM0gVkHj9MCVEd/QBnMGmAx5gPkQ89QLE0B/WTGAEUwSwAA2uOF5qmlocGBuGrX9nkn/Tu3DcfVu7bH0KATfgDImXMBKJ6uoHc6AuidWQr0i/lC0awpSIceIR96hvrRLamzRoEymDWQDj0CZTN3IH06hWbRPE1l7QPkx2yHNGmTsllz0D39AE1g1sHjtADV0R9QBrMGWIz5APnQMxRLU0A/mTFAEcwSAID2rKz6AKBbmzaujWsu3BEj41Ox78DBWL9mVQyvG3CyDwAN4VwAiqcr6J2OAHpnlgL9Yr5QNGsK0qFHyIeeoX50S+qsUaAMZg2kQ49A2cwdSJ9OoVk0T1NZ+wD5MdshTdqkbNYcdE8/QBOYdfA4LUB19AeUwawBFmM+QD70DMXSFNBPZgxQBLMEAKA1LzRPrQ0NOsEHgCZzLgDF0xX0TkcAvTNLgX4xXyiaNQXp0CPkQ89QP7olddYoUAazBtKhR6Bs5g6kT6fQLJqnqax9gPyY7ZAmbVI2aw66px+gCcw6eJwWoDr6A8pg1gCLMR8gH3qGYmkK6CczBiiCWQIAsLTlVR8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNNk9ULzJ510Uixbtmzef2984xsX/PhPfepT8z52zZo1JR81AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DQrqz6AIv3jP/5jHDp06Mj/f/vb345zzz03LrjggkX/zYYNG+J73/vekf9ftmxZX48RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIKsXmn/Sk5406/+vuuqqOPnkk+NFL3rRov9m2bJl8XM/93P9PjQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAI5ZXfQD9MjU1FZ/5zGfi0ksvjWXLli36cePj4/G0pz0tNm/eHOeff3585zvfKfEoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCZaWfUB9MsNN9wQe/fujYsvvnjRjzn11FPjk5/8ZGzfvj1GR0fjgx/8YJx11lnxne98J5761Kcu+u8mJydjcnLyyP+PjY0VeehACXQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAx50DLUn44hD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnqT8eQBy1DHrQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAz1tbzqA+iXT3ziE/Gyl70sNm3atOjHvOAFL4jXvva18bznPS9e9KIXxec+97l40pOeFP/1v/7XJT/3lVdeGUNDQ0f+27x5c9GHD/SZjiEPWoY8aBnyoGXIg5YhD1qGPGgZ8qBlyIOWIQ9ahvrTMeRBy5AHLUMetAx50DLkQcuQBy1DHrQMedAy5EHLkActQ/3pGPKgZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ8qBlyIOWob6WTU9PT1d9EEW777774ulPf3p87nOfi/PPP7+jf3vBBRfEypUr47rrrlv0YyYnJ2NycvLI/4+NjcXmzZtjdHQ0NmzY0PVxA+XptuPbbrstzjzzzDj37dfGcVtOLeNQ42d7vhdf+sAlceutt8YZZ5xRytdsyu2k/uzJkActQx60DHnQMuRBy5AHLUMetAx50DLkQctQfzqGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGWoPx1DHrQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAx50DLU18qqD6Afrr322jjhhBPivPPO6+jfHTp0KO6888741V/91SU/bvXq1bF69epeDhGomI4hD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWob60zHkQcuQBy1DHrQMedAy5EHLkActQx60DHnQMuRBy5AHLUP96RjyoGXIg5YhD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDlqG+lld9AEU7fPhwXHvttXHRRRfFypUrZ73vta99bVxxxRVH/v/3fu/34otf/GL84Ac/iNtuuy1e85rXxH333Reve93ryj5sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoEFWtv6Qevnyl78ce/bsiUsvvXTe+/bs2RPLly8/8v+PPPJI/MZv/EY8+OCDceyxx8aZZ54ZX//61+PZz352mYcMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEx2LzT/y7/8yzE9Pb3g+2688cZZ//+Rj3wkPvKRj5RwVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPWF71AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zcqqDwAAjnbXXXeV9rWGh4djy5YtpX09AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACY4YXmAUjC/tGHI2JZvOY1rynta65dOxjf/e5dXmweAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDSeaF5AJJwcGJfREzH8/7Py+JJW5/Z96839sAP4+8/+d4YGRnxQvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTOC80DkJR1J2yJ47acWvVhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAXy2v+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmsYLzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUzAvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTMC80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlMwLzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUbGXVB9AUoxNTMTI+FWMHDsaGtati+JiBGBocqPqwAKBx7MmQBy1DHrQMedAy5EHLkA89Q/3pGPKgZciDliFf+oZ60Swwl7kAdMLMAKBT9o5iuB8hbRqF/tEX0C3zA4qhJciDlqGZtA/1pmFgKWYE9E5HkDeNQ71oFvKkbWgOvUN6dAkAALN5ofkS3L93f1x2/R3xtd0jR962c9twXLVre2zauLbCIwOAZrEnQx60DHnQMuRBy5AHLUM+9Az1p2PIg5YhD1qGfOkb6kWzwFzmAtAJMwOATtk7iuF+hLRpFPpHX0C3zA8ohpYgD1qGZtI+1JuGgaWYEdA7HUHeNA71olnIk7ahOfQO6dElAADMt7zqA8jd6MTUvAuRiIibdo/E5dffEaMTUxUdGQA0iz0Z8qBlyIOWIQ9ahjxoGfKhZ6g/HUMetAx50DLkS99QL5oF5jIXgE6YGQB0yt5RDPcjpE2j0D/6ArplfkAxtAR50DI0k/ah3jQMLMWMgN7pCPKmcagXzUKetA3NoXdIjy4BAGBhK6s+gNyNjE/NuxCZcdPukRgZn4qhwYG+fO3RiakYGZ+KsQMHY8PaVTF8zEDfvhYApK7K8ztHFAABAABJREFUPZnFOV+hU6m2bC1DZ6poWadQvFT2ZX1Db/rVsjahfH4mBfXXS8c6hHQUuSdrG6rTz/NrbUO1+n39rHEoVtU/j9I0pGfvxMG4+KyT4sJ/tSXWrFoRt+15JD55870xMXXIc0GBeao+l2iXcw6grnKcX3XZO6rS7vfc/QhpK6LRHPcA6NXoxFQ8MHogLvxXW+KSs7fOetwqwh4ILG1kfCpuve+ReNNLTokdmzfG5GOHZz0Gbn5Ae+pwPepcGlqrQ8tQtTrtJx5Xhmbwe5HAUi3b56F3OXVk74f5/JwI6qWofdmeCGmYafFnE1Nxydlb47mbN856zldE/c65oYk62VdzusaGXHTbpXNqAABy54Xm+2zswMEl37+vxfu7df/e/XHZ9XfMuhDauW04rtq1PTZtXNuXrwkAKatqT2ZxzlfoRootW8vQubJb1in0Rwr7sr6hd/1oWZtQDT+TgvrrtmMdQlqK2pO1DdXq1/m1tqF6/bx+1jgUr8qfR2ka0nP/3v3xjhvujK/d/fCRt519yvHxsQt3xJuvuz0mpg55LigwSwrPbWnFOQdQV7nOrzrsHVXp5HvufoS09dpornsA9GKhLuY+bhVhDwQWNz55MD524Y649pZ74+NfvfvI22dmyaOT5ge0I/XrUefS0J7UW4aq1Wk/8bgyNIffi4Rma9WyfR56l0tH9n5YmJ8TQb0UsS/bEyEN7T7nK6I+59zQRJ3uq7lcY0NOuunSOTUAAE2wvOoDyN2GNauWfP/6Fu/vxujE1LyLmYiIm3aPxOXX3xGjE1OFf00ASF0VezKLc75Ct1Jr2VqG7pTZsk6hf6rel/UNxSi6ZW1CdfxMCuqvm451COkpYk/WNlSvH+fX2oY09Ov6WePQH1X9PErTkJ4jXR71IvMREbfc/XBce8u9cek5WyPCc0GB2ap+bksrzjmAusp5fqW+d1Sl0++5+xHS1kujOe8B0K3Fupj7uFWEPRBY3Ma1A3HtLffGLYs8Bj60dqCiI4N6Sfl61Lk0tC/llqFqddpPPK4MzeL3IqG52mnZPg+9y6Ejez8szs+JoF563ZftiZCGTp7zFVGPc25oom721RyusSE3nXbpnBoAgKbwQvN9NrxuIHZuG17wfTu3DcfwuuJ/SDcyPjXvYmbGTbtHYmTcBQ0AzVPFnszinK/QrdRatpahO2W2rFPon6r3ZX1DMYpuWZtQHT+TgvrrpmMdQnqK2JO1DdXrx/m1tiEN/bp+1jj0R1U/j9I0pGepLm+5++HYsXmj54IC81T93JZWnHMAdZXz/Ep976hKp99z9yOkrZdGc94DoFvtPG4VYQ8EljZ16PC8Fw+ZccvdD8fUocMlHxHUU8rXo86loX0ptwxVq9N+4nFlaBa/FwnN1U7L9nnoXQ4d2fthcX5OBPXS675sT4Q0tPucr4j6nHNDE3Wzr+ZwjQ256bRL59QAADSFF5rvs6HBgbhq1/Z5FyQ7tw3H1bu2x9Bg8Q8SjB04uOT797V4PwDkqIo9mcU5X6FbqbVsLUN3ymxZp9A/Ve/L+oZiFN2yNqE6fiYF9ddNxzqE9BSxJ2sbqteP82ttQxr6df2sceiPqn4epWlIT6suI8JzQYF5qn5uSyvOOYC6ynl+pb53VKXT77n7EdLWS6M57wHQrVZdTD522B4ItDQ++diS73+0xfuBx6V8PepcGtqXcstQtTrtJx5Xhmbxe5HQXO20bJ+H3uXQkb0fFufnRFAvve7L9kRIQzvP+Yqo1zk3NFE3+2oO19iQm067dE4NAEBTrKz6AJpg08a1cc2FO2JkfCr2HTgY69esiuF1A317gGDDmlVLvn99i/cDQK7K3pNZnPMVepFSy9YydK+slnUK/VXlvqxvKE6RLWsTquVnUlB/nXasQ0hTr3uytiENRZ9faxvS0Y/rZ41D/1Tx8yhNQ3padbnluME4cePako4GqJOUnnM6l3MOoK5yn18p7x1V6eZ77n6EtHXbaO57AHSjVRdPHz4mrrlwhz0QWJI9FoqT6vWozqEzqbYMVavTfuJxZWgevxcJzdRuy/Z56F3dO7L3w+L0AfXTy76seUhDqxZPOn4wvvLWF9XqnBuaqNt9te7X2JCjTrp0Tg0AQFN4ofmSDA2W96DA8LqB2LltOG7aPTLvfTu3DcfwOg9OANBcZe7JLM75Cr1KpWVrGXpTRss6hf6ral/WNxSrqJa1CdXzMymov0461iGkq5c9WduQjiLPr7UNaSn6+lnj0F9l/zxK05CeVl2esH51BUcF1EUqzzmdyzkHUFdNmF+p7h1V6fZ77n6EtHXTaBP2AOhUqy5OHFpjPwRassdCsVK8HtU5dC7FlqFqddpPPK4MzeT3IqF5OmnZPg+9q3NH9n5YnD6gnrrdlzUPaWjV4lM2rq3tuTc0SS/7ap2vsSFX7XbpnBoAgKZYXvUBULyhwYG4atf22LlteNbbd24bjqt3bfdgBQBQOecr5MJahvTpFPKlb0iTNqFZNA/V0yHkSduQJ21D3jQOedE0pEeXQI7MNqCuzK/m8T0HZpgHMJ8ugCKYJZA/nQNQhDrtJ3U6VqAa5gTkQctAu8wLWJw+oFk0D2nQIuRBy9BM2gcAoClWVn0ARTrppJPivvvum/f2N7zhDfEHf/AHC/6bv/qrv4p3vvOd8cMf/jC2bdsWV199dfzqr/5qvw+17zZtXBvXXLgjRsanYt+Bg7F+zaoYXjfgYgYASIbzFXJhLUP6dAr50jekSZvQLJqH6ukQ8qRtyJO2IW8ah7xoGtKjSyBHZhtQV+ZX8/ieAzPMA5hPF0ARzBLIn84BKEKd9pM6HStQDXMC8qBloF3mBSxOH9Asmoc0aBHyoGVoJu0DANAEWb3Q/D/+4z/GoUOHjvz/t7/97Tj33HPjggsuWPDjv/71r8eFF14YV155Zbz85S+Pz372s/HKV74ybrvttjj99NPLOuy+GRp0AQMApM35CrmwliF9OoV86RvSpE1oFs1D9XQIedI25EnbkDeNQ140DenRJZAjsw2oK/OreXzPgRnmAcynC6AIZgnkT+cAFKFO+0mdjhWohjkBedAy0C7zAhanD2gWzUMatAh50DI0k/YBAMhdVi80/6QnPWnW/1911VVx8sknx4te9KIFP/73f//341d+5VfibW97W0REvO9974svfelL8fGPfzz++I//uO/HC0D17rrrrlK/3uTkZKxevTrrrzk8PBxbtmwp7esBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANRRVi80f7Spqan4zGc+E29961tj2bJlC37MN77xjXjrW986620vfelL44YbbijhCAGo0v7RhyNiWbzmNa8p9wsvWxYxPZ3111y7djC++927vNg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMASsn2h+RtuuCH27t0bF1988aIf8+CDD8aTn/zkWW978pOfHA8++OCSn3tycjImJyeP/P/Y2FhPxwqUT8ccnNgXEdPxvP/zsnjS1meW8jUfuPMb8e3/8SdZf82xB34Yf//J98bIyEgpLzSvZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ8qBlqD8dQx60DHnQMuRBy5AHLUMetAx50DLkQcuQBy1DHrQMedAy1J+OIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ6ivbF5r/xCc+ES972cti06ZNhX/uK6+8Mt773vcW/nmB8uiYGetO2BLHbTm1lK819sAPG/E1y6RlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGWoPx1DHrQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAx50DLUn44hD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnqa9n09PR01QdRtPvuuy+e/vSnx+c+97k4//zzF/24LVu2xFvf+tZ4y1vecuRt7373u+OGG26Ib33rW4v+u8nJyZicnDzy/2NjY7F58+YYHR2NDRs2FHIbgP7qtuPbbrstzjzzzDj37deW9qLdP9vzvfjSBy6JW2+9Nc4444xSvmYVt/OHf///xt9/8r1xzlv+IJ7yrB3Zfb2mfM2y16s9GfKgZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ6k/HkActQx60DHnQMuRBy5AHLUMetAx50DLkQcuQBy1DHrQM9adjyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5YhD1qG+lpZ9QH0w7XXXhsnnHBCnHfeeUt+3Ate8IL4yle+MuuF5r/0pS/FC17wgiX/3erVq2P16tVFHCpQER1DHrQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAz1p2PIg5YhD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWob60zHkQcuQBy1DHrQMedAy5EHLkActQx60DHnQMuRBy5AHLUN9La/6AIp2+PDhuPbaa+Oiiy6KlStXznrfa1/72rjiiiuO/P9v//Zvx//8n/8zPvShD8V3v/vdeM973hPf/OY3401velPZhw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0SHYvNP/lL3859uzZE5deeum89+3ZsyceeOCBI/9/1llnxWc/+9n4kz/5k3juc58bf/3Xfx033HBDnH766WUeMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwK6s+gKL98i//ckxPTy/4vhtvvHHe2y644IK44IIL+nxUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE9YXvUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTNyqoPgN6NTkzFyPhUjB04GBvWrorhYwZiaHCg6sMCAKCGnFvO5v6A8ugNWIjZALTDrABSZDZRNWsQmkPvUD+6hfzoGppD71A9HQLdMDuAXJhnzGVNAEsxI6B6OoT60S3kSdsAlMF+Uw73M5RPd5AHLUNeNA31pmHIm8aBopgn0BnNAAAAkBsvNF9z9+/dH5ddf0d8bffIkbft3DYcV+3aHps2rq3wyAAAqBvnlrO5P6A8egMWYjYA7TArgBSZTVTNGoTm0DvUj24hP7qG5tA7VE+HQDfMDiAX5hlzWRPAUswIqJ4OoX50C3nSNgBlsN+Uw/0M5dMd5EHLkBdNQ71pGPKmcaAo5gl0RjMAAADkaHnVB0D3Riem5j1YERFx0+6RuPz6O2J0YqqiIwMAoG6cW87m/oDy6A1YiNkAtMOsAFJkNlE1axCaQ+9QP7qF/OgamkPvUD0dAt0wO4BcmGfMZU0ASzEjoHo6hPrRLeRJ2wCUwX5TDvczlE93kActQ140DfWmYcibxoGimCfQGc0AAACQKy80X2Mj41PzHqyYcdPukRgZ94AFAADtcW45m/sDyqM3YCFmA9AOswJIkdlE1axBaA69Q/3oFvKja2gOvUP1dAh0w+wAcmGeMZc1ASzFjIDq6RDqR7eQJ20DUAb7TTncz1A+3UEetAx50TTUm4YhbxoHimKeQGc0AwAAQK680HyNjR04uOT797V4PwAAzHBuOZv7A8qjN2AhZgPQDrMCSJHZRNWsQWgOvUP96Bbyo2toDr1D9XQIdMPsAHJhnjGXNQEsxYyA6ukQ6ke3kCdtA1AG+0053M9QPt1BHrQMedE01JuGIW8aB4pinkBnNAMAAECuvNB8jW1Ys2rJ969v8X4AAJjh3HI29weUR2/AQswGoB1mBZAis4mqWYPQHHqH+tEt5EfX0Bx6h+rpEOiG2QHkwjxjLmsCWIoZAdXTIdSPbiFP2gagDPabcrifoXy6gzxoGfKiaag3DUPeNA4UxTyBzmgGAACAXHmh+RobXjcQO7cNL/i+nduGY3jdQMlHBABAXTm3nM39AeXRG7AQswFoh1kBpMhsomrWIDSH3qF+dAv50TU0h96hejoEumF2ALkwz5jLmgCWYkZA9XQI9aNbyJO2ASiD/aYc7mcon+4gD1qGvGga6k3DkDeNA0UxT6AzmgEAACBXXmi+xoYGB+KqXdvnPWixc9twXL1rewwNesACAID2OLeczf0B5dEbsBCzAWiHWQGkyGyiatYgNIfeoX50C/nRNTSH3qF6OgS6YXYAuTDPmMuaAJZiRkD1dAj1o1vIk7YBKIP9phzuZyif7iAPWoa8aBrqTcOQN40DRTFPoDOaAQAAIFcrqz4AerNp49q45sIdMTI+FfsOHIz1a1bF8LoBD1YAANAx55azuT+gPHoDFmI2AO0wK4AUmU1UzRqE5tA71I9uIT+6hubQO1RPh0A3zA4gF+YZc1kTwFLMCKieDqF+dAt50jYAZbDflMP9DOXTHeRBy5AXTUO9aRjypnGgKOYJdEYzAAAA5MgLzWdgaNADFAAAFMO55WzuDyiP3oCFmA1AO8wKIEVmE1WzBqE59A71o1vIj66hOfQO1dMh0A2zA8iFecZc1gSwFDMCqqdDqB/dQp60DUAZ7DflcD9D+XQHedAy5EXTUG8ahrxpHCiKeQKd0QwAAAC5WV71AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0jReaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiZF5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKNnKqg8gB9PT0xERMTY2VvGRQHOsX78+li1bVtjna7fj8fHxiIgY/ZcfxOHHDhX29Zey78H7IiLitttuO/L1++373/9+RJR7O8cf+nFERIw9+MNYvXp1dl+vKV9zZr2Oj4+3tS9W1TJQLC1DHrQMedAy5EHLkActQx60DHnQMuRBy5CHIlvWMVTDngx50DLkQcuQBy1DHrQMedAy5EHLkActQx60DHnQMuTB8zeh/uzJkActQx60DHnQMuRBy5AHLUMetAx50DLkQcuQBy1D/XXb8bLpmWLp2r/8y7/E5s2bqz4MaJTR0dHYsGFDYZ9Px1ANLUMetAx50DLkQcuQh6Jb/sEPfhAnn3xyYZ8PaI99GfKgZciDliEPWoY8FNmyjqEa9mTIg5YhD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPnr8J9WdPhjxoGfKgZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ6q/bjr3QfAEOHz4c999/f6xfvz6WLVtW9eEkb2xsLDZv3hw/+tGPCt18mqjJ92XRvfWr4yZ/j+ZyXzzO/TBbv1qenp6OLVu2ZHU/57p2crxdTbxNddmXi5bj93pGrrct19sVUcxt60fL3/ve9+LZz352lvd5u3Jed+1yH5R7H5S9L/v+ug8i3AcRxd8HRbe8d+/eOPbYY2PPnj0xNDRU2OetUm7rLrfbE5Hfberm9jT1enlGbmugE0297bnebo9jtye377/bkzb7cvty+973g/uotZTuo6a2fLSUvh+9cDvSUvbtKLK5IjvO5ftZJvdZd3K431LZk3O4L/vB/bI4981sqbRctdzWhduTtn7cnlRazu17FeE21UUutymVlsuQy/csBe7LYqX6XOyFWva9L477shi53Y8p7Mt1vk/rfOwRjr9qRR5/Ci0Xpe7f18W4XfVTxW3LqeUy5Lz+FtO021zX2+v3HTtT9+OPqP9tcPwL83sVs9V1nTjucqV43Kk+f7MsKX5PiuT21Vu7ty/Ha+Vcvrc53I4cbkNEPW5HnVquw/05l2Muh2OuV8tFqOP3PDXuw97l/FzshVgzi3PfLKzJ90uKLdfx+1HHY46o53E75oWl2HKR6vh9X4jbkY5Ub0OZLad6H+TC/ds/dbhvq9iX63C/9Ivb3szbHtH/21/VOXYu31e3Iy253I6Izm+LlnvjdqSlqbej245XdnNwzLZ8+fJ46lOfWvVh1M6GDRtqHWlK3Je963fHvkdPcF88zv3QHzMtj42NRUSe93OOtykiz9vlNnWvbufXOX6vZ+R623K9XRFp3bbly5fHU57ylIhI67iq4j5wH0TU8z5od1+u420rmvvAfRCR7n2wfPnyiIgYGhpK8vh6kep93q3cbk9EfrepyttTt+vlGbmtgU409bY39Xa3K/fHsd2etLk9xanbvpzb974f3Eet5Xgf1a3lo+Xy/XA70lLH29GPjut4P1TNfdYd99sTem3Zfbkw98vi3Df9Uefz64j81oXbk7aUb499eT63qR5yvE29qMO+7HtWHPdlsVK6P1u1nNKx1p37shjux4X1si/X+T6t87FHOP6qpXj8KZxjp3i/FMHtqp8637YUWi5Dnb9H3WrabW7a7Z2rKb/vWPfjj6j/bXD8/ZXL71U47nI57rTU+fw61+/JDLev3sq+fSm1nMv3NofbkcNtiMjndrSjjJbreH865nI45uKktC8vJdX7r07ch71L+T70+47lct8szP3SuyJbruP3o47HHFHP43bM/ZXqOXad7sOluB3pyOE2LKWdlnO/D6rm/u2fJt23nezLTbpf5nLbm3nbI+pz+zs9x67L7WrF7UhLLrcjorrbouV6czvS0u/bsbxvnxkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACABXmheQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICSeaF5Srd69ep497vfHatXr676UGrPfZk+36MnuC8e534oR473c463KSLP2+U2NUfO90uuty3X2xWR7m1L9bjK5D5wH0TkfR/kfNva5T5wH0Skfx+kfnzdyO025XZ7IvK7TbndnjI0+T5r6m1v6u3uVm73l9uTNrenudxXrbmPWnMfpSWX74fbkZZcbkev3A+dc591x/1WHPflwtwvi3PfsJDc1oXbk7bcbs/RcrxtblM95Hibcud7Vhz3ZbHqdH/W6VhT574shvuxeHW+T+t87BGOv2p1P/5+yfV+cbvqJ+fblosmfo+adpubdnu7Vff7qe7HH1H/2+D4y1W3453huMvluClK7t8Tt6/ecr99S8nltudwO3K4DRH53I5U1PH+dMzlcMzN4/7rnfuwd027D5t2ezvhvlmY+yUtdfx+1PGYI+p53I65mXK5D92OdORwG3rlPugv92//uG8X1uT7xW1v5m2PyPf253K73I605HI7IupzW+pynK24HWlxOzqzbHp6erqvXwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAWZZXfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATeOF5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABK5oXmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAErmheYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASuaF5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABK5oXmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAErmheYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASuaF5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABK5oXmC3TTTTfFK17xiti0aVMsW7Ysbrjhho4/x/T0dHzwgx+MZzzjGbF69ep4ylOeEh/4wAeKP1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgMiurPoCcPProo/Hc5z43Lr300vi1X/u1rj7Hb//2b8cXv/jF+OAHPxjPec5z4mc/+1n87Gc/K/hIAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCotm56enq76IHK0bNmy+PznPx+vfOUrj7xtcnIy3v72t8d1110Xe/fujdNPPz2uvvrq+MVf/MWIiLjrrrti+/bt8e1vfztOPfXUag4cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6LvlVR9Ak7zpTW+Kb3zjG/EXf/EXcccdd8QFF1wQv/IrvxK7d++OiIi/+Zu/iac//enxhS98IbZu3RonnXRSvO51r4uf/exnFR85AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUCQvNF+SPXv2xLXXXht/9Vd/FS984Qvj5JNPjv/wH/5DnHPOOXHttddGRMQPfvCDuO++++Kv/uqv4tOf/nR86lOfiltvvTX+7b/9txUfPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCklVUfQFPceeedcejQoXjGM54x6+2Tk5Nx/PHHR0TE4cOHY3JyMj796U8f+bhPfOITceaZZ8b3vve9OPXUU0s/bgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB4Xmi+JOPj47FixYq49dZbY8WKFbPet27duoiIOPHEE2PlypWzXoz+Wc96VkRE7NmzxwvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCa80HxJduzYEYcOHYqHHnooXvjCFy74MWeffXY89thjcc8998TJJ58cERHf//73IyLiaU97WmnHCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPTXsunp6emqDyIX4+Pjcffdd0fE4y8s/+EPfzhe/OIXx3HHHRdbtmyJ17zmNXHLLbfEhz70odixY0f89Kc/ja985Suxffv2OO+88+Lw4cPx8z//87Fu3br46Ec/GocPH443vvGNsWHDhvjiF79Y8a0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiuKF5gt04403xotf/OJ5b7/oooviU5/6VBw8eDDe//73x6c//en48Y9/HMPDw/Gv//W/jve+973xnOc8JyIi7r///vit3/qt+OIXvxjHHHNMvOxlL4sPfehDcdxxx5V9cwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA+8ULzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVbXvUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSNF5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJkXmi/A9PR0jI2NxfT0dNWHAnRJx5AHLUMetAx50DLkQcuQBy1DHrQMedAy5EHLkActQ/3pGPKgZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ8qBlyIOWof50DHnQMuRBy5AHLUMetAx50DLkQcuQBy1DHrQMedAy5EHLUB9eaL4A+/bti6Ghodi3b1/VhwJ0SceQBy1DHrQMedAy5EHLkActQx60DHnQMuRBy5AHLUP96RjyoGXIg5YhD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDlqH+dAx50DLkQcuQBy1DHrQMedAy5EHLkActQx60DHnQMuRBy1AfXmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGRZvdD8oUOH4p3vfGds3bo11q5dGyeffHK8733vi+np6UX/zY033hjLli2b99+DDz5Y4pEDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATbKy6gMo0tVXXx1/9Ed/FH/2Z38Wp512Wnzzm9+MSy65JIaGhuLNb37zkv/2e9/7XmzYsOHI/59wwgn9PlwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgobJ6ofmvf/3rcf7558d5550XEREnnXRSXHfddfEP//APLf/tCSecEBs3buzzEQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABELK/6AIp01llnxVe+8pX4/ve/HxER3/rWt+Lmm2+Ol73sZS3/7fOe97w48cQT49xzz41bbrml34cKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANNjKqg+gSJdffnmMjY3FM5/5zFixYkUcOnQoPvCBD8SrX/3qRf/NiSeeGH/8x38cz3/+82NycjL+9E//NH7xF38x/v7v/z7OOOOMBf/N5ORkTE5OHvn/sbGxwm9LJ0YnpmJkfCrGDhyMDWtXxfAxAzE0OFDpMUHquulYa5Ce1PZkoDspt2z/h/b12rLeIA2p7ctmA3QntZb7zawgV01rOTdmEzOqatkahGKlvC/rHdqXSsu6he6l0vFcuobOpNpyO/QOT/C4F+ShzvtyJ8wOcteUljHPcuf3HSEPKe3LZgR0r6iWdQjVco4NeShiX9Y2VC+l62Xol9z3m1Q6zv1+hn5zrQx50DLkoZdzbE1DOuzLkIciH/vSOFQnlcexi2Ke0FTdtqwZSEtu+zI0lZYhD1qG+srqheb/8i//Mv78z/88PvvZz8Zpp50W//RP/xRvectbYtOmTXHRRRct+G9OPfXUOPXUU4/8/1lnnRX33HNPfOQjH4n/9t/+24L/5sorr4z3vve9fbkNnbp/7/647Po74mu7R468bee24bhq1/bYtHFthUcGaeu0Y61BmlLak4Hupdqy/R8600vLeoN0pLQvmw3QvZRa7jezgpw1qeXcmE0crYqWrUEoXqr7st6hMym0rFvoTQodz6Vr6FyKLbdD7zCbx70gD3XdlzthdtAETWgZ86wJ/L4j5CGVfdmMgN4U0bIOoXrOsSEPve7L2oY0pHK9DP3ShP0mhY6bcD9Dv7lWhjxoGfLQ7Tm2piEt9mXIQ1GPfWkcqpXC49hFMU9osm5a1gykJ6d9GZpMy5AHLUN9LZuenp6u+iCKsnnz5rj88svjjW9845G3vf/974/PfOYz8d3vfrftz/O2t70tbr755vjGN76x4PsnJydjcnLyyP+PjY3F5s2bY3R0NDZs2ND9DejQ6MRUvOm622c9WDFj57bhuObCHTE0OFDa8UCddNKx1iBdqezJQG9SbNn+D53rtmW9QVpS2ZfNBuhNKi33m1lB7prScm7MJuYqu2VrEPojxX1Z79C5qlvWLfSu6o7n0jV0J7WW26F3mM/jXpCHOu7LnTA7aIrcW8Y8awq/7wh5SGFfNiOgd722rENIg3NsyEMv+7K2IR0pXC9DvzRlv6m646bcz9BvrpUhD1qGPHRzjq1pSI99GfJQxGNfGofqVf04dlHME5qu05Y1A2nKZV+GptMy5EHLUF8rqz6AIk1MTMTy5ctnvW3FihVx+PDhjj7PP/3TP8WJJ5646PtXr14dq1ev7uoYizQyPrXggxURETftHomR8SkPWMAiOulYa5CuVPZkoDcptmz/h85127LeIC2p7MtmA/QmlZb7zawgd01pOTdmE3OV3bI1CP2R4r6sd+hc1S3rFnpXdcdz6Rq6k1rL7dA7zOdxL8hDHfflTpgdNEXuLWOeNYXfd4Q8pLAvmxHQu15b1iGkwTk25KGXfVnbkI4UrpehX5qy31TdcVPuZ+g318qQBy1DHro5x9Y0pMe+DHko4rEvjUP1qn4cuyjmCU3XacuagTTlsi9D02kZ8qBlqK+sXmj+Fa94RXzgAx+ILVu2xGmnnRa33357fPjDH45LL730yMdcccUV8eMf/zg+/elPR0TERz/60di6dWucdtppceDAgfjTP/3T+OpXvxpf/OIXq7oZbRs7cHDJ9+9r8X7SNjoxFSPjUzF24GBsWLsqho8Z8ABURbSWD10B0C77f36cB6RLb3RCy81hNtAv5khezApmaJu5qlwTZhNVswbrz75Gu/RePb3SKd3Wj85pRdf9pUFSovdqmQdE6PBomoD25TY79A/dyaGd3OYZvbMm8pTDvCINZkT/6ZVWdEgumjTvdEtqmtRfP2mbdmkO0lK3Ju035XA/V6NuPVIs3eVBx2iZCLMgJ5pmMTqvBw3TT+ZA9TROkTTdbKP7p5Z8v3kCs9mDKYr9F5pJ+wBAyrJ6oflrrrkm3vnOd8Yb3vCGeOihh2LTpk3xm7/5m/Gud73ryMc88MADsWfPniP/PzU1Ff/+3//7+PGPfxyDg4Oxffv2+PKXvxwvfvGLq7gJHdmwZtWS71/f4v2k6/69++Oy6++Ir+0eOfK2nduG46pd22PTxrUVHlkzaS0PugKgE/b/vDgPSJveaJeWm8VsoB/MkfyYFURom/mqXhNmE1WzBuut6hlGvei9WnqlG7qtF53TDl33jwZJjd6rYx4wQ4eP0wR0JqfZoX/oTi7t5DTPKIY1kZ9c5hVpMCP6S6+0Q4fkoGnzTrekpGn99ZO2aYfmIC11bNJ+Uw73c/nq2CPF0l396ZgILWMW5EbTLETn9aFh+sUcSIPGKYqmm+3+vfvjwMHDS36MeQKz2YMpgv0Xmkn7AEDqlld9AEVav359fPSjH4377rsv9u/fH/fcc0+8//3vj4GBgSMf86lPfSpuvPHGI///u7/7u3H33XfH/v374+GHH47/9b/+Vy1eZD4iYnjdQOzcNrzg+3ZuG47hdQMLvo+0jU5MzbuIiIi4afdIXH79HTE6MVXRkTWX1upPVwB0yv6fD+cB6dMb7dBy85gNFM0cyZNZgbaZK4U1YTZRNWuwvlKYYdSL3qujV7ql2/rQOe3SdX9okBTpvRrmAUfToSagG7nMDv1Dd3JqJ5d5RnGsibzkNK9IgxnRP3qlXTqk7po473RLKprYXz9pm1Y0B2mpa5P2m3K4n8tV1x4plu7qTcfM0HKzmQX50TRz6bxeNEw/mAPp0DhF0HSzzXz/v/6Dh+PsU45f8GPME5jPHkyv7L/QTNoHAOogqxeab5qhwYG4atf2eQ9a7Nw2HFfv2h5Dgx6wqKOR8al5FxEzbto9EiPjLiTKprX60xUAnbL/58N5QPr0Rju03DxmA0UzR/JkVqBt5kphTZhNVM0arK8UZhj1ovfq6JVu6bY+dE67dN0fGiRFeq+GecDRdKgJ6EYus0P/0J2c2sllnlEcayIvOc0r0mBG9I9eaZcOqbsmzjvdkoom9tdP2qYVzUFa6tqk/aYc7udy1bVHiqW7etMxM7TcbGZBfjTNXDqvFw3TD+ZAOjROETTdbDPf/0/efG9ccvbWeS82/0LzBBZkD6ZX9l9oJu0DAHWwsuoDoDebNq6Nay7cESPjU7HvwMFYv2ZVDK8b8GBFjY0dOLjk+/e1eD/9obV60xUA3bD/58F5QD3ojVa03ExmA0UyR/JlVjSbtpkrlTVhNlE1a7CeUplh1Iveq6FXeqHbetA5ndB18TRIqvRePvOAuZreoSagOznMDv1Dd3JrJ4d5RrGsiXzkNq9IgxnRH3qlEzqkzpo673RLCpraXz9pm6VoDtJS5ybtN+VwP5enzj1SLN3Vl445mpabyyzIk6Y5ms7rR8MUzRxIi8bplaabbeb7PzF1KN583e1x6Tlb49Kzt8bkY4dj9crlseW4wThx49qKjxLSZA+mF/ZfaCbtAwB14IXmMzA06AGKnGxYs2rJ969v8X76R2v1pSsAumX/rz/nAfWhN5ai5eYyGyiKOZI3s6K5tM1cKa0Js4mqWYP1k9IMo170Xj690ivdpk/ndErXxdIgKdN7ucwDFtLkDjUB3av77NA/dCfHduo+zyieNZGHHOcVaTAjiqdXOqVD6qrJ8063VK3J/fWTtlmM5iAtdW/SflMO93M56t4jxdJdPemYubTcTGZBvjTNDJ3Xk4YpkjmQHo3TC00329Hf/4mpQ/Hxr9496/1feeuLyj4kqBV7MN2y/0IzaR8AqIPlVR8AMNvwuoHYuW14wfft3DYcw+vye3BqdGIq7nloPG7f80jc89PxGJ2YqvqQyEwTu6qClgFIUVPPA+zL5EbLWoZeVTlHtAyL67WPpp4jsLhWa2LdmpVmMpAs+1r7nGNTNb0WQ8ukTOft0zL9oMFy6ZiUmQft03IzaCJ/WmYxZfdvLZKLuu6dGoTmqeu8qgMzlaLptRpahvL1Mu80C71J/XxD4+Qm9eb6RcukynkopKOpe2TZzC76Scfl0TIpMwvap2XqSuezaZkmKmMOaAvKk9PebnZ0ro7ff99noAhVz5I6zl+gd3Vsv+p5CQCUb9n09PR01QdRd2NjYzE0NBSjo6OxYcOGqg+HDNy/d39cfv0dcdPukSNv27ltOK7etT1O3Li2wiMr3v1798dl198RX5tzW6/atT02lXhbdZy/JnVVBS0DRdIyRWvaeYB9mVxpWcvQqyrmiJZhcUX10aRzBC23Z7E18f5Xnh6/94V/ji/f9dCst5c9k0HLLKVJ+1q3nGOTCr32RsvUgc5bS6FlHedLg+VIoeMILbM086A1LTeLJvKlZVopq/9U1iK90fIT6rZ3apCjablZ6jav6iCVmarl/Oi1XFqG6nQz71JpdjFapi5SPd9IpXEtU7RUm+sXLZO6HM9Dc6Xj/DVtjyxbKrNLy3nTcf9pmTowC1rTMnWn88dpmSbr5xxIpa2yaZkq5bC3pzI76thynb7/qXyfyV8dW6Z9qcySOs3futIyKapT+6nMSy1DHrQM9eGF5gtg6NEPoxNTMTI+FfsOHIz1a1bF8LqBGBocqPqwCjU6MRVvuu72WRchM3ZuG45rLtxR2m3WcTM0oasqaBkompbph6acB9iXyZ2WtQy9KnOOaBkWV3QfTTlH0HL75q6JdWtWxts/f+esF5mfUfZMBi3TSlP2tW44xyY1eu2OlqkTnS8ulZZ1nDcN9lcqHUdomdbMg8VpuZk0kR8t065+95/SWqQ3Wp6tLnunBplLy81Tl3lVBynNVC3nSa/l0DJUr5N5l1Kzi9EydZLa+UZKjWuZfkituX7RMnWR23lornTcDE3ZI8uW0uzScv503D9apk7MgsVpmVw0vXMtQ3/mQEptlU3LVK3Oe3tKs6OuLdfh+5/S95n81bVlWkttltRh/taZlklVHdpPaV5qGfKgZaiPlVUfALCwocH0LhyKNjI+teBFSETETbtHYmR8Kvv7gHI1oasqaBmAOmjKeYB9mdxpWcvQqzLniJZhcUX30ZRzBNo3d03c89D4gi8yH2EmA+mxry3OOTap0Wt3tEyd6HxxWqYMGuwvHVMn5sHitNxMmsiPlmlXv/u3FslVXfZODQJ1mVd1YKbSb3oth5ahep3MO81CsVI739A4uUutuX7RMnXhPBTS0ZQ9smxmF2XScf9omToxCxanZXLR9M61DP2ZA9qC6tR5bzc7eleH77/vM1CE1GZJHeYvULw6tJ/avAQAyrO86gMAmmvswMEl37+vxfuBNGgZANJhX4Y8aBnyoGVYnD4omzUHkAfzHPKgZciDlqH+dAx50DLkQcukwlqEamkQoDhmKuRBy1AvmoW8aRzyoGVyZF0DdWR2QR60DHnQMuRBy9Af2gK6YXY0g+8zUASzBKA95iUANJcXmgcqs2HNqiXfv77F+4E0aBkA0mFfhjxoGfKgZVicPiibNQeQB/Mc8qBlyIOWof50DHnQMuRBy6TCWoRqaRCgOGYq5EHLUC+ahbxpHPKgZXJkXQN1ZHZBHrQMedAy5EHL0B/aArphdjSD7zNQBLMEoD3mJQA0lxeaByozvG4gdm4bXvB9O7cNx/C6gZKPCOiGlgEgHfZlyIOWIQ9ahsXpg7JZcwB5MM8hD1qGPGgZ6k/HkActQx60TCqsRaiWBgGKY6ZCHrQM9aJZyJvGIQ9aJkfWNVBHZhfkQcuQBy1DHrQM/aEtoBtmRzP4PgNFMEsA2mNeAkBzeaF5oDJDgwNx1a7t8y5Gdm4bjqt3bY+hQRciUAdaBoB02JchD1qGPGgZFqcPymbNAeTBPIc8aBnyoGWoPx1DHrQMedAyqbAWoVoaBCiOmQp50DLUi2YhbxqHPGiZHFnXQB2ZXZAHLUMetAx50DL0h7aAbpgdzeD7DBTBLAFoj3kJAM21bHp6errqg6i7sbGxGBoaitHR0diwYUPVhwO1MzoxFSPjU7HvwMFYv2ZVDK8bKP0iRMfQOy0DRdEy9M6+DHnQMuRBy7C4FPqoEy33zpojBVqG3qUwz7UMvdMy5KHqlnUMvau64wgtQxG0DHnQMqlIYS3SGy3XmwaZoWXoXQozVcvQOy1DvaTQ7GK0DL1LoXEtQ++0TI5SWNdNo2PoXQqzS8vQOy1DHrQMedAy9EcKbZVNy9C7FGaHlvsvhe8z+dNy/sySZtAy9C6FeallyIOWoT5WVn0AAEODHqiBHGgZANJhX4Y8aBnyoGVYnD4omzUHkAfzHPKgZciDlqH+dAx50DLkQcukwlqEamkQoDhmKuRBy1AvmoW8aRzyoGVyZF0DdWR2QR60DHnQMuRBy9Af2gK6YXY0g+8zUASzBKA95iUANM/yqg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGm80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAybzQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDJvNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMm80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAybzQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDJvNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMm80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAybzQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDJvNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMlWVn0AUIbRiakYGZ+KsQMHY8PaVTF8zEAMDQ5UfVhQKzoCgLzY26FaGgRyZLYBZTBrgHaYFRzNeoBm0j6kRZPQOx1B/egW8qdzoOnMQSif7qBYmgIWYjZQF9YqQDXMX+rM+gXIh5kOxdNVXnw/gRnmATCXuQDV0R80g9aBFJlN8AQ9AEsxIwAA0uKF5sne/Xv3x2XX3xFf2z1y5G07tw3HVbu2x6aNays8MqgPHQFAXuztUC0NAjky24AymDVAO8wKjmY9QDNpH9KiSeidjqB+dAv50znQdOYglE93UCxNAQsxG6gLaxWgGuYvdWb9AuTDTIfi6Sovvp/ADPMAmMtcgOroD5pB60CKzCZ4gh6ApZgRAADpWV71AUA/jU5MzbsIiYi4afdIXH79HTE6MVXRkUF96AgA8mJvh2ppEMiR2QaUwawB2mFWcDTrAZpJ+5AWTULvdAT1o1vIn86BpjMHoXy6g2JpCliI2UBdWKsA1TB/qTPrFyAfZjoUT1d58f0EZpgHwFzmAlRHf9AMWgdSZDbBE/QALMWMAABIkxeaJ2sj41PzLkJm3LR7JEbGXYhAKzoCgLzY26FaGgRyZLYBZTBrgHaYFRzNeoBm0j6kRZPQOx1B/egW8qdzoOnMQSif7qBYmgIWYjZQF9YqQDXMX+rM+gXIh5kOxdNVXnw/gRnmATCXuQDV0R80g9aBFJlN8AQ9AEsxIwAA0uSF5sna2IGDS75/X4v3AzoCgNzY26FaGgRyZLYBZTBrgHaYFRzNeoBm0j6kRZPQOx1B/egW8qdzoOnMQSif7qBYmgIWYjZQF9YqQDXMX+rM+gXIh5kOxdNVXnw/gRnmATCXuQDV0R80g9aBFJlN8AQ9AEsxIwAA0uSF5snahjWrlnz/+hbvB3QEALmxt0O1NAjkyGwDymDWAO0wKzia9fD/s/fv0XqW9YH//0lIdiAm2VC3gGgQRqJ4iqLOt1VrrLMG0VG/ajPMKm2XCOoaxzqOdjzAb762VmuB1anYcVodFopOW3VaUabVHkZ0LDg6rUVa1FaGeiBUEGe3ZIeYw46Q3x80Ick+Pvu5D9f1uV+vtfgj+8kO930/1/tz3c82eMMwaR/KokkYn46gPrqF/HQODJ05CN3THTRLU8B8zAZqYa0C9MP8pWbWL0AeZjo0T1e5eD+BQ8wD4FjmAvRHfzAMWgdKZDbBg/QALMaMAAAokwfNk9rUhonYtmVq3te2bZmKqQ0THR8R1EdHAJCLvR36pUEgI7MN6IJZAyyHWcGRrAcYJu1DWTQJ49MR1Ee3kJ/OgaEzB6F7uoNmaQqYj9lALaxVgH6Yv9TM+gXIw0yH5ukqF+8ncIh5ABzLXID+6A+GQetAicwmeJAegMWYEQAAZfKgedKZ2TMb3/z+7rh5xz3x9z+YjV952ZPmfBjZtmUqrti+NSbX+yACS5lcPxGXb9+6aEdHdvfN/7s7ZvbM9nS0AMBSFtrbn71lKt7xkif2dFRQv+XeEy/n/hqgNm3NNj9vgP6U2J/7KIauxC5LZFbUr8m1bj3AME2un4hfedmT4tnah04stXfbj6lB6Z+3dAT1WezvZfzKy56kWxhTCXu3/RmoSRtz0xyE+bV5n6I7aFYNTZXw2QfaVto6r2E2QEQ/a7W0XgH64L+dojSjrB33urAyZjQlMtPJpoRZq6u6HbuGIsL7CYXravab7zAMfkYGdfDfWcEwjLPXlvAzIqBZpXTtcwA8SA/DVspcplxNzgjrDQCgOasOHjx4sO+DqN2uXbticnIyZmZmYtOmTX0fzqDduXNvvPXaW+LG26YPf+3cx50cb/9/nxD7Dtwf9+47EBuPXxtTGyb8oIKj6HhpM3tmY3r37JyO5utu25apuHz71jjtxBN6PGKGSMuQg5a7MbNnNr63a1/83T17IyLi5jt2xge/8O14+qNOso/TiCG1vJJ74oXur6E0Q2qZ8TU52/y8oVlaZhSl9zfk+ygtD1fpXZao5Fmh5YW1tdZLXg/US8vlunPn3viF//61OPvhm+KczSfG/h/eHyeesDYe9dD18YiT1vd9eBRGy+MZZe+2H9OWcTuu6fOWjsgs65783Xv2xO1/vyd27j0Q69asjpvv2Bm33rUrfuklTyxuxkATumi5tL3b/kxGWffloWp7bpqD5dJy97q6T9HdsGi5faU2VdpnH8aj5fmVvM5LnQ30q8SWu1qrJfcKoyqxZerjv53qn5ZXvnbc61KS0ls2oyldCTO99I4pX2mztoSu+lBzywutoSu2b431E8cN8v1kuGppuY/ZP9T5Tp1qabkUfkZGqbS8MP+dFTXR8sqNuteW9jMictFyP0rs2ueAumm5WXoYnlLmspbrMO6MKGW90R4tQw5ahnp40HwDDL0yzOyZjdd99OajPiwcsm3LVLz3gnP8gIIF6XhldEdptAw5aLkb9nHaNpSWtUR2Q2mZspitzdMyy6W/sml5mHSZj5bnZ61TGy2XySxhVFpeOb1RinE6to6hHBn3ZDOGIWq7ZV1BNzLuy0Nlbg6blrulN9qi5WEyU/LR8lzWOTUaast6JZuhtkyZzNiVG3rL1g5ZlNyyzmB5Su6Y8pm15ai1ZWsIjlZDy7qFpdXQcinMFEqm5fnpltpouRtmA23Tcvd0TRu0DCtX0lzWcn4lrTfao2XIQctQj9V9HwA0ZXr37LwfFiIibrhtOqZ3z3Z8RJCf7gCgXvZxaIaWAJpntkJ/9Afl0SVDYa0DTTBLoDt6IwPrGGiTGQPN0xXAaMxN6I7egCaZKQyBdQ710CtAe8xYVsragfbpDKB9Zi3jsoagProFmmSmQH10C8zHbIB8dA1QFnOZLllvAADN86B50ti178Cir9+7xOvA6HQHAPWyj0MztATQPLMV+qM/KI8uGQprHWiCWQLd0RsZWMdAm8wYaJ6uAEZjbkJ39AY0yUxhCKxzqIdeAdpjxrJS1g60T2cA7TNrGZc1BPXRLdAkMwXqo1tgPmYD5KNrgLKYy3TJegMAaJ4HzZPGpuPXLvr6xiVeB0anOwCol30cmqElgOaZrdAf/UF5dMlQWOtAE8wS6I7eyMA6BtpkxkDzdAUwGnMTuqM3oElmCkNgnUM99ArQHjOWlbJ2oH06A2ifWcu4rCGoj26BJpkpUB/dAvMxGyAfXQOUxVymS9YbAEDzPGieNKY2TMS2LVPzvrZty1RMbZjo+IggP90BQL3s49AMLQE0z2yF/ugPyqNLhsJaB5pglkB39EYG1jHQJjMGmqcrgNGYm9AdvQFNMlMYAusc6qFXgPaYsayUtQPt0xlA+8xaxmUNQX10CzTJTIH66BaYj9kA+egaoCzmMl2y3gAAmudB86QxuX4iLt++dc6Hhm1bpuKK7Vtjcr0PDNA03QFAvezj0AwtATTPbIX+6A/Ko0uGwloHmmCWQHf0RgbWMdAmMwaapyuA0Zib0B29AU0yUxgC6xzqoVeA9pixrJS1A+3TGUD7zFrGZQ1BfXQLNMlMgfroFpiP2QD56BqgLOYyXbLeAACat+rgwYMH+z6I2u3atSsmJydjZmYmNm3a1PfhDN7MntmY3j0b9+47EBuPXxtTGyZ8WGBJOh6P7iiFliEHLXfLPk5bhtaylshqaC1TFrO1OVpmVPork5aHTZd5aHlx1jq10HLZzBKWS8vj0xt9a6Jj6xj6l3lPNmMYkq5a1hW0K/O+PFTm5jBpuR96o2laHjYzJQ8tL8w6pyZDb1mvZDH0limTGTs6LT/A2qF2NbSsM1hcDR1TPrO2f7W3bA3BA2pqWbewsJpaLoWZQom0vDjdUgstd8tsoC1a7o+uaZKWYXwlzGUtD0cJ6432aBly0DLUY03fBwBNm1zvAwJ0TXcAUC/7ODRDSwDNM1uhP/qD8uiSobDWgSaYJdAdvZGBdQy0yYyB5ukKYDTmJnRHb0CTzBSGwDqHeugVoD1mLCtl7UD7dAbQPrOWcVlDUB/dAk0yU6A+ugXmYzZAProGKIu5TJesNwCA5qzu+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhibVg+bvu+++eNvb3hZnnnlmnHDCCfHoRz863vnOd8bBgwcX/b7Pf/7z8dSnPjXWrVsXZ511VnzoQx/q5oABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQVrT9wE06Yorroj3ve998eEPfzie8IQnxF/8xV/ERRddFJOTk/H6179+3u/59re/HS984QvjNa95TfzO7/xOfPazn41XvepV8fCHPzzOO++8js8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGIJUD5r/4he/GC95yUvihS98YUREnHHGGfHRj340/vzP/3zB73n/+98fZ555Zvzar/1aREQ87nGPiy984Qtx5ZVXetA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0IpUD5p/5jOfGVdddVX8n//zf+Ixj3lM/NVf/VV84QtfiHe/+90Lfs+XvvSl+Of//J8f9bXzzjsv3vCGNyz4Pfv374/9+/cf/vWuXbvGPnagWzqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPVa3fcBNOmSSy6Jn/qpn4qzzz471q5dG+ecc0684Q1viJ/5mZ9Z8Hu+973vxSmnnHLU10455ZTYtWtX7N27d97vueyyy2JycvLwP5s3b270PID26Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1E/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP9dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1GvVwYMHD/Z9EE352Mc+Fm9+85vjV3/1V+MJT3hC/OVf/mW84Q1viHe/+91x4YUXzvs9j3nMY+Kiiy6KSy+99PDX/vAP/zBe+MIXxp49e+KEE06Y8z379++P/fv3H/71rl27YvPmzTEzMxObNm1q/sSAxukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMtRPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1D/XQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMtRrTd8H0KQ3v/nNcckll8RP/dRPRUTEk570pLj99tvjsssuW/BB86eeemrcfffdR33t7rvvjk2bNs37kPmIiHXr1sW6deuaPXigUzqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPVa3fcBNGnPnj2xevXRp3TcccfF/fffv+D3POMZz4jPfvazR33tM5/5TDzjGc9o5RgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUj1o/sUvfnG8613vik9/+tPxne98Jz75yU/Gu9/97njZy152+Pdceuml8fKXv/zwr1/zmtfEt771rXjLW94S3/jGN+I3f/M343d/93fjjW98Yx+nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzAmr4PoEnvfe97421ve1u89rWvje9///tx2mmnxb/+1/86fuEXfuHw77nrrrtix44dh3995plnxqc//el44xvfGL/+678ej3zkI+Pqq6+O8847r49TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYg1YPmN27cGO95z3viPe95z4K/50Mf+tCcr/3ET/xE3Hzzze0dGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMARVvd9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABD40HzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGMeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMQ+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjYmr4PAJows2c2pnfPxq59B2LTCWtj6iETMbl+ou/DgpT0BgDD5B4A2qEtYKjMP8hP58B8zAasAWAh5gPUQ69kZ40DTTBLoD66BbIx16AbWoNhMwNgNJqB+WkDID+znsVYH0BtzC0YJu3TF2sPGIWZAZgDMBx6h/x0DhzJTCAbaxrIwCwDAGifB81TvTt37o23XntL3Hjb9OGvbdsyFZdv3xqnnXhCj0cG+egNAIbJPQC0Q1vAUJl/kJ/OgfmYDVgDwELMB6iHXsnOGgeaYJZAfXQLZGOuQTe0BsNmBsBoNAPz0wZAfmY9i7E+gNqYWzBM2qcv1h4wCjMDMAdgOPQO+ekcOJKZQDbWNJCBWQYA0I3VfR8AjGNmz+ycDw4RETfcNh2XXHtLzOyZ7enIHjCzZza++f3dcfOOe+Kb/3d378cD4+iiN80AQHncA0A7Svw8q0WgCyXOv0PHZQZCM8bpXIvUwlodXan3AHTHGlicucKQ1TIfdAr19LoSGieinjVuvULZapklXTCvqMXMntl468d1C3Svrb3S/QgsrMnutAbDc+QMuf3vf+BzBNXp82c19k2YnzYYGv+7AUMzs2c2bp/+Qbz1439l1jOvId8L2BNgPH01NOS5BVktZ55on75Ye0dzDw2Lq2VmaBna09Yc0C2Up+9931yA9vXd+aFj0DqlGtr6LGEmQJOs6fEMbQZCqbLOMjMGACjRmr4PAMYxvXt2zgeHQ264bTqmd8/G5PqJjo/qAXfu3Dvng822LVNx+fatcdqJJ/RyTDCOtnvTDACUyT0AtKO0z7NaBLpS2vyLMAOhaSvtXIvUwlpdmRLvAeiWNbAwc4Whq2E+6BQeUEOvK6FxDqlhjVuvUL4aZkkXzCtq8r1d++LGv9Ut0K0290r3IzC/prvTGgzLsTPkAxc+3ecIqtL3z2rsmzA/bTAkfe9F0LVDa/4Vzzwjbvzbv5/395j1DPVewJ4A4+mzoaHOLchqufNE+/TF2nuQe2hYWg0zQ8vQrjbmgG6hTH3u++YCdKPv+3utU7Ihrs++ZwI0zZpeuSHOQChVxllmxgAApVrd9wHAOHbtO7Do6/cu8XpbZvbMzvkAEPHAB5pLrr0lZvbM9nJcMI42e9MMAJTLPQC0o6TPs1oEulTS/IswA6ENK+lci9TCWl250u4B6J41MD9zBcqfDzqFB5Xe60ponCOVvsatV6hD6bOkC+YVNZnZMxt/d8/eRX/PELoFutX2Xul+BOZqozutwXDMN0P2//D+Rb/HDKAkJfysxr4J89MGQ1HCXgRdOnLN++zAYoZ4L2BPgPH03dAQ5xZkNco80T59sfYe0Pf+D7UofWZoGdrX9BzQLZSrr33fXIDu9Hl/r3VKNtT1WfpnfhiVNb0yQ52BUKpss8yMAQBK5kHzVG3T8WsXfX3jEq+3ZXr37JwPAIfccNt0TO/2IYD6tNmbZgCgXO4BoB0lfZ7VItClkuZfhBkIbVhJ51qkFtbqypV2D0D3rIH5mStQ/nzQKTyo9F5XQuMcqfQ1br1CHUqfJV0wr6jJctbjELoFutX2Xul+BOZqozutwXDMN0PWrVn8P803AyhJCT+rsW/C/LTBUJSwF0GXjlzzPjuwmCHeC9gTYDx9NzTEuQVZjTJPtE9frL0H9L3/Qy1KnxlahvY1PQd0C+Xqa983F6A7fd7fa52SDXV9lv6ZH0ZlTa/MUGcglCrbLDNjAICSedA8VZvaMBHbtkzN+9q2LVMxtWGi4yN6wK59BxZ9/d4lXocStdmbZgCgXO4BoB0lfZ7VItClkuZfhBkIbVhJ51qkFtbqypV2D0D3rIH5mStQ/nzQKTyo9F5XQuMcqfQ1br1CHUqfJV0wr6jJrn0H4uY7dsazznrovK8/eyDdAt1qe690PwJztdGd1mA45pshi32OMAMoTQk/q7Fvwvy0wVCUsBdBl45c8z47sJgh3gvYE2A8fTc0xLkFWY0yT7RPX6y9B/S9/0MtSp8ZWob2NT0HdAvl6mvfNxegO33e32udkg11fZb+mR9GZU2vzFBnIJQq2ywzYwCAknnQPFWbXD8Rl2/fOucDxLYtU3HF9q0xub6fDw+bjl+76Osbl3gdStRmb5oBgHK5B4B2lPR5VotAl0qafxFmILRhJZ1rkVpYqytX2j0A3bMG5meuQPnzQafwoNJ7XQmNc6TS17j1CnUofZZ0wbyiJpuOXxsf/MK346JnnTnnQS/POuuh8c6XPHEQ3QLdanuvdD8Cc7XRndZgOOabIQt9jjADKFEJP6uxb8L8tMFQlLAXQZeOXPM+O7CYId4L2BNgPH03NMS5BVmNMk+0T1+svQf0vf9DLUqfGVqG9jU9B3QL5epr3zcXoDt93t9rnZINdX2W/pkfRmVNr8xQZyCUKtssM2MAgJKt6fsAYFynnXhCvPeCc2J692zcu+9AbDx+bUxtmOj1g8PUhonYtmUqbrhtes5r27ZMxdSGuj7UwCFt9aYZACibewBoRymfZ7UIdK2U+RdhBkJbRu1ci9TCWh1PSfcA9MMamMtcgQeUPB90CkcrudeV0DjHKnmNW69Qj5JnSRfMK2oytWEinv6ok+L1H705Lv7xM+PiZ50Z+394f6xbszq+f+/+OGm9//AXaF4Xe+XQ70fgWG11pzUYhvlmyJ7Z++L1H7053vaix8fbX/yE+MH+H5oBFKuUn9XYN2F+2mAIStmLoCtHrvlDnx0O/W8QERGn/8j6OHnjOrOeiBjevYA9AcZTQkNDm1uQ1ajzRPv0xdorY/+HWpQ8M7QM3WhyDugWytbHvm8uQLf6ur/XOiUb8vos+TM/rIQ1Pbohz0AoVaZZZsYAACVbdfDgwYN9H0Ttdu3aFZOTkzEzMxObNm3q+3AoxJ0798Yl195y1AeBbVum4ortW+PhJ57Q45ExHx33TzM0QcuQg5aHxT1AXlquixZZiJYZgiHMQC1TgyG0OC4tl8FaZVxa5ljmSp20PCw6zUvLRGi8dkPr2Holq6G1PATm1TDV2rL1CkerteXamD20Tctz6Y4aabkcZgjjKKFlaxjGV0LLULNS9iIt05VS1nxWWq6bPjhEyyujIUqi47qZJxyi5fLpleXQcvm0zHJouSy6ZaW0nJe5MCxaHi6t55KtZeuTocrWMitjBtZPy5TMjFk+LUMOWoZ6eNB8Aww9FjKzZzamd8/GvfsOxMbj18bUhomYXD/R92ExDx2XQTOMS8uQg5aHxz1ATlqujxaZj5YZiuwzUMvUInuL49JyOaxVxqFl5mOu1EfLw6PTnLTMIRqv1xA7tl7JaIgtD4F5NTw1t2y9woNqbrk2Zg9t0vL8dEdttFwWM4SVKqVlaxjGU0rLULMS9iIt06US1nxWWq6fPojQ8jg0RCl0XD/zhAgt10KvLEXLddAyS9FyeXTLSmg5N3NhOLQ8bFrPI2PL1idDlLFlVsYMrJuWKZ0Zszxahhy0DPVY0/cBQGaT6930wyg0AwDD5B4AyqBFYMjMQCiDFqmFtQo0zVyB8ukUctM4NbFegVqYV9TEegX6YPZA93QHjMMMoXbWMAB9sxcxNNY8LEwfMB4NAU0xT6AeeoUctAz10S1wLHMBhkHrlMz6BIbMDATaZMYAACVa3fcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyNB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1b0/cBAOOZ2TMb07tnY9e+A7HphLUx9ZCJmFw/0fdhAS3RPAB0x74LddAqMAozA/LRNSWzPoG+mUOwcvoB+mQGwdE0AYzK3ICyaRRYiPmQm/cXgJWwf9A3axAYMjMQOMQ8gJXRDtlZ4zBM2oeV0Q5QK/ML6qJZIAvzDHLQcrdcb2Ap5gRAd8xcAKApHjRP1YZ+Y3znzr3x1mtviRtvmz78tW1bpuLy7VvjtBNP6PHIqNnQuyqZ5gHognuBB9h3GYeOuqNVyKuNWWpmQD4r6dq9Gk1baE3Zd6B7ZvzRzCFq1nfP+oHR9d1tJmZQO6zRemmCmpg1ZTA3iNBjyTRKVubO+MyH3Ep4f3UKw6L5HErYP2pj7TfLGgRK0NdsNwNhcUO67zIPyjCkNZeFdsqhn3ZY41CWrmad9ildqfu+dhiCUvtjPOYXpTFrFqdZhsx8yMU8GzY956Hlbs13vc993Mnx9v/3CbHvwP2aAlqZy/ZtoAkZZ4l7YQCgSasOHjx4sO+DqN2uXbticnIyZmZmYtOmTX0fzmAM/cZ4Zs9svO6jNx91/ods2zIV773gnOo//HRJxw8Yelcl0/zyaBly0HJ/3As8wL7bjKG2rKPuaLUbQ22ZfrX1l5CGPDO0TEYr6br2ezUtl2ehNfUrL3tSvP0Pvh7X/83353zPEPYdFqfldtQ+45s29PvfLmi5PX33rJ9h0XIz+u42EzNodMvp2BqtlyaGI8OebNaUwdzoVykt67FcGq1DKS3XxNwZn/nQvJJaLuH91Sm1Kqnlmmg+hxL2j6Z01bK136xMa5Bm2JfpQ1+zPfMM1DJNGNJ9V6nzYGgtD2nNZVFqO6XpomX9tMMa55Ch7cml6mrWaT+vLC2Xuu9rh6702XKp/TEe86sfWfblNpg1i9NsWbTcLfMhl5LmmZa7p+c8tNyt+a73+onj4j9dcE5c87++Hf/rb//+8Nc1Ra2G0HKb2pjL9m1WQsscK+MsKeleuC1ahhy0DPVY3fcBwErM7Jmdc7MfEXHDbdNxybW3xMye2Z6OrDvTu2fn/WAQ8cB1mN6d/xrQLF2VTfMAtM29wIPsu6yUjrqlVciprVlqZkA+o3btXo2mLbamLv3kV+Psh8//FyXsO9A8M34u97/UqoSe9QOjKaHbTMyg5lmjddMEtTBrymFuoMeyaZSMzJ1mmA+59f3+6hSGRfN59L1/1Mbab541CPStz9luBsLChnbfZR70b2hrLgvtlEE/7bHGoRxdzjrtU7KS933tkF3J/TEe84uSmDVL0yxDZT7kY54Nl55z0XK35rveF//4mXMeMh+hKRiqpueyfRtoQtZZ4l4YAGiaB81TJTfGEbv2HVj09XuXeB2OpauyaR6AtrkXeJB9l5XSUbe0Cjm1NUvNDMhn1K7dq9G0xdbUjbdNxzmbT1zwe+070Cwzfi73v9SqhJ71A6MpodtMzKDmWaN10wS1MGvKYW6gx7JplIzMnWaYD7n1/f7qFIZF83n0vX/UxtpvnjUI9K3P2W4GwsKGdt9lHvRvaGsuC+2UQT/tscahHF3OOu1TspL3fe2QXcn9MR7zi5KYNUvTLENlPuRjng2XnnPRcrfmu97nbD5xzkPmD9EUDE/Tc9m+DTQh6yxxLwwANM2D5qmSG+OITcevXfT1jUu8DsfSVdk0D0Db3As8yL7LSumoW1qFnNqapWYG5DNq1+7VaNpSa2r/D+9f8DX7DjTLjJ/L/S+1KqFn/cBoSug2EzOoedZo3TRBLcyacpgb6LFsGiUjc6cZ5kNufb+/OoVh0Xwefe8ftbH2m2cNAn3rc7abgbCwod13mQf9G9qay0I7ZdBPe6xxKEeXs077lKzkfV87ZFdyf4zH/KIkZs3SNMtQmQ/5mGfDpedctNyt+a73Yv/fdxGagqFpei7bt4EmZJ0l7oUBgKZ50DxVcmMcMbVhIrZtmZr3tW1bpmJqw0THR0TtdFU2zQPQNvcCD7LvslI66pZWIae2ZqmZAfmM2rV7NZq21Jo68YT5X7fvQPPM+Lnc/1KrEnrWD4ymhG4zMYOaZ43WTRPUwqwph7mBHsumUTIyd5phPuTW9/urUxgWzefR9/5RG2u/edYg0Lc+Z7sZCAsb2n2XedC/oa25LLRTBv20xxqHcnQ567RPyUre97VDdiX3x3jML0pi1ixNswyV+ZCPeTZces5Fy92a73qvW7P4I8g0BcPS9Fy2bwNNyDpL3AsDAE3zoHmqNLVhIi77ySfFBy58evzmzzw1PviKfxqv+2dnxfqJ4wZzYzy5fiIu3751zgeEbVum4ortW2Nyff5rQLPG+cA5s2c2vvn93XHzjnvim/93d8zsmW3rMAdL8wC0bcPxa+Ijr/rROffXEcP74bN9l5Vq63/Ecb89P63CeEqdLW3NUjMD+tHmrBm1a3/hhqYttaYe9dD19p0ClXoPxHjm63H9xHHxun92VnzkVT8aM3tnB/d+u/+lVsf2fKjlD1z49PjAhU+P+w8ebL1l/cBci91D+azVLDOoeU2tUZ8l+qEJauHvNJfD3KCr+1P3BiujUTLyubgZtcwH839l+n5/dboy1ju1GqV567xsfe8ftbHfNW+5a9AsoWvW3HD0Odvtw2TRxswc2n2XedC8Udfl0NZcFtopg37aY413w+c/lqPLWddG+9Y5TVmshXMfd3JsOH5Nb2vNvkl2td9324sWZn5RkqZnTcb2NUsGK2mz9nsR5jLPytfWPqrnXLTcrfmu98137IwfP+uh8/5+TTGqjJ+hhqbpudzlvm39QXNK6ynrZwD3wgBA01YdPHjwYN8HUbtdu3bF5ORkzMzMxKZNm/o+nEG4c+feeOvHb4kb/3b68NeeddZD49/+sy1xxo+sj1NPPKHHo+vWzJ7ZmN49G/fuOxAbj18bUxsmfDBYAR0/4M6de+OSa2+JG257sK1DHzgfvkBXd+7cG2+99pa48ZjvuXz71jhtQC12RfOL0zLkoOXuzbefP+ush8ZFzzoz/tuf74h3vOSJC94LZGbfHc9QW17JPfVSf5777cVptV1DbTm70mdL07P0SEOdGVqmD13NmlG6bnO+dEHL5VlqTQ113ylVKfdAWm7HkT2unzgu/tMF58Q1/+vb8b/+9u8P/56S7nm7Yg61R8vtOdTzX9x+T68t62cYtLy05dxD1f5Zq0Rm0PItp+Nx12gpnyWGTBP51b4n+zvN5TE3+lFKy23fn7o3GJ9Gy1ZKyzXxubg5Jc+H2uZ/iS33+f7qdDS1rffMSmy5Bstp3jqvR8n3B8vVVcv2u3YstgbNkmEpYV+25oan79meYR8+Vgkt0402Z2bfbfahtHlQa8srXZdDXHNZlNZOabpoWT/tssbbU8vnv1r35Gy6nnVNtV/LOh+CLC3P18K5jzs53vaix8d/uO5rva81+yZt67PlWu+77UXLY351K8u+3IamZk329jVbBi2Pbpw2a70XYXElzDMtz9X2PqrnfLTcrSOv96YT1sbEcavj//fJr2qKsZTyGWpILbepybncxb5dyvqjOVruT6k9Zf4MUMK9cFu0DDloGerhQfMNMPS6NbNnNl730ZuP+gByyLYtU/HeC85Jc3NMd3T8oFE+cOqR0mgZctBytxbbz5+9ZSr+4/lPjlM2Hd/DkVG7Ibfc1P+I436bEgy55axqmS2Z/wfxPmiZrpU8a2qeL1ouU81rakhKmktabs+hHu8/eDDe8QdfjxuPeDD1IX3vQ+Sh5XbN7JmNnXsOxP933Ve1TKu0vLhR7qHcF9OX5Xa80jVa0mcJyKzmPdmcgAeV1HJb96eaZwhKarkmPhfnVuP81/JcOl2eGtd7ZlpeucWat87pWpct2++6Y5YMT9/7sjU3XGZ7s/pumW50MTO12a8aWx53XVpzZNRVy/qhNjV9/qtxT86qtllX0zofgkwtH9vChuPXxJt+76+sNQah75btRdCMvlsu3bizRvt0RcujaaLN2u5FqIOWj9bVPqpnmjb0ljXFOEr6DDX0lkvV5owpaf3RHC33o/Se3K/UR8uQg5ahHmv6PgAY1fTu2Xk/gERE3HDbdEzvnnXTD2OYXL/8D856BID6Lbaf33jbdOze98M4xc92YCSj3FMvxv020IZaZktTsxToR8mzxnyhadZUHUqeSzTnUI/f/P7ueR9MHeH9hlpMrp94YHZrGXo1yj2U+2JKt9I16rMEsBRzAsrU1v2p5oGF+Fycm/mfg06Xx3oni8Wat87JzH7XHbOErllzw2W2w+i6mJnaZFTjrktrDlZOP9TG5z9WorZZZ53TlmNb+Ob3d1tr0BF7EdCFcWeN9qFMTbRZ270I1KirfVTP0CxNMQ6foVhKmzPG+oPmlN6T+xUAgMWt7vsAYFS79h1Y9PV7l3gdaI4eAaB+9nMolz6BNpgtQBfMGqA05tKweL8hBy1D/3QIOgCWZk7AsGgeYJjMf4bEemcIrHOgCWYJXbPmAJbPzKRE1iUAy2XPYAisc7pirQELMR9gmLQPZdIm1EGrAMNj9tMn6w+aoycAgLqt6fsAYFSbjl+76Osbl3gdaI4eYdh27NgR09PTfR/GgqampuL000/v+zAW5PpRCvs5lEufQBvMFqALZg1QGnNpWLzfkIOWoX86BB0ASzMnYFg0DzBM5j9DYr0zBNY50ASzhK5ZcwDLZ2ZSIusSgOWyZzAE1jldsdaAhZgPMEzahzJpE+qgVYDhMfvpk/UHzdETAEDdPGie6kxtmIhtW6bihtvmPph125apmNow0cNRwTDpEYZrx44dcfbZj4u9e/f0fSgLOuGE9fGNb/xNkQ9Ld/0oif0cyqVPoA1mC9AFswYojbk0LN5vyEHL0D8dgg6ApZkTMCyaBxgm858hsd4ZAuscaIJZQtesOYDlMzMpkXUJwHLZMxgC65yuWGvAQswHGCbtQ5m0CXXQKsDwmP30yfqD5ugJAKBuvT9o/pvf/Ga8613vig9+8IMREXH66afH7t27D79+3HHHxRe+8IV47GMf29chUpjJ9RNx+fatccm1txz1QWTblqm4YvvWmFzvQwh0RY8wXNPT07F375740Yt/MTY9/Iy+D2eOXXd9J/7sg78U09PTRT4o3fWjJPZzKJc+gTaYLUAXzBqgNObSsHi/IQctQ/90CDoAlmZOwLBoHmCYzH+GxHpnCKxzoAlmCV2z5gCWz8ykRNYlAMtlz2AIrHO6Yq0BCzEfYJi0D2XSJtRBqwDDY/bTJ+sPmqMnAIC69f6g+fe+971xyimnHP71PffcE7/wC78QJ598ckRE/Lf/9t/iyiuvjPe///19HSIFOu3EE+K9F5wT07tn4959B2Lj8WtjasOEDyDQAz3CsG16+BnxI6c/tu/DqJbrRyns51AufQJtMFuALpg1QGnMpWHxfkMOWob+6RB0ACzNnIBh0TzAMJn/DIn1zhBY50ATzBK6Zs0BLJ+ZSYmsSwCWy57BEFjndMVaAxZiPsAwaR/KpE2og1YBhsfsp0/WHzRHTwAA9er9QfOf/exn4wMf+MBRX9u+fXv8k3/yTyIi4owzzohXvepVfRwahZtc70MHlEKPAFA/+zmUS59AG8wWoAtmDVAac2lYvN+Qg5ahfzoEHQBLMydgWDQPMEzmP0NivTME1jnQBLOErllzAMtnZlIi6xKA5bJnMATWOV2x1oCFmA8wTNqHMmkT6qBVgOEx++mT9QfN0RMAQJ16f9D8d77znTjttNMO//pVr3pVTE5OHv71GWecEX/3d3+3rD/rjDPOiNtvv33O11/72tfGb/zGb8z5+oc+9KG46KKLjvraunXrYt++fcs9/KLN7JmN6d2zsWvfgdh0wtqYeoibdiiRVgGgfvZzKJ9OIS99Q5m0CcOieeifDiEnbUNO2obcNA65aBrKo0sgI7MNqJX5NTzec+AQ8wDm0gXQBLME8tM5AE2oaT+p6ViBfpgTkIOWgeUyL2Bh+oBh0TyUQYuQg5ZhmLQPAEB2vT9ofvXq1XHnnXfGIx/5yIiIuPLKK496/e677461a9cu68/68pe/HPfdd9/hX3/ta1+Lc889N84///wFv2fTpk1x6623Hv71qlWrRjn8Yt25c2+89dpb4sbbpg9/bduWqbh8+9Y47cQTejwy4EhaBYD62c+hfDqFvPQNZdImDIvmoX86hJy0DTlpG3LTOOSiaSiPLoGMzDagVubX8HjPgUPMA5hLF0ATzBLIT+cANKGm/aSmYwX6YU5ADloGlsu8gIXpA4ZF81AGLUIOWoZh0j4AAEOwuu8DeMITnhDXX3/9gq//yZ/8STzxiU9c1p/1sIc9LE499dTD/3zqU5+KRz/60fGc5zxnwe9ZtWrVUd9zyimnjHwOpZnZMzvnw0xExA23Tccl194SM3tmezoy4EhaBYD62c+hfDqFvPQNZdImDIvmoX86hJy0DTlpG3LTOOSiaSiPLoGMzDagVubX8HjPgUPMA5hLF0ATzBLIT+cANKGm/aSmYwX6YU5ADloGlsu8gIXpA4ZF81AGLUIOWoZh0j4AAEPR+4PmL7roonjXu94Vn/70p+e89gd/8Adx+eWXx0UXXTTynzs7Oxu//du/HRdffHGsWrVqwd+3e/fueNSjHhWbN2+Ol7zkJfH1r3995H9XaaZ3z875MHPIDbdNx/RuH2igBFoFgPrZz6F8OoW89A1l0iYMi+ahfzqEnLQNOWkbctM45KJpKI8ugYzMNqBW5tfweM+BQ8wDmEsXQBPMEshP5wA0oab9pKZjBfphTkAOWgaWy7yAhekDhkXzUAYtQg5ahmHSPgAAQ7Gm7wN49atfHZ/73OfixS9+cZx99tnx2Mc+NiIibr311vjGN74R//Jf/st49atfPfKfe91118XOnTvjFa94xYK/57GPfWx88IMfjK1bt8bMzEz8x//4H+OZz3xmfP3rX49HPvKRC37f/v37Y//+/Yd/vWvXrpGPr0279h1Y9PV7l3gdhqCEjrUK4yuhZWB8NbdsP4cHldqyTmE0pbY8H33DwvpsWZvQnBr2Zc3D0tpuWYfQja73ZW1DO/q+x9Y2jK/vjhejcVi+kls+RNOwNJ+VIYca9uXMzDaaomW6Zn61o+SWveewfCW33ATzgKEYpWVdQLlq2pfNElhYTS0vRucMXZaWoW997iejdmzvgzKVtCebE7ByWoYcSmq5C+YFWTXRsj6gf13uy5qH9vg7X5CDliGHNu+xtQ/dGdrPsSErLUO9Vvd9ABERH/3oR+MjH/lIbNmyJW699da49dZbY8uWLfGRj3wkfvd3f3dFf+YHPvCBeMELXhCnnXbagr/nGc94Rrz85S+PpzzlKfGc5zwnPvGJT8TDHvaw+C//5b8s+mdfdtllMTk5efifzZs3r+gY27Lp+LWLvr5xiddhCEroWKswvhJaBsZXc8v2c3hQqS3rFEZTasvz0TcsrM+WtQnNqWFf1jwsre2WdQjd6Hpf1ja0o+97bG3D+PrueDEah+UrueVDNA1L81kZcqhhX87MbKMpWqZr5lc7Sm7Zew7LV3LLTTAPGIpRWtYFlKumfdksgYXV1PJidM7QZWkZ+tbnfjJqx/Y+KFNJe7I5ASunZcihpJa7YF6QVRMt6wP61+W+rHloj7/zBTloGXJo8x5b+9Cdof0cG7LSMtSriAfNR0Sce+658d//+3+Pv/7rv44//uM/jic/+clx0003xY033jjyn3X77bfH9ddfH6961atG+r61a9fGOeecE3/7t3+76O+79NJLY2Zm5vA/d9xxx8jH2KapDROxbcvUvK9t2zIVUxsmGv93zuyZjW9+f3fcvOOe+Ob/3R0ze2Yb/3dAk0rouI9Wm6R7SlBCy8D4am65jf3cHkutSm3ZZ2QYTaktz6frvrVNTfpsucSfeemXWtWwL5fYPOUZ+hxuu+VaOhz6OqB+Xe/LpbatZWrX9z12321rmAz67ngxfTcONSm55UOWanrN6lX2VAav5s/K7o3hQTXsy5n5HJFTH/uMlunaYvPr2VumYsPxazo+ohxKbtme1RyfR/IrueUmlD4PNEZTRmm5zy6seVhcTfty6Xtsn8w6amp5MX13riX6lqXlzMyJOvS5n4zacd97H7pmfiXtycudE9YyzFVjy10yN6hFSS03bb4OS5wX0IQmWq69D3svGXS5L5fQvG7Jqpa/80VzzLOctDxcms6lzXts7S9NTzQl88+xYUi0DPXq/f+x4atf/Wq8+MUvjjvuuCO2bNkSH/vYx+L5z39+/OAHP4jVq1fHlVdeGR//+MfjpS996bL/zGuuuSZOPvnkeOELXzjSsdx3333x1a9+Nf7Fv/gXi/6+devWxbp160b6s7s0uX4iLt++NS659pa44bbpw1/ftmUqrti+NSbXN/uB5s6de+Ot194SNx7z77p8+9Y47cQTGv13QVNK6LjrVpuke0pRQsvA+Gpuuen93B5LzUpt2WdkGE2pLc+ny761TW36bLm0n3npl5rVsC+X1jzlMYfbb7mGDq0DMuh6Xy6xbS2TQd/32H22rWGy6LvjxRxq/NjWnnXWQ+O1zz0r9szeF5PrezxAKEjJLR+y0L797C1T8drnnhUv+E83xp7Z+yLCnspw1fpZ2b0xHK2GfTmzEn8OyHj62me0TNcWml/POuuhceEzz4j/75NfjV96yRPdX42o5JbtWc3weWQYSm65CSXPA43RpFFa7qsLax6WVtO+XPIe2yezjoi6Wl6MvzvG0GVpOStzoh597iejduwet1+6ZiEl7cnLmRPWMsyvtpa7ZG5Qk5JabtJCHV6xfWtR8wKa0kTLpe2no7D3kkWX+3LfzeuWzGr4O180xzzLS8vDpOl82rzH1v7i9ESTsv4cG4ZGy1CvVQcPHjzY5wG84AUviDVr1sQll1wSv/VbvxWf+tSn4nnPe15cffXVERHxb//tv42bbrop/vf//t/L+vPuv//+OPPMM+OCCy6Iyy+//KjXXv7yl8cjHvGIuOyyyyIi4h3veEf82I/9WJx11lmxc+fO+NVf/dW47rrr4qabborHP/7xyz6HXbt2xeTkZMzMzMSmTZuW/X1tm9kzG9O7Z+PefQdi4/FrY2rDROMfZmb2zMbrPnrzUR8ODtm2ZSree8E5g/8ARR367LiLVpuke0pW6p6c0Ve+8pV42tOeFuf+h2viR05/bN+HM8c/7Lg1PvOui+Kmm26Kpz71qX0fzhyu3+JqbLmJ/dweSzaltewzMqxMaS3Pp+2+tU0GfbRcws+89Es2Je/LJTRPeczh+bXVcqkdWgdk1dW+XErbWiarvu6xu25bw2RW2mflmT2z8Ydf+16cvHFd7P/h/bFuzeq4+Y6d8cEvfDue/qiT9AYLKK3lIx25bz9k3Zr4i9vviXd+6q8PP2T+EHsq1PFZ2b0xLK3kfTmzUn4OyHhK2me0TFfu3rUvvvn93bFz74Gjfg6yZ/Y+91cNKLFle9bKlbRP0K0SW25CafNAY7RtOS132YU1DytTw75c2h7bJ7OOhdTQ8mL83TF4QO0tZ2JO1KmE+8bldlzCsQ6NrhlFCXvyQnPCWoblK7nlro/B3KBmJbQ8ruV0GBG9zwto0zgtl7CfjsLeS2Zd7Mt9NK9bhqa0v/NFc8yzYdFyfpoehjbusbU/l55oW4afYwNahpqs6fsAvvzlL8fnPve52Lp1azz5yU+Oq666Kn7u534uVq9eHREPPGj+x37sx5b9511//fWxY8eOuPjii+e8tmPHjsN/bkTEPffcE69+9avje9/7Xpx00knxtKc9Lb74xS+O9JD5kk2ub/8DzPTu2Xk/HERE3HDbdEzvnvUBAZbQRatN0j0AzNXEfm6PhXb5jAx5td23tmFlSviZl36hOyU0T3nM4W6V2qF1AOMppW0tQ7O6blvD0J3p3bNx6Se+Ou9reoM6Hblvf/P7uzUOBRjnftq9MVCqUn4OyHjsMwzR7n0/jJ+++s/mfc26z8metXL2CbIpbR5ojBJ02YU1D3mVtsf2yawjK393DCiNOVGnmu4bazrWLHRNbRaaE9Yy1KWEPd/cgP4tp8NHn7xBi7CAEvbTUdh7YTx9NK9bmKu2/ZcHmGccS8t10zQrpf259AQAkEvvD5r/h3/4hzj11FMjImLDhg3xkIc8JE466aTDr5900klx7733LvvPe97znhcHDx6c97XPf/7zR/36yiuvjCuvvHL0g+awXfsOLPr6vUu8DtRH9wDQDnss1E/HkJO2oV76BeiXOUyEdQBZaBnqpmHojt4gN41D/XQMQJvsMwyRdQ/Lpxdol8YYGmseGAKzDpqhJWAp5gTko2uysJaBUZkb0D8dwrBoHuqjWyAL8wxy0TQ0R08AALms7vsAIiJWrVq16K8p16bj1y76+sYlXgfqo3sAaIc9FuqnY8hJ21Av/QL0yxwmwjqALLQMddMwdEdvkJvGoX46BqBN9hmGyLqH5dMLtEtjDI01DwyBWQfN0BKwFHMC8tE1WVjLwKjMDeifDmFYNA/10S2QhXkGuWgamqMnAIBcinjQ/Cte8Yr4yZ/8yfjJn/zJ2LdvX7zmNa85/OuLL76478NjEVMbJmLblql5X9u2ZSqmNkx0fERA23QPAO2wx0L9dAw5aRvqpV+AfpnDRFgHkIWWoW4ahu7oDXLTONRPxwC0yT7DEFn3sHx6gXZpjKGx5oEhMOugGVoClmJOQD66JgtrGRiVuQH90yEMi+ahProFsjDPIBdNQ3P0BACQS+8Pmr/wwgvj5JNPjsnJyZicnIyf/dmfjdNOO+3wr08++eR4+ctf3vdhsoDJ9RNx+fatcz4kbNsyFVds3xqT631AgGx0DwDtsMdC/XQMOWkb6qVfgH6Zw0RYB5CFlqFuGobu6A1y0zjUT8cAtMk+wxBZ97B8eoF2aYyhseaBITDroBlaApZiTkA+uiYLaxkYlbkB/dMhDIvmoT66BbIwzyAXTUNz9AQAkMuavg/gmmuu6fsQGNNpJ54Q773gnJjePRv37jsQG49fG1MbJnw4gMR0DwDtsMdC/XQMOWkb6qVfgH6Zw0RYB5CFlqFuGobu6A1y0zjUT8cAtMk+wxBZ97B8eoF2aYyhseaBITDroBlaApZiTkA+uiYLaxkYlbkB/dMhDIvmoT66BbIwzyAXTUNz9AQAkEfvD5onh8n1PhDA0OgeANphj4X66Rhy0jbUS78A/TKHibAOIAstQ900DN3RG+SmcaifjgFok32GIbLuYfn0Au3SGENjzQNDYNZBM7QELMWcgHx0TRbWMjAqcwP6p0MYFs1DfXQLZGGeQS6ahuboCQAgh9V9HwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA0HjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGMeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMQ+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1b0/cBABEze2Zjevds7Np3IDadsDamHjIRk+sn+j4s4Ag6BYA87OuAOQBl0yg8QAushHUDQFvsMdA8XQHmAIxHQzAMWge6YNaMxvWCHLQMQK3sYSyHdQKwNLMSctAy6IDls1YAOMSeQI2sW6Bt5gzUTcOAOQB10SxNs6agH9oDGCbzHwDoigfNQ8/u3Lk33nrtLXHjbdOHv7Zty1Rcvn1rnHbiCT0eGXCITgEgD/s6YA5A2TQKD9ACK2HdANAWeww0T1eAOQDj0RAMg9aBLpg1o3G9IActA1ArexjLYZ0ALM2shBy0DDpg+awVAA6xJ1Aj6xZomzkDddMwYA5AXTRL06wp6If2AIbJ/AcAurS67wOAIZvZMzvn5j8i4obbpuOSa2+JmT2zPR0ZcIhOASAP+zpgDkDZNAoP0AIrYd0A0BZ7DDRPV4A5AOPREAyD1oEumDWjcb0gBy0DUCt7GMthnQAszayEHLQMOmD5rBUADrEnUCPrFmibOQN10zBgDkBdNEvTrCnoh/YAhsn8BwC65kHz0KPp3bNzbv4PueG26Zje7QMA9E2nAJCHfR0wB6BsGoUHaIGVsG4AaIs9BpqnK8AcgPFoCIZB60AXzJrRuF6Qg5YBqJU9jOWwTgCWZlZCDloGHbB81goAh9gTqJF1C7TNnIG6aRgwB6AumqVp1hT0Q3sAw2T+AwBd86B56NGufQcWff3eJV4H2qdTAMjDvg6YA1A2jcIDtMBKWDcAtMUeA83TFWAOwHg0BMOgdaALZs1oXC/IQcsA1MoexnJYJwBLMyshBy2DDlg+awWAQ+wJ1Mi6BdpmzkDdNAyYA1AXzdI0awr6oT2AYTL/AYCuedA89GjT8WsXfX3jEq8D7dMpAORhXwfMASibRuEBWmAlrBsA2mKPgebpCjAHYDwagmHQOtAFs2Y0rhfkoGUAamUPYzmsE4ClmZWQg5ZBByyftQLAIfYEamTdAm0zZ6BuGgbMAaiLZmmaNQX90B7AMJn/AEDXPGgeejS1YSK2bZma97VtW6ZiasNEx0cEHEunAJCHfR0wB6BsGoUHaIGVsG4AaIs9BpqnK8AcgPFoCIZB60AXzJrRuF6Qg5YBqJU9jOWwTgCWZlZCDloGHbB81goAh9gTqJF1C7TNnIG6aRgwB6AumqVp1hT0Q3sAw2T+AwBd86B56NHk+om4fPvWOR8Ctm2Ziiu2b43J9T4AQN90CgB52NcBcwDKplF4gBZYCesGgLbYY6B5ugLMARiPhmAYtA50wawZjesFOWgZgFrZw1gO6wRgaWYl5KBl0AHLZ60AcIg9gRpZt0DbzBmom4YBcwDqolmaZk1BP7QHMEzmPwDQtTV9HwAM3WknnhDvveCcmN49G/fuOxAbj18bUxsm3PxDQXQKAHnY1wFzAMqmUXiAFlgJ6waAtthjoHm6AswBGI+GYBi0DnTBrBmN6wU5aBmAWtnDWA7rBGBpZiXkoGXQActnrQBwiD2BGlm3QNvMGaibhgFzAOqiWZpmTUE/tAcwTOY/ANAlD5qHAkyud8MPpdMpAORhXwfMASibRuEBWmAlrBsA2mKPgebpCjAHYDwagmHQOtAFs2Y0rhfkoGUAamUPYzmsE4ClmZWQg5ZBByyftQLAIfYEamTdAm0zZ6BuGgbMAaiLZmmaNQX90B7AMJn/AEBXVvd9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABD40HzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDH1vR9AFCamT2zMb17NnbtOxCbTlgbUw+ZiMn1E30fFlRBPwCQi70dctAywPjMUsAc4EjWA+SgZSiDFoE2mTG0wboC+mD2kIW1DGRjrsH4dASMyxwhA+sYgOWyZ0C59Elm1jd0Q2vAqMwNmEsXQJfMHMhBy8BKmR9QJm3C4jQClM6cArpk5gAApfOgeTjCnTv3xluvvSVuvG368Ne2bZmKy7dvjdNOPKHHI4Py6QcAcrG3Qw5aBhifWQqYAxzJeoActAxl0CLQJjOGNlhXQB/MHrKwloFszDUYn46AcZkjZGAdA7Bc9gwolz7JzPqGbmgNGJW5AXPpAuiSmQM5aBlYKfMDyqRNWJxGgNKZU0CXzBwAoAar+z4AKMXMntk5N/ARETfcNh2XXHtLzOyZ7enIoHz6AYBc7O2Qg5YBxmeWAuYAR7IeIActQxm0CLTJjKEN1hXQB7OHLKxlIBtzDcanI2Bc5ggZWMcALJc9A8qlTzKzvqEbWgNGZW7AXLoAumTmQA5aBlbK/IAyaRMWpxGgdOYU0CUzBwCohQfNwz+a3j075wb+kBtum47p3W7iYSH6AYBc7O2Qg5YBxmeWAuYAR7IeIActQxm0CLTJjKEN1hXQB7OHLKxlIBtzDcanI2Bc5ggZWMcALJc9A8qlTzKzvqEbWgNGZW7AXLoAumTmQA5aBlbK/IAyaRMWpxGgdOYU0CUzBwCohQfNwz/ate/Aoq/fu8TrMGT6AYBc7O2Qg5YBxmeWAuYAR7IeIActQxm0CLTJjKEN1hXQB7OHLKxlIBtzDcanI2Bc5ggZWMcALJc9A8qlTzKzvqEbWgNGZW7AXLoAumTmQA5aBlbK/IAyaRMWpxGgdOYU0CUzBwCohQfNwz/adPzaRV/fuMTrMGT6AYBc7O2Qg5YBxmeWAuYAR7IeIActQxm0CLTJjKEN1hXQB7OHLKxlIBtzDcanI2Bc5ggZWMcALJc9A8qlTzKzvqEbWgNGZW7AXLoAumTmQA5aBlbK/IAyaRMWpxGgdOYU0CUzBwCohQfNwz+a2jAR27ZMzfvati1TMbVhouMjgnroBwBysbdDDloGGJ9ZCpgDHMl6gBy0DGXQItAmM4Y2WFdAH8wesrCWgWzMNRifjoBxmSNkYB0DsFz2DCiXPsnM+oZuaA0YlbkBc+kC6JKZAzloGVgp8wPKpE1YnEaA0plTQJfMHACgFh40D/9ocv1EXL5965wb+W1bpuKK7Vtjcr2beFiIfgAgF3s75KBlgPGZpYA5wJGsB8hBy1AGLQJtMmNog3UF9MHsIQtrGcjGXIPx6QgYlzlCBtYxAMtlz4By6ZPMrG/ohtaAUZkbMJcugC6ZOZCDloGVMj+gTNqExWkEKJ05BXTJzAEAarGm7wOAkpx24gnx3gvOiends3HvvgOx8fi1MbVhwg08LIN+ACAXezvkoGWA8ZmlgDnAkawHyEHLUAYtAm0yY2iDdQX0wewhC2sZyMZcg/HpCBiXOUIG1jEAy2XPgHLpk8ysb+iG1oBRmRswly6ALpk5kIOWgZUyP6BM2oTFaQQonTkFdMnMAQBq4EHzcIzJ9W7aYaX0AwC52NshBy0DjM8sBcwBjmQ9QA5ahjJoEWiTGUMbrCugD2YPWVjLQDbmGoxPR8C4zBEysI4BWC57BpRLn2RmfUM3tAaMytyAuXQBdMnMgRy0DKyU+QFl0iYsTiNA6cwpoEtmDgBQutV9HwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA0HjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGMeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQsVQPmj/jjDNi1apVc/75uZ/7uQW/5/d+7/fi7LPPjuOPPz6e9KQnxR/+4R92eMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAEKV60PyXv/zluOuuuw7/85nPfCYiIs4///x5f/8Xv/jFuOCCC+KVr3xl3HzzzfHSl740XvrSl8bXvva1Lg8bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGJhUD5p/2MMeFqeeeurhfz71qU/Fox/96HjOc54z7+//9V//9Xj+858fb37zm+Nxj3tcvPOd74ynPvWp8Z//83/u+MgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAIVnT9wG0ZXZ2Nn77t387fv7nfz5WrVo17+/50pe+FD//8z9/1NfOO++8uO666xb9s/fv3x/79+8//Otdu3aNfbxAt3QMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGeqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfjqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGeq1uu8DaMt1110XO3fujFe84hUL/p7vfe97ccoppxz1tVNOOSW+973vLfpnX3bZZTE5OXn4n82bNzdxyECHdAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6qdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF+OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6rXq4MGDB/s+iDacd955MTExEX/wB3+w4O+ZmJiID3/4w3HBBRcc/tpv/uZvxi/90i/F3XffveD37d+/P/bv33/417t27YrNmzfHzMxMbNq0qZkTAFqlY8hBy/35yle+Ek972tPi3P9wTfzI6Y/t+3Dm+Icdt8Zn3nVR3HTTTfHUpz6178OZw/U7mpYhBy1DDlqGHLQMOWgZctAy5KBlyEHLUD8dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz10zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUK81fR9AG26//fa4/vrr4xOf+MSiv+/UU0+d80D5u+++O0499dRFv2/dunWxbt26sY8T6I+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP9dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1E/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUO9Vvd9AG245ppr4uSTT44XvvCFi/6+ZzzjGfHZz372qK995jOfiWc84xltHh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwcOkeNH///ffHNddcExdeeGGsWbPmqNde/vKXx6WXXnr41//u3/27+OM//uP4tV/7tfjGN74Rb3/72+Mv/uIv4nWve13Xhw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMSLoHzV9//fWxY8eOuPjii+e8tmPHjrjrrrsO//qZz3xmfOQjH4mrrroqnvzkJ8fHP/7xuO666+KJT3xil4cMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMyavg+gac973vPi4MGD8772+c9/fs7Xzj///Dj//PNbPioAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAB6V70DwAQBY7duyI6enpvg9jXn/zN3/T9yEsS6nHWepxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAdD5oHACjQjh074uyzHxd79+7p+1AWdWD/bN+HMK+9M38fEaviZ3/2Z/s+lEWVev0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ8HzQMAFGh6ejr27t0TP3rxL8amh5/R9+HMcddXvxRf+/2r4oc//GHfhzKvA3vujYiD8ZSffms87Myz+z6cOUq/fgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0z4PmAQAKtunhZ8SPnP7Yvg9jjl13fafvQ1iWDSef7voBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUKTVfR8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNB40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DEPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI550DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DEPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI550DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBja/o+AACAPuzYsSOmp6f7PowF/c3f/E3fhwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMiD5gGAwdmxY0ecffbjYu/ePX0fypIO7J/t+xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBZ40DwAMDjT09Oxd++e+NGLfzE2PfyMvg9nXnd99Uvxtd+/Kn74wx/2fSgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAs8aB4AGKxNDz8jfuT0x/Z9GPPaddd3+j4EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBFq/s+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICh8aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI550DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DEPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADo2Jq+D2AoZvbMxvTu2di170BsOmFtTD1kIibXT/R9WEBhzAoAWB57JuSgZchBy5CDliEPPUP9dAw5aBly0DLkpW+oi2aBY5kLwCjMDABGZe9ohusIZdMotEdfwEqZH9AMLUEOWoZh0j7UTcPAYswIGJ+OIDeNQ100CzlpG4ZD71AeXQIAwNE8aL4Dd+7cG2+99pa48bbpw1/btmUqLt++NU478YQejwwoiVkBAMtjz4QctAw5aBly0DLkoWeon44hBy1DDlqGvPQNddEscCxzARiFmQHAqOwdzXAdoWwahfboC1gp8wOaoSXIQcswTNqHumkYWIwZAePTEeSmcaiLZiEnbcNw6B3Ko0sAAJhrdd8HkN3Mntk5H0QiIm64bTouufaWmNkz29ORASUxKwBgeeyZkIOWIQctQw5ahjz0DPXTMeSgZchBy5CXvqEumgWOZS4AozAzABiVvaMZriOUTaPQHn0BK2V+QDO0BDloGYZJ+1A3DQOLMSNgfDqC3DQOddEs5KRtGA69Q3l0CQAA8/Og+ZZN756d80HkkBtum47p3T6MAGYFACyXPRNy0DLkoGXIQcuQh56hfjqGHLQMOWgZ8tI31EWzwLHMBWAUZgYAo7J3NMN1hLJpFNqjL2ClzA9ohpYgBy3DMGkf6qZhYDFmBIxPR5CbxqEumoWctA3DoXcojy4BAGB+HjTfsl37Diz6+r1LvA4Mg1kBAMtjz4QctAw5aBly0DLkoWeon44hBy1DDlqGvPQNddEscCxzARiFmQHAqOwdzXAdoWwahfboC1gp8wOaoSXIQcswTNqHumkYWIwZAePTEeSmcaiLZiEnbcNw6B3Ko0sAAJifB823bNPxaxd9feMSrwPDYFYAwPLYMyEHLUMOWoYctAx56Bnqp2PIQcuQg5YhL31DXTQLHMtcAEZhZgAwKntHM1xHKJtGoT36AlbK/IBmaAly0DIMk/ahbhoGFmNGwPh0BLlpHOqiWchJ2zAceofy6BIAAObnQfMtm9owEdu2TM372rYtUzG1YaLjIwJKZFYAwPLYMyEHLUMOWoYctAx56Bnqp2PIQcuQg5YhL31DXTQLHMtcAEZhZgAwKntHM1xHKJtGoT36AlbK/IBmaAly0DIMk/ahbhoGFmNGwPh0BLlpHOqiWchJ2zAceofy6BIAAObnQfMtm1w/EZdv3zrnA8m2LVNxxfatMbnehxHArACA5bJnQg5ahhy0DDloGfLQM9RPx5CDliEHLUNe+oa6aBY4lrkAjMLMAGBU9o5muI5QNo1Ce/QFrJT5Ac3QEuSgZRgm7UPdNAwsxoyA8ekIctM41EWzkJO2YTj0DuXRJQAAzG9N3wfQtO9+97vx1re+Nf7oj/4o9uzZE2eddVZcc8018fSnP33e3//5z38+nvvc5875+l133RWnnnpqI8d02oknxHsvOCemd8/GvfsOxMbj18bUhgkfRICjmBUAsDz2TMhBy5CDliEHLUMeeob66Rhy0DLkoGXIS99QF80CxzIXgFGYGQCMyt7RDNcRyqZRaI++gJUyP6AZWoIctAzDpH2om4aBxZgRMD4dQW4ah7poFnLSNgyH3qE8ugQAgLlSPWj+nnvuiWc961nx3Oc+N/7oj/4oHvawh8Vtt90WJ5100pLfe+utt8amTZsO//rkk09u9Ngm1/vwASzNrACA5bFnQg5ahhy0DDloGfLQM9RPx5CDliEHLUNe+oa6aBY4lrkAjMLMAGBU9o5muI5QNo1Ce/QFrJT5Ac3QEuSgZRgm7UPdNAwsxoyA8ekIctM41EWzkJO2YTj0DuXRJQAAHC3Vg+avuOKK2Lx5c1xzzTWHv3bmmWcu63tPPvnkOPHEE1s6MgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAHpXrQ/O///u/HeeedF+eff3786Z/+aTziEY+I1772tfHqV796ye99ylOeEvv3748nPvGJ8fa3vz2e9axnLfh79+/fH/v37z/86127djVy/EB3dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6qdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF+OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6rW67wNo0re+9a143/veF1u2bIk/+ZM/iX/zb/5NvP71r48Pf/jDC37Pwx/+8Hj/+98f1157bVx77bWxefPm+Imf+In4yle+suD3XHbZZTE5OXn4n82bN7dxOkCLdAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6qdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF+OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6rXq4MGDB/s+iKZMTEzE05/+9PjiF794+Guvf/3r48tf/nJ86UtfWvaf85znPCdOP/30+K3f+q15X9+/f3/s37//8K9nZmbi9NNPjzvuuCM2bdq08hMAlm3jxo2xatWqFX+/jqEMfbX8l3/5l/Gc5zwn/p8L3xYbT33Uiv/9bfre1/93fP1TV8fWn3pzPOxRj+37cOZwfOMp/fju/d7t8ecffmf86Z/+aTzlKU9Z8vfblyEHLUMOWoYctAw5aBly0DLkoGXIQcuQwzgt6xjKYE+GHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDn4+5tQP3sy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZajfSjtO9aD5Rz3qUXHuuefG1Vdfffhr73vf++KXf/mX47vf/e6y/5w3v/nN8YUvfGHZD6f/u7/7u9i8efPIxwus3MzMTKM3GTqGfmgZctAy5KBlyEHLkEPTLX/rW9+KRz/60Y39ecDy2JchBy1DDlqGHLQMOTTZso6hH/ZkyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDv78J9bMnQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWob6rbTjVA+a/+mf/um444474sYbbzz8tTe+8Y3xZ3/2Z/HFL35x2X/OueeeGxs3boxPfOITy/r9999/f9x5552xcePGWLVq1cjHPTS7du2KzZs3xx133NHo5jNEQ76WTffWVsdDfo+O5Vo8wHU4WlstHzx4ME4//fRU1znr2sl4XkM8p1r25aZlfK8PyXpuWc8roplza6PlW2+9NR7/+MenvObLlXndLZdr0O016Hpf9v66BhGuQUTz16Dplnfu3BknnXRS7NixIyYnJxv7c/uUbd1lO5+IfOe0kvMZ6uflQ7KtgVEM9dyznrefYy9Ptvff+ZTNvrx82d77NrhGSyvpGg215SOV9H6Mw3mUpevzaLK5JjvO8n52yTVbmQzXrZQ9OcO1bIPrsjDX5miltNy3bOvC+ZStjfMppeVs71WEc6pFlnMqpeUuZHnPSuBaNqvUv4s9X8ve++a4ls3Idh1L2JdrvqY1H3uE4+9bk8dfQstNqf19XYjzqk8f55ap5S5kXn8LGdo513q+/nvH0dR+/BH1n4Pjn5//ruJota4Tx92tEo+71L+/2ZUS35MmOb+6Lff8Mn5WzvLeZjiPDOcQUcd51NRyDdfzWI65G465rpabUON7XhrXcHyZ/y72fKyZhbk28xvydSmx5RrfjxqPOaLO43bM8yux5SbV+L7Px3mUo9Rz6LLlUq9BFq5ve2q4tn3syzVcl7Y492Gee0T759/XPXaW99V5lCXLeUSMfi5aHo/zKMtQz2OlHa9ZycGV6o1vfGM885nPjF/5lV+Jf/Wv/lX8+Z//eVx11VVx1VVXHf49l156aXz3u9+N//pf/2tERLznPe+JM888M57whCfEvn374uqrr47Pfe5z8T/+x/9Y9r939erV8chHPrLx88lu06ZNVUdaEtdyfG137D16kGvxANehHYda3rVrV0TkvM4Zzyki53k5p5Wr7f4643t9SNZzy3peEWWd2+rVq+MRj3hERJR1XH1xDVyDiDqvwXL35RrPrWmugWsQUe41WL16dURETE5OFnl84yj1mq9UtvOJyHdOfZ5PbZ+XD8m2BkYx1HMf6nkvV/afYzufsjmf5tS2L2d779vgGi0t4zWqreUjZXk/nEdZajyPNjqu8Tr0zTVbGdftQeO27FrOz3VZmGvTjprvryPyrQvnU7aSz8e+PJdzqkPGcxpHDfuy96w5rmWzSrqeS7Vc0rHWzrVshus4v3H25Zqvac3HHuH4+1bi8Zdwj13idWmC86pPzedWQstdqPk9WqmhnfPQzvdYQ/nvHWs//oj6z8HxtyvLf1fhuLvluMtS8/111vfkEOdXt67Pr6SWs7y3Gc4jwzlE5DmP5eii5Rqvp2PuhmNuTkn78mJKvX41cQ3HV/I19N87dsu1mZ/rMr4mW67x/ajxmCPqPG7H3K5S77FruoaLcR7lyHAOi1lOy9mvQd9c3/YM6dqOsi8P6bocy7kP89wj6jn/Ue+xazmvpTiPsmQ5j4j+zkXLdXMeZWn7PFI9aP6f/tN/Gp/85Cfj0ksvjXe84x1x5plnxnve8574mZ/5mcO/56677oodO3Yc/vXs7Gz8+3//7+O73/1urF+/PrZu3RrXX399PPe5z+3jFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIABSPWg+YiIF73oRfGiF71owdc/9KEPHfXrt7zlLfGWt7yl5aMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeNDqvg+A4Vm3bl384i/+Yqxbt67vQ6mea1k+79GDXIsHuA7dyHidM55TRM7zck7Dkfm6ZD23rOcVUe65lXpcXXINXIOI3Ncg87ktl2vgGkSUfw1KP76VyHZO2c4nIt85ZTufLgz5mg313Id63iuV7Xo5n7I5n+FyrZbmGi3NNSpLlvfDeZQly3mMy3UYnWu2Mq5bc1zL+bkuC3NtmE+2deF8ypbtfI6U8dycUx0ynlN23rPmuJbNqul61nSspXMtm+E6Nq/ma1rzsUc4/r7VfvxtyXpdnFd9Mp9bFkN8j4Z2zkM735Wq/TrVfvwR9Z+D4+9Wbcd7iOPuluOmKdnfE+dXt+znt5gs557hPDKcQ0Se8yhFjdfTMXfDMQ+P6zc+13B8Q7uGQzvfUbg283NdylLj+1HjMUfUedyOeZiyXEPnUY4M5zAu16Bdrm97XNv5Dfm6OPdhnntE3vPPcl7OoyxZziOinnOp5TiX4jzK4jxGs+rgwYMHW/03AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCU1X0fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDQeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMc8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYx40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAxD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOg+QbdcMMN8eIXvzhOO+20WLVqVVx33XUjff/b3/72WLVq1Zx/HvKQh7RzwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAvPGi+QT/4wQ/iyU9+cvzGb/zGir7/TW96U9x1111H/fP4xz8+zj///IaPFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiTB8036AUveEH88i//crzsZS+b9/X9+/fHm970pnjEIx4RD3nIQ+JHf/RH4/Of//zh1zds2BCnnnrq4X/uvvvu+Ou//ut45Stf2dEZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3woPkOve51r4svfelL8bGPfSxuueWWOP/88+P5z39+3HbbbfP+/quvvjoe85jHxLOf/eyOjxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABokwfNd2THjh1xzTXXxO/93u/Fs5/97Hj0ox8db3rTm+LHf/zH45prrpnz+/ft2xe/8zu/E6985St7OFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgTWv6PoCh+OpXvxr33XdfPOYxjznq6/v374+HPvShc37/Jz/5ybj33nvjwgsv7OoQAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI540HxHdu/eHccdd1zcdNNNcdxxxx312oYNG+b8/quvvjpe9KIXxSmnnNLVIQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd8aD5jpxzzjlx3333xfe///149rOfvejv/fa3vx3/83/+z/j93//9jo4O/v/s3X2QX3d92PvP6mElreVd2V5sbMcyxl5IU5CRDaHEtgoUSoAQcDR3bg0dwL6lJS2lGeYOtgMEnIYgZ0IIT31MbYdOQ9LWYDeFmw41JbJN6hRbrsINoTIIxMUGe21rV6uVdmV77x/uil3t/h73/M453+95vWaYiXf1cKL9vj/fc87vt3sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAokwfNF2hmZiYeeuihk/998ODBePDBB+PMM8+MF7zgBfG2t70t3v72t8fHP/7x2LlzZzz22GNx1113xY4dO+KNb3zjyd93yy23xLnnnhuvf/3rq/h/AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiwoYWFhYWqDyIXX/va1+JVr3rVio+/4x3viNtuuy1OnDgRv/EbvxGf+9zn4oc//GGMj4/H3/gbfyNuuummePGLXxwREc8880xceOGF8fa3vz0++tGPlv3/AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFACD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKNm6qg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGk8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZB40X4CFhYWYnp6OhYWFqg8F6JOOIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5YhD1qG9OkY8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5YhfTqGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGVIhwfNF+DIkSMxNjYWR44cqfpQgD7pGPKgZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ8qBlSJ+OIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ0qdjyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5YhD1qGdHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDJPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGQeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMg+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiZB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGxD1QcAMDU7H5Mz8zF9/ESMbtkY46cNx9jIcNWHBfRIy1BvGgWA9Ni/IQ9ahtb0QdmsOYA8mOeQBy1DHrQM6dMx5EHLkActUxfWIlRLgwDFMVMhD1qGtGgW8qZxyIOWyZF1DaTI7II8aBnyoGXIg5ZhMLQF9MPsaAZfZ6AIZglAd8xLAGgeD5oHKvXw4WNx/e374+4Dkyc/tmtiPPbs3hHnbdtS4ZEBvdAy1JtGASA99m/Ig5ahNX1QNmsOIA/mOeRBy5AHLUP6dAx50DLkQcvUhbUI1dIgQHHMVMiDliEtmoW8aRzyoGVyZF0DKTK7IA9ahjxoGfKgZRgMbQH9MDuawdcZKIJZAtAd8xIAmmld1QcANNfU7PyKi5CIiL0HJuOG2/fH1Ox8RUcG9ELLUG8aBYD02L8hD1qG1vRB2aw5gDyY55AHLUMetAzp0zHkQcuQBy1TF9YiVEuDAMUxUyEPWoa0aBbypnHIg5bJkXUNpMjsgjxoGfKgZciDlmEwtAX0w+xoBl9noAhmCUB3zEsAaC4PmgcqMzkzv+IiZNHeA5MxOeNCBFKgZag3jQJAeuzfkActQ2v6oGzWHEAezHPIg5YhD1qG9OkY8qBlyIOWqQtrEaqlQYDimKmQBy1DWjQLedM45EHL5Mi6BlJkdkEetAx50DLkQcswGNoC+mF2NIOvM1AEswSgO+YlADRXVg+a37t3b7zpTW+K8847L4aGhuKOO+5o++u/8IUvxGtf+9p4znOeE6Ojo/GKV7wi/st/+S/lHCwQ08dPtP38kQ6fB+pBy1BvGgWA9Ni/IQ9ahtb0QdmsOYA8mOeQBy1DHrQM6dMx5EHLkActUxfWIlRLgwDFMVMhD1qGtGgW8qZxyIOWyZF1DaTI7II8aBnyoGXIg5ZhMLQF9MPsaAZfZ6AIZglAd8xLAGiurB40f/To0bj00kvjs5/9bFe/fu/evfHa1742vvzlL8f9998fr3rVq+JNb3pT7Nu3b8BHCkREjG7e2Pbzp3f4PFAPWoZ60ygApMf+DXnQMrSmD8pmzQHkwTyHPGgZ8qBlSJ+OIQ9ahjxombqwFqFaGgQojpkKedAypEWzkDeNQx60TI6sayBFZhfkQcuQBy1DHrQMg6EtoB9mRzP4OgNFMEsAumNeAkBzZfWg+de//vXxG7/xG3H11Vd39et/93d/N97//vfHy172spiYmIjf/M3fjImJifjjP/7jAR8pEBExvnU4dk2Mr/q5XRPjMb51uOQjAvqhZag3jQJAeuzfkActQ2v6oGzWHEAezHPIg5YhD1qG9OkY8qBlyIOWqQtrEaqlQYDimKmQBy1DWjQLedM45EHL5Mi6BlJkdkEetAx50DLkQcswGNoC+mF2NIOvM1AEswSgO+YlADRXVg+aX6tnnnkmjhw5EmeeeWbVhwKNMDYyHHt271hxMbJrYjxu3r0jxkZciEAKtAz1plEASI/9G/KgZWhNH5TNmgPIg3kOedAy5EHLkD4dQx60DHnQMnVhLUK1NAhQHDMV8qBlSItmIW8ahzxomRxZ10CKzC7Ig5YhD1qGPGgZBkNbQD/MjmbwdQaKYJYAdMe8BIDmGlpYWFio+iAGYWhoKL74xS/GW97ylq5/z2/91m/Fnj174q/+6q/i7LPPbvnr5ubmYm5u7uR/T09PxwUXXBBTU1MxOjq6lsOGRpqanY/Jmfk4cvxEnL55Y4xvHR74RYiOoXhahnqrotFuaRnyoGUonnNsyIOWobU6X6vWgZaLZ81RBS1D8ZxjQx60DHkou2UdQ/HsyZAHLUMetExdeE0tPVrOiwabS8tQPOfYkActQ1rqdE2jZSiefRnyoGVyVKfz0FzpGIpnT4Y8aBnyoGXIg5ZhMJpw703LUDz7cjM0YY+gfFpuHrMkT1qG4jnHBvqlZUjXhqoPoC7+4A/+IG666aa488472z5kPiLiYx/7WNx0000lHRnkb2yk/Bs1OobiaRnqrYpGu6VlyIOWoXjOsSEPWobW6nytWgdaLp41RxW0DMVzjg150DLkoeyWdQzFsydDHrQMedAydeE1tfRoOS8abC4tQ/GcY0MetAxpqdM1jZahePZlyIOWyVGdzkNzpWMonj0Z8qBlyIOWIQ9ahsFowr03LUPx7MvN0IQ9gvJpuXnMkjxpGYrnHBvol5YhXUMLCwsLVR/EIAwNDcUXv/jFeMtb3tLx1/7hH/5hXHfddfEf/sN/iDe+8Y0df/3c3FzMzc2d/O/p6em44IILYmpqKkZHR9dy2EBJdAx50DLkQcuQBy1DHrQMedAy5EHLkActQx60DHnQMqRPx5AHLUMetAx50DLkQcuQBy1DHrQMedAy5EHLkActQx60DOnTMeRBy5AHLUMetAx50DLkQcuQBy1DHrQMedAy5EHLkActQ7o2VH0AVfv85z8f1113XfzhH/5hVw+Zj4jYtGlTbNq0acBHBgySjiEPWoY8aBnyoGXIg5YhD1qGPGgZ8qBlyIOWIQ9ahvTpGPKgZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ8qBlyIOWIX06hjxoGfKgZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ8qBlSFdWD5qfmZmJhx566OR/Hzx4MB588ME488wzY/v27XHjjTfGD3/4w/jc5z4XERF/8Ad/EO94xzvik5/8ZLz85S+PH/3oRxERsWXLlhgbG6vk/wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgf+uqPoAifeMb34idO3fGzp07IyLife97X+zcuTN+7dd+LSIiHnnkkTh06NDJX/+v/tW/iqeeeir+0T/6R3Huueee/N8/+Sf/pJLjBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJphQ9UHUKRXvvKVsbCw0PLzt91227L//trXvjbYAwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYxbqqDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgaTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBkHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBkHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBkHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBkHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl21D1AQBrMzU7H5Mz8zF9/ESMbtkY46cNx9jIcNWHBQyI5mElXQBAszkXAHphZkB+dE2dWZ9A1cwh6J9+gCqZQbCcJoBemRtQbxoFWjEf8ubrC0A/7B9UzRoEmswMBBaZB9Af7ZA7axyaSfvQH+0AqTK/IC2aBXJhnkEetFwu/95AJ+YEQHnMXACgKB40Dwl7+PCxuP72/XH3gcmTH9s1MR57du+I87ZtqfDIgEHQPKykCwBoNucCQC/MDMiPrqkz6xOomjkE/dMPUCUzCJbTBNArcwPqTaNAK+ZD3nx9AeiH/YOqWYNAk5mBwCLzAPqjHXJnjUMzaR/6ox0gVeYXpEWzQC7MM8iDlsvl3xvoxJwAKI+ZCwAUaV3VBwD0Z2p2fsWFQUTE3gOTccPt+2Nqdr6iIwMGQfOwki4AoNmcCwC9MDMgP7qmzqxPoGrmEPRPP0CVzCBYThNAr8wNqDeNAq2YD3nz9QWgH/YPqmYNAk1mBgKLzAPoj3bInTUOzaR96I92gFSZX5AWzQK5MM8gD1oul39voBNzAqA8Zi4AULQNVR8A0J/JmfkVFwaL9h6YjMmZ+RgbGS75qIBB0TyspAsoxqFDh2JycvWW6mB8fDy2b99e9WEANeRcAOiFmQH50TV1Zn0CVTOHoH/6AapkBsFymgB6ZW5AvWkUaMV8yJuvLwD9sH9QNWsQaDIzEFhkHkB/tEPurHFoJu1Df7QDpMr8grRoFsiFeQZ50HK5/HsDnZgTAOUxcwGAonnQPCRq+viJtp8/0uHzQFo0DyvpAtbu0KFD8dM//dfi2LHZqg+lpS1bRuKv/upbHjYPrOBcAOiFmQH50TV1Zn0CVTOHoH/6AapkBsFymgB6ZW5AvWkUaMV8yJuvLwD9sH9QNWsQaDIzEFhkHkB/tEPurHFoJu1Df7QDpMr8grRoFsiFeQZ50HK5/HsDnZgTAOUxcwGAonnQPCRqdPPGtp8/vcPngbRoHlbSBazd5ORkHDs2Gy+/7sMxeu7zqj6cFaYf+V7cd8tNMTk56UHzwArOBYBemBmQH11TZ9YnUDVzCPqnH6BKZhAspwmgV+YG1JtGgVbMh7z5+gLQD/sHVbMGgSYzA4FF5gH0RzvkzhqHZtI+9Ec7QKrML0iLZoFcmGeQBy2Xy7830Ik5AVAeMxcAKNq6qg8A6M/41uHYNTG+6ud2TYzH+Nbhko8IGCTNw0q6gOKMnvu8OHP7C2v3v9Fzn1f1Pw1QY84FgF6YGZAfXVNn1idQNXMI+qcfoEpmECynCaBX5gbUm0aBVsyHvPn6AtAP+wdVswaBJjMDgUXmAfRHO+TOGodm0j70RztAqswvSItmgVyYZ5AHLZfLvzfQiTkBUB4zFwAomgfNQ6LGRoZjz+4dKy4Qdk2Mx827d8TYiIsDyInmYSVdAECzORcAemFmQH50TZ1Zn0DVzCHon36AKplBsJwmgF6ZG1BvGgVaMR/y5usLQD/sH1TNGgSazAwEFpkH0B/tkDtrHJpJ+9Af7QCpMr8gLZoFcmGeQR60XC7/3kAn5gRAecxcAKBoQwsLCwtVH0TqpqenY2xsLKampmJ0dLTqw6FhpmbnY3JmPo4cPxGnb94Y41uHXRj0QcekQvPtabmZdJEfLZfngQceiMsvvzxe+4Fb48ztL6z6cFZ44tC34ysfvTbuv//+uOyyy6o+HHqkZcriXGCwtExumjoztEzOmtS1ltPTpPVJ97RMmcyhwdFy/vTTDFqmrsyg7um4GTSRPy1TNHOjGlqmWxqtNy1TJfOhOHVs2dcXelfHlqFsOewfWk5bDmuQYmiZJspxBmoZ+lO3eaBlUlG3dupGy+mzxtFxM2k/P1ouh3YYNC0zKOZXubTMWmm2HrQMa1eHeaZlWDstl6sO/94wKE1qeZDMCaqmZZok55mrZciDliEdG6o+AOAnJ/jTx0/E6JaNMX5a9yf4YyP5XAxAna2l0yJpnjLVZd13ogsAaLZ+zgVSOc+Bphpko64fSIn9qju6Xs66qRfrE6hakXPIHkPTlLGP6wpoNQdcS8ByrZqwl0Iz9NO6vRTqrY6NOq/ojX8vBqWO8yFnZbfs6wtAP1bbP5yP0o2i1olzGCBnnWalGQhpKOP82Dyg7up6naid+qnrWkmVNQ7NlEv79gTKVkQ71i0waO2+xwmoP+cKQE5zwDkITZBTs61ouRoLERFDVR8FNEdK89xcBiiO92ADAGXxoHmo2MOHj8X1t++Puw9MnvzYronx2LN7R5y3bUuFRwYs0ilNZN0DALlyngP1plF4lhboh3UDwKDYY6B4ugLMAVgbDUEzaB0og1nTG/9ekActA5AqexjdsE4AOjMrIQ9aBh3QPWsFgEX2BFJk3QKDZs5A2jQMmAOQFs1SNGsKqqE9gGYy/wGAMq2r+gCKtHfv3njTm94U5513XgwNDcUdd9zR9tc/8sgj8da3vjVe8IIXxLp16+JXfuVXSjlOWDQ1O7/i5D8iYu+Bybjh9v0xNTtf0ZEBi3RKE1n3AECunOdAvWkUnqUF+mHdADAo9hgonq4AcwDWRkPQDFoHymDW9Ma/F+RBywCkyh5GN6wTgM7MSsiDlkEHdM9aAWCRPYEUWbfAoJkzkDYNA+YApEWzFM2agmpoD6CZzH8AoGwbqj6AIh09ejQuvfTSuO666+KXfumXOv76ubm5eM5znhMf/OAH4xOf+EQJRwjLTc7Mrzj5j4gYGV4fOy7YFo9MHY/vTh6N0S0bY/y04RgbGa7gKCEfU7PzMTkzH9PHT3TdVatOI569WJ+cmdcm2bHum6Wf2QgAVVnrvuU8B+qtjEad/5IC+1XvtG3dnMqaAFJWtxlmj4HW+u1VV5COQe3L5gB0p1WDGoJmWGx9ZHh9XHflRbHzgm0x99QzsXnj+njg0JPx+FGt01x1u3+UMucVvfHvVT39U4QmtqwdIBXmVXtN3MPoXVnrRK9AynqZleYdVKdTf86PodgO7Hl5MzPTo0moj9x6tCeQorWu29w6BvrTbhbYHyFtkzPzcf/3n4z3vPqSFd9zccs9BzUMDWAOQFq6Pf92Pd9svXz9XdNBNbSXJ/svNJNzLwCgzrJ60PzrX//6eP3rX9/1r3/e854Xn/zkJyMi4pZbbhnUYUFL08dPrPjYyPD6+NQ1O+PWew/GZ7760MmP75oYjz27d8R527aUeYiQjYcPH4vrb9+/7KK7m65W63SpIx0+Dymy7puj39kIAFUoYt9yngP1NuhGnf+SCvtVb7T9LOvmJ6wJIGV1nGH2GFjdWnrVFaRhkPuyOQCdtWtwZk5D0ATTx0+0fE/1FZecFVfvPL/Co4Pq1PH+Ucqcm/fGv1e19E9RmtaydoBUmFedNW0Poz9lrBO9Aqnrdlaad1CdbvpzfgzFdWDPy5+ZmRZNQn3k2KM9gRStZd3m2DHQu06zwP4IaZuZO9Hyey4+dc3OONrhe7CA9JkDkJZO599H5064nm+4Xr/+rumgGtrLj/0Xmsm5FwBQd+uqPgBostHNG1d87LorL4pb7z0Y9z70+LKP7z0wGTfcvj+mZufLOjzIxtTs/IqL84juulqt06VO7/B5SJF13wxrmY0AULai9i3nOVBvg2zU+S8psV91T9s/Yd08y5oAUlbXGWaPgZXW2quuoP4GvS+bA9Bepwa3bRlu+/s1BHkY3byx5Xuq733o8fjIf/p/3e+jcep6/yhlzs1749+rOvqnSE1qWTtAKsyr7jRpD6N/g14negVy0M2sNO+gOt325/wYiunAntcMZmY6NAn1kWuP9gRS1O+6zbVjoDfdzAL7I6Rt25bhlt9zceu9B2Osw/dgAekzByAtnc6/x7YMu55vsH7u57img2poLy/up0MzOfcCAFLgQfN9mJubi+np6WX/g36Mbx2OXRPjyz6284JtK16UW7T3wGRMzriJUAQdN8vkzPyKi/NFnbpardNFuybGY3yrF8urpOXBsO6bYS2zsWhahjxomUEqat9yntOZlqnSIBut0/lvGbScNvtV93Jvu5eWrZtn5b4mSJN9mW7VdYbZY56lZZZaa6+6qo6W6dag92VzoH86boZODc4//YyGEqdlujG+dTh+7vlntXxP9d3u91VOy+Wr6/2jlDk393pUKvRPJ1penXZIjXPs5jKvupPKHqblag16nei1ObRMzrqZlbnMOy2Tom77S+X8uAhappUiOshlz0tBlS03aWamTpP1Zk9ullx7tCdoOUX9rttcO+ZZWqZb3cwC+2N1tEwR5p9+puX3XNz70OMx//QzJR9R82iZqpkDxdAyZel0/j3/9DOu59cg9Zb7uZ/jmo4cpdCy9vLifvpgpNAyzebcqztahjxoGdLlQfN9+NjHPhZjY2Mn/3fBBRdUfUgkamxkOPbs3rHsImDuqfYvvB05fmLQh9UIOm6W6Q7dtOtqtU4jnr1Iv3n3jhgbye9CPSVaHgzrvhnWMhuLpmXIg5YZpKL2Lec5nWmZKg2y0Tqd/5ZBy2mzX3Uv97Z7adm6eVbua4I02ZfpVl1nmD3mWVpmqbX2qqvqaJluDXpfNgf6p+Nm6NTg0bmnNJQ4LdONsZHhGN7Q/lsd3O+rlpbLV9f7Rylzbu71qFTon060vDrtkBrn2M1lXnUnlT1My9Ua9DrRa3NomZx1MytzmXdaJkXd9pfK+XERtEwrRXSQy56XgipbbtLMTJ0m682e3Cy59mhP0HKK+l23uXbMs7RMt7qZBfbH6miZIszMPdX280c7fJ610zJVMweKoWXK0un8u1PTrufbS73lfu7nuKYjRym0rL28uJ8+GCm0TLM59+qOliEPWoZ0DS0sLCxUfRCDMDQ0FF/84hfjLW95S1e//pWvfGW85CUvid/93d/t+Gvn5uZibm7u5H9PT0/HBRdcEFNTUzE6OtrnEdNkU7PzMTkzH0eOn4jNG9fHz3/y7pa/9q73/c24+OytJR5dnnTcLN95dCb+1u/8acvPd9PV0k5P37wxxrcOZ3mRnhotD5Z1n7ciZmNRtFydBx54IC6//PJ47QdujTO3v7Dqw1nhiUPfjq989Nq4//7747LLLqv6cOhAywxS0fuW85zWtEwdDKLROp3/lkHLebBfdZZ72/203PR1k/uaIE32ZbpV9xnW9D1GyyxVVK9N76oKWqZbZe3L5kDvdNwM3TaooXRpmW7V/Vq56bRcPk0MTpPPK7welQb904mWV6cdUuMcu7nMq97UfQ/Tcj0Map3otTm0TBO0m5W5zDstk6Je+6v7+XERtEwna+kglz0vBXVouQkzM3WarLc6dEx5cu+xyXuCltPV67rNveOm0zLd6mUWNHl/rIqWKYI9v3papmrmQDG0TNlanX9rem1Sb3ktX3/XdOQkpZa1lwf772Ck1DLN5NyrO1qGPGgZ0rWh6gNI0aZNm2LTpk1VHwYZGRv5yQn/1Ox87JoYj70HJlf8ul0T4zG+Nc8Lg7LpuFnGtw6vuaulnVIfWh4s6z5vRczGomgZ8qBlBqnofct5Tmtapg4G0Widzn/LoOU82K86y73tflpu+rrJfU2QJvsy3ar7DGv6HqNlliqq16Z3VQUt062y9mVzoHc6boZuG9RQurRMt+p+rdx0Wi6fJganyecVXo9Kg/7pRMur0w6pcY7dXOZVb+q+h2m5Hga1TvTaHFqmCdrNylzmnZZJUa/91f38uAhappO1dJDLnpeCOrTchJmZOk3WWx06pjy599jkPUHL6ep13ebecdNpmW71MguavD9WRcsUwZ5fPS1TNXOgGFqmbK3OvzW9Nqm3vJavv2s6cpJSy9rLg/13MFJqmWZy7tUdLUMetAzpWlf1ARRpZmYmHnzwwXjwwQcjIuLgwYPx4IMPxqFDhyIi4sYbb4y3v/3ty37P4q+fmZmJxx57LB588MH4y7/8y7IPHU4aGxmOPbt3xK6J8WUf3zUxHjfv3tGYCwUokq4AVjIbAUiJfQtYK3ME8qRtTmVNACkzwyAdeoX86RyqpUFgkXkAy2kCmkv/0B/tAKkwryAdegWawryD6ugPyqU5qBdNQn3oEdKnYyDCLIAm0DlgDkBeNN1svv4A1TB/oZm0DwCkYGhhYWGh6oMoyte+9rV41ateteLj73jHO+K2226Ld77znfG9730vvva1r5383NDQ0Ipff+GFF8b3vve9rv/e6enpGBsbi6mpqRgdHe3n0GGFqdn5mJyZjyPHT8TpmzfG+NZhFxEDpONm0FX+tAy9q+Ns1HJ5Hnjggbj88svjtR+4Nc7c/sKqD2eFJw59O77y0Wvj/vvvj8suu6zqw6FHWmYQ6rhv5U7L5Kapc0TL5K4pbWu5e01ZE6RJy3RihqVBy0ToNQdaphOd15+O86bB5tAynZgHadByeTTBIGm53vRPt7S8nHZIlZabx7zKk5bzpNfm0TJNldu80zIpya2/ImmZQdBc+bRMO5pMg46bQY/503L+dNwMWqYTsyANWmYtdF4fWqYq5kCxtEzVNF2MVFv29YflUm2Z9Ji/g6Vl6kr7vdEy5EHLkI4NVR9AkV75ylfGwsJCy8/fdtttKz7W7tdDlcZGXDhA0XQFsJLZCEBK7FvAWpkjkCdtcyprAkiZGQbp0CvkT+dQLQ0Ci8wDWE4T0Fz6h/5oB0iFeQXp0CvQFOYdVEd/UC7NQb1oEupDj5A+HQMRZgE0gc4BcwDyoulm8/UHqIb5C82kfQCgztZVfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATeNB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBkHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBkHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULINVR8A5Gxqdj4mZ+Zj+viJGN2yMcZPG46xkeGqDwtqSzNAmcwcAFjO3gg0mRkI9aBFUmGtAkUzV6D+dAp50zgpsV6BVJhXpMR6Bapg9kD5dAeshRlC6qxhAKpmL6JprHloTR+wNhoCimKeQDr0CnnQMqRHt8CpzAVoBq1TZ9Yn0GRmIDBIZgwAUEceNA8D8vDhY3H97fvj7gOTJz+2a2I89uzeEedt21LhkUE9aQYok5kDAMvZG4EmMwOhHrRIKqxVoGjmCtSfTiFvGicl1iuQCvOKlFivQBXMHiif7oC1MENInTUMQNXsRTSNNQ+t6QPWRkNAUcwTSIdeIQ9ahvToFjiVuQDNoHXqzPoEmswMBAbJjAEA6mpd1QcAOZqanV9xARARsffAZNxw+/6Ymp2v6MignjQDlMnMAYDl7I1Ak5mBUA9aJBXWKlA0cwXqT6eQN42TEusVSIV5RUqsV6AKZg+UT3fAWpghpM4aBqBq9iKaxpqH1vQBa6MhoCjmCaRDr5AHLUN6dAucylyAZtA6dWZ9Ak1mBgKDZMYAAHXmQfMwAJMz8ysuABbtPTAZkzMuAmApzQBlMnMAYDl7I9BkZiDUgxZJhbUKFM1cgfrTKeRN46TEegVSYV6REusVqILZA+XTHbAWZgips4YBqJq9iKax5qE1fcDaaAgoinkC6dAr5EHLkB7dAqcyF6AZtE6dWZ9Ak5mBwCCZMQBAnXnQPAzA9PETbT9/pMPnoWk0A5TJzAGA5eyNQJOZgVAPWiQV1ipQNHMF6k+nkDeNkxLrFUiFeUVKrFegCmYPlE93wFqYIaTOGgagavYimsaah9b0AWujIaAo5gmkQ6+QBy1DenQLnMpcgGbQOnVmfQJNZgYCg2TGAAB15kHzMACjmze2/fzpHT4PTaMZoExmDgAsZ28EmswMhHrQIqmwVoGimStQfzqFvGmclFivQCrMK1JivQJVMHugfLoD1sIMIXXWMABVsxfRNNY8tKYPWBsNAUUxTyAdeoU8aBnSo1vgVOYCNIPWqTPrE2gyMxAYJDMGAKgzD5qHARjfOhy7JsZX/dyuifEY3zpc8hFBvWkGKJOZAwDL2RuBJjMDoR60SCqsVaBo5grUn04hbxonJdYrkArzipRYr0AVzB4on+6AtTBDSJ01DEDV7EU0jTUPrekD1kZDQFHME0iHXiEPWob06BY4lbkAzaB16sz6BJrMDAQGyYwBAOrMg+ZhAMZGhmPP7h0rLgR2TYzHzbt3xNiIiwBYSjNAmcwcAFjO3gg0mRkI9aBFUmGtAkUzV6D+dAp50zgpsV6BVJhXpMR6Bapg9kD5dAeshRlC6qxhAKpmL6JprHloTR+wNhoCimKeQDr0CnnQMqRHt8CpzAVoBq1TZ9Yn0GRmIDBIZgwAUGdDCwsLC1UfROqmp6djbGwspqamYnR0tOrDoUamZudjcmY+jhw/Eadv3hjjW4ddANSUjutBM6yVlumFmVNfWi7PAw88EJdffnm89gO3xpnbX1j14azwxKFvx1c+em3cf//9cdlll1V9OPRIy+mxN7IaLdMUuc9ALZOK3FtcKy3Xh7XKWmiZ1Zgr6dFy8+g0T1pmkcbT1cSOrVdy1MSWm8C8ap6UW7Ze4SdSbjk1Zg+DpOXV6Y7UaLlezBD6VZeWrWFYm7q0DCmrw16kZcpUhzWfKy2nTx9EaHktNERd6Dh95gkRWk6FXulEy2nQMp1ouX50Sz+0nDdzoTm03Gxaz0eOLVufNFGOLdMfMzBtWqbuzJjuaBnyoGVIx4aqDwByNjbipB96oRmgTGYOACxnbwSazAyEetAiqbBWgaKZK1B/OoW8aZyUWK9AKswrUmK9AlUwe6B8ugPWwgwhddYwAFWzF9E01jy0pg9YGw0BRTFPIB16hTxoGdKjW+BU5gI0g9apM+sTaDIzEBgkMwYAqKN1VR8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNN40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAySp90Pw//af/NL7zne+0/Pz09HRcd911JR4RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOBV+qD5D3/4w/GzP/uz8V//639d9fPHjh2L3//93y/5qAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGq9IHzUdEvPnNb443vOEN8YlPfKLqQwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoRaUPmh8aGoo9e/bErbfeGh/84Afjne98Z8zPz1d5SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV+mD5hcWFiIi4m1ve1vs3bs3/tt/+2+xa9eueOSRR6o8LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICBqvRB80tdfvnl8T/+x/+I4eHheOlLXxr33Xdf1YcEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBCVPmh+aGho2X+fffbZ8dWvfjV+8Rd/MV75ylfGLbfcUtGRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzOhir/8oWFhRUf27BhQ/zzf/7PY+fOnfHe9763gqMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGKxKHzT/4Q9/OLZu3brq5/7+3//78aIXvSh+7/d+r+SjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABisdVX+5VdddVW89KUvjenp6RWfm5qaine9613xzne+s/wDAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABigSh80/8lPfjLe9a53xejo6IrPjY2NxT/4B/8gPvGJT1RwZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDs6HKv3zfvn2xZ8+elp//23/7b8dv//Zvl3hEpGpqdj4mZ+Zj+viJGN2yMcZPG46xkeGqDwuypDcgN+YaAFWyDwFNZf5B/nQOrMZswBoAWjEfIB16JXfWOFAEswTSo1sgN+YalENr0GxmAPRGM7A6bQDkz6ynHesDSI25Bc2kfapi7QG9MDMAcwCaQ++QP50DS5kJ5MaaBnJglgEADF6lD5p/9NFHY+PGjS0/v2HDhnjsscdKPCJS9PDhY3H97fvj7gOTJz+2a2I89uzeEedt21LhkUF+9AbkxlwDoEr2IaCpzD/In86B1ZgNWANAK+YDpEOv5M4aB4pglkB6dAvkxlyDcmgNms0MgN5oBlanDYD8mfW0Y30AqTG3oJm0T1WsPaAXZgZgDkBz6B3yp3NgKTOB3FjTQA7MMgCAcqyr8i8///zz45vf/GbLz+/fvz/OPffcEo+I1EzNzq+4cIiI2HtgMm64fX9Mzc739Wd+59GZ2HfoyfjOYzN9/RmQo2560w/UkzZXN4jzCADoVpn7kHMBoE5SPQ83S6F7qXbeiTnAUtZD73KdDXSvjmtAy1APP54+Htf/x/9Zq/kArK6O+3kn9nt60e0at66Adga1X5o95KKOaznF81ygPsw1WLs6dtQNrUF9VDFHzACKlup+2C3NwOq0QT9y3zMgZav1adbTTkrrw/4D5ah7aynNLWiKMuaG9qlKv2uv7vspMBhV7VdmDtTHWuaAliEtdbpONT9gMNbauTahvdQaqdPeD0WwpjtLbU5BE+U0y8wcAKDuNlT5l7/hDW+ID33oQ/HzP//zsXnz5mWfO3bsWHz4wx+OX/iFX6jo6EjB5Mz8iguHRXsPTMbkzHyMjQx3/ec9fPjYiouRXRPjsWf3jjhv25Y1Hy+krFNvP5o+Hr/xpW/pB2rG3tZa0ecRANCLsvYh5wJA3aR4Hm6WQm9S7LwTc4ClrIf+5Dgb6E3d1oCWoR4ePnwsvjd5NO5+6PFVP2+PgHqp237eif2eXnWzxo/OP21dAW0NYr+0p5GLuq7l1M5zgfow12Dt6tpRN7QG9VDVHDEDKFLK+2G3NAOr0wa9asKeAalq1ecH3vjXzHpaSuVcwP4D5UihtVTmFjRFWXND+1Sln7WXwn4KDEYV+5WZA/XS7xzQMqSnLtep5gcMzlo61ya0l2Ijddn7oSjWdHspziloolxmmZkDAKRgXZV/+Qc/+MF44okn4gUveEH81m/9Vtx5551x5513xs033xwvfOEL44knnogPfOADVR4iNTd9/ETbzx/p8PmlpmbnV5zARzx7EXLD7ftjana+r2OEXHTq7f978ph+oGbsbe0VeR4BAL0qYx9yLgDUUWrn4WYp9C61zjsxB1jKeuhfbrOB3tVpDWgZ6mGxxcPH6jMfgPbqtJ93Yr+nH53W+NSxE9YV0FHR+6U9jVzUeS2ndJ4L1Ie5BmtX5466oTWoXpVzxAygKKnvh93SDKxOG/SiKXsGpKhdn//fk8fa/l6zvtlSOBew/0A5UmkthbkFTVHm3NA+Vel17aWynwKDUfZ+ZeZA/fQzB7QMaarDdar5AYPVb+fahPZSbaQOez8UyZpuLdU5BU2UwywzcwCAVFT6oPlzzjknvv71r8eLXvSiuPHGG+Pqq6+Oq6++On71V381XvSiF8U999wT55xzTpWHSM2Nbt7Y9vOnd/j8UpMz8ytO4BftPTAZkzNO4mm2Tr21oh+ojr2tvSLPIwCgV2XsQ84FgDpK7TzcLIXepdZ5J+YAS1kP/cttNtC7Oq0BLUM9LLa4aUP7ty7ZI6A+6rSfd2K/px+d1vjI8HrrCuio6P3SnkYu6ryWUzrPBerDXIO1q3NH3dAaVK/KOWIGUJTU98NuaQZWpw160ZQ9A1LUrs9OzPpmS+FcwP4D5UiltRTmFjRFmXND+1Sl17WXyn4KDEbZ+5WZA/XTzxzQMqSpDtep5gcMVr+daxPaS7WROuz9UCRrurVU5xQ0UQ6zzMwBAFJR6YPmIyIuvPDC+PKXvxyTk5Nx3333xX//7/89Jicn48tf/nJcdNFFPf1Ze/fujTe96U1x3nnnxdDQUNxxxx0df8/Xvva1uOyyy2LTpk1xySWXxG233dbf/yNUYuvmDXHVxPiqn9s1MR7jW4e7/rOmj59o+/kjHT4PuZianY/vPDoT+w49Gd95bCamZp+9gB3fOhy7WvR21cR47PvB4ZZ/pn6gGk3Y21rNrG60m2u9nkcAwFLd7E9l7ENNOBcA0tPt/FvLuX6RzFLoXd2vt3udL+YAS526HkaG18d7Xn1J/Jt3vDT+2dsui/mnnq5sz6q7us8GBq+MNdDtjDfboR4WW9z3g8NxxSVnrfprrpoYjw3rh+yvUBOd9vMN64Yqv5ezyH7PqYp47WbduqG2f4d1BUzNzseGdUOFva85wp5GPspey728FuDeJdCPpXPt1NeLbnnny+KZhYXKjs1cIxV1Pj/ohtageq3myOLePPfU0wO7Z20GUJSi98O6vPf2VJqB1WmDbizO9sePzsct73xZvOfVl8TI8PoVv87rBVCupeddc0893bLNfT84XOhrh+Sll3OBqs71vV5NDup6rbxUKq25hoH6KPP1au1TlV7X3szciRUtLL1Wq8t+Crmq+ry77P0qlXN4yE27WdPPHNAypKnTz8cv4+cSmB8wOGv5/kxtwkrdvrchor6NuEdNbnJa00XfE7SXQzqKnGXeFwcA0N6Gqg9g0RlnnBEve9nL1vRnHD16NC699NK47rrr4pd+6Zc6/vqDBw/GG9/4xnj3u98d/+7f/bu466674u/9vb8X5557brzuda9b07EweA8fPha/duc34x0/97x4ZmEh7n3o8ZOf2zUxHjfv3hFjI91fPIxu3tj286d3+Dzk4OHDx+L62/fH3QcmT35s18R47Nm9I87btiX27N4RN9y+P/ae8vlff/OL4g2furvln6sfqEbue1unmdXJ2Mhwy7nW63kEACzqdn8qYx/K/VwASFM382+t5/pFMkuhd3W+3u5nvpgDLLV0PYwMr49PXbMzbr33YHzmqw+d/HhVe1bd1Xk2UI5Br4FeZrzZDvWw2OIt9xyMT12zMyJi2fs+rrjkrHjHzz0vXv/Ju+OlF55hf4UaaLWfXzUxHv/wVZfE6z91d8zOPx0R1Z8X2+9ZqqjXbo6deLrt32NdQbMtzpr7v/9kfOqanYW8rznCnkY+ylzLvb4W4N4l0I/Fudbq9aKr/vcMqeK62FwjFXU+P+iG1qB6q82Rst7LYQZQlCL3wzq99/ZUmoHVaYNOVpvtV1xyVnzqmp3x3s/vO/n6fITXC6BMvbR5yz0H48vvvSp+7c5vmvWs0O25QJXn+l6vJnV1vlZeKpXWXMNAfZT5erX2qUqva29sy3DsO/TkshaWXqvVZT+FHNXhvLvs/SqVc3jISadZ088c0DKkqVXvZf5cAvMDBmOt35+pTViul/c2RNS3EfeoyU0ua3oQ9wTt5ZCOomaZ98UBAHQ2tLCwsFD1QQzC0NBQfPGLX4y3vOUtLX/N9ddfH1/60pfim9/85smP/Z2/83fi8OHD8Sd/8idd/13T09MxNjYWU1NTMTo6upbDpktTs/Px5W/+KM4+fVPMP/1MnH365ti4figemToep2/aEBefvTXOGd3c85/5jz+/b9lFyKJdE+Px6Wt2JnNjhd7p+NkG3vP5fcsuohctbWBqdj4mZ+bjyPETcfrmjTG+dTiOP/VMfOfRmTh87ERs3rg+Hjj0ZNxyz8GYnX9aP5RKy8vlsrctzp3p4ydidMvGGD/t2WPuZmb18ucvnWsp/LvkTMvleeCBB+Lyyy+P137g1jhz+wurPpwVnjj07fjKR6+N+++/Py677LKqD4ceNbHlbs+pT/09nfah1fbCbvaqXM4FqFYTW26KfmdL0X//qfOvn1k66OPMYZZqmSpMzc7H4dkTcXT+qTg6/3Rs27Ixzj59U2XN9Dtf6jQHtFy9pevhPa++JPYdenLZN6QsSmmPKFvV9+KqPgeK0PIg1sBqM35keH1cd+VF8XPPPys2b1wXYyPDJ7/edZrtpKvpLRdhaYuLzb7yBc+JqWMnIiJi3w8Oxx/++aH4Oz+7PXZesC0iIrafOVLpOSX50XJ3Tj2H2rppQxydeyqmj52I0zZtiG98/8n4p//5L1d8M2mV+6r9vjk6dVzUazcREY8emYtDT8zG0NDQsvdGtfuzgO6kvicvfU/z3FPPxJaN6+OZhYVYPzQUTy8srOk81p5GStq1XNZaXstrjb3ct6rDfUYYlNT35bIszrUdF2yr7etFVb8mk6OU5n8KLadwftDtn59jaymt95yl0HKVVpsjvbyXo4h1nusMoFhlXC/X7b23reTYjD2zOQa5L7svxWrazfYrLjkrdm4/4+SD0+o06+vOOXazDGJm9tJmxE/6jIjszoOqlHLLrX5uRqv1UfW5vterGaRBt1x1P71IrbUcr+/rKIXrv5T35NRV8Xr1oL4frO7rvAnq3nK3P5PnPX+wL+5+aOVe+uqffk78/V0Xx1mnDcfM3FPWGtmqquW6nXf3ul/5mV7UTd335ar0Mmt6+Xl+U8fmY+6pZ+Le7zy+7HvEVvtzoRda7k+v+/LU7PzJ7/eMePbnEpT1/Z7OBZpBy6sb1P2cU/f7xZ8/0svPGdEmq2lqy/2+t6HOjXh9qjp1uJefY8spr+lB3RM8dS/v53yAesux5ZQM6v2U/c6yql9fcP3QPy1DHrQM6dhQ9QFU6c/+7M/iNa95zbKPve51r4tf+ZVfafv75ubmYm5u7uR/T09PD+LwaOPJ2RPxn/c/vOzNrVdcclb8X1deFP/j+0/EmacNx8OHj/V0cTI2Mhx7du+IG27fv+xEftfEeNy8e4cT+MzoeKXJmflVL6IjIvYemIzJmfkYGxk++b9FDx8+Ftf/x/3L3mB71SVnxWfeujM+f9+h+PU3v0g/DIyW28thb3v48LG4/vb9y+bTronx+PU3vyju//6Tq/6epTOrG6fOtTLV4UWyOtAy5KHpLU/NzscjU8fjmp/dHtdecdGKB4y02p867UOt9sI9u3fEedu2tD2mHM4FKF/TW26KtcyWorSaf4v3J5a+qWfuqWdi88b18cChJ+Pxo92f6xd1nCnOUi2zVkVcrx6dfzo+eOc3K501S3V7//NUVc4BLdfP0vWw84Jty94sv1Sv96e6kct9pCrvxVV1DqTl5TqtgX7W+qkzfmR4fXzqmp1x670HV3xTy+LXO8VzPKql5eKdep71ma8+FDsv2Bb/1+9/IyK6a7mVXPZNiqfl3rU7h3r+c7bG9yePxtmnb4rf/j8uPXn/ZvHe+CDOi7uV6j0dOuu14073Ax4/On/y1y3dNy4+e+vJX7daB1dcclZ86pqd8d7P74uXXniGdQU9ym1Pbvee5m8+PBXnb9sS3508GqNb5ns+N7WnUWe9tFzkWm53zdfvawGLx9jNcdThtVYoUm77clkW59r3Jo+W+npRLxbn2uLc7Pd8hGfVff6n2HJZ57prOT/oxtJziOW9pXtvuu7rPWcptlyl1eZIt+/lKGqdD/I9EF7vSlcV18uD3u+KcmozU7Pz8Z1HZ5Jd5/bMvJW5L6dwX8q+VL52s/3ehx6P6664KCK8XtCJc+zmGtTM7LbNxb9vaZ+tOjVjO8ul5Xbrcun7VJZqteZGhtfHjgu2xSNTxwd6L8rr1RSp7JaLuFYua0an1lqV3xfUFHW955DLnpyDKl6vLrr91db5VRPj8bGrXxw/deZIYX8PK6XWcjffi/jI1PG45uXb49orl/+sn5Hh9fHWl18Yn/3qgbh7yfs76zBTYa3q0nI/592DPM/uZb/yM72og7q0XHe93iNrda8tYvX2r1zyPWKz809rmZ5puTernQscnX+65315bGQ4JmfmT/5cglMN8v0yzgXypOXOBnnf8vDsiXjnzz0vrvnZ7St+XkFExF3v+5sd29ImEVpetJb3NhSl6Ot/r09Vw8/sG5yU1/Sg3re+dC//xvef7PvnjrG6Kt6j1oSWUzGoed5qlnWz3qr+HhjXD93TMuRBy5CuRj9o/kc/+lGcc845yz52zjnnxPT0dBw7diy2bFn9ZPZjH/tY3HTTTWUcIquYmp2PD93xF8t+IGPEszcm18VQvP7Fz42f/+TdJz/ey8XJedu2xKev2RmTM/Nx5PiJOH3zxhjfmu5NFlrT8UrTx0+0/fyRVT4/NTu/4iHzEfHsG2qHhuK3/49L45zRzYUeJyyl5c5S3tumZudX3HSMePbm3ofu/GZcd+VFLb/ZZbWZVTd1/cauKmgZ8tDkljs9YGTxDWq97k/t9sIbbt8fn75mZ8c9PeVzAarR5JaboojZMkjTx0+0fJjgFZecFVfvPL/0Y0pxlmqZtSjierWOs6af+5+LqpoDWq6nxfXwvx6dafvrirw/5T7S2lU5l7TcvX7X+qkz/rorL4pb7z244vXkpV/vFM/xqJaWB+PUFk88s3Dyc920vFqz9k3a0XJvOp1DfeyXXhwfvOMvlv3QtVPvjVf5uq39Pk+9dtzufsDI8PpYiIj3fH5fy32jVQf3PvR4rBsaiv/nvVfFtpGN1hX0KKc9eZDvaV5kT6Ouem25iLXc6ZpvLa8FdKOOr3/AWuW0L5ftvG1b4kdTx9r+mqrfz+xeWTFSmP+ptlzGue6gzw8W5dJbCus9Z6m2XKV2rzWt5sjxE0ms81xmSlNVcb1c1n5XpNTXeQqzhLWp275c5ZpLvddUdZrtp2/eGHe97296vaCDurVMOQY5Mzu1ObZlY9zxD3+u63M6M7Y7ObTc77pcbc21+r67Qa0dr1dTlLJbXuu1ctkzWmssqvM9hxz25Jyk8Hp1K63W+d0HJuOGL+yPm3fviPPP8LD5Qcmp5U4/66ff70uCFNSl5V7Pu+tyL8TP9KIu6tJy3RV1j6xV+/c89HgMDQ3Fnf/oilg3NKRleqbl7q12LvCxX3pxfHn/Iyt+tn03+3KV75dxLpAfLbc3yPuWDx8+VtjPK9AmWn5W0e9t6FVdrv9ZGz+zj1YGeR6+uJcfnj0RH1zl5ze4v9+fquayluuh7Hne7Xqrw/fAuH7ojpYhD1qGdK2r+gBSdOONN8bU1NTJ//3gBz+o+pAaZXJmftkN/6XufmhyxUOtv/H9J+NP/9djceDHR2LfoSfjO4/NxNTsfMs/f2xkOC4+e2u8ZPsZcfHZW53AZ0rHK41u3tjycyPD6+OMkeH4zqMzyzp69MjcihfiF919YDKmj9XzjebkQ8vdSXVvm5yZX3HTcdHdByZj5wXbWv7e09vMtDpod1P1w3d+M348fXzFzM2ZliEPTW253QNGbr33YFx35UUnP7Z0f5qane8469vthXsPTMbkTHf7Q6rnAlSjqS03SVGzZTXdzLZORjdvbPlNu/c+9Hh85D/9v5WcH6c2S7VMvzq9Cajb/uo4a9rd/4zofC+hijmg5foaGxmOMzusgaLuTxXVZdOcOisePTI3sLnUiZa7s5a1fuqM33nBthXnkkv/vEePzEVEeud4VEvLg7O0xaX7a6eWV5vdi7Pk/u8/Ge959SXxb97x0vhnb7ss3nnFRfGn/+sx+yZa7lGna7vvPz674j1cp94bXzwvLuK+UT/s9/npteN29wOuu/Ki+Mid32x7DtrpfQtPPbNQ2rqqqiMYhJz25E7vaX7xT43FP3vbZXHLO18W73n1JfGN7z/Z1z0dexp11E/La1nL3dw/WutrAZ10OkdevO8EKclpX67C2JZyXi/qRxmvMTXlOmWQr38XJeWWB32uO+jzg4hyX9MddHcprPecpdxylVq91rSa0zdvrP069z6R9JV9vRxRzn5XpLqv8zK/14P6qtu+3GnNPTJ9fCDt1L3XnHWa7WedNuz1gi7UrWXKMch9emzLxmXvS1t8DXBkeH1ERJwxMtz1OZ0Z270cWu53Xa62H3R6WGa7tdPvvSWvV1OEsltey7VyVTNaa0R0v2dU8TpdDntybur8enU77db5PQ89Ht9/fLaS8+GmvP6dS8vtftbPH9z3/fj0NTvjdX/9nJ6/LwlSUZeWeznvruo8e7X57md6URd1abnuirpH1ul7xNYNDWmZvmi5O1Oz8/Gn/+uxeOfPPW/ZayznjG5u+bPtO+3LVb9fxrlAXrTcXi/n0L3cYzl5ndDlzyvohjabTcvP6rRH9vLehl7V9b0QTbn/W6Qq3yer5cFaaw+DPg8fGxmOp55ZaPnzG9zf702Vc1nL9dDrPF/LjOhlvVV9Tb/I9UNnWoY8aBnStaHqA6jSc5/73Pjxj3+87GM//vGPY3R0NLZs2dLy923atCk2bdo06MOjhenj7R9cPffUMyf/75Hh9fGpa3bGrfcejBu/8BcnP75rYjz27N4R521r/XUmbzpeaXzrcOyaGI+9p1x0jwyvj1ve+bL44B3fXPbC+66J8Xjv35po+2dOedA8A6blvHXa81vZNTEe41vrfROu1U3VkeH18X/+7Pb4v//9g8texMj93EXLkIemttzuhbJ7H3o8rrvi2TenLd2fHj58bMULXqvN+k574ZE+90pop6ktN8mgZku3s62T8a3D8XPPPys+89WHVv383f/7TQheeG9Py/SrmzcBddNfHWdNq/ufi39GHe8laLneylpTRXXZJKvNin/zjpe2/T2DvL7ScnfWstZP7XHp68WrOfTEbJy2aUO291sZDC2XY2nPnVpebXZPzszH/d9/8uT7RJZeW15xyVnxiuefZd9sOC33ptO13eEW7wlZvDe+eF5c1H0jiOi943bXbu3uQy6eg9bltRodkZuc9uROc+IHTxyLf/jvHoiIZ89JP3XNznjv5/e5p0MWym65m/tHg75v26l5951IUU77chXq/BrkoF9jatJ1Sl2uDdvRcmtldFrWa7pldJfCes+Zlteum+a/O3m07Z9x+Fi1P3TM+0TSV0XLdT4vXU2d17nv9WBR3fblTmvuu48djd/80rcKvyarc6+5S22211XdWqYcg9ynh9evi32HnlzxvrRPXbMz/ujPD/XUphnbvRxa7nddrrYf7LxgW8f3u6y2dpp0T5d6KrvltZxPmdFUqZs9o6qZnsOenJtUrx27eY962bO2SedKubTc7ue3vfXlF8Zt9x6Ma15+Yds/w31cUlaXlnvZi6o4z2413zv9DF3zgbLUpeW6K+oemdd4GRQtd+fJ2RPxn/c/HPcu+TnLV1xyVlx58Xjb39euzVSvi6knLbfX7T7a6z2Wbn6Wr57phZafVeUeWcfX2Zp0/7dIVV5DaXlwiuihjBnjGr44Vc5lLddDLz2tdUb0st5c06dDy5AHLUO61lV9AFV6xSteEXfdddeyj33lK1+JV7ziFRUdEd0Y3byx7ec3bfjJsr7uyovi1nsPLnsBMeLZC4gbbt8fU7PV/tAHqJOxkeHYs3tH7JpY/gL7h37hZ+KzX31o2UPmI57taL7DD/cfGV5f+HECzdFpz/+pM7asmFm7Jsbj5t07av9Nea1uqi6eu9zt3AUgGZ1eKJt76pll+9PU7PyKF8siVp/1nfbC0zt8HmA1g5gtvcy2TsZGhmN4Q/vb1t7UA4NT1Jvq6jhrWt3/TOVeAvVT1pryZtfetJoVnbi+qt5a1vqpPW7qcD4ZEe63Qk0t7blTy6vN7unjJ1q+T+Tehx6PD935Te1DD3p5j9Zqbt69IyKisPtG0I92126d1vCR4ydq8VpNkfdfgeL1sl/e+9Djceu9B+O6Ky9yTwf60M39o0Hft+3UfIT7TtA0dX4NcpCvMTXtOqUO14b0r4xOy3hNt6zurHdS103zndb53IlnKt3LvE+EftT5vHQ1dV3nvteDOuvmXvQgrsnq2msTpDbboU4GtU9Pzc7HjV/8i1Xfl3bbvQfjI7/413tq04xtln7X5Wr7wVyHn/Oz2tpp2j1diFjb+ZQZTZU67RmnbdpgpnNSqteO3dznKHPWOldKUzc/v62f70sCetPLXlT2eXa7+d7pZ+iaD1AvRd0j27ppQ9vfc1qHzwP9m5qdjw/dsfprLE8vLLT9ve325VSviyFF3bzW1c89lk7XCRGhZ+hDlXtk3V5nc/+3f94nm5+ieihjxlh/xanbXKZ83fZUxIzoZb25pgcA6E5Wr2DOzMzEQw89dPK/Dx48GA8++GCceeaZsX379rjxxhvjhz/8YXzuc5+LiIh3v/vd8ZnPfCbe//73x3XXXRdf/epX49//+38fX/rSl6r6f4EujG8djl0T47F3lQdEXHHJWbHvB4dP/vfOC7bFZ7760IpfF/HsxcjkzLyLA1jivG1b4tPX7IzJmfk4cvxEnL55YzyzsBA3fuEvVv31X//u43HVJeMrHkIf8WyPpw1ntc0AJWu35++aGI/njm5eMbPGtw4nsbe3uqnq3AUgPZ1eKHv++Gnx6Wt2npzfkzPzLR94eOqs77QXjm+1JwC9G8Rs6WW2deOMDr/Wm3pgcIp6U11dZ81q9z9TuZdAPZWxprzZtTetZsW+HxyOKy45a8U3Hka4vqqLta71pT0+s7AQV02Mr7oWFl9Pdr8V6mux58OzJ1q23Gp2j27e2Pa1lru1Dz1pd2131cT4svdonWr7mSNx7rYt8Z1HZwq9bwT9aHXtNjnT/puYFn9d1a/VFH3/FShWL+9pjnj2hyBdd8VF7ulAH7q9fzTI+7bdNG9/huap62uQg3yNqWnXKXW4NmRtBt1pGa/pltWd9U4OOjU/vnW47evJX//u43HO6ObK9jLvE6FfdT0vXU1d17nv9aDOur0XXfQ1WV17bYqUZjvUyaD26XbnCvc89HgcP9H+wUanMmObZS3r8tT9YPPG9W3/rtXWTtPu6cKifs+nzGiq1GnPGF6/zkxnmRSvHTvdp9/3g8Nx9UvOL+14nCulqZuf3+Z7SqEc3e5FZZ9nt5vvX//u4z1/3yJQrSLukQ2vX9fy3OCKS86K4fXrCjteYLnJmfm4e5X2IiL+rM3Ptu9mX07xuhhS1M1rXf3cY+l0nbD48wqA3lW1R9btdTb3f/vnfbL5KbKHQc8Y6684dZvLlK/bnoqYEb2uN9f0AACdZfUK5je+8Y3YuXNn7Ny5MyIi3ve+98XOnTvj137t1yIi4pFHHolDhw6d/PUXXXRRfOlLX4qvfOUrcemll8bHP/7x+L3f+7143eteV8nx052xkeHYs3tH7JoYX/bxXRPj8Y9fPRG33HPw5Mfmnmr/jVhHjp8YyDFCysZGhuPis7fGS7afERefvTVm5p5q+WtvuedgfOgXfiauuOSsZR+/4pKz4h+/eiK2jbgxBPSv3Z5/8+4dMTYyvGJmpXLjb/Gm6qmcuwCkp9VMj3h2zzp3bPkPGpzuMMuXzvpu9kKAXg1itvQy27rRabZ6Uw8MTlH91XnWpHovgfoa9JqyL/am1ay45Z6Dce0VF8VVrq9qq4i1vtjjxDmnx827d6z4el9xyVlx7RUXnXw92f1WqK+xkeG4cPy0uLnHc8puZoX2oXvtru0+dvWL49uPTK/6+3ZNjMfZp2+KiOLvG0G/Vrt26+YctA6v1egI6q3VnDj1GvRU7ulA73q5fzSo+7aLzbvvBJyqjq9BDvI1pqZdp9Th2pC1G2SnZbymW1Z31ju5aNf82MhwfOQX//qq3w+5eF5f5V7mfSKsRR3PS1dT13Xuez2os17uRRe5j9W11yZJZbZDnQxqn/a9U6zFWtfl0v3g3LHNPa+dpt3ThaX6OZ8yo6lSpz3j8LH5tr/fTG+m1K4dx0aG42NXvziubHGf/tuPTJc6a50rpambn9+2+D2lp74m5D4uFK+bvajs8+x28/2Wew7GR37xr3udBxKz1ntkh4/Nr3pusHgeOtXhegvoX6d9+UO/8DNr2pdTuy6GFHXzWlc/91g6XScs/rwCoD9V7JF1e53N/d/+eZ9sforuYZAzxvorTt3mMuXrtqciZkQ/6801PQBAexuqPoAivfKVr4yFhYWWn7/ttttW/T379u0b4FExCOdt2xKfvmZnTM7Mx5HjJ+L0zRtjfOtwzM4/HS+98IzYe2AyIiI2bVjX9s85fbOHYEMno206mZ1/OmJoIX5hx3lx3RUXxdxTz8SmDevi0SNz8bwzR1yEA2vWas9Pfb4s3lS94fb9J89bIiK2bWl/buLcBaB+Ws30Vi88tzu/jlg563PdC4FqFT1bep1tnfQ6W4HiFNlf3WcNpMK+2JtWs2J2/ul47+f3xf/z3qviqWcWXF/VUNFr/bxtW+I33vyieOixmZOvX+37weF47+f3Pfv6Vtg7IAW9nlOOjQzHT52xpe2fqX3oTbsOb3rzi2LuqfZ7t2s56qzbc9CqX6vREdTfqXNi88b18Z//4pFl16BL/dQZW9yPgD7U5V6p+05AKgY5N5t4nVL1tSH1VsZ5SpndWe80wVBE7Nx+xrLvh1x6Xl/lXlaXax8YpLquc9/rQd0trrlHpo7HdyePrnpfKqLYc8O69grQySD2ad87xVoVtS77WTtNvKcLa2FGU7V2e8Zq70VaykwnFT915kjcvHtHfP/x2Th87MTJ+xx/9OeH4tff/KJSZ61zpTR18/PbFr+n9LorLzr5mtDzx0+Lc8c228+hAmWfZ3f6GbpDEV7ngYT1M1O2btoY1/zr+5adGyx9ve2P33Nlmf8vQKN087Pt7ctQf51e6+rnHov78ZCfunXt/u/aeJ9sXlLrwforRt3mMtXopqciZoT1BgBQvKweNE+zjI2svIgfG1n+Zp0zRoZj18T4sguIRbsmxmN8q4sI6GR8a/uOzjl9c7zhRc9ddlPgpRee4SIdKMxqe34OVrupunXzBucuAAnq5YXnTufXq836XPdCoFpFzpZ+Zlsn3tQD1Smyv7rPGkiFfbF77WbFSy88I7aNbPTvVmNFr/VtIxvj97/+PXsHJK7Xc8rnjm523ggFa9VhN3u3aznqrttz0Cpfq9ERpGHpnJianY/9Pzi86g923jUxHs8d3Vz24UE26nKv1H0nIBWDmptNvU7xPj7aGfR5StndWe/k7qzThmP/Dw7HZ7760IrP1WEvq8u1DwxSHde57/UgBYvr7Te//K3Szg3r2CtAN4rep33vFEUoal32unaaek8X1sKMpmqt9gwznZycf8ZIbN204eSsvfol58f4lReVPmt1la5ufn7b7PzTJ18P2jUxHp++Zqf9HCpU5nl2p/l+1mnDXueBxPVzj+ylF55R2/eKQM66+dn29mVIQ7tW+73H4n485KdOXbv/u3bO0/KRYg/WXzHqNJepTqeeipoR1hsAQLHWVX0AULSxkeG4+Oyt8ZLtZ8SF46fFnt07YtfE+LJfs2tiPG7evcOFBHRhbGS4Y0dLu7v47K3aAujSqfPznNHNzl0AEtXtOXE359cAqRnUbHO/AapTx/6cR9F0deyyjsyK9BW51q0HaCbtQ7k67d2aJAV1v97SEaRHtzBYddi7dQ6kZBBz0xyE1Q3yPEV3UKwUmqrDtQ8MWt3WeQqzASKqWat16xWgCr53irrpZe0414X+mNHUkZlObuowa3WVNj+/DdJT1uw336EZ3CODNOgPmmEtrdfhHhFQrLp07TwEfkIPzVaXuUx9FTkjrDcAgOIMLSwsLFR9EKmbnp6OsbGxmJqaitHR0aoPh1VMzc7H5Mx8HDl+Ik7fvDHGtw67kGAZHXemI1KgZXLR9Jmr5fI88MADcfnll8drP3BrnLn9hVUfzgpPHPp2fOWj18b9998fl112WdWHQ4+03F7TZz3p0DK9MNvqS8vkpMmzRsvQvTrPCi2Xr87rgXRpuf60Tze0XB5NMihN6lhH5CzXlnVL0+Tacjs6J0dNbJn+mYP1peV86a5ZtDx4mqIMWk6P2cBq6tiytQq9q2PLpMf8rZ6W+2f9UidahrWpw0zXMbmpQ1dVyLXlpn49aa5cWy6CeUBKtFwOc4FB03Jr+iMlWu6f1qkTLbPIbEqbloulB6qi5TSYEXSiZciDliEdG6o+ACjD2IgLD1grHQGUx8wFyJ9ZD+TIbAPKYNYA3TArWMp6gGbSPtSLJmHtdATp0S3kT+dA05mDUD7dQbE0BazGbCAV1ipANcxfUmb9AuTDTIfi6Sovvp7AIvMAOJW5ANXRHzSD1oE6MpvgJ/QAtGNGAADUy7qqDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgaTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBkHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBkHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRsQ9UHAAAA0K9Dhw7F5ORk1YfR0vj4eGzfvr3qw0jet771raoPoSVfYwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPrlQfMAAECSDh06FD/9038tjh2brfpQWtqyZST+6q++5UHkfTo29XhEDMXf/bt/t+pDacnXGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH550DwAAJCkycnJOHZsNl5+3Ydj9NznVX04K0w/8r2475abYnJy0kPI+3Ri9khELMRL3np9POein676cFbwNQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAtPGieQkzNzsfkzHxMHz8Ro1s2xvhpwzE2Mlz1YQEDpHugF2YGgzR67vPizO0vrPowGKCtZ2/3NSYp9j3Ik7YhXfoFqJY5TIR1ALnQMqRNw1AevUHeNA7p0zEAg2SfoYmse+ieXmCwNEbTWPNAE5h1UAwtAZ2YE5AfXZMLaxnolbkB1dMhNIvmIT26BXJhnkFeNA3F0RMAQB48aJ41e/jwsbj+9v1x94HJkx/bNTEee3bviPO2banwyIBB0T3QCzMDgCax70GetA3p0i9AtcxhIqwDyIWWIW0ahvLoDfKmcUifjgEYJPsMTWTdQ/f0AoOlMZrGmgeawKyDYmgJ6MScgPzomlxYy0CvzA2ong6hWTQP6dEtkAvzDPKiaSiOngAA8rGu6gMgbVOz8ysuDiIi9h6YjBtu3x9Ts/MVHRkwKLoHemFmANAk9j3Ik7YhXfoFqJY5TIR1ALnQMqRNw1AevUHeNA7p0zEAg2SfoYmse+ieXmCwNEbTWPNAE5h1UAwtAZ2YE5AfXZMLaxnolbkB1dMhNIvmIT26BXJhnkFeNA3F0RMAQF48aJ41mZyZX3FxsGjvgcmYnHGBALnRPdALMwOAJrHvQZ60DenSL0C1zGEirAPIhZYhbRqG8ugN8qZxSJ+OARgk+wxNZN1D9/QCg6UxmsaaB5rArINiaAnoxJyA/OiaXFjLQK/MDaieDqFZNA/p0S2QC/MM8qJpKI6eAADy4kHzrMn08RNtP3+kw+eB9Oge6IWZAUCT2PcgT9qGdOkXoFrmMBHWAeRCy5A2DUN59AZ50zikT8cADJJ9hiay7qF7eoHB0hhNY80DTWDWQTG0BHRiTkB+dE0urGWgV+YGVE+H0Cyah/ToFsiFeQZ50TQUR08AAHnxoHnWZHTzxrafP73D54H06B7ohZkBQJPY9yBP2oZ06RegWuYwEdYB5ELLkDYNQ3n0BnnTOKRPxwAMkn2GJrLuoXt6gcHSGE1jzQNNYNZBMbQEdGJOQH50TS6sZaBX5gZUT4fQLJqH9OgWyIV5BnnRNBRHTwAAefGgedZkfOtw7JoYX/VzuybGY3zrcMlHBAya7oFemBkANIl9D/KkbUiXfgGqZQ4TYR1ALrQMadMwlEdvkDeNQ/p0DMAg2WdoIuseuqcXGCyN0TTWPNAEZh0UQ0tAJ+YE5EfX5MJaBnplbkD1dAjNonlIj26BXJhnkBdNQ3H0BACQFw+aZ03GRoZjz+4dKy4Sdk2Mx827d8TYiAsEyI3ugV6YGQA0iX0P8qRtSJd+AaplDhNhHUAutAxp0zCUR2+QN41D+nQMwCDZZ2gi6x66pxcYLI3RNNY80ARmHRRDS0An5gTkR9fkwloGemVuQPV0CM2ieUiPboFcmGeQF01DcfQEAJCXDVUfAOk7b9uW+PQ1O2NyZj6OHD8Rp2/eGONbh10cQMZ0D/TCzACgSex7kCdtQ7r0C1Atc5gI6wByoWVIm4ahPHqDvGkc0qdjAAbJPkMTWffQPb3AYGmMprHmgSYw66AYWgI6MScgP7omF9Yy0CtzA6qnQ2gWzUN6dAvkwjyDvGgaiqMnAIB8eNA8hRgbcUEATaN7oBdmBgBNYt+DPGkb0qVfgGqZw0RYB5ALLUPaNAzl0RvkTeOQPh0DMEj2GZrIuofu6QUGS2M0jTUPNIFZB8XQEtCJOQH50TW5sJaBXpkbUD0dQrNoHtKjWyAX5hnkRdNQHD0BAORhXdUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA0HjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl86B5AJvuGfwAAQAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyTZUfQAMztTsfEzOzMf08RMxumVjjJ82HGMjw1UfFnAKrQJNZgYCUBZ7DuRL31BP2oRm0TxUT4eQJ21DnrQNedM45EXTUD+6BHJktgGpMr+ax9ccWGQewEq6AIpglkD+dA5AEVLaT1I6VqAa5gTkQctAt8wLaE0f0Cyah3rQIuRBy9BM2gcAIHceNJ+phw8fi+tv3x93H5g8+bFdE+OxZ/eOOG/blgqPDFhKq0CTmYEAlMWeA/nSN9STNqFZNA/V0yHkSduQJ21D3jQOedE01I8ugRyZbUCqzK/m8TUHFpkHsJIugCKYJZA/nQNQhJT2k5SOFaiGOQF50DLQLfMCWtMHNIvmoR60CHnQMjST9gEAaIJ1VR8AxZuanV9xMRMRsffAZNxw+/6Ymp2v6MiApbQKNJkZCEBZ7DmQL31DPWkTmkXzUD0dQp60DXnSNuRN45AXTUP96BLIkdkGpMr8ah5fc2CReQAr6QIoglkC+dM5AEVIaT9J6ViBapgTkActA90yL6A1fUCzaB7qQYuQBy1DM2kfAICm8KD5DE3OzK+4mFm098BkTM64oIE60CrQZGYgAGWx50C+9A31pE1oFs1D9XQIedI25EnbkDeNQ140DfWjSyBHZhuQKvOreXzNgUXmAaykC6AIZgnkT+cAFCGl/SSlYwWqYU5AHrQMdMu8gNb0Ac2ieagHLUIetAzNpH0AAJoiywfNf/azn43nPe95sXnz5nj5y18ef/7nf97y1544cSJ+/dd/PS6++OLYvHlzXHrppfEnf/InJR5t8aaPn2j7+SMdPg+UQ6tAk5mBAJTFngP50jfUkzahWTQP1dMh5EnbkCdtQ940DnnRNNSPLoEcmW1Aqsyv5vE1BxaZB7CSLoAimCWQP50DUISU9pOUjhWohjkBedAy0C3zAlrTBzSL5qEetAh50DI0k/YBAGiK7B40/0d/9Efxvve9Lz784Q/HAw88EJdeemm87nWvi0cffXTVX//BD34w/uW//Jfx6U9/Ov7yL/8y3v3ud8fVV18d+/btK/nIizO6eWPbz5/e4fNAObQKNJkZCEBZ7DmQL31DPWkTmkXzUD0dQp60DXnSNuRN45AXTUP96BLIkdkGpMr8ah5fc2CReQAr6QIoglkC+dM5AEVIaT9J6ViBapgTkActA90yL6A1fUCzaB7qQYuQBy1DM2kfAICmyO5B87/zO78T73rXu+Laa6+Nn/mZn4l/8S/+RYyMjMQtt9yy6q//t//238av/uqvxhve8IZ4/vOfH7/8y78cb3jDG+LjH/94yUdenPGtw7FrYnzVz+2aGI/xrcMlHxGwGq0CTWYGAlAWew7kS99QT9qEZtE8VE+HkCdtQ560DXnTOORF01A/ugRyZLYBqTK/msfXHFhkHsBKugCKYJZA/nQOQBFS2k9SOlagGuYE5EHLQLfMC2hNH9Asmod60CLkQcvQTNoHAKApsnrQ/Pz8fNx///3xmte85uTH1q1bF695zWviz/7sz1b9PXNzc7F58+ZlH9uyZUvcc889Lf+eubm5mJ6eXva/OhkbGY49u3esuKjZNTEeN+/eEWMjLmigDh1rFdauDi3THzOQpbQMeahry/Yc6E1dW16NvqG1KlvWJhQnhX1Z89DZoFvWIZSj7H1Z2zAYVZ9jaxvWruqO29E4dK/OLS/SNHTmWhnykMK+nDOzjaJombKZX4NR55Z9zaF7dW65COYBTdFLy7qA+kppXzZLoLWUWm5H5zRdLi1D1arcT3rt2N4H9VSnPdmcgP5pGfJQp5bLYF6QqyJa1gdUr8x9WfMwON7zBXnQMuRhkOfY2ofyNO0+NuRKy5CuoYWFhYWqD6IoDz/8cJx//vnx9a9/PV7xilec/Pj73//++NM//dO47777Vvyet771rfE//+f/jDvuuCMuvvjiuOuuu+LNb35zPP300zE3N7fq3/ORj3wkbrrpphUfn5qaitHR0eL+H1qjqdn5mJyZjyPHT8TpmzfG+NZhFzPwv9WpY61C/+rUMv0xA4nov+UHHnggLr/88njtB26NM7e/cJCH2JcnDn07vvLRa+P++++Pyy67rOrDWVXd/w2/d99/iftuuSmu/JXPxvl/bWfVh7NCCl/jMtV9X7bnQHfq3vJq9A0r1aFlbcLa1aHlbmkeWiurZR3CYFW1L2sbilWXc2xtQ//q0nE7GofOUmh5kaahNdfKkIeU9uWcmW2slZapivlVrBRa9jWHzlJouQjmAbnrp2VdQP2kuC+bJbBSii23o3OaKreWoWpV7Cf9dmzvg3qp455sTkDvtAx5qGPLZTAvyE2RLesDqlPFvqx5KJ73fEEetAx5KOMcW/sweE29jw250TKkq/EPmn/sscfiXe96V/zxH/9xDA0NxcUXXxyvec1r4pZbboljx46t+vfMzc0tewj99PR0XHDBBZUNvcULl+njJ2J0y8YYP82FC3TST8dag/qp254MOahiv+u35bo/JD2Fh5DX/d/Qg+bTstZ92fk21EPdzrHNBuhP3VoeNLOCXDWt5dyYTSyqqmVrEIpV531Z79C9urSsW+hfXTo+la6hN3VtuRt6h59w3wvykPK+3Auzg9w1pWXMs9z5fkfIQ532ZTMC+ldUyzqEajnHhjwUsS9rG6pXp+tlGJTc95u6dJz7vzMMmmtlyIOWIQ9rOcfWNNSHfRnyUOS9L41DdepyH7so5glN1W/LmoF6yW1fhqbSMuRBy5CuDVUfQJHGx8dj/fr18eMf/3jZx3/84x/Hc5/73FV/z3Oe85y444474vjx4/H444/HeeedFzfccEM8//nPb/n3bNq0KTZt2lTosffr4cPH4vrb98fdByZPfmzXxHjs2b0jztu2pcIjg3rrtWOtQT3VaU+GHFS132kZ8rCWlp1vQ33UaV82G6B/dWp50MwKctaklnNjNrFUFS1bg1C8uu7Leofe1KFl3cLa1KHjU+kaelfHlruhd1jOfS/IQ6r7ci/MDpqgCS1jnjWB73eEPNRlXzYjYG2KaFmHUD3n2JCHte7L2oZ6qMv1MgxKE/abOnTchH9nGDTXypAHLUMe+j3H1jTUi30Z8lDUvS+NQ7XqcB+7KOYJTdZPy5qB+slpX4Ym0zLkQcuQrnVVH0CRhoeH4/LLL4+77rrr5MeeeeaZuOuuu+IVr3hF29+7efPmOP/88+Opp56K22+/Pd785jcP+nDXbGp2fsXNioiIvQcm44bb98fU7HxFRwZ50RoATWC/A6pi/gCrMRuAbpgVQB2ZTVTNGoTm0DukR7eQH11Dc+gdqqdDoB9mB5AL84xTWRNAO2YEVE+HkB7dQp60DUAZ7Dfl8O8M5dMd5EHLkBdNQ9o0DHnTOFAU8wR6oxkAAAByldWD5iMi3ve+98W//tf/On7/938/vvWtb8Uv//Ivx9GjR+Paa6+NiIi3v/3tceONN5789ffdd1984QtfiO9+97tx9913x8///M/HM8/8/+zdfZBeZ33Y/d/K0sqS5V3H7GMsERloEQRoZGzz0oYgbAJpRDBjUChPktY2JpnMdIC2hDeHNC8TU9tJWxITTzMZYwsyNHQSYwZm2jQkxMjxMMnYjipSJ1SqzSNii5A1eFdrWbsC7/OHR8LSvt0v5z7nXL/z+czoD2tX1nXOfX1/130L4fNUfOADH2jqEno2Pbew5A8rTtp3cDqm5/yBBVRBawB0gfMOaIr5AyzHbAB6YVYAbWQ20TR7ELpD71Ae3UI+uobu0Ds0T4fAIMwOIAvzjDPZE8BqzAhong6hPLqFnLQNQB2cN/Vwn6F+uoMctAy5aBrKpmHITeNAVcwT6I9mAAAAyGp90wuo2tvf/vb4h3/4h/ilX/ql+MY3vhEve9nL4o/+6I/i2c9+dkREHD58ONatW3fq+48fPx6/+Iu/GA899FBs2bIl3vjGN8bv/d7vxXnnndfQFfRu9viJVb9+dI2vA73RGgBd4LwDmmL+AMsxG4BemBVAG5lNNM0ehO7QO5RHt5CPrqE79A7N0yEwCLMDyMI840z2BLAaMwKap0Moj24hJ20DUAfnTT3cZ6if7iAHLUMumoayaRhy0zhQFfME+qMZAAAAskr3oPmIiHe9613xrne9a9mv3X333af982tf+9p48MEHa1hV9SbO3rDq189d4+tAb7QGQBc474CmmD/AcswGoBdmBdBGZhNNswehO/QO5dEt5KNr6A69Q/N0CAzC7ACyMM84kz0BrMaMgObpEMqjW8hJ2wDUwXlTD/cZ6qc7yEHLkIumoWwahtw0DlTFPIH+aAYAAICs1jW9AAY3tWU8du2YWvZru3ZMxdSW8ZpXBDlpDYAucN4BTTF/gOWYDUAvzAqgjcwmmmYPQnfoHcqjW8hH19Adeofm6RAYhNkBZGGecSZ7AliNGQHN0yGUR7eQk7YBqIPzph7uM9RPd5CDliEXTUPZNAy5aRyoinkC/dEMAAAAWXnQfMEmN4/HTXt2LvlDi107puLmPTtjcrM/sIAqaA2ALnDeAU0xf4DlmA1AL8wKoI3MJppmD0J36B3Ko1vIR9fQHXqH5ukQGITZAWRhnnEmewJYjRkBzdMhlEe3kJO2AaiD86Ye7jPUT3eQg5YhF01D2TQMuWkcqIp5Av3RDAAAAFmtb3oBDGfbeZviYz95SUzPLcTR4yfi3LM3xNSWcX9YARXTGgBd4LwDmmL+AMsxG4BemBVAG5lNNM0ehO7QO5RHt5CPrqE79A7N0yEwCLMDyMI840z2BLAaMwKap0Moj24hJ20DUAfnTT3cZ6if7iAHLUMumoayaRhy0zhQFfME+qMZAAAAMvKg+QQmN/sDCqiD1gDoAucd0BTzB1iO2QD0wqwA2shsomn2IHSH3qE8uoV8dA3doXdong6BQZgdQBbmGWeyJ4DVmBHQPB1CeXQLOWkbgDo4b+rhPkP9dAc5aBly0TSUTcOQm8aBqpgn0B/NAAAAkM26phcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DUeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMw+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiZB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVb3/QCAAAAMvubv/mbppewojavrSRtvo9TU1Nx0UUXNb0MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAluFB8wAAACPw5MxjETEW//Jf/suml7KmE/MLTS+hSCW8xps2bY6//du/8bB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAFvKgeQAAgBE4cexoRCzGy37qg/H/PP8Hml7Oso585cvx15/73fjOd77T9FKK1PbXePbI1+Ivbv/VmJ6e9qB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAFvKgeQAAgBHacsFFcf5FL2p6GcuaPfK1ppeQQptfYwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANprXdMLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgaD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICarW96AV0xc2whpucWYvb4iZjYtCGmzhmPyc3jTS8LaBmzAkZPZwDQHs5lyEHLkIOWIQ89Q/l0DDloGXLQMuSlbyiLZoEzmQtAP8wMAPrl7KiG+wjtplEYHX0BgzI/oBpaghy0DN2kfSibhoHVmBEwPB1BbhqHsmgWctI2dIfeoX10CQAAp/Og+Ro8+viT8cE7D8Q9B6dP/dyuHVNx056dse28TQ2uDGgTswJGT2cA0B7OZchBy5CDliEPPUP5dAw5aBly0DLkpW8oi2aBM5kLQD/MDAD65eyohvsI7aZRGB19AYMyP6AaWoIctAzdpH0om4aB1ZgRMDwdQW4ah7JoFnLSNnSH3qF9dAkAAEuta3oB2c0cW1jyQSQiYt/B6fjQnQdi5thCQysD2sSsgNHTGQC0h3MZctAy5KBlyEPPUD4dQw5ahhy0DHnpG8qiWeBM5gLQDzMDgH45O6rhPkK7aRRGR1/AoMwPqIaWIActQzdpH8qmYWA1ZgQMT0eQm8ahLJqFnLQN3aF3aB9dAgDA8jxofsSm5xaWfBA5ad/B6Zie82EEMCugDjoDgPZwLkMOWoYctAx56BnKp2PIQcuQg5YhL31DWTQLnMlcAPphZgDQL2dHNdxHaDeNwujoCxiU+QHV0BLkoGXoJu1D2TQMrMaMgOHpCHLTOJRFs5CTtqE79A7to0sAAFieB82P2OzxE6t+/egaXwe6wayA0dMZALSHcxly0DLkoGXIQ89QPh1DDlqGHLQMeekbyqJZ4EzmAtAPMwOAfjk7quE+QrtpFEZHX8CgzA+ohpYgBy1DN2kfyqZhYDVmBAxPR5CbxqEsmoWctA3doXdoH10CAMDyPGh+xCbO3rDq189d4+tAN5gVMHo6A4D2cC5DDlqGHLQMeegZyqdjyEHLkIOWIS99Q1k0C5zJXAD6YWYA0C9nRzXcR2g3jcLo6AsYlPkB1dAS5KBl6CbtQ9k0DKzGjIDh6Qhy0ziURbOQk7ahO/QO7aNLAABYngfNj9jUlvHYtWNq2a/t2jEVU1vGa14R0EZmBYyezgCgPZzLkIOWIQctQx56hvLpGHLQMuSgZchL31AWzQJnMheAfpgZAPTL2VEN9xHaTaMwOvoCBmV+QDW0BDloGbpJ+1A2DQOrMSNgeDqC3DQOZdEs5KRt6A69Q/voEgAAludB8yM2uXk8btqzc8kHkl07puLmPTtjcrMPI4BZAXXQGQC0h3MZctAy5KBlyEPPUD4dQw5ahhy0DHnpG8qiWeBM5gLQDzMDgH45O6rhPkK7aRRGR1/AoMwPqIaWIActQzdpH8qmYWA1ZgQMT0eQm8ahLJqFnLQN3aF3aB9dAgDA8tY3vYAu2HbepvjYT14S03MLcfT4iTj37A0xtWXcBxHgNGYFjJ7OAKA9nMuQg5YhBy1DHnqG8ukYctAy5KBlyEvfUBbNAmcyF4B+mBkA9MvZUQ33EdpNozA6+gIGZX5ANbQEOWgZukn7UDYNA6sxI2B4OoLcNA5l0SzkpG3oDr1D++gSAACW8qD5mkxu9uEDWJtZAaOnMwBoD+cy5KBlyEHLkIeeoXw6hhy0DDloGfLSN5RFs8CZzAWgH2YGAP1ydlTDfYR20yiMjr6AQZkfUA0tQQ5ahm7SPpRNw8BqzAgYno4gN41DWTQLOWkbukPv0D66BACA061regEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeNB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1W9/0AjJYXFyMiIjZ2dmGVwLdce6558bY2Fhl/z4dQzO0DDk01fLc3FxERMz83UPx1He+W9nvX5W5bz4SERGz3/habNy4seHVLK/ta7S+4Rz9xv8XEU+30svZ6FyGHLQMOWgZctAy5KBlyEHLkIOWIYcqW9YxNMOZDDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly8Pc3oXzOZMhBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQvkE79qD5Chw9ejQiIrZv397wSqA7ZmZmYmJiorJ/n46hGVqGHJpu+S8/8WuV/d6jcODTv9H0EtbU9jVa33Be+9rX9vR9TbcMVEPLkEPVLT/22GMRoWWom3MZctAy5KBlyEHLkEOVLesYmuFMhhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5+PubUD5nMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUo36Adjy0uLi6OYD2d8tRTT8Wjjz4a5557boyNjTW9nNabnZ2N7du3x9e//vVKD58u6vK9rLq3UXXc5dfoTO7F09yH042q5cXFxbjoootS3eeseyfjdXXxmko5l6uW8bU+Keu1Zb2uiGqubRQtf/WrX42XvOQlKe95rzLvu165B/Xeg7rPZa+vexDhHkRUfw+qbvnxxx+P7/u+74vDhw/H5ORkZf/eJmXbd9muJyLfNQ1yPV39vHxStj3Qj65ee9br9ufYvcn2+ruednMu9y7baz8K7tHa2nSPutryM7Xp9RiG62iXuq+jyuaq7DjL61kn92wwGe5bW87kDPdyFNyXlbk3p2tLy03Lti9cT7uN4nra0nK21yrCNZUiyzW1peU6ZHnN2sC9rFZb/y72ci177avjXlYj231sw7lc8j0tee0R1t+0KtffhparUvrruhLXVZ4mri1Ty3XIvP9W0rVrLvV6/f8d+1P6+iPKvwbrX57/X8XpSt0n1l2vNq67rX9/sy5tfE2q5PrK1uv1ZfysnOW1zXAdGa4hoozrKKnlEu7nmay5HtZcVstVKPE1bxv3cHiZ/y72cuyZlbk3y+vyfWljyyW+HiWuOaLMdVvz8trYcpVKfN2X4zrao63XUGfLbb0HWbi/o1PCvW3iXC7hvoyKa+/mtUeM/vqbeo+d5XV1He2S5Toi+r8WLQ/HdbRLV69j0I7XD7I4Trdu3br4/u///qaXUZyJiYmiI20T93J4o+7Ya/Q97sXT3IfRONny7OxsROS8zxmvKSLndbmmwZX2/jrja31S1mvLel0R7bq2devWxXOe85yIaNe6muIeuAcRZd6DXs/lEq+tau6BexDR3nuwbt26iIiYnJxs5fqG0dZ7Pqhs1xOR75qavJ7SPi+flG0P9KOr197V6+5V9j/Hdj3t5nqqU9q5nO21HwX3aG0Z71FpLT9TltfDdbRLidcxio5LvA9Nc88G4759z7Atu5fLc19W5t6MRsnvryPy7QvX025tvh7n8lKuqQwZr2kYJZzLXrPquJfVatP9XKvlNq21dO5lNdzH5Q1zLpd8T0tee4T1N62N62/De+w23pcquK7ylHxtbWi5DiW/RoPq2jV37XrP1JX/v2Pp648o/xqsf7Sy/P8qrLte1t0uJb+/zvqanOT6ylb39bWp5SyvbYbryHANEXmuoxd1tFzi/bTmelhzddp0Lq+mrfevJO7h8Np8D/3/Hevl3izPfRlelS2X+HqUuOaIMtdtzaPV1vfYJd3D1biO9shwDavppeXs96Bp7u/odOne9nMud+m+nMm1d/PaI8q5/n7fY5dyXWtxHe2S5ToimrsWLZfNdbTLqK9j3cj+zQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsy4PmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmQfPUbuPGjfHLv/zLsXHjxqaXUjz3sv28Rt/jXjzNfahHxvuc8Zoicl6Xa+qOzPcl67Vlva6I9l5bW9dVJ/fAPYjIfQ8yX1uv3AP3IKL996Dt6xtEtmvKdj0R+a4p2/XUocv3rKvX3tXrHlS2++V62s31dJd7tTb3aG3uUbtkeT1cR7tkuY5huQ/9c88G475Vx71cnvuyMveG5WTbF66n3bJdzzNlvDbXVIaM15Sd16w67mW1SrqfJa217dzLariP1Sv5npa89gjrb1rp6x+VrPfFdZUn87Vl0cXXqGvX3LXrHVTp96n09UeUfw3WX6/S1nuSddfLuqlK9tfE9ZUt+/WtJsu1Z7iODNcQkec62qLE+2nN9bDm7nH/huceDq9r97Br19sP92Z57ku7lPh6lLjmiDLXbc3dlOUeuo72yHANw3IPRsv9HR33dnldvi+uvZvXHpH3+rNcl+tolyzXEVHOtZSyzrW4jnZxHf0ZW1xcXBzp7wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAadY1vQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArvGgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM08aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZh40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOg+Qrt27cvrrzyyti2bVuMjY3FZz/72b5+/a/8yq/E2NjYkh/nnHPOaBYMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMKD5iv0xBNPxMUXXxy33nrrQL/+fe97Xxw5cuS0Hy95yUvibW97W8UrBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrkQfMV2r17d9xwww3xlre8Zdmvz8/Px/ve9754znOeE+ecc0686lWvirvvvvvU17ds2RIXXnjhqR9///d/Hw8++GC8853vrOkKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDp40HyN3vWud8WXv/zl+PSnPx0HDhyIt73tbfFjP/ZjcfDgwWW//7bbbosXvvCF8ZrXvKbmlQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACj5EHzNTl8+HDccccd8Qd/8Afxmte8Jv7xP/7H8b73vS9++Id/OO64444l33/8+PH41Kc+Fe985zsbWC0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwSuubXkBXfOUrX4nvfve78cIXvvC0n5+fn49nPetZS77/rrvuiqNHj8Y111xT1xIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmnjQfE3m5ubirLPOivvvvz/OOuus0762ZcuWJd9/2223xZve9KZ49rOfXdcSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJp40HxNLrnkkvjud78b3/zmN+M1r3nNqt/78MMPx5/92Z/F5z73uZpWBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTJg+YrNDc3F4cOHTr1zw8//HDs378/zj///HjhC18YP/3TPx1XX311/Kf/9J/ikksuiX/4h3+IP/3TP42dO3fGj//4j5/6dbfffnts3bo1du/e3cRlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACM2tri4uNj0IrK4++6744orrljy89dcc03s3bs3Tpw4ETfccEN88pOfjEceeSSmpqbin/7Tfxq/+qu/Gj/4gz8YERFPPfVUPPe5z42rr746PvKRj9R9CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEANPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGbrml4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNd40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzTxovgKLi4sxOzsbi4uLTS8FGJCOIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP5dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylE/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUM5PGi+AkePHo3Jyck4evRo00sBBqRjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1A+HUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM5dMx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1AOD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICarW96AQAzxxZiem4hZo+fiIlNG2LqnPGY3Dze9LKAPmkZ2k2j0C2aB4D2cC7DyvRB3ew5gBzMc8hBy5CDlqF8OoYctAw5aJm2sBehWRoEqI6ZCjloGcqiWchN45CDlsnIvgZKZHZBDlqGHLQMOWgZRkNbwCDMjm7wOgNVMEsAemNeAkD3eNA80KhHH38yPnjngbjn4PSpn9u1Yypu2rMztp23qcGVAf3QMrSbRqFbNA8A7eFchpXpg7rZcwA5mOeQg5YhBy1D+XQMOWgZctAybWEvQrM0CFAdMxVy0DKURbOQm8YhBy2TkX0NlMjsghy0DDloGXLQMoyGtoBBmB3d4HUGqmCWAPTGvASAblrX9AKA7po5trDkQ0hExL6D0/GhOw/EzLGFhlYG9EPL0G4ahW7RPAC0h3MZVqYP6mbPAeRgnkMOWoYctAzl0zHkoGXIQcu0hb0IzdIgQHXMVMhBy1AWzUJuGocctExG9jVQIrMLctAy5KBlyEHLMBraAgZhdnSD1xmoglkC0BvzEgC6y4PmgcZMzy0s+RBy0r6D0zE954MIlEDL0G4ahW7RPAC0h3MZVqYP6mbPAeRgnkMOWoYctAzl0zHkoGXIQcu0hb0IzdIgQHXMVMhBy1AWzUJuGocctExG9jVQIrMLctAy5KBlyEHLMBraAgZhdnSD1xmoglkC0BvzEgC6y4PmgcbMHj+x6tePrvF1oB20DO2mUegWzQNAeziXYWX6oG72HEAO5jnkoGXIQctQPh1DDlqGHLRMW9iL0CwNAlTHTIUctAxl0SzkpnHIQctkZF8DJTK7IActQw5ahhy0DKOhLWAQZkc3eJ2BKpglAL0xLwGguzxoHmjMxNkbVv36uWt8HWgHLUO7aRS6RfMA0B7OZViZPqibPQeQg3kOOWgZctAylE/HkIOWIQct0xb2IjRLgwDVMVMhBy1DWTQLuWkcctAyGdnXQInMLshBy5CDliEHLcNoaAsYhNnRDV5noApmCUBvzEsA6C4PmgcaM7VlPHbtmFr2a7t2TMXUlvGaVwQMQsvQbhqFbtE8ALSHcxlWpg/qZs8B5GCeQw5ahhy0DOXTMeSgZchBy7SFvQjN0iBAdcxUyEHLUBbNQm4ahxy0TEb2NVAiswty0DLkoGXIQcswGtoCBmF2dIPXGaiCWQLQG/MSALrLg+aBxkxuHo+b9uxc8mFk146puHnPzpjc7IMIlEDL0G4ahW7RPAC0h3MZVqYP6mbPAeRgnkMOWoYctAzl0zHkoGXIQcu0hb0IzdIgQHXMVMhBy1AWzUJuGocctExG9jVQIrMLctAy5KBlyEHLMBraAgZhdnSD1xmoglkC0BvzEgC6a2xxcXGx6UWUbnZ2NiYnJ2NmZiYmJiaaXg4UZ+bYQkzPLcTR4yfi3LM3xNSW8do/hOgYhqdlaLc2NNorLcPw2tC8liEHLcPwnMuwsjb0URItD8+eow20DMNrwzzXMgxPy5BD0y3rGIbXdMcRWoYqaBly0DJt0Ya9yHC0XDYNcpKWYXhtmKlahuFpGcrShmZXomUYXhsa1zIMT8tk1IZ93TU6huG1YXZpGYanZchBy5CDlmE02tBW3bQMw2vD7NDy6LXhdSY/LednlnSDlmF4bZiXWoYctAzlWN/0AgAmN/uDGshAy9BuGoVu0TwAtIdzGVamD+pmzwHkYJ5DDlqGHLQM5dMx5KBlyEHLtIW9CM3SIEB1zFTIQctQFs1CbhqHHLRMRvY1UCKzC3LQMuSgZchByzAa2gIGYXZ0g9cZqIJZAtAb8xIAumdd0wsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6BoPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAapbqQfP79u2LK6+8MrZt2xZjY2Px2c9+ds1f86lPfSouvvji2Lx5c2zdujWuu+66eOyxx0a/WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCzUj1o/oknnoiLL744br311p6+/957742rr7463vnOd8b//t//O/7gD/4g/vIv/zJ+9md/dsQrBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALpsfdMLqNLu3btj9+7dPX//l7/85Xje854X73nPeyIi4vnPf3783M/9XNx8882jWiIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABArgfN9+uf/bN/Fr/wC78Q//2///fYvXt3fPOb34w//MM/jDe+8Y2r/rr5+fmYn58/9c+zs7OjXipQMR1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvLpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUon44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahnKta3oBTXr1q18dn/rUp+Ltb397jI+Px4UXXhiTk5Nx6623rvrrbrzxxpicnDz1Y/v27TWtGKiKjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1D+XQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMpRPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DucYWFxcXm17EKIyNjcVdd90VV1111Yrf8+CDD8brX//6+Hf/7t/FP//n/zyOHDkS73//++MVr3hFfPzjH1/x183Pz8f8/Pypf56dnY3t27fHzMxMTExMVHkZwIjoGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/l0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUa33TC2jSjTfeGK9+9avj/e9/f0RE7Ny5M84555x4zWteEzfccENs3bp12V+3cePG2LhxY51LBSqmY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQrnVNL6BJx44di3XrTr8FZ511VkRELC4uNrEkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoANSPWh+bm4u9u/fH/v374+IiIcffjj2798fhw8fjoiI66+/Pq6++upT33/llVfGZz7zmfgv/+W/xEMPPRT33ntvvOc974lXvvKVsW3btiYuAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiA9U0voEr33XdfXHHFFaf++b3vfW9ERFxzzTWxd+/eOHLkyKmHzkdEXHvttXH06NH47d/+7fj5n//5OO+88+J1r3td3HzzzbWvHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiOVA+av/zyy2NxcXHFr+/du3fJz7373e+Od7/73SNcFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDp1jW9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICu8aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJp50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBmHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDMPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA186B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJp50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBmHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDMPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANRsfdMLACJmji3E9NxCzB4/ERObNsTUOeMxuXm86WUBz6BTusi+B7Iy3wCg3ZzV8DQtMAj7BoBRccZA9XQFmAMwHA1BN2gdqINZ0x/3C3LQMgClcobRC/sEYG1mJeSgZdABvbNXADjJmUCJ7Ftg1MwZKJuGAXMAyqJZqmZPQTO0B9BN5j8AUBcPmoeGPfr4k/HBOw/EPQenT/3crh1TcdOenbHtvE0Nrgw4Sad0kX0PZGW+AUC7OavhaVpgEPYNAKPijIHq6QowB2A4GoJu0DpQB7OmP+4X5KBlAErlDKMX9gnA2sxKyEHLoAN6Z68AcJIzgRLZt8ComTNQNg0D5gCURbNUzZ6CZmgPoJvMfwCgTuuaXgB02cyxhSVv/iMi9h2cjg/deSBmji00tDLgJJ3SRfY9kJX5BgDt5qyGp2mBQdg3AIyKMwaqpyvAHIDhaAi6QetAHcya/rhfkIOWASiVM4xe2CcAazMrIQctgw7onb0CwEnOBEpk3wKjZs5A2TQMmANQFs1SNXsKmqE9gG4y/wGAunnQPDRoem5hyZv/k/YdnI7pOR8AoGk6pYvseyAr8w0A2s1ZDU/TAoOwbwAYFWcMVE9XgDkAw9EQdIPWgTqYNf1xvyAHLQNQKmcYvbBPANZmVkIOWgYd0Dt7BYCTnAmUyL4FRs2cgbJpGDAHoCyapWr2FDRDewDdZP4DAHXzoHlo0OzxE6t+/egaXwdGT6d0kX0PZGW+AUC7OavhaVpgEPYNAKPijIHq6QowB2A4GoJu0DpQB7OmP+4X5KBlAErlDKMX9gnA2sxKyEHLoAN6Z68AcJIzgRLZt8ComTNQNg0D5gCURbNUzZ6CZmgPoJvMfwCgbqkeNL9v37648sorY9u2bTE2Nhaf/exnV/3+a6+9NsbGxpb8eOlLX1rPgum8ibM3rPr1c9f4OjB6OqWL7HsgK/MNANrNWQ1P0wKDsG8AGBVnDFRPV4A5AMPREHSD1oE6mDX9cb8gBy0DUCpnGL2wTwDWZlZCDloGHdA7ewWAk5wJlMi+BUbNnIGyaRgwB6AsmqVq9hQ0Q3sA3WT+AwB1S/Wg+SeeeCIuvvjiuPXWW3v6/t/6rd+KI0eOnPrx9a9/Pc4///x429veNuKVwtOmtozHrh1Ty35t146pmNoyXvOKgDPplC6y74GszDcAaDdnNTxNCwzCvgFgVJwxUD1dAeYADEdD0A1aB+pg1vTH/YIctAxAqZxh9MI+AVibWQk5aBl0QO/sFQBOciZQIvsWGDVzBsqmYcAcgLJolqrZU9AM7QF0k/kPANQt1YPmd+/eHTfccEO85S1v6en7Jycn48ILLzz147777otvf/vb8Y53vGPEK4WnTW4ej5v27FzyIWDXjqm4ec/OmNzsAwA0Tad0kX0PZGW+AUC7OavhaVpgEPYNAKPijIHq6QowB2A4GoJu0DpQB7OmP+4X5KBlAErlDKMX9gnA2sxKyEHLoAN6Z68AcJIzgRLZt8ComTNQNg0D5gCURbNUzZ6CZmgPoJvMfwCgbmOLi4uLTS9iFMbGxuKuu+6Kq666qudfc+WVV8b8/Hz88R//cV+/1+zsbExOTsbMzExMTEz0uVKImDm2ENNzC3H0+Ik49+wNMbVl3Jv/mumYtei0DFquln1PU7TMqJlv9dAy5KBlmuCsrp6Wy6QFztRLy/YNtJ9zmVI5Y06nZaqgq+ZpmaaZA8PTcbdpKA8tsxqtl0PLlMys+R7/exTkoGXIwXtsWF5pZ5iWm1HaPqH9tExGXZyVWiYjLWuZbnaQQRMt2ytQLWcyJXMmfI+Wy2HfshotUwVzpnlaZhgabg8t0xRzoFpaZtQ0W48utWxPkVmbW9Ye9K7NLUO/ujz/tQw5aBnKsb7pBbTFo48+Gv/jf/yP+K//9b+u+b3z8/MxPz9/6p9nZ2dHuTQ6YHJzd97wt4WO6ZdO20nLo2XfUxctUzfzbTS0DDlomTZwVg9PyzlogUFatm+gfZzLZNH1M0bLjELXu2qClmkbc6B/OuaZNFQuLdMPrbeXlsmky7PG/x4FOWgZcvAeG3rT9jNMy+3Q9n1C+2mZLujCrNQyXaBl6EYHGbShZXsFhtOGjqEqXT4TtFyuLu9bltIyo2DO1E/LVEnDzdEybWEODEfL1E2zo9Hllu0pMimpZe3BykpqGfrVpfmvZchBy1CudU0voC0+8YlPxHnnnRdXXXXVmt974403xuTk5Kkf27dvH/0CgUrpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/l0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUa2xxcXGx6UWMwtjYWNx11109PTh+cXExXvjCF8ab3vSm+OhHP7rm98/Pz8f8/Pypf56dnY3t27fHzMxMTExMDLNsoCY6hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAzl0zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUD4dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAzlWt/0AtrgS1/6Uhw6dCje+c539vT9GzdujI0bN454VcAo6Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylE/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP5dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylCvVg+bn5ubi0KFDp/754Ycfjv3798f5558fF110UVx//fXxyCOPxCc/+cnTft3HP/7xeNWrXhX/5J/8k7qXDEObObYQ03MLMXv8RExs2hBT54zH5ObxppcFjIjmYSldAKNivgBAPs53yEfXtJn9CTTNHILB6QdokhkEp9ME0C9zA9pNo8BKzIfcvL4ADML5QdPsQaDLzEDgJPMABqMdsrPHoZu0D4PRDlAq8wvKolkgC/MMctByvdxvYC3mBEB9zFwAoCqpHjR/3333xRVXXHHqn9/73vdGRMQ111wTe/fujSNHjsThw4dP+zUzMzNx5513xm/91m/VulaowqOPPxkfvPNA3HNw+tTP7doxFTft2RnbztvU4MqAUdA8LKULYFTMFwDIx/kO+eiaNrM/gaaZQzA4/QBNMoPgdJoA+mVuQLtpFFiJ+ZCb1xeAQTg/aJo9CHSZGQicZB7AYLRDdvY4dJP2YTDaAUplfkFZNAtkYZ5BDlqul/sNrMWcAKiPmQsAVGld0wuo0uWXXx6Li4tLfuzduzciIvbu3Rt33333ab9mcnIyjh07Fj/7sz9b/4JhCDPHFpZ8MIiI2HdwOj5054GYObbQ0MqAUdA8LKULYFTMFwDIx/kO+eiaNrM/gaaZQzA4/QBNMoPgdJoA+mVuQLtpFFiJ+ZCb1xeAQTg/aJo9CHSZGQicZB7AYLRDdvY4dJP2YTDaAUplfkFZNAtkYZ5BDlqul/sNrMWcAKiPmQsAVC3Vg+ahS6bnFpZ8MDhp38HpmJ7z4QAy0TwspQtgVMwXAMjH+Q756Jo2sz+BpplDMDj9AE0yg+B0mgD6ZW5Au2kUWIn5kJvXF4BBOD9omj0IdJkZCJxkHsBgtEN29jh0k/ZhMNoBSmV+QVk0C2RhnkEOWq6X+w2sxZwAqI+ZCwBUzYPmoVCzx0+s+vWja3wdKIvmYSldAKNivgBAPs53yEfXtJn9CTTNHILB6QdokhkEp9ME0C9zA9pNo8BKzIfcvL4ADML5QdPsQaDLzEDgJPMABqMdsrPHoZu0D4PRDlAq8wvKolkgC/MMctByvdxvYC3mBEB9zFwAoGrrm14AsLyZYwsxPbcQs8dPxMSmDTF1znhMbh4/9fWJszes+uvPXePr0EVrddVmmoeldFGNkmcj9KOfvW6+AEA+E2dviM3jZ8V1P/z8uGT7eTH/nafi7A1nxQOHvx23//nDznco0Mn37Su1PbFJ113W9J93+FwJDKOKGWYOweD66afp9xzA6NXduTMcTnf+5vH4+DUvX/LnuccWvhsRmoAu6fVMdpbSFaV+HtUoDK/U/tdiPuTWhtc3aztAPubV97Th/KDbVtuDm8fPiu/bPB7/95tzegVS8ne0oR3a8PnA+3K6pMrmtEN2dezxNpyDwNNO9vidpxbj9mtfseTvcZ7kfIPlteG9oXMViOh/FrRhfgG9m9y0Id71uhcs+9/UOrbwXc1CR2R47+89CHxPyU1reXj+G+pAlcyJ3pV8/gKD8/fGAIA286B5aKFHH38yPnjngbjn4PSpn9u1Yypu2rMztp23KSIipraMx64dU7HvGd/zzO+d2uIPHOCZeumqzTQPS+lieKXPRuhVv3vdfAGAfKa2jMft174iPvbFg/HbXzx06udf/YJnxe3XvsL5DgWa2jIeb3jxBfH2V14Ud9z78Glt//ALnhX/78u3N7g6mtSGP+/wuRIYVFUzzByCwfXaTxvecwCj1UTnznD4nkcffzJ+8bN/Hfcc+l4Pr37Bs+KWn7wk3vP7fxUvf+73aQI6op8z2VlKF5T8eVSjMJyS+1+L+ZBb069v5naAXMyr0zV9fsBKe3Dz+Flx+7WvWPLn113uFcjH39GG5rXl84H35XRF1c1ph+xGvcfbcg4Cy/f4zL/HefJh8843WFnT7w2dq0DEYLOg6fkF9Gf8rHXxV4e/veS/qXXLT14S/+0vD2sWOiDLe3/vQeBppTet5eH4b6gDVTMnelP6+QsMxt8bAwDabl3TCwBON3NsYcmHiIiIfQen40N3HoiZYwsRETG5eTxu2rMzdu2YOu37du2Yipv37IzJzT4cwEm9dtVmmoeldDGcDLMRejHIXjdfACCnW794KO499NhpP3fvocfi1j87tMKvANpscvN4/MqbXxp33Pvwkrb//NBj8Qt3fcVn2w5qy593+FwJDKLKGWYOweB66act7zmA0Wmqc2c4PO1Ug4dOb/DeQ4/FHfc+HP/+TS/RBHREv2eys5TsSv88qlEYXOn9r8V8yK3J1zd7O0Ae5tVS3h/QtJX24L9/00vi1i8eWvLn113uFcjH39GGZrXp84H35XTBKJrTDtmNco+36RyErlupx5N/j/O6H35+RDjfYC3+93KgaYPOAp9toRwzxxbi+ru+sux/U2vvvQ/Hr7z5pZqF5DK99/ceBHI0reXB+W+oA6NgTqwtw/kL9M/fGwMASrC+6QUAp5ueW1jyIeKkfQenY3pu4dQb/23nbYqP/eQlMT23EEePn4hzz94QU1vGfTCAM/TTVZtpHpbSxeCyzEZYy6B73XwBgFym5xaW/EcdT7rH+18o1vETTy35P7ud5LNtN7Xpzzt8rgT6VfUMM4dgcGv106b3HMBoNNm5MxxWb/DeQ4/Fr1z50th63qaaVwU0YZAz2VlKZhk+j2oUBpOh/7WYD7k19fp2oR0gB/Nqed4f0LTl9uBTi4tx/We+suz3d7lXIB9/Rxua07bPB96Xk92omtMO2Y1qj7ftHIQuW+vvcX74jS+Ot7zsOc436IH/vRxo0jCzwGdbKMNqnf/5ocfi+Imnal4RULds7/29B6HrsjSt5cH4b6gDo2JOrC7L+Qv0x98bAwBK4EHz0DKzx0+s+vWjZ3x9crMPA7CWfrtqM83DUroYTKbZCKsZZq+bLwCQh/e/kJO2OVPb9oTPlUA/RjHDzCEY3Gr9tO09B1C9pjt3htN1azX4xPx3aloJ0LRBz2RnKVk1/T61KhqF/mXpfy3mQ25NvL5daQcon3m1Mu8PaNqZe/CvDn971e/vcq9ALt6fQHPa2J/35WQ2yua0Q3aj2ONtPAehq9bqceE7T8VLtk3WtBoon/+9HGjKsLPAZ1toP2c+kHEOeA9Cl2VqWsv9899QB0bJnFhZpvMX6J2/NwYAlGBd0wsATjdx9oZVv37uGl8HltIVwFJmI11hrwMAEd4TQFba5kz2BFAyMwzKoVfIT+fQLA0CJ5kHcDpNQHfpHwajHaAU5hWUQ69AV5h30Bz9Qb00B+2iSWgPPUL5dAxEmAXQBToHzAHIRdPd5vUHaIb5C92kfQCgBB40Dy0ztWU8du2YWvZru3ZMxdSW8ZpXBOXTFcBSZiNdYa8DABHeE0BW2uZM9gRQMjMMyqFXyE/n0CwNAieZB3A6TUB36R8Gox2gFOYVlEOvQFeYd9Ac/UG9NAftokloDz1C+XQMRJgF0AU6B8wByEXT3eb1B2iG+QvdpH0AoAQeNA8tM7l5PG7as3PJh4ldO6bi5j07Y3KzDxLQL10BLGU20hX2OgAQ4T0BZKVtzmRPACUzw6AceoX8dA7N0iBwknkAp9MEdJf+YTDaAUphXkE59Ap0hXkHzdEf1Etz0C6ahPbQI5RPx0CEWQBdoHPAHIBcNN1tXn+AZpi/0E3aBwBKMLa4uLjY9CJKNzs7G5OTkzEzMxMTExNNL4ckZo4txPTcQhw9fiLOPXtDTG0Z9yFihHTcDbrKT8vQvzbORi0zCm3c69lpGXLQMtl09T2BlsmuK21ruXdd2ROUScusxQwrg5aJ0GsGWmYtOm8/Heemwe7QMmsxD8qg5fpoglHScrvpn15p+XTaoVRa7h7zKict56TX7tEyXZVt3mmZkmTrr0paZhQ0Vz8tsxpNlkHH3aDH/LScn467QcusxSwog5YZhs7bQ8s0xRyolpZpmqarUWrLXn84XaktUx7zd7S0TFtpvz9ahhy0DOVY3/QCgOVNbvbBAaqmK4ClzEa6wl4HACK8J4CstM2Z7AmgZGYYlEOvkJ/OoVkaBE4yD+B0moDu0j8MRjtAKcwrKIdega4w76A5+oN6aQ7aRZPQHnqE8ukYiDALoAt0DpgDkIumu83rD9AM8xe6SfsAQJuta3oBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3jQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICarW96AQAAAABtdvjw4Zienm56GauampqKiy66qOllAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAffCgeQAAAIAVHD58OH7gB14cTz55rOmlrGrTps3xt3/7Nx42DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfGgeQAAAIAVTE9Px5NPHotXXffLMbH1eU0vZ1mzR74Wf3H7r8b09LQHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEE8aB4AAABgDRNbnxfnX/SippcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAksq7pBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0jQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQs1YPm9+3bF1deeWVs27YtxsbG4rOf/eyav2Z+fj4+/OEPx3Of+9zYuHFjPO95z4vbb7999IsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOmt90wuo0hNPPBEXX3xxXHfddfHWt761p1/zL/7Fv4i///u/j49//OPxghe8II4cORJPPfXUiFcKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdFmqB83v3r07du/e3fP3/9Ef/VF86UtfioceeijOP//8iIh43vOeN6LVAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwt1YPm+/W5z30uXv7yl8ev//qvx+/93u/FOeecE29+85vj137t12LTpk0r/rr5+fmYn58/9c+zs7N1LBeokI4hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/l0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ7nWNb2AJj300EPx53/+5/HXf/3Xcdddd8Vv/uZvxh/+4R/Gv/7X/3rVX3fjjTfG5OTkqR/bt2+vacVAVXQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfDqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGco1tri4uNj0IkZhbGws7rrrrrjqqqtW/J4f/dEfjXvuuSe+8Y1vxOTkZEREfOYzn4mf+ImfiCeeeCI2bdq07K+bn5+P+fn5U/88Ozsb27dvj5mZmZiYmKj0OoDR0DHkoGXIQcuQQ9aWH3jggbjsssviDR++I86/6EVNL2dZ3zr81fjCR94R999/f1x66aVNL4fCZW0ZukbLkIOWIQctQw5ahhy0DOXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOVa3/QCmrR169Z4znOec+oh8xERL37xi2NxcTH+7u/+Lnbs2LHsr9u4cWNs3LixrmUCI6BjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1A+HUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM5dMx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1CudU0voEmvfvWr49FHH425ublTP/d//s//iXXr1sX3f//3N7gyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAILNUD5qfm5uL/fv3x/79+yMi4uGHH479+/fH4cOHIyLi+uuvj6uvvvrU9//UT/1UPOtZz4p3vOMd8eCDD8a+ffvi/e9/f1x33XWxadOmJi4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6IBUD5q/77774pJLLolLLrkkIiLe+973xiWXXBK/9Eu/FBERR44cOfXQ+YiILVu2xBe+8IV4/PHH4+Uvf3n89E//dFx55ZVxyy23NLJ+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBvWN72AKl1++eWxuLi44tf37t275Od+4Ad+IL7whS+McFUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAp1vX9AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAusaD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXzoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDNPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGaNPmh+3759a37Pu9/97hpWAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCfRh80/+Y3vzn279+/4tff/e53xyc+8Yn6FgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQg0YfNP8zP/Mz8WM/9mNx6NChJV/7N//m38Qdd9wRn//85xtYGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDoNPqg+f/4H/9jvPGNb4zXv/718eijj576+X/7b/9t3HbbbfH5z38+Xvva1za4QgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDqrW96Abfddlv8xE/8RLz+9a+Pe+65Jz7ykY/E7/7u78bnP//5uOKKK5peHgxl5thCTM8txOzxEzGxaUNMnTMek5vHm14WtJZmgDqZOdAeegQAmub9CLSDFimFvQpUzVyB9tMp5KZxSmK/AqUwryiJ/Qo0weyB+ukOGIYZQunsYQCa5iyia+x5WJk+YDgaAqpinkA59Ao5aBnKo1vgTOYCdIPWaTP7E+gyMxAYJTMGAGijxh80v27duvj0pz8dP/7jPx4vfvGL44knnojPfe5z8SM/8iNNLw2G8ujjT8YH7zwQ9xycPvVzu3ZMxU17dsa28zY1uDJoJ80AdTJzoD30CAA0zfsRaActUgp7FaiauQLtp1PITeOUxH4FSmFeURL7FWiC2QP10x0wDDOE0tnDADTNWUTX2POwMn3AcDQEVMU8gXLoFXLQMpRHt8CZzAXoBq3TZvYn0GVmIDBKZgwA0FbrmvzNb7nllrjlllvid37nd+Lyyy+P2dnZeP3rXx8PPvjgqa/dcsstTS4RBjJzbGHJB4CIiH0Hp+NDdx6ImWMLDa0M2kkzQJ3MHGgPPQIATfN+BNpBi5TCXgWqZq5A++kUctM4JbFfgVKYV5TEfgWaYPZA/XQHDMMMoXT2MABNcxbRNfY8rEwfMBwNAVUxT6AceoUctAzl0S1wJnMBukHrtJn9CXSZGQiMkhkDALTZ+iZ/849+9KOn/fPWrVvjwIEDceDAgVM/NzY2Fu95z3vqXhoMZXpuYckHgJP2HZyO6bmFmNw8XvOqoL00A9TJzIH20CMA0DTvR6AdtEgp7FWgauYKtJ9OITeNUxL7FSiFeUVJ7FegCWYP1E93wDDMEEpnDwPQNGcRXWPPw8r0AcPREFAV8wTKoVfIQctQHt0CZzIXoBu0TpvZn0CXmYHAKJkxAECbNfqg+YcffrjJ3x5GZvb4iVW/fnSNr0PXaAaok5kD7aFHAKBp3o9AO2iRUtirQNXMFWg/nUJuGqck9itQCvOKktivQBPMHqif7oBhmCGUzh4GoGnOIrrGnoeV6QOGoyGgKuYJlEOvkIOWoTy6Bc5kLkA3aJ02sz+BLjMDgVEyYwCANmv0QfMREU899VTs3bs3PvOZz8TXvva1GBsbi3/0j/5R7NmzJ/7Vv/pXMTY21vQSoW8TZ29Y9evnrvF16BrNAHUyc6A99AgANM37EWgHLVIKexWomrkC7adTyE3jlMR+BUphXlES+xVogtkD9dMdMAwzhNLZwwA0zVlE19jzsDJ9wHA0BFTFPIFy6BVy0DKUR7fAmcwF6Aat02b2J9BlZiAwSmYMANBm65r8zRcXF+PKK6+Mn/mZn4lHHnkkfvAHfzBe+tKXxte+9rW49tpr4y1veUuTy4OBTW0Zj107ppb92q4dUzG1ZbzmFUG7aQaok5kD7aFHAKBp3o9AO2iRUtirQNXMFWg/nUJuGqck9itQCvOKktivQBPMHqif7oBhmCGUzh4GoGnOIrrGnoeV6QOGoyGgKuYJlEOvkIOWoTy6Bc5kLkA3aJ02sz+BLjMDgVEyYwCANmv0QfN79+6Ne+65J/70T/80/uqv/ip+//d/Pz796U/H//pf/yv+5E/+JL74xS/GJz/5ySaXCAOZ3DweN+3ZueSDwK4dU3Hznp0xudmHAHgmzQB1MnOgPfQIADTN+xFoBy1SCnsVqJq5Au2nU8hN45TEfgVKYV5REvsVaILZA/XTHTAMM4TS2cMANM1ZRNfY87AyfcBwNARUxTyBcugVctAylEe3wJnMBegGrdNm9ifQZWYgMEpmDADQZmOLi4uLTf3mP/qjPxqve93r4kMf+tCyX/8P/+E/xJe+9KX4n//zf9a8sv7Mzs7G5ORkzMzMxMTERNPLoUVmji3E9NxCHD1+Is49e0NMbRn3AaCldNwOmmFYWqYfZk57abl79JhTlpYfeOCBuOyyy+INH74jzr/oRU0vZ1nfOvzV+MJH3hH3339/XHrppU0vh2SytAxryf5+RMuUInuLw9Jye9irDEPLLMdcKY+Wu0enOWmZkzReri52bL+SURdb7gLzqntKbtl+he8pueXSmD2MkpaXpztKo+V2MUMYVFtatodhOG1pGUrWhrNIy9SpDXs+Ky2XTx9EaHkYGqItdFw+84QILZdCr6xFy2XQMmvRcvvolkFoOTdzoTu03G1azyNjy/YnXZSxZQZjBpZNy7SdGdMbLUMOWoZyrG/yNz9w4ED8+q//+opf3717d9xyyy01rgiqNbnZm37oh2aAOpk50B56BACa5v0ItIMWKYW9ClTNXIH20ynkpnFKYr8CpTCvKIn9CjTB7IH66Q4YhhlC6exhAJrmLKJr7HlYmT5gOBoCqmKeQDn0CjloGcqjW+BM5gJ0g9ZpM/sT6DIzEBglMwYAaKNGHzT/rW99K5797Gev+PVnP/vZ8e1vf7vnf9++ffviN37jN+L++++PI0eOxF133RVXXXXVit9/9913xxVXXLHk548cORIXXnhhz78vucwcW4jpuYWYPX4iJjZtiKlzvJGHXukH2kmbwKDMDwCAp3lfBJgDPJP9ADloGdpBi8AomTGMgn0FNMHsIQt7GcjGXIPh6QgYljlCBvYxAL1yZkB76ZPM7G+oh9aAfpkbsJQugDqZOZCDloFBmR/QTtqE1WkEaDtzCqiTmQMAtF2jD5r/7ne/G+vXr7yEs846K77zne/0/O974okn4uKLL47rrrsu3vrWt/b867761a/GxMTEqX++4IILev615PLo40/GB+88EPccnD71c7t2TMVNe3bGtvM2NbgyaD/9QDtpExiU+QEA8DTviwBzgGeyHyAHLUM7aBEYJTOGUbCvgCaYPWRhLwPZmGswPB0BwzJHyMA+BqBXzgxoL32Smf0N9dAa0C9zA5bSBVAnMwdy0DIwKPMD2kmbsDqNAG1nTgF1MnMAgBKsa/I3X1xcjGuvvTbe+ta3Lvvjuuuu6+vft3v37rjhhhviLW95S1+/7oILLogLL7zw1I916xq9LTRk5tjCkjfwERH7Dk7Hh+48EDPHFhpaGbSffqCdtAkMyvwAAHia90WAOcAz2Q+Qg5ahHbQIjJIZwyjYV0ATzB6ysJeBbMw1GJ6OgGGZI2RgHwPQK2cGtJc+ycz+hnpoDeiXuQFL6QKok5kDOWgZGJT5Ae2kTVidRoC2M6eAOpk5AEApGn2i+jXXXBMXXHBBTE5OLvvjggsuiKuvvnrk63jZy14WW7dujTe84Q1x7733jvz3o52m5xaWvIE/ad/B6Zie8yYeVqIfaCdtAoMyPwAAnuZ9EWAO8Ez2A+SgZWgHLQKjZMYwCvYV0ASzhyzsZSAbcw2GpyNgWOYIGdjHAPTKmQHtpU8ys7+hHloD+mVuwFK6AOpk5kAOWgYGZX5AO2kTVqcRoO3MKaBOZg4AUIr1Tf7md9xxR5O/fWzdujV+53d+J17+8pfH/Px83HbbbXH55ZfHX/zFX8Sll1664q+bn5+P+fn5U/88Oztbx3IZsdnjJ1b9+tE1vk5ZdFwt/dAULa9Om5RCy+1jfjAILUMOWobTlfq+SMtQnSbngJbbp9RzgWZpuX20zCC0XD0t0gQtd4cZk1eTHdtXUB1ncu/MHtqsn5btZWgv5/JgzDXapsSWdQRLldhyk8wR2srnZcjBuUzbODMGo2XqoM/R03Jz7G+qpOWVaY1S6Lg9zA2GkbVlXdA1WVsuhZlDVbTcLC1TFS13j/mRk5bLp00itLwajVASLXeTOZWPlmkzM6d3WoYctAzlWtf0Apr0ohe9KH7u534uLrvssvihH/qhuP322+OHfuiH4qMf/eiqv+7GG2+MycnJUz+2b99e04oZpYmzN6z69XPX+Dpl0XG19ENTtLw6bVIKLbeP+cEgtAw5aBlOV+r7Ii1DdZqcA1pun1LPBZql5fbRMoPQcvW0SBO03B1mTF5NdmxfQXWcyb0ze2izflq2l6G9nMuDMddomxJb1hEsVWLLTTJHaCuflyEH5zJt48wYjJapgz5HT8vNsb+pkpZXpjVKoeP2MDcYRtaWdUHXZG25FGYOVdFys7RMVbTcPeZHTlounzaJ0PJqNEJJtNxN5lQ+WqbNzJzeaRly0DKUq9MPml/OK1/5yjh06NCq33P99dfHzMzMqR9f//rXa1odozS1ZTx27Zha9mu7dkzF1JbxmlfEKOm4WvqhKVpenTYphZbbx/xgEFqGHLQMpyv1fZGWoTpNzgEtt0+p5wLN0nL7aJlBaLl6WqQJWu4OMyavJju2r6A6zuTemT20WT8t28vQXs7lwZhrtE2JLesIliqx5SaZI7SVz8uQg3OZtnFmDEbL1EGfo6fl5tjfVEnLK9MapdBxe5gbDCNry7qga7K2XAozh6pouVlapipa7h7zIyctl0+bRGh5NRqhJFruJnMqHy3TZmZO77QMOWgZyuVB82fYv39/bN26ddXv2bhxY0xMTJz2g/JNbh6Pm/bsXPJGfteOqbh5z86Y3OxNfCY6rpZ+aIqWV6dNSqHl9jE/GISWIQctw+lKfV+kZahOk3NAy+1T6rlAs7TcPlpmEFqunhZpgpa7w4zJq8mO7SuojjO5d2YPbdZPy/YytJdzeTDmGm1TYss6gqVKbLlJ5ght5fMy5OBcpm2cGYPRMnXQ5+hpuTn2N1XS8sq0Ril03B7mBsPI2rIu6JqsLZfCzKEqWm6WlqmKlrvH/MhJy+XTJhFaXo1GKImWu8mcykfLtJmZ0zstQw5ahnKNLS4uLja9iKrMzc3FoUOHIiLikksuif/8n/9zXHHFFXH++efHRRddFNdff3088sgj8clPfjIiIn7zN38znv/858dLX/rSOH78eNx2223xsY99LP74j/84fuRHfqTn33d2djYmJydjZmbGAExg5thCTM8txNHjJ+LcszfE1JZxb+A7QMfV0A9N0/LytElptNwe5gfDyNLyAw88EJdddlm84cN3xPkXvajp5SzrW4e/Gl/4yDvi/vvvj0svvbTp5ZBMlpZhWKW/L9IyDK8Nc0DL7dGG/UC5tNweWmYYWq6OFmmSlvMzY/JromP7CqrnTF6b2UMJemnZXob2cy73x1yjrUpqWUewspJabpI5Qtv5vAw5OJdpC2fGcLTMKOmzPlqun/3NKGh5Ka1RGh03z9ygCtla1gVdla3lUpg5VE3LzdAyVdNyd5gfuWm5XNrkmbS8lEYokZa7xZzKS8u0kZnTPy1DDlqGcqxvegFVuu++++KKK6449c/vfe97IyLimmuuib1798aRI0fi8OHDp76+sLAQP//zPx+PPPJIbN68OXbu3Bl/8id/ctq/g+6Z3OxNOwxKP9BO2gQGZX4AADzN+yLAHOCZ7AfIQcvQDloERsmMYRTsK6AJZg9Z2MtANuYaDE9HwLDMETKwjwHolTMD2kufZGZ/Qz20BvTL3ICldAHUycyBHLQMDMr8gHbSJqxOI0DbmVNAncwcAKDtUj1o/vLLL4/FxcUVv753797T/vkDH/hAfOADHxjxqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOt67pBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0jQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1W9/0AmBQM8cWYnpuIWaPn4iJTRti6pzxmNw83vSyoJP0CIySGQP10BoAdIuzH6iDWQO0jbnULV5vyEHL0Dwdgg6AtZkT0C2aB+gm858usd/pAvscqIJZQt3sOYDemZm0kX0JQK+cGXSBfU5d7DVgJeYDdJP2oZ20CWXQKkD3mP00yf6D6ugJAKBMHjRPkR59/Mn44J0H4p6D06d+bteOqbhpz87Ydt6mBlcG3aNHYJTMGKiH1gCgW5z9QB3MGqBtzKVu8XpDDlqG5ukQdACszZyAbtE8QDeZ/3SJ/U4X2OdAFcwS6mbPAfTOzKSN7EsAeuXMoAvsc+pirwErMR+gm7QP7aRNKINWAbrH7KdJ9h9UR08AAOVa1/QCoF8zxxaWfACJiNh3cDo+dOeBmDm20NDKoHv0CIySGQP10BoAdIuzH6iDWQO0jbnULV5vyEHL0Dwdgg6AtZkT0C2aB+gm858usd/pAvscqIJZQt3sOYDemZm0kX0JQK+cGXSBfU5d7DVgJeYDdJP2oZ20CWXQKkD3mP00yf6D6ugJAKBsHjRPcabnFpZ8ADlp38HpmJ7zIQTqokdglMwYqIfWAKBbnP1AHcwaoG3MpW7xekMOWobm6RB0AKzNnIBu0TxAN5n/dIn9ThfY50AVzBLqZs8B9M7MpI3sSwB65cygC+xz6mKvASsxH6CbtA/tpE0og1YBusfsp0n2H1RHTwAAZfOgeYoze/zEql8/usbXgeroERglMwbqoTUA6BZnP1AHswZoG3OpW7zekIOWoXk6BB0AazMnoFs0D9BN5j9dYr/TBfY5UAWzhLrZcwC9MzNpI/sSgF45M+gC+5y62GvASswH6CbtQztpE8qgVYDuMftpkv0H1dETAEDZPGie4kycvWHVr5+7xteB6ugRGCUzBuqhNQDoFmc/UAezBmgbc6lbvN6Qg5aheToEHQBrMyegWzQP0E3mP11iv9MF9jlQBbOEutlzAL0zM2kj+xKAXjkz6AL7nLrYa8BKzAfoJu1DO2kTyqBVgO4x+2mS/QfV0RMAQNk8aJ7iTG0Zj107ppb92q4dUzG1ZbzmFUF36REYJTMG6qE1AOgWZz9QB7MGaBtzqVu83pCDlqF5OgQdAGszJ6BbNA/QTeY/XWK/0wX2OVAFs4S62XMAvTMzaSP7EoBeOTPoAvucuthrwErMB+gm7UM7aRPKoFWA7jH7aZL9B9XREwBA2TxonuJMbh6Pm/bsXPJBZNeOqbh5z86Y3OxDCNRFj8AomTFQD60BQLc4+4E6mDVA25hL3eL1hhy0DM3TIegAWJs5Ad2ieYBuMv/pEvudLrDPgSqYJdTNngPonZlJG9mXAPTKmUEX2OfUxV4DVmI+QDdpH9pJm1AGrQJ0j9lPk+w/qI6eAADKNra4uLjY9CJKNzs7G5OTkzEzMxMTExNNL6czZo4txPTcQhw9fiLOPXtDTG0Z9wGEgel4OHqkLbSckxnTPVpuhtaoWpaWH3jggbjsssviDR++I86/6EVNL2dZ3zr81fjCR94R999/f1x66aVNL4dksrTMUs7+btEyTTFrqqVlGF4b5pKW69OG15u8tFwfLTNKWu6NDmmzujrWAYxWhjPZnIAcLfdK82TWpZahXyXNfy0zrJL2e2ZaHi37nLpoOTezpDva0rI9B8NpS8vUw8zMq+SW7Uv4npJbhjqUcGbomGGVsM+7oAst22t0QRdaHgXzgbbRcj20z6hpeTDapG20vDytUhotw/DaMPu13F1t2H9UR8vN0hNV0TLkoGUox/qmFwCDmtz8vQ8dJz+QPDT9RExs2hBT5/hAAqNysrfZ4ydO601zwKiMesasNNega9ZqTSsAkEvTn+W9t4D8dA4sp+nZ0PR7IOrdA15vKMtq/zu0lqFZZ3Y4c2wh/u8353zeIy1/NwoYhPMSytfPn1t5bwCUoOn/TSYj85/lZG3NfqcLqtjnWWcAjErGZpyZVMGfSwGMRptmZsb3QQxmuX1pfwClMbfq0ab3MhAxmvbtc3pRxd6z16A7+p0Z5gPk08sc0D60U79t+jMqaEad56jOgWcyE5rjM9Ro2NO9sf+gOqPoySwDABg9D5qneI8+/mR88M4Dcc/B6VM/t2vHVNy0Z2dsO29TgyuDfPQGZGOuQW+0AgBUyXsLyE/nwHLMBuwBYCXmA5RDr2RnjwNVMEugPLoFsjHXoB5ag24zA6A/moHlaQMgP7Oe/5+9f4/y66wPe/+PZGl0sawReMBgsMHBolwcgTCnLse2AiyyiBNoIP6lWU6ycAyhJSeGpl6sYLeES0qDWUkIKSGhaWockgbSxBiSkvBrDpTINpTURj4mB0JlEMjFxvY4aEajkWZkSecPZ2SNZuY738u+PM+zX6+1vJY1M5L2d8/z/jx7f2c0316sDyA35hZ0k/Zpi7UHDMLMAMwB6A69Q/l0DpzKTKA01jRQArMMAKAZa9s+ABjF1Oz8khuHiIjdeyfj+lvuianZ+ZMf942HZmLP/u/FNx6eOfl2oH8PTh+Jb00eiqv+8flx08/8H3Htyy+MzWNnLOkNIBf9Xke0wbULTeh3naXcCgCQln6uL1xbQPnq7tw9M+Sp6WsAsyI9bV4HWg+Qtrrmg/aheqP0qklykPpzlzqCPCzMkru+/b249uUXxn+6+sXx2z/1oviZSy+Iv/5fD2sXEuQ6FyhNk/c25iBd1tbzCLqDag3bVOrPJUJqcmvGfktTRm3DWgVoxyDzN7frIJrVxvpw/QCMwr6WFjOdpnSpfV2lxXNnwCBWmhl3fvt78df/6+HY++BB8wAKN8i1g+sEaE8V/XXpPhVyNWrrOgdOVdVMcB9AKlLY5/QA9OJnywMApGVd2wcAo5icmV9y47Bg997JeOTQfByaP7bkBmPX9om48codce62TU0dKmTt/gOH421/+v/Ebfc+cvJtl154dvz7q3bGWz62J3bvnYzJmfkY3zzW4lECDGa164i25tr9Bw67dqF2g6yzVFsBANLS7/WFawsoX52du2eGfDV5DWBWpKmt60DrAdJXx3zQPtRj2F41SS5Sfu5SR5CPyZn5uOvb34t/f9XO+Mgd++K3PnfvyfddeuHZ8ZLvO9vXQSAxrnOB0jR1b2MO0nVtPI+gO6jWKE2l/FwipCinZuy3NGmUNqxVgHYMOn9zug6ieU2vD9cPwKjsa+kw02lSV9rXVXo8dwYMYrmZsXnsjJPfz33DJ75y8u3mAZSp32sH1wnQnqr668p9KuSqitZ1DpyqipngPoCUtL3P6QHoxc+WBwBIz9q2DwBGMX3kaM/3Hzt+YslNSMRjNxbX33JPTM3O13l4UISp2fnHOjrlReYjIu6495H4yB374vWXXRAREQdX6REgNatdR7Qx107OXNcu1GjQdZZiKwBAWga5vnBtAeWrq3P3zJC3pq4BzIp0tXEdaD1AHqqeD9qH+gzTqybJSarPXeoI8jJ95Gi8/rIL4iN37Is7lvmey1/61N/qFhLjOhcoTRP3NuYgNP88gu6gWqM2lepziZCqXJqx39K0YduwVgHaMcz8zeU6iHY0uT5cPwBVsK+lwUynaV1oX1dp8twZMIjlZsZK389tHkCZ+rl2cJ0A7amyvy7cp0Kuqmpd58CpRp0J7gNITZv7nB6AXvxseQCANHmhebK2deP6nu8/dvzEkpuQBbv3TsbkjCcrYDWTM/MrdnTHvY/EzvO2RUTEWav0CJCa1a4j2phrvWauaxeqMug6S7EVACAtg1xfuLaA8tXVuXtmyFtT1wBmRbrauA60HiAPVc8H7UN9hulVk+Qk1ecudQR52bpxfew8b9uSH0q44DbdQnJc5wKlaeLexhyE5p9H0B1Ua9SmUn0uEVKVSzP2W5o2bBvWKkA7hpm/uVwH0Y4m14frB6AK9rU0mOk0rQvt6ypNnjsDBrHczOj1/dzmAZSnn2sH1wnQnir768J9KuSqqtZ1Dpxq1JngPoDUtLnP6QHoxc+WBwBIkxeaJ2sTW8Zi1/aJZd+3a/tEzM4/2vP3HzxytI7DgqJMr9LJ3KPHY9f2iZjYMtbQEQFUY7XriDbm2moz17ULVRh0naXYCgCQlkGuL1xbQPnq6tw9M+StqWsAsyJdbVwHWg+Qh6rng/ahPsP0qklykupzlzqCvPQzK3QLaXGdC5SmiXsbcxCafx5Bd1CtUZtK9blESFUuzdhvadqwbVirAO0YZv7mch1EO5pcH64fgCrY19JgptO0LrSvqzR57gwYxHIzY+7R4z1/j3kAZenn2sF1ArSnyv66cJ8KuaqqdZ0Dpxp1JrgPIDVt7nN6AHrxs+UBANK0ru0DgFGMbx6LG6/cEdffck/s3jt58u27tk/E+67cEbPzx3r+/rM2rq/7ECF7W1fpZNum9fG+K3fE+GY360BeVruOaGOurTZzXbtQhUHXWYqtUJ79+/fH5OTk6h/Ygq997WttH0IRUv4cR0RMTEzE+eef3/ZhQLYGub5wbQHlq6tz98yQt6auAcyKdLVxHWg9QB6qng/ah/oM06smyUmqz13qCPIyvnksnv6ETT0/RreQFte5QGmauLcxB6H55xF0B9UatalUn0uEVOXSjP2Wpg3bhrUK0I5h5m8u10G0o8n14foBqIJ9LQ1mOk3rQvu6SpPnzoBBLDczNqxb2/P3mAdQln6uHbZunO/5Z5gLUJ8qr9O7cJ8KuaqqdZ0Dpxp1Jni+kNS0uc/pAejFz5YHAEhTUS80v3v37vjVX/3VuOuuu+KBBx6IW2+9NV7zmtf09XvvuOOO+IEf+IG46KKL4u677671OKnWuds2xQev2hmTM/Nx8MjROGvj+pjYMhbjm8dianY+dm2fWHRjsWDX9omY2OLmAlYzsWVsxY4u3z4Rz3ryljhn68YWjgxgdL2uI9rQa+a6dqEqw6yz1FqhLPv374/nPOe5cfjwbNuH0tPRud7fJM7Kcvgcb9q0Of7u777mxeZhSINeX7i2gPLV0bl7ZshfE9cAZkXamr4OtB4gH1XOB+1DvQbtVZPkJsXnLnUE+XnK1o26hcy4zgVKU/e9jTkIj2nyeQTdQbWqaCrF5xIhZTk0Y7+lDcO0Ya0CtGPY+ZvDdRDtaWp9uH4AqmJfa5+ZThtKb19X6fLcGTCI02fGEzabB9A1q107uE6A9lTdX+n3qZCrKlvXOXCqUWaC+wBS1NY+pwegFz9bHgAgTWtOnDhxou2DqMpf/uVfxh133BEXX3xx/NiP/VjfLzR/4MCBuPjii+PCCy+MBx98cOAXmp+eno7x8fGYmpqKrVu3Dnfw1Ob+A4fj+lvuWXQzsmv7RLzvyh3x1G2bWjwyUqLj3nRELrRMCcxcLTfBOqMJ/bb85S9/OS6++OK45PXvjK1PfWZzB9inB77yxfjbP/vduOwXPhRPe+7Otg9nWX+//+vxV//umrjrrrviRS96UduHs0Tqn+PpB74VX7rp3cmev7bZl+mX64u0aZlSdH3WaBn6k/qs0HKzUl8P5EvLadM+/dJyMzRJnbrSsY4oXYkt65YuKrHlXnROqbrWMsMzB9Om5TLprnu0XC9N0RQt58VsYCWptWytwnBSa5n8mL9p0PJwrF9So2UYXiozXceUJJWu2lBiy13+fNJdJbZcBfOA3Gi5fuYCTdDy8vRHbrQ8HK2TGi0TYTaVQMvV0QNt0nL6zAj6oWUog5YhH+vaPoAqXXHFFXHFFVcM/Pve9KY3xU/+5E/GGWecEZ/85CerP7AOmJqdj8mZ+Zg+cjS2blofE2eOxfjmsST+3nO3bYoPXrUzJmfm4+CRo3HWxvUxsaWZ44McLdfV6R1t3bQ+ztywLmaOPBp79n+v0e6BPNV1rdDWNUidXLvQxLrutc5K7Io8bH3qM+OJ5/+jtg9jiekHvtX2IRQj1c8x9Mse2VvV17HON1WynspRxayxHqiaNbW6ps+R59fS1MQ66OdrXNYDjKapmT7q36N9WF6dDff6szVJCpq+L6n679MRpGWlxk99+/im9fGrP/6CmDnyqG6hBavtxVXs1fZn4FRd/HqRObiyLq6HHJTweUm5uxLOL2VJ+d8d64U6WV++1kx3LKzVA7NH49D8o3Fo/lhs27Q+No+d0fahUTGzHdLqYGH+PnRwLqYOH43NY2fEmRvWmb/UrooOzhw7I37pVc+LA4ePxpaxM2Lz2LrYtnm9fYXipbSPpM65yofnLzhdP9/PpuvedJW2ftfywsfNzB2Nf/uai2L+0eNxaO5Rn09oQGp7zqnH80uvel6MnbE2pg7Px5kbzANoSh1zwfd/Q7ra/l6t1K5FIAd1dTNq63qGanWhqbavQyA3VfaQ6r0/8Jhhempjz9Q9AEBvRb3Q/DA+8pGPxDe/+c34wz/8w3jPe97T1++Zm5uLubm5k7+enp6u6/CycP+Bw/G2W+6J2/ZOnnzbru0TceOVO+LcbZuS+HvHN7sRYDEdL2+1rhY6uv/A4Xjrn/w/jXcPp9NyHuq6VmjrGqQJXbt20fLjmlzXy62zkruiflqGMmh5efbI/lR1Het8j07Lj7OeyjPKrMltPWg5fbmtqTa0dY5Sen5Ny82sg36/xgXD0nJzM72qvyelvYB0dLnlOhvu58/WJFUZpuOm70vq+vt0REly3pNXavw9r7kofvm/fjX+7689tOjtN165I5715C1tHCrULtWWV9uLq9yr7c+UINWWc9LlrxeZg0u1tR603FtJnabYXUnnt21arkbK/+5YL93QVsvWl681U60c9uVD88fi7Z/62053XzqzfXQ5tExvKXZwaP5Y/PJ//WpSx1S6rrdcRQe9/ozxzZUfMiyrjZZT3EdS5Vzlp43nL7q+J6dquX5/8LlPjl961fPi33zS8waD6Mrzgrm13O8eZS+ja1JqObX+Ujse6CWllqtUR4e+/5uUldpyv9r+Xi17P1XpUst1dzNs63qmCl1qeTVdaKrt6xDqo+V6VdFD6vf+pEHL7Rmlpyb3TN3nQctQBi1Dvta2fQBt2rt3b1x//fXxh3/4h7Fu3bq+f9973/veGB8fP/nfeeedV+NRpm1qdn7JRXdExO69k3H9LffE1Ox8UX8v5dDxUv12pT9SouX01TUzzKKyaPkxba/rtv9+8qdlKIOWl7JHNsv5roaWH2M9caoc14OW05bjmmqac/SYrrfcxDqw1miClpvpTM/Urast19mWbmnaoB03vUY1Af3JdU/u1fi/vvUr8Zynbl3ydu1TshRbXm0vfnD6iL0aTpNiyzlxD8Cp2lwPWl6ZTuvl/FZLy6NLeU2mfGxUq42WrS/ngOqlvi9b8+XzOa5G6i3TW4odpHhMXdDllqtYc9YtqWi6ZWu/f84V/erynpyqlfr9R0/dGjfc+hVds6ycWvZzMWFlqbScWn+pHQ+sJpWWq1RHh9omdSW23K+2+2z776csXWk51W5SPS7y05WWV9OFprrwGLtMy2lz70+/tNyOXHrK5TjRMpRCy5Cvzr7Q/LFjx+Inf/In493vfnc8+9nPHuj33nDDDTE1NXXyv/vuu6+mo0zf5Mz8kovuBbv3TsbkTD0X3m39vZRDx0v125X+SImW01fXzDCLyqLlx7S9rtv++8mflqEMWl7KHtks57saWn6M9cSpclwPWk5bjmuqac7RY7rechPrwFqjCVpupjM9U7eutlxnW7qlaYN23PQa1QT0J9c9uVfjt9/7SOw8b9uSt2ufkqXY8mp78fcO2avhdCm2nBP3AJyqzfWg5ZXptF7Ob7W0PLqU12TKx0a12mjZ+nIOqF7q+7I1Xz6f42qk3jK9pdhBisfUBV1uuYo1Z92SiqZbtvb751zRry7vyalaqd+d522LO+59ZNnfo2tyatnPxYSVpdJyav2ldjywmlRarlIdHWqb1JXYcr/a7rPtv5+ydKXlVLtJ9bjIT1daXk0XmurCY+wyLafNvT/90nI7cukpl+NEy1AKLUO+1rV9AG05ePBg3HnnnbFnz5649tprIyLi+PHjceLEiVi3bl38t//23+LlL3/5sr93w4YNsWHDhiYPN1nTR472fP/BVd5f9d+7eeyMeP1lF8Tco8diz/7vxdZN62PizLEY3zxWy3GQLx0v1W/Pq33c92bnY2p2Xnc0Qsvpq+taoa1rkKpNzc7H5Mx8TB852unrFi0/pq11vbAOHzk0Hzf9zP8RX97/vbjp9n0xO3+skb+fcmgZyqDlpUq59szFwvleeJ5v53nbYu7R47Fx/Rnx5f3fi0Nzznc/tPwY/Q6vxPvVHNeDltPW9JrKscscu6tD11sedB0Ms9atNZqg5WY6q+rvyXHfpBldbbnOho+dOBH/6eoXL3r+5tSvM9mHqdqgHa+2/g/NHa1033BtCv3JdU9erfG5R48v+rXvaaZ0bbXca+9erdPpI4/2fL+9mi7KdV9ORQ73AJ4ra06b60HLK2vy89LF3nKYgznR8uhSXpNNfO2cNLTRcsprvxfPz5Oy1Pdl379YPnOtGqm3TG8pdlDHMZmxq+tyy1X8fK0UW6Kbmm65irXflRltTtCvLu/JqVqp39O/j+10KXXdlVmbkpxa7mePmpqdj7lHj8Vv/9SLlv33DAsfB6VJpeVhriXrnP2ubclNKi1XqY4O/Qx6Uldiy/1q+1rA3k+VutJyqt34eQVUpSstryaF1ut+7jeFx0h9tJy2Ju/9R/kzWayNr8lpuR0p9NTPekvhOOmPlqEMWoZ8dfaF5rdu3Rpf+cpXFr3tt3/7t+Nzn/tc/Omf/mlccMEFLR1ZXrZuXN/z/Wet8v4q/97NY2fEv79qZ3zkjn3xW5+79+Tbd22fiBuv3BHnbttUy7FAKfrtebWPmzp8NN78sT26AyKivmuFtq5BqnT/gcPxtlvuidv2Tp58m+uWbmtjXS+3Di+98Oz491ftjLd8bM+ifzSTQ1cAUIcSrj1zsnXj+hWf57v0wrPj//eip7d4dORGv8Mp9X7VeqBqTa6pXLvUHRGDrYNh17q1BvVrqrMq/p5c902oU10N33/gcPzbP/9/47Z7Hzn5ttO/zmQfpm291v/msTNi66axuPZjeyrbN1ybQtlWa3zDurUn/9/3NEM9VrvnW63TrRt7//MZezUwqNTvATxX1qzU10NXNfV56Wpv1j2pSXlNNvG1c7or5bW/kqrXeY7nAEbh+xfLZ65Bmh1UfUxmLKup4udrpdgSNGHUtd+lGW1OQL5W6vfU72NbTipdd2nWMpzV9qhNY2cs+T7w5X5uViprHko06LVk3bPftS20r44O/Qx6SFfb1wL2fhhcit34eQVQvbZbb+K537YfI3RZU/f+o/6ZPM7X5Lql7Z76XW9tHycAQC56fydgZmZmZuLuu++Ou+++OyIi9u3bF3fffXfs378/IiJuuOGGeN3rXhcREWvXro2LLrpo0X9PfvKTY+PGjXHRRRfFmWee2dbDyMrElrHYtX1i2fft2j4RE1vGGvt7X3/ZBfGRO/bFHad8MSAiYvfeybj+lntiana+lmOBUvTbc6+Pu/TCs2PPfQd0B5xU17VCW9cgVZmanV/yJGeE65aua3pdr7QO77j3kfjIHfvi9ZddUOvfDwC5yP3aMzcTW8bil171vGWf57vj3kfiHZ/6W9fL9E2/gyv5ftV6oGpNramcu9QdEf2vg1HWurUG9Wuqs1H/npz3TahTHQ2f7G2Z528Wvs5kHyYFvdb/L73qefFLn/zbSvcN16ZQtl6NX/YP3zu5wPc0Q/X6uedbbS9+wpn2aqBaKd8DeK6seSmvhy5r4vPS5d6se1KT8pps4mvndFfKa385dazz3M4BjMr3L5bPXIM0O6jymMxY+lHFz9dKsSVowihrv2sz2pyAfK3U7577DsRlF5697O9JpeuuzVqGs9oe9eX9B1b9uVmprHko1SDXkk3Mfte20L46OvQz6CFdbV8L2PthcKl14+cVQD3abL2p535Tm2fQJU3d+4/6Z/IYX5PrnlyuA3QPANCfol5o/s4774ydO3fGzp07IyLiuuuui507d8Y73vGOiIh44IEHTr7oPNUY3zwWN165Y8nF967tE/G+K3fE+OZ6LryX+3t3nrdtyRf4F+zeOxmTM25QoZd+e17p4y698Oy45tIL4qbb90WE7oDH1HWt0NY1SFUmZ+aXPMm5wPzsrqbXda91eMe9j8TO87bV+vcDQC5yv/bMzfjmsXjR+Z7noxr6HVzJ96vWA1Vrak3l3KXuiOh/HYyy1q01qF9TnY369+S8b0Kd6mh4ta8z/Z/fd7Z9mCT0Wv8vOn9b3HZvtfuGa1MoW6/Gf+W13x9ff2D65Nt8TzNUr597vtX24nO2brRXA5VK+R7Ac2XNS3k9dFkTn5cu92bdk5qU12QTXzunu1Je+8upY53ndg5gVL5/sXzmGqTZQZXHZMbSjyp+vlaKLUETRln7XZvR5gTka6V+v/7AdPzKa78/6a67NmsZTq896pd/9KL4t//1q8v+voWfm5XSmodSDXIt2cTsd20L7aujQz+DHtLV9rWAvR8Gl1o3fl4B1KPN1pt67je1eQZd0tS9/6h/Jo/xNbnuyeU6QPcAAP1Z1/YBVOmlL31pnDhxYsX333zzzT1//7ve9a5417veVe1BdcC52zbFB6/aGZMz83HwyNE4a+P6mNgyVvtF9+l/79HjK3/uIyIOHjla6/FACfrteeHjvnPgcHzrkdnYsG5t7LnvQLzlY3tidv7YyY/THRBR37VCW9cgVZheZT6an93V5LpebR2etXF9fPa6H8imKwCoU87Xnjk69bmF5bheZhD6HUzp96vWA1VrYk3l3qXuiOhvHYy61q01qF9TnY3y9+S+b0Kdqm54td42rj8jnrpt01B/NlRtpfX/zclDPX/fsPuGa1MoW6/Gf+3HX+B7mqFG/d7zrbYX26uBqqU6VzxX1o5U10PX1f156Xpv1j2pSXlNNvG1c7or5bV/urrWeU7nAKrg+xfLZ65Bmh1UdUxmLP2q4udrpdgSNGHYtd/FGW1OQL569Zty112ctQxnpTX+rUcO9fyZFOOb1scHr9qZzJqHkvV7LdnU7HdtC+2ro0M/gx7S1fa1gL0fBpdSN35eAdSnrdabfO43pXkGXdPEvb+mq+Frct2Uy3WA7gEAVlfUC83TnvHN7Vxon/r3fuOhmZ4fe9bG9U0cEmSv357HN4/F5Mx8/F//+csrfozugAV1XSu0dQ0yqq2rzEfzs9uaWterrcOzzxyLZz15S+3HAQC5yPXaM0eul6mafvvXhf6sB6pW95oqoUvdEbH6OqhirVtrUL+mOhv27ylh34Q6Vdnwar2Nb9IbaVlu/W/dON/z94yyb7g2hbKt1LjvaYZ6DXLPt9pebK8GqpbiXPFcWXtSXA/U+3nRm3VPelJek0187ZzuSnntn6rOdZ7LOYCq+P7F8plrkGYHVRyTGcsgqvhadIotQROGWftdndHmBOSrn+9nS01XZy3DWW4tb5np/X3gT0h4/UOJ+tlzmpz9Ke+B0BV1dOjfa0C62r4WsPfD4FLpxs8rgHq10XrTz/2mMs+gi+q+96cavibXXblcB+geAKC3tW0fAFRlYstY7No+sez7dm2fiIktbgygaroDGI75SQqsQwAgVa5ToD36g/Tokq6w1oEqmCXQHL1RAusYqJMZA9XTFcBgzE1ojt6AKpkpdIF1DvnQK0B9zFiGZe1A/XQGUD+zllFZQ5Af3QJVMlMgP7oFlmM2QHl0DZAWc5kmWW8AANXzQvMUY3zzWNx45Y4lNw27tk/E+67cEeOb3TBA1XQHMBzzkxRYhwBAqlynQHv0B+nRJV1hrQNVMEugOXqjBNYxUCczBqqnK4DBmJvQHL0BVTJT6ALrHPKhV4D6mLEMy9qB+ukMoH5mLaOyhiA/ugWqZKZAfnQLLMdsgPLoGiAt5jJNst4AAKq3ru0DgCqdu21TfPCqnTE5Mx8HjxyNszauj4ktY24WoEa6AxiO+UkKrEMAIFWuU6A9+oP06JKusNaBKpgl0By9UQLrGKiTGQPV0xXAYMxNaI7egCqZKXSBdQ750CtAfcxYhmXtQP10BlA/s5ZRWUOQH90CVTJTID+6BZZjNkB5dA2QFnOZJllvAADV8kLzFGd8sxsEaJruAIZjfpIC6xAASJXrFGiP/iA9uqQrrHWgCmYJNEdvlMA6BupkxkD1dAUwGHMTmqM3oEpmCl1gnUM+9ApQHzOWYVk7UD+dAdTPrGVU1hDkR7dAlcwUyI9ugeWYDVAeXQOkxVymSdYbAEB11rZ9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd44XmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmheYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuaF5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5oXmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmheYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrau7QMAAAAAYHRf+9rX2j6EZaV6XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DYvNA8AAACQscNTj0TEmvjpn/7ptg+lp6Nz820fAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJMULzQMAAABk7OjswYg4ES/8ybfFky54TtuHs8QDX/li/O2f/W48+uijbR8KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkxQvNAwAAABRgy5PPjyee/4/aPowlph/4VtuHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASVrb9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdI0XmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomBeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjYurYPgPpMzc7H5Mx8TB85Gls3rY+JM8difPNY24cFnEarQJeZgZTCWgaA9tiHIU3ahG7RPLRPh1AmbUOZtA1l0ziURdOQHl0CJTLbgFyZX93jcw4sMA9gKV0AVTBLoHw6B6AKOe0nOR0r0A5zAsqgZaBf5gWsTB/QLZqHNGgRyqBl6CbtAwBQOi80X6j7DxyOt91yT9y2d/Lk23Ztn4gbr9wR527b1OKRAafSKtBlZiClsJYBoD32YUiTNqFbNA/t0yGUSdtQJm1D2TQOZdE0pEeXQInMNiBX5lf3+JwDC8wDWEoXQBXMEiifzgGoQk77SU7HCrTDnIAyaBnol3kBK9MHdIvmIQ1ahDJoGbpJ+wAAdMHatg+gSrt3745Xv/rVce6558aaNWvik5/8ZM+Pv/322+PSSy+Ns88+OzZt2hTPec5z4jd+4zeaOdgaTc3OL7mZiYjYvXcyrr/lnpianW/pyIBTaRXoMjOQUljLANAe+zCkSZvQLZqH9ukQyqRtKJO2oWwah7JoGtKjS6BEZhuQK/Ore3zOgQXmASylC6AKZgmUT+cAVCGn/SSnYwXaYU5AGbQM9Mu8gJXpA7pF85AGLUIZtAzdpH0AALqiqBeaP3ToULzgBS+ID33oQ319/JlnnhnXXntt7N69O772ta/F29/+9nj7298ev/u7v1vzkdZrcmZ+yc3Mgt17J2Nyxg0NpECrQJeZgZTCWgaA9tiHIU3ahG7RPLRPh1AmbUOZtA1l0ziURdOQHl0CJTLbgFyZX93jcw4sMA9gKV0AVTBLoHw6B6AKOe0nOR0r0A5zAsqgZaBf5gWsTB/QLZqHNGgRyqBl6CbtAwDQFevaPoAqXXHFFXHFFVf0/fE7d+6MnTt3nvz1M5/5zPjEJz4Rt912W/zzf/7P6zjERkwfOdrz/QdXeT/QDK0CXWYGUgprGQDaYx+GNGkTukXz0D4dQpm0DWXSNpRN41AWTUN6dAmUyGwDcmV+dY/PObDAPICldAFUwSyB8ukcgCrktJ/kdKxAO8wJKIOWgX6ZF7AyfUC3aB7SoEUog5ahm7QPAEBXrG37AFKyZ8+e+MIXvhA/8AM/0PahjGTrxvU933/WKu8HmqFVoMvMQEphLQNAe+zDkCZtQrdoHtqnQyiTtqFM2oayaRzKomlIjy6BEpltQK7Mr+7xOQcWmAewlC6AKpglUD6dA1CFnPaTnI4VaIc5AWXQMtAv8wJWpg/oFs1DGrQIZdAydJP2AQDoCi80HxFPf/rTY8OGDfHiF784fv7nfz5+9md/tufHz83NxfT09KL/UjKxZSx2bZ9Y9n27tk/ExJaxho8I0pNCx1qF0aXQMsMxAzlVzi1by/C4nFsGHpdTy/ZhWFmbLWsTqpPDvqx5WF3dLesQmtH0vqxtqEfb19jahtG13XEvGof+pdzyAk3D6twrQxly2JdLZrZRFS3TNPOrHim37HMO/Uu55SqYB3TFIC3rAtKV075slsDKcmq5F53TdaW0DG1rcz8ZtGN7H6QppT3ZnIDhaRnKkFLLTTAvKFUVLesD2tfkvqx5qI/v+YIyaBnKUOc1tvahOV17HhtKpWXIlxeaj4jbbrst7rzzzvjwhz8cH/jAB+JjH/tYz49/73vfG+Pj4yf/O++88xo60v6Mbx6LG6/cseSmZtf2iXjflTtifLMbGkihY63C6FJomeGYgZwq55atZXhczi0Dj8upZfswrKzNlrUJ1clhX9Y8rK7ulnUIzWh6X9Y21KPta2xtw+ja7rgXjUP/Um55gaZhde6VoQw57MslM9uoipZpmvlVj5Rb9jmH/qXcchXMA7pikJZ1AenKaV82S2BlObXci87pulJahra1uZ8M2rG9D9KU0p5sTsDwtAxlSKnlJpgXlKqKlvUB7WtyX9Y81Mf3fEEZtAxlqPMaW/vQnK49jw2l0jLka82JEydOtH0QdVizZk3ceuut8ZrXvGag3/ee97wn/uAP/iC+/vWvr/gxc3NzMTc3d/LX09PTcd5558XU1FRs3bp12EOu3NTsfEzOzMfBI0fjrI3rY2LLmJsZ+AcpdaxVGF5KLTMcM5CIMlq2lmH4lr/85S/HxRdfHD/4bz4STzz/HzVxqAP51pf+//Glm94dl/3Ch+Jpz93Z9uEsK/VjTP34/n7/1+Ov/t01cdddd8WLXvSitg+ndTnuy/ZhWCqFlrUJo0uh5X5pHlbWVMs6hHq1tS9rG6qVyjW2tmF4qXTci8ZhdTm0vEDTsDL3ylCGnPblkpltjErLtMX8qlYOLfucw+pyaLkK5gGlG6ZlXUB6ctyXzRJYKseWe9E5XVVay9C2NvaTYTu290FaUtyTzQkYnJahDCm23ATzgtJU2bI+oD1t7Muah+r5ni8og5ahDE1cY2sf6tfV57GhNFqGfK1r+wBSc/z48UUDbTkbNmyIDRs2NHREwxvf7AYGVpJSx1qF4aXUMsMxA4koo2VrGcpoGcizZfswLJVCy9qE0aXQcr80DytrqmUdQr3a2pe1DdVK5Rpb2zC8VDruReOwuhxaXqBpWJl7ZShDTvtyycw2RqVl2mJ+VSuHln3OYXU5tFwF84DSDdOyLiA9Oe7LZgkslWPLveicriqtZWhbG/vJsB3b+yAtKe7J5gQMTstQhhRbboJ5QWmqbFkf0J429mXNQ/V8zxeUQctQhiausbUP9evq89hQGi1Dvop6ofmZmZm49957T/563759cffdd8cTn/jEOP/88+OGG26I73znO/HRj340IiI+9KEPxfnnnx/Pec5zIiJi9+7d8Wu/9mvxlre8pZXjBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALqhqBeav/POO+NlL3vZyV9fd911ERFx9dVXx8033xwPPPBA7N+//+T7jx8/HjfccEPs27cv1q1bF8961rPife97X/yLf/EvGj92AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoDuKeqH5l770pXHixIkV33/zzTcv+vWb3/zmePOb31zzUQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAstrbtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoGi80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCwdW0fAAAAAAC07Wtf+1rbh7CiiYmJOP/889s+DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKuaF5gEAAADorMNTj0TEmvjpn/7ptg9lRZs2bY6/+7uvebF5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDCeKF5AAAAADrr6OzBiDgRL/zJt8WTLnhO24ezxPQD34ov3fTumJyc9ELzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACF8ULzAAAAAHTeliefH088/x+1fRgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTI2rYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBrvNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMO80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw9a1fQCMbmp2PiZn5mP6yNHYuml9TJw5FuObx9o+LCiO1gDoAvvdYs4HALTLXgz0w6wAUmQ20TZrELpD75Af3UJ5dA3doXdonw6BYZgdQCnMM05nTQC9mBHQPh1CfnQLZdI2AE2w3zTDeYbm6Q7KoGUoi6YhbxqGsmkcqIp5AoPRDAAAAKXxQvOZu//A4XjbLffEbXsnT75t1/aJuPHKHXHutk0tHhmURWsAdIH9bjHnAwDaZS8G+mFWACkym2ibNQjdoXfIj26hPLqG7tA7tE+HwDDMDqAU5hmnsyaAXswIaJ8OIT+6hTJpG4Am2G+a4TxD83QHZdAylEXTkDcNQ9k0DlTFPIHBaAYAAIASrW37ABje1Oz8kicrIiJ2752M62+5J6Zm51s6MiiL1gDoAvvdYs4HALTLXgz0w6wAUmQ20TZrELpD75Af3UJ5dA3doXdonw6BYZgdQCnMM05nTQC9mBHQPh1CfnQLZdI2AE2w3zTDeYbm6Q7KoGUoi6YhbxqGsmkcqIp5AoPRDAAAAKVa1/YBdMXU7HxMzszH9JGjsXXT+pg4cyzGN4+N9GdOzswvebJiwe69kzE5Mz/y3wE021odswJYTGewvNyuLetuObfzAQBt8rwXlCHH+2WzApaXY88lMZuowigdW4OQDs9jQxmqbFm3kJYq+tY1NKft57z0Du1brcOHDs7pEFjCHg6UwjxrXtv3oavJZU2kfh6hVP3OCI1CfR46OJfFXg08LpVrbPszVGOhpblHjyXRNjAc+yK5SOVashQrte88Q/OG6c7+DelJaQ81I2B0vgYFeevn30TYKyEfp1/fHj9+wj4NBUjh3jWle3nIwbDNpNA7sJguAQBgMS8034D7DxyOt91yz6InF3Ztn4gbr9wR527bNPSfO33kaM/3H1zl/UB/mmqtrlkBPE5nsLKcri2baDmn8wEAbfK8F5Qh1/tlswKWyrXnkphNjGrUjq1BSIPnsaEMVbesW0hHVX3rGpqRwnNeeof2rdbh/r+fjTM3rPNcOLCIPRwohXnWrBTuQ1eTw5rI4TxCqfqZERqF+tx/4HDs//vZnh+Twl4NLJbCNbb9Gapxaku//VMv6vmx9mRIl32RnKRwLVmKXu07z9C8Qbuzf0OaUtlDzQgYna9BQf76+TcRb/j9O0/+2l4J6Vru+vY/Xf3inr/HPg3pS+XeNZV7ecjFMM2k0jvwOF0CAMBSa9s+gNJNzc4vuRGJiNi9dzKuv+WemJqdH/rP3rpxfc/3n7XK+4H+NNFanbMCeIzOoLdcri2bajmX8wEAbfK8F5Qh5/tlswIWy7nnkphNjKKKjq1BaJ/nsaEMdbSsW0hDlX3rGuqXynNeeof2rdZhRHguHFhiy4Z1Pd9/5irvB0iFe5LmpHIfuprU10Qu5xFKtdqMOHPDOo1CTRb2wNW0vVcDS7V9je0aGqpxeksb1vX+0Wr2ZEiTfZHctH0tWYrV2l/ta7/OM1RvkPlm/4Z0pXCtYkbA6HwNCsrQz7+JOJW9EtK00vXtauzTkLaU7l1TuJeHnAzaTEq9A4/RJQAALM8LzddscmZ+xSf7d++djMmZ4W9GJraMxa7tE8u+b9f2iZjYMjb0nw08ronW6pwVwGN0Br3lcm3ZVMu5nA8AaJPnvaAMOd8vmxWwWM49l8RsYhRVdGwNQvs8jw1lqKNl3UIaquxb11C/VJ7z0ju0r1eHl154duy574DnwoElxs5YG5deePay77v0wrNj7Az/rA7Ig3uS5qRyH7qa1NdELucRSrXajBg7Y61GoSYLe+Ce+w6seD+awl4NLNX2NbZraKjG6S3ZkyFP9kVy0/a1ZClWa3/sjLXOMzRskPlm/4Z0pXCtYkbA6HwNCsrQz7+JOJ29EtKz0vWtfRryltK9awr38pCTQZtJqXfgMboEAIDl+Yk4NZs+crTn+w+u8v5exjePxY1X7ljypMWu7RPxvit3xPhmT/JBFZporc5ZATxGZ9BbLteWTbWcy/kAgDZ53gvKkPP9slkBi+Xcc0nMJkZRRcfWILTP89hQhjpa1i2kocq+dQ31S+U5L71D+xY6vPy0Di+98Oy45tIL4qbb90WE58KBxQ4cno9rLr1gyQ9sW5gdU4f9gAkgD+5JmpPKfehqUl8TuZxHKNVqM+LAKtfBGoXhLeyBN92+b9n70csT2auBpdq+xnYNDdU4vaWV9uRU7p+B5dkXyU3b15KlWK39qcPzzjM0bJD5Zv+GdKVwrWJGwOh8DQrKsNK+fPn2iUX/JuJ09kpIy0rXtwv79On/7snzV5CHlO5dU7iXh5wM2kxKvQOP0SUAACxvXdsHULqtG9f3fP9Zq7x/Nedu2xQfvGpnTM7Mx8EjR+OsjetjYsuYJ/igYnW3VvesAHQG/cjh2rLJlnM4HwDQJs97QRlyv182K+BxufdcErOJYVXVsTUI7fI8NpShrpZ1C+2rum9dQ71Ses5L79C+c7dtivf86EVx78MzMffo8diwbm3sue9AvOVje2J2/lhEeC4cWGzLhvVx1X/8Urz+sgvi9ZdesGR2/Pm1l7V9iAB9c0/SjJTuQ1eT8prI6TxCqXrNiIV76JVoFIa3sAfOzh+Lt3xsz5L70QuftCWeum1Ty0cJrKTNa2zX0FCN01s6fU8e37Q+nrB5LJn7Z2B59kVylPLztblYrf0zN6x3nqEF/XZn/4a0tb2HmhEwOl+DgnIsty+vW7smrvj3t634/Rz2SkjLSte3C/v0X77l8nj0+AnPX0FmUrt3bfteHnIzSDOp9Q7oEgAAVuKF5ms2sWUsdm2fiN17J5e8b9f2iZjYMvqTceObPakHTaiztSZmBXSdzqA/qV9bNt1y6ucDANrkeS8oQwn3y2YFPKaEnktiNjGMKju2BqE9nseGMtTZsm6hXXX0rWuoT2rPeekd2rdt8/r4/S98K5m5AKRtYstYvPgZT4jf+ty9S95nZgA5ck9Sv9TuQ1eT6prI7TxCqVaaERqF+pza1+z8sUX3o7u2T8QHr9rZ4tEB/WjrGtv+DNVYrqWFPXlhL07xPhpYzL5IrlJ9vjYX/bbvPEPz+unO/g3pa3MPNSNgdL4GBWU5fV+emp2PFz/jCfZKyESv69sXP+MJsW3zes9fQYZSvHf1fDgMpt9mUuwduk6XAACwvLVtH0DpxjePxY1X7ohd2ycWvX3X9ol435U7PDkHRIRZAU3QGZRBywCQDvsylEHLUA49Q/50DGXQMpRBy1AufUNeNAuczlwABmFmADAoe0c1nEdIm0ahPvoChmV+QDW0BGXQMnST9iFvGgZ6MSNgdDqCsmkc8qJZKJO2oTv0DunRJQAALG9d2wfQBedu2xQfvGpnTM7Mx8EjR+OsjetjYsuYGxFgEbMC6qczKIOWASAd9mUog5ahHHqG/OkYyqBlKIOWoVz6hrxoFjiduQAMwswAYFD2jmo4j5A2jUJ99AUMy/yAamgJyqBl6CbtQ940DPRiRsDodARl0zjkRbNQJm1Dd+gd0qNLAABYqqgXmt+9e3f86q/+atx1113xwAMPxK233hqvec1rVvz4T3ziE/E7v/M7cffdd8fc3Fw8//nPj3e9613xyle+svJjG9/s5gNYnVkB9dMZlEHLAJAO+zKUQctQDj1D/nQMZdAylEHLUC59Q140C5zOXAAGYWYAMCh7RzWcR0ibRqE++gKGZX5ANbQEZdAydJP2IW8aBnoxI2B0OoKyaRzyolkok7ahO/QO6dElAAAstrbtA6jSoUOH4gUveEF86EMf6uvjd+/eHT/4gz8Yf/EXfxF33XVXvOxlL4tXv/rVsWfPnpqPFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiydW0fQJWuuOKKuOKKK/r++A984AOLfv0rv/Ir8alPfSr+/M//PHbu3Fnx0QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8pqgXmh/V8ePH4+DBg/HEJz6x58fNzc3F3NzcyV9PT0/XfWhAxXQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz50zGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUO+vND8KX7t134tZmZm4p/9s3/W8+Pe+973xrvf/e4lbzf8oDlnnXVWrFmzZujfr2NIg5ahDFqGMrTV8szMTERETP3vb8bxR48N/ffXZeah70RExPR3vxUbNmxo+WiWl/oxOr7RHPzutyPisVb62Rvty1AGLUMZtAxl0DKUQctQBi1DGUZpWceQBnsylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBt+/CfmzJ0MZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPkbtuM1J06cOFHD8bRuzZo1ceutt8ZrXvOavj7+j/7oj+KNb3xjfOpTn4pXvOIVPT92bm4u5ubmTv76O9/5Tjzvec8b5XCBAU1NTcXWrVuH/v06hjRoGcqgZSiDlqEMWoYyVN3yvn374oUvfGEFRwYMwr4MZdAylEHLUAYtQxlGaVnHkAZ7MpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAbfvwn5sydDGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz5G7ZjLzQfER//+Mfj9a9/ffzJn/xJ/MiP/MjAf9fx48fj/vvvj7POOivWrFkzxNF2y/T0dJx33nlx3333jbT50O1zWXVvdXXc5c/R6ZyLxzgPi9XV8okTJ+L8888v6jyXunZKfFxdfEy57MtVK/FzvaDUx1bq44qo5rHV0fLXv/71eN7znlfkOe9XyeuuX85Bs+eg6X3Z59c5iHAOIqo/B1W3fODAgXjCE54Q+/fvj/Hx8cr+3DaVtu5KezwR5T2mYR5PV++XF5S2BgbR1cde6uP2PHZ/Svv8ezxpsy/3r7TPfR2co9WldI662vKpUvp8jMLjSEvTj6PK5qrsuJTPZ5Ocs+GUcN5S2ZNLOJd1cF5W5twslkrLbSttXXg8aavj8aTScmmfqwiPKRelPKZUWm5CKZ+zFDiX1Ur1e7GXa9nnvjrOZTVKO48p7Ms5n9Ocjz3C8betyuNPoeWq5P55XYnHlZ82HltJLTeh5PW3kq495lwfr3/vOJjcjz8i/8fg+Jfn31Uslus6cdzNSvG4U/3+zaak+DmpkseXt34fX4n3yqV8bkt4HCU8hog8HkdOLedwPk/nmJvhmPNquQo5fs5T4xyOruTvxV6ONbMy52Z5XT4vKbac4+cjx2OOyPO4HfPyUmy5Sjl+3pfjcaQj1cfQZMupnoNSOL/1yeHctrEv53Be6uKxd/OxR9T/+Nu6xi7l8+pxpKWUxxEx+GPR8mg8jrR09XEM2/G6YQ6uJB/72Mfi9a9/fXz84x8f6kXmIyLWrl0bT3/60ys+svJt3bo160hT4lyOru6OfY4e51w8xnmox0LL09PTEVHmeS7xMUWU+bg8puHldn1d4ud6QamPrdTHFZHWY1u7dm087WlPi4i0jqstzoFzEJHnOeh3X87xsVXNOXAOItI9B2vXro2IiPHx8SSPbxSpnvNhlfZ4Isp7TG0+ntzulxeUtgYG0dXH3tXH3a/Sn8f2eNLm8VQnt325tM99HZyj1ZV4jnJr+VSlfD48jrTk+Djq6DjH89A252w4ztvjRm3ZuVye87Iy56YeOV9fR5S3LjyetKX8eOzLS3lMeSjxMY0ih33Z56w6zmW1Ujqfq7Wc0rHmzrmshvO4vFH25ZzPac7HHuH425bi8adwjZ3ieamCx5WfnB9bCi03IefP0bC69pi79nhP15V/75j78Ufk/xgcf71K+XcVjrtZjjstOV9fl/o5WeDx5a3px5dSy6V8bkt4HCU8hohyHkc/mmg5x/PpmJvhmKuT0r7cS6rnLyfO4ehSPof+vWOznJvlOS+jq7LlHD8fOR5zRJ7H7Zjrleo1dk7nsBePIx0lPIZe+mm59HPQNue3Pl06t4Psy106L6fz2Lv52CPyefyDXmPn8rhW43GkpZTHEdHeY9Fy3jyOtNT9OIp6ofmZmZm49957T/563759cffdd8cTn/jEOP/88+OGG26I73znO/HRj340IiL+6I/+KK6++ur4zd/8zbjkkkviu9/9bkREbNq0KcbHx1t5DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED51rZ9AFW68847Y+fOnbFz586IiLjuuuti586d8Y53vCMiIh544IHYv3//yY//3d/93Xj00Ufj53/+5+OpT33qyf/+5b/8l60cPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAN69o+gCq99KUvjRMnTqz4/ptvvnnRrz//+c/Xe0Asa8OGDfHOd74zNmzY0PahZM+5TJ/P0eOci8c4D80o8TyX+JgiynxcHlN3lHxeSn1spT6uiHQfW6rH1STnwDmIKPsclPzY+uUcOAcR6Z+D1I9vGKU9ptIeT0R5j6m0x9OELp+zrj72rj7uYZV2vjyetHk83eVcrc45Wp1zlJZSPh8eR1pKeRyjch4G55wNx3mrjnO5POdlZc4NyyltXXg8aSvt8ZyqxMfmMeWhxMdUOp+z6jiX1crpfOZ0rKlzLqvhPFYv53Oa87FHOP625X78dSn1vHhc+Sn5sZWii5+jrj3mrj3eYeV+nnI//oj8H4Pjb1Zux7vAcTfLcVOV0j8nHl/eSn98vZTy2Et4HCU8hohyHkcqcjyfjrkZjrl7nL/ROYej69o57NrjHYRzszznJS05fj5yPOaIPI/bMXdTKefQ40hHCY9hVM5BvZzf+ji3y+vyefHYu/nYI8p9/KU8Lo8jLaU8joh8Hksux7kajyMtHsdg1pzo9crsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRubdsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA1XmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGFeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYV5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhXmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGFeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYV5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhXmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGFeaL5Cu3fvjle/+tVx7rnnxpo1a+KTn/zkQL//Xe96V6xZs2bJf2eeeWY9BwwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0wgvNV+jQoUPxghe8ID70oQ8N9fvf+ta3xgMPPLDov+c973nx4z/+4xUfKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAmLzRfoSuuuCLe8573xGtf+9pl3z83Nxdvfetb42lPe1qceeaZcckll8TnP//5k+/fsmVLPOUpTzn534MPPhhf/epX4w1veENDjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABogheab9C1114bX/ziF+PjH/943HPPPfHjP/7j8UM/9EOxd+/eZT/+937v9+LZz352XH755Q0fKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAnLzTfkP3798dHPvKR+JM/+ZO4/PLL41nPela89a1vjcsuuyw+8pGPLPn4I0eOxH/+z/853vCGN7RwtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECd1rV9AF3xla98JY4dOxbPfvazF719bm4uzj777CUff+utt8bBgwfj6quvbuoQAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZ4ofmGzMzMxBlnnBF33XVXnHHGGYvet2XLliUf/3u/93vxqle9Ks4555ymDhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoiBeab8jOnTvj2LFj8dBDD8Xll1/e82P37dsX//2///f4sz/7s4aODgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiSF5qv0MzMTNx7770nf71v3764++6744lPfGI8+9nPjp/6qZ+K173udfHrv/7rsXPnznj44Yfjs5/9bOzYsSN+5Ed+5OTvu+mmm+KpT31qXHHFFW08DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBma06cOHGi7YMoxec///l42ctetuTtV199ddx8881x9OjReM973hMf/ehH4zvf+U5MTEzEP/kn/yTe/e53x/d///dHRMTx48fjGc94Rrzuda+Lf/fv/l3TDwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABogBeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjY2rYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBrvNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMO80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw7zQfAVOnDgR09PTceLEibYPBRiSjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahvzpGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX86hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyIcXmq/AwYMHY3x8PA4ePNj2oQBD0jGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5A/HUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRPx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPnwQvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfNC8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN80LzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zQvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVvX9gEATM3Ox+TMfEwfORpbN62PiTPHYnzzWNuHBQxIy5A2jUK3aB7KoGUASmevo2nWHEAZzHMog5ahDFqG/OkYyqBlKIOWSYW1CO3SIEB1zFQog5YhL5qFsmkcyqBlSmRdAzkyu6AMWoYyaBnKoGWoh7aAYZgd3eDzDFTBLAHoj3kJAN3jheaBVt1/4HC87ZZ74ra9kyfftmv7RNx45Y44d9umFo8MGISWIW0ahW7RPJRBywCUzl5H06w5gDKY51AGLUMZtAz50zGUQctQBi2TCmsR2qVBgOqYqVAGLUNeNAtl0ziUQcuUyLoGcmR2QRm0DGXQMpRBy1APbQHDMDu6wecZqIJZAtAf8xIAumlt2wcAdNfU7PySm5CIiN17J+P6W+6Jqdn5lo4MGISWIW0ahW7RPJRBywCUzl5H06w5gDKY51AGLUMZtAz50zGUQctQBi2TCmsR2qVBgOqYqVAGLUNeNAtl0ziUQcuUyLoGcmR2QRm0DGXQMpRBy1APbQHDMDu6wecZqIJZAtAf8xIAussLzQOtmZyZX3ITsmD33smYnHEjAjnQMqRNo9AtmocyaBmA0tnraJo1B1AG8xzKoGUog5YhfzqGMmgZyqBlUmEtQrs0CFAdMxXKoGXIi2ahbBqHMmiZElnXQI7MLiiDlqEMWoYyaBnqoS1gGGZHN/g8A1UwSwD6Y14CQHd5oXmgNdNHjvZ8/8FV3g+kQcuQNo1Ct2geyqBlAEpnr6Np1hxAGcxzKIOWoQxahvzpGMqgZSiDlkmFtQjt0iBAdcxUKIOWIS+ahbJpHMqgZUpkXQM5MrugDFqGMmgZyqBlqIe2gGGYHd3g8wxUwSwB6I95CQDd5YXmgdZs3bi+5/vPWuX9QBq0DGnTKHSL5qEMWgagdPY6mmbNAZTBPIcyaBnKoGXIn46hDFqGMmiZVFiL0C4NAlTHTIUyaBnyolkom8ahDFqmRNY1kCOzC8qgZSiDlqEMWoZ6aAsYhtnRDT7PQBXMEoD+mJcA0F1eaB5ozcSWsdi1fWLZ9+3aPhETW8YaPiJgGFqGtGkUukXzUAYtA1A6ex1Ns+YAymCeQxm0DGXQMuRPx1AGLUMZtEwqrEVolwYBqmOmQhm0DHnRLJRN41AGLVMi6xrIkdkFZdAylEHLUAYtQz20BQzD7OgGn2egCmYJQH/MSwDorqxeaH737t3x6le/Os4999xYs2ZNfPKTn1z193z+85+PF73oRbFhw4a48MIL4+abb17yMR/60Ifimc98ZmzcuDEuueSS+Ju/+ZvqDx5YYnzzWNx45Y4lNyO7tk/E+67cEeOb3YhADrQMadModIvmoQxaBqB09jqaZs0BlME8hzJoGcqgZcifjqEMWoYyaJlUWIvQLg0CVMdMhTJoGfKiWSibxqEMWqZE1jWQI7MLyqBlKIOWoQxahnpoCxiG2dENPs9AFcwSgP6YlwDQXWtOnDhxou2D6Ndf/uVfxh133BEXX3xx/NiP/Vjceuut8ZrXvGbFj9+3b19cdNFF8aY3vSl+9md/Nj772c/GL/zCL8SnP/3peOUrXxkREX/8x38cr3vd6+LDH/5wXHLJJfGBD3wg/uRP/iS+/vWvx5Of/OS+jmt6ejrGx8djamoqtm7dWsVDhU6Zmp2PyZn5OHjkaJy1cX1MbBlr/CZExzA6LUPaUmi0X1qG0aXQvJZhdFoGqqJlUpXCXpcTLY/OmiMFWobRpTDPtQyj0zKUoe2WdQyja7vjCC1DFbQMZdAyqUhhLTIaLedNgyzQMowuhZmqZRidliEvKTS7Ei3D6FJoXMswOi1TohTWddfoGEaXwuzSMoxOy1AGLUMZtAz1SKGtpmkZRpfC7NBy/VL4PFM+LZfPLOkGLcPoUpiXWoYyaBnysa7tAxjEFVdcEVdccUXfH//hD384Lrjggvj1X//1iIh47nOfG7fffnv8xm/8xskXmn//+98fb3zjG+Oaa645+Xs+/elPx0033RTXX3999Q8CWGJ8sydqoARahrRpFLpF81AGLQNQOnsdTbPmAMpgnkMZtAxl0DLkT8dQBi1DGbRMKqxFaJcGAapjpkIZtAx50SyUTeNQBi1TIusayJHZBWXQMpRBy1AGLUM9tAUMw+zoBp9noApmCUB/zEsA6J61bR9Anb74xS/GK17xikVve+UrXxlf/OIXIyJifn4+7rrrrkUfs3bt2njFK15x8mMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqrau7QOo03e/+90455xzFr3tnHPOienp6Th8+HB873vfi2PHji37MX/3d3+34p87NzcXc3NzJ389PT1d7YEDtdMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQPx1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz5Wtv2AeTove99b4yPj5/877zzzmv7kIAB6RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZcifjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfKnYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahnytOXHixIm2D2IYa9asiVtvvTVe85rXrPgxu3btihe96EXxgQ984OTbPvKRj8Qv/MIvxNTUVMzPz8fmzZvjT//0Txf9OVdffXUcOHAgPvWpTy37587NzcXc3NzJX09PT8d5550XU1NTsXXr1lEfGtAAHUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPnTMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQ/50DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkK91bR9AnV7ykpfEX/zFXyx621/91V/FS17ykoiIGBsbi4svvjg++9nPnnyh+ePHj8dnP/vZuPbaa1f8czds2BAbNmyo7biB+ukYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXIn46hDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnyp2Mog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoZ8ZfVC8zMzM3Hvvfee/PW+ffvi7rvvjic+8Ylx/vnnxw033BDf+c534qMf/WhERLzpTW+K3/qt34pf/MVfjNe//vXxuc99Lv7Lf/kv8elPf/rkn3HdddfF1VdfHS9+8YvjH//jfxwf+MAH4tChQ3HNNdc0/vhIw9TsfEzOzMf0kaOxddP6mDhzLMY3j7V9WJAF/UCatAkMy/yAMmgZAGB0rqk4lfUAZdAypEGLQJ3MGOpgXQFtMHsohbUMlMZcg9HpCBiVOUIJrGMA+mXPgHTpk5JZ39AMrQGDMjdgKV0ATTJzoAxaBoZlfkCatAm9aQRInTkFNMnMAQBSl9ULzd95553xspe97OSvr7vuuoiIuPrqq+Pmm2+OBx54IPbv33/y/RdccEF8+tOfjn/1r/5V/OZv/mY8/elPj9/7vd+LV77ylSc/5id+4ifi4Ycfjne84x3x3e9+N174whfGZz7zmTjnnHOae2Ak4/4Dh+Ntt9wTt+2dPPm2Xdsn4sYrd8S52za1eGSQPv1AmrQJDMv8gDJoGQBgdK6pOJX1AGXQMqRBi0CdzBjqYF0BbTB7KIW1DJTGXIPR6QgYlTlCCaxjAPplz4B06ZOSWd/QDK0BgzI3YCldAE0yc6AMWgaGZX5AmrQJvWkESJ05BTTJzAEAcrC27QMYxEtf+tI4ceLEkv9uvvnmiIi4+eab4/Of//yS37Nnz56Ym5uLb3zjG/EzP/MzS/7ca6+9Nr797W/H3NxcfOlLX4pLLrmk/gdDcqZm55dcwEdE7N47Gdffck9Mzc63dGSQPv1AmrQJDMv8gDJoGQBgdK6pOJX1AGXQMqRBi0CdzBjqYF0BbTB7KIW1DJTGXIPR6QgYlTlCCaxjAPplz4B06ZOSWd/QDK0BgzI3YCldAE0yc6AMWgaGZX5AmrQJvWkESJ05BTTJzAEAcpHVC81DnSZn5pdcwC/YvXcyJmdcxMNK9ANp0iYwLPMDyqBlAIDRuabiVNYDlEHLkAYtAnUyY6iDdQW0weyhFNYyUBpzDUanI2BU5gglsI4B6Jc9A9KlT0pmfUMztAYMytyApXQBNMnMgTJoGRiW+QFp0ib0phEgdeYU0CQzBwDIhReah38wfeRoz/cfXOX90GX6gTRpExiW+QFl0DIAwOhcU3Eq6wHKoGVIgxaBOpkx1MG6Atpg9lAKaxkojbkGo9MRMCpzhBJYxwD0y54B6dInJbO+oRlaAwZlbsBSugCaZOZAGbQMDMv8gDRpE3rTCJA6cwpokpkDAOTCC83DP9i6cX3P95+1yvuhy/QDadImMCzzA8qgZQCA0bmm4lTWA5RBy5AGLQJ1MmOog3UFtMHsoRTWMlAacw1GpyNgVOYIJbCOAeiXPQPSpU9KZn1DM7QGDMrcgKV0ATTJzIEyaBkYlvkBadIm9KYRIHXmFNAkMwcAyIUXmod/MLFlLHZtn1j2fbu2T8TElrGGjwjyoR9IkzaBYZkfUAYtAwCMzjUVp7IeoAxahjRoEaiTGUMdrCugDWYPpbCWgdKYazA6HQGjMkcogXUMQL/sGZAufVIy6xuaoTVgUOYGLKULoElmDpRBy8CwzA9IkzahN40AqTOngCaZOQBALrzQPPyD8c1jceOVO5ZcyO/aPhHvu3JHjG8e/CJ+anY+vvHQTOzZ/734xsMzMTU7X9XhQlKq6kczUK069raSmDmwsqbnhx6hHoO2rEUAoG0pXo94foVTWQ9QhhRbTnEPhLql2GIvOoW8eH6cOqSyd1mv0C2pzJ5hmFecKvW1bL0Cg6pirpk9dF0b1we6g7L4Nw+UoMl1bA0D5C3151j7YS+iVL36/OUfvSi+9cgha55s1bX/2BNgMd/vCAzKz/uDpUp47qQXvUJahp05Woa09NOyboHTTc3OxyOH5uOd//T5cXmh9x+QqyqfG3ANQMqGXZ+lP38G5M99OtCklWbO5dsn4p3/9PnxyKF5MwYASMKaEydOnGj7IHI3PT0d4+PjMTU1FVu3bm37cBjR1Ox8TM7Mx8EjR+OsjetjYsvYUE9u3n/gcLztlnvitr2TJ9+2a/tE3Hjljjh326YqD5kK6Lgao/SjGaqg5eVVtbeVxMxJm5bT0cT80GO5tJyOflrWIivRMpRBy+Qg9euRFJ5f0XIaHjhwOD7/vx6OJ5+1IeYePR4b1q2Nhw7OxUuf/aR4agJrlfRpOR0pzPaI9PdAlqfl6qTSYi86LZeWy+f58fK10XGbe5f1SqnsyavL4br5VOZVN/XTcopr2XqFxezLgxl2rpk91C2nlpu6PtAdOcqp5Tb5Nw+kLoX7ZWsYRmdfJhUpPsfaj1T2Ii1Tp1P73DR2Rnx5/4H4t//1qzE7fywiXH9VScvNq3L/SWVPoH1aXsr3O5IbHbfPz/ujCqW1nOtzJ73olX6U1nIuBpk5WqYfWm7HSi3rlmFpuVynzoXNY2fE6y+7IP7P7zs7NqxfG9s2jRVx/8HjtJyvUZ8bcA1QltJarmJ9lvj8GeUrrWV6c59eLi2TooWZc+DwfMwdPR5f+OYjcdPt+2J2/pgZswItQxm0DPnwQvMVMPQ43dTsfFz7sT2LnmRYsGv7RHzwqp2eNE2MjtulGaqiZfph5qRPy92hx7JpOR9apBctQxm0TOpcj/RHy+2zVqmCljmVuZIvLXeHTsumZTSevy51bL1Ssi613AXmVXfl2LL1Ckvl2HJuzB6aoOXFdEeutJwGM4RRtd2yNQzVaLtlyFlKe5GWaUJKa75UWs6XPjiVlgenIVKj43yZJ5xKy2nTK/3Sctq0TL+0nA7dMgotl8lc6B4td5PWy1NSy9YnXVZSywzHDCyDlkmVGTMYLUMZtAz5WNv2AUCJJmfml70BiIjYvXcyJmfmGz4iSJtmgCaZOZAOPUIatAgAtM31CLmwVoGqmSuQPp1C2TROTqxXIBfmFTmxXoE2mD3QPN0BozBDyJ01DEDb7EV0jTUPK9MHjEZDQFXME8iHXqEMWob86BY4nbkA3aB1UmZ9Al1mBgJ1MmMAgJR5oXmowfSRoz3ff3CV90PXaAZokpkD6dAjpEGLAEDbXI+QC2sVqJq5AunTKZRN4+TEegVyYV6RE+sVaIPZA83THTAKM4TcWcMAtM1eRNdY87AyfcBoNARUxTyBfOgVyqBlyI9ugdOZC9ANWidl1ifQZWYgUCczBgBImReahxps3bi+5/vPWuX90DWaAZpk5kA69Ahp0CIA0DbXI+TCWgWqZq5A+nQKZdM4ObFegVyYV+TEegXaYPZA83QHjMIMIXfWMABtsxfRNdY8rEwfMBoNAVUxTyAfeoUyaBnyo1vgdOYCdIPWSZn1CXSZGQjUyYwBAFLmheahBhNbxmLX9oll37dr+0RMbBlr+IggbZoBmmTmQDr0CGnQIgDQNtcj5MJaBapmrkD6dApl0zg5sV6BXJhX5MR6Bdpg9kDzdAeMwgwhd9YwAG2zF9E11jysTB8wGg0BVTFPIB96hTJoGfKjW+B05gJ0g9ZJmfUJdJkZCNTJjAEAUuaF5qEG45vH4sYrdyy5Edi1fSLed+WOGN+8+k3A1Ox8fOOhmdiz/3vxjYdnYmp2fqSPg5RV0Uw/SuilhMcAVRu0i6ZmTi7MFdrUZI/DrHV90BU57Y3LdalVAMjfKNcjU7Pz8e3JQ/HV+6fif37r72PvgwddD1DbNeKga9W1KrCalebK5dsn4p3/9PnxyKH5kWaHOQTDW+jnW48cil/+0YuW3f9/5bXfH48cmtcYZGy1a/yIaGUvtYeznJy+nlOVhRa+/O2/j7/77nT8rwcPxjc1AcmrY14NujfaS+lXrvtr7ms89+OHUY36tdGS+yn98XVd25/fX/7Ri+LyzPZ8IA2p/5uH0jkno8v13jcVK61BaxPogqq+R9teRNdUteZTut5I6VjIW8p7Qh3rXDtULbWG6lzj+oF6DTJPTu/xwekj8c2H9QmDGnZva/Jn2gL1SeFafthZYIbQVSl0O6ip2fnY++DB+J/f+vv46v1T8e1HDmkWKpTDXChp3y7psZCXlFovoYMSHkNbljt3qf5cDCAfOc9lr2UF1K3qf3tqngAAVVlz4sSJE20fRO6mp6djfHw8pqamYuvWrW0fDgmZmp2PyZn5OHjkaJy1cX1MbBnr6wbg/gOH42233BO37Z08+bZd2yfixit3xLnbNg38caxOx2kYtpl+lNBLCY+hblrunlG6qHPm5CLVuaLl7qm7x2HWeqp95ETL+Ul9b1yuy8u3T8TPv+zCeP3N/zNm549FhFarpmUog5bJxaDXIw8cOBzf/vvZ+ODn9sYd9z5y8u2X/8M35JR2PaDl/jRxP9fPWnVfyUq0zHIW5sqBw/Mxd/R4fOGbj8RNt++L2fljQ88Oc6heWi7b6f1sHjsjfulVz4sXnb8tDs8fi7M2ro+N69fGO//s/43/+2sPnfx9GsuPllmw3DX+7Pyx+MUW9lJ7+GC62HHqX8+pynItXHrh2XHNpRfEH//N/nj3j16kiYJ0seUuqGpeDbo32kvbk3PLOe2vua/x3I+/C3JuOTeDzp7S+yn98TUttZbb/Pwu/N13fft78frLLoid522LiIinP2FTPGXrxmT3fIhIr+WuS/HfPJSulHOSSss53fumYrk1+IPPfXL80queF//mk3+b/dpkMKm0DE2p43u0U9iLtEyTRlnzKV0Lp3QsC7ScvxT2hFPVsc5TbCc1Wh5eCg3Vucb1kw8d52+1ebJcj5ddeHb8zKUXxFs+tmekf/NEOrRcvyr2trp/pi3503Ie2rqWH3YWmCHN03J6UrgH78f9Bw7H2/70nrjt3sX/BuvNL98ez3ji5niqZhul5bKlOhdK2rdTeSxa7ra2W0+lg1Gk8hhybHm1c5fSz8WApuTYcmpSmcuj8lpWedMyKarj356WPk+0DGXQMuTDC81XwNCjSlOz83Htx/YsuuBfsGv7RHzwqp0xvnms74+jPzouWwm9lPAYmqDlbtHFaFI+f1qmSsOs9ZT7yImWqVKvLi+98OzYef4T4rc+d+/Jt2m1OlqGMmiZEk3Nzsdf/O1347/ec/+iH2C4oMTrAS2vLpX7uVSOgzRpmZVUOTvMofppuVz99BMRGiuElllJW3upPXxwOi5TP18Xuue+A5ooiJZZyaB7o720XVquX+5rPPfj7wotp6n0fkp/fG1IqeU2P7/WFrlLqWXqZV4tVdI50XKeVlqD1778wtiz/3ud+Z5FHqdluqTk79HWMjlI6Vo4pWM5lZapUh3rPNV2UqPlfNW5xvWTFx2XbZCf76HPvGm5Xr5eTlO0zEqGnQVmSDu0zDCmZufj2j/as+hF5hdceuHZ8aod58YPX/QUzTZIyzStpH07pceiZdqSUgfDSukx5Nayn6EOy8ut5dSYE6tzjpqhZVLj+8aGo2Uog5YhH2vbPgBgscmZ+WUv+CMidu+djMmZ+YE+DiijlxIeA1RNF6Nx/uiKYda6PiA9vbq8495HYud52xa9TasAUL7Jmfl48lkblv0BhhGuB7oqlfu5VI4DyEuVs8McguH104/GoHxtdW6+wGP6+bqQJqAbBt0b7aWULvc1nvvxQ5tK76f0x9d1bX5+rS0gF+bVUs4JbVtpDe48b5vvWQSK53u0oV0pXQundCxQlzrWuXYoXZ1rXD+QjkF+voc+YWW+Xg60bdhZYIZAPiZn5pd9kfmIx67dn3zWBs1C4Urat0t6LDCsEjoo4TG0xc9QB+pgTqzOOYJu8n1jAEAO1rV9AMBi00eO9nz/wX94f78fB5TRSwmPAaqmi9E4f3TFMGtdH5Ce1bqce/T4krdpFQDKNn3k6LLXAKdyPdA9qdzPpXIcQF6qnB3mEAyvn35OrPJnaAzy19Zeag+Hx/T7dSFNQPkG3RvtpZQu9zWe+/FDm0rvp/TH13Vtfn6tLSAX5tVSzgltW2kN+p5FoAt8jza0K6Vr4ZSOBepSxzrXDqWrc43rB9Ix6M/30Ccsz9fLgbYNOwvMEMhHP9fumoWylbRvl/RYYFgldFDCY2iLn6EO1MGcWJ1zBN3k+8YAgBysbfsAgMW2blzf8/1n/cP7+/04oIxeSngMUDVdjMb5oyuGWev6gPSs1uWGdUuf4tIqAJRt68b1y14DnMr1QPekcj+XynEAealydphDMLx++tEYlK+tzs0XeEy/XxfSBJRv0L3RXkrpcl/juR8/tKn0fkp/fF3X5ufX2gJyYV4t5ZzQtpXWoO9ZBLrA92hDu1K6Fk7pWKAudaxz7VC6Ote4fiAdg/58D33C8ny9HGjbsLPADIF89HPtrlkoW0n7dkmPBYZVQgclPIa2+BnqQB3MidU5R9BNvm8MAMiBF5qHxExsGYtd2yeWfd+u7RMxsWVsoI8DyuilhMcAVdPFaJw/umKYta4PSE+vLi+98OzYc9+BRW/TKgCUb2LLWDx0cC4uvfDsZd/veqCbUrmfS+U4gLxUOTvMIRheP/1oDMrXVufmCzymn68LaQK6YdC90V5K6XJf47kfP7Sp9H5Kf3xd1+bn19oCcmFeLeWc0LaV1uCe+w7EZb5nESic79GGdqV0LZzSsUBd6ljn2qF0da5x/UA6Bvn5HvqElfl6OdC2YWeBGQL5WO3a/aGDc5qFwpW0b5f0WGBYJXRQwmNoi5+hDtTBnFidcwTd5PvGAIAceKF5SMz45rG48codSy78d22fiPdduSPGN48N9HFAGb2U8BigaroYjfNHVwyz1vUB6Vmpy8u3T8SbX749brp938m3aRUAumF881i89NlPije/fPuSH2R4ueuBzkrlfi6V4wDyUuXsMIdgeP30ozEoX1udmy/wmJVauPTCs+OaSy+Irz8wrQnoiEH3Rnsppct9jed+/NCm0vsp/fF1XZufX2sLyIV5tZRzQttWWoNff2A6fuW1329tAkXzPdrQrpSuhVM6FqhLHetcO5SuzjWuH0jHSj1e9g/fx7nw8z30Cb35ejnQtmFngRkC+Vjo9fJl/g3Wm1++PV727CdpFgpX0r5d0mOBYZXQQQmPoS1+hjpQB3Nidc4RdJPvGwMAcrDmxIkTJ9o+iNxNT0/H+Ph4TE1NxdatW9s+HAoxNTsfkzPzcfDI0Thr4/qY2DK27AV/vx9HbzruhhJ6KeEx1EnL3aSL0aR4/rRMHYZZ6yn2kRMtU4fluowIrdZIy1AGLVOyqdn5ODB7NA7NPxqz88difNP6ePJZG4q8HtBy/1K5n0vlOEiLlllNlbPDHKqPlsvXTz8ay5+WWU1bnZsv/dNx2RZamDp8NDaPnRFnrF0TZ6xdE2efqYnSaJnVDLo32kvboeXm5L7Gcz/+0mk5baX3U/rja1KKLbf5+bW2yFWKLVMv82qpEs6JlvO20hosYW0yGC3TRSV+j7aWyUlK1xspHUuElqlHHes8tXZSo+X81bnG9ZMHHXfD6T1u2bguDs09GtOH9VkKLTfD18upm5ZZzbCzwAxplpYZxdTsfDx0cO7kv8E6c2xdbNu8XrMt0DJtKWnfTuGxaJm2pdDBqFJ4DLm27Geow2K5tpwac2J1zlG9tEyqfN/YYLQMZdAy5GNd2wcALG98c38X+f1+HFBGLyU8BqiaLkbj/NEVw6x1fUB6VupSqwDQXa7bWU4q6yKV4wDyUuXsMIdgeP30ozEoX1udmy/wGC0ACwadB+YHpct9jed+/NCm0vsp/fF1XZufX2sLyIV5tZRzQtt6/fsFaxMonVkH7UqpwZSOBepSxzrXDqWrc43rB9KhR6iGr5cDbRt2FpghkA+9AiXNgZIeCwyrhA5KeAxt8TPUgTqYE6tzjqCbfN8YAJCytW0fwKA+9KEPxTOf+czYuHFjXHLJJfE3f/M3K37s0aNH45d/+ZfjWc96VmzcuDFe8IIXxGc+85lFH/Oud70r1qxZs+i/5zznOXU/DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDDsnqh+T/+4z+O6667Lt75znfGl7/85XjBC14Qr3zlK+Ohhx5a9uPf/va3x3/4D/8hPvjBD8ZXv/rVeNOb3hSvfe1rY8+ePYs+7vnPf3488MADJ/+7/fbbm3g4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEdl9ULz73//++ONb3xjXHPNNfG85z0vPvzhD8fmzZvjpptuWvbj/+AP/iD+9b/+1/HDP/zD8X3f933xcz/3c/HDP/zD8eu//uuLPm7dunXxlKc85eR/ExMTTTwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKPWtX0A/Zqfn4+77rorbrjhhpNvW7t2bbziFa+IL37xi8v+nrm5udi4ceOit23atCluv/32RW/bu3dvnHvuubFx48Z4yUteEu9973vj/PPPX/FY5ubmYm5u7uSvp6enh3lIQIt0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5E/HUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+dMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1Dvta2fQD9mpycjGPHjsU555yz6O3nnHNOfPe7313297zyla+M97///bF37944fvx4/NVf/VV84hOfiAceeODkx1xyySVx8803x2c+85n4nd/5ndi3b19cfvnlcfDgwRWP5b3vfW+Mj4+f/O+8886r5kECjdExlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQPx1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz5WnPixIkTbR9EP+6///542tOeFl/4whfiJS95ycm3/+Iv/mL89V//dXzpS19a8nsefvjheOMb3xh//ud/HmvWrIlnPetZ8YpXvCJuuummOHz48LJ/z4EDB+IZz3hGvP/97483vOENy37M3NxczM3Nnfz19PR0nHfeeTE1NRVbt24d8ZECTdAxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQPx1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz5Wtf2AfRrYmIizjjjjHjwwQcXvf3BBx+MpzzlKcv+nic96UnxyU9+Mo4cORKPPPJInHvuuXH99dfH933f963492zbti2e/exnx7333rvix2zYsCE2bNgw3AMBkqBjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhfzqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXIn46hDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnytbbtA+jX2NhYXHzxxfHZz3725NuOHz8en/3sZ+MlL3lJz9+7cePGeNrTnhaPPvpo3HLLLfGjP/qjK37szMxMfOMb34inPvWplR07AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKmyeaH5iIjrrrsu/uN//I/x+7//+/G1r30tfu7nfi4OHToU11xzTUREvO51r4sbbrjh5Md/6Utfik984hPxzW9+M2677bb4oR/6oTh+/Hj84i/+4smPeetb3xp//dd/Hd/61rfiC1/4Qrz2ta+NM844I6666qrGHx8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQDevaPoBB/MRP/EQ8/PDD8Y53vCO++93vxgtf+ML4zGc+E+ecc05EROzfvz/Wrl178uOPHDkSb3/72+Ob3/xmbNmyJX74h384/uAP/iC2bdt28mP+9//+33HVVVfFI488Ek960pPisssui//xP/5HPOlJT2r64VGRqdn5mJyZj+kjR2PrpvUxceZYjG8ea/uwoGi6AxiO+UkKrEOohpYAgJK4toH06JKusNaBKpgl0By9UQLrGKiTGQPV0xXAYMxNaI7egCqZKXSBdQ750CtAfcxYhmXtQP10BlA/s5ZRWUOQH90CVTJTID+6BZZjNkB5dA2QFnOZJllvAADVyeqF5iMirr322rj22muXfd/nP//5Rb/+gR/4gfjqV7/a88/7+Mc/XtWhkYD7DxyOt91yT9y2d/Lk23Ztn4gbr9wR527b1OKRQbl0BzAc85MUWIdQDS0BACVxbQPp0SVdYa0DVTBLoDl6owTWMVAnMwaqpyuAwZib0By9AVUyU+gC6xzyoVeA+pixDMvagfrpDKB+Zi2jsoYgP7oFqmSmQH50CyzHbIDy6BogLeYyTbLeAACqtbbtA4BRTM3Oxzcemok9+78X337kULztTxffLERE7N47Gdffck9Mzc63dJSQl1O7+sbDMz3bmZqdX3KTHqE7oDmDzKyUmJ+koNc6fNst98T/evBgVl1BW1Zr6duPHNIRAJCNLtyv5vpcAumqe011oUuIqGatm/FQjmF7tm9Cc1Z7bvzB6SMtHRksb7m9xb4BVM33NEO9Btm7PU8ENC3FueOeBxars1O9QXpS3Jv7ZaYwilzWvnUO+dBr+3KZ7dA1VbRpxjIIX4uG4Q0zs81oIDc53juatYzKz/qBtPSzF5n9wKg8RwZ5q/NaIMf7YuAxfl4B1KuNPdL9P3SH6/A8mMs0aZj1ZpYAAPS2ru0DgGHdf+DwohuE/3T1i+O2eyeX/djdeydjcmY+xjePNXmIfZuanY/JmfmYPnI0tm5aHxNnjiV7rJTt9K4iInZtn4gbr9wR527btOTjJ2fml9ykL0i9u0HplC5Kfd0POrNS0qX5Sbp6rcPb9k7GfX8/G2/4/Tuz6WoQqc838rJaS/c+NBO//4VvFddR7swBAHLQxn5V+v1qzs8l9Mt1TrOaWFOldwkLRl3rXZjxbbPH0JRRes5t39QVOVvtufFvPDQTx46fsA+vwhxoxkp7y7/5kedmtW+wlIZISUnf05warbOg33s+zxMxDLNmMM7XYqnOndyeK6N5XWq57k71BmlJdW/ul5myui7tYYPIae03sc6tE6iGfalddc92sxKGU1WbVc1YLZfP16JXpwNWstzMvnz7RLzrnz4/1kTE2SusFdfBQE5yel7wVG3PWtcP+eviz/qxbklVv3tR27Of1ZkzpMxzZKvTMKmr61og1/viOpgD5KjLP69As1Tt1DU1vml9jJ2xNm649SuN75Hu/+mars5z1+H5MJdp0qDrLedZ0tX5DwA0zwvNk6Wp2fklF/tzjx7v+XsOHjla92ENJecbF8qyXFcRj91wX3/LPfHBq3YuuTGdXqWrVLsblE7potTX/TAzKyVdmZ+kbbV1uHB9nUtX/Up9vpGffloqraPcmQMA5KCt/ark+9Xcn0voh+ucZjW1pkruEk41ylrvwoxvmz2Gpozac077pq7I3Wq9HTh81D68CnOgGb32lqu/d7jn701p32ApDZGSkr6nOTVa51T93PN5nohhmDWDcb4WS3nu5PRcGc3rUstNdKo3SEfKe3O/zJTeurSHDSK3tV/3OrdOoDr2pfbUPdvNShhOlW1WMWO1XD5fi16dDljJSjP7tr2T8Y5P/W3sPP8Jcc99B5ZdK66DgVzk9rzgqdqcta4fytC1n/Vj3ZKqQfYi19lpM2dImefIVqdhclDHtUDO98VVMwfIVVd/XoFmqdrpa+ral18Ye/Z/L+6495FFH9fEHun+ny7p6jx3HZ4Xc5kmDbLecp4lXZ3/AEA71rZ9ADCMyZn5JRf7G9b1Xs5nbVxf5yENZbUbl6nZ+ZaOjC5arqsFu/dOxuTM0vW4dZWuUuxuUDqli3JY98PMrJR0YX6SvtXW4anX1zl01Y8c5hv56belUjrKnTkAQA7a3K9Kvl/N/bmE1bjOaV5Ta6rkLuFUo6z10md82+wxNGnUnnPZN3VFCfp5btw+vDJzoDm99pbVpLJvsJSGSE0p39OcGq1zun7u+TxPxKDMmsE4X0ulPHdyea6M5nWt5SY61RukI+W9uV9mysq6tocNIre1X+c6t06gWval9tQ5281KGF6VbY46Y7XcDb4W3ZsO6KXXzL7j3kdi53nbVlwrroOBXOT2vOCp2pq1rh/K0aWf9WPdkrJB9iLX2ekyZ0id58h60zC5qONaIOf74iqZA+Ssiz+vQLNUbbk1tfO8bUteZH5B3U25/6crujzPXYfnxVymSYOst1xnSZfnPwDQDi80T5amjxxd8rY99x2ISy88e9mP37V9Iia2jNV9WAPL9caFMi3X1akOLvP+iS1jsWv7xLIfn2p3g9IpXZTDuh9mZqWkC/OT9PVah5deeHbsue/Aorel3lU/cphv5GeQlkroKHfmAAA5aHO/Kvl+NffnElbjOqd5Ta2pkruEU42y1kuf8W2zx9CkUXvOZd/UFSXo97lx+/DyzIHm9Npb9tx3IC7PYN9gKQ2RmlK+pzk1Wud0/dzzeZ6IQZk1g3G+lkp57uTyXBnN61rLTXSqN0hHyntzv8yUlXVtDxtEbmu/znVunUC17EvtqXO2m5UwvCrbHHXGarkbfC26Nx3Qy2oze+7R4xGx/FpxHQzkIrfnBU/V1qx1/VCOLv2sH+uWlA2yF7nOTpc5Q+o8R9abhslFHdcCOd8XV8kcIGdd/HkFmqVqy62pha+DraTOptz/0xVdnueuw/NiLtOkQdZbrrOky/MfAGiHF5onS1s3rl/ytptu3xfXXHrBki/079o+Ee+7ckeMb07vBjXXGxfKtFxXpzprmfePbx6LG6/cseRmPeXuBqVTuiiHdT/MzEpJF+Yn6VtpHV564dlxzaUXxE2371v09tS76kcO8438DNJSCR3lzhwAIAdt7lcl36/m/lzCalznNK+pNVVyl3CqUdZ66TO+bfYYmjRqz7nsm7qiBAu9nf4i3ac/N24fXp450Jxee8tNt++Lf/ujFyW/b7CUhkhNKd/TnBqtc7p+7vk8T8SgzJrBOF9LpTx3cnmujOZ1reUmOtUbpCPlvblfZsrKuraHDSK3tV/nOrdOoFr2pfbUOdvNShhelW2OOmO13A2+Ft2bDuhltZm9Yd3jP3rx9LXiOhjIRW7PC56qrVnr+qEcXfpZP9YtKRtkL3KdnS5zhtR5jqw3DZOLOq4Fcr4vrpI5QM66+PMKNEvVlltTp34dbDl1NuX+n67o8jx3HZ4Xc5kmDbLecp0lXZ7/AEA71rV9ADCMiS1jsWv7ROzeO3nybbPzx+ItH9sTv/Sq58W7Xv38ODT3aJy1cX1MbBlL9uY01xsXyrRcVwt2bZ+IiS3Ld3Tutk3xwat2xuTMfBw8cjT57galU7ooh3U/7MxKSenzkzycug6nDh+NI0ePxRe++Ui85WN7Ynb+2MmPy6Wr1eQw38jTQksPHZyL/X8/GxERe+47sKilUjrKnTkAQA7a3q9KvV8t4bmEXtpeN13U5JoqtUs43bBrvfQZ3zZ7DE2qoucc9k1dUYpzt22KX/vxF8Q3HpqJA4ePxoZ1axc9N24fXpk50Jxee8uLn/GEeMLm9cnvGyylIVJTyvc0p0brLGe1ez7PEzEos2YwztdSqc+dHJ4ro3lda7mpTvUGaUh9b+6XmbK8ru1hg8hx7de1zq0TqJ59qR11znazEoZXdZujzFgtd4OvRfemA3rpNbMvvfDs2HPfgZO/Xm6tuA4GcpDj84KnamPWun4oS1d+1o91S8oG3YtcZ6fJnCF1niPrTcPkpOprgdzvi6tiDpC7rv28As1SteXW1J77DsSlF54dd9z7yJL3NdGU+3+6oMvz3HV4fsxlmtTvest1lnR5/gMA7Vjb9gHAMMY3j8WNV+6IXdsnFr39xc94Qrz02U+K7eecFS88/wnxrCdvSfrmdOHGZTkp37hQppW62rV9It535Y6eLY1vHotnPXlLFt0NSqd0UQ7rfpSZlZKS5yf5WFiHL3rGE+KZE2fGPfcdWPIi8zl11UsO8418jW8ei+3nnBXPferW+P0vfCt+63P3LvqHZ6V0lDtzAIAcpLBflXi/WspzCStJYd10TdNrqsQuYTnDrPXSZ3zb7DE0qaqeU983dUVJztm6MZ45cWZ8/G/2xxt+/86Tz43bh3szB5rTz96S+r7BUhoiNaV8T3NqtM5Keu3dnidiUGbNYJyvpXKYO+55OF3XWm6yU71B+3LYm/tlpizVtT1sELmu/TrWuXUC9bAvNa/O2W5WwvDqaHPYGavlbvC16N50QC8r9XPphWfHNZdeEDfdvi8ieq8V18FA6nJ9XvBUTc9a1w/l6cLP+rFuSdkwe5Hr7PSYM6TOc2S9aZjcVHktUMJ9cRXMAUrQpZ9XoFmqttyauun2fXHNpRfEZReevejtTTbl/p/SdXmeuw7Pk7lMk/pZb7nOki7PfwCgHWtOnDhxou2DyN309HSMj4/H1NRUbN26te3D6ZSp2fl45NB8HDt+Io4dPxGz84/G+OaxmDhzLNmL/tPdf+BwXH/LPbF77+TJty3cuDx126YWj6xbdPy4qdn5mJyZj4NHjsZZG9fHxJbFPS28f/rI0di6aX1WvQ1Lp/nQcnVyWferzaxB/owuzbXUabldK3VVSiu5zLcSdLnlQfanUtrKiTkwmC63DCXRcn5K2K9Svc6p4rmEtqzWcgnrJkc5r6k2pDobmtT1fbnONaDH+thjlup6y3U4dT5s2bAuxs5YG1OH5+PMDWX2rKs0aHk4y+3nEWEfHpA5UI1+O/a1m/JoqCyl7MkL8+PQ3NEY3zQW88eOx8zco2bJCLSel5RaHuZ5ItcA3WXWLObrUcNJ8flpc63btLxUXZ1qjTqldI2dm6b2ZjOgeTnuYU22nOJ16amaaibHdUL66mzZfkIvdc32rs5K19hUZdA265r1Wi6j5X7WR+rX+m3qagclaKrlhX4OHJ6PuaPH4wvffCRuun3foheosVYG4x6GBaXtyTlr4lqhpPZdPyyWesuDrL2Sr5utW1bTdsup9FfSftU0cyYNbbecun5mTVfngIbTouVmdO3nEqzGHKieltvRlX+fqdnmdKXl5dbUDz73yfGuf/r8OHL0eOv361Xo6rU+j0m15VHmeQlrOpXnBMlHqi0zvCpmWY6zpOvX81qGMmgZ8uGF5itg6LXr/gOH42233BO3nXYBfeOVO+LcTC6gc7xxKY2O+1NCb8PSaR60XK0urPsuz7WUaTk9pbXShfmWAi2vrrS2cmIO9E/LUAYt5ynn/cp1Tj36aTnndUP5zIbHdHlftgbyZo9ZrMst16Gr80FX7dPy4Lraa13MgdFV3bE1nhcNlaO0PdksqZbW85Fzy7rFrHmcr0eVwVxDy83QGnXL+Rq7C8yA9uS2h2n5MU03k9s6IX11tWw/oU1dnJX2ZdpQ96zXct4tuxaoRhc7KEEbLVsrozO3OFVJezK9ldi+PeFxKbdc4tobhXVLLym33BQzY3TmTPu0PJquzwENp0PL9et67ysxB6ql5XZ1oXPNNqNLLZe8prowE+gt5ZaHac+apqtSbpnBdX2WlXzttRotQxm0DPnwQvMVMPTaMzU7H9d+bM+iG4cFu7ZPxAev2tmZC2lGo+PV6Y0caJlBmGvp0nJatMKwtNybtsiFlqEMWqZJrnPqo2VyZjY8rqstWwOUpqst18F8oE1aHoxeSVGVHVvj0J6S9mSzhC7LtWXdwmK5tszjzDUitNwErdEELafLDGAQWtYMZaijZW1A8+zLNM2sr0cpLVsfdF0pLXeJucXpdNwN2i9fqi1bezCYVFtuiplBKbre8ijMAVKi5XrpnaZouT06p0pazp+ZQERZLVvTdFlJLXedWdZtWoYyaBnysbbtA4BRTM7ML3vjEBGxe+9kTM7MN3xEUC69AaUx16A/WoF6aAsAKJXrHGA5ZgPWALAS8wHyoVdKZ40DVTBLID+6hf+PvbuP0rOuD/z/mUnIJCFkEAcTyIYibMTSIw+GJUUhPmy6CG62eFgPajUhP8Xac2LtZj2IFomwuhHdcth1aemuID+trayCtnvqoWuzi/jAJmeDHMpa2VjklxYIMHaZyQOZCWR+f9gMSebpnpn7vh4+1+t1Tv7I3DN3vtd1f9+f674T9CIbcw2KoTVoNjMApkczMD5tAORn1jMZ+wOoG3MLmkn7lMXeA6bDzADMAWgOvUN+OgeOZCaQjT0NZGCWAQAUx43mqbXBAwcnfXzPFI8DrdMbkI25Bq3RCnSGtgCArLzPAcZjNmAPABMxH6A+9Ep29jjQDmYJ1I9ugWzMNSiG1qDZzACYHs3A+LQBkJ9Zz2TsD6BuzC1oJu1TFnsPmA4zAzAHoDn0DvnpHDiSmUA29jSQgVkGAFAcN5qn1hbPP27Sx0+Y4nGgdXoDsjHXoDVagc7QFgCQlfc5wHjMBuwBYCLmA9SHXsnOHgfawSyB+tEtkI25BsXQGjSbGQDToxkYnzYA8jPrmYz9AdSNuQXNpH3KYu8B02FmAOYANIfeIT+dA0cyE8jGngYyMMsAAIrjRvPUWt+iebF6Rd+4j61e0Rd9i+YVvCLIS29ANuYatEYr0BnaAgCy8j4HGI/ZgD0ATMR8gPrQK9nZ40A7mCVQP7oFsjHXoBhag2YzA2B6NAPj0wZAfmY9k7E/gLoxt6CZtE9Z7D1gOswMwByA5tA75Kdz4EhmAtnY00AGZhkAQHHcaJ5a6104Lz575TljPkCsXtEXN195TvQu9OEB2kVvQDbmGrRGK9AZ2gIAsvI+BxiP2YA9AEzEfID60CvZ2eNAO5glUD+6BbIx16AYWoNmMwNgejQD49MGQH5mPZOxP4C6MbegmbRPWew9YDrMDMAcgObQO+Snc+BIZgLZ2NNABmYZAEBxukZGRkbKXkTdDQ4ORm9vbwwMDMTixYvLXk4jDewfjv69w7HnwME4Yf5x0bdong8OTIuOW6c3qkzLzIS5Vj1ariatMF1abo22qDotQw5apgze57SflsnAbNCyPUAWTW+5E8wHyqDlmdErVdKJju1xKF7Ga7JZQhPVvWXdwi/UvWVeZq41m5aLozU6ScvVZwbQCi2/TDPUWSdb1gYUx3WZspj17ZWtZfuDpsrWcpOYWxym42bRfl5Vb9neg9ZUveWimBnUnZZnzxygCrRcDL3TaVoun85pBy3nYSY0W8aW7WmaKGPLTWeWNZOWIQctQ33MLXsB0A69C31YgKLoDcjGXIPWaAU6Q1sAQFbe5wDjMRuwB4CJmA9QH3olO3scaAezBOpHt0A25hoUQ2vQbGYATI9mYHzaAMjPrGcy9gdQN+YWNJP2KYu9B0yHmQGYA9Aceof8dA4cyUwgG3sayMAsAwDoPDeapxEG9g9H/97hGDxwMBYvOC76jvdhA6ZLRwDFMXMpgn0G5dIgAMDMeB8FtMKs4Ej2AzST9qFaNAmzpyOoH91CfjoHms4chOLpDtpLU8B4zAbqwl4FKIf5S53ZvwB5mOnQfrrKxesJHGYeAMcyF6A8+oNm0DpQRWYTvEwPwGTMCACAanGjedJ76vkX4mP3PBLf29k/+rXVK/ris1eeE6eeuKDElUF96AigOGYuRbDPoFwaBACYGe+jgFaYFRzJfoBm0j5UiyZh9nQE9aNbyE/nQNOZg1A83UF7aQoYj9lAXdirAOUwf6kz+xcgDzMd2k9XuXg9gcPMA+BY5gKUR3/QDFoHqshsgpfpAZiMGQEAUD3dZS8AOmlg//CYDyEREQ/s7I/r7nkkBvYPl7QyqA8dARTHzKUI9hmUS4MAADPjfRTQCrOCI9kP0Ezah2rRJMyejqB+dAv56RxoOnMQiqc7aC9NAeMxG6gLexWgHOYvdWb/AuRhpkP76SoXrydwmHkAHMtcgPLoD5pB60AVmU3wMj0AkzEjAACqqXY3mr/tttvi9NNPj/nz58eqVati+/btE37vwYMH46abboozzzwz5s+fH+eee27cd999s3pO6qV/7/CYDyGHPbCzP/r3+iACU9ERQHHMXIpgn0G5NAgAMDPeRwGtMCs4kv0AzaR9qBZNwuzpCOpHt5CfzoGmMweheLqD9tIUMB6zgbqwVwHKYf5SZ/YvQB5mOrSfrnLxegKHmQfAscwFKI/+oBm0DlSR2QQv0wMwGTMCAKCaanWj+bvvvjs2bdoUmzdvjoceeijOPffcuPTSS+PZZ58d9/uvv/76+MM//MP4whe+ED/+8Y/jQx/6ULzjHe+IH/3oRzN+Tupl8MDBSR/fM8XjgI4AimTmUgT7DMqlQQCAmfE+CmiFWcGR7AdoJu1DtWgSZk9HUD+6hfx0DjSdOQjF0x20l6aA8ZgN1IW9ClAO85c6s38B8jDTof10lYvXEzjMPACOZS5AefQHzaB1oIrMJniZHoDJmBEAANVUqxvN33LLLXHNNdfEhg0b4uyzz47bb789Fi5cGHfeeee43/+Vr3wlPvGJT8Tll18eZ5xxRvzWb/1WXH755fF7v/d7M35O6mXx/OMmffyEKR4HdARQJDOXIthnUC4NAgDMjPdRQCvMCo5kP0AzaR+qRZMwezqC+tEt5KdzoOnMQSie7qC9NAWMx2ygLuxVgHKYv9SZ/QuQh5kO7aerXLyewGHmAXAscwHKoz9oBq0DVWQ2wcv0AEzGjAAAqKba3Gh+eHg4duzYEWvWrBn9Wnd3d6xZsyYefPDBcX9maGgo5s+ff9TXFixYEN///vdn/JyHn3dwcPCoX1RT36J5sXpF37iPrV7RF32L5hW8IqpCx63TEVWmZbJp6szVcrGaus/oPC23RoNUnZYhBy2TURPfR2kZpq+Ks0LL5anifqC+tFwf2mcyWi6eJmm3JnasIzLK3rJuaYrsLU9G52TS5JaZOXOwerScn+6aQcvF0RSdpOX6Mhs4UpVbtlehdVVumfoxf8uj5dmzf6kCLUN7lDnTdUxWTXuvlL3lpr2eNFf2ltvBPKAOtFwsc4FO0fLU9EcdaHn2tE4VaJljmU31pOXO0ANF03K9mBFMRMuQg5ahvmpzo/n+/v546aWXYsmSJUd9fcmSJbF79+5xf+bSSy+NW265JXbu3BmHDh2K73znO3HvvffG008/PePnjIjYsmVL9Pb2jv5avnz5LI+OTuldOC8+e+U5Yz6MrF7RFzdfeU70LvRBpKl03DodUWVaJpumzlwtF6up+4zO03JrNEjVaRly0DIZNfF9lJZh+qo4K7RcniruB+pLy/WhfSaj5eJpknZrYsc6IqPsLeuWpsje8mR0TiZNbpmZMwerR8v56a4ZtFwcTdFJWq4vs4EjVbllexVaV+WWqR/ztzxanj37lyrQMrRHmTNdx2TVtPdK2Vtu2utJc2VvuR3MA+pAy8UyF+gULU9Nf9SBlmdP61SBljmW2VRPWu4MPVA0LdeLGcFEtAw5aBnqq2tkZGSk7EW04qmnnoply5bFD3/4w7joootGv37ttdfGd7/73di2bduYn3nuuefimmuuif/6X/9rdHV1xZlnnhlr1qyJO++8M1544YUZPWdExNDQUAwNDY3+fnBwMJYvXx4DAwOxePHiNh417TKwfzj69w7HngMH44T5x0Xfonk+hDScjqdPR1SRlsmqaTNXy+Vo2j6j87Q8PRqkqrQMOWiZzJr0PkrLMHNVmhVaLl+V9gP1peX60T7j0XJ5NEm7NLljHZFJU1rWLdk1peXJ6JwMtMxsmIPVoeXm0F1uWi6epugELdef2UBEPVq2V2FqdWiZ+jF/i6fl9rF/KZOWob3KmOk6JrumvFdqSstNeT1prqa03A7mAVWm5XKYC7SbllunP6pMy+2jdcqkZSZiNtWLljtLDxRFy/VkRnAsLUMOWob6mlv2AlrV19cXc+bMiWeeeeaorz/zzDOxdOnScX/m5JNPjm9961tx4MCB+PnPfx6nnnpqXHfddXHGGWfM+DkjInp6eqKnp2eWR0SRehf64MHRdDx9OqKKtExWTZu5Wi5H0/YZnafl6dEgVaVlyEHLZNak91Fahpmr0qzQcvmqtB+oLy3Xj/YZj5bLo0napckd64hMmtKybsmuKS1PRudkoGVmwxysDi03h+5y03LxNEUnaLn+zAYi6tGyvQpTq0PL1I/5Wzwtt4/9S5m0DO1VxkzXMdk15b1SU1puyutJczWl5XYwD6gyLZfDXKDdtNw6/VFlWm4frVMmLTMRs6letNxZeqAoWq4nM4JjaRly0DLUV3fZC2jVvHnzYuXKlbF169bRrx06dCi2bt0aF1100aQ/O3/+/Fi2bFm8+OKLcc8998Sv//qvz/o5AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGZqbtkLmI5NmzbF+vXr44ILLogLL7wwbr311ti3b19s2LAhIiLWrVsXy5Ytiy1btkRExLZt2+LJJ5+M8847L5588sn41Kc+FYcOHYprr7225ecEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLda3Wj+qquuiueeey5uuOGG2L17d5x33nlx3333xZIlSyIiYteuXdHd3T36/QcOHIjrr78+Hn/88Vi0aFFcfvnl8ZWvfCVOPPHElp8TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoN1qdaP5iIiNGzfGxo0bx33s/vvvP+r3b3rTm+LHP/7xrJ4TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoN26y14AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNO40TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwdxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDA3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABRsbtkLgJka2D8c/XuHY/DAwVi84LjoO35e9C6cV/ayoJH0CHSSGQPF0BpUlz4BgLryPgaoGnOpWbzekIOWoXw6BB0AUzMnoFk0D9BM5j9NYr/TBPY50A5mCUWz5wBaZ2ZSRfYlAK1yzaAJ7HOKYq8BEzEfoJm0D9WkTagHrQI0j9lPmew/aB89AQDUkxvNU0tPPf9CfOyeR+J7O/tHv7Z6RV989spz4tQTF5S4MmgePQKdZMZAMbQG1aVPAKCuvI8BqsZcahavN+SgZSifDkEHwNTMCWgWzQM0k/lPk9jvNIF9DrSDWULR7DmA1pmZVJF9CUCrXDNoAvucothrwETMB2gm7UM1aRPqQasAzWP2Uyb7D9pHTwAA9dVd9gJgugb2D4/5ABIR8cDO/rjunkdiYP9wSSuD5tEj0ElmDBRDa1Bd+gQA6sr7GKBqzKVm8XpDDlqG8ukQdABMzZyAZtE8QDOZ/zSJ/U4T2OdAO5glFM2eA2idmUkV2ZcAtMo1gyawzymKvQZMxHyAZtI+VJM2oR60CtA8Zj9lsv+gffQEAFBvbjRP7fTvHR7zAeSwB3b2R/9eH0KgKHoEOsmMgWJoDapLnwBAXXkfA1SNudQsXm/IQctQPh2CDoCpmRPQLJoHaCbznyax32kC+xxoB7OEotlzAK0zM6ki+xKAVrlm0AT2OUWx14CJmA/QTNqHatIm1INWAZrH7KdM9h+0j54AAOrNjeapncEDByd9fM8UjwPto0egk8wYKIbWoLr0CQDUlfcxQNWYS83i9YYctAzl0yHoAJiaOQHNonmAZjL/aRL7nSawz4F2MEsomj0H0DozkyqyLwFolWsGTWCfUxR7DZiI+QDNpH2oJm1CPWgVoHnMfspk/0H76AkAoN7caJ7aWTz/uEkfP2GKx4H20SPQSWYMFENrUF36BADqyvsYoGrMpWbxekMOWoby6RB0AEzNnIBm0TxAM5n/NIn9ThPY50A7mCUUzZ4DaJ2ZSRXZlwC0yjWDJrDPKYq9BkzEfIBm0j5UkzahHrQK0DxmP2Wy/6B99AQAUG9zy14ATFffonmxekVfPLCzf8xjq1f0Rd+ieSWsCppJj0AnmTFQDK1BdekTqJpdu3ZFf//YmVQVQ0ND0dPTU/YyJtTX1xennXZa2cuAQngfA1SNudQsXm/IQctQPh2CDoCpmRPQLJoHaCbznyax32kC+xxoB7OEotlzAK0zM6ki+xKAVrlm0AT2OUWx14CJmA/QTNqHatIm1INWAZrH7KdM9h+0j54AAOqta2RkZKTsRdTd4OBg9Pb2xsDAQCxevLjs5TTCU8+/ENfd88hRH0RWr+iLm688J045cUGJK6OudDxzeqRKtJyPGdNMWi6e1ugELbeHPimbljls165d8drX/nK88ML+spcysa6uiAr/dfeCBQvjJz/561JuNq9lyuB9TPtpGWanKnNJy8WoyutNXlouhpbpNC1PTYdUXREd6wA6r+7XZHMCfqHuLbdK82TXlJZhuuo2/7XMbNRtv2em5c6xzymSlvMyS5qlCi3bczB7VWiZYpiZudW1ZfsSjlbXlqEIdblm6JjZqMs+b4LsLdtrNEX2ljvBfKCKtNx52qcIWp4+bVJFWh5Lq9SRlmF2qjL7tdxMVdl/tI+Wy6Mn2knLkIOWoT46eqP5z33uc/HhD384Fiz4xZvCH/zgB3HBBRdET09PRETs2bMnPvaxj8Xv//7vd2oJhTD0yjGwfzj69w7HngMH44T5x0XfonnRu3Be2cuipnQ8O3qkKrSckxnTPFouh9ZoNy23jz4pk5Y57KGHHoqVK1fGqv9ncyw+5fSylzPG03/1YDz6Z/8pznvPx+LkV7+27OWMMfj0E7Htzhtjx44d8frXv774P1/LlMT7mPbSMsxeFeaSlotThdebvLRcHC3TSVpujQ6psqI61gF0VoZrsjkBOVpulebJrEktw3TVaf5rmdmq037PTMudZZ9TFC3nZpY0R1VatudgdqrSMsUwM/Oqc8v2Jbyszi1DEepwzdAxs1WHfd4ETWjZXqMJmtByJ5gPVI2Wi6F9Ok3LM6NNqkbL49MqdaNlmL0qzH4tN1cV9h/to+Vy6Yl20TLkoGWoj7mdfPKPf/zjcfXVV4/eaP6yyy6Lhx9+OM4444yIiNi/f3/84R/+Ye1vNE85ehf60AFVoUegk8wYKIbWoLr0CVTJ4lNOj5NOO6vsZYwx+PQTERGx6FWnVXJ90FTexwBVYy41i9cbctAylE+HoANgauYENIvmAZrJ/KdJ7HeawD4H2sEsoWj2HEDrzEyqyL4EoFWuGTSBfU5R7DVgIuYDNJP2oZq0CfWgVYDmMfspk/0H7aMnAIB66u7kk4+MjEz6ewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAm6uiN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYy43mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo2t9N/wBe/+MVYtGhRRES8+OKLcdddd0VfX19EROzZs6fTfzwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA5XT0RvOnnXZa/Of//J9Hf7906dL4yle+MuZ7puO2226Lz3/+87F79+4499xz4wtf+EJceOGFE37/rbfeGn/wB38Qu3btir6+vviX//JfxpYtW2L+/PkREfGpT30qbrzxxqN+5qyzzoqf/OQn01oXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKs6eqP5J554oq3Pd/fdd8emTZvi9ttvj1WrVsWtt94al156aTz22GPxqle9asz3//Ef/3Fcd911ceedd8Yb3vCG+D//5//E1VdfHV1dXXHLLbeMft+v/MqvxF/+5V+O/n7u3I6eFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDhOn5H9UOHDsVdd90V9957bzzxxBPR1dUVZ5xxRlx55ZXxvve9L7q6ulp+rltuuSWuueaa2LBhQ0RE3H777fHnf/7nceedd8Z111035vt/+MMfxhvf+MZ4z3veExERp59+erz73e+Obdu2HfV9c+fOjaVLl87iKAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABa193JJx8ZGYm1a9fGBz7wgXjyySfjda97XfzKr/xKPPHEE3H11VfHO97xjpafa3h4OHbs2BFr1qwZ/Vp3d3esWbMmHnzwwXF/5g1veEPs2LEjtm/fHhERjz/+eHz729+Oyy+//Kjv27lzZ5x66qlxxhlnxG/8xm/Erl27ZnC0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK2Z28knv+uuu+J73/tebN26Nd7ylrcc9dh//+//Pa644or48pe/HOvWrZvyufr7++Oll16KJUuWHPX1JUuWxE9+8pNxf+Y973lP9Pf3x8UXXxwjIyPx4osvxoc+9KH4xCc+Mfo9q1atirvuuivOOuusePrpp+PGG2+MSy65JB599NE44YQTxn3eoaGhGBoaGv394ODglOsHqkXHkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqH+dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1J+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWob66u7kk//Jn/xJfOITnxhzk/mIiLe+9a1x3XXXxVe/+tWO/fn3339//Nt/+2/j93//9+Ohhx6Ke++9N/78z/88/s2/+Tej33PZZZfFO9/5zjjnnHPi0ksvjW9/+9vx/PPPx3/5L/9lwufdsmVL9Pb2jv5avnx5x44B6AwdQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWob60zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUH86hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnqq2tkZGSkU0++dOnSuO++++K8884b9/Ef/ehHcdlll8Xu3bunfK7h4eFYuHBhfOMb34grrrhi9Ovr16+P559/Pv70T/90zM9ccskl8au/+qvx+c9/fvRrf/RHfxQf/OAHY+/evdHd3T3un/VP/sk/iTVr1sSWLVvGfXxoaCiGhoZGfz84OBjLly+PgYGBWLx48ZTHApRPx5CDliEHLUMOWoYctMxEHnrooVi5cmX82u9+KU467ayylzPGE9v+IrbdeWNc/Du3xbJfPr/s5Yzx97sei+98ZkPs2LEjXv/613f8z9My5KBlyEHLkIOWIQctQ/3pGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWoPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPU1t5NP/vd///exZMmSCR9fsmRJ/N//+39beq558+bFypUrY+vWraM3mj906FBs3bo1Nm7cOO7P7N+/f8zN5OfMmRMRESMjI+P+zN69e+Nv/uZv4n3ve9+Ea+np6Ymenp6W1g1Uk44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/3pGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWoPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXV0RvNv/TSSzF37sR/xJw5c+LFF19s+fk2bdoU69evjwsuuCAuvPDCuPXWW2Pfvn2xYcOGiIhYt25dLFu2LLZs2RIREWvXro1bbrklzj///Fi1alX89Kc/jU9+8pOxdu3a0RvOf/SjH421a9fGL/3SL8VTTz0Vmzdvjjlz5sS73/3uWRw5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwMQ6eqP5kZGRuPrqq6Onp2fcx4eGhqb1fFdddVU899xzccMNN8Tu3bvjvPPOi/vuuy+WLFkSERG7du2K7u7u0e+//vrro6urK66//vp48skn4+STT461a9fGZz7zmdHv+bu/+7t497vfHT//+c/j5JNPjotiqQUBAAEAAElEQVQvvjj+5//8n3HyySfP4IgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAptbRG82vX79+yu9Zt27dtJ5z48aNsXHjxnEfu//++4/6/dy5c2Pz5s2xefPmCZ/va1/72rT+fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDZ6uiN5r/0pS918ukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaqm77AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANI0bzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICCudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMHcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYG40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICCudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMHcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYG40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABavdjeZvu+22OP3002P+/PmxatWq2L59+6Tff+utt8ZZZ50VCxYsiOXLl8e/+lf/Kg4cODCr5wQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYjVrdaP7uu++OTZs2xebNm+Ohhx6Kc889Ny699NJ49tlnx/3+P/7jP47rrrsuNm/eHH/9138dd9xxR9x9993xiU98YsbPCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBbtbrR/C233BLXXHNNbNiwIc4+++y4/fbbY+HChXHnnXeO+/0//OEP441vfGO85z3vidNPPz3+2T/7Z/Hud787tm/fPuPnBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJituWUvoFXDw8OxY8eO+PjHPz76te7u7lizZk08+OCD4/7MG97whvijP/qj2L59e1x44YXx+OOPx7e//e143/veN+PnjIgYGhqKoaGh0d8PDg7O9vCAgukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMtSfjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG+tMx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1Bf3WUvoFX9/f3x0ksvxZIlS476+pIlS2L37t3j/sx73vOeuOmmm+Liiy+O4447Ls4888x485vfHJ/4xCdm/JwREVu2bIne3t7RX8uXL5/l0QFF0zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlqD8dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz1p2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWob66RkZGRspeRCueeuqpWLZsWfzwhz+Miy66aPTr1157bXz3u9+Nbdu2jfmZ+++/P971rnfFpz/96Vi1alX89Kc/jY985CNxzTXXxCc/+ckZPWdExNDQUAwNDY3+fnBwMJYvXx4DAwOxePHiNh51fQzsH47+vcMxeOBgLF5wXPQdPy96F84re1kwIR3Pnu6pAi3Xh5nBZLR8NL1QV1p+mY6pMy0zkYceeihWrlwZv/a7X4qTTjur7OWM8cS2v4htd94YF//ObbHsl88vezlj/P2ux+I7n9kQO3bsiNe//vUd//O0fDTXZupKy2TR9Dms5V9o+j6g/rT8C1qm7presobJoC4d6w0mV5eWJ6Jx+IU6t6xjeFmdW4aqKuM6o2XK5v1Ve2i5GfSSn5bLpTHapS4t2/Mwubq0zOTMOrTcHlqibFquPnOCqei4fnTNeOrYsr0MY9Wx5SKZG9RF5pZ1SJNkbrlVmieDprWsW7JqWsuYZ1lpubk0nYuWy6Un2kXLkIOWob7mlr2AVvX19cWcOXPimWeeOerrzzzzTCxdunTcn/nkJz8Z73vf++IDH/hARES87nWvi3379sUHP/jB+N3f/d0ZPWdERE9PT/T09MzyiPJ46vkX4mP3PBLf29k/+rXVK/ris1eeE6eeuKDElcHEdDw7uqcqtFwPZgZT0fLL9EKdafkXdEzdzablXbt2RX9//9TfWJK+vr447bTTyl4GFMJ1+WWuzdSZlsnAHNZyhH1ADlrWMjk0uWUNk0UdOtYbTK0OLU9E4/CyurasYzhaXVuGqirrOqNlyuT9VftoOT+9NIOWy6Mx2qkOLdvzMLU6tMzkzDoitNwOWqIKtFxt5gSt0HG96JqJ1K1lexnGV7eWi2RuUCdZW9YhTZO15VZpniya1LJuyaxJLWOeZablZtJ0Plouj55oJy1DDlqG+uouewGtmjdvXqxcuTK2bt06+rVDhw7F1q1b46KLLhr3Z/bv3x/d3Ucf4pw5cyIiYmRkZEbPydEG9g+P+XAQEfHAzv647p5HYmD/cEkrAzpF98B0mBnQOr1A/emYJtu1a1e89rW/HCtXrqzsr9e+9pdj165dZZ8qoECuzQDlMoeJsA8gCy1DvWkYiqM3yE3jUH86BqCTXGdoIvseWqcX6CyN0TT2PNAEZh20h5aAqZgTkI+uycJeBqbL3IDy6RCaRfNQP7oFsjDPIBdNQ/voCQAgl7llL2A6Nm3aFOvXr48LLrggLrzwwrj11ltj3759sWHDhoiIWLduXSxbtiy2bNkSERFr166NW265Jc4///xYtWpV/PSnP41PfvKTsXbt2tEbzk/1nEyuf+/wmA8Hhz2wsz/69w5H78J5Ba8K6CTdA9NhZkDr9AL1p2OarL+/P154YX+s+n82x+JTTi97OWMMPv1EbLvzxujv74/TTjut7OUABXFtBiiXOUyEfQBZaBnqTcNQHL1BbhqH+tMxAJ3kOkMT2ffQOr1AZ2mMprHngSYw66A9tARMxZyAfHRNFvYyMF3mBpRPh9Asmof60S2QhXkGuWga2kdPAAC51OpG81dddVU899xzccMNN8Tu3bvjvPPOi/vuuy+WLFkSERG7du2K7u7u0e+//vrro6urK66//vp48skn4+STT461a9fGZz7zmZafk8kNHjg46eN7pngcqB/dA9NhZkDr9AL1p2OIWHzK6XHSaWeVvQyAiHBtBiibOUyEfQBZaBnqTcNQHL1BbhqH+tMxAJ3kOkMT2ffQOr1AZ2mMprHngSYw66A9tARMxZyAfHRNFvYyMF3mBpRPh9Asmof60S2QhXkGuWga2kdPAAC51OpG8xERGzdujI0bN4772P3333/U7+fOnRubN2+OzZs3z/g5mdzi+cdN+vgJUzwO1I/ugekwM6B1eoH60zEAVItrM0C5zGEi7APIQstQbxqG4ugNctM41J+OAegk1xmayL6H1ukFOktjNI09DzSBWQftoSVgKuYE5KNrsrCXgekyN6B8OoRm0TzUj26BLMwzyEXT0D56AgDIpbvsBVBvfYvmxeoVfeM+tnpFX/QtmlfwioBO0z0wHWYGtE4vUH86BoBqcW0GKJc5TIR9AFloGepNw1AcvUFuGof60zEAneQ6QxPZ99A6vUBnaYymseeBJjDroD20BEzFnIB8dE0W9jIwXeYGlE+H0Cyah/rRLZCFeQa5aBraR08AALm40Tyz0rtwXnz2ynPGfEhYvaIvbr7ynOhd6AMCZKN7YDrMDGidXqD+dAwA1eLaDFAuc5gI+wCy0DLUm4ahOHqD3DQO9adjADrJdYYmsu+hdXqBztIYTWPPA01g1kF7aAmYijkB+eiaLOxlYLrMDSifDqFZNA/1o1sgC/MMctE0tI+eAABymVv2Aqi/U09cEF949/nRv3c49hw4GCfMPy76Fs3z4QAS0z0wHWYGtE4vUH86BoBqcW0GKJc5TIR9AFloGepNw1AcvUFuGof60zEAneQ6QxPZ99A6vUBnaYymseeBJjDroD20BEzFnIB8dE0W9jIwXeYGlE+H0Cyah/rRLZCFeQa5aBraR08AAHm40Txt0bvQBwJoGt0D02FmQOv0AvWnYwCoFtdmgHKZw0TYB5CFlqHeNAzF0RvkpnGoPx0D0EmuMzSRfQ+t0wt0lsZoGnseaAKzDtpDS8BUzAnIR9dkYS8D02VuQPl0CM2ieagf3QJZmGeQi6ahffQEAJBDd9kLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgaN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICCudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMHcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYG40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICCudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMHmlr0AOmdg/3D07x2OwQMHY/GC46Lv+HnRu3Be2csCjqFVoMnMQLKwl6H6dAoAxXLthWbRPJRPh5CTtiEnbUNuGodcNA3Vo0sgI7MNqCvzq3m85sBh5gGMpQugHcwSyE/nALRDna4ndVorUA5zAnLQMtAq8wImpg9oFs1DNWgRctAyNJP2AQDIzo3mk3rq+RfiY/c8Et/b2T/6tdUr+uKzV54Tp564oMSVAUfSKtBkZiBZ2MtQfToFgGK59kKzaB7Kp0PISduQk7YhN41DLpqG6tElkJHZBtSV+dU8XnPgMPMAxtIF0A5mCeSncwDaoU7XkzqtFSiHOQE5aBlolXkBE9MHNIvmoRq0CDloGZpJ+wAANEF32QuYrttuuy1OP/30mD9/fqxatSq2b98+4fe++c1vjq6urjG/3v72t49+z9VXXz3m8be97W1FHErHDOwfHvNhJiLigZ39cd09j8TA/uGSVgYcSatAk5mBZGEvQ/XpFACK5doLzaJ5KJ8OISdtQ07ahtw0DrloGqpHl0BGZhtQV+ZX83jNgcPMAxhLF0A7mCWQn84BaIc6XU/qtFagHOYE5KBloFXmBUxMH9Asmodq0CLkoGVoJu0DANAUtbrR/N133x2bNm2KzZs3x0MPPRTnnntuXHrppfHss8+O+/333ntvPP3006O/Hn300ZgzZ068853vPOr73va2tx31fX/yJ39SxOF0TP/e4TEfZg57YGd/9O/1gQaqQKtAk5mBZGEvQ/XpFACK5doLzaJ5KJ8OISdtQ07ahtw0DrloGqpHl0BGZhtQV+ZX83jNgcPMAxhLF0A7mCWQn84BaIc6XU/qtFagHOYE5KBloFXmBUxMH9Asmodq0CLkoGVoJu0DANAUtbrR/C233BLXXHNNbNiwIc4+++y4/fbbY+HChXHnnXeO+/0nnXRSLF26dPTXd77znVi4cOGYG8339PQc9X2veMUrijicjhk8cHDSx/dM8ThQDK0CTWYGkoW9DNWnUwAolmsvNIvmoXw6hJy0DTlpG3LTOOSiaageXQIZmW1AXZlfzeM1Bw4zD2AsXQDtYJZAfjoHoB3qdD2p01qBcpgTkIOWgVaZFzAxfUCzaB6qQYuQg5ahmbQPAEBTzC17Aa0aHh6OHTt2xMc//vHRr3V3d8eaNWviwQcfbOk57rjjjnjXu94Vxx9//FFfv//+++NVr3pVvOIVr4i3vvWt8elPfzpe+cpXTvg8Q0NDMTQ0NPr7wcHBaR5NZy2ef9ykj58wxePQBFXoWKswe1VomZkxAzlSnVu2l+FlVW1ZpzA9VW0ZmJ4yW3bthfapw3VZ8zC1TresQyhG0ddlbUNnlP0eW9swe2V3PBmNQ+uq3PJhmoap+awMOdThupyZ2Ua7aJmimV+dUeWWvebQuiq33A7mAU0xnZZ1AdVVp+uyWQITq1PLk9E5TZelZShbmdeT6Xbs2gfVVKVrsjkBM6dlyKFKLRfBvCCrdrSsDyhfkddlzUPn+G++IActQw6dfI+tfShO0/4eG7LSMtRXd9kLaFV/f3+89NJLsWTJkqO+vmTJkti9e/eUP799+/Z49NFH4wMf+MBRX3/b294WX/7yl2Pr1q1x8803x3e/+9247LLL4qWXXprwubZs2RK9vb2jv5YvXz6zg+qQvkXzYvWKvnEfW72iL/oWzSt4RVA9VehYqzB7VWiZmTEDOVKdW7aX4WVVbVmnMD1VbRmYnjJbdu2F9qnDdVnzMLVOt6xDKEbR12VtQ2eU/R5b2zB7ZXc8GY1D66rc8mGahqn5rAw51OG6nJnZRrtomaKZX51R5Za95tC6KrfcDuYBTTGdlnUB1VWn67JZAhOrU8uT0TlNl6VlKFuZ15PpduzaB9VUpWuyOQEzp2XIoUotF8G8IKt2tKwPKF+R12XNQ+f4b74gBy1DDp18j619KE7T/h4bstIy1FfXyMjISNmLaMVTTz0Vy5Ytix/+8Idx0UUXjX792muvje9+97uxbdu2SX/+N3/zN+PBBx+MRx55ZNLve/zxx+PMM8+Mv/zLv4x/+k//6bjfMzQ0FENDQ6O/HxwcjOXLl8fAwEAsXrx4GkfVOU89/0Jcd88j8cDO/tGvrV7RFzdfeU6ccuKCElcG1VCVjrUKs1OVlpkZM5DD6t6yvQy/UOWWdQqtm2nLDz30UKxcuTJ+7Xe/FCeddlYRS52Wv9/1WHznMxtix44d8frXv77s5dRS1V/jJ7b9RWy788a4+Hdui2W/fH7Zyxmj6D1Y9nXZtRfao+yWW6V5mFwRLesQOq+M67K2of2q8B5b2zA7Veh4MhqH1lS95cM0DZPzWRlyqMt1OTOzjXbQMmUwv9qv6i17zaE1VW+5HcwDmmC6LesCqqlu12WzBMZXt5Yno3OaLFPLULayricz6di1D6qnatdkcwJmRsuQQ9VaLoJ5QUbtalkfUK6ir8uah87w33xBDlqGHDr9Hlv7UIwm/j02ZKRlqK+5ZS+gVX19fTFnzpx45plnjvr6M888E0uXLp30Z/ft2xdf+9rX4qabbpryzznjjDOir68vfvrTn054o/menp7o6elpffElOPXEBfGFd58f/XuHY8+Bg3HC/OOib9G86F04r+ylQSVUpWOtwuxUpWVmxgzksLq3bC/DL1S5ZZ1C66rcMtC6slt27YX2KLvlVmkeJldEyzqEzivjuqxtaL8qvMfWNsxOFTqejMahNVVv+TBNw+R8VoYc6nJdzsxsox20TBnMr/arestec2hN1VtuB/OAJphuy7qAaqrbddksgfHVreXJ6Jwmy9QylK2s68lMOnbtg+qp2jXZnICZ0TLkULWWi2BekFG7WtYHlKvo67LmoTP8N1+Qg5Yhh06/x9Y+FKOJf48NGWkZ6qs2N5qfN29erFy5MrZu3RpXXHFFREQcOnQotm7dGhs3bpz0Z7/+9a/H0NBQvPe9753yz/m7v/u7+PnPfx6nnHJKO5ZdiIH9w9G/dzgGDxyMxQuOi77jf/HB5fAvoD0mam22tAo0mRlYPZ263tVVq+fDXobZ6/T80SkAFKvIa6/PMVA+77fHMpso2rEdDuwfjr95dq89CDXXyjXWNQfqayQioqvsVQDtMOZ6vGhenPmqRWUvC2gDn7ehuryfBqaj6n+H5t/agFZVbZ6ZX+Urek94zaFeOjkjzAMYa7wuqvb+DZha2d26xkJnlN32kXQOkFeR15s6XU/avdYqXdehKfz/AUEOWoZc6vy+2LwA95OA7Pz/WEO9VLnFOr/vh6Id2cbggYOj/9tjzUBuVb6OAwBAO9TmRvMREZs2bYr169fHBRdcEBdeeGHceuutsW/fvtiwYUNERKxbty6WLVsWW7ZsOern7rjjjrjiiivila985VFf37t3b9x4441x5ZVXxtKlS+Nv/uZv4tprr41//I//cVx66aWFHddsPPX8C/Gxex6J7+3sH/3a6hV98dkrz4lTT1xQ4sogF60B0ASud0dzPqA4egMAZsr7CKCKzCbKZg9Cc+gd6ke3kI+uoTn0DuXTITATZgeQhXnGsewJYDJmBJRPh1A/uoWctA1AEVxviuE8Q/F0BzloGXLRNNSbhiE3jQPtYp7A9GgGAACAjLrLXsB0XHXVVfHv/t2/ixtuuCHOO++8ePjhh+O+++6LJUuWRETErl274umnnz7qZx577LH4/ve/H+9///vHPN+cOXPikUceiX/xL/5FvOY1r4n3v//9sXLlyvje974XPT09hRzTbAzsHx7zlxUREQ/s7I/r7nkkBvYPl7QyyEVrADSB693RnA8ojt4AgJnyPgKoIrOJstmD0Bx6h/rRLeSja2gOvUP5dAjMhNkBZGGecSx7ApiMGQHl0yHUj24hJ20DUATXm2I4z1A83UEOWoZcNA31pmHITeNAu5gnMD2aAQAAIKu5ZS9gujZu3BgbN24c97H7779/zNfOOuusGBkZGff7FyxYEH/xF3/RzuUVqn/v8Ji/rDjsgZ390b93OHoXzit4VZCP1gBoAte7ozkfUBy9AQAz5X0EUEVmE2WzB6E59A71o1vIR9fQHHqH8ukQmAmzA8jCPONY9gQwGTMCyqdDqB/dQk7aBqAIrjfFcJ6heLqDHLQMuWga6k3DkJvGgXYxT2B6NAMAAEBW3WUvgJkbPHBw0sf3TPE40BqtAdAErndHcz6gOHoDAGbK+wigiswmymYPQnPoHepHt5CPrqE59A7l0yEwE2YHkIV5xrHsCWAyZgSUT4dQP7qFnLQNQBFcb4rhPEPxdAc5aBly0TTUm4YhN40D7WKewPRoBgAAgKzcaL7GFs8/btLHT5jicaA1WgOgCVzvjuZ8QHH0BgDMlPcRQBWZTZTNHoTm0DvUj24hH11Dc+gdyqdDYCbMDiAL84xj2RPAZMwIKJ8OoX50CzlpG4AiuN4Uw3mG4ukOctAy5KJpqDcNQ24aB9rFPIHp0QwAAABZudF8jfUtmherV/SN+9jqFX3Rt2hewSuCnLQGQBO43h3N+YDi6A0AmCnvI4AqMpsomz0IzaF3qB/dQj66hubQO5RPh8BMmB1AFuYZx7IngMmYEVA+HUL96BZy0jYARXC9KYbzDMXTHeSgZchF01BvGobcNA60i3kC06MZAAAAsnKj+RrrXTgvPnvlOWP+0mL1ir64+cpzonehv7CAdtAaAE3genc05wOKozcAYKa8jwCqyGyibPYgNIfeoX50C/noGppD71A+HQIzYXYAWZhnHMueACZjRkD5dAj1o1vISdsAFMH1phjOMxRPd5CDliEXTUO9aRhy0zjQLuYJTI9mAAAAyGpu2Qtgdk49cUF84d3nR//e4dhz4GCcMP+46Fs0z19WQJtpDYAmcL07mvMBxdEbADBT3kcAVWQ2UTZ7EJpD71A/uoV8dA3NoXconw6BmTA7gCzMM45lTwCTMSOgfDqE+tEt5KRtAIrgelMM5xmKpzvIQcuQi6ah3jQMuWkcaBfzBKZHMwAAAGTkRvMJ9C70FxRQBK0B0ASud0dzPqA4egMAZsr7CKCKzCbKZg9Cc+gd6ke3kI+uoTn0DuXTITATZgeQhXnGsewJYDJmBJRPh1A/uoWctA1AEVxviuE8Q/F0BzloGXLRNNSbhiE3jQPtYp7A9GgGAACAbLrLXgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA07jRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDB5pa9AAAAAACAIvz1X/912UuY0NDQUPT09JS9jAlV+dwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQF250TwAAAAAkNoLAz+PiK5473vfW/ZSJtbVFTEyUvYqpnRwaLjsJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAGm40DwAAAACkdnD/nogYifPe87E4+dWvLXs5Yzz9Vw/Go3/2nyq7voiX1/jiiy+WvRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASMON5gEAAACARlj0qtPipNPOKnsZYww+/UREVHd9ES+vEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABon+6yFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNG40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZtb9gKaYmD/cPTvHY7BAwdj8YLjou/4edG7cF7ZywIqxqyAztMZ5KBlyEHLAFAdrsuQh56h/nQMOWgZctAy5KVvqBfNAscyF4DpMDMAmC7XjvZwHqHaNAqdoy9gpswPaA8tQQ5ahmbSPtSbhoHJmBEwezqC3DQO9aJZyEnb0Bx6h+rRJQAAHM2N5gvw1PMvxMfueSS+t7N/9GurV/TFZ688J049cUGJKwOqxKyAztMZ5KBlyEHLAFAdrsuQh56h/nQMOWgZctAy5KVvqBfNAscyF4DpMDMAmC7XjvZwHqHaNAqdoy9gpswPaA8tQQ5ahmbSPtSbhoHJmBEwezqC3DQO9aJZyEnb0Bx6h+rRJQAAjNVd9gKm67bbbovTTz895s+fH6tWrYrt27dP+L1vfvObo6ura8yvt7/97aPfMzIyEjfccEOccsopsWDBglizZk3s3Lmzbesd2D885oNIRMQDO/vjunseiYH9w237s4D6Miug83QGOWgZctAyAFSH6zLkoWeoPx1DDlqGHLQMeekb6kWzwLHMBWA6zAwApsu1oz2cR6g2jULn6AuYKfMD2kNLkIOWoZm0D/WmYWAyZgTMno4gN41DvWgWctI2NIfeoXp0CQAA46vVjebvvvvu2LRpU2zevDkeeuihOPfcc+PSSy+NZ599dtzvv/fee+Ppp58e/fXoo4/GnDlz4p3vfOfo93zuc5+L//Af/kPcfvvtsW3btjj++OPj0ksvjQMHDrRlzf17h8d8EDnsgZ390b/XhxHArIAi6Axy0DLkoGUAqA7XZchDz1B/OoYctAw5aBny0jfUi2aBY5kLwHSYGQBMl2tHeziPUG0ahc7RFzBT5ge0h5YgBy1DM2kf6k3DwGTMCJg9HUFuGod60SzkpG1oDr1D9egSAADGV6sbzd9yyy1xzTXXxIYNG+Lss8+O22+/PRYuXBh33nnnuN9/0kknxdKlS0d/fec734mFCxeO3mh+ZGQkbr311rj++uvj13/91+Occ86JL3/5y/HUU0/Ft771rbasefDAwUkf3zPF40AzmBXQeTqDHLQMOWgZAKrDdRny0DPUn44hBy1DDlqGvPQN9aJZ4FjmAjAdZgYA0+Xa0R7OI1SbRqFz9AXMlPkB7aElyEHL0Ezah3rTMDAZMwJmT0eQm8ahXjQLOWkbmkPvUD26BACA8dXmRvPDw8OxY8eOWLNmzejXuru7Y82aNfHggw+29Bx33HFHvOtd74rjjz8+IiJ+9rOfxe7du496zt7e3li1alXLzzmVxfOPm/TxE6Z4HGgGswI6T2eQg5YhBy0DQHW4LkMeeob60zHkoGXIQcuQl76hXjQLHMtcAKbDzABgulw72sN5hGrTKHSOvoCZMj+gPbQEOWgZmkn7UG8aBiZjRsDs6Qhy0zjUi2YhJ21Dc+gdqkeXAAAwvtrcaL6/vz9eeumlWLJkyVFfX7JkSezevXvKn9++fXs8+uij8YEPfGD0a4d/brrPOTQ0FIODg0f9mkjfonmxekXfuI+tXtEXfYvmTbl2oP2m03ERzAqYGddkyEHLkIOWIYeqfV4GZsZ1GXKY7nVZz1BNrsuQg5YhBy1D/bXj77D1DeVzTYYcyvq3ZXMB2iv7fydiZtAU2VuGIpV57cjUsmswTVaHljUKU5tpy/qCaqnDdfkw8wMm5t+XIQctQ/11+v219qEYnWpZw1CsOv29V4QZARPxWRly8L93hBxclyGH2VyXtQ3V4d+kIAfvsSGHuv2bFDA+LUN91eZG87N1xx13xOte97q48MILZ/1cW7Zsid7e3tFfy5cvn/B7exfOi89eec6YDySrV/TFzVeeE70LfRiBMkyn4yKYFTAzrsmQg5YhBy1DDlX7vAzMjOsy5DDd67KeoZpclyEHLUMOWob6a8ffYesbyueaDDmU9W/L5gK0V/b/TsTMoCmytwxFKvPakall12CarA4taxSmNtOW9QXVUofr8mHmB0zMvy9DDlqG+uv0+2vtQzE61bKGoVh1+nuvCDMCJuKzMuTgf+8IObguQw6zuS5rG6rDv0lBDt5jQw51+zcpYHxahvrqGhkZGSl7Ea0YHh6OhQsXxje+8Y244oorRr++fv36eP755+NP//RPJ/zZffv2xamnnho33XRTfOQjHxn9+uOPPx5nnnlm/OhHP4rzzjtv9OtvetOb4rzzzot//+///bjPNzQ0FENDQ6O/HxwcjOXLl8fAwEAsXrx43J8Z2D8c/XuHY8+Bg3HC/OOib9E8H0SgRDPpuAhmBUyPazLkoGXIQcuQw0w/Lz/00EOxcuXK+LXf/VKcdNpZRSx1Wp7Y9hex7c4b4+LfuS2W/fL5ZS9njKqvL6L6a6z6+v5+12Pxnc9siB07dsTrX//6jv95rsuQw0yvy3qGanFdhhy0DDloGeqvnf/Nl76hPK7JkEPZ/y22uQDtUXbLRTEzyK4pLUORyrh2ZGzZNZgmqlPLGoWJzbZlfUE11Om6fJj5AWP592XIQctQf0W9v9Y+dFanW9YwFKOOf+8VYUbAsXxWhhz87x0hB9dlyKEd12VtQ/n8mxTk4D025FDXf5MCjqZlqK+5ZS+gVfPmzYuVK1fG1q1bR280f+jQodi6dWts3Lhx0p/9+te/HkNDQ/He9773qK+/+tWvjqVLl8bWrVtHbzQ/ODgY27Zti9/6rd+a8Pl6enqip6dnWuvvXejDB1TJTDouglkB0+OaDDloGXLQMuRQ1c/LwPS4LkMOM70u6xmqxXUZctAy5KBlqL92/h22vqE8rsmQQ9n/tmwuQHuU3XJRzAyya0rLUKQyrh0ZW3YNponq1LJGYWKzbVlfUA11ui4fZn7AWP59GXLQMtRfUe+vtQ+d1emWNQzFqOPfe0WYEXAsn5UhB/97R8jBdRlyaMd1WdtQPv8mBTl4jw051PXfpICjaRnqqzY3mo+I2LRpU6xfvz4uuOCCuPDCC+PWW2+Nffv2xYYNGyIiYt26dbFs2bLYsmXLUT93xx13xBVXXBGvfOUrj/p6V1dX/M7v/E58+tOfjhUrVsSrX/3q+OQnPxmnnnrq6M3sAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANqtVjeav+qqq+K5556LG264IXbv3h3nnXde3HfffbFkyZKIiNi1a1d0d3cf9TOPPfZYfP/734//9t/+27jPee2118a+ffvigx/8YDz//PNx8cUXx3333Rfz58/v+PEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzVSrG81HRGzcuDE2btw47mP333//mK+dddZZMTIyMuHzdXV1xU033RQ33XRTu5YIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMKna3Wi+ig7fyH5wcLDklUBznHDCCdHV1dW259MxlEPLkIOWIQctQw5ltbx3796IiBj4u8fj0Isvte3Pb5e9zz4ZERGDu5+Inp6eklczVtXXF1H9NVZ9fXt2/38R8YtWWrk2ui5DDlqGHLQMOWgZctAy5NDOlnUM5XBNhhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5+O83of5ckyEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1D/c20Yzeab4M9e/ZERMTy5ctLXgk0x8DAQCxevLhtz6djKIeWIQctQw5ahhzKbnn7//tv2vZnd8IjX/t82UuYVNXXF1H9NVZ9fW9605ta+r52t/zzn/88IlyXoWhlX5eB9tAy5KBlyEHLkEM7W9YxlMM1GXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLk4L/fhPpzTYYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM9TfTjrtGRkZGOrCeRjl06FA89dRTccIJJ0RXV1fZy6m8wcHBWL58efzt3/5tWy8+TdTkc9nu3jrVcZNfo2M5F7/gPBytUy2PjIzEaaedluo8Z907GY+ricdUl+tyu2V8rQ/LemxZjyuiPcfWiZYfe+yxOPvss1Oe81Zl3netcg6KPQdFX5e9vs5BhHMQ0f5z0O6Wn3/++XjFK14Ru3btit7e3rY9b5my7btsxxOR75hmcjxN/bx8WLY9MB1NPfasx+3vsVuT7fV3PNXmuty6bK99JzhHU6vSOWpqy0eq0usxG46jWoo+jnY2186Os7yeRXLOZibDeavKNTnDuewE52Vizs3RqtJy2bLtC8dTbZ04nqq0nO21inBMdZHlmKrSchGyvGZV4Fy2V1X/W+zxWvbat49z2R7ZzmMVrst1Pqd1XnuE9ZetneuvQsvtUvfXdSKOq37KOLZMLRch8/6bSNOOua7H63/vOD11X39E/Y/B+sfnf1dxtLruE+suVhXXXdX/frMoVXxN2snx1Vurx5fxs3KW1zbDcWQ4hoh6HEedWq7D+TyWNRfDmuvVcjvU8TWvGudw9jL/t9jjsWcm5tyMr8nnpYot1/H1qOOaI+q5bmseXxVbbqc6vu7jcRzVUdVjKLLlqp6DLJzfzqnDuS3julyH89Ipjr2Zxx7R+eMv6z12ltfVcVRLluOImP6xaHl2HEe1NPU4Ztrx3JksjqN1d3fHP/pH/6jsZdTO4sWLax1plTiXs9fpjr1GL3MufsF56IzDLQ8ODkZEzvOc8Zgich6XY5q5ur2/zvhaH5b12LIeV0S1jq27uzuWLVsWEdVaV1mcA+cgop7noNXrch2Prd2cA+cgorrnoLu7OyIient7K7m+2ajqOZ+pbMcTke+Yyjyeun1ePizbHpiOph57U4+7Vdn/HtvxVJvjaZ+6XZezvfad4BxNLeM5qlvLR8ryejiOaqnjcXSi4zqeh7I5ZzPjvL1sti07l+NzXibm3HRGnd9fR+TbF46n2qp8PK7LYzmmesh4TLNRh+uy16x9nMv2qtL5nKrlKq217pzL9nAexzeb63Kdz2md1x5h/WWr4vqr8B67iuelHRxX/dT52KrQchHq/BrNVNOOuWnHe6ym/O8d677+iPofg/V3Vpb/XYV1F8u6q6XO76+zviaHOb56K/r4qtRyltc2w3FkOIaIPMfRiiJaruP5tOZiWHP7VOm6PJmqnr86cQ5nr8rn0P/esVjOzficl9lrZ8t1fD3quOaIeq7bmjurqu+x63QOJ+M4qiPDMUymlZazn4OyOb+d06RzO53rcpPOy7EcezOPPaI+xz/d99h1Oa6pOI5qyXIcEeUdi5brzXFUS6ePo7tjzwwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAuNxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgbjRP4Xp6emLz5s3R09NT9lJqz7msPq/Ry5yLX3AeipHxPGc8poicx+WYmiPzecl6bFmPK6K6x1bVdRXJOXAOInKfg8zH1irnwDmIqP45qPr6ZiLbMWU7noh8x5TteIrQ5HPW1GNv6nHPVLbz5XiqzfE0l3M1Nedoas5RtWR5PRxHtWQ5jtlyHqbPOZsZ5619nMvxOS8Tc24YT7Z94XiqLdvxHCnjsTmmesh4TNl5zdrHuWyvOp3POq216pzL9nAe26/O57TOa4+w/rLVff2dkvW8OK76yXxsWTTxNWraMTfteGeq7uep7uuPqP8xWH+x6rbew6y7WNZNu2R/TRxfvWU/vslkOfYMx5HhGCLyHEdV1PF8WnMxrLl5nL/Zcw5nr2nnsGnHOx3Ozficl2qp4+tRxzVH1HPd1txMWc6h46iODMcwW85BZzm/nePcjq/J58WxN/PYI/Ief5bjchzVkuU4IupzLHVZ51QcR7U4junpGhkZGenonwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUbrLXgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA07jRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDB3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGBuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMyN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVzo/k2euCBB2Lt2rVx6qmnRldXV3zrW9+a1s9/6lOfiq6urjG/jj/++M4sGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiFG8230b59++Lcc8+N2267bUY//9GPfjSefvrpo36dffbZ8c53vrPNKwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADK5EbzbXTZZZfFpz/96XjHO94x7uNDQ0Px0Y9+NJYtWxbHH398rFq1Ku6///7RxxctWhRLly4d/fXMM8/Ej3/843j/+99f0BEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARXCj+QJt3LgxHnzwwfja174WjzzySLzzne+Mt73tbbFz585xv/+LX/xivOY1r4lLLrmk4JUCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAneRG8wXZtWtXfOlLX4qvf/3rcckll8SZZ54ZH/3oR+Piiy+OL33pS2O+/8CBA/HVr3413v/+95ewWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCT5pa9gKb4q7/6q3jppZfiNa95zVFfHxoaile+8pVjvv+b3/xm7NmzJ9avX1/UEgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICCuNF8Qfbu3Rtz5syJHTt2xJw5c456bNGiRWO+/4tf/GL883/+z2PJkiVFLREAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoiBvNF+T888+Pl156KZ599tm45JJLJv3en/3sZ/E//sf/iD/7sz8raHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAkdxovo327t0bP/3pT0d//7Of/SwefvjhOOmkk+I1r3lN/MZv/EasW7cufu/3fi/OP//8eO6552Lr1q1xzjnnxNvf/vbRn7vzzjvjlFNOicsuu6yMwwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6rGtkZGSk7EVkcf/998db3vKWMV9fv3593HXXXXHw4MH49Kc/HV/+8pfjySefjL6+vvjVX/3VuPHGG+N1r3tdREQcOnQofumXfinWrVsXn/nMZ4o+BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAAqW40/8ADD8TnP//52LFjRzz99NPxzW9+M6644opJf+arX/1qfO5zn4udO3dGb29vXHbZZfH5z38+XvnKVxazaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBxusteQDvt27cvzj333Ljtttta+v4f/OAHsW7dunj/+98f//t//+/4+te/Htu3b49rrrmmwysFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmmxu2Qtop8suuywuu+yylr//wQcfjNNPPz1++7d/OyIiXv3qV8dv/uZvxs0339ypJQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEd9kLKNNFF10Uf/u3fxvf/va3Y2RkJJ555pn4xje+EZdffvm0nmdkZCQGBwdjZGSkQysFOk3HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqH+dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1J+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWob6mFv2Asr0xje+Mb761a/GVVddFQcOHIgXX3wx1q5dG7fddtukPzc0NBRDQ0Ojvx8cHIzly5fHwMBALF68uNPLBtpAx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ah/nQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMtSfjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG+uouewFl+vGPfxwf+chH4oYbbogdO3bEfffdF0888UR86EMfmvTntmzZEr29vaO/li9fXtCKgXbRMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWoPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPWnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahvrpGRkZGyl5EJ3R1dcU3v/nNuOKKKyb8nve9731x4MCB+PrXvz76te9///txySWXxFNPPRWnnHLKuD83NDQUQ0NDo78fHByM5cuXx8DAQCxevLhtxwB0jo4hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/3pGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWoPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPU1t+wFlGn//v0xd+7Rp2DOnDkRETEyMjLhz/X09ERPT09H1wZ0lo4hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/3pGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWoPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXVXfYC2mnv3r3x8MMPx8MPPxwRET/72c/i4Ycfjl27dkVExMc//vFYt27d6PevXbs27r333viDP/iDePzxx+MHP/hB/PZv/3ZceOGFceqpp5ZxCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEADzC17Ae30v/7X/4q3vOUto7/ftGlTRESsX78+7rrrrnj66adHbzofEXH11VfHnj174j/+x/8Y//pf/+s48cQT461vfWvcfPPNha8dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaI5UN5p/85vfHCMjIxM+ftddd4352oc//OH48Ic/3MFVUTcD+4ejf+9wDB44GIsXHBd9x8+L3oXzyl4W1IJ+oJq0CcyU+QE5aBlg9sxSAI7kugA5aBmqQYtAJ5kxdIJ9BZTB7CELexnIxlyD2dMRMFvmCBnYxwC0yjUDqkufZGZ/QzG0BkyXuQFj6QIokpkDOWgZmCnzA6pJmzA5jQBVZ04BRTJzAICqS3WjeZitp55/IT52zyPxvZ39o19bvaIvPnvlOXHqiQtKXBlUn36gmrQJzJT5ATloGWD2zFIAjuS6ADloGapBi0AnmTF0gn0FlMHsIQt7GcjGXIPZ0xEwW+YIGdjHALTKNQOqS59kZn9DMbQGTJe5AWPpAiiSmQM5aBmYKfMDqkmbMDmNAFVnTgFFMnMAgDroLnsBUBUD+4fHvIGPiHhgZ39cd88jMbB/uKSVQfXpB6pJm8BMmR+Qg5YBZs8sBeBIrguQg5ahGrQIdJIZQyfYV0AZzB6ysJeBbMw1mD0dAbNljpCBfQxAq1wzoLr0SWb2NxRDa8B0mRswli6AIpk5kIOWgZkyP6CatAmT0whQdeYUUCQzBwCoCzeah3/Qv3d4zBv4wx7Y2R/9e72Jh4noB6pJm8BMmR+Qg5YBZs8sBeBIrguQg5ahGrQIdJIZQyfYV0AZzB6ysJeBbMw1mD0dAbNljpCBfQxAq1wzoLr0SWb2NxRDa8B0mRswli6AIpk5kIOWgZkyP6CatAmT0whQdeYUUCQzBwCoCzeah38weODgpI/vmeJxaDL9QDVpE5gp8wNy0DLA7JmlABzJdQFy0DJUgxaBTjJj6AT7CiiD2UMW9jKQjbkGs6cjYLbMETKwjwFolWsGVJc+ycz+hmJoDZgucwPG0gVQJDMHctAyMFPmB1STNmFyGgGqzpwCimTmAAB14Ubz8A8Wzz9u0sdPmOJxaDL9QDVpE5gp8wNy0DLA7JmlABzJdQFy0DJUgxaBTjJj6AT7CiiD2UMW9jKQjbkGs6cjYLbMETKwjwFolWsGVJc+ycz+hmJoDZgucwPG0gVQJDMHctAyMFPmB1STNmFyGgGqzpwCimTmAAB14Ubz8A/6Fs2L1Sv6xn1s9Yq+6Fs0r+AVQX3oB6pJm8BMmR+Qg5YBZs8sBeBIrguQg5ahGrQIdJIZQyfYV0AZzB6ysJeBbMw1mD0dAbNljpCBfQxAq1wzoLr0SWb2NxRDa8B0mRswli6AIpk5kIOWgZkyP6CatAmT0whQdeYUUCQzBwCoCzeah3/Qu3BefPbKc8a8kV+9oi9uvvKc6F3oTTxMRD9QTdoEZsr8gBy0DDB7ZikAR3JdgBy0DNWgRaCTzBg6wb4CymD2kIW9DGRjrsHs6QiYLXOEDOxjAFrlmgHVpU8ys7+hGFoDpsvcgLF0ARTJzIEctAzMlPkB1aRNmJxGgKozp4AimTkAQF10jYyMjJS9iLobHByM3t7eGBgYiMWLF5e9HGZpYP9w9O8djj0HDsYJ84+LvkXzvIFvAB23h34om5bHp03qRsvVYX4wG1quDi0zG1qGX6j7LNUy5KDl6qj7dYFyabk6tMxsaLl9tEiZtJyfGZNfGR3bV9B+rslTM3uog1Zatpeh+lyXp8dco6rq1LKOYGJ1arlM5ghV5/My5OC6TFW4ZsyOlukkfRZHy8Wzv+kELY+lNepGx+UzN2iHbC3rgqbK1nJdmDm0m5bLoWXaTcvNYX7kpuX60iZH0vJYGqGOtNws5lReWqaKzJzp0zLkoGWoj7llLwCqpnehN+0wU/qBatImMFPmB+SgZYDZM0sBOJLrAuSgZagGLQKdZMbQCfYVUAazhyzsZSAbcw1mT0fAbJkjZGAfA9Aq1wyoLn2Smf0NxdAaMF3mBoylC6BIZg7koGVgpswPqCZtwuQ0AlSdOQUUycwB/n/2/j9I77M+7L0/kqXVD8u7jr0Y8IldO7UC5AQRQWYosaMChTIOxzlQ5aQDTQG7aYcmpC2ep8UuCcUlAZO2KQmF0iQ1LukAbWJM0gcmKUOGyjhM8mDsMXkeAvKxeZQB42RJvCt5pV3Z6PzhSLa0v+773u+P6/p8X68Z/tDeK3Tt7vX+XN/73vV+AUq3te8FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyNG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3b1vcCYDPmF5dj7thyLJw4GdO7tsfs+VMxs3uq72VB1XQF1MTMgubpCjZPRwCbZ5YCUAtnFpRDj5CHnqE+uqV09ijQBbMGyqFHoGvmDpRPpzAsmmeo7H2AfMx2KJM26Zo9B5PTDzAEZh08SQvQH/0BXTBrgLWYD5CHnqFZmgLaZMYATTBLAADW50bzVOubjx6Pt91xf9x1eO7M2w7snY1bD+6LSy/c1ePKoF66AmpiZkHzdAWbpyOAzTNLAaiFMwvKoUfIQ89QH91SOnsU6IJZA+XQI9A1cwfKp1MYFs0zVPY+QD5mO5RJm3TNnoPJ6QcYArMOnqQF6I/+gC6YNcBazAfIQ8/QLE0BbTJjgCaYJQAAG9va9wJgEvOLyysu9iMiDh2ei5vuuD/mF5d7WhnUS1dATcwsaJ6uYPN0BLB5ZikAtXBmQTn0CHnoGeqjW0pnjwJdMGugHHoEumbuQPl0CsOieYbK3gfIx2yHMmmTrtlzMDn9AENg1sGTtAD90R/QBbMGWIv5AHnoGZqlKaBNZgzQBLMEAGA0bjRPleaOLa+42D/t0OG5mDvmgh/GpSugJmYWNE9XsHk6Atg8sxSAWjizoBx6hDz0DPXRLaWzR4EumDVQDj0CXTN3oHw6hWHRPENl7wPkY7ZDmbRJ1+w5mJx+gCEw6+BJWoD+6A/oglkDrMV8gDz0DM3SFNAmMwZoglkCADAaN5qnSgsnTq77+NENHgdW0hVQEzMLmqcr2DwdAWyeWQpALZxZUA49Qh56hvroltLZo0AXzBoohx6Brpk7UD6dwrBonqGy9wHyMduhTNqka/YcTE4/wBCYdfAkLUB/9Ad0wawB1mI+QB56hmZpCmiTGQM0wSwBABiNG81Tpemd29d9/IINHgdW0hVQEzMLmqcr2DwdAWyeWQpALZxZUA49Qh56hvroltLZo0AXzBoohx6Brpk7UD6dwrBonqGy9wHyMduhTNqka/YcTE4/wBCYdfAkLUB/9Ad0wawB1mI+QB56hmZpCmiTGQM0wSwBABiNG81Tpdk9U3Fg7+yqjx3YOxuze6Y6XhHUT1dATcwsaJ6uYPN0BLB5ZikAtXBmQTn0CHnoGeqjW0pnjwJdMGugHHoEumbuQPl0CsOieYbK3gfIx2yHMmmTrtlzMDn9AENg1sGTtAD90R/QBbMGWIv5AHnoGZqlKaBNZgzQBLMEAGA0bjRPlWZ2T8WtB/etuOg/sHc23ntwX8zsdsEP49IVUBMzC5qnK9g8HQFsnlkKQC2cWVAOPUIeeob66JbS2aNAF8waKIcega6ZO1A+ncKwaJ6hsvcB8jHboUzapGv2HExOP8AQmHXwJC1Af/QHdMGsAdZiPkAeeoZmaQpokxkDNMEsAQAYzZZTp06d6nsRtVtYWIiZmZmYn5+P6enpvpczKPOLyzF3bDmOnjgZF+zcHrN7plzsMxEdP0VX1EzLw2Nm5aTlfumKpgy5ZR2RyZBbpl9mabO0DDlouUzOLMal5fbokS5puV16pitabo5u6cuoHdujULYsZ7JZw9CV1LIeYXIltVwTc4fSaHklnVIjLU9O85Sky5btfWiPc5m+mO3N0jJN0Wa/htiyPUdGXbWsH2jPEM/kUpl1bEamlrXAkPXdsv6gGX23XDqzhlpouXvmA23Qcj/0TNOG3rKmyGLoLZfKjGFcWmY1Zkl9tAw5aBnqsa3vBcBmzOx2gQ9N0xVQEzMLmqcr2DwdAWyeWQpALZxZUA49Qh56hvroltLZo0AXzBoohx6Brpk7UD6dwrBonqGy9wHyMduhTNqka/YcTE4/wBCYdfAkLUB/9Ad0wawB1mI+QB56hmZpCmiTGQM0wSwBAFjf1r4XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA02/peALC6+cXlmDu2HAsnTsb0ru0xe/5UzOyemvj9gBy9ZPgYoGm62ByfP4Zikr2uDyjPal1GhFaBkT2ycCL+8rHlWDjxeEzv2hbftXsqnjm9s+9lAdCwUp7PlbIOoC5Nzg5zCCY3Sj8ag/z66tx8gSedbmH++HLs3rEttm7ZEtu2bomLNQGDM+7Z6Cwlu9r3eO3rhz5l7yf7xzd0fX597S2gFubVSj4n9G2tPWhvAkMwv7gcjy6ejMeWH4/Hlp+IC3dtj0su2GHeQUdKut4oaS3Qljb2uXbIrs09rh8ox7k97tmxLR5bejzmj+sTxuH75UDfJp0FZgjUY35xOf7s6FI8evxknD91Xpy/Y1tcuGu7ZmFAMp3bmT4WmFSGDjJ8DH3xO9SBNpgTG/M5gmHyc2MAQMncaB4K9M1Hj8fb7rg/7jo8d+ZtB/bOxq0H98WlF+4a+/2AHL1k+BigabrYHJ8/hmKSva4PKM9qXf7w3tn46ZddFTfc/v+JxeUnIkKrwNqOfPuxuPnOL8fdD3z7zNuuueriePdrnx+XX3x+jysDoEmlPJ8rZR1AXZqcHeYQTG6UfjQG+fXVufkCT1qthauvujiuv/rKeM+nvxK3/J/frwkYiHHPRmcp2dW+x2tfP/Qpez/ZP76h6/Pra28BtTCvVvI5oW+r7cFXPu+S+Ln/4/vi7Z/8Y3sTSO3hR4/H//8vFuP9v3/4rP/+4of3zsZ7zTtoXUnXwiWtBdrSxj7XDtm1ucf1A+VYrcdrrro43nT1lfFPPnZvLC4/oU8Yge+XA32bdBaYIVCPbz56PN72W/fHXQ+c/d9g/czL98Zfu2h3PFuzkF6mczvTxwKTytBBho+hL36HOtAGc2JjPkcwTH5uDAAo3da+FwCcbX5xecUFf0TEocNzcdMd98f84vJY7wfk6CXDxwBN08Xm+PwxFJPsdX1Aedbq8q7Dc/H+3z8cN1xz5Zm3aRVYzSMLJ1bcZD4i4vMPfDv+5Z1fjkcWTvS0MgCaVMrzuVLWAdSlydlhDsHkRulHY5BfX52bL/CktVq4+4Fvx4fvfiie8+xpTcBAjHs2OkvJrvY9Xvv6oU/Z+8n+8Q1dn19fewuohXm1ks8JfVtrDz7n2dNx851ftjeB1OYXl+NzX/vzFTeZj3jyv+My76BdJV0Ll7QWaEsb+1w7ZNfmHtcPlGOtHj//Vz/Hefr3e+gT1uf75UDfJp0FZgjUY35xecVN5iOe/G+w3v/7h+NzX/tzzUJymc7tTB8LTCpDBxk+hr74HepAG8yJjfkcwTD5uTEAoAZuNA+FmTu2vOKC/7RDh+di7tjyWO8H5Oglw8cATdPF5vj8MRST7HV9QHnW6/LuB74d+y+78Ky3aRU4118+trzil5yd9vkHvh1/+ZiZAZBBKc/nSlkHUJcmZ4c5BJMbpR+NQX59dW6+wJNG+b6QJmAYxj0bnaVkV/ser3390Kfs/WT/+Iauz6+vvQXUwrxayeeEvq21B/dfduGaP49sbwJZzB1bjksu2GHeQU9KuhYuaS3Qljb2uXbIrs09rh8oxzi/30OfsDbfLwf6NuksMEOgHnPHllfcZP60ux/4dlxywQ7NQnKZzu1MHwtMKkMHGT6Gvvgd6kAbzImN+RzBMPm5MQCgBtv6XgB0YX7xyV/0vXDiZEzv2h6z50/FzO6pvpe1qoUTJ9d9/OhfPT7q+0FTauroXBl6yfAxQNMyd9HFzM38+WM0NZ/t45hkr+uDLgylwaZs1OXS499Z8TatQvdKnm0LJx7f1OMA1KGU53OlrGPISr4uoXu17IcmZ4c5BJO3P0o/pzb4/9AYrFTLeXxaX2epM5z11NbRZoz6fSFNULohdduWcc9GZyld67rz2vd47euHPpXaT1NzsNSPj2b0+fXNuLc8z4BmldJUxnm1WT4n9Gl+cTmWHn8iPvj3Xhg7t58XXzryl3Hb5x+KxeUnVv3vFp7O3qRLpZxj5LNw4qR5B+toe/6WdC1c0lpohuuHldrY59ohuzb3uH5GZ6bTtnF/v0eGPnWVSylfT98vh/6VMg/6MuksMEPILNtcGOXaXbOUIlt/pch0bmf6WIZM65uToYMMH0Nf/A719phNDNnT58TuqfPihmuujP2XXRhLj38ndm4/L75zaqPfpJWfWQpPGdKZ6efGAIAauNE86X3z0ePxtjvuj7sOz51524G9s3HrwX1x6YW7elzZ6qZ3bl/38Qv+6vFR3w+aUFtH58rQS4aPAZqWtYuuZm7Wzx+jqf1sH8cke10ftG1IDTZloy53bNu64m1ahW6VPtumd67/UvhGjwNQh1Kez5WyjqEq/bqEbtW0H5qcHeYQQ7eZ9pvoR2NwtprO49P6Okud4aylxo42Y9TvC2mCkg2t27aMezY6S+lSH53XvsdrXz/0qcR+mpyDJX58NKfPr2+2veV5BjSrpKayzasm+JzQl9Vmw9VXXRy/8rr98U8+du+q/93C09mbdKWkc4x8pnduj794bHnd9zHvGKou5m9J18IlrYXNc/2wujb2uXbIrs09rp/RmOl0Ydzf71F7n7rKpaSvp++XQ79Kmgd9mXQWmCFklXEujHLtrllKkLG/UmQ6tzN9LEOl9c3L0EGGj6Evfod6O8wmhu70nNg9dV78yuv2x4fvfij+w+8/cObxH947G+8deA9mKTxpaGemnxsDAGqw/n/NWplDhw7FddddF5deemls2bIlPvnJT274d5aWluLtb397/LW/9tdix44dccUVV8Rtt93W/mLpxPzi8oonIRERhw7PxU133B/zi+v/B459mN0zFQf2zq762IG9szG7Z2qs94PNqrGjc2XoJcPHAE3L2EWXMzfj54/RZDjbxzHJXtcHbRpag01Zr8urr7o47v3TR896m1ahWzXMtu86fyquueriVR+75qqL47vONzMAMijl+Vwp6xiiGq5L6E5t+6HJ2WEOMWSbbX+UfjQGo6vtPD6tr87NF1ZTa0ebMcr3hTRByYbYbVvGPRudpXSlr85r3+O1rx/6VFo/Tc/B0j4+mtXn1zfT3vI8A5pVWlOZ5lVTfE7ow1qz4e4Hvh0fvvuhuOGaK+PeP310zZ9HtjfpSmnnGPnM7pmKPzu6FFebd3CWruZvSdfCJa2FzXH9sLY29rl2yK7NPa6fjZnpdGWc3+9Re5+6yqW0r6fvl0N/SpsHfZl0FpghZJR1Lmx07f5nR5c0S++y9leKTOd2po9liLTejAwdZPgY+uJ3qDfPbIKn5sQN11wZH777obj7gW+f9fhdejBLIYZ5Zvq5MQCgBqluNP/YY4/FC17wgvjABz4w8t/58R//8fjsZz8b//k//+f46le/Gh/72MfiOc95TourpEtzx5ZXPAk57dDhuZg7Vt4TkZndU3HrwX0rLvwP7J2N9x7cFzO7p8Z6P9isGjs6V4ZeMnwM0LSMXXQ5czN+/hhNhrN9HJPsdX3QpqE12JS1uvzhvbPxMy/fG7d9/qEzb9MqdK+G2fbM6Z3x7tc+f8Uvd7zmqovj3a99fjxzemdPKwOgSaU8nytlHUNUw3UJ3altPzQ5O8whhmyz7Y/Sj8ZgdLWdx6f11bn5wmpq7Wgz1mrh6qsujuuvvjK++vCCJijaELtty7hno7OUrvTVee17vPb1Q59K66fpOVjax0ez+vz6ZtpbnmdAs0prKtO8aorPCX1Ybzbc/cC3Y/9lF8ZXH16Id7/2+fYmvSrtHCOfmd1T8dLvfUb8zMv3rrjZ/A+bdwxYV/O3pGvhktbC5rh+WFsb+1w7ZNfmHtfPxsx0urJWj9f81c9xnv79Hhn61FUupX09fb8c+lPaPOjLpLPADCGjrHPhdK8/vMp/g/UzL98bL/veZ2iW3mXtrxSZzu1MH8sQab0ZGTrI8DH0xe9Qb57ZBE/NiR/6notX3GT+tKH3YJbCMM9MPzcGANRgW98LaNK1114b11577cjv/7u/+7vxv/7X/4oHH3wwLrroooiIuOKKK1paHX1YOHFy3cePbvB4Xy69cFe8/3X7Y+7Ychw9cTIu2Lk9ZvdMrbjgH/X9YDNq7ehcGXrJ8DFA07J10fXMzfb5YzRZzvZxTLLX9UFbhthgU9bqMiLif7zlGq1Cj2qZbZdffH78ux//gfjLx5Zj4cTjMb1zW3zX+VNuMg+QTCnP50pZx9DUcl1CN2rcD03ODnOIoWqi/VH60RiMpsbz+LS+OjdfOFfNHW3G01uYP34ydk+dF+dt3RLnbd0S//b/eoEmKNpQu23LuGejs5Qu9Nl57Xu89vVDn0rqp405WNLHR/P6/Ppm2VueZ0CzSmwqy7xqks8JXdtoNszs2n7m9Wl7kz6VeI6Rz7Mv3BW7p86Ld7/m+fHY8uOxuPxEzOzaHpdcsMO8Y7C6nL8lXQuXtBYm5/phfW3sc+2QXZt7XD/rM9Pp0mo97tm5LR5bejw++pMvTtOnrnIp8evp++XQjxLnQV8mnQVmCNlknguXXrgr/sPr9sefHV06899gnT+1LS7cvV2zFCFzf6XIdG5n+liGRuvNydBBho+hL36HerPMJnjSpRfuim/NH1/3fYbeg1nK0A31zPRzYwBA6VLdaH5cv/M7vxM/+IM/GL/4i78Yv/EbvxHnn39+/OiP/mi8613vil27dq3595aWlmJpaenMnxcWFrpYLhOY3rl93ccv2ODxPs3sHu0if9T342w6Hl3NHZ0rQy8ZPoYmaZmIXF30MXNL+PxpuVuZzvZxTLLXS+ijJloezVAbbMpaXWq1OVpmEjXNtmdO7xzEjeW1DDloeXKlPJ8rZR1DUuJ1iZb7U+J+GEWTs8Mcao6W69FU+6P0o7H6aLl7tZ7Hp/XVufmytiF2XHtHm6GFvLK3PORu2zLuPDA/upG95fX03Xnte7z29Wcz5JZrVEo/bc3BUj6+GtXQcp9f3wx7q+/rD7pRQ8tZlNpUhnnVtBo/J1qu10az4bueth9r3JuMp+SWSz3HyCfDrCu5ZerT9fwtqcG+16LlzXP9sLE29nnf7ZRGy/m0ucf1s7Y+Z7qOh2kIPQ7tWil7y6V+PX2/nKZlb7kJpc6Dvkw6C8yQdmm5W9nngl77o+WNZe+vFJnmQB8fi5Y3T+vNytC0lifnd6g3x2yqU5aWSzOza/0ZoQeztGlarsuQz0w/N7Y+LUMOWoZ6be17AX168MEH4/Of/3z88R//cdx5553xvve9L37rt34rfuqnfmrdv/ee97wnZmZmzvzvsssu62jFjGt2z1Qc2Du76mMH9s7G7J4cF9WMT8ej0xEl0zLZDHXmarlbQ91ntE/Lo9EgpdMykzDbyqNlyEHLML4Sr0u03J8S9wP10nI9tM96tNw9TdK0IXasIzLK3rJuGYrsLa9H52Qy5JaZnDlYHi3np7th0HJ3NEWbtFwvs4GnK7llexVGV3LL1Mf87Y+WN8/+pQRahmb0OdN1TFZDu1bK3vLQvp4MV/aWm2AeUAMtd8tcoC1a3pj+qIGWN0/rlEDLnMtsqpOW26EHuqblupgRrEXLkIOWoV5bTp06darvRbRhy5Ytceedd8ZrXvOaNd/nb//tvx133XVXfOtb34qZmZmIiPjEJz4RP/ZjPxaPPfZY7Nq1a9W/t7S0FEtLS2f+vLCwEJdddlnMz8/H9PR0ox8Hm/fNR4/HTXfcH4cOz51524G9s/Heg/vi2Reu/jUmPx2PR0eUSstkNMSZq+XuDXGf0T4tj06DlEzLTMpsK4uWIQctw2RKuy7Rcr9K2w/US8t10T5r0XI/NEmThtqxjshmCC3rliEYQsvr0TlZDL1lJmcOlkXLw6C7/LTcLU3RFi3XzWzgtNJbtldhNKW3TH3M335ouRn2L33TMjSnr5muYzIb0rXSEFoe0teT4RpCy00wDyidlrtnLtAGLY9Gf5ROy83QOn3TMqsxm+qj5fbogS5puT5mBKvRMuSgZajXoG80/8Y3vjHuvvvueOCBB8687Stf+Up83/d9X3zta1+LvXv3jvRvLSwsxMzMjKFXsPnF5Zg7thxHT5yMC3Zuj9k9UzGze6rvZVEQHW9MR9RAy2Qx9Jmr5W4MfZ/RPi2vT4PUQsuMw2wrl5YhBy3D6Eq+LtFy90reD9RLy+XTPqPQcnc0SVuG1LGOyCxry7plaLK2vB6dk9EQW2Zy5mC5tJyX7oZFy+3TFF3Qcn3MBlZTYsv2KoyvxJapj/nbPy1Pzv6lJFqGzSlhpuuYbEroqg9ZWx7q15PhytpyE8wDaqLlbpgLtE3La9MfNdHy5LROSbTMaWZT3bTcLD3QFy3XwYxgI1qGHLQM9djW9wL6dPXVV8dv/uZvxrFjx2LPnj0REfG1r30ttm7dGt/93d/d8+po0szufp54nH4CtHDiZEzv2h6z53sCRL266EgzQJdKnjl9XbswLCXts5J7hLaU1OBpWgQ2q8TZNiozEIBxODfKV/N1Cc2rYT+YK9C8ptvXKWxO6eexxqnB6Y5O79cH5x6L6V3L9isUrPTzr23OV2oy6X4deufA5mQ4K81BaqM74FzjNJVhhjBs9vDonLfUwl6lNs4ishh1/trzlKiU6wd9wOZoiIhyZjp1M0/Opqtcsn099QqTK2keaBnK4GdFoD8lncuTMhdgY1qHdtmfk8kwm6ApNfdgBkL7ap4Rm2XGAAAlSnWj+WPHjsUDDzxw5s8PPfRQ3HfffXHRRRfF5ZdfHjfffHN84xvfiI985CMREfH6178+3vWud8X1118ft9xyS8zNzcU//+f/PG644YbYtWtXXx8GSXzz0ePxtjvuj7sOz51524G9s3HrwX1x6YX2F5xLM0CXzBwohx6hDFoEhswMBGAczg2gaeYKlE+nkJvGqYn9CtTCvKIm9ivQB7MHuqc7YDPMEGpnDwPQN2cRQ2PPw9r0AZujIaAp5gnUQ6+Qg5ahProFzmUuwDBonZLZn8CQmYFAm8wYAKBUW/teQJO++MUvxv79+2P//v0REXHjjTfG/v374x3veEdERDz88MNx5MiRM++/Z8+e+MxnPhOPPvpo/OAP/mD8vb/39+K6666LX/mVX+ll/eQxv7i84glARMShw3Nx0x33x/zick8rgzJpBuiSmQPl0COUQYvAkJmBAIzDuQE0zVyB8ukUctM4NbFfgVqYV9TEfgX6YPZA93QHbIYZQu3sYQD65ixiaOx5WJs+YHM0BDTFPIF66BVy0DLUR7fAucwFGAatUzL7ExgyMxBokxkDAJRsW98LaNJLX/rSOHXq1JqP33777Sve9tznPjc+85nPtLgqhmju2PKKJwCnHTo8F3PHlmNm91THq4JyaQbokpkD5dAjlEGLwJCZgQCMw7kBNM1cgfLpFHLTODWxX4FamFfUxH4F+mD2QPd0B2yGGULt7GEA+uYsYmjseVibPmBzNAQ0xTyBeugVctAy1Ee3wLnMBRgGrVMy+xMYMjMQaJMZAwCULNWN5qEUCydOrvv40Q0eH5r5xeWYO7YcCydOxvSu7TF7/pQnSQOjmRy0TC2GOnM0SomG2mMXNM84tFguLUP7upiBWgYox2ZnsmtnoGnmymRcY9MlnbZHy5RA45un5e7Yr7RFxzTNvOqHlidjv1IaLQ9DDbPHXiSbGrp7Og1CWWqbIZzNTLWHyUHLUJdzm50/vrzu+zuLyCb79Zdzmc3I3kdNtFwnDa3PvobRmSflMLvYiF7roGU2ouU6aJmn0229tExbhj4XtMVQDL31ppkdzSp1f/o6A03YaJaUOgOBHGqaMa69AGB43GgeWjC9c/u6j1+wweND8s1Hj8fb7rg/7jo8d+ZtB/bOxq0H98WlF+7qcWV0STP10zI1GeLM0SilGmKPXdA849JimbQM3Wh7BmoZoBxNzGTXzkDTzJXxucamazpth5YphcY3R8vdsl9pg45pg3nVPS1Pzn6lJFoejtJnj71IRqV393QahPLUNEM4m5n6JHuY2mkZ6rJasx/9yRev+3ecRWST+frLucxmZe6jJlqul4bWZl/DeMyTMphdjEKv5dMyo9By+bTMuXRbJy3TpiHPBW0xJENuvWlmR/NK3J++zkATRpklJc5AII9aZoxrLwAYpq19LwAymt0zFQf2zq762IG9szG7Z6rjFZVpfnF5xZOQiIhDh+fipjvuj/nF5Z5WRtc0UzctU5uhzRyNUrKh9dgFzTMJLZZHy9CdNmeglgHK0dRMdu0MNM1cGY9rbPqg0+ZpmZJofHJa7p79StN0TFvMq25peXPsV0qh5WEpefbYi2RVcndPp0EoUy0zhLOZqU+xh6mZlqEuazX7Bw9+O6656uJV/46ziIyyXn85l2lC1j5qouW6aWh19jWMzzzpn9nFqPRaNi0zKi2XTcusRrf10TJtG+pc0BZDM9TWm2Z2tKO0/enrDDRh1FlS2gwEcqlhxrj2AoDhcqN5aMHM7qm49eC+FU8EDuydjfce3Bczu/t/ElCCuWPLK56EnHbo8FzMHfNEZCg0UzctU5uhzRyNUrKh9dgFzTMJLZZHy9CdNmeglgHK0dRMdu0MNM1cGY9rbPqg0+ZpmZJofHJa7p79StN0TFvMq25peXPsV0qh5WEpefbYi2RVcndPp0EoUy0zhLOZqU+xh6mZlqEuazV72+cfijddfWX8sLOIgch6/eVcpglZ+6iJluumodXZ1zA+86R/Zhej0mvZtMyotFw2LbMa3dZHy7RtqHNBWwzNUFtvmtnRjtL2p68z0IRRZ0lpMxDIpYYZ49oLAIZrW98LgKwuvXBXvP91+2Pu2HIcPXEyLti5PWb3TBXxBKAUCydOrvv40Q0eJxfN1EvL1GhIM0ejlG5IPXZB80xKi2XRMnSrrRmoZYByNDmTXTsDTTNXRucam77otFlapjQan4yW+2G/0iQd0ybzqjta3jz7lRJoeXhKnT32IpmV2t3TaRDKVcMM4Wxm6tnsYWqlZajLWs0uLj8R/+Rj98Zv//TVsXXLFmcRg5Dx+su5TFMy9lETLddPQyvZ1zAZ86RfZhfj0Gu5tMw4tFwuLbMW3dZFy3RhiHNBWwzREFtvmtnRnpL2p68z0IRxZklJMxDIp/QZ49oLAIbLjeahRTO7y7noL9H0zu3rPn7BBo+Tj2bqpGVqNZSZo1FqMJQeu6B5NkOL5dAydK+NGahlgHI0PZNdOwNNM1dG4xqbPum0OVqmRBofn5b7Y7/SFB3TNvOqG1puhv1K37Q8TCXOHnuR7Ers7uk0CGUrfYZwNjN1JXuYGmkZ6rJes4vLT8TWLVvir1+yp8MVQb+yXX85l2lStj5qouUcNHQ2+xomZ570x+xiXHotk5YZl5bLpGXWo9t6aJmuDG0uaIuhGlrrTTM72lXK/vR1Bpow7iwpZQYCOZU8Y1x7AcBwbe17AcBwze6ZigN7Z1d97MDe2ZjdU+YTKOBsWoayaRSGRfOQg5YhBy0DlMNMBsjBPIcctAw5aBnqp2PIQcuQg5Yphb0I/dIgQHPMVMhBy1AXzUJuGocctExG9jVQI7MLctAy5KBlyEHL0A5tAZMwO4bB1xloglkCMBrzEgCGy43mqdb84nL83392LO498pfxf//5sZhfXO57SYxpZvdU3Hpw34onIwf2zsZ7D+6Lmd2eiNRCj8OmZdpmxmyORhmV1nLQfE76HB4t0wWzpX1aBiiHmcxproGGxdc7H/N8mLScj5bro0NWM7SWdUBGQ+u4beYEfdFyPzRP07RMKezF9Zn/tK2kBu13hsA+z62kmUpuZkm7tLySPUfJNEtpzMxmabwZ9iV90zIZZd3XzgyGYMj7POvsKtWQ9xrt0nL9zAcitDxE2s9Jy/XTZpm0xbm0yijMjmHwdR4Os582rTdLfvHgvogI+w8aYp7XzbUXAAzXllOnTp3qexG1W1hYiJmZmZifn4/p6em+lzMI33z0eLztjvvjrsNzZ972w3tn450/+r/Hloi4+PwpF7EVmV9cjrljy3H0xMm4YOf2mN3T/ddPx6M7/fVaOHEyZnZtj6nztsbNd375rB4P7J2NWw/ui0sv3NXjSumalmnDamd+0zPm6XNtetf2mE16HVFCo6PScvdGaW0orWRRQvNaHs1GbXVxFlIuLdOWEmbLkK4ttAw0RcubV8JMHro+rwFKuAaK0HJXe6CUrzftKGGeD73lNqw2Hx5bfkLLiWm5Dmudqf/6//z+mD++HHt25n5dh4313XIbHfvZKIam744j6j+TnZeUQMubN+rrVl53ok1apkmbeT2+hL1Ymtrmv5a708b3vvpusLb9npmW29PUPh/Sz0HWqu+ZGqHlp8vWjDOzO9lb9roU2ZTQ7Fqcy8NR2szMdB1UQuO1trzWvnz3a58fy098J+aP178/qIeW2YxSz7US9nVTSruWWYuOh6Xp9mvZ520rYXaV3vJm9569Rhe0XI5xZob5wLm0nIPf54eW6zRJm6W+RpVVCW11TcsrdX2O6rx+JcwOLbevq6+zmdCPUp5DZWzZnj7barPE7x3LJ2PLtWhrnptl3XONDTRFy1APN5pvgKHXrfnF5XjLx+496wnIaVdfdXHsv/y74v4/fdQTfMai49Gc+wLAW15+Vdx75C/j7ge+veJ9D+ydjfe/br8n8nRKy7msd+Y3NWNK+UYVZ9Nyt0ZpzTfVmISWN7bROdTFWQgb0XI+JcwW1+Hd0zLkoGVq1+c1QAnXQKcNueWu9kBJX2/yGnLLbVhtPrzn7zw/Pn3/w3HXA1qmPVpe3yg/o/Uffv8Br+vQq6Y79rNR0I+az2TnJTyl5pZHfd3K604MQc0t8xQ/l9GsGue/lruRsbUa93tmWm5HU/s84wygHVp+UrZmnJnD01bLXpeCbjmXh6G0mZntOqgENba83r685qqL4wf+6vvKEfYHw1FjyzjXulDatcx6dDwcTbdf0z4fgpJb3uzes9cYkpJb7so4M8N8oFRa3hy/z49SaHk8k7TpNSq6oOWzdX2O6pymaDkHM6EfJT2HytayPb2xkvYfzcnWci3a6sksGy4tQw5ahnps7XsBMK65Y8urPgGJiLj7gW/H/ssujEOH5+KmO+6P+cXljlcHec0vLq94or7/sgtX/UXKERGHDs/F3DENApNb78xvYsasNtdO/3+7jmBINmrtz44uaQVaMMo51PZZCAxT37PFdTgADFPf1wB9XwPR7R7w9Ya6rDUfLrlgx6o3mY/QMnRllJ/RivC6Dnn42ShgEs5LqN84r1t53QmoQd/fk8nI/Gc1WVuz3xmCJvZ51hkAbcnYjDOTJnhdCqAdJc3MjNdBTGa9ffn5p31fOcL+AMrlXOtGSdcyENFO+/Y5o2hi79lrMBzjzgzzAfLx+/ygXuO26TUq6EeX56jOgaczE/rjOVQ77OnR2H/QnDZ6MssAALrjRvNUZ+HEyXUfX3r8OxHhCT40bbUXAE73tpajG/QKsJ6NzvzNzhjfKIAnbdTa/PGTWoEWjHIOtX0WAsPU92xxHQ4Aw9T3NUDf10B0uwd8vaEua80H34uG/o36M1oRXtchBz8bBUzCeQn1G+d1K687ATXo+3syGZn/rCZra/Y7Q9DEPs86A6AtGZtxZtIEr0sBtKOkmZnxOojJjPN95Qj7AyiTc60bJV3LQEQ77dvnjKKJvWevwXCMOzPMB8jH7/ODeo3bpteooB9dnqM6B57OTOiP51DtsKdHY/9Bc9roySwDAOiOG81Tnemd29d9fMe2p7a1J/jQnNVeAHh6b6u5YINeAdaz0Zm/2RnjGwXwpI1a2z113rqPawUmM8o51PZZCAxT37PFdTgADFPf1wB9XwPR7R7w9Ya6rDUffC8a+jfOz2hFeF2H+vnZKGASzkuo3zivW3ndCahB39+Tycj8ZzVZW7PfGYIm9nnWGQBtydiMM5MmeF0KoB0lzcyM10FMZtzvK0fYH0B5nGvdKOlaBiLaad8+ZxRN7D17DYZj3JlhPkA+fp8f1GvcNr1GBf3o8hzVOfB0ZkJ/PIdqhz09GvsPmtNGT2YZAEB33Gie6szumYoDe2dXfezqqy6Oe//00TN/9gQfmrPaCwD3/umjcfVVF6/6/gf2zsbsnqm2lwUktt6Z38SM8Y0CeNJGrZ0/tW3dv68VmMwo51DbZyEwTH3PFtfhADBMfV8D9H0NRLd7wNcb6rLWfPC9aOjfOD+jFeF1HernZ6OASTgvoX7jvG7ldSegBn1/TyYj85/VZG3NfmcImtjnWWcAtCVjM85MmuB1KYB2lDQzM14HMZlxv68cYX8A5XGudaOkaxmIaKd9+5xRNLH37DUYjnFnhvkA+fh9flCvcdv0GhX0o8tzVOfA05kJ/fEcqh329GjsP2hOGz2ZZQAA3XGjeaozs3sqbj24b8UTkauvujiuv/rKuO3zD0WEJ/jQtNVeALjt8w/F9VdfGdec8wuVD+ydjfce3BczuzUITG6tM7+pGeMbBfCkjVq7cPd2rUALRjmH2j4LgWHqe7a4DgeAYer7GqDvayC63QO+3lCXtebDbZ9/KH7m5Xu1DD0a9We0IryuQw5+NgqYhPMS6jfO61ZedwJq0Pf3ZDIy/1lN1tbsd4agiX2edQZAWzI248ykCV6XAmhHSTMz43UQk1lrX16zyveVI+wPoEzOtW6UdC0DEe20b58ziib2nr0GwzHuzDAfIB+/zw/qNW6bXqOCfnR5juoceDozoT+eQ7XDnh6N/QfNaaMnswwAoDtbTp06darvRdRuYWEhZmZmYn5+Pqanp/tezmDMLy7H3LHlePT4ciyd/E78wYPfjts+/1AsLj9x5gnJsy/c1fcyqYSOR/PNR4/HTXfcH4cOz5152yufd0m880f/9zhx8jtx9MTJuGDn9jM/RANd03JOp8/8NmbManPNdUT/tNyP9VrTCpPQ8sZGbavNsxA2ouW8+pwtri26p2XIQcvUroRrgBKeXw255a73QAlfb/IacsttWGs+/OLBfbFr6jwt0xotj+bpZ+quqfPiS0cejXf9v/9/sbj8RER4XYd+Nd2xn42CfmQ4k52XUHfL475u5XUnMqu5ZZ5SwvdkMqpp/mu5G5lbq2m/Z6bldm12n2eeATRLy0/K2owzczjaatnrUtAt5/KwlDIzs14H9anmls/dlzu3b413/s7/Nz7zlT878z72B0NRc8tD5lzrTinXMuvR8XC01X4N+3wISm65qb1nrzEEJbfclUlmhvlAabS8OX6fH6XQ8mTGadNrVHRBy6vr6hzVOU3Rcg5mQr9KeA6VrWV7enQl7D+ak63l2jTdk1k2XFqGHLQM9XCj+QYYev3zBJ/N0vHo9EbJtMwkzLXyaLlMWmFcWh6NtiidlmmL+dctLUMOWiYD1wBatgfIYugtt8F8oA9anoxeKUkbHdvj0L2MZ7JZwhDV3rJu4Um1t8xTzLVh03J3tEabtFw+M4BRaPkpmqFmbbasDeiOc5m+mPXNytay/cFQZWt5SMwtTtPxsGg/r9JbtvdgNKW33BUzg9ppefPMAUqg5W7onbZpuX86pwlazsNMGLaMLdvTDFHGlofOLBsmLUMOWoZ6bOt7AdCEmd2eLEBX9AZkY67BaLQC7dAWMFTmHwAMk2sA7AFgLeYD1EOvZGePA00wS6A+ugWyMdegG1qDYTMDYDyagdVpAyA/s5712B9AbcwtGCbt0xd7DxiHmQGYAzAceof8dA48nZlANvY0kIFZBgDQvq19LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgaNxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DE3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd29b3AqBp84vLMXdsORZOnIzpXdtj9vypmNk91feyIDXdAUzG/KQE9iE0Q0sAzTNbAeApzkWGwl4HmmCWQHf0Rgb2MdAmMwaapyuA8Zib0B29AU0yUxgC+xzqoVeA9pixTMregfbpDKB9Zi2bZQ9BfXQLNMlMgfroFliN2QD56BqgLOYyXbLfAACa40bzpPLNR4/H2+64P+46PHfmbQf2zsatB/fFpRfu6nFlkJfuACZjflIC+xCaoSWA5pmtAPAU5yJDYa8DTTBLoDt6IwP7GGiTGQPN0xXAeMxN6I7egCaZKQyBfQ710CtAe8xYJmXvQPt0BtA+s5bNsoegProFmmSmQH10C6zGbIB8dA1QFnOZLtlvAADN2tr3AqAp84vLK54sREQcOjwXN91xf8wvLve0MshLdwCTMT8pgX0IzdASQPPMVgB4inORobDXgSaYJdAdvZGBfQy0yYyB5ukKYDzmJnRHb0CTzBSGwD6HeugVoD1mLJOyd6B9OgNon1nLZtlDUB/dAk0yU6A+ugVWYzZAProGKIu5TJfsNwCA5rnRPGnMHVte8WThtEOH52LumCcM0DTdAUzG/KQE9iE0Q0sAzTNbAeApzkWGwl4HmmCWQHf0Rgb2MdAmMwaapyuA8Zib0B29AU0yUxgC+xzqoVeA9pixTMregfbpDKB9Zi2bZQ9BfXQLNMlMgfroFliN2QD56BqgLOYyXbLfAACat63vBUBTFk6cXPfxoxs8DoxPdwCTMT8pgX0IzdASQPPMVhi2I0eOxNzc6j8cVILZ2dm4/PLL+14GA+JcZCjsdaAJZgl0R29kYB8DbTJjoHm6AhiPuQnd0RvQJDOFIbDPoR56BWiPGcuk7B1on84A2mfWsln2ENRHt0CTzBSoj26B1ZgNkI+uAcpiLtMl+w0AoHmpbjR/6NCh+Df/5t/EPffcEw8//HDceeed8ZrXvGakv3v33XfH3/ybfzO+//u/P+67775W10k7pnduX/fxCzZ4HBif7gAmY35SAvsQmqElgOaZrTBcR44ciec+93lx/Phi30tZ065du+NP/uQrbjZPZ5yLDIW9DjTBLIHu6I0M7GOgTWYMNE9XAOMxN6E7egOaZKYwBPY51EOvAO0xY5mUvQPt0xlA+8xaNssegvroFmiSmQL10S2wGrMB8tE1QFnMZbpkvwEANC/VjeYfe+yxeMELXhA33HBD/J2/83dG/nuPPvpovOENb4i/9bf+VjzyyCMtrpA2ze6ZigN7Z+PQ4bkVjx3YOxuze6Z6WBXkpjuAyZiflMA+hGZoCaB5ZisM19zcXBw/vhgvvuFfxfSzr+h7OSssPPz1+MPbbom5uTk3mqczzkWGwl4HmmCWQHf0Rgb2MdAmMwaapyuA8Zib0B29AU0yUxgC+xzqoVeA9pixTMregfbpDKB9Zi2bZQ9BfXQLNMlMgfroFliN2QD56BqgLOYyXbLfAACat7XvBTTp2muvjZ//+Z+P1772tWP9vTe/+c3x+te/Pl7ykpe0tDK6MLN7Km49uC8O7J096+0H9s7Gew/ui5ndnjBA03QHMBnzkxLYh9AMLQE0z2wFpp99RVx0+XOK+9/0s6/o+1PDADkXGQp7HWiCWQLd0RsZ2MdAm8wYaJ6uAMZjbkJ39AY0yUxhCOxzqIdeAdpjxjIpewfapzOA9pm1bJY9BPXRLdAkMwXqo1tgNWYD5KNrgLKYy3TJfgMAaN62vhfQtw9/+MPx4IMPxn/9r/81fv7nf36kv7O0tBRLS0tn/rywsNDW8hjTpRfuive/bn/MHVuOoydOxgU7t8fsnilPFlhBx83RHX3SMjUzP5+i5f7YhzRpyC1riUyG3DJlMVs3R8uQg5Y5zblYNy2Pzl6nZFquh1nCerTcLL3Rh6Y7to+hH0M5k80YsuujZV1B84ZyLg+VuTkcWu6f3miCljnNTKmblkdjn1M6LT9Fr9RMy5TOjB2Nlleyd6hRbS3rDFaqrWPKZ9b2I1PL9hBDVmvLuoWz1dpyKcwUSqHl0emWkmm5P2YDTdJyGXTNZmkZmtXXXNbyMLkOyEfLkIOWoV6DvtH84cOH46abboq77rortm0b/VPxnve8J2655ZYWV8ZmzOz2BIGN6bhZuqMvWqZ25ueTtNwv+5CmDL1lLZHF0FumLGbr5LQMOWiZp3Mu1kvL47HXKZWW62KWsBYtN09vdK2Nju1j6N6QzmQzhsz6allX0KwhnctDZW4Og5bLoDc2S8s8nZlSLy2Pzj6nZFo+m16plZapgRm7MS2vzt6hNjW2rDM4W40dUz6ztnvZWraHGKqaW9YtPKXmlkthplACLY9Ht5RKy/0yG2iKlsuhazZDy9C8PuaylofLdUAuWoYctAz12nLq1KlTfS+iDVu2bIk777wzXvOa16z6+BNPPBF/42/8jfgH/+AfxJvf/OaIiHjnO98Zn/zkJ+O+++5b9/97aWkplpaWzvx5YWEhLrvsspifn4/p6emmPgSgRTqGHLQMOWgZctAy5KBlyEHL1OpLX/pSvOhFL4pXvv3DcdHlz+l7OSv8xZGvxmd+4fq455574oUvfGHr/56WIQctQw5ahhy0DPXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXa1vcC+nL06NH44he/GPfee2+85S1viYiI73znO3Hq1KnYtm1b/M//+T/j5S9/+ap/d8eOHbFjx44ulws0TMeQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoX46hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnqp2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoV6DvdH89PR0fPnLXz7rbR/84Afj93//9+O3fuu34sorr+xpZQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB2qW40f+zYsXjggQfO/Pmhhx6K++67Ly666KK4/PLL4+abb45vfOMb8ZGPfCS2bt0a3//933/W37/kkkti586dK94OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0KRUN5r/4he/GC972cvO/PnGG2+MiIg3vvGNcfvtt8fDDz8cR44c6Wt5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGR7EbzL33pS+PUqVNrPn777bev+/ff+c53xjvf+c5mFwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwjq19LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgaNxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DE3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdc6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI650TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAx9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DE3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSs1xvN/+Iv/mIcP378zJ/vvvvuWFpaOvPno0ePxk/91E/1sTQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1mzr8x+/+eab401velPs2rUrIiKuvfbauO++++J7vud7IiJicXEx/tN/+k/xwQ9+sM9lQuvmF5dj7thyLJw4GdO7tsfs+VMxs3uq72UBT6NThsi+B7Iy3wBzAMqmUYDJmaEAtMUZA83TFWAOwOZoCIZB60AXzJrx+HxBDloGoFbOMEZhnwBszKyEHLQMOmB09goApzkTqJF9C7TNnIG6aRgwB6AumqVp9hT0Q3sAw2T+AwBd6fVG86dOnVr3zzAE33z0eLztjvvjrsNzZ952YO9s3HpwX1x64a4eVwacplOGyL4HsjLfAHMAyqZRgMmZoQC0xRkDzdMVYA7A5mgIhkHrQBfMmvH4fEEOWgagVs4wRmGfAGzMrIQctAw6YHT2CgCnOROokX0LtM2cgbppGDAHoC6apWn2FPRDewDDZP4DAF3a2vcCYMjmF5dXXPxHRBw6PBc33XF/zC8u97Qy4DSdMkT2PZCV+QaYA1A2jQJMzgwFoC3OGGiergBzADZHQzAMWge6YNaMx+cLctAyALVyhjEK+wRgY2Yl5KBl0AGjs1cAOM2ZQI3sW6Bt5gzUTcOAOQB10SxNs6egH9oDGCbzHwDomhvNQ4/mji2vuPg/7dDhuZg75gkA9E2nDJF9D2RlvgHmAJRNowCTM0MBaIszBpqnK8AcgM3REAyD1oEumDXj8fmCHLQMQK2cYYzCPgHYmFkJOWgZdMDo7BUATnMmUCP7FmibOQN10zBgDkBdNEvT7Cnoh/YAhsn8BwC6tq3vBfz6r/967NmzJyIiHn/88bj99ttjdnY2IiKOHj3a59KgdQsnTq77+NENHgfap1OGyL4HsjLfAHMAyqZRgMmZoQC0xRkDzdMVYA7A5mgIhkHrQBfMmvH4fEEOWgagVs4wRmGfAGzMrIQctAw6YHT2CgCnOROokX0LtM2cgbppGDAHoC6apWn2FPRDewDDZP4DAF3r9Ubzl19+efzar/3amT8/61nPit/4jd9Y8T6Q1fTO7es+fsEGjwPt0ylDZN8DWZlvgDkAZdMowOTMUADa4oyB5ukKMAdgczQEw6B1oAtmzXh8viAHLQNQK2cYo7BPADZmVkIOWgYdMDp7BYDTnAnUyL4F2mbOQN00DJgDUBfN0jR7CvqhPYBhMv8BgK5t7fMf//rXvx4PPfTQhv+DrGb3TMWBvbOrPnZg72zM7pnqeEXAuXTKENn3QFbmG2AOQNk0CjA5MxSAtjhjoHm6AswB2BwNwTBoHeiCWTMeny/IQcsA1MoZxijsE4CNmZWQg5ZBB4zOXgHgNGcCNbJvgbaZM1A3DQPmANRFszTNnoJ+aA9gmMx/AKBrvd5o/kd+5Edifn7+zJ9vvfXWePTRR8/8+dvf/nZ83/d9Xw8rg27M7J6KWw/uW/Ek4MDe2XjvwX0xs9sTAOibThki+x7IynwDzAEom0YBJmeGAtAWZww0T1eAOQCboyEYBq0DXTBrxuPzBTloGYBaOcMYhX0CsDGzEnLQMuiA0dkrAJzmTKBG9i3QNnMG6qZhwByAumiWptlT0A/tAQyT+Q8AdG3LqVOnTvX1j2/dujW+9a1vxSWXXBIREdPT03HffffF93zP90RExCOPPBKXXnppPPHEE30tcSQLCwsxMzMT8/PzMT093fdyqND84nLMHVuOoydOxgU7t8fsnikX/x3TMRvRaR203Cz7nr5ombaZb93QMiUzB0anZfqg0eZpmVp86Utfihe96EXxyrd/OC66/Dl9L2eFvzjy1fjML1wf99xzT7zwhS/s/N8fpWUzFMrnXKZWzpizaZkm6Kp/WqZv5sDm6XjYNJSHllmP1uuhZWpm1jzF96MgBy1DDq6xYXW1nWFa7kdt+4TyaZmMhjgrtUxGWtYyw+wggz5atlegWc5kauZMeIqW62Hfsh4t0wRzpn9aZjM0XA4t0xdzoFlapm2a7caQWranyKzklrUHoyu5ZRjXkOe/liEHLUM9tvW9gKfr8Z730KuZ3cO54Ida6ZQhsu+BrMw3wByAsmkUYHJmKABtccZA83QFmAOwORqCYdA60AWzZjw+X5CDlgGolTOMUdgnABszKyEHLYMOGJ29AsBpzgRqZN8CbTNnoG4aBswBqItmaZo9Bf3QHsAwmf8AQFe29r0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKHp9UbzW7ZsiS1btqx4GwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBm2/r8x0+dOhVvetObYseOHRERceLEiXjzm98c559/fkRELC0t9bk8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFb0eqP5N77xjWf9+Sd+4idWvM8b3vCGrpYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0IlebzT/4Q9/uM9/HgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAXW/teQJMOHToU1113XVx66aWxZcuW+OQnP7nu+3/iE5+IV77ylfGMZzwjpqen4yUveUn83u/9XjeLBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYr1Y3mH3vssXjBC14QH/jAB0Z6/0OHDsUrX/nK+PSnPx333HNPvOxlL4vrrrsu7r333pZXCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzZtr4X0KRrr702rr322pHf/33ve99Zf373u98dv/3bvx3/43/8j9i/f3/DqwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB40ta+F1CS73znO3H06NG46KKL+l4KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkNi2vhdQkn/7b/9tHDt2LH78x3983fdbWlqKpaWlM39eWFhoe2lAw3QMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGeqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfjqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGerlRvN/5aMf/Wjccsst8du//dtxySWXrPu+73nPe+KWW27paGVAG3QMOWgZctAy5KBlyEHLkIOWWc+RI0dibm6u72Ws6itf+UrfSyiKliEHLUMOWoYctAz10zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUD8dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz12nLq1KlTfS+iDVu2bIk777wzXvOa12z4vh//+MfjhhtuiN/8zd+MV7/61Ru+/9LSUiwtLZ3588LCQlx22WUxPz8f09PTm1k20BEdQw5ahhy0DDloGXLQMuSgZdZy5MiReO5znxfHjy/2vZR1vfT/9Z/imXuf3/cyVviLI1+Nz/zC9XHPPffEC1/4wtb/PS1DDlqGHLQMOWgZ6qdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF+OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6rWt7wX07WMf+1jccMMN8fGPf3ykm8xHROzYsSN27NjR8sqANukYctAy5KBlyEHLkIOWIQcts5a5ubk4fnwxXnzDv4rpZ1/R93JWePjLX4g//p1fjccff7zvpRRBy5CDliEHLUMOWob66Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlqJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoZ6pbrR/LFjx+KBBx448+eHHnoo7rvvvrjooovi8ssvj5tvvjm+8Y1vxEc+8pGIiPjoRz8ab3zjG+OXf/mX48UvfnF861vfioiIXbt2xczMTC8fAwAAAAAAQJumn31FXHT5c/pexgoLD3+97yUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAp7b2vYAmffGLX4z9+/fH/v37IyLixhtvjP3798c73vGOiIh4+OGH48iRI2fe/1d/9Vfj8ccfj5/+6Z+OZz/72Wf+90//6T/tZf0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAMGzrewFNeulLXxqnTp1a8/Hbb7/9rD9/7nOfa3dBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKvY2vcCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIbGjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdc6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI650TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAx9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DE3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdc6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI650TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAx9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DE3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrat7wWQw/zicswdW46FEydjetf2mD1/KmZ2T/W9LKBFugfGYWbA6PQC9dMx5KRtAIDJuI4iwj6ALLQMddMwdEdvkJvGoX46BqBNzhmGyL6H0ekF2qUxhsaeB4bArINmaAnYiDkB+eiaLOxlYFzmBvRPhzAsmof66BbIwjyDXDQNzdETAEAObjTPpn3z0ePxtjvuj7sOz51524G9s3HrwX1x6YW7elwZ0BbdA+MwM2B0eoH66Rhy0jYAwGRcRxFhH0AWWoa6aRi6ozfITeNQPx0D0CbnDENk38Po9ALt0hhDY88DQ2DWQTO0BGzEnIB8dE0W9jIwLnMD+qdDGBbNQ310C2RhnkEumobm6AkAII+tfS+Aus0vLq94chARcejwXNx0x/0xv7jc08qAtugeGIeZAaPTC9RPx5CTtgEAJuM6igj7ALLQMtRNw9AdvUFuGof66RiANjlnGCL7HkanF2iXxhgaex4YArMOmqElYCPmBOSja7Kwl4FxmRvQPx3CsGge6qNbIAvzDHLRNDRHTwAAubjRPJsyd2x5xZOD0w4dnou5Y54gQDa6B8ZhZsDo9AL10zHkpG0AgMm4jiLCPoAstAx10zB0R2+Qm8ahfjoGoE3OGYbIvofR6QXapTGGxp4HhsCsg2ZoCdiIOQH56Jos7GVgXOYG9E+HMCyah/roFsjCPINcNA3N0RMAQC5uNM+mLJw4ue7jRzd4HKiP7oFxmBkwOr1A/XQMOWkbAGAyrqOIsA8gCy1D3TQM3dEb5KZxqJ+OAWiTc4Yhsu9hdHqBdmmMobHngSEw66AZWgI2Yk5APromC3sZGJe5Af3TIQyL5qE+ugWyMM8gF01Dc/QEAJCLG82zKdM7t6/7+AUbPA7UR/fAOMwMGJ1eoH46hpy0DQAwGddRRNgHkIWWoW4ahu7oDXLTONRPxwC0yTnDENn3MDq9QLs0xtDY88AQmHXQDC0BGzEnIB9dk4W9DIzL3ID+6RCGRfNQH90CWZhnkIumoTl6AgDIxY3m2ZTZPVNxYO/sqo8d2Dsbs3umOl4R0DbdA+MwM2B0eoH66Rhy0jYAwGRcRxFhH0AWWoa6aRi6ozfITeNQPx0D0CbnDENk38Po9ALt0hhDY88DQ2DWQTO0BGzEnIB8dE0W9jIwLnMD+qdDGBbNQ310C2RhnkEumobm6AkAIBc3mmdTZnZPxa0H9614knBg72y89+C+mNntCQJko3tgHGYGjE4vUD8dQ07aBgCYjOsoIuwDyELLUDcNQ3f0BrlpHOqnYwDa5JxhiOx7GJ1eoF0aY2jseWAIzDpohpaAjZgTkI+uycJeBsZlbkD/dAjDonmoj26BLMwzyEXT0Bw9AQDksq3vBbB584vLMXdsORZOnIzpXdtj9vypTi/ML71wV7z/dftj7thyHD1xMi7YuT1m93S7BuhC362VRPfAOMyMujjvztb150MvDFmW+aNjaFYps0HbAMC4SrmO6ZvrqP6UtAftA2hXV71rGZrTxzmtYWjXuV3/m//rBfHY0uOxcFxvkM35U+fFz/0f3xePHj8Ze6bOi91T2+LC3ds1Dh3a7PW0a2MYppJeMyc35wxtK3Ge2ff9KnFPsDa90LWhzQiNUaI2O7TnoR1DOz9LZ9bRlKG3rSVgI+ZEM4Z+3nTF53k0uqZJfXZnL0NzhnKGmhsMRclN6xA2VnLD49I8rFR647qFepQ+T/pmnnEuzdRN09AcPQEA5OFG85X75qPH42133B93HZ4787YDe2fj1oP74tILd3W2jpndnhCQWymtlUT3wDjMjDo4787W1+dDLwxRtvmjY2hGabNB2wDAqEq7jumb66julbgH7QNoR9e9axk2r89zWsPQjvW6/p5n7OlxZUDT1ut9ZnePC4MBaep62rUxDEuJr5mTm3OGtpQ8z+z7fpS8J1ibXujKUGeExihJFx3a89CsoZ6fpTPr2CxtP0lLwEbMic1x3nTD53k8uqYJJXRnL8PmldByl8wNsquhaR3C2mpoeFyah6fU0rhuoXy1zJO+mWecppkcNA3N0RMAQA5b+14Ak5tfXF7xYkVExKHDc3HTHffH/OJyTyuDXLQGwBA4787m8wHd0RuwGrMBAKiV6xj6Zg/CcOgd6qNbyEfXMBx6h/7pEJiE2QFkYZ5xLnsCWI8ZAf3TIdRHt5CTtgHogvOmGz7P0D3dQQ5ahlw0DXXTMOSmcaAp5gmMRzMAAABk5UbzFZs7trzixYrTDh2ei7ljXrCAJmgNgCFw3p3N5wO6ozdgNWYDAFAr1zH0zR6E4dA71Ee3kI+uYTj0Dv3TITAJswPIwjzjXPYEsB4zAvqnQ6iPbiEnbQPQBedNN3yeoXu6gxy0DLloGuqmYchN40BTzBMYj2YAAADIKtWN5g8dOhTXXXddXHrppbFly5b45Cc/ueHf+dznPhcvfOELY8eOHXHVVVfF7bff3vo6m7Jw4uS6jx/d4HFgNFoDYAicd2fz+YDu6A1YjdkAANTKdQx9swdhOPQO9dEt5KNrGA69Q/90CEzC7ACyMM84lz0BrMeMgP7pEOqjW8hJ2wB0wXnTDZ9n6J7uIActQy6ahrppGHLTONAU8wTGoxkAAACySnWj+cceeyxe8IIXxAc+8IGR3v+hhx6KV7/61fGyl70s7rvvvvhn/+yfxU/+5E/G7/3e77W80mZM79y+7uMXbPA4MBqtATAEzruz+XxAd/QGrMZsAABq5TqGvtmDMBx6h/roFvLRNQyH3qF/OgQmYXYAWZhnnMueANZjRkD/dAj10S3kpG0AuuC86YbPM3RPd5CDliEXTUPdNAy5aRxoinkC49EMAAAAWaW60fy1114bP//zPx+vfe1rR3r/D33oQ3HllVfGv/t3/y6e97znxVve8pb4sR/7sfj3//7ft7zSZszumYoDe2dXfezA3tmY3TPV8YogJ60BMATOu7P5fEB39AasxmwAAGrlOoa+2YMwHHqH+ugW8tE1DIfeoX86BCZhdgBZmGecy54A1mNGQP90CPXRLeSkbQC64Lzphs8zdE93kIOWIRdNQ900DLlpHGiKeQLj0QwAAABZpbrR/Li+8IUvxCte8Yqz3vaqV70qvvCFL6z795aWlmJhYeGs//VhZvdU3Hpw34oXLQ7snY33HtwXM7u9YAFrGadjrUG5SjmTIYM+z7sSW3b+w/gmbVlvUJZSzmWzATanlJaBzdFynVzHcK6uW7YHoR0lnst6h/H13bJuYfP67vhcuobJlNbyKPQOK3ndC3Ko8Vweh9nBUGRvGfNsKPz3jpBDCeeyGQGbt9mWdQhlcI0NOWzmXNY2lKOE58vQlqGcN313PJTPM7TNc2XIQcuQwyTX2JqG8jiXIYcmXvvSOPSv79exm2KeMHTjtqwZKFOWcxmGTsuQg5ahXltOnTp1qu9FtGHLli1x5513xmte85o13+d7v/d74/rrr4+bb775zNs+/elPx6tf/epYXFyMXbt2rfr33vnOd8Ytt9yy4u3z8/MxPT296bWPa35xOeaOLcfREyfjgp3bY3bPlBcrYAOTdKw1KE9pZzJk0Md5V3LLzn8Y3WZb1huUobRz2WyAyZTWMuX40pe+FC960YvilW//cFx0+XP6Xs4KX//D34s/vO2WuOaffSD+t+ft73s5K/zFka/GZ37h+rjnnnvihS98Yev/npbr5jqG0/pq2R6EZpV8LusdRldKy7qFyZXS8Yp/X9cwllJbHoXe4Sle94Icaj6Xx2F2kN1QWsY8y85/7wg5lHQumxEwuaZa1iH0yzU25NDEuaxt6F9Jz5ehLdnPm1I6zv55hrZ5rgw5aBly2Mw1tqahHM5lyKHJ1740Dv0p5XXsppgnDNWkLWsGypLtXIah0jLkoGWolxvNT3Cj+aWlpVhaWjrz54WFhbjssssMPaiIjiEHLUMOWoYctAw5aBly0DJrcaP5zen6RvNahhy0DDloGXLQMtRPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1D/XQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMtRrW98L6NOznvWseOSRR8562yOPPBLT09Nr3mQ+ImLHjh2xY8eOtpcHtEjHkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF+OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6qdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqFeW/teQJ9e8pKXxGc/+9mz3vaZz3wmXvKSl/S0IgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAIUt1o/tixY3HffffFfffdFxERDz30UNx3331x5MiRiIi4+eab4w1veMOZ93/zm98cDz74YPyLf/Ev4k/+5E/igx/8YPz3//7f461vfWsfywcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGYlvfC2jSF7/4xXjZy1525s833nhjRES88Y1vjNtvvz0efvjhMzedj4i48sor41Of+lS89a1vjV/+5V+O7/7u745f//Vfj1e96lWdrx0AAAAAAPp25MiRmJub63sZa1paWoodO3b0vYw1zc7OxuWXX973MgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBKpLrR/Etf+tI4derUmo/ffvvtq/6de++9t8VVAQAAAABA+Y4cORLPfe7z4vjxxb6XsrYtWyLW+T5A33bt2h1/8idfcbN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCSpbjQPAAAAAABMZm5uLo4fX4wX3/CvYvrZV/S9nBUe/vIX4o9/51fjB17/tnjGlc/tezkrLDz89fjD226Jubk5N5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARuJG8wAAAAAAwBnTz74iLrr8OX0vY4WFh78eERF7Lrm8yPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjGtr3wsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBo3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdc6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI650TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAx9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LFtfS+A9swvLsfcseVYOHEypndtj9nzp2Jm91TfywLOoVVgyMxAsrCXoXw6hbz0DQD9cx5D/3QIOWkbctI25KZxyEXTUB5dAhmZbUCtzK/h8TUHTjMPYCVdAE0wSyA/nQPQhJrOk5rWCvTDnIActAyMyryAtekDhkXzUAYtQg5ahmHSPgAA2bnRfFLffPR4vO2O++Ouw3Nn3nZg72zcenBfXHrhrh5XBjydVoEhMwPJwl6G8ukU8tI3APTPeQz90yHkpG3ISduQm8YhF01DeXQJZGS2AbUyv4bH1xw4zTyAlXQBNMEsgfx0DkATajpPalor0A9zAnLQMjAq8wLWpg8YFs1DGbQIOWgZhkn7AAAMwda+F0Dz5heXVzyZiYg4dHgubrrj/phfXO5pZcDTaRUYMjOQLOxlKJ9OIS99A0D/nMfQPx1CTtqGnLQNuWkcctE0lEeXQEZmG1Ar82t4fM2B08wDWEkXQBPMEshP5wA0oabzpKa1Av0wJyAHLQOjMi9gbfqAYdE8lEGLkIOWYZi0DwDAULjRfEJzx5ZXPJk57dDhuZg75gkNlECrwJCZgWRhL0P5dAp56RsA+uc8hv7pEHLSNuSkbchN45CLpqE8ugQyMtuAWplfw+NrDpxmHsBKugCaYJZAfjoHoAk1nSc1rRXohzkBOWgZGJV5AWvTBwyL5qEMWoQctAzDpH0AAIbCjeYTWjhxct3Hj27wONANrQJDZgaShb0M5dMp5KVvAOif8xj6p0PISduQk7YhN41DLpqG8ugSyMhsA2plfg2PrzlwmnkAK+kCaIJZAvnpHIAm1HSe1LRWoB/mBOSgZWBU5gWsTR8wLJqHMmgRctAyDJP2AQAYCjeaT2h65/Z1H79gg8eBbmgVGDIzkCzsZSifTiEvfQNA/5zH0D8dQk7ahpy0DblpHHLRNJRHl0BGZhtQK/NreHzNgdPMA1hJF0ATzBLIT+cANKGm86SmtQL9MCcgBy0DozIvYG36gGHRPJRBi5CDlmGYtA8AwFC40XxCs3um4sDe2VUfO7B3Nmb3THW8ImA1WgWGzAwkC3sZyqdTyEvfANA/5zH0T4eQk7YhJ21DbhqHXDQN5dElkJHZBtTK/BoeX3PgNPMAVtIF0ASzBPLTOQBNqOk8qWmtQD/MCchBy8CozAtYmz5gWDQPZdAi5KBlGCbtAwAwFG40n9DM7qm49eC+FU9qDuydjfce3Bczuz2hgRJoFRgyM5As7GUon04hL30DQP+cx9A/HUJO2oactA25aRxy0TSUR5dARmYbUCvza3h8zYHTzANYSRdAE8wSyE/nADShpvOkprUC/TAnIActA6MyL2Bt+oBh0TyUQYuQg5ZhmLQPAMBQbOt7AbTj0gt3xftftz/mji3H0RMn44Kd22N2z5QnM1AYrQJDZgaShb0M5dMp5KVvAOif8xj6p0PISduQk7YhN41DLpqG8ugSyMhsA2plfg2PrzlwmnkAK+kCaIJZAvnpHIAm1HSe1LRWoB/mBOSgZWBU5gWsTR8wLJqHMmgRctAyDJP2AQAYAjeaT2xmtycwUAOtAkNmBpKFvQzl0ynkpW8A6J/zGPqnQ8hJ25CTtiE3jUMumoby6BLIyGwDamV+DY+vOXCaeQAr6QJoglkC+ekcgCbUdJ7UtFagH+YE5KBlYFTmBaxNHzAsmocyaBFy0DIMk/YBAMjOjeYBAAAAAAAa8pWvfKXvJayp5LUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAELnRPAAAAAAAwCYdn/92RGyJn/iJn+h7KRs6ubTc9xIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAcKN5AAAAAACATTu5eDQiTsUPvP5t8Ywrn9v3clb18Je/EH/8O78ajz/+eN9LAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMKN5gEAAAAAABqz55LL46LLn9P3Mla18PDX+14CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8DRb+14AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNC40TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAx9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DE3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoWMobzX/gAx+IK664Inbu3BkvfvGL44/+6I/Wff/3ve998ZznPCd27doVl112Wbz1rW+NEydOdLRaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGi29b2Apv23//bf4sYbb4wPfehD8eIXvzje9773xate9ar46le/GpdccsmK9//oRz8aN910U9x2223xQz/0Q/G1r30t3vSmN8WWLVvil37plxpb1/zicswdW46FEydjetf2mD1/KmZ2TzX2/w/kYFZA+3QGOWgZctAy5KBlACiLsxnqp2PIQcuQg5YhL31DXTQLnMtcAMZhZgAwLmdHM3weoWwahfboC5iU+QHN0BLkoGUYJu1D3TQMrMeMgM3TEeSmcaiLZiEnbcNw6B3Ko0sAADhbuhvN/9Iv/VL8w3/4D+P666+PiIgPfehD8alPfSpuu+22uOmmm1a8/x/8wR/E1VdfHa9//esjIuKKK66I173udfGHf/iHja3pm48ej7fdcX/cdXjuzNsO7J2NWw/ui0sv3NXYvwPUzayA9ukMctAy5KBlyEHLAFAWZzPUT8eQg5YhBy1DXvqGumgWOJe5AIzDzABgXM6OZvg8Qtk0Cu3RFzAp8wOaoSXIQcswTNqHumkYWI8ZAZunI8hN41AXzUJO2obh0DuUR5cAALDS1r4X0KTl5eW455574hWveMWZt23dujVe8YpXxBe+8IVV/84P/dAPxT333BN/9Ed/FBERDz74YHz605+OH/mRH1nz31laWoqFhYWz/reW+cXlFU9EIiIOHZ6Lm+64P+YXl8f5EIGGjNNxF8wKmIwzGXLQMuSgZchBy5BDaa99AZMZt2VnM5TJNTbkoGXIQctQvyZe99I39M+ZDDn09f0ocwGalf17y2YGQ5G9ZehSn2dHppadwQxZDS1rFDY2acv6grLUcC6fZn7A2nx/GXLQMtSv7etr7UM32mpZw9Ctml73ijAjYC2eK0MO/ntHyMG5DDls5lzWNpTD96QgB9fYkENt35MCVqdlqFeqG83Pzc3FE088Ec985jPPevszn/nM+Na3vrXq33n9618f//pf/+u45pprYvv27fHX//pfj5e+9KXxL//lv1zz33nPe94TMzMzZ/532WWXrb2mY8srnoicdujwXMwd82QE+jBOx10wK2AyzmTIQcuQg5YhBy1DDqW99gVMZtyWnc1QJtfYkIOWIQctQ/2aeN1L39A/ZzLk0Nf3o8wFaFb27y2bGQxF9pahS32eHZladgYzZDW0rFHY2KQt6wvKUsO5fJr5AWvz/WXIQctQv7avr7UP3WirZQ1Dt2p63SvCjIC1eK4MOfjvHSEH5zLksJlzWdtQDt+TghxcY0MOtX1PClidlqFeqW40P4nPfe5z8e53vzs++MEPxpe+9KX4xCc+EZ/61KfiXe9615p/5+abb475+fkz//vTP/3TNd934cTJdf/9oxs8DrRjnI67YFbAZJzJkIOWIQctQw5ahhxKe+0LmMy4LTuboUyusSEHLUMOWob6NfG6l76hf85kyKGv70eZC9Cs7N9bNjMYiuwtQ5f6PDsytewMZshqaFmjsLFJW9YXlKWGc/k08wPW5vvLkIOWoX5tX19rH7rRVssahm7V9LpXhBkBa/FcGXLw3ztCDs5lyGEz57K2oRy+JwU5uMaGHGr7nhSwOi1Dvbb1vYAmzc7OxnnnnRePPPLIWW9/5JFH4lnPetaqf+fnfu7n4u///b8fP/mTPxkREc9//vPjsccei3/0j/5RvP3tb4+tW7eu+Ds7duyIHTt2jLSm6Z3b1338gg0eB9oxTsddMCtgMs5kyEHLkIOWIQctQw6lvfYFTGbclp3NUCbX2JCDliEHLUP9mnjdS9/QP2cy5NDX96PMBWhW9u8tmxkMRfaWoUt9nh2ZWnYGM2Q1tKxR2NikLesLylLDuXya+QFr8/1lyEHLUL+2r6+1D91oq2UNQ7dqet0rwoyAtXiuDDn47x0hB+cy5LCZc1nbUA7fk4IcXGNDDrV9TwpYnZahXivvol6xqampeNGLXhSf/exnz7ztO9/5Tnz2s5+Nl7zkJav+ncXFxRU3kz/vvPMiIuLUqVObXtPsnqk4sHd21ccO7J2N2T1Tm/43gPqZFdA+nUEOWoYctAw5aBkAyuJshvrpGHLQMuSgZchL31AXzQLnMheAcZgZAIzL2dEMn0com0ahPfoCJmV+QDO0BDloGYZJ+1A3DQPrMSNg83QEuWkc6qJZyEnbMBx6h/LoEgAAVpfqRvMRETfeeGP82q/9WvyX//Jf4itf+Ur843/8j+Oxxx6L66+/PiIi3vCGN8TNN9985v2vu+66+I//8T/Gxz/+8XjooYfiM5/5TPzcz/1cXHfddWduOL8ZM7un4taD+1Y8ITmwdzbee3BfzOz2ZAQwK6ALOoMctAw5aBly0DIAlMXZDPXTMeSgZchBy5CXvqEumgXOZS4A4zAzABiXs6MZPo9QNo1Ce/QFTMr8gGZoCXLQMgyT9qFuGgbWY0bA5ukIctM41EWzkJO2YTj0DuXRJQAArG5b3wto2t/9u383/vzP/zze8Y53xLe+9a34gR/4gfjd3/3deOYznxkREUeOHImtW7eeef+f/dmfjS1btsTP/uzPxje+8Y14xjOeEdddd138wi/8QmNruvTCXfH+1+2PuWPLcfTEybhg5/aY3TPliQhwFrMC2vf/sHf3QXpd9Z3gf5KlltR6aWF1XuxgBQeLEGYRK8gWM5GtwNRQNYQwS9BmqlypCmAmNalgmCqKGqCGBLMhxN7N1MwEvH9ks7aHqcRUZR0gyaaKSoVxCTsz2cE2JSYQVgJlxGIHpw3qVrsltWz1/uFtuVv99PN6X8459/Op8h/S81h97rm/7++ce/vpvnIGZZBlKIMsQxlkGQDSYm2G/MkxlEGWoQyyDOWSb8iLzALX0heAUegZAIzK2lEN8whpk1Goj3wB49I/oBqyBGWQZegm2Ye8yTDQjx4Bk5MjKJuMQ15kFsok29Ad8g7pkUsAANiouAfNR0Tceeedceedd/Z87eGHH173523btsVHP/rR+OhHP1rrmGamXXwAg+kVUD85gzLIMpRBlqEMsgwAabE2Q/7kGMogy1AGWYZyyTfkRWaBa+kLwCj0DABGZe2ohnmEtMko1Ee+gHHpH1ANWYIyyDJ0k+xD3mQY6EePgMnJEZRNxiEvMgtlkm3oDnmH9MglAACst7XtAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0jQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrat7QGUYGVlJSIiFhYWWh4JdMfevXtjy5Ytlf17cgztkGUogyxDGWQZyiDLUIa2sry4uBgREfP/77fiynPPV/b1q7L49HciImLhb/8mduzY0fJoNkp9fBHpjzH18Z3/2/8WES9kZZi10boMZZBlKIMsQxlkGcpQZZblGNphTYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy1AGWYYyyDKUwec3IX/WZCiDLEMZZBnKIMtQBlmGMsgylEGWoQyyDGWQZSiDLEP+xs2xB81X4Pz58xERcdNNN7U8EuiO+fn52LdvX2X/nhxDO2QZyiDLUAZZhjLIMpSh6iw/88wzETF8lv/vf//rlX3tOpz8zP/a9hD6Sn18EemPMfXx/fRP//RQ77MuQxlkGcogy1AGWYYyVJllOYZ2WJOhDLIMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZahDLIMZfD5TcifNRnKIMtQBlmGMsgylEGWoQyyDGWQZSiDLEMZZBnKIMuQv3FzvGVlZWWlhvF0ypUrV+LJJ5+MvXv3xpYtW9oeTvIWFhbipptuim9/+9uVLj5d1OW5rDpvdeW4y+foWubiBeZhvbqyvLKyEgcPHixqnkutnRKPq4vHlMu6XLUSz/WqUo+t1OOKqObY6sjyN77xjXjVq15V5JwPq+S6G5Y5aHYOml6XnV9zEGEOIqqfg6qzfO7cuXjJS14SZ8+ejZmZmcr+3TaVVnelHU9Eecc0zvF09Xp5VWk1MIquHnupx+0+9nBKO/+OJ23W5eGVdu7rYI4GS2mOuprltVI6H5NwHGlp+jiqzFyVOS7lfDbJnI2nhHlLZU0uYS7rYF42Z27WSyXLbSutLhxP2uo4nlSyXNq5inBMuSjlmFLJchNKOWcpMJfVSvWz2L2y7NxXx1xWo7R5TGFdznlOcx57hPG3rcrxp5DlquR+XjfjuPLTxrGVlOUmlFx/m+naMed6vH7ecTS5jz8i/2Mw/t78XMV6udaJcTcrxXGn+vnNpqR4Tqrk+PI27PGVeK1cyrkt4ThKOIaIPI4jpyznMJ/XMuZmGHNeWa5Cjuc8NeZwciV/FrsXNbM5c9Nbl+clxSzneD5yHHNEnuM25t5SzHKVcjzvvTiOdKR6DE1mOdU5KIX5rU8Oc9vGupzDvNTFsXfz2CPqP/629tilnFfHkZZSjiNi9GOR5ck4jrR09TjGzfG2cQbHelu3bo2XvvSlbQ8jO/v27cs6pCkxl5OrO8fO0YvMxQvMQz1Ws7ywsBARZc5ziccUUeZxOabx5ba/LvFcryr12Eo9roi0jm3r1q3xIz/yIxGR1rjaYg7MQUSeczDsupzjsVXNHJiDiHTnYOvWrRERMTMzk+T4JpHqnI+rtOOJKO+Y2jye3K6XV5VWA6Po6rF39biHVfp9bMeTNsdTndzW5dLOfR3M0WAlzlFuWV6rlPPhONKS43HUkeMc56Ft5mw85u1Fk2bZXPZmXjZnbuqR8/46ory6cDxpS/l4rMsbOaY8lHhMk8hhXXbOqmMuq5XSfA7KckpjzZ25rIZ57G2SdTnnOc157BHG37YUx5/CHjvFeamC48pPzseWQpabkPM5GlfXjrlrx3utrvy8Y+7jj8j/GIy/XqX8XIVxN8u405Lz/rrUc7LK8eWt6eNLKculnNsSjqOEY4go5ziG0USWc5xPY26GMVcnpXW5n1TnLyfmcHIpz6Gfd2yWuenNvEyuyizneD5yHHNEnuM25nqlusfOaQ77cRzpKOEY+hkmy6XPQdvMb326NLejrMtdmpdrOfZuHntEPsc/6h47l+MaxHGkpZTjiGjvWGQ5b44jLXUfx9ba/mUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAevKgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8jduxY0d89KMfjR07drQ9lOyZy/Q5Ry8yFy8wD80ocZ5LPKaIMo/LMXVHyfNS6rGVelwR6R5bquNqkjkwBxFlz0HJxzYsc2AOItKfg9THN47Sjqm044ko75hKO54mdHnOunrsXT3ucZU2X44nbY6nu8zVYOZoMHOUllLOh+NISynHMSnzMDpzNh7zVh1z2Zt52Zy5oZfS6sLxpK2041mrxGNzTHko8ZhK55xVx1xWK6f5zGmsqTOX1TCP1ct5TnMee4Txty338del1HlxXPkp+dhK0cVz1LVj7trxjiv3ecp9/BH5H4PxNyu38a4y7mYZN1Up/Zw4vryVfnz9lHLsJRxHCccQUc5xpCLH+TTmZhhz95i/yZnDyXVtDrt2vKMwN72Zl7TkeD5yHHNEnuM25m4qZQ4dRzpKOIZJmYN6md/6mNveujwvjr2bxx5R7vGXclyOIy2lHEdEPseSyzgHcRxpcRyj2bKysrJS61cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYJ2tbQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedB8hU6cOBFvfetb48Ybb4wtW7bE5z73uZH+/7vuuiu2bNmy4b/du3fXM2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgFR40X6Fnn302XvOa18S999471v//gQ98IJ566ql1/73qVa+Kn//5n694pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECbPGi+Qm9+85vj4x//ePzcz/1cz9cvXboUH/jAB+JHfuRHYvfu3fH6178+Hn744auv79mzJ374h3/46n/f/e5342tf+1q8+93vbugIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCZ40HyD7rzzzvhP/+k/xWc+85k4efJk/PzP/3z843/8j+PUqVM93/+7v/u78YpXvCJuu+22hkcKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MmD5hty9uzZuP/+++MP/uAP4rbbbouXv/zl8YEPfCBuvfXWuP/++ze8/+LFi/F7v/d78e53v7uF0QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB12tb2ALriq1/9ajz//PPxile8Yt3fX7p0KQ4cOLDh/Z/97Gfj/Pnz8Y53vKOpIQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8aD5hiwuLsZ1110Xjz32WFx33XXrXtuzZ8+G9//u7/5u/OzP/mz80A/9UFNDBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABriQfMNOXLkSDz//PPx9NNPx2233db3vWfOnIn/+B//Y/zRH/1RQ6MDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmuRB8xVaXFyM06dPX/3zmTNn4itf+Upcf/318YpXvCJ+4Rd+IX7xF38x/vW//tdx5MiR+Lu/+7v48z//8zh8+HC85S1vufr/3XfffXHDDTfEm9/85jYOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjZlpWVlZW2B1GKhx9+ON74xjdu+Pt3vOMd8cADD8Tly5fj4x//eHz605+O73znOzE7Oxt//+///fjYxz4Wr371qyMi4sqVK/GjP/qj8Yu/+IvxG7/xG00fAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaNjWtgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DUeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+ar8DKykosLCzEyspK20MBxiTHUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhvzJMZRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhjLIMpRBlqEMsgz5k2MogyxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZ8uFB8xU4f/58zMzMxPnz59seCjAmOYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy1AGWYYyyDLkT46hDLIMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlyJ8cQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy5APD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGbWt7ADCu+aXlmFtcjoWLl2Pfru0xu3sqZqan2h4WdJI8AnXSY6AZsgbpkk+gDnoL0AS9BoA2WYegDLIM7ZNDkANgMH0CukXmAbpJ/6dL1DtdoM6BKuglNE3NAQxPzyRF6hKAYVkz6AJ1TlPUGrAZ/QG6SfYhTbIJeZBVgO7R+2mT+oPqyBMAQJ48aJ4sPXnuQnzwoZPxpVNzV//u2KHZuPv44bhx/64WRwbdI49AnfQYaIasQbrkE6iD3gI0Qa8BoE3WISiDLEP75BDkABhMn4BukXmAbtL/6RL1Theoc6AKeglNU3MAw9MzSZG6BGBY1gy6QJ3TFLUGbEZ/gG6SfUiTbEIeZBWge/R+2qT+oDryBACQr61tDwBGNb+0vOECJCLixKm5+NBDJ2N+abmlkUH3yCNQJz0GmiFrkC75BOqgtwBN0GsAaJN1CMogy9A+OQQ5AAbTJ6BbZB6gm/R/ukS90wXqHKiCXkLT1BzA8PRMUqQuARiWNYMuUOc0Ra0Bm9EfoJtkH9Ikm5AHWQXoHr2fNqk/qI48AQDkzYPmyc7c4vKGC5BVJ07NxdyiixBoijwCddJjoBmyBumST6AOegvQBL0GgDZZh6AMsgztk0OQA2AwfQK6ReYBukn/p0vUO12gzoEq6CU0Tc0BDE/PJEXqEoBhWTPoAnVOU9QasBn9AbpJ9iFNsgl5kFWA7tH7aZP6g+rIEwBA3jxonuwsXLzc9/XzA14HqiOPQJ30GGiGrEG65BOog94CNEGvAaBN1iEogyxD++QQ5AAYTJ+AbpF5gG7S/+kS9U4XqHOgCnoJTVNzAMPTM0mRugRgWNYMukCd0xS1BmxGf4Bukn1Ik2xCHmQVoHv0ftqk/qA68gQAkLdtbQ8ARrVv5/a+r+/t8fr80nLMLS7HwsXLsW/X9pjdPRUz01N1DRGK1CtH4+QRYFhd7jH2LjRhtc52bNva930lZw3aNEyv7/JaCNSnzt5iHwus0msAaNOgdWj3Dh+TgBxMuqe0b4TJVXltJ5PkKqXv1cgRpGlQn9i5/bp44uz35RYK4b4TwHpduU5J6doQ6s6deqcL1DkwiJ/1IEUD70VPXRfzS8tFXpMBjKrudbor98SoVir7R/ULkL5h1ww9nZylsje6llyVZX5pOXZtv67ve9zHhW7wO3SBVbIP7bMuQ75Gyap7LECK9KbR2aeVK4c8qD+ozqh5yqFHAAB0id9kRXZm90zFsUOzceLU3IbXjh2ajdk96y8wnjx3IT740Mn40pr3Hzs0G3cfPxw37t9V+3ihBJvl6Dff/uqR8ggwilHX/FLYu9CEtXV25z+8JY7eciAePf3MhveVnDVo07C9vqtrIVCvunqLfSywll4DQJv6rUNHbzkQX/5v34/dO7ZZOyBxk+wp7RuhGlVd28kkOUvlezVyBOnq1yduveVA/MlXn4pPffF0RMgtlMB9J4AXdek6JZVrQ2gid+qdLhh0Lb9z+9YWRgWkws96kKpB96X+5ORTcfLb54q8JgMYVZ3rdJfuiVGtFPaP6hcgD8OsGXo6uUthb3QtuSrL6vl8zU37/U4t6Di/QxdYa3bPVNx2aHZdT1h1m+xD7azLkLdh7+e4xwKkSG8aT4r38plcLnlQf1CdUfKUS48AAOgSP/FOdmamp+Lu44fj2KHZdX9/7NBs3HP8cMxMv3gRMr+0vOEiJCLixKm5+NBDJ2N+abmRMUPO+uXorj/6q/jEz716qDwCjGqUNb8U9i404do6u++RM/GuozfH0VsOrHtfyVmDNo3S67u4FgL1q6O32McC19JrAGjTZuvQ0VsOxLuO3hy//idfs3ZABsbdU9o3QnWquLaTSXKXwvdq5AjStlmfuPWWA/HOozfHfY+cufp3cgv5c98J4AVdu05J4doQmsqdeqcLZqan4hM/9+q49Zqfnzj6/1/L3/VHf1XcWgYMx896kLJB96Xue+RMsddkAKOqa53u2j0xqtX2/lH9AuRj0JoREXo62Wt7b3Qte6WyrD2ffqcWdJvfoQv08p433rJhb3D0lgPxnjfe0tKIoBusy5C/Ye7nuMcCpEhvGl9q9/KZXE55UH9QnWHzlFOPAADokm1tDwDGceP+XfHJ24/E3OJynL94Ofbu3B6ze6Y2XNDPLS5vuAhZdeLUXMwtLrsJAAP0y9Gfff3p+PDP/MRQeQQYx7BrfinsXWjCtXW2tPx8vO/BJ+KOW2+OO47eHDO7tsdLpqeKzhq0adRe37W1EGhG1b3FPhboRa8BoE037t8Vv/4//ndx+u8W49JzV2LHtq3xxLfPxfsefCKWlp+3dkAmxtlT2jdCtSa9tpNJStD292rkCNJ3bZ/Yuf26+JOvPnX1GnQtuYX8ue8E0M3rlLavDaHJ3Kl3umD5+Svx3x98Sbzr6M099/UlrmXAYH7Wg9St1txT8xfjW3PPbli/Isq9JgMYVR3rdBfviVGtNveP6hcgL/3WjG8+vainU4SU7q3ZK5Vl7fm89ndqXXruSvzY7O64YWancwod4HfoAteaW1yOOx74L+v2Bqvfb7vjgf8Sf3znrXoA1MS6DGUYdD/HPRYgRXrTZFK6l8/kcsuD+oPqDJOn3HoEAEBXeNA82ZqZHnwRv3Dxct/Xzw94HRico4ULl+PHfmCPi3qgNsOs+aWwd6EJvepsafn5+NQXT0dExOd+5afi5T+4p+lhQWeM0+u7tBYCzamyt9jHApvRawBo0/eWluPd//7Lm75u7YA8jLqntG+E6k1ybSeTlKLN79XIEeRhbZ944uz3r34Goxe5hfy57wR0XVevU3yOjzY1nTv1TunmL1x27Q5s4Gc9yMHM9FR8a+7Z+JXfe3zT91jHAF5Q9Trd1XtiVKut/aP6BcjPZmuGnk5JUrm3JldlufZ8rv2dWhEv/F6tFOoOqJ/foQtca+Hi5Q17g7Xs+6A+1mUoR7/7Oe6xACnSmyaXyr18JpdjHtQfVGdQnnLsEQAAXbC17QFAnfbt3N739b0DXgfkCKBJei5NUGfQLhkESqS3AU3QawAYlbUDukn2IS0yCZOTI8iP3EL55BzoOn0Qmid3UC2ZAnrRG8iFWgVoh/5LztQvQDn0dKieXJXF+QRW6QfAtfQFaI/8QTfIOpAivQleJA9AP3oEAECaPGieos3umYpjh2Z7vnbs0GzM7plqeESQHzkCaI6eSxPUGbRLBoES6W1AE/QaAEZl7YBukn1Ii0zC5OQI8iO3UD45B7pOH4TmyR1US6aAXvQGcqFWAdqh/5Iz9QtQDj0dqidXZXE+gVX6AXAtfQHaI3/QDbIOpEhvghfJA9CPHgEAkCYPmqdoM9NTcffxwxsuRo4dmo17jh+OmWkXIjCIHAE0R8+lCeoM2iWDQIn0NqAJeg0Ao7J2QDfJPqRFJmFycgT5kVson5wDXacPQvPkDqolU0AvegO5UKsA7dB/yZn6BSiHng7Vk6uyOJ/AKv0AuJa+AO2RP+gGWQdSpDfBi+QB6EePAABI05aVlZWVtgeRu4WFhZiZmYn5+fnYt29f28Ohh/ml5ZhbXI7zFy/H3p3bY3bPlIsQ1pHjweSIHMgypeh6z5XlZnS9zqifLPcng+RClhmF3pYuWaYkXe41sgxlkOXmdXntoD6ynD7ZZxiy3ByZpC5dyrEcUbJSsyy3dE2pWe5HzilRF7PM+PTBdMlyueSuW2S5fjJFE2Q5P3oDvaSYZbUKo0sxy+RH/22fLI9P/ZISWYbJpNDT5ZjSpJCrNpSa5a6eT7qr1CxXQT8gJ7LcDH2Busny5uSPnMjy+GSdlMgyq/SmvMlyteSBtshyHvQIBpFlKIMsQz62tT0AaMLMtAsPmJQcATRHz6UJ6gzaJYNAifQ2oAl6DQCjsnZAN8k+pEUmYXJyBPmRWyifnANdpw9C8+QOqiVTQC96A7lQqwDt0H/JmfoFKIeeDtWTq7I4n8Aq/QC4lr4A7ZE/6AZZB1KkN8GL5AHoR48AAEjL1rYHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA1HjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZta3sAUIX5peWYW1yOhYuXY9+u7TG7eypmpqfaHhYUSd6A0uhrMBxZgXrIFtBV+h+UT84B6MX6AGxGf4B8yCulU+NAFfQSyI/cAqXR16AZsgbdpgfAaGQGepMNgPLp9fSjPoDc6FvQTbJPW9QeMAo9A9AHoDvkHcon58BaegKlUdNACfQyAID6edA82Xvy3IX44EMn40un5q7+3bFDs3H38cNx4/5dLY4MyiNvQGn0NRiOrEA9ZAvoKv0PyifnAPRifQA2oz9APuSV0qlxoAp6CeRHboHS6GvQDFmDbtMDYDQyA73JBkD59Hr6UR9AbvQt6CbZpy1qDxiFngHoA9Ad8g7lk3NgLT2B0qhpoAR6GQBAM7a2PQCYxPzS8oYLh4iIE6fm4kMPnYz5peWWRgblkTegNPoaDEdWoB6yBXSV/gflk3MAerE+AJvRHyAf8krp1DhQBb0E8iO3QGn0NWiGrEG36QEwGpmB3mQDoHx6Pf2oDyA3+hZ0k+zTFrUHjELPAPQB6A55h/LJObCWnkBp1DRQAr0MAKA5HjRP1uYWlzdcOKw6cWou5hZdPEBV5A0ojb4Gw5EVqIdsAV2l/0H55ByAXqwPwGb0B8iHvFI6NQ5UQS+B/MgtUBp9DZoha9BtegCMRmagN9kAKJ9eTz/qA8iNvgXdJPu0Re0Bo9AzAH0AukPeoXxyDqylJ1AaNQ2UQC8DAGjOtrYHQBnml5ZjbnE5Fi5ejn27tsfs7qmYmZ6q/esuXLzc9/XzA14Hhrc2b9NT18Udt94cR27aH5eeuxI7t18XV1ZWWhwdkLq29gr92EeQqtTyIiswumFyLFuQn9TW6Fzpf7RBfpsl5wD08vzKSvwf7/jJq99Xevzs9+O+R87E0vLzEWF9gFzUsbe2f4TmTJpheaV0Vda4+1FQtn4Zt15CHtbmeMe2rXHnP7xl3b2qteQWyI39SPtcE3aDrK2n7umaSXqAvNBFTa6bMkZOqsiGmge6IOde5/4B/TRdHzlnCWjGoD5hXYP8VLH+yz5tWa29Xr/v8vGz349nL6k94EV+Ty6kp+l7Ufat0K4mMy/vUI2Uv28k58Ba/XrC9NQL1/zffHoxyX4GvVjn+kt5jwK5qTNPehkAQHM8aJ6JPXnuQnzwoZPxpVNzV//u2KHZuPv44bhx/65av/a+ndv7vr53wOvA8FbzNj11Xfz27Ufi/kfPxKe+ePrq67cdmo17Gsg9kJ829wr92EeQohTzIiswmmFzLFuQlxTX6FzpfzRNfpsn5wBc68lzF+LX//iv4kunn7n6d0dvORC/ffuReN+DT8TS8vPWB8hAXXtr+0doRhUZlldKV1WNux8FZRuUceslpK9Xjq+9V7WW3AK5sR9pl2vC7pC1F6l7umjcHiAvdFVT66aMkZtJs6HmgS7Ivde5f0A/TdZH7lkC6jdMn7CuQV6qWv9ln7bs27l90993efSWA/E/vfalLY4OSI3fkwtpaeNelH0rtKfpzMs7TC717xvJObDWZj1h9R7A/3zN7zRLqZ9BL9a5zaW+R4Gc1J0nvQwAoDlb2x4AeZtfWt5wcRARceLUXHzooZMxv7Rc69ef3TMVxw7N9nzt2KHZmN0zVevXhy5Zzdsdt94c9z96Jh5dc+M8IuJLDeUeyEvbe4V+7CNITap5kRUY3ig5li3IR6prdK70P5okv+2QcwDWuroeX/N9pUdPPxP3P3om7rj1ZusDZKDOvbX9I9SvqgzLK6Wrosbdj4KyDZNx6yWkbbMcr71XtZbcAjmyH2mPa8JukbUXqHu6apweIC90WRPrpoyRo0myoeaBLiih17l/QD9N1UcJWQLqNWyfsK5BPqpc/2WftszumYpf/dlX9fx9l4+efiZ+7fP/1V4WuMrvyYV0tHUvyr4V2tFG5uUdJpPD943kHFhrs56weg/g2t9pllI/g16sc73lsEeBXDSRJ70MAKA5HjTPROYWlzdcHKw6cWou5hbrveCemZ6Ku48f3nABcezQbNxz/HDMTLt4gKqs5u2nfuzAhg/PrWoi90Be2t4r9GMfQWpSzYuswPBGybFsQT5SXaNzpf/RJPlth5wDsFa/9fjR08/ET/3YAesDZKDOvbX9I9SvqgzLK6Wrosbdj4KyDZNx6yWkbdC9qiM37b/6Z7kFcmU/0h7XhN0iay9Q93TVOD1AXuiyJtZNGSNHk2RDzQNdUEKvc/+AfpqqjxKyBNRr2D5hXYN8VLn+yz5tmZmeitce3O/3XQJD8XtyIR1t3Yuyb4V2tJF5eYfJ5PB9IzkH1tqsJ7gHQK6sc73lsEeBXDSRJ70MAKA529oeAHlbuHi57+vnB7xehRv374pP3n4k5haX4/zFy7F35/aY3TPlwgFqcOP+XfG38xf6vqeJ3AP5SGGv0I99BClJOS+yAsMZNceyBXlIeY3Olf5HU+S3PXIOwKpB6/HO7dfFDft3NTQaYFx1763tH6FeVWZYXindpDXufhSUbdiMWy8hXYNyPLNre3zuV35KboHs2Y+0wzVh98iauqfbRu0B8kLX1b1uyhi5Gjcbah7oglJ6nfsH9NNEfZSSJaA+o/QJ6xrkoer1X/Zpy9Ly831ft5cF1vJ7ciENbd6Lsm+F5rWVeXmH8eXyfSM5B9bq1RPmL/R/SG4q/Qx6sc5tlMseBXLQVJ70MgCAZnjQPBPZt3N739f3Dni9KjPTLhagKTO7+metqdwDeUhlr9CPfQSpSD0vsgKDjZNj2YL0pb5G50r/owny2y45ByBi8Ho8s8t6DDloYm9t/wj1qTrD8krpJqlx96OgbKNk3HoJaRqU45dMT8XLf3BPQ6MBqJf9SPNcE3ZT17Om7um6UXqAvEC966aMkbNxsqHmgS4oqdd1/f4B/dVdHyVlCajHqH3Cugbpq2P9l33aYC8LjMrvyYX2tb1+27dCs9rMvLzDeNpeq0ch58Ba1/aEbz692Pf9KfUz6MU6t15OexRIXZN50ssAAOq3te0BVOnEiRPx1re+NW688cbYsmVLfO5zn+v7/kceeSSOHj0aBw4ciF27dsUrX/nK+Df/5t80M9hCzO6ZimOHZnu+duzQbMzusaGH0sg9MAo9A4YnL5A/OYYyyTbkS34BoH3WYyiDLEPeZBiaI29QNhmH/MkxAHWyztBF6h6GJy9QLxmja9Q80AV6HVRDloBB9Akoj1xTCrUMjErfgPbJIXSLzEN+5BYohX4GZZFpqI48AQCUpagHzT/77LPxmte8Ju69996h3r979+64884748SJE/H1r389PvKRj8RHPvKR+J3f+Z2aR1qOmempuPv44Q0XCccOzcY9xw/HzLQLBCiN3AOj0DNgePIC+ZNjKJNsQ77kFwDaZz2GMsgy5E2GoTnyBmWTccifHANQJ+sMXaTuYXjyAvWSMbpGzQNdoNdBNWQJGESfgPLINaVQy8Co9A1onxxCt8g85EdugVLoZ1AWmYbqyBMAQFm2rKysrLQ9iDps2bIlPvvZz8bb3va2kf6/t7/97bF79+74D//hPwz9/ywsLMTMzEzMz8/Hvn37RhxpGeaXlmNucTnOX7wce3duj9k9Uy4OyIocj07uSZEsp0vPYBRdz7K8UIouZ1mOKUmXs3wt2SZnXc+y/FKKrmcZStHVLFuPKY0syzJl6FqWZZgSpZpjeYPRpJrlzcg49JZTluUYNpdTliFVKawzskzTUqj7EslymeSle2S5WTJGXVLNspqH0aSaZfrT67iWLI9HlkiNLKdHn2BUcpw+uWYYOWRZLcNgOWS5SfoGuSopy3JIl5WU5WHJPCUqPctyS1eUnmX0s66Q5e6Q6bLJcrPkibrIMpRBliEf29oeQEqeeOKJ+Iu/+Iv4+Mc/3vd9ly5dikuXLl3988LCQt1DS97MtAsC8iLHk5N7UiDL+dAz6EeW15MXciXLL5JjcibLm5NtciLL68kvuZJlKIMsv8B6TO5k+QWyTO66nmUZpgS55FjeoL9csrwZGYcX5JxlOYYX5ZxlSFUb64ws0zb7q2rIcjfIS/lkuV0yRlVyybKah/5yyTL96XXIcjVkibbJcvr0CQaR4/zINb3kmGW1DBvlmOUm6RvkouQsyyFdUnKWhyXzlKBrWZZbStW1LKOflUqWu0umyyLL7ZInqiLLUAZZhnxtbXsAKXjpS18aO3bsiJ/8yZ+M97znPfHP/tk/6/v+3/zN34yZmZmr/910000NjRSoihxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZ8ifHUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhjLIMuRPjqEMsgxlkGUogyxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGXI15aVlZWVtgdRhy1btsRnP/vZeNvb3jbwvWfOnInFxcX4z//5P8eHPvSh+NSnPhW33377pu+/dOlSXLp06eqfFxYW4qabbor5+fnYt29fFcMHaibHUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhvzJMZRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhjLIMpRBlqEMsgz5k2MogyxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZ8rWt7QGk4Oabb46IiFe/+tXx3e9+N+66666+D5rfsWNH7Nixo6nhATWQYyiDLEMZZBnKIMtQBlmGMsgylEGWoQyyDGWQZSiDLEP+5BjKIMtQBlmGMsgylEGWoQyyDGWQZSiDLEMZZBnKIMtQBlmG/MkxlEGWoQyyDGWQZSiDLEMZZBnKIMtQBlmGMsgylEGWoQyyDPna2vYAUnPlypW4dOlS28MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrat7QFUaXFxMU6fPn31z2fOnImvfOUrcf3118fBgwfjwx/+cHznO9+JT3/60xERce+998bBgwfjla98ZUREnDhxIn7rt34r3ve+97UyfgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAbinrQ/Je//OV44xvfePXP73//+yMi4h3veEc88MAD8dRTT8XZs2evvn7lypX48Ic/HGfOnIlt27bFy1/+8rjnnnvin//zf9742AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDuKOpB8294wxtiZWVl09cfeOCBdX9+73vfG+9973trHhUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAelvbHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA13jQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQsG1tDwAAAAAAAAAgFWfPno25ubm2h7Gp2dnZOHjwYNvDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKuBB8wAAAAAAAADxwkPmX/nKn4gLF5baHsqmdu2ajr/+66972DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTAg+YBAAAAAAAAImJubi4uXFiK19/x0dh3w8vaHs4GC0/9TfzlfR+Lubk5D5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIACeNA8AAAAAAAAwBr7bnhZXH/wx9seBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULitbQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaNi2tgcAVZtfWo65xeVYuHg59u3aHrO7p2JmeqrtYUHR5A5gPPonKVCHUA1ZAqie3grtkT8A2mINAqqgl0Bz5I0SqGOgTnoMVE+uAEajb0Jz5A2okp5CF6hzyIe8AtRHj2VcagfqJ2cA9dNrmZQagvzILVAlPQXyI7dAL3oDlEeuAdKiL9Mk9QYAUB0PmqcoT567EB986GR86dTc1b87dmg27j5+OG7cv6vFkUG55A5gPPonKVCHUA1ZAqie3grtkT8A2mINAqqgl0Bz5I0SqGOgTnoMVE+uAEajb0Jz5A2okp5CF6hzyIe8AtRHj2VcagfqJ2cA9dNrmZQagvzILVAlPQXyI7dAL3oDlEeuAdKiL9Mk9QYAUK2tbQ8AqjK/tLzhYiEi4sSpufjQQydjfmm5pZFBueQOYDz6JylQh1ANWQKont4K7ZE/ANpiDQKqoJdAc+SNEqhjoE56DFRPrgBGo29Cc+QNqJKeQheoc8iHvALUR49lXGoH6idnAPXTa5mUGoL8yC1QJT0F8iO3QC96A5RHrgHSoi/TJPUGAFA9D5qnGHOLyxsuFladODUXc4suGKBqcgcwHv2TFKhDqIYsAVRPb4X2yB8AbbEGAVXQS6A58kYJ1DFQJz0GqidXAKPRN6E58gZUSU+hC9Q55ENeAeqjxzIutQP1kzOA+um1TEoNQX7kFqiSngL5kVugF70ByiPXAGnRl2mSegMAqJ4HzVOMhYuX+75+fsDrwOjkDmA8+icpUIdQDVkCqJ7eCu2RPwDaYg0CqqCXQHPkjRKoY6BOegxUT64ARqNvQnPkDaiSnkIXqHPIh7wC1EePZVxqB+onZwD102uZlBqC/MgtUCU9BfIjt0AvegOUR64B0qIv0yT1BgBQPQ+apxj7dm7v+/reAa8Do5M7gPHon6RAHUI1ZAmgenortEf+AGiLNQiogl4CzZE3SqCOgTrpMVA9uQIYjb4JzZE3oEp6Cl2gziEf8gpQHz2WcakdqJ+cAdRPr2VSagjyI7dAlfQUyI/cAr3oDVAeuQZIi75Mk9QbAED1PGieYszumYpjh2Z7vnbs0GzM7plqeERQPrkDGI/+SQrUIVRDlgCqp7dCe+QPgLZYg4Aq6CXQHHmjBOoYqJMeA9WTK4DR6JvQHHkDqqSn0AXqHPIhrwD10WMZl9qB+skZQP30WialhiA/cgtUSU+B/Mgt0IveAOWRa4C06Ms0Sb0BAFTPg+Ypxsz0VNx9/PCGi4Zjh2bjnuOHY2baBQNUTe4AxqN/kgJ1CNWQJYDq6a3QHvkDoC3WIKAKegk0R94ogToG6qTHQPXkCmA0+iY0R96AKukpdIE6h3zIK0B99FjGpXagfnIGUD+9lkmpIciP3AJV0lMgP3IL9KI3QHnkGiAt+jJNUm8AANXbsrKystL2IHK3sLAQMzMzMT8/H/v27Wt7OJ03v7Qcc4vLcf7i5di7c3vM7plyscBAcjwZuSMVskxu9M/eZLlZ6pC6dC3LskSpupZl0qK3VkeWGZX8pUmWm/H444/H6173unjTv7o/rj/4420PZ4Pvnf1G/NlvvCsee+yxeO1rX9v2cBiDLPdnDSIXspw2vYRhyfLk5I22VZFjdQztK3lN1mPokqayLFdQr5LX5a7SN7tJltshb1RNlrtNTymHLG9OnZOTrmdZXilF17NMmvTY0cnyC9QOucshy3IG/eWQY9Kn17Yv9yyrIXhBTlmWW9hcTllOhZ5CimS5P7klF7LcLL2Bushye+SaKskyTC6FvizL3ZFCvVEfWYYyyDLkY1vbA4CqzUy7QICmyR3AePRPUqAOoRqyBFA9vRXaI38AtMUaBFRBL4HmyBslUMdAnfQYqJ5cAYxG34TmyBtQJT2FLlDnkA95BaiPHsu41A7UT84A6qfXMik1BPmRW6BKegrkR26BXvQGKI9cA6RFX6ZJ6g0AoDpb2x4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNd40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZta3sATG5+aTnmFpdj4eLl2Ldre8zunoqZ6am2h0VDnP/mmGtSoA5hI7molvlcz3x0m/PfLPPNuNRO2ZxfqqamyuS8dpvzD9Cb/kiEOugK57ke5pU6qS8GUSP5cc7qZX5JiXrMg/NUNuc3f84hbVB3eXCeyub8VsM8ci01QenU+GTM3+TMIZNSQ+Ssq/Xb1eOGfkrIRQnHQH7UHaVT4xuZk2aY53aZ/25y3idnDkmBOmQc6iZdzg29qIt8OFfQX+4ZyX38UBVZmNwoc2i+QQ4GMT8AzdFzAYCqtPqg+Z/5mZ+JBx98MGZmZiIi4u67745f/uVfjv3790dExDPPPBO33XZbfO1rX2txlGl78tyF+OBDJ+NLp+au/t2xQ7Nx9/HDceP+XS2OjCY4/80x16RAHcJGclEt87me+eg2579Z5ptxqZ2yOb9UTU2VyXntNucfoDf9kQh10BXOcz3MK3VSXwyiRvLjnNXL/JIS9ZgH56lszm/+nEPaoO7y4DyVzfmthnnkWmqC0qnxyZi/yZlDJqWGyFlX67erxw39lJCLEo6B/Kg7SqfGNzInzTDP7TL/3eS8T84ckgJ1yDjUTbqcG3pRF/lwrqC/3DOS+/ihKrIwuVHm0HyDHAxifgCao+cCAFXa2uYX/8IXvhCXLl26+udPfOIT8b3vfe/qn5977rn4xje+MfS/d+LEiXjrW98aN954Y2zZsiU+97nP9X3/H/7hH8ab3vSm+IEf+IHYt29f/IN/8A/iC1/4wsjH0Zb5peUNG8OIiBOn5uJDD52M+aXllkZGE5z/5phrUqAOYSO5qJb5XM98dJvz3yzzzbjUTtmcX6qmpsrkvHab8w/Qm/5IhDroCue5HuaVOqkvBlEj+XHO6mV+SYl6zIPzVDbnN3/OIW1Qd3lwnsrm/FbDPHItNUHp1PhkzN/kzCGTUkPkrKv129Xjhn5KyEUJx0B+1B2lU+MbmZNmmOd2mf9uct4nZw5JgTpkHOomXc4NvaiLfDhX0F/uGcl9/FAVWZjcKHNovkEOBjE/AM3RcwGAqrX6oPmVlZW+fx7Vs88+G695zWvi3nvvHer9J06ciDe96U3xp3/6p/HYY4/FG9/4xnjrW98aTzzxxETjaMrc4vKGjeGqE6fmYm7R5rBkzn9zzDUpUIewkVxUy3yuZz66zflvlvlmXGqnbM4vVVNTZXJeu835B+hNfyRCHXSF81wP80qd1BeDqJH8OGf1Mr+kRD3mwXkqm/ObP+eQNqi7PDhPZXN+q2EeuZaaoHRqfDLmb3LmkEmpIXLW1frt6nFDPyXkooRjID/qjtKp8Y3MSTPMc7vMfzc575Mzh6RAHTIOdZMu54Ze1EU+nCvoL/eM5D5+qIosTG6UOTTfIAeDmB+A5ui5AEDVtrU9gCq9+c1vjje/+c1Dv//f/tt/u+7Pn/jEJ+Lzn/98/PEf/3EcOXKk4tFVb+Hi5b6vnx/wOnlz/ptjrkmBOoSN5KJa5nM989Ftzn+zzDfjUjtlc36pmpoqk/Pabc4/QG/6IxHqoCuc53qYV+qkvhhEjeTHOauX+SUl6jEPzlPZnN/8OYe0Qd3lwXkqm/NbDfPItdQEpVPjkzF/kzOHTEoNkbOu1m9Xjxv6KSEXJRwD+VF3lE6Nb2ROmmGe22X+u8l5n5w5JAXqkHGom3Q5N/SiLvLhXEF/uWck9/FDVWRhcqPMofkGORjE/AA0R88FAKq2tc0vvmXLltiyZcuGv2vLlStX4vz583H99de3NoZR7Nu5ve/rewe8Tt6c/+aYa1KgDmEjuaiW+VzPfHSb898s88241E7ZnF+qpqbK5Lx2m/MP0Jv+SIQ66ArnuR7mlTqpLwZRI/lxzuplfkmJesyD81Q25zd/ziFtUHd5cJ7K5vxWwzxyLTVB6dT4ZMzf5Mwhk1JD5Kyr9dvV44Z+SshFCcdAftQdpVPjG5mTZpjndpn/bnLeJ2cOSYE6ZBzqJl3ODb2oi3w4V9Bf7hnJffxQFVmY3ChzaL5BDgYxPwDN0XMBgKpta/OLr6ysxDvf+c7YsWNHRERcvHgxfvmXfzl2794dERGXLl1qdDy/9Vu/FYuLi/FP/+k/7fu+S5curRvbwsJC3UPraXbPVBw7NBsnTs1teO3YodmY3TPVwqiaNb+0HHOLy7Fw8XLs27U9ZndPxcx0+ccd4fxPapQcd22uu5yrlHWtDoeVyppMO2b3TMVvvv3V8YN7d8Sl567Ezu3XxeNnvx/3PXImfvJHX9LZXIyrzT6TYpa73HftBbp9/icxbpZLnG85akaJtZOCVNZl55eqe2nXaiqVLNeta+eV9cY9/znt1bqSZShd01nu8vqYU4+vW5froC4prssln+c281zyvNJ+lkuuL+twNUqukaqMm+O6atQ5q5f5LVfba/I4hqlH62H79I1mpXzfSx7TJKNpynFdHkVTdafvTEZ/mFzKWU7l/Oae01TmkXr5ecfq5J558q7xNtfl1dp/fmUlbjs0G1/KcP5SkXMNUo1Js6yGqEob+5qS6tcem7p05ZojlVxMsi6ncgyT6krNlaKUuqtaW9fL8lM9Nb5RV+ak7e9HdWWex9FErzP/5Sj5WjnFdT+3OSQfqWU5xfwxGf2rGePssbt8bvSazXW5LlKQ2rrcRfpDOXL/vdgyPjl5LkPuWU7BKHO42Xunp66LX/3ZV8WVlZV44uz3ZYqsjJpla3B/dc2PdZtBSlmXqVdpvaTENUmWoQyyDPnasrKystLWF3/nO98ZW7ZsGfi++++/f+R/e8uWLfHZz3423va2tw31/t///d+PX/qlX4rPf/7z8Y/+0T/q+9677rorPvaxj234+/n5+di3b9/IY53Ek+cuxIceOrlug3js0Gzcc/xw3LB/V6NjadqT5y7EBx86ue4H3Y8dmo27jx+OGws/9lVdPv+TGjXHXZlruUpbV+pwFCmtyTTvyXMX4oP/58n40ukXM3H0lgPx3n94KF52/XT8cEdzMYm2+kyqWe5i37UXeFEXz/+kJslySfMtR80qqXZSkdK67Px2V129tEs1lVKW69al88pGo57/3PZqXcpySh5//PF43eteF2/6V/fH9Qd/vO3hbPC9s9+IP/uNd8Vjjz0Wr33ta9seDkNoI8tdXB9z6/FN6GId1CnVdbnE85xCnkucV16QQpZLrK8UcluSEmukSuPkuO4adc7qZX7LlMKaPI5+9RgR8S+th0nQN5qT6n0v+9O0yWh6cl2XR1F33ek71dAfJpN6lts+v6XktO15pH5+3rEapWSefGu8rXV5be1PT10Xv337kXjg0TPxyOlnrr4nh/lLSa41SDWqyLIaYlJt7mtKqV97bOrQtWuOFHIx6bqcwjFMoms1V4rc664ObX1/WX7qocY36sKcpPD9qC7M86ia7HXmvwylXiunvO7nMofkJaUsp5w/JqN/1W/cPXYXz41eM1gX6yIVKa3LXaQ/lCf334st4+OT57LknuUUjDKH1753euq6uO+d/0Pc+8XT657dIFPkYtzfKWIN3lzV82PdZhglrcvUo9ReUtqaJMtQBlmGfLX6oPk6jfKg+c985jNxxx13xB/8wR/EW97yloHvv3TpUly6dOnqnxcWFuKmm25qrenNLy3H3OJynL94Ofbu3B6ze6ZiZnqq8XE0aX5pOe588Il1m/1Vxw7NxidvP1L8HKzq4vmvwjg5Ln2u5SoPpdfhqFJbk2mOnlWfNvpMylnuUt+Vq426dP6rMGmWS5hvOWpHCbWTktTWZee3e+rupV2pqdSyXLeunFd6G/b857hX61qWU+FB81StrSx3aX3Mscc3pUt1ULeU1+WSznNKeS5pXnlRKlkuqb5Sym1JSqqRqo2a46Zq1Dmrl/ktTypr8jh61WNEWA8To280I8X7XvaneZDRtOS8Lo+irrrTd6qlP4wvhyy3dX5Ly6mclM3PO06utMyTZ423sS73qv3pqevijltvjp/6sQOxc/t1MbMrj/lLTY41SDWqyrIaYlwp7GtKqF97bKqWQjbb0HYuqliX2z6GcXW15kqRa93VpenrZfmpnxrfqPQ5SeX7UaXP8yja6HXmP38lXivnsO6nPofkJ5Us55A/JqN/1WuSPXaXzo1eM7wu1UVKUlmXu0h/KFfuvxdbxkcnz2XKPcspGGUO1773JdNT8ZHP/dd1D5lfJVPkYNwsW4P7q2p+rNsMq7R1mWqV3ktKWpNkGcogy5CvbW1+8be//e0D37Nly5Z46KGHahvDgw8+GHfccUd85jOfGeoh8xERO3bsiB07dtQ2plHNTOe7GRzX3OJyz81+RMSJU3Mxt7g89pysbrYXLl6Ofbu2x+zu8ee3yn9rM108/1UYJ8elz3UVuZq05pvITO5Kr8NRpbYmp6rEbKXQs0rVRp9JOctd6ruDcvXUwsWIiFrmI9U8dun8V2HSLJcw33Veq05i2IylmsVBSqidlKS2Lju/3VN3L92spgb1wNx6ZGpZrpteUY5xsjbs+Z+0v7TRB7qWZShVW1nu0vo4bo9PaY9X11i6VAd1S3ldzv08r63/XVPXJXN/7dp5nV9ajm8+vZhEz2B8qWQ599yulep98VW53h8vqUaqNmqO66jRzeqlqXOWWr02QSbKk8qaPI5e9fjNpxdrXw9zzH6bY9Y3mjFOlquoi37nt4T7RF0go2nJeV0eRV119/T5S2PvA/SejfSH8eWQ5XE/szOp1O9fjUpOyubnHcfT1PearN3tyLHG27he7rXeLS0/H5/64un41BdPx5+//6djds9UzC0ux7fmnlXDI8ixBqlGVXtsNcS4Bl3LfOfchZh7drnWfl51/ebyWWy5pZ+BP4c9f/HqfmvPjm3x7KXnYv5C/tcQbeeiinW57WMYVyr3tqru4V25xs617urS9H3sVPIzitw+76jGNyp9TlL5flTp8zyKSb5fHVHvz/OSrhKvlXNY9yedw1TWf9KRSpZzyF+dRs1mjllOfQ3I3SR77C6dm7p7Tb9s5pbbLtVFSlJZl7uojb3Ial9YvHQ59k9PxfJzV2Lx0nNZ9IictJGRKu99yfjoqsxzFet3bnuAVOWe5RT0msN+v+dg9b3ffHqx50PmIzZ+tkF9k6Jxs2wN7q+q+XGdzrBKW5epVirfX1jbV/bs2BZT122NcxeWY8/OyXpMSWuSLEMZZBny1eqD5mdmZir99xYXF+P06dNX/3zmzJn4yle+Etdff30cPHgwPvzhD8d3vvOd+PSnPx0REb//+78f73jHO+Lf/bt/F69//evjb//2byMiYteuXZWPjWotXLzc9/XzA17fzJPnLsQHHzq57mLi2KHZuPv44bhx/67W/i1owqS5mrTmZQbqUWq22u5ZUKJBufrW3z0bn/i/vl55TuSRktR1rTqJYTMmi0Aq2uilg3qgHgnNqDtrk/QXfQAgbeP0+JR6e0pjgaZdW///2y+8tu/727i/FiGn0E+K98VXuT9ORPU12na9tP31gd7qXg9zzH6OY6Z+TdRF7veJgLw8ee5CnP3eUt/3bLYP0HvgBSnsD85dWK7k6wDtaOp7TdZu6lRFfQ2z3t31x3+lhgEyMqi3/80zS/Erv/d4Nv3cfopSDPw57Lln41d+7/GIiLj1lgPxzqM3x/sefCKWlp9X84wlhc9mVd3DrQk0JYX8jMLnHYFRTfL96tX/Xz+hFKV/T1heSVlu++4qjZpNWYbx1dlr+mVzS0T8S7mFpDW9F1ntGY/9t+/Hb99+JP6XL3wjHj39zNXX9QgYX1V5rmLfbe9Oyoatz1E+26C+gVG5TgeqkML3F3r1nKO3HIh3Hb05bv/f/zJ+8kdfoscAAK3b2uYXv//++4f6b1hf/vKX48iRI3HkyJGIiHj/+98fR44ciV/7tV+LiIinnnoqzp49e/X9v/M7vxPPPfdcvOc974kbbrjh6n//4l/8i2oPlMrt27m97+t7B7zey/zS8oYNfETEiVNz8aGHTsb80vAfEqzy34KmTJKrSWteZqAeJWerzZ4FpRqUqx3btlaeE3mkNHVcq05i2IzJIpCSpnvpoB743YWLeiQ0oIn9yLj9xV4JIH2j9viUentKY4Gm9ar/Hdv6f4yp6ftrEXIKg6R2X3yV++OsqrJG266Xtr8+sLk618Mcs5/jmKlfU3WR830iIC+r/WOQXvsAvQdekMr+4NLlK3IHmWrqe03WbupUVX0Ns96pYYC8DPOznhF59HP7KUoybDYjIh45/Uzc/+iZuOPWmyNCzTOetj+bVXUPtybQpLbzMwqfdwRGNcn3q9f+//oJpSj5e8LySupy2ndXadRsyjJMpq5eMyibD/8/fye3kLgm9yJre8Ydt94c9z96Zt1D5iP0CJhEFXmuYt9t707KRqnPUT7boL6BUblOB6rQ9vcXNus5j6753KceAwCkoNUHzVftDW94Q6ysrGz474EHHoiIiAceeCAefvjhq+9/+OGH+76fdM3umYpjh2Z7vnbs0GzM7pka+d+cW1zesIFfdeLUXMwtDr9xr/LfgqZMkqtJa15moB4lZ6vNngWl6pero7cciCe+fS4iqs2JPFKaOq5VJzFsxmQRSEnTvXRQD/z+s3okNKGJ/ci4/cVeCSB9o/b4lHp7SmOBpvWq/ye+fS6O3nKg5/vbuL8WIacwSGr3xVe5P86qKmu07Xpp++sDm6tzPcwx+zmOmfo1VRc53ycC8rLaP8a5n6X3wAua3B/c1ufz0X/xrWfkDjLV1PearN3Uqar66nc9fNuh2fiLbz3T8zU1DJCuYX/WMyL9fm4/RUlGyWbEC7909MhN+6/+Wc0zqrY/m1V1D7cm0KS28zMKn3cERjXJ96vX/v+96CfkqOTvCcsrqctp312lUbMpyzCZunrNoGz+4N4dm74mt5CGJvcia3vGkZv2b3jI/Co9AsZTRZ6r2Hfbu5OyUepz1M82qG9gFK7TgSq0/f2Ffj1n7ec+9RgAoG1FPWie7piZnoq7jx/esOk/dmg27jl+OGamR9/wL1y83Pf18wNer+vfgqZMkqtJa15moB4lZ6vNngWl2ixXR285EO86enPc98iZq39XVU7kkdLUca06iWEzJotASprupYN64MLF5/q+rkdCNZrYj4zbX+yVANI3ao9PqbenNBZoWq/6v++RM/Guozdv+GVnbd1fi5BTGCS1++Kr3B9nVZU12na9tP31gc3VuR7mmP0cx0z9mqqLnO8TAXlZ7R+b3c+6rc8+QO+BFzS5P7jrn/y9DTld+/louYM8NfW9Jms3daqqvvpdD9/1T/7eup8HGvdrANCsUX7WMyLtfm4/RUlGzWZExKXnrqz7s5pnFG1/NqvqHm5NoElt52cUPu8IjGqS71ev/f83o5+Qm5K/JyyvpC6nfXeVRs2mLMNk6uo1g7J57b3dteQW0tDkXmRtz+jXHyL0CBhHFXmuYt9t707KRqnPcT7boL6BYblOB6rQ9vcXRuk5egwA0KZtbQ8AxnXj/l3xyduPxNzicpy/eDn27twes3umxt7s79u5ve/rewe8Xte/BU0aN1eT1rzMQD1Kz1ZbPQtKtpqrp+Yvxrfmno0d27bGE98+F+978IlYWn7+6vuqyok8UqKqr1UnMWzGZBFITZO9dFAP3Lez/y10PRKq0dR+ZJz+Yq8EkIdRenxKvT2lsUDTetX/0vLz8b4Hn4g7br05fvUtr4qLl59v9f5ahJzCMFK6L77K/XHWqqpG266Xtr8+0F9d62GO2c9xzNSvybrI9T4RkJfV/rH2ftYdR2+OS89diR3btsYtP7Anbti/q+//uxm9h65oMgtbIuLIwZesy+naz0fLHeSpqe81WbupU5X1tdn18DPPLq/7eaBJvgYAzVrb27+/tBzzFy73/FnPiLT7uf0Upbl237Vz+3XxJ199qmc2IyJ2bNu67s9qnlG1+dmsqnu4NYGmpfjZxl583hEY1STfr177/29GPyFHpX5PWF7JQS777iqNmk1ZhsnV0WsGZfPae7tryS2ko6m9yNqe0a8/ROgRMK5J81zFvtvenZSNWp+jfrZBfQOjcJ0OVCHlz8Wt7Tl6DADQJg+aJ2sz09Vt8Gf3TMWxQ7Nx4tTchteOHZqN2T3Df50q/y1o2ji5mrTmZQbq0YVstdGzoHSrmfrEn3699pzII6Wq8lp1EsNmTBaBFDXVSwf1wJfs1iOhCU3uR0btL/ZKAPkYtsen1NtTGgs0bbP6X1p+Pk5++1z80q03Z3WPDboulfviq9wf51pV1Gjb9dL21wcGq2M9zDH7OY6Z+jVdFzneJwLysrZ/LC0/H5/64umrrx07NBufvP3IUP/vtfQeuqTJLBzYPRUnv31uXVbr+lpAc5r6XpO1mzpVXV+bXQ+rYYB8rfb2+aXleO+DT2TZz+2nKNHafdf80nKc/Pa5nr+I/egtB+KJb5+7+mc1z7ja+mxW1T3cmkAbUvtsYy8+7wiMapLvV1/7/19LPyFXpX5PWF7JRQ777iqNmk1ZhmpU3WsGZfPp85d6/n9yC+lpYi+ytmc88e1zcfSWA/Ho6Wc2vE+PgMlMkucq9t327qRsnPoc9rMN6hsYh+t0oAopfi5u7ec+9RgAoG1b2x4ApGJmeiruPn44jh2aXff3xw7Nxj3HD490YVHlvwU5mLTmZQbqIVu9mRcYrKmcyCPUa9iMySLQZYN64A/t26lHQgNS3o+kPDYAxpNSb09pLNC0XOo/l3EC67k/Th3arpe2vz7Qjhyzn+OYqV+qdZHquID0TdI/9B54QZNZkDsok595oARN1JcaBihDzv0857HDMDar8VtvORDvOnpz3PfImYhQ8+Sp6h5uTYDefN4RGJXf9wcblVrXpR4X5G7UbMoypGlQNt/wih+QW+CqtT3jvkfOxLuO3hxHbzmw7j16BLSrin23vTspc18YKJ3rdKBJm/Wco2s+96nHAAAp2LKysrLS9iByt7CwEDMzMzE/Px/79u1rezhMaH5pOeYWl+P8xcuxd+f2mN0zNfamvcp/i3rJcTUmrXmZYVKy3Jts9WZe0iXL6WgqJ/JYJllOx7AZk0V6kWW6YlAPzL1HyjK5SDlrKYxNlpvx+OOPx+te97p407+6P64/+ONtD2eD7539RvzZb7wrHnvssXjta1/b9nAYgyynI4XenuJYGI4sVyeX+s9lnIxGlsvn/nj52shx2/XS9teHOliTB8sx+zmOmckMk+VU6yLVcUEbrMujmaR/6D3UKacsN5kFuSM3OWW5TX7mgdSlcr2shmEy1mVSkXM/T2Hsskydrq3xPTu3xbOXnouFC/nlNXWy3Lyqe3gKawLtk+WNfN6R3Mhx+/y+P6pQWpZLretSj4vqlJblXIyaTVlmEFluR79syi3jkOWyrfaFZy9djpldU7H8/JV49tJzekSBZDlfVazf9gDlKDHL7gvTRSVmmc25Ti+XLJOitX1l945tMXXd1pi/sBy7d+gxm5FlKIMsQz62tT0ASM3MdHUb9Sr/LcjBpDUvM1AP2erNvMBgTeVEHqFew2ZMFoEuG9QD9UhoRspZS3lsAIwnpd6e0ligabnUfy7jBNZzf5w6tF0vbX99oB05Zj/HMVO/VOsi1XEB6Zukf+g98IImsyB3UCY/80AJmqgvNQxQhpz7ec5jh2GocUpWdX3LC/Tm847AqPy+P9io1Lou9bggd6NmU5YhTf2yKbfAtfQFSF8VOZV1Uua+MFA61+lAk3r3ld2tjAUAoBcPmgcAAAAAAACgMmfPno25ubm2h7Gp2dnZOHjwYNvDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5oHAAAAAAAAoBpnz56NV77yJ+LChaW2h7KpXbum46//+useNg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOs8aB4AAAAAAACASszNzcWFC0vx+js+GvtueFnbw9lg4am/ib+872MxNzfnQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTOg+YBAAAAAAAAqNS+G14W1x/88baHAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASdva9gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAusaD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhm1rewAA80vLMbe4HAsXL8e+XdtjdvdUzExPtT0sYESyDGmTUegWmYcyyDKUQZZhc/IBAIzDHgLKIMtQBlmG/MkxlEGWoQyy3v43UwABAABJREFUTCrUIrRLBgGqo6dCGWQZ8iKzUDYZhzLIMiVS10CO9C4ogyxDGWQZyiDLUA/ZAsahd3SD8wxUQS8BGI5+CQDd40HzQKuePHchPvjQyfjSqbmrf3fs0Gzcffxw3Lh/V4sjA0Yhy5A2GYVukXkogyxDGWQZNicfAMA47CGgDLIMZZBlyJ8cQxlkGcogy6RCLUK7ZBCgOnoqlEGWIS8yC2WTcSiDLFMidQ3kSO+CMsgylEGWoQyyDPWQLWAcekc3OM9AFfQSgOHolwDQTVvbHgDQXfNLyxsuQiIiTpyaiw89dDLml5ZbGhkwClmGtMkodIvMQxlkGcogy7A5+QAAxmEPAWWQZSiDLEP+5BjKIMtQBlkmFWoR2iWDANXRU6EMsgx5kVkom4xDGWSZEqlrIEd6F5RBlqEMsgxlkGWoh2wB49A7usF5BqqglwAMR78EgO7yoHmgNXOLyxsuQladODUXc4suRCAHsgxpk1HoFpmHMsgylEGWYXPyAQCMwx4CyiDLUAZZhvzJMZRBlqEMskwq1CK0SwYBqqOnQhlkGfIis1A2GYcyyDIlUtdAjvQuKIMsQxlkGcogy1AP2QLGoXd0g/MMVEEvARiOfgkA3eVB80BrFi5e7vv6+QGvA2mQZUibjEK3yDyUQZahDLIMm5MPAGAc9hBQBlmGMsgy5E+OoQyyDGWQZVKhFqFdMghQHT0VyiDLkBeZhbLJOJRBlimRugZypHdBGWQZyiDLUAZZhnrIFjAOvaMbnGegCnoJwHD0SwDorm1tDwDobX5pOeYWl2Ph4uXYt2t7zO6eipnpqbaHVal9O7f3fX3vgNdhVF3IVRtkGdLWL6PTU9fFS6an4ptPL+qNFK8r+wDrMqWT5RfIMoyvyT4iy7C5qvPRlT0CAN1gXducPTapkdfxyDI5kfPNyTJNkMF6yTE50Q82J8vdJBPlkWWGVXf+1SKlymXtlEEgl36VAz2VuslrM2QZ2jdKv5NZqFZq+w0Zp3SpZa4uskwu7EMhHV1ZI5umd9EkOa6PLJMTvWBzskwpup5zWYZ6+oBsQXtyXtv1jsnlcP6dZ6AKqfWSHPovUL0csp9avwQAmuNB85CgJ89diA8+dDK+dGru6t8dOzQbdx8/HDfu39XiyKo1u2cqjh2ajRNrjnPVsUOzMbsnrQsn8taVXLVBliFtm2V0euq6uO+d/0N85HP/Nb50Wm+kbF3aB1iXKZksv0CWYXxN9xFZhs1VmY8u7REAKJ91rT97bFIir+OTZXIh5/3JMnWTwfrJMbnQD/qT5e6RiTLJMsNoIv9qkRLltHbKIHRbTv0qB3oqdZLX5sgytGvUfiezUJ0U9xsyTslSzFxdZJkc2IdCOrq0RjZN76IpclwvWSYXekF/skwJ5FyWoa4+IFvQjtzXdr1jMrmcf+cZqEJKvSSX/gtUK5fsp9QvAYBmbW17AMB680vLGy4iIiJOnJqLDz10MuaXllsaWfVmpqfi7uOH49ih2XV/f+zQbNxz/HDMTLsQoRpdylUbZBnStllGf/VnXxX3fvH0uofMR+iNlKdr+wDrMqWS5RfIMoyvjT4iy7C5qvLRtT0CAGWzrg1mj00q5HUyskwO5HwwWaZOMtgMOSYH+sFgstwtMlEuWWaQpvKvFilNbmunDEJ35davcqCnUhd5bZYsQ3vG6XcyC9VIdb8h45Qq1czVRZZJnX0opKNra2TT9C6aIMf1k2VyoBcMJsvkTs5fIMt0WZ19QLageSWs7XrH+HI6/84zUIVUeklO/ReoTk7ZT6VfAgDN29b2AID15haXN1xErDpxai7mFpeL2qDfuH9XfPL2IzG3uBznL16OvTu3x+yeqaKOkfZ1LVdtkGVIW6+MXllZiQ//4Vd7vl9vpCRd3AdYlymRLMsyTKqtPiLLsLkq8tHFPQIA5bKuDccemxTI6+RkmdTJ+XBkmbrIYHPkmNTpB8OR5e6QibLJMv00mX+1SElyXDtlELopx36VAz2VOshr82QZ2jFuv5NZmFzK+w0Zp0QpZ64uskzK7EMhHV1cI5umd1E3OW6GLJM6vWA4skzO5PxFskxX1d0HZAuaVcrarneMJ7fz7zwDVUihl+TWf4Fq5Jb9FPolANA8D5qHxCxcvNz39fMDXs/RzLQLD+rVxVy1QZYhbddm9Imz3+/7fr2RUnR1H2BdpjSyDEyqzT4iy7C5SfPR1T0CAGWyrg3PHpu2yWs1ZJmUyfnwZJk6yGCz5JiU6QfDk+VukInyyTKbaTr/apFS5Lp2yiB0T679Kgd6KlWT13bIMjRvkn4nszCZ1PcbMk5pUs9cXWSZVNmHQjq6ukY2Te+iTnLcHFkmZXrB8GSZXMn5erJMFzXRB2QLmlPS2q53jC7H8+88A1Vou5fk2H+ByeWY/bb7JQDQvK1tDwBYb9/O7X1f3zvgdWAjuQLYSG+kK9Q6lEGWgUnpI1Am2QagJNY1yIe8QvnkHNolg8Aq/QDWkwnoLvmH8cgOkAv9CvIhr0BX6HfQHvmDZskcpEUmIR3yCPmTYyBCL4AukHNAH4CyyHS3Of8A7dB/oZtkHwDIgQfNQ2Jm90zFsUOzPV87dmg2ZvdMNTwiyJ9cAWykN9IVah3KIMvApPQRKJNsA1AS6xrkQ16hfHIO7ZJBYJV+AOvJBHSX/MN4ZAfIhX4F+ZBXoCv0O2iP/EGzZA7SIpOQDnmE/MkxEKEXQBfIOaAPQFlkutucf4B26L/QTbIPAOTAg+YhMTPTU3H38cMbLiaOHZqNe44fjplpFxIwKrkC2EhvpCvUOpRBloFJ6SNQJtkGoCTWNciHvEL55BzaJYPAKv0A1pMJ6C75h/HIDpAL/QryIa9AV+h30B75g2bJHKRFJiEd8gj5k2MgQi+ALpBzQB+Assh0tzn/AO3Qf6GbZB8AyMG2tgcAbHTj/l3xyduPxNzicpy/eDn27twes3umXETABOQKYCO9ka5Q61AGWQYmpY9AmWQbgJJY1yAf8grlk3NolwwCq/QDWE8moLvkH8YjO0Au9CvIh7wCXaHfQXvkD5olc5AWmYR0yCPkT46BCL0AukDOAX0AyiLT3eb8A7RD/4Vukn0AIHUeNA+Jmpl24QBVkyuAjfRGukKtQxlkGZiUPgJlku2Nzp49G3Nzc20PY1Ozs7Nx8ODBtocBkCTrGuRDXqF8cg7tkkFglX4A68kEdJf8w3hkB8iFfgX5kFegK/Q7aI/8QbNkDtIik5AOeYT8yTEQoRdAF8g5oA9AWWS625x/gHbov9BNsg8ApMyD5gEAAAAAAKAQZ8+ejVe+8ifiwoWltoeyqV27puOv//rrHjYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0ngfNAwAAAAAAQCHm5ubiwoWleP0dH419N7ys7eFssPDU38Rf3vexmJub86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg8zxoHgAAAAAAAAqz74aXxfUHf7ztYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDH1rYHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA1HjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4+9uw3S6ywPPH9JllovltQCGhtEZAJEJPEkMkpmwzABxWyRApOwA3GRFJmMDc6kiux6UwlDgZ0lL9SQYCpLIGGYojYp45AJmWTWQDL7ISnWGY8ModjCoHEyECIPBid+i9uDu9WW1C3bvR88LSz12/NynnPu+zq/XxVVWN2SzznP/b/u8zyydACAlnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDLUj1o/tixY/G6170uDhw4EFu2bIlPfepTG37/Aw88ED/5kz8ZL37xi2Pr1q3x8z//860cJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBv27o+gCY99thjccUVV8R1110XP/ZjP7bp9y8uLsazn/3seNe73hUf+MAHWjhCAAAAAAAA4Ctf+UrXh7CmUo8LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIKdWD5q+66qq46qqrBv7+b//2b4/f+q3fioiIm2++eVKHBQAAAAAAAETE6blHImJL/NRP/VTXh7Khs4tLXR8CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQA6keNN+WxcXFWFxcPPfP8/PzHR4NMAodQw5ahhy0DDloGXLQMuSgZcgha8tnT52MiOV4yU++M579gu/q+nBWeeCvPhd//af/Vzz++ONdHwpJZG0Z+kbLkIOWoX46hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnqp2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoV4eND+C9773vfHud7+768PY1NyppZhdWIr5M2dj367tMXPxVEzvnur6sKAIJXWsVRhdSS0zGjOQiBwtW8tQfss6hcGU3vJa9A2rldCyNmF8JbQ8SXsuuSyeedl3dn0Yq8w/8PWuD4Fk2mrZ3guT1dW+rG1oVin32NqG0ZXS8UY0DpuroeUVmob1ea8MOdS0L2dmtjEuLdMV86tZNbTsNYfN1dByE8wDshulZV1AeWrcl80SWK3Gljeic/oqW8vQtS72k1E7tvdBWUrck80JGJ6WIYcSW26DeUE2TbasD+hOF/uy5qF5/psvyEHLkEMb99jah8nr6+fYkI2WoV5blpeXl7s+iEnYsmVLfPKTn4zXv/71A33/lVdeGS95yUvigx/84Kbfu7i4GIuLi+f+eX5+Pg4ePBhzc3Oxb9++EY+4Wfc/ejreeetdcceJ2XM/dvTQTNx09eE4sH9Xh0cGZSilY63CeEppmdGYgayovWVrGZ5Scss6hcGV3PJa9A1r67plbUIzRm35i1/8Ynz/939//PD/8dEiH+T+9c//eXz+5nfHy3/+w/G87z7S9eGsUvrx/fd7vxqf/rW3xJ133hnf933f1/XhrKn0Ndj2NWxjX7b3wuR1cY+tbWhe1++XI7QN4yqh441oHAZTessrNA0b814ZcqhlX87MbKMJWqYL5lfzSm/Zaw6DKb3lJpgH9MGwLesCylTbvmyWwNpqa3kjOqfPMrUMXetqPxmlY3sflKe0PdmcgNFoGXIoreU2mBdk1FTL+oButb0vax4mw3/zBTloGXKY9D229qEdffwcGzLSMtRra9cHUKMdO3bEvn37zvtfSeZOLa16MxMRcezEbNxw610xd2qpoyODcpTQsVZhfCW0zGjMQJ6u5patZfiWUlvWKQyn1JbXom9YX5ctaxOaU9O+DKxv0i3be6Edbe/L2obJ6PoeW9swvq473ojGYXAlt7xC07A575Uhhxr25czMNpqiZdpmfk1GyS17zWFwJbfcBPOAvhimZV1AuWral80SWF9NLW9E5/Rdlpaha13uJ8N2bO+DMpW0J5sTMDotQw4ltdwG84KsmmhZH9C9NvdlzcPk+G++IActQw6TvMfWPrSnb59jQ1Zahnp50HxCswtLq97MrDh2YjZmF7yhgRJoFegzM5AsrGUon04hL31DmbQJAO2y90JO2oactA25aRxy0TSUR5dARmYbUCvzq3+85sAK8wBW0wXQBLME8tM5AE2oaT+p6ViBbpgTkIOWgUGZF7A+fUC/aB7KoEXIQcvQT9oHAKAvtnV9AE1aWFiIu++++9w/33PPPXH8+PF45jOfGZdddlnceOONcd9998XHPvaxc99z/Pjxcz/34YcfjuPHj8fU1FRcfvnlbR9+Y+bPnN3w6yc3+TrQDq0CfWYGkoW1DOXTKeSlbyiTNgGgXfZeyEnbkJO2ITeNQy6ahvLoEsjIbANqZX71j9ccWGEewGq6AJpglkB+OgegCTXtJzUdK9ANcwJy0DIwKPMC1qcP6BfNQxm0CDloGfpJ+wAA9EWqB81/4QtfiFe+8pXn/vltb3tbRERce+21ccstt8QDDzwQ995773k/58iRI+f+/5133hkf//jH4/nPf358/etfb+WYJ2Hfzu0bfn3vJl8H2qFVoM/MQLKwlqF8OoW89A1l0iYAtMveCzlpG3LSNuSmcchF01AeXQIZmW1Arcyv/vGaAyvMA1hNF0ATzBLIT+cANKGm/aSmYwW6YU5ADloGBmVewPr0Af2ieSiDFiEHLUM/aR8AgL7Y2vUBNOnKK6+M5eXlVf+75ZZbIiLilltuidtvv/28n7PW99f8kPmIiJk9U3H00MyaXzt6aCZm9ky1fETAWrQK9JkZSBbWMpRPp5CXvqFM2gSAdtl7ISdtQ07ahtw0DrloGsqjSyAjsw2olfnVP15zYIV5AKvpAmiCWQL56RyAJtS0n9R0rEA3zAnIQcvAoMwLWJ8+oF80D2XQIuSgZegn7QMA0BepHjTPU6Z3T8VNVx9e9abm6KGZeN/Vh2N6tzc0UAKtAn1mBpKFtQzl0ynkpW8okzYBoF32XshJ25CTtiE3jUMumoby6BLIyGwDamV+9Y/XHFhhHsBqugCaYJZAfjoHoAk17Sc1HSvQDXMCctAyMCjzAtanD+gXzUMZtAg5aBn6SfsAAPTFtq4PgMk4sH9XfOhNR2J2YSlOnjkbe3duj5k9U97MQGG0CvSZGUgW1jKUT6eQl76hTNoEgHbZeyEnbUNO2obcNA65aBrKo0sgI7MNqJX51T9ec2CFeQCr6QJoglkC+ekcgCbUtJ/UdKxAN8wJyEHLwKDMC1ifPqBfNA9l0CLkoGXoJ+0DANAHHjSf2PRub2CgBloF+swMJAtrGcqnU8hL31AmbQJAu+y9kJO2ISdtQ24ah1w0DeXRJZCR2QbUyvzqH685sMI8gNV0ATTBLIH8dA5AE2raT2o6VqAb5gTkoGVgUOYFrE8f0C+ahzJoEXLQMvST9gEAyG5r1wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DceNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMg+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDLPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGUeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMg+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDLPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGUeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQsm1dH0BfzJ1aitmFpZg/czb27doeMxdPxfTuqa4PCyiMWQGTpzPIQcuQg5YhBy1DDloGgHLYlyEHLUMOWoa89A110SxwIXMBGIaZAcCw7B3NcB2hbBqFydEXMCrzA5qhJchBy9BP2oe6aRjYiBkB49MR5KZxqItmISdtQ3/oHcqjSwAAOJ8Hzbfg/kdPxztvvSvuODF77seOHpqJm64+HAf27+rwyICSmBUweTqDHLQMOWgZctAy5KBlACiHfRly0DLkoGXIS99QF80CFzIXgGGYGQAMy97RDNcRyqZRmBx9AaMyP6AZWoIctAz9pH2om4aBjZgRMD4dQW4ah7poFnLSNvSH3qE8ugQAgNW2dn0A2c2dWlr1RiQi4tiJ2bjh1rti7tRSR0dGSeZOLcV/+4eF+NK934z/9vCCddFDZkX5dFo/nQ3PuqdEWqYJ5lv3tEzXzIFmaJlJ0Wi7tFwuLQD0j32Zkrk3GZyWGZSuyqZl2mAOdEPfeWioHzSL1rmQucAkmDXDqel6mRmwvppahjbZO5rhOjJJ9rDx9aFR64Su9KEv8jAry2J+MCotn09L/aSDfCbVsrUCZbOP0yZ7QvM0PHnWLTUzI+pgzpRNR2xGw3XTOE0wB9qjWZqg2fLU3rY1BYNrsnftQTNq34fpH/MfAGjLtq4PILvZhaVVb0RWHDsxG7MLSzG9e6rlo6Ik9z96etUb1qOHZuKmqw/Hgf27Ojwy2mRWlE2nOehsONY9pdIy4zLfyqBlumQONEfLTIJG26flMmkBoJ/sy5TKvclwtMwgdFU+LTNp5kB39J2DhvpDs/2mddZiLtA0s2Y4tV0vMwPWVlvL0CZ7RzNcRybFHtaM7I1aJ3Qpe1/kYVaWx/xgFFpeTUv9o4OcJtGytQLls4/TFnvCZGh4sqxbamdGlM+cKZ+O2IiG66dxxmUOtEuzjEuzZaq5bWsKhtNU79qD5tS8D9M/5j8A0KatXR9AdvNnzm749ZObfJ3c5k4trbr5j3jqjeoNt94Vc6eWOjoy2mZWlEuneehscNY9JdMy4zDfyqFlumIONEvLNE2j3dByebQA0F/2ZUrk3mR4WmYzuqqDlpkkc6Bb+q6fhvpFs/2lddZjLtAks2Y4NV4vMwNWq7FlaJO9oxmuI5NgD2tO5katE7qWuS/yMCvLZH4wLC2vTUv9ooO8mm7ZWoE62Mdpgz1hcjQ8OdYtGZgRZTNn6qAj1qPhHDTOOMyB9mmWcWi2XLW2bU3B8JroXXvQrFr3YfrH/AcA2uZB8xO2b+f2Db++d5Ovk9vswtKqm/8Vx07MxuyCNwB9YVaUS6d56Gxw1j0l0zLjMN/KoWW6Yg40S8s0TaPd0HJ5tADQX/ZlSuTeZHhaZjO6qoOWmSRzoFv6rp+G+kWz/aV11mMu0CSzZjg1Xi8zA1arsWVok72jGa4jk2APa07mRq0Tupa5L/IwK8tkfjAsLa9NS/2ig7yabtlagTrYx2mDPWFyNDw51i0ZmBFlM2fqoCPWo+EcNM44zIH2aZZxaLZctbZtTcHwmuhde9CsWvdh+sf8BwDa5kHzEzazZyqOHppZ82tHD83EzJ6plo+IksyfObvh109u8nXyMCvKpdM8dDY4656SaZlxmG/l0DJdMQeapWWaptFuaLk8WgDoL/syJXJvMjwtsxld1UHLTJI50C19109D/aLZ/tI66zEXaJJZM5war5eZAavV2DK0yd7RDNeRSbCHNSdzo9YJXcvcF3mYlWUyPxiWltempX7RQV5Nt2ytQB3s47TBnjA5Gp4c65YMzIiymTN10BHr0XAOGmcc5kD7NMs4NFuuWtu2pmB4TfSuPWhWrfsw/WP+AwBt86D5CZvePRU3XX141RuSo4dm4n1XH47p3d6M9Nm+nds3/PreTb5OHmZFuXSah84GZ91TMi0zDvOtHFqmK+ZAs7RM0zTaDS2XRwsA/WVfpkTuTYanZTajqzpomUkyB7ql7/ppqF80219aZz3mAk0ya4ZT4/UyM2C1GluGNtk7muE6Mgn2sOZkbtQ6oWuZ+yIPs7JM5gfD0vLatNQvOsir6ZatFaiDfZw22BMmR8OTY92SgRlRNnOmDjpiPRrOQeOMwxxon2YZh2bLVWvb1hQMr4netQfNqnUfpn/MfwCgbdu6PoA+OLB/V3zoTUdidmEpTp45G3t3bo+ZPVPeiBAze6bi6KGZOHZidtXXjh6aiZk91kifmBVl0mkuOhuMdU/ptMyozLeyaJkumAPN0zJN0mh3tFwWLQD0m32Z0rg3GY2W2Yiu6qFlJsUc6J6+66ah/tFsP2mdjZgLNMWsGU6t18vMgPPV2jK0yd7RDNeRptnDmpW1UeuEEmTtizzMynKZHwxDy+vTUn/oILcmW7ZWoB72cSbNnjBZGp4M65YszIhymTP10BFr0XAeGmdU5kA3NMuoNFu2Gtu2pmA04/auPWhejfsw/WP+AwBt29r1AfTF9O6peNEle+Illz0jXnTJHm9EiIin1sVNVx+Oo4dmzvvxo4dm4n1XH7ZOesisKI9O89HZ5qx7aqBlRmG+lUfLtM0cmAwt0xSNdkvL5dACAPZlSuLeZHRaZj26qouWmQRzoAz6rpeG+kmz/aN1NmMu0ASzZjg1Xy8zA76l5pahTfaOZriONMke1ryMjVonlCJjX+RhVpbN/GBQWt6YlvpBB/k11bK1AnWxjzNJ9oTJ03DzrFsyMSPKZM7URUdcSMO5aJxRmAPd0Syj0Gz5amvbmoLRjdO79mAyatuH6R/zHwBo27auDwD67sD+XfGhNx2J2YWlOHnmbOzduT1m9ky5+YeC6JQ+su6BrMw3wByAsmkUnqIFAKAk7k2geboCzAEYj4agH7QOtMGsGY7rBTloGYBa2cMYhHUCsDmzEnLQMuiAwVkrAKywJ1Aj6xaYNHMG6qZhwByAumiWpllT0A3tAfST+Q8AtMmD5qEA07vd8EPpdEofWfdAVuYbYA5A2TQKT9ECAFAS9ybQPF0B5gCMR0PQD1oH2mDWDMf1ghy0DECt7GEMwjoB2JxZCTloGXTA4KwVAFbYE6iRdQtMmjkDddMwYA5AXTRL06wp6Ib2APrJ/AcA2rK16wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6BsPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABo2bauDyCD5eXliIiYn5/v+EigP/bu3Rtbtmxp7NfTMXRDy5CDliEHLUMOWoYctAw5dNXywsJCRETM/f3X4snHn2js39+UhX+4LyIi5h/8euzYsaPjo1mt9OM7+eA3IiLii1/84rnXujR/+7d/GxHlrsGVa7iwsDDQ3mhfhhy0DDloGXJosmUdQzfsyZCDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhB//9JtTPngw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6jdqx1uWV4plZH//938fBw8e7PowoFfm5uZi3759jf16OoZuaBly0DLkoGXIQcuQQ9Mtf+1rX4sXvehFjf16wGDsy5CDliEHLUMOWoYcmmxZx9ANezLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyMF/vwn1sydDDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvqN2rEHzTfgySefjPvvvz/27t0bW7Zs6fpwijc/Px8HDx6Mv/u7v2t08+mjPl/LpnubVMd9fo0u5Fo8xXU436RaXl5ejssuuyzVdc66djKeVx/PqZZ9uWkZX+sVWc8t63lFNHNuk2j5q1/9alx++eUpr/mgMq+7QbkG7V6Dtvdlr69rEOEaRDR/DZpu+dFHH41nPOMZce+998b09HRjv26Xsq27bOcTke+cRjmfvr5fXpFtDQyjr+ee9bx9jj2YbK+/8ymbfXlw2V77SXCNNlfSNepry09X0usxDudRlrbPo8nmmuw4y+vZJtdsNBmuWyl7coZrOQmuy/pcm/OV0nLXsq0L51O2SZxPKS1ne60inFMtspxTKS23IctrVgLXslml/rfYa7XstW+Oa9mMbNexhH255mta87FHOP6uNXn8JbTclNpf1/U4r/p0cW6ZWm5D5vW3nr6dc63n6887Dqf244+o/xwc/9r8uYrz1bpOHHe7SjzuUv/7zbaU+Jo0yfnVbdDzy/heOctrm+E8MpxDRB3nUVPLNVzPCznmdjjmulpuQo2veWlcw/Fl/m+x12LNrM+1WVufr0uJLdf4etR4zBF1HrdjXluJLTepxtd9Lc6jHKWeQ5stl3oNsnB9J6eGa9vFvlzDdZkU597Pc4+Y/Pl3dY+d5XV1HmXJch4Rw5+LlsfjPMrS1/MYteNtoxwc59u6dWt827d9W9eHUZ19+/ZVHWlJXMvxTbpjr9G3uBZPcR0mY6Xl+fn5iMh5nTOeU0TO83JOo6vt/jrja70i67llPa+Iss5t69at8bznPS8iyjqurrgGrkFEnddg0H25xnNrmmvgGkSUew22bt0aERHT09NFHt84Sr3mo8p2PhH5zqnL86nt/fKKbGtgGH09976e96Cyf47tfMrmfJpT276c7bWfBNdocxmvUW0tP12W18N5lKXG85hExzVeh665ZqNx3b5l3JZdy7W5LutzbSaj5vvriHzrwvmUreTzsS+v5pzqkPGcxlHDvuw1a45r2aySrudmLZd0rLVzLZvhOq5tnH255mta87FHOP6ulXj8Jdxjl3hdmuC86lPzuZXQchtqfo1G1bdz7tv5Xqgvf96x9uOPqP8cHP9kZflzFY67XY67LDXfX2d9TVY4v7q1fX4ltZzltc1wHhnOISLPeQyijZZrvJ6OuR2OuTkl7csbKfX61cQ1HF/J19Cfd2yXa7M212V8TbZc4+tR4zFH1HncjnmySr3HrukabsR5lCPDOWxkkJazX4Ouub6T06drO8y+3KfrciHn3s9zj6jn/Ie9x67lvDbjPMqS5TwiujsXLdfNeZRl0uexdWK/MgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABr8qB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZ50Dyt27FjR/zKr/xK7Nixo+tDqZ5rWT6v0be4Fk9xHdqR8TpnPKeInOflnPoj83XJem5Zzyui3HMr9bja5Bq4BhG5r0HmcxuUa+AaRJR/DUo/vlFkO6ds5xOR75yynU8b+nzN+nrufT3vUWW7Xs6nbM6nv1yrzblGm3ONypLl9XAeZclyHuNyHYbnmo3GdWuOa7k212V9rg1rybYunE/Zsp3P02U8N+dUh4znlJ3XrDmuZbNqup41HWvpXMtmuI7Nq/ma1nzsEY6/a7Uf/6RkvS7Oqz6Zzy2LPr5GfTvnvp3vqGq/TrUff0T95+D421Xb8a5w3O1y3DQl+2vi/OqW/fw2kuXcM5xHhnOIyHMepajxejrmdjjm/nH9xucajq9v17Bv5zsM12ZtrktZanw9ajzmiDqP2zH3U5Zr6DzKkeEcxuUaTJbrOzmu7dr6fF2cez/PPSLv+Wc5L+dRliznEVHPudRynJtxHmVxHsPZsry8vDzRfwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA59na9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9I0HzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAyD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJkHzTfo2LFj8brXvS4OHDgQW7ZsiU996lND/fxf/dVfjS1btqz638UXXzyZAwYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA64UHzDXrsscfiiiuuiA9/+MMj/fy3v/3t8cADD5z3v8svvzze+MY3NnykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJc8aL5BV111VbznPe+JN7zhDWt+fXFxMd7+9rfH8573vLj44ovjpS99adx+++3nvr5nz554znOec+5/Dz30UHz5y1+On/7pn27pDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2eNB8i66//vr43Oc+F//+3//7uOuuu+KNb3xjvOY1r4kTJ06s+f2/+7u/Gy9+8YvjFa94RctHCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEySB8235N57742PfvSj8R/+w3+IV7ziFfGiF70o3v72t8fLX/7y+OhHP7rq+8+cORN/8Ad/ED/90z/dwdECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk7St6wPoi7/6q7+KJ554Il784hef9+OLi4vxrGc9a9X3f/KTn4yTJ0/Gtdde29YhAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3xoPmWLCwsxEUXXRR33nlnXHTRRed9bc+ePau+/3d/93fjR3/0R+PSSy9t6xABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlnjQfEuOHDkSTzzxRPzDP/xDvOIVr9jwe++55574T//pP8Wf/umftnR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJs8aL5BCwsLcffdd5/753vuuSeOHz8ez3zmM+PFL35x/PN//s/jmmuuife///1x5MiRePjhh+O2226Lw4cPx4/8yI+c+3k333xzPPe5z42rrrqqi9MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJmzL8vLyctcHkcXtt98er3zlK1f9+LXXXhu33HJLnD17Nt7znvfExz72sbjvvvtiZmYm/sk/+Sfx7ne/O773e783IiKefPLJeP7znx/XXHNN/Nqv/VrbpwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0wIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFq2tesDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgbD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJkHzTdgeXk55ufnY3l5uetDAUakY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQDw+ab8DJkydjeno6Tp482fWhACPSMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWon44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvrpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWohwfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZt6/oAAOZOLcXswlLMnzkb+3Ztj5mLp2J691TXhwUMSctQNo1Cv2gectAy5KBlWJ8+aJs1BwBQDvdmkIOWoX46hhy0DDlomVJYi9AtDQI0x0yFHLQMddEs5KZxyEHLZGRdAzUyuyAHLUMOWoYctAyToS1gFGZHP3idgSaYJQCDMS8BoH9SPWj+2LFj8Ru/8Rtx5513xgMPPBCf/OQn4/Wvf/263//AAw/Ev/pX/yq+8IUvxN133x0/93M/Fx/84AdbO14g4v5HT8c7b70r7jgxe+7Hjh6aiZuuPhwH9u/q8MiAYWgZyqZR6BfNQw5ahhy0DOvTB22z5gAAyuHeDHLQMtRPx5CDliEHLVMKaxG6pUGA5pipkIOWoS6ahdw0DjlomYysa6BGZhfkoGXIQcuQg5ZhMrQFjMLs6AevM9AEswRgMOYlAPTT1q4PoEmPPfZYXHHFFfHhD394oO9fXFyMZz/72fGud70rrrjiigkfHXChuVNLq96EREQcOzEbN9x6V8ydWuroyIBhaBnKplHoF81DDlqGHLQM69MHbbPmAADK4d4MctAy1E/HkIOWIQctUwprEbqlQYDmmKmQg5ahLpqF3DQOOWiZjKxroEZmF+SgZchBy5CDlmEytAWMwuzoB68z0ASzBGAw5iUA9FeqB81fddVV8Z73vCfe8IY3DPT93/7t3x6/9Vu/Fddcc01MT09P+OiAC80uLK16E7Li2InZmF3wRgRqoGUom0ahXzQPOWgZctAyrE8ftM2aAwAoh3szyEHLUD8dQw5ahhy0TCmsReiWBgGaY6ZCDlqGumgWctM45KBlMrKugRqZXZCDliEHLUMOWobJ0BYwCrOjH7zOQBPMEoDBmJcA0F+pHjQP1GX+zNkNv35yk68DZdAylE2j0C+ahxy0DDloGdanD9pmzQEAlMO9GeSgZaifjiEHLUMOWqYU1iJ0S4MAzTFTIQctQ100C7lpHHLQMhlZ10CNzC7IQcuQg5YhBy3DZGgLGIXZ0Q9eZ6AJZgnAYMxLAOivbV0fQI0WFxdjcXHx3D/Pz893eDRQr307t2/49b2bfH0cOobmaBnK1mWjg9IyNMe+DDloGXLQMqyvhveqJdByc6w5uqRlyEHL0BzvlyGHrlrWMTTHngw5aBly0DKl8Htq9dJyDhpEy9Ac99iQg5ahLiW+p9EyNMe+DDlomYxKvA/NSsfQHHsy5KBlyEHLkIOWYTL69NmblqE59uV+6NMeQfu03B9mSW5ahua4xwbGpWWo19auD6BG733ve2N6evrc/w4ePNj1IUGVZvZMxdFDM2t+7eihmZjZMzWxf7eOoTlahrJ12eigtAzNsS9DDlqGHLQM66vhvWoJtNwca44uaRly0DI0x/tlyKGrlnUMzbEnQw5ahhy0TCn8nlq9tJyDBtEyNMc9NuSgZahLie9ptAzNsS9DDlomoxLvQ7PSMTTHngw5aBly0DLkoGWYjD599qZlaI59uR/6tEfQPi33h1mSm5ahOe6xgXFpGeq1ZXl5ebnrg5iELVu2xCc/+cl4/etfP9D3X3nllfGSl7wkPvjBD276vYuLi7G4uHjun+fn5+PgwYMxNzcX+/btG/GIoZ/uf/R03HDrXXHsxOy5Hzt6aCbed/XheO7+XRP79+oYmqVlKFtXjQ5Ky9As+zLkoGXIQcuwvtLfq5ZAy82y5uiKliEHLUOzvF+GHLpoWcfQLHsy5KBlyEHLlMLvqdVJy3losN+0DM1yjw05aBnqUtp7Gi1Ds+zLkIOWyai0+9CsdAzNsidDDlqGHLQMOWgZJqMvn71pGZplX+6HvuwRtE/L/WKW5KVlaJZ7bGAcWoZ6edD8/zDMg+YvND8/H9PT04YejGju1FLMLizFyTNnY+/O7TGzZyqmd0+1egw6hvFpGcpWQqOD0jKMr4TmtQzj0zLkoGVYXwl91ETL47PmKIGWIQctw/hKuDfTMoyv65Z1DOPruuMILUMTtAw5aJlSlLAWGY+W66ZBVmgZxlfCTNUyjE/LUJcSml2PlmF8JTSuZRiflsmohHXdNzqG8ZUwu7QM49My5KBlyEHLMBkltNU2LcP4SpgdWp68El5n8tNyfmZJP2gZxlfCvNQy5KBlqMe2rg+gSQsLC3H33Xef++d77rknjh8/Hs985jPjsssuixtvvDHuu++++NjHPnbue44fP37u5z788MNx/PjxmJqaissvv7ztw4femt7tgxrIQMtQNo1Cv2gectAy5KBlWJ8+aJs1BwBQDvdmkIOWoX46hhy0DDlomVJYi9AtDQI0x0yFHLQMddEs5KZxyEHLZGRdAzUyuyAHLUMOWoYctAyToS1gFGZHP3idgSaYJQCDMS8BoH9SPWj+C1/4Qrzyla88989ve9vbIiLi2muvjVtuuSUeeOCBuPfee8/7OUeOHDn3/++88874+Mc/Hs9//vPj61//eivHDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRPqgfNX3nllbG8vLzu12+55ZZVP7bR9wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMwtauDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgbzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWrat6wMAIuZOLcXswlLMnzkb+3Ztj5mLp2J691TXhwU8jU7pI+seyMp8A8wBKJtG4SlaYBTWDQBAPdy7AeYAjEdD0A9aB9pg1gzH9YIctAxArexhDMI6AdicWQk5aBl0wOCsFQBW2BOokXULTJo5A3XTMGAOQF00S9OsKeiG9gD6yfwHANriQfPQsfsfPR3vvPWuuOPE7LkfO3poJm66+nAc2L+rwyMDVuiUPrLugazMN8AcgLJpFJ6iBUZh3QAA1MO9G2AOwHg0BP2gdaANZs1wXC/IQcsA1MoexiCsE4DNmZWQg5ZBBwzOWgFghT2BGlm3wKSZM1A3DQPmANRFszTNmoJuaA+gn8x/AKBNW7s+AOizuVNLq27+IyKOnZiNG269K+ZOLXV0ZMAKndJH1j2QlfkGmANQNo3CU7TAKKwbAIB6uHcDzAEYj4agH7QOtMGsGY7rBTloGYBa2cMYhHUCsDmzEnLQMuiAwVkrAKywJ1Aj6xaYNHMG6qZhwByAumiWpllT0A3tAfST+Q8AtM2D5qFDswtLq27+Vxw7MRuzC94AQNd0Sh9Z90BW5htgDkDZNApP0QKjsG4AAOrh3g0wB2A8GoJ+0DrQBrNmOK4X5KBlAGplD2MQ1gnA5sxKyEHLoAMGZ60AsMKeQI2sW2DSzBmom4YBcwDqolmaZk1BN7QH0E/mPwDQNg+ahw7Nnzm74ddPbvJ1YPJ0Sh9Z90BW5htgDkDZNApP0QKjsG4AAOrh3g0wB2A8GoJ+0DrQBrNmOK4X5KBlAGplD2MQ1gnA5sxKyEHLoAMGZ60AsMKeQI2sW2DSzBmom4YBcwDqolmaZk1BN7QH0E/mPwDQNg+ahw7t27l9w6/v3eTrwOTplD6y7oGszDfAHICyaRSeogVGYd0AANTDvRtgDsB4NAT9oHWgDWbNcFwvyEHLANTKHsYgrBOAzZmVkIOWQQcMzloBYIU9gRpZt8CkmTNQNw0D5gDURbM0zZqCbmgPoJ/MfwCgbR40Dx2a2TMVRw/NrPm1o4dmYmbPVMtHBFxIp/SRdQ9kZb4B5gCUTaPwFC0wCusGAKAe7t0AcwDGoyHoB60DbTBrhuN6QQ5aBqBW9jAGYZ0AbM6shBy0DDpgcNYKACvsCdTIugUmzZyBumkYMAegLpqladYUdEN7AP1k/gMAbfOgeejQ9O6puOnqw6veBBw9NBPvu/pwTO/2BgC6plP6yLoHsjLfAHMAyqZReIoWGIV1AwBQD/dugDkA49EQ9IPWgTaYNcNxvSAHLQNQK3sYg7BOADZnVkIOWgYdMDhrBYAV9gRqZN0Ck2bOQN00DJgDUBfN0jRrCrqhPYB+Mv8BgLZtWV5eXu76IGo3Pz8f09PTMTc3F/v27ev6cKjQ3KmlmF1YipNnzsbendtjZs+Um/+W6ZjN6LQOWm6WdU9XtMykmW/t0DIlMwcGp2W6oNHmablOWuBCg7Rs3UD57MuQg5Zpgnu37mmZrpkD49Nxv2koDy2zEa3XQ8vUzKz5Fr8fBTloGXJwjw1rq20P03I3alsnlE/LZNTHWallMtKylulnBxl00bK1As2yJ1Mze8K3aLke1i0b0TJNMGe6p2XGoeFyaJmumAPN0jKTptl29Klla4rMSm5ZezC4kluGYfV5/msZctAy1GNb1wcAREzv7s8NP9RKp/SRdQ9kZb4B5gCUTaPwFC0wCusGAKAe7t0AcwDGoyHoB60DbTBrhuN6QQ5aBqBW9jAGYZ0AbM6shBy0DDpgcNYKACvsCdTIugUmzZyBumkYMAegLpqladYUdEN7AP1k/gMAbdna9QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9I0HzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCyVA+aP3bsWLzuda+LAwcOxJYtW+JTn/rUpj/n9ttvj+/7vu+LHTt2xHd8x3fELbfcMvHjBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPptW9cH0KTHHnssrrjiirjuuuvix37sxzb9/nvuuSd+5Ed+JN761rfGH/zBH8Rtt90W//Jf/st47nOfG69+9atbOGIY39yppZhdWIr5M2dj367tMXPxVEzvnur6sIAJ0TyspgtgUswXqINWgWGYGZCPrimZ9QkA9bKPA10yg+B8mgCGZW5A2TQKrMd8yM3rC8Ao7B90zRoE+swMBFaYBzAa7ZCdNQ79pH0YjXaAWplfUBfNAlmYZ5CDltvlegObMScA2mPmAgBNSfWg+auuuiquuuqqgb//Ix/5SLzgBS+I97///RER8d3f/d3xmc98Jj7wgQ940DxVuP/R0/HOW++KO07Mnvuxo4dm4qarD8eB/bs6PDJgEjQPq+kCmBTzBeqgVWAYZgbko2tKZn0CQL3s40CXzCA4nyaAYZkbUDaNAusxH3Lz+gIwCvsHXbMGgT4zA4EV5gGMRjtkZ41DP2kfRqMdoFbmF9RFs0AW5hnkoOV2ud7AZswJgPaYuQBAk7Z2fQBd+tznPhevetWrzvuxV7/61fG5z31uw5+3uLgY8/Pz5/0P2jZ3amnVG4OIiGMnZuOGW++KuVNLHR1ZHXRMbTS/Ni33my7y0DKlMV9Go2XaptXJ0DJZ9W1maJk+6EPXWq5XH9Yng9My5KDl/rCP56ZlSmcGbU7H/aKJvLTMpJgb7dIyw9JombRMCcyH8ZXcstcXBldyy9C2mvcPLedQ8xqkGVqmzzLNQC3DeEqZB1qmNqW0Uxot52GN95eO+037eWi5XdphUrTMpJlf7dAyTdFst7QMzelynmkZmqPldrkXJKM+tjxJ5gRd0TJ9lHHmahly0DLUq9cPmn/wwQfj0ksvPe/HLr300pifn4/Tp0+v+/Pe+973xvT09Ln/HTx4cNKHCqvMLiytemOw4tiJ2ZhdqO/NQZt0TG00vzYt95su8tAypTFfRqNl2qbVydAyWfVtZmiZPuhD11quVx/WJ4PTMuSg5f6wj+emZUpnBm1Ox/2iiby0zKSYG+3SMsPSaJm0TAnMh/GV3LLXFwZXcsvQtpr3Dy3nUPMapBlaps8yzUAtw3hKmQdapjaltFMaLedhjfeXjvtN+3louV3aYVK0zKSZX+3QMk3RbLe0DM3pcp5pGZqj5Xa5FySjPrY8SeYEXdEyfZRx5moZctAy1KvXD5of1Y033hhzc3Pn/vd3f/d3XR8SPTR/5uyGXz+5ydf7TsfURvNr03K/6SIPLVMa82U0WqZtWp0MLZNV32aGlumDPnSt5Xr1YX0yOC1DDlruD/t4blqmdGbQ5nTcL5rIS8tMirnRLi0zLI2WScuUwHwYX8kte31hcCW3DG2ref/Qcg41r0GaoWX6LNMM1DKMp5R5oGVqU0o7pdFyHtZ4f+m437Sfh5bbpR0mRctMmvnVDi3TFM12S8vQnC7nmZahOVpul3tBMupjy5NkTtAVLdNHGWeuliEHLUO9tnV9AF16znOeEw899NB5P/bQQw/Fvn37YteuXev+vB07dsSOHTsmfXiwoX07t2/49b2bfL3vdExtNL82LfebLvLQMqUxX0ajZdqm1cnQMln1bWZomT7oQ9darlcf1ieD0zLkoOX+sI/npmVKZwZtTsf9oom8tMykmBvt0jLD0miZtEwJzIfxldyy1xcGV3LL0Laa9w8t51DzGqQZWqbPMs1ALcN4SpkHWqY2pbRTGi3nYY33l477Tft5aLld2mFStMykmV/t0DJN0Wy3tAzN6XKeaRmao+V2uRckoz62PEnmBF3RMn2UceZqGXLQMtRra9cH0KWXvexlcdttt533Y5/+9KfjZS97WUdHBIOb2TMVRw/NrPm1o4dmYmbPVMtHBEyS5mE1XQCTYr5AHbQKDMPMgHx0TcmsTwCol30c6JIZBOfTBDAscwPKplFgPeZDbl5fAEZh/6Br1iDQZ2YgsMI8gNFoh+yscegn7cNotAPUyvyCumgWyMI8gxy03C7XG9iMOQHQHjMXAGhaqgfNLywsxPHjx+P48eMREXHPPffE8ePH4957742IiBtvvDGuueaac9//1re+Nb72ta/FO97xjvibv/mb+Lf/9t/GH//xH8cv/MIvdHH4MJTp3VNx09WHV71BOHpoJt539eGY3u3NAWSieVhNF8CkmC9QB60CwzAzIB9dUzLrEwDqZR8HumQGwfk0AQzL3ICyaRRYj/mQm9cXgFHYP+iaNQj0mRkIrDAPYDTaITtrHPpJ+zAa7QC1Mr+gLpoFsjDPIActt8v1BjZjTgC0x8wFAJq2ZXl5ebnrg2jK7bffHq985StX/fi1114bt9xyS7z5zW+Or3/963H77bef93N+4Rd+Ib785S/Ht33bt8Uv/dIvxZvf/Oah/r3z8/MxPT0dc3NzsW/fvjHPAoYzd2opZheW4uSZs7F35/aY2TPljcEIdEwtNL8xLfeTLvLRMqUwX8ajZdqi1cnSMtn0dWZomcz61LWW69On9cngtAw5aDk/+3g/aJlSmUGD03E/aCI/LdM0c6MbWmZQGi2blumS+dCcElv2+sLwSmwZ2pZh/9By3TKsQZqhZfoo4wzUMoymtHmgZWpRWjul0XL9rHF03E/az0fL7dAOk6ZlJsX8apeWGZdmy6BlGF8J80zLMD4tt6uE6w2T0qeWJ8mcoGtapk8yz1wtQw5ahnps6/oAmnTllVfG8vLyul+/5ZZb1vw5X/rSlyZ4VDBZ07vzvBkANqd5WE0XwKSYL1AHrQLDMDMgH11TMusTAOplHwe6ZAbB+TQBDMvcgLJpFFiP+ZCb1xeAUdg/6Jo1CPSZGQisMA9gNNohO2sc+kn7MBrtALUyv6AumgWyMM8gBy23y/UGNmNOALTHzAUAmrK16wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6BsPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBl27o+AGBtc6eWYnZhKebPnI19u7bHzMVTMb17quvDgqrpCmA1s5G+sNYhBy0D4zJHICdtcyFrAgBog3sOyE/n0C0NAivMAzifJqC/9A+j0Q5QC/MK6qFXoC/MO+iO/qBdmoOyaBLKoUeon46BCLMA+kDngDkAuWi637z+AN0wf6GftA8AlMyD5qFA9z96Ot55611xx4nZcz929NBM3HT14Tiwf1eHRwb10hXAamYjfWGtQw5aBsZljkBO2uZC1gQA0Ab3HJCfzqFbGgRWmAdwPk1Af+kfRqMdoBbmFdRDr0BfmHfQHf1BuzQHZdEklEOPUD8dAxFmAfSBzgFzAHLRdL95/QG6Yf5CP2kfACjd1q4PADjf3KmlVW8iIiKOnZiNG269K+ZOLXV0ZFAvXQGsZjbSF9Y65KBlYFzmCOSkbS5kTQAAbXDPAfnpHLqlQWCFeQDn0wT0l/5hNNoBamFeQT30CvSFeQfd0R+0S3NQFk1COfQI9dMxEGEWQB/oHDAHIBdN95vXH6Ab5i/0k/YBgBps6/oAILO5U0sxu7AU82fOxr5d22Pm4qmY3j214c+ZXVha9SZixbETszG7sLTprwG1GqWZQegKWMukZk4tzEZKMskerXUYXMl7o5aBcW00R77wjW/Go6fOFjsDoU+GvR9xj8CF2loTJd87AwCT8fT9f9fURXHFwf1x5ze+GaeWnjjv+9yHQp0uvMfftmVL3PmNb675vTqna314T+ozH8ihiXllHtCWWvZXTUAuw8we/cNont7O7qmL4rqXvyCOHNwfi48/GTu3XxSPnjqrHWBg/swDtavlvW/p9Ar0xSTmnb2Ivhl1zbvfoA9K2hM0R41KaqhpmoR2bTRP9Ahl8XfaQg5d3MubBTCeGt6D6xzaVeJcMAegeV22rul+2+z1f+SxpXPfV9JeBNAWz7ICmuTPngIANfCgeZiQ+x89He+89a7zPhA4emgmbrr6cBzYv2vdnzd/5uyGv+7JTb4OtRq1mUHoCrjQJGdOLcxGSjHpHq11GEzpe6OWgXGtN0d2T10Uv/2mI/GuT/1V3HH3I+d+vKQZCH0xyv2IewQu1MaaKP3eGQBo3lr7/w9+x7Pit990JH7uD7+06mHz7kOhLms1/opDM+s2HqFzutOX96Q+84H6NTWvzAPaUNP+qgnIY9jZo38YzUo7K/990Ec/e0/8m7+4+9zXX3FoJt5X4J4PlMefeaB2Nb33LZ1egb5oet7Zi+ibcda8+w2yK21P0By1Ka2hpmkS2rPZPNEjlMPfaQs5dHUvbxbA6Gp5D65zaE+pc8EcgGZ13bqm+22j13/31EWxHBHX/+GXituLANrgWVZA0/zZUwCgBlu7PgDIaO7U0qoPGSIijp2YjRtuvSvmTi2t+3P37dy+4a+9d5OvQ43GaWYQugKebtIzpxZmIyVoo0drHTZXw96oZWBc682R617+gvjoZ+857yHzEWXNQOiDUe9H3CNwoUmviRrunQGAZq23/3/27kfio5+9J657+QtW/Rz3oVCP9Rq/48Tsuo1H6Jxu9Ok9qc98oG5NzivzgEmrbX/VBOQwyuzRP4xmpZ2V/z7osxf890F3FLrnA2XxZx6oXW3vfUunV6Avmpx39iL6Ztw1736DzErcEzRHTUpsqGmahHYMMk/0CGXwd9pCDl3ey5sFMJqa3oPrHNpR8lwwB6A5JbSu6X7b6PW/7uUviF/9k78uci8CmDTPsgImwZ89BQBq4EHzMAGzC0urPmRYcezEbMwurP8mYGbPVBw9NLPm144emomZPVONHCOUZJxmBqEr4OkmPXNqYTZSgjZ6tNZhczXsjVoGxrXeHDlycP+q38hfUcoMhD4Y9X7EPQIXmvSaqOHeGQBo1kb7/2fvfiSOHNx/3o+5D4W6DNt4hM7pTp/ek/rMB+rW5LwyD5i02vZXTUAOo8we/cNoVtrx3wcB4/BnHqhdbe99S6dXoC+anHf2Ivpm3DXvfoPMStwTNEdNSmyoaZqEdgwyT/QIZfB32kIOXd7LmwUwmpreg+sc2lHyXDAHoDkltK7pftvo9f+nL3xW3OHPRAA95VlWwCT4s6cAQA08aB4mYP7M2Q2/fnKDr0/vnoqbrj686oOEo4dm4n1XH47p3T5EIJ9xmhmEroCnm/TMqYXZSAna6NFah83VsDdqGRjXenNkMyXMQOiDUe9H3CNwoUmviRrunQGAZm22/y8+/uS5/+8+FOqzWeMX0jld6tN7Up/5QN2anFfmAZNW2/6qCchhlNmjfxjNSjubKW3PB8rizzxQu9re+5ZOr0BfNDnv7EX0zbhr3v0GmZW4J2iOmpTYUNM0Ce0YZJ7oEcrg77SFHLq8lzcLYDQ1vQfXObSj5LlgDkBzSmhd0/220eu/Y9vGjxUr6R4VoGmeZQVMgj97CgDUYFvXBwAZ7du5fcOv793k6wf274oPvelIzC4sxckzZ2Pvzu0xs2fKBwikNW4zg9AVsKKNmVMLs5GutdWjtQ4bq2Vv1DIwrrXmyJPLyxv+nFJmIGQ3zv2IewQuNMk1Ucu9MwDQnM32/xfOXByf+l//qftQqNRmjV/2zN1x29t+yPtNitC396Q+84F6NT2vzAMmqcb9VRNQv1Fnj/5hNAf274rHFh/f8HtK3POBcvgzD9Suxve+pdMr0BdNzTt7EX3TxJp3v0FWpe4JmqMWpTbUNE3C5A06T/QI3fN32kIOXd/LmwUwvK67HZbOYfJKnwvmADSjlNY13W/rvf6zC0sb/ryu9yKASfIsK2BS/NlTAKB0HjQPEzCzZyqOHpqJYydmV33t6KGZmNmz+YcB07t9aEB/NNHMIHQFRLQ3c2phNtKlNnu01mF9Ne2NWgbGdeEcmTu1VM0MhMzGvR9xj8CFJrUmarp3BgCasdn+/9zpne5FoWKbNX7J3h0apxh9fE/qMx+o0yTmlXnApNS6v2oC6jbO7NE/jOaSvTuq3POBMvgzD9Su1ve+pdMr0BdNzDt7EX3T1Jp3v0FGJe8JmqMGJTfUNE3CZA0zT/QI3fJ32kIOJdzLmwUwnBK6HZbOYbJqmAvmAIyvpNY13W/rvf6lrE+AtnmWFTBJ/uwpAFCyrV0fAGQ0vXsqbrr6cBw9NHPejx89NBPvu/qwDwfgApoB2mTmQDn0CGXQItBnZiCUQYvUwloFgP6x/0NuGqcm1itQC/OKmlivQBfMHmif7oBxmCHUzhoGoGv2IvrGmof16QPGoyGgKeYJ1EOvkIOWoT66BS5kLkA/aJ2SWZ9An5mBwCSZMQBAybYsLy8vd30QtZufn4/p6emYm5uLffv2dX04FGTu1FLMLizFyTNnY+/O7TGzZ8obgELpuAyaYVxaZhhmTrm03D96zEnL9dEia9EyfZF9BmqZWmRvcVxaLoe1yji0DDlouX/s/zlpmRUar1cfO7ZeyaiPLfeBedU/NbdsvcK31NxybcweJknLa9MdtdFyWcwQRlVKy9YwjKeUlqFmJexFWqZNJaz5rLRcP30QoeVxaIhS6Lh+5gkRWq6FXtmMluugZTaj5fLollFoOTdzoT+03G9azyNjy9YnfZSxZUZjBtZNy5TOjBmMliEHLUM9tnV9AJDZ9G43/TAMzQBtMnOgHHqEMmgR6DMzEMqgRWphrQJA/9j/ITeNUxPrFaiFeUVNrFegC2YPtE93wDjMEGpnDQPQNXsRfWPNw/r0AePRENAU8wTqoVfIQctQH90CFzIXoB+0TsmsT6DPzEBgkswYAKBEW7s+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC+8aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlRT9o/tFHH42Pf/zjXR8GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKOKftD8N77xjfgX/+JfdH0YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI0q+kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABl50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBl27r8l//2b//2hl+/7777WjoSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPZ0+qD5D3zgA5t+z2WXXTb0r/vhD384fuM3fiMefPDBuOKKK+JDH/pQ/MAP/MCa33v27Nl473vfG7/3e78X9913X3znd35nvO9974vXvOY1Q/97AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbR6YPm77nnnsZ/zT/6oz+Kt73tbfGRj3wkXvrSl8YHP/jBePWrXx1f/epX45JLLln1/e9617vi3/27fxe/8zu/E9/1Xd8Vf/7nfx5veMMb4i//8i/jyJEjjR8fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNYu/+Wvfe1rY25u7tw/33TTTfHoo4+e++dHHnkkLr/88qF+zd/8zd+Mn/mZn4m3vOUtcfnll8dHPvKR2L17d9x8881rfv/v//7vxy/+4i/Ga1/72njhC18YP/uzPxuvfe1r4/3vf/9I5wQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwmW1d/sv/7M/+LBYXF8/986//+q/Hj//4j8f+/fsjIuLxxx+Pr371qwP/ektLS3HnnXfGjTfeeO7Htm7dGq961avic5/73Jo/Z3FxMXbu3Hnej+3atSs+85nPrPvvWVxcPO+45+fnBz5GoAw6hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz10zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUD8dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz12tr1ATzd8vLyWD9/dnY2nnjiibj00kvP+/FLL700HnzwwTV/zqtf/er4zd/8zThx4kQ8+eST8elPfzo+8YlPxAMPPLDuv+e9731vTE9Pn/vfwYMHxzpuoH06hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz10zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUD8dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz12rI87tPdx7B169Z48MEH45JLLomIiL1798Z/+S//JV74whdGRMRDDz0UBw4ciCeeeGKgX+/++++P5z3vefGXf/mX8bKXvezcj7/jHe+I//yf/3N8/vOfX/VzHn744fiZn/mZ+I//8T/Gli1b4kUvelG86lWviptvvjlOnz695r9ncXExFhcXz/3z/Px8HDx4MObm5mLfvn0Dnz/QHR1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvrpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWon44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahnpt6/JfvmXLltiyZcuqHxvVzMxMXHTRRfHQQw+d9+MPPfRQPOc5z1nz5zz72c+OT33qU3HmzJl45JFH4sCBA3HDDTece9j9Wnbs2BE7duwY+Tgp29yppZhdWIr5M2dj367tMXPxVEzvnur6sGiYjidDP7RNy4PRJqXTcrnMD4ah5XJpmWFoGdZW2yzVMjSvizmg5XLVti/QLS1DDlqeHPsqbdJy/5gx+ZTQsXUF4yuh5dqYPZRolJatZSiPfXk85hqlqLllHcG31Nxyl8wRSuP9MuRgX6ZU9ozhaJk26XNytNw965smaHlzWqN0Oi6PucEosresC/oie8u1MHMYl5bLoGXGpeX+Mj9y0XIe2uw3LW9OI9RAy/1mTuWhZWpg5mxOy5CDlqFenT5ofnl5Od785jefGyBnzpyJt771rXHxxRdHRMTi4uJQv97U1FR8//d/f9x2223x+te/PiIinnzyybjtttvi+uuv3/Dn7ty5M573vOfF2bNn49Zbb40f//EfH/6EqN79j56Od956V9xxYvbcjx09NBM3XX04Duzf1eGRQfn0A2XSJjAq8wNy0DLA+MxSwBzg6awHAGiOfRWYJDOGSbCugC6YPWRhLQPZmGswPh0B4zJHyMA6BmBQ9gwolz7JzPqGdmgNGJa5AavpAmiTmQM5aBkYlfkBZdImbEwjQOnMKaBNZg4AUIOtXf7Lr7322rjkkktieno6pqen46d+6qfiwIED5/75kksuiWuuuWaoX/Ntb3tb/M7v/E783u/9XnzlK1+Jn/3Zn43HHnss3vKWt0RExDXXXBM33njjue///Oc/H5/4xCfia1/7Wtxxxx3xmte8Jp588sl4xzve0ei5Ur65U0urbuAjIo6dmI0bbr0r5k4tdXRkUD79QJm0CYzK/IActAwwPrMUMAd4OusBAJpjXwUmyYxhEqwroAtmD1lYy0A25hqMT0fAuMwRMrCOARiUPQPKpU8ys76hHVoDhmVuwGq6ANpk5kAOWgZGZX5AmbQJG9MIUDpzCmiTmQMA1GJbl//yj370o43/mj/xEz8RDz/8cPzyL/9yPPjgg/GSl7wk/uzP/iwuvfTSiIi49957Y+vWree+/8yZM/Gud70rvva1r8WePXvita99bfz+7/9+7N+/v/Fjo2yzC0urbuBXHDsxG7MLSzG9e6rlo4I66AfKpE1gVOYH5KBlgPGZpYA5wNNZDwDQHPsqMElmDJNgXQFdMHvIwloGsjHXYHw6AsZljpCBdQzAoOwZUC59kpn1De3QGjAscwNW0wXQJjMHctAyMCrzA8qkTdiYRoDSmVNAm8wcAKAWnT5oflKuv/76uP7669f82u23337eP//QD/1QfPnLX27hqCjd/JmzG3795CZfhz7TD5RJm8CozA/IQcsA4zNLAXOAp7MeAKA59lVgkswYJsG6Arpg9pCFtQxkY67B+HQEjMscIQPrGIBB2TOgXPokM+sb2qE1YFjmBqymC6BNZg7koGVgVOYHlEmbsDGNAKUzp4A2mTkAQC22dn0AUIp9O7dv+PW9m3wd+kw/UCZtAqMyPyAHLQOMzywFzAGeznoAgObYV4FJMmOYBOsK6ILZQxbWMpCNuQbj0xEwLnOEDKxjAAZlz4By6ZPMrG9oh9aAYZkbsJougDaZOZCDloFRmR9QJm3CxjQClM6cAtpk5gAAtdjW9QFAG+ZOLcXswlLMnzkb+3Ztj5mLp2J699R53zOzZyqOHpqJYydmV/38o4dmYmbP1Kofhz7ZqCP9QJm0Wa9B7l1gXPZ26FYbs17LQNsy3seapVCetmeNOcDTWQ/1yHhfApDNpPdVewGUxXs5Muh6XdnboD5NdNv17IGmZF3L9mfor6xzbVjmIOPQ0Wh0B9/SxBzRFF2zH5bJbKAW1mq/2DOgHBfO3z07t8UPf/cl8emv/MOq79UnpRn2/sH+A+3QGqPwnrDfzI3J0FXdnt7F7qmL4rqXvyCOHNwfi48/Gc/Y/dR7N6CfJjHf7cVQt5W5MHd6Kf7wZ14an/1vj8TNn7knTi09ce57tAyTkeV9l3sB2FhXrWsTNtb3RrLch0ATSu2h73MKSlHqjGiamQMA1GLL8vLyctcHUbv5+fmYnp6Oubm52LdvX9eH0xuDvrm4/9HT8c5b74o7nnZzfvTQTNx09eE4sH/Xqu+94da7zruRP3poJt539eF47gXfSy463thmHc2dWooH58/E33/zdGzZsiW+eO834+bP3BP/+PnP0A+t0vJqGfa2vnyguGKYe5estDx5F66z3VMXxS/96OXxfZftj1NLT8S+Xdtj57at8at/+l/P+8sNapsfdEvL6xt21o+zF2a4F6BbWs6r6fvszPexGWaplulKlllTyhzQchlKWQ+sb71Z8b6rD8fuqYs6/6xRy5CDlpsxyL46yj1l5veoNEvLgxn3vV3f38sxWW11vNLBN08txdknnjzvLxFqY13Z28guw5584X65c9vW+JU//a/x/17w31yM0q09jVps1nKmtbzRfzdtf6Z2GfbltmSaa6Po4/uUmv6b9lpa7ntHw2qzu5rWe2a1tNylcebIfd88Fd945FQ8evps7Nx+UXzx3m/GVx+Yj3f/s+9Ju5fRjT69X86gzT/rQV1K2Zc3+z2rzO/JsGc0oZSWacck9un17hXe8/rviX/9/3zZn8duSc0td3n/OOpnS/YfJqXmlidBa1xooz2jlN+n03G3MsyNkj5bK6WrLmRq+f5HT8ev/Mlfx0/8wGXx0c/eE5+9+5FzD53/py98Vkxt2xrPuHjK57iklKnlJg3yd+j6O70oiZYn74FHT8ftf/twXLJ3Ryw+/mTs3H5RPDR3Op4zvSv+t49/sbU/J0ZuWl7bJPflLrgXyE/La9us1a4/Y9EmF9Ly+fraSNezqXYl3KdpuTml9/D0OfX0z/d3bNsa+32+Xz0td2uQeV76jGhaX++NxqVlyEHLUA8Pmm+Aode+Qd9czJ1aiuv/8Evnfd/Tv/9Dbzqy6o3Lypubk2fOxt6d22Nmjw8L+kDH69uoox/+7kviV173j+LGT/7VeV9/xaGZ+Nf/7HviGbu364dWaXltNe9tfftAcZR7l4y0PFkXrrPdUxfFb7/pyLk/ILPi6KGZ+PU3fG8sPfFkzJ+ub37QPS2vbdhZ38ReWPO9AN3Tck5N32f34T629lmqZbqQbdaUMAe0XI4S1gNrW29W7J66KG5+8/8UH/6Lu+OOu/1FSsD4tNycjfbVUe4pu75vpC5a3ty47+26btK9e35tdLxWB684NBO/+r/8o9gSEc+a8B9G7LojaEPte/Jac+Ll3/GsePMPviB+7g+/FKeWnjj346N2a0+jBoO0nGEt3//o6Xjn/33XeZ8z/uB3PCve8j+a/8fPf4b9marVvi+3LcNcG0Uf36fU9t+019RyXzsaVpvd1bbeM6up5S6NMkf+/r+find+4q7z/vzEyn39H/1/98b/+cYrzCIa05f3yxl08Wc9qEcJ+/Jaa+7pn0utPPgi43syvsWeMZ4SWqYdk9inN7tX+I03XhELZx7XZwtqbbnL+8dxP1uy/zAJtbY8SVpjxUZ7xsVTFxXz+3Q67l7Nc6Okz9b6+PvfT5et5Yfmz8Tb//h43PE/HjK/3t+p5XNcssnWchNG+Tt0/Z1edE3LkzV3aim+8uDJ+NBfnFj134v87//zoZjZMxVbYouWGZuWV2tjX+6Ce4HctLzaZp/nlPIZizZ5Oi2v1rdGSplNtSrls3wtN6OWHuZOLcUjjy3FckT86p/8ddzh8/00tNydQeZ5LTOiaX27N2qCliEHLUM9tnV9ADCsuVNLq96AREQcOzEbN9x613lvLmYXltZ8E7Ly/bMLS6tu0Kd3u2mHp9uoo+987r648RN3nfcBW0TEHSdm45f/5K/jQ2860sYhApuodW8bZs/PYpR7FxjWhevsupe/YNUfiIl4as394if/Kj70piPxwmfvafswIa1hZn1Te2Gt9wLAZEziPrsP97FmKQwn46wxB3g666Fc682K617+glV/6Dci92eNbbj33ntjdnbt2VyCmZmZuOyyy7o+DGAT6+2ro95Tdn3fCJk08d6u6ybduzOu9Tq448RsvPtP/2sr7yW67gjY2Hpz4jN3PxLL8dRnEv/mL+4+9+OjdmtPI4va1/K55u8+v/mVzx1Xmrc/Q3/UPtdG1bf3KX38b9rb1NeOhtVWd9Y7NRp2jsydWoobL3jIfMS37uuPXPaMdHsZ5bMflqGLP+sBg1pvzV34uVTG92Scz54Bm5vUPr3ZvcLCmcfjRZf4s9isrev7x3E/W7L/QDu0RsTme8a//mff06vfp2Njtc6Nru+NLtS33//ObuHM4+f+TsyN/k4tn+NCfqP8Hbr+Ti/I7dFTZ9f8+yZW/vnXX/+98fyZi7s4NEivjX25C+4F6JNBPs8p5TMWbcLG+tZIKbOpRqV9ls/4aulh5Riu/8MvVfk+AUoz6DyvZUY0rW/3RgBAfTxonuoM8+Zi/szZDX+tk5t8Hdi4oyMH95/3l6A+XeY3+0A7+viBonsX2nDhOrOfQ7uGmfV93AuByZvEbHEfC1zIrAG6st6s8PlH8+699974ru/67jh9+lTXh7KuXbt2x9/8zVc8bB4qNeo9pftGaE4T7+00Se1K+L0aHUHZNpoTn737kbjuB1+w6sd1C/UatHmdA9n17X1KCe8Noa3urHf6YHZhadVfOLZi5b4+214GDMaf9aBkw3wWbR8D+m5S+3TfPhOjWV3fP1q/APXYbM94bOnxDX++mU4Nur43upB7pVye/nr6M6XQb/4OXeBCjy09vuoh8ys+e/cjm77fAkZnX4b6DfJ5js9YgBKZTaMr7bN8xldTD9YfNGfQnmqaEQAAfeJB81RnmDcX+3Zu3/B7927ydeijuVNL535jbt+u7bFnx/pbxeLjT274a3mzD4xjkD3/wpk1c/FU1R/uu3ehDReus83287nT9nMY1kb70zCz3m+uAZMwidkyifvYbPf60DclzxrzhaZZU2VZb1b4/Yzmzc7OxunTp+Kl1/1K7Hvut3d9OKvMP/D1+PzN747Z2VkPmocKzZ1aiv9+amnD71lvdvu9FmjOMO/t1rsv1iSlGPW9Wwm/V6MjKNtmc2KtzyR0C5M3qc9tB21e59A/ffv9or69TynhvSHjq73Ttrqz3slio+YHua/PtpfRH7Xvd13zZz0o2TCfRdvHcjHbYXiT2qf79pkYzRp3XY67H1i/9Jn7KWqz2Z5xaumJDb9upvdTbbOutM/W3CvlMXdqKXZtv+jcP/szpdCeEveijea7+QB1GnfWPLbJ+6nN3m8Bo5v0vlzivQhkM8jnOU18xqJnaJamfP47jtI+y2d8TfcwyRlj/UFzBu2pqz3T/Qrw/7N391F61eWh96/EZEKGkEEygkATpZCiHglvFquBqGt5So+tp7SU1eJxidB6Tk+l2sNpFWtbqlaBZXVxqrY+fR5BPX30uBRfWtta3xaiQm0F+iA9SsG3WJDqoJkhBGZimOcPzoQk83bPfe977/279uezFn+QmcDee37f67fve5LZACzNg+YpznIvLtaPPPYH/MY3jMSOreNx410T8z5vx9bxGN/gxQEc6N5dD8Wrr789Pn9AM1f+4ilxztbxg35tzpHrvUEODE8ve/6l77/toPm0Y+t4XHX+tjjuyPXDPryhcO9CHQ5dZ+vWrF7y8x/euy/u3fVQsV1B3Ra6pz5wf1rJrPcHUoBhGMZsqfo+drlZCrRfW2eN+ULVrKn2WWxWLPf+h9dX/dt47JPjqC0nN30YQCJz++tLn/3kJT9vsdntey1QnV5f2y11X6xJ2mCQ125t+F6NjqDdlpsTh74noVsYvmG+b9tL8zqH7uni94u69jqlDa8NGUyGTuvqznong+WaX26dH7l+bbq9jG7IsN81zd/1oM16fS8642uyLjPboT/D2qeXulc4+6RNcdjapf+sMt02yLqsYj/o2nu6MMf9FCVabs8YW7/WTOcgJc66tr235l4ph7kWTt18ZGw/aVN88e77/Z1SqElb96Kl5rufoQvlqWLWLNf+2DIfB/o3zH25rfcikE0v7+cM+h6LnqFamnqU93/717b38hlclT0Me8ZYf1CdXntqYs90vwIAsDx/S4XizL24WMj2kzbFrTt3xeSemYiIGBsdiavO3zbv83dsHY+rz98WY6PevIM5k3tm5r2Ijoh4w8f/d7z8eSct2NGTNo0u2qM3yIFBLbXn79g6Hrfu3DVvZt1410Rcfv3t++8FSuPehTocus5u+86u2H7SpgU/d/tJm+Kmb9xfdFdQp8XuqQ/cn1Yy65fbC91vA/0Yxmyp8j62l1kKtF8bZ435QtWsqXZabFZ874HpOMfrK4DWO3B/Xeq966Vmt++1QHV6eW233H1xRGiSRg362q0N36uxt0G7LTUnzj5pU9z2nV37/123MHzDft92ub/H8L0HpnUOHdPV7xd17XVKG14b0r8sndbVnfVO6XppfrnX8k/aNJpuLyO/LPtd0/xdD9psufelbvvOrrSvybrKbIf+DWufHhsdiTf9wilx9iF/pm37SZvipdtPiD/8y3/WJovqd11WtR907T1diHA/RbmW2zOOPmKdmc5+pc66tr235l6pfAe2cO0XvhkXbz9h/3tm/fy9JKB3bd6LlprvfoYulKWqWXP0EesW/XkT5/yf11vAcAxrX27zvQhk08v7OYO8x6JnqJamHuP93/617b18BldVD3XMGOsPqtNrT3Xvme5XAAB6s6bpA4CVGhsdidf//NPjtR/9Snzx7vv3//r2kzbFxdtPiFe8/7Y468lH7X+RcdyR6+NtF54eE7tn4oGH98YRh63d/00H4DETu2fmvYiOiNgzsy8uefc/xt++4pz40SOz8zq66vxtcfn1t8eNB/xeb5ADVVhqxrz+558eL/iTzy/4+268ayImds8UO4Pcu1CHA9fZg9N745fO+LH4/Y/dcdC9wIH313tm9hXdFdRlsXvqiIP3p15nvfttYBiGNVuquo/tdZYC7dbGWWO+UDVrqr0WmxXP+YkneH0F0HIH7q/XfuGb8ScXnh4RcdCfDelldvteC1Sjl9d2X//e7mXvi088eoMmacygr93a8r0aexu011J/pvl3zn1K/PDBmfjQrz8rHj86oluowbDft13s3uCcrePxhp9/ejx+dK3OoWO6/P2iLr1OactrQ/qTqdM6urPeKV0vzZ949IZF7+uv/IVT4vjHj9Z1uFCZTPtd0/xdD9pqqfelXvcf/11ERLzs7BOsvUTMdujfMPfpmX2PxGlbHh8Xbz8hpn/0SKxbszpu+84ufw+bZfW7LqvcD7r0ni5EuJ+iXL3sGWOjYaYTEeXOuja+t+ZeqWwHtrBnZl+84v23xSVnnxDP2PL4eOG2Y+OP/vqrB7XifVyoTtv3oqXme9v2ImBxVc2asdGRuFr70Jhh7MttvxeBTHpttd/3WPQM1dLUwbz/2x/vn+RURQ91zBjrD6qzkp7q3DPdrwAA9MaD5inS5EMzcfqWx8cli/zlqwce3nvQ5z/6h6O9AIClTB3SzYH2zOyLH+6ZidO2PH7ex7xBDgzTYjPmW/c/GHtm9i36+w69FyiNexfqcOg6+/2fe1p85wd7Fry/jii/K6jDUvfUEQd31Ousd78NDMOwZksV97ErmaVAu7Vt1pgvVM2aareFZoUfpATQfgfurwf+cKe5Pxvy5E2jcfyR63v+oQ9mPAxuudd2vd4Xa5KmVPHarS3fq9ERtNdif6b5wv/772PPzL746G88O048ekPThwmdUMf7tm25NwDaoevfL+rS6xTzv1zZOq2jO+udkvXavHVONtn2u6b5ux60lTXXLWY7DGZYM3Pyob3x9s/evejHtclS+lmXVe8HXXpPF9xPUbJe9gwznYiyZ10b3+fQVbkObWHPzL79r91GRx4XH3v59li9alVr1hpkUsJetNh8b+NeBCysylmjfWhW1ftyCfcikEmvrfbzHoueoVqams/7v/3xGiqnQXuoa8ZYf1CdlfRU157pfgUAoDceNE+RNqxbu+RfvjrisLU1Hg3ksHGZbpbqyhvkwDAtNGM27J5Z8ve4F4CVe9yqVfGr7/nyoh/XFSxvkHvqpbjfBoahrbNlWLMUaEabZo35QtWsqTK1aS4BMN+h++uBP9wpIuIzlz3HHIcGLHUP5b6YtqtqjXotASzFn2mG9qjr/tS9ATDH6+JuMf/LpNP+WO+UaiXNW+dkYr9rjllC3ay57jDbYXDDmJnaZFArXZfWHPRPP5TO6z96Ufqss86pylIt7JnZF6tXrYoTj95Q4xFBd9iLgDpUPWu0D+3UT5ul34tAiYa1j+oZqqUpquQ1FIeqc8ZYf1CdtvXkfgUAoDermz4A6Mf4hpHYsXV8wY/t2Doe4xva8+IESqEroCRmFlRPVzA4HQEMziwFhsV8oWrWFABUz/4K5dEtbWeNAnUwa6A99AjUzdyB9tMpdIvm6SprHyAfsx3aSZvUzZqD/ukH6AKzDh6lBWiO/oA6mDXAYswHyEPPUC1NAcNkxgBVMEsAAHrjQfMUaWx0JK46f9u8m/4dW8fj6vO3xdioG35YKV0BJTGzoHq6gsHpCGBwZikwLOYLVbOmAKB69lcoj25pO2sUqINZA+2hR6Bu5g60n06hWzRPV1n7APmY7dBO2qRu1hz0Tz9AF5h18CgtQHP0B9TBrAEWYz5AHnqGamkKGCYzBqiCWQIA0JtVs7Ozs00fROmmpqZibGwsJicnY+PGjU0fTqdM7pmJid0z8cDDe+OIw9bG+IYRN/v0RceP0RUl03L3mFk5ablZuqIqXW5ZR2TS5ZZplllaLS3DY0qeL1pup5LXFM3I0vKtt94aZ555Zvz7114XR205uenDmecHO++MT73x4rjlllvijDPOaPpwSChLy21lf6UuWq6ObmlKrx1bo9BuWfZks4aua1PLeoT+tanlkpg7tI2W59MpJdJy/zRPm9TZsrUPw2Nfpilme7W0TFW02awutmzNkVFdLesHhqeLe3JbmXUMIlPLWqDLmm5Zf1CNpltuO7OGUmi5fuYDw6DlZuiZqnW9ZU2RRddbbiszhpXSMgsxS8qjZchBy1CONU0fAAxibNQNPlRNV0BJzCyonq5gcDoCGJxZCgyL+ULVrCkAqJ79FcqjW9rOGgXqYNZAe+gRqJu5A+2nU+gWzdNV1j5APmY7tJM2qZs1B/3TD9AFZh08SgvQHP0BdTBrgMWYD5CHnqFamgKGyYwBqmCWAAAsbXXTBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGq2pukDgKpN7pmJid0zMfXw3ti4fm2MHz4SY6MjTR8WpKY7gP6Yn7SBdQjV0BJA9cxWaI7+oH10CQC9s29CffRGBtYxMExmDFRPVwArY25CffQGVMlMoQuscyiHXgGGx4ylX9YODJ/OAIbPrGVQ1hCUR7dAlcwUKI9ugYWYDZCPrgHaxVymTtYbAEB1PGieVO7d9VC8+vrb4/N3Tez/tR1bx+Oq87fFcUeub/DIIC/dAfTH/KQNrEOohpYAqme2QnP0B+2jSwDonX0T6qM3MrCOgWEyY6B6ugJYGXMT6qM3oEpmCl1gnUM59AowPGYs/bJ2YPh0BjB8Zi2DsoagPLoFqmSmQHl0CyzEbIB8dA3QLuYydbLeAACqtbrpA4CqTO6ZmfdiISLixrsm4vLrb4/JPTMNHRnkpTuA/piftIF1CNXQEkD1zFZojv6gfXQJAL2zb0J99EYG1jEwTGYMVE9XACtjbkJ99AZUyUyhC6xzKIdeAYbHjKVf1g4Mn84Ahs+sZVDWEJRHt0CVzBQoj26BhZgNkI+uAdrFXKZO1hsAQPU8aJ40JnbPzHuxMOfGuyZiYrcXDFA13QH0x/ykDaxDqIaWAKpntkJz9Afto0sA6J19E+qjNzKwjoFhMmOgeroCWBlzE+qjN6BKZgpdYJ1DOfQKMDxmLP2ydmD4dAYwfGYtg7KGoDy6BapkpkB5dAssxGyAfHQN0C7mMnWy3gAAqudB86Qx9fDeJT/+wDIfB1ZOdwD9MT9pA+sQqqElgOqZrdAc/UH76BIAemffhProjQysY2CYzBionq4AVsbchProDaiSmUIXWOdQDr0CDI8ZS7+sHRg+nQEMn1nLoKwhKI9ugSqZKVAe3QILMRsgH10DtIu5TJ2sNwCA6nnQPGlsPGztkh8/YpmPAyunO4D+mJ+0gXUI1dASQPXMVmiO/qB9dAkAvbNvQn30RgbWMTBMZgxUT1cAK2NuQn30BlTJTKELrHMoh14BhseMpV/WDgyfzgCGz6xlUNYQlEe3QJXMFCiPboGFmA2Qj64B2sVcpk7WGwBA9dY0fQBQlfENI7Fj63jceNfEvI/t2Doe4xtGGjgqyE13AP0xP2kD6xCqoSWA6pmt0Bz9Qfvostt27twZExPzv/Zt8NWvfrXpQ+hJm49zeno61q1b1/RhLGl8fDy2bNnS9GFAz+ybUB+9kYF1DAyTGQPV0xXAypibUB+9AVUyU+gC6xzKoVeA4TFj6Ze1A8OnM4DhM2sZlDUE5dEtUCUzBcqjW2AhZgPko2uAdjGXqZP1BgBQvVWzs7OzTR9E6aampmJsbCwmJydj48aNTR9Op92766G4/PrbD3rRsGPreFx9/rY49sj1DR4Zbafj/umONtEyJTE/F6fl+liHDFOXWtYSmXWpZdrFbK2WllkJ/bWXlrtLl7n02vLOnTvjKU95ajz00J4aj27lnvvb/1ccs/WUpg9jnnu+clN84e2/ExEt/uMQq1ZFtPyPa6xfPxpf+9pXPWx+Afbl9rJvshJaHozeaINBO7aOoR2y7slmDF1TR8u6guHLui93lbnZXVqun94YBi13l5mSi5YXZp1Tmi63rFcy6XLLtJMZ2x8tWzvk0PaWdQbLa3vHtJ9Z2w4lt2wNwWNKaVm3sLRSWm4LM4W20vLidEtJtFwfs4Fh0nIzdE3VtAyDactc1nI3tGW9MTxahhy0DOXwoPkKGHrNm9wzExO7Z2Lq4b2xYd2aGHnc6ph8aCYOX7c2xjeMxNjoSNOHSMvpuHcH9rZx/doYP/zRviZ2z8QDD++NIw7THc3RMv1YaK7VNcPm/t/m58G0XK9e12GTrVCmrrXc70zXFm3XtZapTy/zz/1ydbTMSlXRn/uc6mm527Lsi2ZD7y3feuutceaZZ8YzL7kiNh775PoOsEff/crNccdf/nmc/VvviOOfenrThzPPt770d/Gla18Xp73o1fGEE57S9OHMM3f92np8ERFT3/1WfOna18Utt9wSZ5xxRtOH0zr25epVuUdk2TcZPi33x5/Tok2q6PjAfWPj+rVx+Lo1sfvhH3X6dQvULeOePDdbJh+aidF1a+Jxq1bF41avik1mConV1fKwXvN57xIelXFf7ir3I92m5fp4r4xh0nL7DfN1hO935aHlxxzazIZ1a+LB6R/F1EPWOe03zJZLeF/KvkQW9mWastSsN2NXLlvL/d4LWDuUroSWdbawEl7DUI8SOqY6w2rfrG1e21tebu1ZQ/Cotrd8oGF2616V0pXUclv4O2G0kZaXVtW9gH2fYdNyvRaaDRGhcwam5eZU/frf3t9tGVu2pqlbG76fkrHlrltslrVhvTE8WoYctAzlWNP0AZBDk29E3LvroXj19bfH5++a2P9rO7aOx1Xnb4vjjlxfyzFAV8z1dsu3fxiXnH1CnL75yPjWxIOx+fGjcczGdXHi0RuaPkSgpdr6TYum7yPGRttxHWiXunvpZR023QqU4MCW5jr+xsSDS3asLShLW+9pS9Tr/HO/TFX0u3KD9uc+B6pX8r44N4d/uGcm9u57JL749fvj2i98M/bM7DMberDx2CfHUVtObvow5pn67reaPoSebDh6S6uvX1uPDxYzrHvrqu8fS943YZiqaNjrPTI6cN+4d9dD8dsf/P8GXuPej4Lclmt8qf3SLIDBVfGa79COD1uzOq74y3+OT3/1e/s/x30uUDL3I83ymrA7vFf2GOueLup3BvTai+93kc1Szfz4E6r7e8n2JEoz6D1lXWvevgQ0qfT9fblZb8Z22yD3AitdO6W3BE3o2ozuZU54XxzKUtX+P8z2uzZrWZl7dz0Uf/CxO+Ipx26M0zcfGd+dfDi+N7o2thw1Gsc/fjQirCEo0bC6Xe7n5JoVUK8mvodV1d8JA1ZuJc1XcS/gPSoYXNu+b3TobNA5lK/K1/+LzYSrz98WoyOPa9U8g17Y5xbXtnuUTHw/pXuG3VMvfy4SAIDBedA8A2vyjYjJPTPz/t8RETfeNRGXX397vO3C0714gIrM9XbLt38Yf3Lh6XHdF78Zb//s3fs/7g1IYDFt/aaF+wjaqI29aAVWpteOtQVlaeMeXSrzj7rpt346Bw600BzeftKm+JMLT49XvP82swGgIMO6t3b/CPWoomG9kl1Va9z7UZDbco3bL6H9Fur47JM2xUu3nxA3ff3+2DOzLyJ0C5TL/UizvCbsDq09xrqni/qdAXqhq+raNzVGaQZtw5oHuqD0Wef9A5ZS5/oovSVg+HqZE/Y1KEtV+7/2acrknpn4g4/dEb9y1pZ5P+/y7JM2xVW/uC1+7KjRBo8QaBM/JxfapYn3oty3QnPqbl7vMLi2f99I58CBFpsJX/72D+PbP9gT7/js3fH5u9s5z2Ah9rnFtf0eBUoy7J7MMgCA+qxu+gAo23I375N7Zob6/5/YPTPv/33gMUzsHu7/H7pkrrdLzj4hrvviN+OLd99/0Mfr6h4oS9P3CktxH0HbtLUXrUDvVtKxtqAcbd2jS2X+USf9NkPnwJzF5vAX774/rvviN+OSs0+ICLMBoATDvLd2/wjDV1XDeiW7Kta496Mgt14at19Cuy3W8RcOec9yjm6BErkfaY7XhN2itUdZ93RVPzNAL3RZHfumxijRIG1Y80AXZJh13j9gKXWtjwwtAcPV65ywr0E5qtz/tU9TJnbPxFOO3bjgz7v8wt33x2s+8hX3ssB+fk4utEdT70W5b4VmNNG83mEwJXzfSOfAgRabCZecfUK87bN3HfSQ+Yh2zTNYiH1uYSXco0Ap6ujJLAMAqI8HzTOQpm/epx7eu+THH1jm40Dv5no7ffOR8/7w3Bwv2oFDNX2vsBT3EbRNW3vRCvRuJR1rC8rR1j26VOYfddJvM3QOzFlqDn/x7vvj9M1H7v93swGg3YZ5b+3+EYavqob1SnZVrHHvR0FuvTRuv4R2W8l7lnN0C5TG/UhzvCbsFq09yrqnq/qZAXqhy+rYNzVGiQZpw5oHuiDDrPP+AUupa31kaAkYrl7nhH0NylHl/q99mjL18N4lf97l593LAgfwc3KhPZp6L8p9KzSjieb1DoMp4ftGOgcOtNhM8B4ApbLPLayEexQoRR09mWUAAPXxoHkG0vTN+8bD1i758SOW+TjQu7nepn/0yJKf50U7cKCm7xWW4j6CtmlrL1qB3q2kY21BOdq6R5fK/KNO+m2GzoE5y83hA7/fYDYAtNsw763dP8LwVdWwXsmuijXu/SjIrZfG7ZfQbit5z3KOboHSuB9pjteE3aK1R1n3dFU/M0AvdFkd+6bGKNEgbVjzQBdkmHXeP2Apda2PDC0Bw9XrnLCvQTmq3P+1T1M2HrbWz7sEeubn5EJ7NPVelPtWaEYTzesdBlPC9410DhxosZngPQBKZZ9bWAn3KFCKOnoyywAA6uNB8wyk6Zv38Q0jsWPr+IIf27F1PMY3jAz1/w9dMtfbujVLbx1etAMHavpeYSnuI2ibtvaiFejdSjrWFpSjrXt0qcw/6qTfZugcmLPcHJ77foPZANB+w7y3dv8Iw1dVw3oluyrWuPejILdeGrdfQrv1+p7lHN0CJXI/0hyvCbtFa4+y7umqfmaAXuiyOvZNjVGiQdqw5oEuyDDrvH/AUupaHxlaAoar1zlhX4NyVLn/a5+mjG8YiSPXu5cFeuPn5EJ7NPVelPtWaEYTzesdBlPC9410DhxosZngPQBKZZ9bWAn3KFCKOnoyywAA6uNB8wyk6Zv3sdGRuOr8bfOOYcfW8bj6/G0xNurFA1RlrrfvPTAd20/atODneNEOHKrpe4WluI+gbdrai1agdyvpWFtQjrbu0aUy/6iTfpuhc2DOUnN4+0mb4rbv7DIbAAoxzHtr948wfFU1rFeyq2KNez8KcuulcfsltNtSHZ/9f96znKNboFTuR5rjNWG3aO1R1j1d1c8M0AtdVse+qTFKNEgb1jzQBRlmnfcPWEpd6yNDS8Bw9Ton7GtQjir3f+3TlLHRkXjSptE428+7BHrg5+RCezT1XpT7VmhGE83rHQZTwveNdA4caLGZ8L0HpuOcls8zWIh9bmEl3KNAKeroySwDAKjPqtnZ2dmmD6J0U1NTMTY2FpOTk7Fx48amD6d29+56KC6//va48a6J/b82d/N+7JHrazmGyT0zMbF7Jh54eG8ccdja/T+sEXrV9Y5XYnLPTPxwz974/Y/dEZ9vsHtYiJbbqQ33CktxH9E+XW65zb1ohZXqassr7VhbtF1XWz5Um/foUpl/9epyy/ptjs6r1+WWKddCc/icrePxuv/47yIiYtPh3ZsNvbZ86623xplnnhn//rXXxVFbTq7xCHvzrS/9XXzp2tfF2b/1jjj+qac3fTjzOL7B/WDnnfGpN14ct9xyS5xxxhlNH07rdHFfHva9tftHmtCllqtsWK+0yTA6HnSNez8KVq6kPbnXxu2XdFEpLS/W8Zt+4ZSY2fdITD2kW7qtlJZZnvuRZrTlNaGW66O19qz7jLTcfiudAXrpJi0/Ztj7psYYpmG23G8b1jysnH25PFlmnfcPqpWt5TrWR5aWyCVby6VbyZywrzFHx+1W9f6v/bza3vK//mBPvOYjX/HzLmEZbW+5Ln5OLqXL0nKT70W5b6UNsrTcq6aa1zvDlrnlUr5vpHOqkLnlrlloJjw4s6+IecbgMrZsn5uvlHsU+pex5baqqyezrJu0DDloGcqxpukDoHzHHbk+3nbh6Y3evI+NerEAdZnr7e0Ndw+Uow33CktxH0GbtLkXrUBvVtqxtqAMbd6jS2X+URf9NkfnQIQ5DJDJsGe6+0cYriob1ivZDbrGvQ6C3Hpt3H4J7WWvBrrC/Ugz7DPdozXrnm5b6QzQC1037H1TY5Sq3zaseaALssw67x+wlDrWR5aWgOFZyZywr0EZqt7/tU9TfuyoUT/vEuiZn5ML7dDke1HuW6F+TTWvd+hfKd830jlwoIVmwthoFDHPYCH2uflKuUeBEtTVk1kGADB8KR80/453vCPe/OY3x3333RennnpqvO1tb4uzzjpr0c+/5ppr4s/+7M9i586dMT4+Hr/0S78UV155ZRx22GE1HnXZ3LxD9+geWAkzA3qnFyifjiEnbUO59AvQLHMYIA8zHcqmYaiP3iA3jUP5dAzAMNln6CLrHnqnFxgujdE11jzQBWYdVENLwHLMCchH12RhLQMrZW5A83QI3aJ5KI9ugSzMM8hF01AdPQEA5LC66QOo2gc+8IG47LLL4oorrohbb701Tj311Dj33HPje9/73oKf/773vS8uv/zyuOKKK+KrX/1qvOtd74oPfOAD8bu/+7s1HzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQFekeNP/Wt741Xvayl8XFF18cT3va0+Kd73xnjI6OxrXXXrvg5990002xffv2eNGLXhRPfvKT46d/+qfjwgsvjH/4h3+o+cgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArkj1oPmZmZm45ZZb4vnPf/7+X1u9enU8//nPj5tvvnnB3/PsZz87brnllv0Plv/GN74Rf/M3fxMveMELajlmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHvWNH0AVZqYmIh9+/bFMcccc9CvH3PMMfG1r31twd/zohe9KCYmJuLss8+O2dnZ+NGPfhS//uu/Hr/7u7+76P9neno6pqen9//71NRUNScA1EbHkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF8OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZyqdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqFcq5s+gKbdcMMN8aY3vSn+9E//NG699db48Ic/HH/9138db3jDGxb9PVdeeWWMjY3t/2fz5s01HjFQBR1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvLpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUon44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahnKtmp2dnW36IKoyMzMTo6Oj8aEPfSjOO++8/b9+0UUXxa5du+JjH/vYvN9zzjnnxE/91E/Fm9/85v2/9hd/8Rfxn//zf47du3fH6tWr5/2e6enpmJ6e3v/vU1NTsXnz5picnIyNGzdWe1LAUOgYctAy5KBlyEHLkIOWIQctQw5ahhz6bfnWW2+NM888M/79a6+Lo7acXMehrsi3vvR38aVrXxdn/9Y74vinnt704czj+Ab3g513xqfeeHHccsstccYZZzR9OI2zL0MOWoby6Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlKJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoZyrWn6AKo0MjISZ555ZnzmM5/Z/6D5Rx55JD7zmc/EpZdeuuDv2bNnz7yHyT/ucY+LiIjZ2dkFf8+6deti3bp11R04UDsdQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoby6Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlKJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoZypXrQfETEZZddFhdddFE84xnPiLPOOiuuueaaePDBB+Piiy+OiIiXvOQlcfzxx8eVV14ZEREvfOEL461vfWucfvrp8cxnPjPuvvvu+P3f//144QtfuP+B8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVSveg+V/+5V+O73//+/EHf/AHcd9998Vpp50Wn/jEJ+KYY46JiIidO3fG6tWr93/+7/3e78WqVavi937v9+Kee+6JJzzhCfHCF74w3vjGNzZ1CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBy6R40HxFx6aWXxqWXXrrgx2644YaD/n3NmjVxxRVXxBVXXFHDkQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkfdA8AAAAAAAAAACD+epXv9r0ISxqfHw8tmzZ0vRhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBAPGgeAAAAAAAAAID9Hpq8PyJWxYtf/OKmD2VR69ePxte+9lUPmwcAAAAAAAAAAAAAAAAAAAAAAAAAAACgaB40DwAAAAAAAADAfnv3PBARs3Hai14dTzjhKU0fzjxT3/1WfOna18XExIQHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAABQNA+aBwAAAAAAAABgng1Hb4mjtpzc9GEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQFqrmz4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK7xoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDNPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGYeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMw+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiZB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXzoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDNPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGZrmj4ABje5ZyYmds/E1MN7Y+P6tTF++EiMjY40fViQjtYA6AL73cFcD6iP3oCFmA1AL8wKoI3MJgDqYs+B8ugW8tE1dIfeoXk6BPphdgBZmGccypoAlmJGQPN0COXRLeSkbQDqYL+ph+sM9dMd5KBlyEXTUDYNQ24aB6pinsDKaAYAAIBsPGi+cPfueiheff3t8fm7Jvb/2o6t43HV+dviuCPXN3hkkIvWAOgC+93BXA+oj96AhZgNQC/MCqCNzCYA6mLPgfLoFvLRNXSH3qF5OgT6YXYAWZhnHMqaAJZiRkDzdAjl0S3kpG0A6mC/qYfrDPXTHeSgZchF01A2DUNuGgeqYp7AymgGAACAjFY3fQD0b3LPzLw3KyIibrxrIi6//vaY3DPT0JFBLloDoAvsdwdzPaA+egMWYjYAvTArgDYymwCoiz0HyqNbyEfX0B16h+bpEOiH2QFkYZ5xKGsCWIoZAc3TIZRHt5CTtgGog/2mHq4z1E93kIOWIRdNQ9k0DLlpHKiKeQIroxkAAACy8qD5gk3snpn3ZsWcG++aiInd3rCAKmgNgC6w3x3M9YD66A1YiNkA9MKsANrIbAKgLvYcKI9uIR9dQ3foHZqnQ6AfZgeQhXnGoawJYClmBDRPh1Ae3UJO2gagDvaberjOUD/dQQ5ahlw0DWXTMOSmcaAq5gmsjGYAAADIak3TB0D/ph7eu+THJx/aG1//3u6YenhvbFy/NsYPH4mx0ZGajg7yWK61B5b5+HIm98zExO4ZrQKdZAa2x7D3u9Ks9HpYy9C/uuaPTqEsK5kN+oZ2qqNNr2OgPezHjzGbAKjSUnusPQfKo1vIZ7muf7hnJib3zHT2NTJkMHdPfv+DS/8lcvs4DJ/7aaAfpcwO32sDltPWeWZ+NaepNeFrDmWoY0aYBzDfgV386JHZJT+3La9Hgce05XWXPRaq1Za2D6RzgHya2G9K2k+qOtY27uuQnZ8HBDloGXLJcF9sXtBlnicBufk51lCmNraY4b4f6qQZ6K427uMAAFAlD5ov2MbD1i758Yf37otf/LOb9v/7jq3jcdX52+K4I9cP+9AgleVaO2KZjy/l3l0Pxauvvz0+f9fE/l/TKtAVZmC7DHO/K9FKroe1DIOpY/7oFMrT62zQN7RTXW16HQPtYD8+mNkEQFWW22PtOVAe3UI+y3U9+dDe+M3339bZ18hQugPvyd910TOW/Fz7OAyf+2mgHyXMDt9rA3rRxnlmfjWriTXhaw7lGPaMMA9gvkO78J4ylKcNr7vssVC9NrR9IJ0D5FT3flPSflLlsbZtX4cu8POAIActQy6l3xebF3Sd50lAbn6ONZSnrS2Wft8PdRsdedySH9cM5NTWfRwAAKq0uukDoH/jG0Zix9bxBT929kmb4qZv3H/Qr91410Rcfv3tMblnpo7DgzSWam3H1vEY3zDS1393cs/MvDceIrQKdIMZ2D7D2u9K1ev1sJZhcMOePzqFMvUyG/QN7VRnm17HQPPsx/OZTQBUoZc91p4D5dlw2Jo4+6RNC37s7JM2xYbD1tR8RMCgltqPt5+0KW77zq5Ov0aGkh16T37bd3bF9kX2cfffUA/300A/2v4emu+1Ab1q2zwzv5pX95rwNYeyDHNGmAcw30JdeE8ZytP06y57LAxH020fSOcAedW535S0n1R9rG3a16Er/DwgyEHLkEvJ98XmBXieBGTn51hDWdrcYsn3/VC3yT0zcetOf14TuqbN+zgAAFTJg+YLNjY6Eledv23eG33nbB2Pl24/Ia79wjfn/Z4b75qIid1e0MBKLNbajq3jcfX522JstL83Byd2z8x742GOVoHszMD2GdZ+V6per4e1DIMb9vzRKZSpl9mgb2inOtv0OgaaZz+ez2wCoAq97LH2HCjPg9M/ipduP2HeX1DbftKmeOn2E+LB6R81dGRAvxbbj7eftCkuPuDPcHb1NTKU7NB78mu/8M24eIF93P031Mf9NNCPtr+H5nttQK/aNs/Mr+bVvSZ8zaEsw5wR5gHMt1AX3lOG8jT9usseC8PRdNsH0jlAXnXuNyXtJ1Ufa5v2degKPw8IctAy5FLyfbF5AZ4nAdn5OdZQlja3WPJ9P9RtYvdMvOHj/3vBP6+5/aRN8fqff7pmIKE27+MAAFClNU0fAIM57sj18bYLT4+J3TPxwMN744jD1sa+2dk47x1fjD0z+xb8PQ88vLfmo4TyLdTa+IaRgd4YnFqmRa0CmZmB7TSM/a5kvVwPaxmqMcz5o1Mo13KzQd/QTnW36XUMNMt+vDCzCYBB9brH2nOgLJMP7Y1XvP+2uOTsE+KS7SfE9I8eiXVrVsdt39kVr3j/bfG+X3tm04cI9GFuP75n10Pxrfv3HNT1gX+Gs6uvkaFUh96T75nZd9A+fsRha2PT4SPuv6FG7qeBfrX5PTTfawNWok3zzPxqhzrXhK85lGdYM8I8gPkW6uLA95Rf+4KnxsyPHmnV61FgYU2+7rLHwvC05T0VnQPkVtd+U9J+Moxjbcu+Dl3i5wFBDlqGXEq9LzYv4FGeJwG5+TnWUI62t1jqfT/UberhvfN+BsCBf/d46qGZiDi86cMEKtb2fRwAAKriQfMJjI0e/Kbe17+3e9FvCkZEHHHY2joOC9I5tLVBbVymRa0CmZmB7VX1fle65a6HtQzVGdb80SmUbanZoG9opyba9DoGmmM/XpzZBMAgVrLH2nOgHBsPWxt7ZvbF2z9794If7/L9M5RubHQkJnbPxG/8v7cu+jkah7IsdE9+4D7+mcueEycevaHuw4JOcz8NDKKt76H5XhuwUm2ZZ+ZXe9S1JnzNoUzDmBHmAcy3WBdz72X9wmnHx9OOG6v5qIB+NfW6yx4Lw9WG91R0DpBfHftNSfvJsI61Dfs6dI2fBwQ5aBlyKfG+2LyAx3ieBOTm51hDGUposcT7fqjbXMuL/d3jXzjt+LoPCahBCfs4AABUYXXTB0D1xjeMxI6t4wt+bMfW8Rjf4A1BaAOtAl1mBpKFtQztp1PIS9/QTtqEbtE8AAyHPRZy0jbkpnHIRdPQProEMjLbgFKZX93jaw7MMQ9gPl0AVTBLID+dA1CFkvaTko4VaIY5ATloGeiVeQGL0wd0i+ahHbQIOWgZukn7AAB0hQfNJzQ2OhJXnb9t3ouaHVvH4+rzt8XYqBc00AZaBbrMDCQLaxnaT6eQl76hnbQJ3aJ5ABgOeyzkpG3ITeOQi6ahfXQJZGS2AaUyv7rH1xyYYx7AfLoAqmCWQH46B6AKJe0nJR0r0AxzAnLQMtAr8wIWpw/oFs1DO2gRctAydJP2AQDoijVNHwDDcdyR6+NtF54eE7tn4oGH98YRh62N8Q0jXsxAy2gV6DIzkCysZWg/nUJe+oZ20iZ0i+YBYDjssZCTtiE3jUMumob20SWQkdkGlMr86h5fc2COeQDz6QKoglkC+ekcgCqUtJ+UdKxAM8wJyEHLQK/MC1icPqBbNA/toEXIQcvQTdoHAKALPGg+sbFRL2CgBFoFuswMJAtrGdpPp5CXvqGdtAndonkAGA57LOSkbchN45CLpqF9dAlkZLYBpTK/usfXHJhjHsB8ugCqYJZAfjoHoAol7SclHSvQDHMCctAy0CvzAhanD+gWzUM7aBFy0DJ0k/YBAMhuddMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA1HjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULM1TR9AV0zumYmJ3TMx9fDe2Lh+bYwfPhJjoyNNHxbQMmYFDJ/OIActQw5ahhy0DDloGfLQMwC0gz0ZctAy5KVvKItmgUOZC8BKmBkArJS9oxquI7SbRmF49AX0y/yAamgJctAydJP2oWwaBpZiRsDgdAS5aRzKolnISdvQHXqH9tElAAAczIPma3Dvrofi1dffHp+/a2L/r+3YOh5Xnb8tjjtyfYNHBrSJWQHDpzPIQcuQg5YhBy1DDlqGPPQMAO1gT4YctAx56RvKolngUOYCsBJmBgArZe+ohusI7aZRGB59Af0yP6AaWoIctAzdpH0om4aBpZgRMDgdQW4ah7JoFnLSNnSH3qF9dAkAAPOtbvoAspvcMzPvhUhExI13TcTl198ek3tmGjoyoE3MChg+nUEOWoYctAw5aBly0DLkoWcAaAd7MuSgZchL31AWzQKHMheAlTAzAFgpe0c1XEdoN43C8OgL6Jf5AdXQEuSgZegm7UPZNAwsxYyAwekIctM4lEWzkJO2oTv0Du2jSwAAWJgHzQ/ZxO6ZeS9E5tx410RM7PZiBDAroA46gxy0DDloGXLQMuSgZchDzwDQDvZkyEHLkJe+oSyaBQ5lLgArYWYAsFL2jmq4jtBuGoXh0RfQL/MDqqElyEHL0E3ah7JpGFiKGQGD0xHkpnEoi2YhJ21Dd+gd2keXAACwMA+aH7Kph/cu+fEHlvk40A1mBQyfziAHLUMOWoYctAw5aBny0DMAtIM9GXLQMuSlbyiLZoFDmQvASpgZAKyUvaMariO0m0ZhePQF9Mv8gGpoCXLQMnST9qFsGgaWYkbA4HQEuWkcyqJZyEnb0B16h/bRJQAALMyD5ods42Frl/z4Ect8HOgGswKGT2eQg5YhBy1DDlqGHLQMeegZANrBngw5aBny0jeURbPAocwFYCXMDABWyt5RDdcR2k2jMDz6AvplfkA1tAQ5aBm6SftQNg0DSzEjYHA6gtw0DmXRLOSkbegOvUP76BIAABbmQfNDNr5hJHZsHV/wYzu2jsf4hpGajwhoI7MChk9nkIOWIQctQw5ahhy0DHnoGQDawZ4MOWgZ8tI3lEWzwKHMBWAlzAwAVsreUQ3XEdpNozA8+gL6ZX5ANbQEOWgZukn7UDYNA0sxI2BwOoLcNA5l0SzkpG3oDr1D++gSAAAW5kHzQzY2OhJXnb9t3guSHVvH4+rzt8XYqBcjgFkBddAZ5KBlyEHLkIOWIQctQx56BoB2sCdDDlqGvPQNZdEscChzAVgJMwOAlbJ3VMN1hHbTKAyPvoB+mR9QDS1BDlqGbtI+lE3DwFLMCBicjiA3jUNZNAs5aRu6Q+/QProEAICFrWn6AIbhHe94R7z5zW+O++67L0499dR429veFmedddaCn/vc5z43Pve5z8379Re84AXx13/915Ucz3FHro+3XXh6TOyeiQce3htHHLY2xjeMeCECHMSsgOHTGeSgZchBy5CDliEHLUMeegaAdrAnQw5ahrz0DWXRLHAocwFYCTMDgJWyd1TDdYR20ygMj76AfpkfUA0tQQ5ahm7SPpRNw8BSzAgYnI4gN41DWTQLOWkbukPv0D66BACA+dI9aP4DH/hAXHbZZfHOd74znvnMZ8Y111wT5557btx5551x9NFHz/v8D3/4wzEzM7P/3++///449dRT44ILLqj0uMZGvfgAlmdWwPDpDHLQMuSgZchBy5CDliEPPQNAO9iTIQctQ176hrJoFjiUuQCshJkBwErZO6rhOkK7aRSGR19Av8wPqIaWIActQzdpH8qmYWApZgQMTkeQm8ahLJqFnLQN3aF3aB9dAgDAwVY3fQBVe+tb3xove9nL4uKLL46nPe1p8c53vjNGR0fj2muvXfDzjzrqqHjiE5+4/59PfepTMTo6WvmD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmrGn6AKo0MzMTt9xyS7zmNa/Z/2urV6+O5z//+XHzzTf39N9417veFb/yK78Shx9++KKfMz09HdPT0/v/fWpqqv+DBhqhY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQrtVNH0CVJiYmYt++fXHMMccc9OvHHHNM3Hfffcv+/n/4h3+IO+64I37t135tyc+78sorY2xsbP8/mzdvHui4gfrpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/l0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUa9Xs7Oxs0wdRlXvvvTeOP/74uOmmm+JZz3rW/l9/1ateFZ/73OfiS1/60pK//7/8l/8SN998c9x+++1Lft709HRMT0/v//fJycnYsmVLfOc734mNGzcOdhJAT4444ohYtWpV379fx9AOWoYctAw5aBly0DLkoGXIQcuQQ1Mt/9M//VM85znPibMu+v044olP6vv/Pyz3/fPfxz9//P+Jbb/yO/GEJ53c9OHM4/gG1/ZjfOC+b8c/vOcN8bnPfS5OO+20ZT/fvgw5aBlyGKRlHUM72JMhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw7+/CaUz54MOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcrXb8epHjQ/MzMTo6Oj8aEPfSjOO++8/b9+0UUXxa5du+JjH/vYor/3wQcfjOOOOy5e//rXxytf+coV/X//9V//NTZv3tzvYQN9mJycrPQmQ8fQDC1DDlqGHLQMOWgZcqi65W984xtx4oknVvbfA3pjX4YctAw5aBly0DLkUGXLOoZm2JMhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw7+/CaUz54MOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcrXb8epHjQfEfHMZz4zzjrrrHjb294WERGPPPJIbNmyJS699NK4/PLLF/197373u+PXf/3X45577olNmzat6P/5yCOPxL333htHHHFErFq1aqDj74KpqanYvHlzfOc736l08+miLl/LqnsbVsdd/hodyrV4lOtwsGG1PDs7G1u2bEl1nbOunYzn1cVzKmVfrlrGr/WcrOeW9bwiqjm3YbR85513xtOe9rSU17xXmdddr1yDeq9B3fuyr69rEOEaRFR/DapuedeuXfH4xz8+du7cGWNjY5X9d5uUbd1lO5+IfOfUz/l09fXynGxrYCW6eu5Zz9v72L3J9vV3Pu1mX+5dtq/9MLhGy2vTNepqywdq09djEM6jXeo+jyqbq7LjLF/POrlm/clw3dqyJ2e4lsPguizOtTlYW1puWrZ14XzabRjn05aWs32tIpxTKbKcU1tarkOWr1kbuJbVauufxV6oZV/76riW1ch2HduwL5d8TUs+9gjH37Qqj78NLVel9K/rYpxXeZo4t0wt1yHz+ltM18651PP19x1XpvTjjyj/HBz/wvy9ioOVuk4cd73aeNxt/fObdWnj16RKzq9svZ5fxtfKWb62Gc4jwzlElHEeJbVcwvU8lGOuh2Muq+UqlPg1bxvXcHCZ/yz2QqyZxbk2C+vydWljyyV+PUo85ogyj9sxL6yNLVepxK/7QpxHe7T1HOpsua3XIAvXd3hKuLZN7MslXJdhce7dPPeI4Z9/U/fYWb6uzqNdspxHxMrPRcuDcR7t0tXz6LfjNf0cXJtddtllcdFFF8UznvGMOOuss+Kaa66JBx98MC6++OKIiHjJS14Sxx9/fFx55ZUH/b53vetdcd555634IfMREatXr44f+7Efq+T4u2Tjxo1FR9omruXght2xr9FjXItHuQ7DMdfy1NRUROS8zhnPKSLneTmn/pV2f53xaz0n67llPa+Idp3b6tWr4/jjj4+Idh1XU1wD1yCizGvQ675c4rlVzTVwDSLaew1Wr14dERFjY2OtPL5BtPWa9yvb+UTkO6cmz6e018tzsq2BlejquXf1vHuV/X1s59Nuzqc6pe3L2b72w+AaLS/jNSqt5QNl+Xo4j3Yp8TyG0XGJ16Fprll/XLfHDNqya7kw12Vxrs1wlHx/HZFvXTifdmvz+diX53NOZch4ToMoYV/2NauOa1mtNl3P5Vpu07GWzrWshuu4sEH25ZKvacnHHuH4m9bG42/DPXYbr0sVnFd5Sj63NrRch5K/Rv3q2jl37XwP1ZW/71j68UeUfw6Of7iy/L0Kx10vx90uJd9fZ/2azHF+Zav7/NrUcpavbYbzyHAOEXnOoxd1tFzi9XTM9XDM1WnTvryUtl6/kriGg2vzNfT3Hevl2izMdRlclS2X+PUo8Zgjyjxuxzxcbb3HLukaLsV5tEeGc1hKLy1nvwZNc32Hp0vXdiX7cpeuy6GcezfPPaKc81/pPXYp57Uc59EuWc4jorlz0XLZnEe7DPs80j1o/pd/+Zfj+9//fvzBH/xB3HfffXHaaafFJz7xiTjmmGMiImLnzp37H6oz584774wvfOEL8clPfrKJQwYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Jt2D5iMiLr300rj00ksX/NgNN9ww79dOPvnkmJ2dHfJRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADxqddMHQPesW7currjiili3bl3Th1I817L9fI0e41o8ynWoR8brnPGcInKel3PqjszXJeu5ZT2viPaeW1uPq06ugWsQkfsaZD63XrkGrkFE+69B24+vH9nOKdv5ROQ7p2znU4cuX7OunntXz7tf2a6X82k359NdrtXyXKPluUbtkuXr4TzaJct5DMp1WDnXrD+uW3Vcy4W5LotzbVhItnXhfNot2/kcKOO5OacyZDyn7HzNquNaVquk61nSsbada1kN17F6JV/Tko89wvE3rfTjH5as18V5lSfzuWXRxa9R1865a+fbr9KvU+nHH1H+OTj+epV2vHMcd70cN1XJ/jVxfmXLfn5LyXLuGc4jwzlE5DmPtijxejrmejjm7nH9BucaDq5r17Br57sSrs3CXJd2KfHrUeIxR5R53I65m7JcQ+fRHhnOYVCuwXC5vsPj2i6sy9fFuXfz3CPynn+W83Ie7ZLlPCLKOZdSjnM5zqNdnMfKrJqdnZ0d6v8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIOsbvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALrGg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA186B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJp50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBmHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDMPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComQfNV+jGG2+MF77whXHcccfFqlWr4qMf/eiK/xuzs7Pxx3/8x/ETP/ETsW7dujj++OPjjW98Y/UHCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRmTdMHkMmDDz4Yp556alxyySXxi7/4i339N175ylfGJz/5yfjjP/7jOOWUU+IHP/hB/OAHP6j4SAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAmrZqdnZ1t+iAyWrVqVXzkIx+J8847b/+vTU9Px2tf+9p4//vfH7t27YqnP/3pcfXVV8dzn/vciIj46le/Gtu2bYs77rgjTj755GYOHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi61U0fQJdceumlcfPNN8f/+l//K26//fa44IIL4md+5mfirrvuioiIv/qrv4of//Efj49//ONxwgknxJOf/OT4tV/7tfjBD37Q8JEDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVfKg+Zrs3LkzrrvuuvjgBz8Y55xzTpx44onx27/923H22WfHddddFxER3/jGN+Lb3/52fPCDH4z3vve98e53vztuueWW+KVf+qWGjx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACo0pqmD6ArvvKVr8S+ffviJ37iJw769enp6di0aVNERDzyyCMxPT0d733ve/d/3rve9a4488wz484774yTTz659uMGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqudB8zXZvXt3PO5xj4tbbrklHve4xx30sQ0bNkRExLHHHhtr1qw56GH0T33qUyMiYufOnR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEl40HxNTj/99Ni3b19873vfi3POOWfBz9m+fXv86Ec/iq9//etx4oknRkTEv/zLv0RExJOe9KTajhUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYrlWzs7OzTR9EFrt374677747Ih59sPxb3/rWeN7znhdHHXVUbNmyJV784hfHF7/4xXjLW94Sp59+enz/+9+Pz3zmM7Ft27b42Z/92XjkkUfiJ3/yJ2PDhg1xzTXXxCOPPBIvf/nLY+PGjfHJT36y4bMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAquJB8xW64YYb4nnPe968X7/ooovi3e9+d+zduzf+6I/+KN773vfGPffcE+Pj4/FTP/VT8brXvS5OOeWUiIi499574zd/8zfjk5/8ZBx++OHxH/7Df4i3vOUtcdRRR9V9OgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCQeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM1WN30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3jQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOg+QrMzs7G1NRUzM7ONn0oQJ90DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnKp2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoXw6hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnK4UHzFXjggQdibGwsHnjggaYPBeiTjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1D+XQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMpRPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DOTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBmHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDMPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaram6QMAmNwzExO7Z2Lq4b2xcf3aGD98JMZGR5o+LGCFtAztplHoFs1DDlqGHLQMi9MHdbPmAHIwzwGgPezLUD4dQw5ahhy0TFtYi9AsDQJUx0yFHLQMZdEs5KZxyEHLZGRdAyUyuyAHLUMOWoYctAzDoS2gH2ZHN/g6A1UwSwB6Y14CQPd40DzQqHt3PRSvvv72+PxdE/t/bcfW8bjq/G1x3JHrGzwyYCW0DO2mUegWzUMOWoYctAyL0wd1s+YAcjDPAaA97MtQPh1DDlqGHLRMW1iL0CwNAlTHTIUctAxl0SzkpnHIQctkZF0DJTK7IActQw5ahhy0DMOhLaAfZkc3+DoDVTBLAHpjXgJAN61u+gCA7prcMzPvRUhExI13TcTl198ek3tmGjoyYCW0DO2mUegWzUMOWoYctAyL0wd1s+YAcjDPAaA97MtQPh1DDlqGHLRMW1iL0CwNAlTHTIUctAxl0SzkpnHIQctkZF0DJTK7IActQw5ahhy0DMOhLaAfZkc3+DoDVTBLAHpjXgJAd3nQPNCYid0z816EzLnxromY2O2FCJRAy9BuGoVu0TzkoGXIQcuwOH1QN2sOIAfzHADaw74M5dMx5KBlyEHLtIW1CM3SIEB1zFTIQctQFs1CbhqHHLRMRtY1UCKzC3LQMuSgZchByzAc2gL6YXZ0g68zUAWzBKA35iUAdJcHzQONmXp475Iff2CZjwPtoGVoN41Ct2gectAy5KBlWJw+qJs1B5CDeQ4A7WFfhvLpGHLQMuSgZdrCWoRmaRCgOmYq5KBlKItmITeNQw5aJiPrGiiR2QU5aBly0DLkoGUYDm0B/TA7usHXGaiCWQLQG/MSALrLg+aBxmw8bO2SHz9imY8D7aBlaDeNQrdoHnLQMuSgZVicPqibNQeQg3kOAO1hX4by6Rhy0DLkoGXawlqEZmkQoDpmKuSgZSiLZiE3jUMOWiYj6xookdkFOWgZctAy5KBlGA5tAf0wO7rB1xmoglkC0BvzEgC6y4PmgcaMbxiJHVvHF/zYjq3jMb5hpOYjAvqhZWg3jUK3aB5y0DLkoGVYnD6omzUHkIN5DgDtYV+G8ukYctAy5KBl2sJahGZpEKA6ZirkoGUoi2YhN41DDlomI+saKJHZBTloGXLQMuSgZRgObQH9MDu6wdcZqIJZAtAb8xIAusuD5oHGjI2OxFXnb5v3YmTH1vG4+vxtMTbqhQiUQMvQbhqFbtE85KBlyEHLsDh9UDdrDiAH8xwA2sO+DOXTMeSgZchBy7SFtQjN0iBAdcxUyEHLUBbNQm4ahxy0TEbWNVAiswty0DLkoGXIQcswHNoC+mF2dIOvM1AFswSgN+YlAHTXqtnZ2dmmD6J0U1NTMTY2FpOTk7Fx48amDweKM7lnJiZ2z8QDD++NIw5bG+MbRmp/EaJjGJyWod3a0GivtAyDa0PzWobBaRly0DIsrg19lETLg7PmaAMtw+DaMM+1DDloGQbX9L6sYxhc0x1HaBmqoGXIQcu0RRvWIoPRctk0yBwtw+DaMFO1DIPTMpSlDc0uRsswuDY0rmUYnJbJqA3rumt0DINrw+zSMgxOy5CDliEHLcNwtKGtumkZBteG2aHl4WvD15n8tJyfWdINWobBtWFeahly0DKUY03TBwAwNuqNGshAy9BuGoVu0TzkoGXIQcuwOH1QN2sOIAfzHADaw74M5dMx5KBlyEHLtIW1CM3SIEB1zFTIQctQFs1CbhqHHLRMRtY1UCKzC3LQMuSgZchByzAc2gL6YXZ0g68zUAWzBKA35iUAdM/qpg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZh40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM08aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZh40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqFmqB80/+clPjlWrVs375+Uvf/miv+eDH/xgPOUpT4nDDjssTjnllPibv/mbGo8YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6KJUD5r/x3/8x/jud7+7/59PfepTERFxwQUXLPj5N910U1x44YXxq7/6q3HbbbfFeeedF+edd17ccccddR42AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DGpHjT/hCc8IZ74xCfu/+fjH/94nHjiifGc5zxnwc//H//jf8TP/MzPxO/8zu/EU5/61HjDG94QZ5xxRrz97W+v+cgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALlnT9AEMy8zMTPzFX/xFXHbZZbFq1aoFP+fmm2+Oyy677KBfO/fcc+OjH/3okv/t6enpmJ6e3v/vU1NTAx8vUC8dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoby6Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlKJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoZyrW76AIblox/9aOzatSte+tKXLvo59913XxxzzDEH/doxxxwT991335L/7SuvvDLGxsb2/7N58+YqDhmokY4hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/l0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ7lWzc7OzjZ9EMNw7rnnxsjISPzVX/3Vop8zMjIS73nPe+LCCy/c/2t/+qd/Gq973evi3/7t3xb9fdPT0zE9Pb3/36empmLz5s0xOTkZGzdurOYEgKHSMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUon44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvLpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUo15qmD2AYvv3tb8enP/3p+PCHP7zk5z3xiU+c90D5f/u3f4snPvGJS/6+devWxbp16wY+TqA5OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM5dMx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1A+HUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM5Vrd9AEMw3XXXRdHH310/OzP/uySn/esZz0rPvOZzxz0a5/61KfiWc961jAPDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOi4dA+af+SRR+K6666Liy66KNasWXPQx17ykpfEa17zmv3//spXvjI+8YlPxFve8pb42te+Fn/4h38YX/7yl+PSSy+t+7ABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACADkn3oPlPf/rTsXPnzrjkkkvmfWznzp3x3e9+d/+/P/vZz473ve998ed//udx6qmnxoc+9KH46Ec/Gk9/+tPrPGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgY9Y0fQBV++mf/umYnZ1d8GM33HDDvF+74IIL4oILLhjyUQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8ZnXTBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM08aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZh40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM08aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZh40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM3SPWj+nnvuiRe/+MWxadOmWL9+fZxyyinx5S9/edHPv+GGG2LVqlXz/rnvvvtqPGoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgS9Y0fQBV+uEPfxjbt2+P5z3vefG3f/u38YQnPCHuuuuuePzjH7/s773zzjtj48aN+//96KOPHuahAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2W6kHzV199dWzevDmuu+66/b92wgkn9PR7jz766DjyyCOHdGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj0n1oPm//Mu/jHPPPTcuuOCC+NznPhfHH398/MZv/Ea87GUvW/b3nnbaaTE9PR1Pf/rT4w//8A9j+/bti37u9PR0TE9P7//3qampSo4fqI+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP5dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylE/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUO5Vjd9AFX6xje+EX/2Z38WW7dujb/7u7+L//pf/2u84hWviPe85z2L/p5jjz023vnOd8b1118f119/fWzevDme+9znxq233rro77nyyitjbGxs/z+bN28exukAQ6RjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1A+HUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM5dMx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1CuVbOzs7NNH0RVRkZG4hnPeEbcdNNN+3/tFa94RfzjP/5j3HzzzT3/d57znOfEli1b4n/+z/+54Menp6djenp6/79PTU3F5s2bY3JyMjZu3Nj/CdBZk3tmYmL3TEw9vDc2rl8b44ePxNjoSNOHlZqOWSmdtpOWh8u6py5apm7m23BomZKYA4vTMm2g0cFpOQct0E/L1g20j32ZLLq+x2gZctAybdP1/bUfOuZAGiqXllkJrbeXlsmky7PG96MgBy1DDu6xoTdt38O03A5tXye0n5bpgi7MSi3TBVrWMt3oIIM2tGytwGDa0DFUpct7gpbL1eV1y3xaZhjMmfppmSppuDlapi3MgcFombppdji63LI1RSYltaw9WFxJLcNKdWn+axly0DKUa03TB1ClY489Np72tKcd9GtPfepT4/rrr1/Rf+ess86KL3zhC4t+fN26dbFu3bq+jhEOde+uh+LV198en79rYv+v7dg6Hledvy2OO3J9g0eWm45ZCZ22l5aHx7qnTlqmTubb8GiZUpgDS9MyTdNoNbRcPi0QsfKWrRtoJ/syGdhjtAxZaJk2sb/2R8fM0VDZtEyvtN5uWiaLrs8a34+CHLQMObjHhuWVsIdpuXklrBPaT8tk15VZqWWy0zJ0p4MMmm7ZWoHBNd0xVKXre4KWy9T1dct8WqZq5kwztExVNNwsLdMG5sDgtEydNDs8XW3ZmiKbUlrWHiytlJZhpbo2/7UMOWgZyrW66QOo0vbt2+POO+886Nf+5V/+JZ70pCet6L/zT//0T3HsscdWeWiwoMk9M/Nu/iMibrxrIi6//vaY3DPT0JEBc3RKF1n3QFbmG2AOQLtpFB6lBfph3QAwLPYYAKie/RUGoyHoBq0DdTBrVsb1ghy0DECp7GH0wjoBWJ5ZCTloGXRA76wVAObYEyiRdQsMmzkDZdMwYA5AWTRL1awpaIb2ALrJ/AcA6pbqQfP/7b/9t/j7v//7eNOb3hR33313vO9974s///M/j5e//OX7P+c1r3lNvOQlL9n/79dcc0187GMfi7vvvjvuuOOO+K3f+q347Gc/e9DvgWGZ2D0z7+Z/zo13TcTEbi8AoGk6pYuseyAr8w0wB6DdNAqP0gL9sG4AGBZ7DABUz/4Kg9EQdIPWgTqYNSvjekEOWgagVPYwemGdACzPrIQctAw6oHfWCgBz7AmUyLoFhs2cgbJpGDAHoCyapWrWFDRDewDdZP4DAHVb0/QBVOknf/In4yMf+Ui85jWvide//vVxwgknxDXXXBP/6T/9p/2f893vfjd27ty5/99nZmbiv//3/x733HNPjI6OxrZt2+LTn/50PO95z2viFOiYqYf3LvnxB5b5ODB8OqWLrHsgK/MNMAeg3TQKj9IC/bBuABgWewwAVM/+CoPREHSD1oE6mDUr43pBDloGoFT2MHphnQAsz6yEHLQMOqB31goAc+wJlMi6BYbNnIGyaRgwB6AsmqVq1hQ0Q3sA3WT+AwB1S/Wg+YiIn/u5n4uf+7mfW/Tj7373uw/691e96lXxqle9ashHBQvbeNjaJT9+xDIfB4ZPp3SRdQ9kZb4B5gC0m0bhUVqgH9YNAMNijwGA6tlfYTAagm7QOlAHs2ZlXC/IQcsAlMoeRi+sE4DlmZWQg5ZBB/TOWgFgjj2BElm3wLCZM1A2DQPmAJRFs1TNmoJmaA+gm8x/AKBuq5s+AOiy8Q0jsWPr+IIf27F1PMY3jNR8RMChdEoXWfdAVuYbYA5Au2kUHqUF+mHdADAs9hgAqJ79FQajIegGrQN1MGtWxvWCHLQMQKnsYfTCOgFYnlkJOWgZdEDvrBUA5tgTKJF1CwybOQNl0zBgDkBZNEvVrClohvYAusn8BwDq5kHz0KCx0ZG46vxt814E7Ng6Hlefvy3GRr0AgKbplC6y7oGszDfAHIB20yg8Sgv0w7oBYFjsMQBQPfsrDEZD0A1aB+pg1qyM6wU5aBmAUtnD6IV1ArA8sxJy0DLogN5ZKwDMsSdQIusWGDZzBsqmYcAcgLJolqpZU9AM7QF0k/kPANRt1ezs7GzTB1G6qampGBsbi8nJydi4cWPTh0OBJvfMxMTumXjg4b1xxGFrY3zDiJv/mumY5ei0DFqulnVPU7TMsJlv9dAybWYO9E7LNEGj1dNymbTAoXpp2bqB9rMvUyp7zMG0DDlomabZXwen427TUB5aZilaL4eWKZlZ8xjfj4IctAw5uMeGhZW2h2m5GaWtE9pPy2TUxVmpZTLSspbpZgcZNNGytQLVsidTMnvCY7RcDuuWpWiZKpgzzdMyg9Bwe2iZppgD1dIyw6bZenSpZWuKzNrcsvagd21uGVaqy/Nfy5CDlqEca5o+ACBibLQ7N/xQKp3SRdY9kJX5BpgD0G4ahUdpgX5YNwAMiz0GAKpnf4XBaAi6QetAHcyalXG9IActA1Aqexi9sE4AlmdWQg5aBh3QO2sFgDn2BEpk3QLDZs5A2TQMmANQFs1SNWsKmqE9gG4y/wGAuqxu+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAusaD5gEAAAAAAAAAAADg/2fv76P0rusD//+VuwkJSSaQUQs2QSoRUYwN1K83gVS7emzV1hvW/kp1vaG6p7+qLe3pFl23q2grcFZbV21tuy3Qbr/qaaW13W23SuvPgqCuAl3QRQwCRgUOHTAzGZLMBJLfH5wJmfvruuZz836/P4/HOZ5jMpPwvq7r/Xy9P9c1M7kAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhq9teADC/sQNTMToxFeOHDsemdWti5MShGF4/1PayIGu6ApjLbKQr7HUog5aB5TJHoEzaZjZ7AsiZGQYA6XAuQ7s0CEwzD2AmTUB36R8Gox0gF+YV5EOvQFeYd9Ae/UGzNAdp0SSkQ4+QPx0DEWYBdIHOAXMAyqLpbvP4A7TD/IVu0j4AkDJvNA8Junffwbjkmlvj+j2jx35v9/aRuPyCHXHq5nUtrgzypSuAucxGusJehzJoGVgucwTKpG1msyeAnJlhAJAO5zK0S4PANPMAZtIEdJf+YTDaAXJhXkE+9Ap0hXkH7dEfNEtzkBZNQjr0CPnTMRBhFkAX6BwwB6Asmu42jz9AO8xf6CbtAwCpW9n2AoCZxg5MzXkSERFx3Z7ReOc1t8bYgamWVgb50hXAXGYjXWGvQxm0DCyXOQJl0jaz2RNAzswwAEiHcxnapUFgmnkAM2kCukv/MBjtALkwryAfegW6wryD9ugPmqU5SIsmIR16hPzpGIgwC6ALdA6YA1AWTXebxx+gHeYvdJP2AYAceKN5SMzoxNScJxHTrtszGqMTnkhAv3QFMJfZSFfY61AGLQPLZY5AmbTNbPYEkDMzDADS4VyGdmkQmGYewEyagO7SPwxGO0AuzCvIh16BrjDvoD36g2ZpDtKiSUiHHiF/OgYizALoAp0D5gCURdPd5vEHaIf5C92kfQAgB95oHhIzfujwoh/fv8THgbl0BTCX2UhX2OtQBi0Dy2WOQJm0zWz2BJAzMwwA0uFchnZpEJhmHsBMmoDu0j8MRjtALswryIdega4w76A9+oNmaQ7SoklIhx4hfzoGIswC6AKdA+YAlEXT3ebxB2iH+QvdpH0AIAer214AlGzswFSMTkzF+KHDsWndmhg5cSiG1w8t+mc2nbBm0Y9vXOLjkLNBmumFroD51DVzcmE2kpI6e7TXoXcpn41aBpZrsTmyfmhVnLR+KL79wESSMxC6pN/rEdcIzNbUnkj52hnI09iBqVi3ZlX8/uvOiRPWrIqb9/4grvzi3XFg6tFjn+NcA4D6zL7GP3n9UKwfWjXjLD6ec5k2deE5qdd8oAxVzCvzgKbkcr5qAsrSz+zRPwzm+HbWD62Ki847PXZu3RyTjxyJE9Y89v1CAL3yMw/kLpfnvqnTK9AVdcw7ZxFdM+ied71BF6R0JmiOHKXUUNU0Cc1abJ7oEdLi37SFMrRxLW8WwPLk8Bxc59CsFOeCOQDVa7N1TXfbUo//pnVrkjyLAJrivayAKvnZUwAgB95oHmpy776Dcck1t8b1e0aP/d7u7SNx+QU74tTN6xb8cyMbhmL39pG47rg/d/yfH9ngiQRlGrSZXugKmK3OmZMLs5FU1N2jvQ69Sf1s1DKwXAvNkfVDq+LKNz0n/tNnvh7X35nmDISuGOR6xDUCszWxJ1K/dgbyM99c2XXGlvjIhTvjlz95SxyYetS5BgA1Wuga/8o3PScuuvqrc95s3rlMm7rynNRrPpC/quaVeUATcjpfNQHl6Hf26B8GM93O177zg/jIhTvjqhvujo99/s5jH0/1zAfS42ceyF1Oz31Tp1egK6qed84iumY5e971BqVL7UzQHLlJraGqaRKas9Q80SOkw79pC2Vo61reLIDB5fIcXOfQnFTngjkA1Wq7dU1322KP/0vOemIMrVoZb//kLcmdRQBN8F5WQNX87CkAkIOVbS8ASjR2YGrOiwwREdftGY13XnNrjB2YWvDPDq8fissv2BG7t4/M+P3d20fiigt2xPB6LyJQnuU00wtdAcere+bkwmwkBU30aK/D0nI4G7UMLNdCc+Q3X/GM+L3P3znjTeYj0pqB0AWDXo+4RmC2uvdEDtfOQF4Wmis33PlgXHXD3XHReac71wCgRotd4//e/+/O+M1XPGPG7zuXaVOXnpN6zQfyVuW8Mg+oW27nqyagDIPMHv3DYKbb+c1XPCOuuuHuuOHOB2d8PNUzH0iLn3kgd7k9902dXoGuqHLeOYvomuXuedcblCzFM0Fz5CTFhqqmSWhGL/NEj5AG/6YtlKHNa3mzAAaT03NwnUMzUp4L5gBUJ4XWNd1tiz3+7/2ZZ8a7/vq2JM8igLp5LyugDn72FADIweq2FwAlGp2YmvMiw7Tr9ozG6MTUoi8GnLp5XXz0wp0xOjEV+w8djo0nrImRDUNeQKBYy22mF7oCpjUxc3JhNtK2pnq012FxuZyNWgaWa745cuTo0XjXX9027+enNAOhdMu5HnGNwGx17olcrp2BfCw2V26488H4zZc/I9563ulmCwDUZLGz+Po9o/GfX/GM+Kdf+3HPN0lC156Tes0H8lX1vDIPqFOO56smIH+Dzh79w2BO3bwufuy0k3x/EDAwP/NA7nJ87ps6vQJdUdW8cxbRNVXsedcblCrVM0Fz5CLVhqqmSahfr/NEj9A+/6YtlKHta3mzAPrXdrf90jnUL/W5YA5ANVJpXdPdttDjn8r+BGiD97IC6uJnTwGA1HmjeajB+KHDi358/xIfj4gYXt/biwZjB6ZidGIqxg8djk3r1sTIiV5sID9VNNOLXrtKmeZhrn67aGrm5KKE2Ui+muxxkL3u3KUrcjob52tZq8AgjkZErIjYfzCfGQglW871iGsB5lPX6x397lX7E1jKUnPl0OFHlzU3zCEAWNxSZ/HDk4/Ej247qaHVPM4Zznxy+npOVaaf3083cdfow7Fp3ZQmIHF1zKt+X+9zltKrXM/X3L/nT6N03XJmT+79L8V8KFubj+/E5COLfjzVMx9IQ+o/81A61wfLl+tz31QstAf1CnRBVeews4iuqWrPp3S94bqcqqR8JtTRnHaoWmoN1bnHUzoHoUT9zJPZPY4dmIpvPzDhfIM+DXpuNvlv2gL1SeFaftBZ4LktXZVCt/06vs3xQ4cjVsz9fWBwOcyFkq79XYPQlpRaL6FpLQ9uvsf/rtGHF/0zYwcPe+0WWFTOc9l7WQF1quNnT3OeuQBAWrzRPNRg0wlrFv34xiU+3qt79x2MS665Na7fM3rs93ZvH4nLL9gRp25eV8l/A5rQVDO50zzMNUgXZg6kI+Uenbt0ScotLkWrQD/mmxmfeMtzF/0zKc9AKMmg1yOuBWhaP3vV/gR6UedzcnMIAJaW4uvjznAWkuJ+bYImID9tzytzg360vV+7SKNg9izEfChb24+v7oDlMEPa0/b5UQp7eHD2INBlVc5AZxFdU9qed01ElUrrYzHaoQ4pNWSPQ978PC80azntpHT+A4PLtWVnP12WY7eahXrlOBdyZZ7RJq1XR8vVW2p/Hjr8aLzm4zce+7X7Gzhe7nPZGQ3UqeoZk/vMBQDSsrLtBUCJRjYMxe7tI/N+bPf2kRjZMLTs/8bYgak5TwwiIq7bMxrvvObWGDswtez/BjSliWZyp3mYa9AuzBxIR6o9OnfpmlRbXIpWgX4sNDNuvOvBOO+MLfP+mZRnIJRmkOsR1wK0ode9an8CvarrObk5BAC9Se31cWc4i0ltvzZBE5CnNueVuUG/uni+tkmj8BizZy7zoWwpPL66A5bDDGlHCudHKezhwdiDQJdVPQOdRXRNSXveNRFVK6mPxWiHuqTSkD0O+fPzvNCc5baTyvkPLE+OLTv76brcutUs1C+3uZAr84y2ab0aWq7HYvvzvDO2xI13PTjj99zfwLQS5rIzGqhTlTOmhJkLAKTFG81DDYbXD8XlF+yY80Rg9/aRuOKCHTG8fvkvNIxOTM15YjDtuj2jMTrhyQH5aKKZ3Gke5hq0CzMH0pFqj85duibVFpeiVaAfC82MK794d7xp1+lxfmYzEEozyPWIawHa0OtetT+BXtX1nNwcAoDepPb6uDOcxaS2X5ugCchTm/PK3KBfXTxf26RReIzZM5f5ULYUHl/dActhhrQjhfOjFPbwYOxBoMuqnoHOIrqmpD3vmoiqldTHYrRDXVJpyB6H/Pl5XmjOcttJ5fwHlifHlp39dF1u3WoW6pfbXMiVeUbbtF4NLddjof15/vaReNOu0+PKL94958+4v4GIMuayMxqoU5UzpoSZCwCkZXXbC4BSnbp5XXz0wp0xOjEV+w8djo0nrImRDUOVvcgwfujwoh/fv8THITV1N5M7zcNcy+nCzIF0pNijc5cuSrHFpWgV6MdCM+PA1KPxy5+8Jf7mbbti5YoV2cxAKFG/1yOuBWhLL3vV/gT6UcdzcnMIAHqX0uvjznCWktJ+bYImIF9tzStzg0F07Xxtk0bhcWbPTOZD2VJ5fHUHLIcZ0rxUzo9S2MP9sweBLqtjBjqL6JpS9rxrIupQSh+L0Q51SqEhexzK4Od5oRlVtJPC+Q8sX24tO/shr241C83IaS7kyjwjBVpfPi3XZ779+ejRo/Gq37shDkw9Ou+fcX8DpcxlZzRQp6pmTCkzFwBIhzeahxoNr6/vhYVNJ6xZ9OMbl/g4pKjOZnKneZhruV2YOZCO1Hp07tJVqbW4FK0C/VhsZhyYejRWrlgRT33ihgZXBMynn+sR1wK0aam9an8C/ar6Obk5BAD9SeX1cWc4vUhlvzZBE5C3NuaVucGgunS+tkmjMJPZ8zjzoWwpPb66A5bDDGlWSudHKezh/tiDQJfVNQOdRXRNCXveNRF1KaGPxWiHurXdkD0O5fDzvFC/qtpp+/wHqpFTy85+eEwu3WoWmpPLXMiVeUYqtL48Wq7X7P357QcmFnyT+Qj3N1DWXHZGA3WqYsaUNHMBgDSsbHsBVfv+978fr3/962PLli2xbt26eNaznhVf+9rXFv0zX/jCF+Kcc86JtWvXxhlnnBFXX311M4uFZRjZMBS7t4/M+7Hd20diZIMXOKAkmoe5dAHUxXyBPGgV6IeZAeXRNSmzP4G2mUMAkCdnOMykCaBf5gakTaPAQsyHsnl8ARiE84O22YNAl5mBwDTzAAajHUpnj0M3aR8Gox0gV+YX5EWzQCnMMyiDlpvl/gaWYk4ANMfMBQCqVtQbzf/gBz+IXbt2xZo1a+J//a//Ff/3//7f+NCHPhQnnXTSgn/m7rvvjpe//OXxohe9KP7lX/4lLr744njLW94Sn/3sZxtcOfRveP1QXH7BjjlPEHZvH4krLtgRw+s9OYCSaB7m0gVQF/MF8qBVoB9mBpRH16TM/gTaZg4BQJ6c4TCTJoB+mRuQNo0CCzEfyubxBWAQzg/aZg8CXWYGAtPMAxiMdiidPQ7dpH0YjHaAXJlfkBfNAqUwz6AMWm6W+xtYijkB0BwzFwCo2oqjR48ebXsRVXnnO98ZN9xwQ1x//fU9/5lLLrkk/u7v/i6+/vWvH/u9n/u5n4t9+/bFP/zDP/T0d4yPj8fw8HCMjY3Fpk2b+l43LMfYgakYnZiK/YcOx8YT1sTIhiFPDAagY3Kh+cVpuZt0UR4tkwrzZXm0TFO0Wi8tU5quzgwtU7Iuda3l/HRpf9I7LdMkc6g+Wm7O3r17Y3R0tO1lLGhkZCS2bdvW9jIYkJZJlTO8dzruBk2UT8tUzdxoh5bplUbTpmXaZD5UJ8WWPb7QvxRbhqaVcH5oOW8l7EGqoWW6qMQZqGUYTGrzQMvkIrV2UqPl/Nnj6LibtF8eLTdDO9RNy9TF/GqWllkuzaZBy7B8KcwzLcPyablZKdzfUJcutVwnc4K2aZkuKXnmahnKoGXIx+q2F1Clv/3bv42XvvSl8drXvjb++Z//OZ785CfHL/3SL8Vb3/rWBf/Ml770pXjxi1884/de+tKXxsUXX1zzaqEaw+vLeTIALE3zMJcugLqYL5AHrQL9MDOgPLomZfYn0DZziNzt3bs3nv70s+LgwQNtL2VB69atj29+83ZvNg9UyhkOM2kC6Je5AWnTKLAQ86FsHl8ABuH8oG32INBlZiAwzTyAwWiH0tnj0E3ah8FoB8iV+QV50SxQCvMMyqDlZrm/gaWYEwDNMXMBgKq0/kbzo6Oj8fDDD8dpp5127Pe+8Y1vxAc/+MF4+OGH41WvelX8/M//fE9/11133RUf//jH49d+7dfiP/7H/xhf/epX45d/+ZdjaGgo3vjGN877Z+6///540pOeNOP3nvSkJ8X4+HgcPHgw1q1bN+fPTE5OxuTk5LFfj4+P97Q+IB06hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFpux+joaBw8eCCee9F7YtMpT2l7OXOM33dPfOXKS2N0dNQbzWdCy5A/HUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRPx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPla2fYC3vGOd8RHPvKRY79+4IEH4vzzz4+vfvWrMTk5GW9605viv//3/97T33XkyJE455xz4gMf+EDs3Lkz/v2///fx1re+Nf7gD/6g0jVfdtllMTw8fOx/W7durfTvB+qnYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqDldm065Slx8rYzk/vfplOe0vZdQ5+0DPnTMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQ/50DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkK8VR48ePdrmAk4//fS4+uqr48d//McjIuKDH/xg/MEf/EF885vfjNWrV8cHP/jB+PSnPx1f/vKXl/y7TjvttHjJS14Sf/zHf3zs9z7+8Y/Hb/3Wb8X3v//9ef/M7t2745xzzokPf/jDx37vqquuiosvvjjGxsbm/TOTk5MxOTl57Nfj4+OxdevWGBsbi02bNvVys4GW6RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJouR0333xznHvuufGSd18VJ287s+3lzPHQ3jvi2t9+c9x0001xzjnntL0ceqBlyJ+OoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8qdjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGfK1uewH3339/POUpTzn2689//vPxmte8JlavfmxpP/MzPxOXXXZZT3/Xrl274o477pjxe9/61rfitNNOW/DPPP/5z4+///u/n/F71157bTz/+c9f8M+sXbs21q5d29OagDTpGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyJ+OoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8qdjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGfK1sewGbNm2Kffv2Hfv1//7f/zue+9znHvv1ihUrYnJysqe/61d/9Vfjy1/+cnzgAx+IO++8Mz7xiU/EH/3RH8Xb3va2Y5/zrne9K97whjcc+/Uv/uIvxl133RW/8Ru/Ed/85jfj93//9+Mv/uIv4ld/9VeXf+MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5tH6G80/73nPi4985CNx5MiR+PSnPx379++Pn/iJnzj28W9961uxdevWnv6u5zznOfHXf/3X8clPfjLOPvvseP/73x8f/vCH43Wve92xz7nvvvti7969x359+umnx9/93d/FtddeG89+9rPjQx/6UPzxH/9xvPSlL63uRgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcZ3XbC3jf+94XL37xi+PP//zP45FHHol3vetdcdJJJx37+Kc+9anYvXt3z3/fK17xinjFK16x4MevvvrqOb/3whe+MG655Za+1k26xg5MxejEVIwfOhyb1q2JkROHIiLm/N7w+qGWVwp5ma+t6Y4W+xgAC1tofpqrNGF6n40dnIr1a1fHyhUrYvXKFbHFfoOB9Du7zXqgRFXPNrMS2pNyfymvDepk7/fH/ZWvOh47+wEA6tPrOes8JmW57M9c1gk8buzAVDywfzL2HTwcJw6tihPXro7N69ZoF5YppTMxpbUALKTOWWUOwkxNNKE7qFbKTaW8NqhKqvs81XXBbE3uVV0APM7PTpGKQfaO/Qb90Qwpsz8pRUp7OaW10Dv/fhvkp+k+zQMom9fIIC9+zgq6wfkMRKTXdWrrgTbpoZs87vSqir1ivwEAVKf1N5p/9rOfHbfffnvccMMN8UM/9EPx3Oc+d8bHf+7nfi6e+cxntrQ6cnPvvoNxyTW3xvV7RiMiYv3QqrjyTc+J3/v8nXH9naPHPm/39pG4/IIdcermdW0tFbIyu62IxztaERG/scDHNAawsPlm60vOemL85iueEe/+zNfNVWo13/7bdcaWePOu0+Oyv789Ln3l2fYb9GGx6+X5Wur38wFyUPVsMyuhPSn3l/LaoE72fn/cX/mq47GzHwCgPr2es85jUpbL/sxlncDj7t13MC759K0zvnd51xlb4h0/sT1OO3l9nKJdGEhKZ2JKawFYSJ2zyhyEmZpoQndQrZSbSnltUJVU93mq64LZmtyrugB4nJ+dIhWD7B37DfqjGVJmf1KKlPZySmuhd/79NshP0/PWfIeyeY0M8uLnrKAbnM9ARHpdp7YeaJMeusnjTq+q2Cv2GwBAtVa2vYCXvexlsWbNmnjlK18Zz33uc+Pyyy+Pffv2Hfv48573vHjZy17W3gLJxtiBqTlPFi467/T46Of3zPgCYkTEdXtG453X3BpjB6aaXiZkZ762Ih7v6Avf+tcFP6YxgPktNFvPPGVTvOuvbzNXqdVC+++GOx+Mq264O848ZZP9Bn1Y6np5dkv9fj5ADqqebWYltCfl/lJeG9TJ3u+P+ytfdTx29gMA1KfXc9Z5TMpy2Z+5rBN43NiBqTn/+FHEY9+X8dHP74kvfOtftQsDSOlMTGktAAupc1aZgzBTE03oDqqVclMprw2qkuo+T3VdMFuTe1UXAI/zs1OkYpC9Y79BfzRDyuxPSpHSXk5pLfTOv98G+Wl63prvUDavkUFe/JwVdIPzGYhIr+vU1gNt0kM3edzpVRV7xX4DAKhe6280/9nPfjYmJyeP/foDH/hAPPTQQ8d+/cgjj8Qdd9zRxtLIzOjE1JwnCzu3bo4b7nxw3s+/bs9ojE54EgFLma+tadftGY0nbly74Mc0BjC/hWaraxeasNjZfsOdD8bOrZvtN+jDUtfLs1vq9/MBclD1bDMroT0p95fy2qBO9n5/3F/5quOxsx8AoD69nrPOY1KWy/7MZZ3A40Ynpub840fTbrjzwXjixrXahQGkdCamtBaAhdQ5q8xBmKmJJnQH1Uq5qZTXBlVJdZ+nui6Yrcm9qguAx/nZKVIxyN6x36A/miFl9ielSGkvp7QWeuffb4P8ND1vzXcom9fIIC9+zgq6wfkMRKTXdWrrgTbpoZs87vSqir1ivwEAVK/1N5o/evToor+GXo0fOjzn9yYfObLon9k/z58BZpqvreMt1pnGAOa30Gx17UITej3b7TfozVJNzW6p388HyEHVs82shPak3F/Ka4M62fv9cX/lq47Hzn4AgPr0es46j0lZLvszl3UCj+vl+zK0C/1L6UxMaS0AC6lzVpmDMFMTTegOqpVyUymvDaqS6j5PdV0wW5N7VRcAj/OzU6RikL1jv0F/NEPK7E9KkdJeTmkt9M6/3wb5aXremu9QNq+RQV78nBV0g/MZiEiv69TWA23SQzd53OlVFXvFfgMAqF7rbzQPVdl0wpo5v7d29eJbfOM8fwaYab62jrdYZxoDmN9Cs9W1C03o9Wy336A3SzU1u6V+Px8gB1XPNrMS2pNyfymvDepk7/fH/ZWvOh47+wEA6tPrOes8JmW57M9c1gk8rpfvy9Au9C+lMzGltQAspM5ZZQ7CTE00oTuoVspNpbw2qEqq+zzVdcFsTe5VXQA8zs9OkYpB9o79Bv3RDCmzPylFSns5pbXQO/9+G+Sn6XlrvkPZvEYGefFzVtANzmcgIr2uU1sPtEkP3eRxp1dV7BX7DQCgeq2/0fyKFStixYoVc34P+jWyYSh2bx+Z8Xu3fHdf7Dpjy7yfv3v7SIxsGGpiaZC1+dqatnv7SDywf3LBj2kMYH4LzdZbvrsvznPtQs0WO9t3nbElbvnuPvsN+rDU9fLslvr9fIAcVD3bzEpoT8r9pbw2qJO93x/3V77qeOzsBwCoT6/nrPOYlOWyP3NZJ/C4pb4v44H9k9qFAaR0Jqa0FoCF1DmrzEGYqYkmdAfVSrmplNcGVUl1n6e6Lpityb2qC4DH+dkpUjHI3rHfoD+aIWX2J6VIaS+ntBZ6599vg/w0PW/Ndyib18ggL37OCrrB+QxEpNd1auuBNumhmzzu9KqKvWK/AQBUr/U3mj969Gi86U1vite85jXxmte8Jg4dOhS/+Iu/eOzXF110UdtLJBPD64fi8gt2zHjScOUX7453/MT2OH/WE4nd20fiigt2xPB6TyJgKfO1FfF4Ry982hMW/JjGAOa30Gy9477x+MCrn2WuUquF9t+uM7bEm3edHnfcN26/QR+Wul6e3VK/nw+Qg6pnm1kJ7Um5v5TXBnWy9/vj/spXHY+d/QAA9en1nHUek7Jc9mcu6wQeN93t7O9d3nXGlnjHT2yPFz3tCdqFAaR0Jqa0FoCF1DmrzEGYqYkmdAfVSrmplNcGVUl1n6e6Lpityb2qC4DH+dkpUjHI3rHfoD+aIWX2J6VIaS+ntBZ6599vg/w0PW/Ndyib18ggL37OCrrB+QxEpNd1auuBNumhmzzu9KqKvWK/AQBUb8XRo0ePtrmAN7/5zT193lVXXVXzSgY3Pj4ew8PDMTY2Fps2bWp7OZ03dmAqRiemYv+hw7HxhDUxsuGxJwqzf88TCI6n46XN19Z0R4t9DJqkZXKz0Pzs+lzVcjOm99nYwcOxfmhVrFq5IlatXBFbTuzWfqM+XWu539nd9VlPPrrWMstT9WwzK6ujZfqVcn8pr61uWu62Lu/9QaR8f2l5cXU8dinvB/Kl5WbcfPPNce6558ZL3n1VnLztzLaXM8dDe++Ia3/7zXHTTTfFOeec0/ZyGICWl6/Xc9Z5TF2q6DiX/ZnLOmEQpZ7JYwem4oH9k8e+L+PEodWxef0a7VKsplpO6UxMaS1QlVLP5S6rc1aZg+nScjuaaEJ33aLl+qXcVMproz9aXliq+zzVddGuFFtucq/qglKk2DL58bNT7dPyYwbZO/YbKcmhZc2QshT2Zw4dk74U9nKKa2lS7i3799vgMTm13HSf5gE5yanlVHiNjBRpeWF+zoqcaHlwzmdSouX2pNZ1auuhP1qulh66KYXHXct5qGKvpLDfqI+WoQxahnysbnsBKb+BPHkaXj//EwRPGmB5FmprqY8BsLDFrlvMVepmn0G1+m1Kg0CJqp5tZiW0J+X+Ul4b1Mne74/7K191PHb2AwDUp9dz1nlMynLZn7msE3icbqEeKbWV0loAFlLnrDIHYaYmmtAdVCvlplJeG1Ql1X2e6rpgtib3qi4AHudnp0jFIHvHfoP+aIaU2Z+UIqW9nNJa6J1/vw3y03Sf5gGUzWtkkBf9QTc4n4GI9LpObT3QJj10k8edXlWxV+w3AIDqrGx7AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd443mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGra67QXAoMYOTMXoxFSMHzocm9atiZETh2J4/VDby4JO0iNQJzMGmqE1SJc+gTqYLUATzBogNeZSt3i8AaAazlTQAbA0cwK6RfMA3WT+0yX2O11gnwNVMEtomj0H0DszkxTZlwD0yplBF9jnNMVeAxZiPkA3aR/SpE3Ig1YBusfsp032H1RHTwAAefJG82Tp3n0H45Jrbo3r94we+73d20fi8gt2xKmb17W4MugePQJ1MmOgGVqDdOkTqIPZAjTBrAFSYy51i8cbAKrhTAUdAEszJ6BbNA/QTeY/XWK/0wX2OVAFs4Sm2XMAvTMzSZF9CUCvnBl0gX1OU+w1YCHmA3ST9iFN2oQ8aBWge8x+2mT/QXX0BACQr5VtLwD6NXZgas4TkIiI6/aMxjuvuTXGDky1tDLoHj0CdTJjoBlag3TpE6iD2QI0wawBUmMudYvHG/qzd+/euPnmm5P83+2339723QOd5kwFHQBLMyegWzQP0E3mP11iv9MF9jlQBbOEptlzAL0zM0mRfQlAr5wZdIF9TlPsNWAh5gN0k/YhTdqEPGgVoHvMftpk/0F19AQAkLfVbS8A+jU6MTXnCci06/aMxujEVAyvH2p4VVCOsQNTMToxFeOHDsemdWti5MShBZvSI1CnXmbM9Of1MrOA+S3V2gP7J3UFfernmnoxrreBOuQyW6qapUA7Up415gtVs6fykPJcojrTPU4+8qjHG3q0d+/eePrTz4qDBw+0vZRFHZ70zejQhn6uoVwXk7pB96jnEsBSzAlIU13Xp5oHFuJ5cdnM/zLotDf2O6VYrHn7nJI575pjltA0e667zHboXxMzU5v0a7n70p6DwemH3Hj+xyBym3X2OXWZ3cKRI0ftNWiIswhownJnjfYhTVW0mdu1COSoqXNUz1AtTbEcnkOxlDpnjP0H1Um9J9crAACL80bzZGf80OFFP77voH9gHAZ1776Dcck1t854or97+0hcfsGOOHXzujmfv1SP+5f4OMBiejnz3/s/vtHzzALmt1Rrex86ECeuXa0r6FG/19SLcb0N1CGH2VLlLAXakeqsMV+omj2Vj1TnEtU5vsfff905i36uxxseNzo6GgcPHojnXvSe2HTKU9pezhz33fal+Prf/lE88sgjbS8FOqnXayjXxaRuOXvUcwlgKb6nGdJT5/WpawNgPp4Xl8/8z59Oe2e/U4KlmrfPKZXzrllmCU2z57rJbIfB1D0ztckglrMv7TkYnH7Iked/9CvHWWefU4f5WviTN/7Yon/GXoNqOIuAJlQxa7QPaVpumzlei0COmjhH9QzV0hTL5TkUi6l7xth/UJ2Ue3K9AgCwtJVtLwD6temENYt+fPLwkRg74B9mhH6NHZia8yQ6IuK6PaPxzmtunberpXrcuMTHARbTy5nfz8wC5rdUaxGhK+jRINfUi3G9DdQh9dlS9SwF2pHirDFfqJo9lZcU5xLVmd3j2tWLfxuExxvm2nTKU+LkbWcm978TR05p+66BTuvlGsp1Malb7h71XAJYiu9phrTUfX3q2gCYzfPibjD/86bT/tjv5K6X5u1zSuS8a55ZQtPsue4x22Fwdc5MbTKoQfelPQeD0w+58vyPfuQ66+xzqrZQC0ux12D5nEVAE6qaNdqHNC2nzVyvRSBHdZ+jeoZqaYoqeA7FQpqYMfYfVCfVnlyvAAD0xhvNk52RDUNx/vaReT92/hlbYuMJa2LfgcMNrwryNzoxteA3yV63ZzRGJx57Ij12YCq+/cBE3LL3B7F61YrYvUCPu7ePxMiGodrWC5RvZMPQgjPm/O0jceNdD877seNnVi+On2vf/tcJLxzSOYu1tuuMLXHLd/fF177zg9h34LBWYAm9XlMfb7FzaLE+XW8Dg0pltiw0/waZpUB6Upk1xzNfqJo9NZi2XotLcS51VR17YHaPt3x3X+w6Y8u8n+vxBoDeLfX12kePHo37xg/Fs7dujvVDq+Z8jutiUrDcr9343ihgKYt/T/NIrBtaFfeNH/I9FtCQ5bxu28vrVl5nBGZL+etFvj+6OuZ/3urutLTW7Hdy10vzVe7z0mYA+Ur5uvR4JTXjzKRKXpdiPrnMdkhRnTNz0DZLug5iMEvty9UrV8y7P5wHMDj91Me5Vi/P/+hHk7Ouyvbtc/rRy95bqAU/Ywj1S+26u9fzylkEeeln1vj3/CA/g7Y5dmAq7hs7FBf+P9viyjc9J97+E2fM+DlnrwFCteo+R2ef9+uHVsXbf+KM+JM3/lj83P+zzc9nQp9Se75eBV+fap7nUPXKeU83MWPsP6hOnT0tZ5aVeL0CAFCH1W0vAPo1vH4o3vszz4z//DdfjxvufPwNZnedsSXeuOv0+P/80Zfi3NNOiisu2BGnbl7X998/dmAqRiemYvzQ4di0bk2MnDgUw+u9UED5xg8dXvTjD08ejnv3HYxLrrn12BPu9UOr4so3PSeORsx4En7+9pF43yvPrnO5QB9yPduG1w/F5RfsiHdec2tcd9yM2b19JN7zM8+Mn/7oFxf8s/uXmGnTZs+16b//8gGvIyBH063NbmHXGVvizbtOj3dec2t85MKd8Z8+c1tcf9z1t1ZgrqWuqWefT0udQ4udhVdcsKPn8zzXawGgHlXNluVYbP5NTPY3S5tilkJ/Dkw9Gr/0ojPi0aNHZ7yOf36Ds2a2fq/VZjMHON7Ygal4aIlvZGvrzEpZm6/FpXANRH17YPaMv/KLd8dHLtwZETHjHJr9eJvtALC4ha6hzjtjS7zxBU+JV/3eDXFg6tHYdcaW+MiFO+OXP3lLHJh6dMbf0fZ1sfOe5X7tZrHvjXrPzzwzHnz4seeG9hV010Lf03zeGVvijbueEq/746/EgalHl/3815lGKerey4N+LaDX1628zgjMNnYwza8X+f7oapn/9Ur1+qAXJbZmv5Oj4+fII0eOLvq5+w8djqc+cUMl+7zEGUB7lnse1nneVaW0ZpyZVMXrUixkqdn+4MNTEf864esFMI86Z+ZSbf7gwFTcsvcHM67pSrsOYjAL7cvzt4/EL73ojPipj1x/7Puujt8fqVzr+3o1OUqln37k0JpzrX6e/9GPpr5eXXX79jm96nXvLXTuT/+M4coVK+b8HfYaVCOl6+5+ziv/phfkpddZs5x/z+99rzw77nnw4djw8JSWoWGDnMvz9T7fzznXfS3iWoAuqfv1nOPP+/VDq+IjF+6Mq264Oz72+Ttn/Ld6eT1KmzDY9zakzNen2uG1/Prkvqfrfk1w7MBUPPjwVLznZ54Z7/3bb3h9H5aprnm+3FmWytcXPH8AAFLnjebJ0oqI2LntpPjVFz8txg4+dnF/y3f3HftC3vV7RuOd19waH71wZ18X4Lm/qALLsemENYt+fHjd0Jw+Dkw9Ghdd/dX4zVc8I/7Ty8+K7/3gYEQ81uPLPnJ9/NhpJ+kHWpb72Xbq5nXx0Qt3xujEVOw/dDg2nrAmRjYMxYMPT815k4LjbVxipkU89sLd7PsmIuK6Aa8jIGenbl4Xv/XKs+POf52IyUeOxNrVK49dX1903ulx1Q13z/gH0SO0AvNZ6pr6+POp13NoobPQP2IILMdyZ8tyLDX/3v/Ksxf9871c61fNLIX+jB2Yit+45ta46Ts/iIvOOz0u2nX6secZD+yfjPVDq1pZVz/XarOZAxxvej+86QVPWfTz2jizUpbCa3FtXgNR7x6YPeMPTD167HWti3adHsPr1sRJ64dmPN5mOwD05vhrqLGDh+PQ4UfjxrsenPGPLUx/Demi806f8QPbEe1eFzvviVj+126O/96o//yKZ8T4ocMxefhI3HjXg/HTH/1iJW8eDeRv+nuaL9p1eqxZvTJWrVgRX5p1Xi7n+a8zjVI0sZcH+VpAv69beZ0RmHbvvoNx6PCRRT+njefFKXxNpkTmfz1SvT7oRcmt2e/kZPYc+ZM3/tiinz/d/HL3eckzgOZVcR7Wdd5VpdRmnJksl9elWMxSs33/ocPxs3/4JV8vgAXUNTOXanPs4OH4hT/9WkQ8dk132WueFe/8q9uKuw5iMLP35YlrV8fXvvODuOjqr874dzOO3x8pXOv7ejW5SqGffuTQWqnP71Pk+R+9aOrr1XW1b5+zlH723kLn/vTPGP7dO86LI0fDXoMapHLdPch55d/0gnz0MmsG/ff81g2tipv3PvbvZ0+/RqdlaF4/5/JCvc/3c851Xou4FqCL6nw95/jzfjn/BrY24TH9fm9Dyo34+lS7vJZfvRL2dJ2vCR5/lq8fWhUXnXd6/H9//Kmxds3K2LxuyP6DAVU9z6uYZSl8fcHzBwAgByvbXgAMYsuJQ3Hrd/cdeyHyF/70a/Gxz9855wdnRiemev47l3oiMnag978LcjSyYSh2bx+Z92O7t4/E1KNH5vQR8dg30r7rr26LByem5vSoH2hXKWfb8PqheOoTN8SPbjspnvrEDTG8fii2nLj4zBrZsPQLk6MTU/POtYj+ryOgBJvXr4k/vfGe+KX/9+YZ5/nOrZvnfIPNNK3ATEtdUx9/PvVzDs13FvailGsBoB6DzpblWmr+TT16ZNnX+lUyS6F/050fmHo0Pvb5O+MX/vRrx55nvOuvbmvtOUQ/12rHMwc43vH74Zbv7otdZ2yZ9/PaOLNSl8prcW1dA1HvHphvxk+fQ3964z2x/YkbZjzeZjsA9Gf6Gmp43Zr4+T/+ypzv0Yp47B9h2Ll184zfa/O62HnPtCq+djP9vVERER/+xz1zOrCvgOnvaf6FP/1aHH7kSLxugfNykOe/zjRK0dReHuRrAYO8buV1RmB6rt1414PJfb0ola/JlMj8r1bK1we9KL01+50czDdH+vlejuXs89JnAM2p6jys67yrSsnNODNZDq9LsZjFZvuuM7bELd/dFxG+XgCLqWNm9tpmxGN9fufBA8VeBzGY4/flyhUr4l1/dducrytHPL4/2r7W9/VqctZ2P/3IpbWSn9+nyPM/FtPk16vrbN8+ZzH97L3Fzv2d2zbHl+9+KEY2DNlrUINUrrsHPa/8m16Qh15mzSD/nt/pIyfGb/3d7XNeo9MytKPXc3mx3o//Oec6r0VcC9Bldb2ec/x5P+i/ga1NeFy/39uQciO+PtU+r+VXq4Q9XddrgrPP8ul/Q/Dn//gr8V//cY83mYdlqnKeVzHL2v76gucPAEAuvNE8WRpePxSXX7Bjyc/bf+hwz39nCS+qwHJMdzX7yfTu7SNxxQU7YmLykUX//L6D8/emH2hPyWfbUjOrlxcnx5e4TujnOgJKsFBXS9EKPK6f86mJc6jkawEgX0vNv4cnH1n2tX6VzFLoX6rPtwd9LcEc4HjH74crv3h3vHnX6XP+MZa2zqzUpTobaE6de6DfGW+2A8BgljrPJx85cuz/t31d7LxnWpVfuxk7eChBVFoAAQAASURBVNi+AuZ1/Kw5/jycT7/Pf51plKKpvTzI1wK8dgkMYnquLfT1ovNbfF5srpGLlK8PeqE1aN98c6Sp7+UwA6hKVedhXeddVTQD89MGi1lotu86Y0u8edfpceUX7z72e75eAM3pp82Ihf8Nlmlmfbf1ci3Q9rW+r1eTs7b76UcurXkOA+lo8uvV2qct/ey94fVD8b5Xnj2nhennau//n/83mfMUSpPKdXfT51Uu1/BQil5mzSBzQMuQp15+zrnuaxHzA6pXxc9nahMe1+/3NqTciNeoKU0Je7qu1wSd5ZCPKmZZ219fMHMAgFysbnsBMKhTN6+Lh5d44+uNJ6zp+e8r4UUVWK5TN6+Lj164M0YnpmL/ocOx8YQ1MbJhKIbXD8WBqUcX/bNrV69c8GP6gXaUfrYtNrN6sWmJ64R+riOgFNNdfX/fwbjnwQOxdvXKGF6nFehHr+dTE+dQ6dcCQJ56mX/LvdavklkK/Uv5+fYg88Uc4HjH74cDU4/GL3/ylrjovNPjol2nx+QjR+IpW9bHkzevS+ofnEpFyrOBZtS9B/qZ8WY7AAxmqfP8R0ZOjM/80gtafS1nmvOe41X1tZv1Q6sW/bh9Bd02PWvuGzu06Of1+/zXmUYpmtzL/X4twGuXwCCm59p8Xy9au3plbDt5fZyyeV0razPXyEXK1we90Bq0b745cvzZ/O6XnRVTjxyp5TVrM4CqVHkepvS9t7NpBuanDZZy/Gx/8OHH5vst390Xv/zJW+b8uw++XgDNmX3dNbR6Zfz91++ft83F/g2WCLO+63q9FmjzWt/Xq8ldys+Vj5dLa57DQDqa/Hq19mlLv3tv7OBU7Nx20owWjn8dJZXzFEqUwnV30+dVLtfwUJKlZs0gc0DLkKdefs75oxfurPVaxPyAeiz35zO1CTP1870NEek24jVqSlPKnq7jNUFnOeSjqlnm++IAAJbmjebJ2hM3ro3d20fiuj2jcz62e/tIjGzo/eK/lBdVYLmG18//xHlkw9CCvZ2/fSRu+e6+Bf9O/UA7unC2LTSzerHYXOv3OgJKMrx+KEYnpuKX/t+bIyLi7T9xRuw6Y0vccOeDcz5XKzC/Xs6nJs6hLlwLAPnpdf4t51q/SmYp9C/159v9zhdzgOPN3g8Hph6Nj33+zmO//qdf+/Ekzq8UpT4bqF8Te6DXGW+2A8BgljrPTxk+IZnrYec9s1XxtZsThxb/dlv7CpieM1U+/3WmUYqm93I/Xwvw2iUwiOPn2uyvF0U89jWjtphr5CLl64NeaA3at9AcmT6bX/2jT45nnDpcy3/bDKAqVZ+HqXzv7Wyagflpg14cm+0PTMTP/uGXFvw8Xy+AZh1/3fXtBybmvD447Zbv7ovzt4/E9WY98+jnWqCta31fr6YEqT5XPl4urXkOA+lo8uvV2qct/e69DWvXLPjcLCKd8xRK1fZ1d9PnVS7X8FCaxWbNIHNAy5CnFH7O2fyA+izn5zO1CXP1+r0NEek24jVqSlPSnq76NUFnOeSjylnm++IAABa3su0FVOm9731vrFixYsb/nv70py/4+VdfffWczz/hhBMaXDHLNbx+KC6/YEfs3j4y4/d3bx+JKy7Y0deTgeknIvPJ7UUVqMNivV326mfFHfeNz/vn9APtcbYtrsrrCCjN8fPjyi/eHW/edXrsOmPLjM/RCixPE+eQawEgRbldh5ul0L/cOl+KOcDx7IfBlTYb6F9Ke0DLADCYlM7zpTjvGcRSe3zz+jX2FbCkqs9LZxqlSHkv53SdC6TDXIPlS7mjXmgN2tfmHDEDqEru52GvNAPz0wb96MqZATlarM877huPy179LLOeeeVwLeD8gWbk0loOcwu6osm5oX3a0u/ey+U8BerR9Hll5kB6BpkDWoY8pfA81fyAeg3auTZhcbk2ksLZD1WypxeW65yCLiphlpk5AEAuVhw9evRo24uoynvf+9749Kc/Hf/4j/947PdWr14dIyPzX5hdffXV8Su/8itxxx13HPu9FStWxJOe9KS+/rvj4+MxPDwcY2NjsWnTpsEWz7KMHZiK0Ymp2H/ocGw8YU2MbBga6InDvfsOxjuvuTWu2zN67Pemn4icsnldlUsmMTru3UK96YcUaHkubS6tqusIqqPlNBw/P9YPrYqLzjs9XvAjW2LtmpWxed2QVliSlntT9znkWoDl0jJ1yek6vIRZqmXakFPnS0llDmg5Dansh1yVNBsG1fWWU9kDWma5Smn55ptvjnPPPTde8u6r4uRtZ7a9nDnu+cpn4ytXXhrnXfx78eSzdra9nDke2ntHXPvbb46bbropzjnnnLaXwwBKablpqZznS3Hed0MdHS+2x+0rqEeJZ3KV56XZQy6Wajn1vZzLdS7UrcRzuS7mGinLpeXUO+qF1qhTLi23qe05YgbQi9yfL1dJM+SsznNZG/SqS2dGXVxjU5el+jTrq1Vay6nvD+cPdSmt5eXKqbXU5xbN0XG7mp4b2i9X6i33s/dyOk+haqm33JQmzyszhzpoefn6nQNapg5abkbbz1PNj/JpuX2DdK5NZtPyTDk30vbZT7tKbNmenl/Oc4qlldhy1+U+y8ycwWgZyqBlyEdxbzT/mc98Jv7lX/6lp8+/+uqr4+KLL459+/Yt679r6JUl9yciDEbH1dAPbdPy/LRJbrScDvOD5dByOrTMcmgZHpP7LNUyLF8Kc0DL6UhhP5AvLadDyyxHKS17o/nl8Ubz+SulZRbmvC9fGx3bV1A9Z/LSzB5y0EvL9jKkz7ncH3ONVOXUso5gYTm13CZzhNR5vgxlcC6TCmfG8miZOumzOVpunv1NHbQ8l9bIjY7bZ25QhdJa1gVdVVrLuTBzqJqW26Flqqbl7jA/yqblfGmT42l5Lo2QIy13izlVLi2TIjOnf1qGMmgZ8rG67QVUbc+ePXHqqafGCSecEM9//vPjsssui23bti34+RMTE3HaaafFkSNH4pxzzokPfOAD8cxnPnPR/8bk5GRMTk4e+/X4+Hhl66d9w+tdtHeBjuuhH5qm5d5ok9RpOV3mB/3Qcrq0TD+0DPPLbZZqGarXxhzQcrpyOxdol5bTpWX6oWUog5a7x3lfnhQ6tq9g+VJoOTdmDykapGV7GdLjXF4ec41U5NyyjuBxObfcJnOE1Hi+DGVwLpMqZ0Z/tEyT9FkfLbfP/qYKWl6a1kidjtNjbjCI0lvWBV1Resu5MHNYLi2nQcssl5a7y/woi5bLoc1u0/LSNEIOtNxt5lQ5tEwOzJylaRnKoGXI18q2F1Cl5z73uXH11VfHP/zDP8THP/7xuPvuu+P888+P/fv3z/v5Z555Zlx55ZXxN3/zN/Hnf/7nceTIkXjBC14Q3/ve9xb971x22WUxPDx87H9bt26t4+YANdIxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQPx1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz5WnH06NGjbS+iLvv27YvTTjstfud3fid+4Rd+YcnPP3z4cJx11llx4YUXxvvf//4FP29ycjImJyeP/Xp8fDy2bt0aY2NjsWnTpkrWDtRLx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylKHUlm+++eY499xz4yXvvipO3nZm28uZ456vfDa+cuWlcd7FvxdPPmtn28uZ46G9d8S1v/3muOmmm+Kcc85pezn0oNSWoUt0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkD8dQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5Gt12wuo0+bNm+NpT3ta3HnnnT19/po1a2Lnzp1Lfv7atWtj7dq1VSwRaImOoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqG/OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhfzqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXI18q2F1CniYmJ+Pa3vx2nnHJKT5//6KOPxm233dbz5wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMoqg3mv/1X//1+Od//ue455574sYbb4xXv/rVsWrVqrjwwgsjIuINb3hDvOtd7zr2+e973/vic5/7XNx1111x8803x+tf//r4zne+E295y1vaugkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAB6xuewFV+t73vhcXXnhhPPjgg/GEJzwhzjvvvPjyl78cT3jCEyIiYu/evbFy5cpjn/+DH/wg3vrWt8b9998fJ510Upx77rlx4403xjOe8Yy2bgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQAUW90fynPvWpRT/+hS98Ycavf/d3fzd+93d/t8YVAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMy1su0FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTN6rYXAAAAAAAAAAAAJdq7d2+Mjo62vYx53X777W0vAQAAAAAAAAAAAAAAAAAAAAAAAAAAAKDzvNE8AAAAAAAAAABUbO/evfH0p58VBw8eaHspizo8OdX2EgAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6yxvNAwAAAAAAAABAxUZHR+PgwQPx3IveE5tOeUrby5njvtu+FF//2z+KRx55pO2lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSWN5qnEmMHpmJ0YirGDx2OTevWxMiJQzG8fqjtZQE10j3QDzMDeqcXyJ+OoUzahnzpF6Bd5jAR9gFsOuUpcfK2M9texhzj993T9hKABjmPoTl6g7JpHPKnYwDq5Jyhi+x76J1eoF4ao2vseaALzDqohpaApZgTUB5dUwp7GeiXuQHt0yF0i+YhP7oFSmGeQVk0DdXREwBAGbzRPMt2776Dcck1t8b1e0aP/d7u7SNx+QU74tTN61pcGVAX3QP9MDOgd3qB/OkYyqRtyJd+AdplDhNhHwBACpzH0By9Qdk0DvnTMQB1cs7QRfY99E4vUC+N0TX2PNAFZh1UQ0vAUswJKI+uKYW9DPTL3ID26RC6RfOQH90CpTDPoCyahuroCQCgHCvbXgB5GzswNefJQUTEdXtG453X3BpjB6ZaWhlQF90D/TAzoHd6gfzpGMqkbciXfgHaZQ4TYR8AQAqcx9AcvUHZNA750zEAdXLO0EX2PfROL1AvjdE19jzQBWYdVENLwFLMCSiPrimFvQz0y9yA9ukQukXzkB/dAqUwz6Asmobq6AkAoCzeaJ5lGZ2YmvPkYNp1e0ZjdMITBCiN7oF+mBnQO71A/nQMZdI25Eu/AO0yh4mwDwAgBc5jaI7eoGwah/zpGIA6OWfoIvseeqcXqJfG6Bp7HugCsw6qoSVgKeYElEfXlMJeBvplbkD7dAjdonnIj26BUphnUBZNQ3X0BABQFm80z7KMHzq86Mf3L/FxID+6B/phZkDv9AL50zGUSduQL/0CtMscJsI+AIAUOI+hOXqDsmkc8qdjAOrknKGL7HvonV6gXhqja+x5oAvMOqiGloClmBNQHl1TCnsZ6Je5Ae3TIXSL5iE/ugVKYZ5BWTQN1dETAEBZvNE8y7LphDWLfnzjEh8H8qN7oB9mBvROL5A/HUOZtA350i9Au8xhIuwDAEiB8xiaozcom8YhfzoGoE7OGbrIvofe6QXqpTG6xp4HusCsg2poCViKOQHl0TWlsJeBfpkb0D4dQrdoHvKjW6AU5hmURdNQHT0BAJTFG82zLCMbhmL39pF5P7Z7+0iMbBhqeEVA3XQP9MPMgN7pBfKnYyiTtiFf+gVolzlMhH0AAClwHkNz9AZl0zjkT8cA1Mk5QxfZ99A7vUC9NEbX2PNAF5h1UA0tAUsxJ6A8uqYU9jLQL3MD2qdD6BbNQ350C5TCPIOyaBqqoycAgLJ4o3mWZXj9UFx+wY45TxJ2bx+JKy7YEcPrPUGA0uge6IeZAb3TC+RPx1AmbUO+9AvQLnOYCPsAAFLgPIbm6A3KpnHIn44BqJNzhi6y76F3eoF6aYyuseeBLjDroBpaApZiTkB5dE0p7GWgX+YGtE+H0C2ah/zoFiiFeQZl0TRUR08AAGVZ3fYCyN+pm9fFRy/cGaMTU7H/0OHYeMKaGNkw5MkBFEz3QD/MDOidXiB/OoYyaRvypV+AdpnDRNgHAJAC5zE0R29QNo1D/nQMQJ2cM3SRfQ+90wvUS2N0jT0PdIFZB9XQErAUcwLKo2tKYS8D/TI3oH06hG7RPORHt0ApzDMoi6ahOnoCACiHN5qnEsPrPSGArtE90A8zA3qnF8ifjqFM2oZ86RegXeYwEfYBAKTAeQzN0RuUTeOQPx0DUCfnDF1k30Pv9AL10hhdY88DXWDWQTW0BCzFnIDy6JpS2MtAv8wNaJ8OoVs0D/nRLVAK8wzKommojp4AAMqwsu0FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSNN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABo2Oq2FwAAAAAAAAAAAJCj22+/ve0lLGhkZCS2bdvW9jIAAAAAAAAAAAAAAAAAAAAAAAAAAACARRT1RvPvfe9749JLL53xe2eeeWZ885vfXPDP/OVf/mX85m/+Ztxzzz2xffv2uOKKK+JlL3tZ3UsFAAAAAAAAAAAydXDswYhYEa9//evbXsqC1q1bH9/85u3ebB4AAAAAAAAAAAAAAAAAAAAAAAAAAAASVtQbzUdEPPOZz4x//Md/PPbr1asXvok33nhjXHjhhXHZZZfFK17xivjEJz4Rr3rVq+Lmm2+Os88+u4nlAgAAAAAAAAAAmTl8YH9EHI0f/flL4gmnP73t5cwxft898ZUrL43R0VFvNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAJK+6N5levXh0/9EM/1NPn/tf/+l/jJ3/yJ+M//If/EBER73//++Paa6+Nj33sY/EHf/AHdS4TAAAAAAAAAADI3IYnbouTt53Z9jIAAAAAAAAAAAAAAAAAAAAAAAAAAACATK1sewFV27NnT5x66qnxIz/yI/G6170u9u7du+DnfulLX4oXv/jFM37vpS99aXzpS1+qe5kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAh61uewFVeu5znxtXX311nHnmmXHffffFpZdeGueff358/etfj40bN875/Pvvvz+e9KQnzfi9Jz3pSXH//fcv+t+ZnJyMycnJY78eHx+v5gYAjdExlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQPx1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz5Wtn2Aqr0Uz/1U/Ha1742duzYES996Uvj7//+72Pfvn3xF3/xF5X+dy677LIYHh4+9r+tW7dW+vcD9dMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQPx1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz5WnH06NGjbS+iTs95znPixS9+cVx22WVzPrZt27b4tV/7tbj44ouP/d573vOe+MxnPhP/5//8nwX/zsnJyZicnDz26/Hx8di6dWuMjY3Fpk2bKl1/L8YOTMXoxFSMHzocm9atiZETh2J4/VDj64CcDNKx1iA9qZ3JUII2zruUW3b+Q++W27LeIA2pnctmAwwmtZbrZlZQqq61XBqziWlttWwPQrUGbfnmm2+Oc889N17y7qvi5G1nNrHUvtzzlc/GV668NM67+PfiyWftbHs5c1jf8jy094649rffHDfddFOcc845bS8nCalcYzunYXCpdDybrqE/qbbcC73D47zuBWXI+Vzuh9lB6brSMuZZ6fy8I5QhpXPZjIDBVdWyDqFdrrGhDFWcy9qG9qX0fBnqUvp5k0rHpd/PUDfPlaEMWoYyLOcaW9OQDucylKHK1740Du1J5XXsqpgndNWgLWsG0lLauQxdpWUog5YhX6vbXkCdJiYm4tvf/nb8u3/37+b9+POf//z4p3/6pxlvNH/ttdfG85///EX/3rVr18batWurXOrA7t13MC655ta4fs/osd/bvX0kLr9gR5y6eV2LK4O09dux1iBNKZ3JUIK2zrtUW3b+Q3+W07LeIB0pnctmAwwupZbrZlZQsi61XBqzieO10bI9CNVzLkMZUmjZOQ3Lk0LHs+ka+pdiy73QO8zkdS8oQ67ncj/MDrqgCy1jnnWBn3eEMqRyLpsRsDxVtKxDaJ9rbCjDcs9lbUMaUnm+DHXpwnmTQsdduJ+hbp4rQxm0DGUY9Bpb05AW5zKUoarXvjQO7UrhdeyqmCd02SAtawbSU9K5DF2mZSiDliFfK9teQJV+/dd/Pf75n/857rnnnrjxxhvj1a9+daxatSouvPDCiIh4wxveEO9617uOff6v/MqvxD/8wz/Ehz70ofjmN78Z733ve+NrX/tavP3tb2/rJvRl7MDUnBcrIiKu2zMa77zm1hg7MNXSyqAsWgOgC5x3M7k/oDl6A+ZjNgC9MCuAFJlNtM0eBIB0OaehPLqG7tA7tE+HwCDMDqAU5hmz2RPAYswIaJ8OIT+6hTJpG4AmOG+a4X6G5ukOyqBlKIumIW8ahrJpHKiKeQL90QwAAAClKuqN5r/3ve/FhRdeGGeeeWb87M/+bGzZsiW+/OUvxxOe8ISIiNi7d2/cd999xz7/BS94QXziE5+IP/qjP4pnP/vZ8elPfzo+85nPxNlnn93WTejL6MTUnBcrpl23ZzRGJ7xgAVXQGgBd4Lybyf0BzdEbMB+zAeiFWQGkyGyibfYgAKTLOQ3l0TV0h96hfToEBmF2AKUwz5jNngAWY0ZA+3QI+dEtlEnbADTBedMM9zM0T3dQBi1DWTQNedMwlE3jQFXME+iPZgAAACjV6rYXUKVPfepTi378C1/4wpzfe+1rXxuvfe1ra1pRvcYPHV704/uX+DjQG60B0AXOu5ncH9AcvQHzMRuAXpgVQIrMJtpmDwJAupzTUB5dQ3foHdqnQ2AQZgdQCvOM2ewJYDFmBLRPh5Af3UKZtA1AE5w3zXA/Q/N0B2XQMpRF05A3DUPZNA5UxTyB/mgGAACAUq1sewEMbtMJaxb9+MYlPg70RmsAdIHzbib3BzRHb8B8zAagF2YFkCKzibbZgwCQLuc0lEfX0B16h/bpEBiE2QGUwjxjNnsCWIwZAe3TIeRHt1AmbQPQBOdNM9zP0DzdQRm0DGXRNORNw1A2jQNVMU+gP5oBAACgVN5oPmMjG4Zi9/aReT+2e/tIjGwYanhFUCatAdAFzruZ3B/QHL0B8zEbgF6YFUCKzCbaZg8CQLqc01AeXUN36B3ap0NgEGYHUArzjNnsCWAxZgS0T4eQH91CmbQNQBOcN81wP0PzdAdl0DKURdOQNw1D2TQOVMU8gf5oBgAAgFJ5o/mMDa8fissv2DHnRYvd20fiigt2xPB6L1hAFbQGQBc472Zyf0Bz9AbMx2wAemFWACkym2ibPQgA6XJOQ3l0Dd2hd2ifDoFBmB1AKcwzZrMngMWYEdA+HUJ+dAtl0jYATXDeNMP9DM3THZRBy1AWTUPeNAxl0zhQFfME+qMZAAAASrW67QWwPKduXhcfvXBnjE5Mxf5Dh2PjCWtiZMOQFyugYloDoAucdzO5P6A5egPmYzYAvTArgBSZTbTNHgSAdDmnoTy6hu7QO7RPh8AgzA6gFOYZs9kTwGLMCGifDiE/uoUyaRuAJjhvmuF+hubpDsqgZSiLpiFvGoayaRyoinkC/dEMAAAAJfJG8wUYXj//CxRjB6ZidGIqxg8djk3r1sTIiV7IgOVYqLXl0irQZWZgeuo673LV6/1hL8Py1T1/dAp56mU26BvS1GSbnsdA+5zHc5lNNG2+Dp/6xA1tLwsAWMTRiIgVba8CqMLxzwGnr83vGn3Yc2QogOfbkC7X00A/Uv+6ja+1Ab1KbZ6ZX+1rek94zCEvdc4I8wDmWqgLbUBe2u7WGQv1aLvt4+kcoFxNnjc5nSdVrzWlcx26wr8HBGXQMpQl5+ti8wK8nwSUzr9jDXlJucWcr/uhaSm3DNRH+wAAlM4bzRfq3n0H45Jrbo3r94we+73d20fi8gt2xKmb17W4MuB4WgW6zAykFPYypE+nUC59Q5q0Cd2ieWifDgEgH85tKJvGoSyahvToEiiR2QbkyvzqHo85MM08gLl0AVTBLIHy6RyAKuR0nuS0VqAd5gSUQctAr8wLWJg+oFs0D2nQIpRBy9BN2gcAoAtWtr0Aqjd2YGrOk5mIiOv2jMY7r7k1xg5MtbQy4HhaBbrMDKQU9jKkT6dQLn1DmrQJ3aJ5aJ8OASAfzm0om8ahLJqG9OgSKJHZBuTK/OoejzkwzTyAuXQBVMEsgfLpHIAq5HSe5LRWoB3mBJRBy0CvzAtYmD6gWzQPadAilEHL0E3aBwCgK7zRfIFGJ6bmPJmZdt2e0Rid8IQGUqBVoMvMQEphL0P6dArl0jekSZvQLZqH9ukQAPLh3IayaRzKomlIjy6BEpltQK7Mr+7xmAPTzAOYSxdAFcwSKJ/OAahCTudJTmsF2mFOQBm0DPTKvICF6QO6RfOQBi1CGbQM3aR9AAC6whvNF2j80OFFP75/iY8DzdAq0GVmIKWwlyF9OoVy6RvSpE3oFs1D+3QIAPlwbkPZNA5l0TSkR5dAicw2IFfmV/d4zIFp5gHMpQugCmYJlE/nAFQhp/Mkp7UC7TAnoAxaBnplXsDC9AHdonlIgxahDFqGbtI+AABd4Y3mC7TphDWLfnzjEh8HmqFVoMvMQEphL0P6dArl0jekSZvQLZqH9ukQAPLh3IayaRzKomlIjy6BEpltQK7Mr+7xmAPTzAOYSxdAFcwSKJ/OAahCTudJTmsF2mFOQBm0DPTKvICF6QO6RfOQBi1CGbQM3aR9AAC6whvNF2hkw1Ds3j4y78d2bx+JkQ1DDa8ImI9WgS4zAymFvQzp0ymUS9+QJm1Ct2ge2qdDAMiHcxvKpnEoi6YhPboESmS2Abkyv7rHYw5MMw9gLl0AVTBLoHw6B6AKOZ0nOa0VaIc5AWXQMtAr8wIWpg/oFs1DGrQIZdAydJP2AQDoCm80X6Dh9UNx+QU75jyp2b19JK64YEcMr/eEBlKgVaDLzEBKYS9D+nQK5dI3pEmb0C2ah/bpEICl3H777XHzzTcn+7+9e/e2fRc1xrkNZdM4lEXTkB5dAiUy24BcmV/d4zEHppkHMJcugCqYJVA+nQNQhZzOk5zWCrTDnIAyaBnolXkBC9MHdIvmIQ1ahDJoGbpJ+wAAdMXqthdAPU7dvC4+euHOGJ2Yiv2HDsfGE9bEyIYhT2YgMVoFuswMpBT2MqRPp1AufUOatAndonlonw4BmM/BsQcjYkW8/vWvb3spi1q3bn1885u3x7Zt29peSiOc21A2jUNZNA3p0SVQIrMNyJX51T0ec2CaeQBz6QKoglkC5dM5AFXI6TzJaa1AO8wJKIOWgV6ZF7AwfUC3aB7SoEUog5ahm7QPAEAXeKP5gg2v9wQGcqBVoMvMQEphL0P6dArl0jekSZvQLZqH9ukQgNkOH9gfEUfjR3/+knjC6U9veznzGr/vnvjKlZfG6OhoZ95oPsK5DaXTOJRF05AeXQIlMtuAXJlf3eMxB6aZBzCXLoAqmCVQPp0DUIWczpOc1gq0w5yAMmgZ6JV5AQvTB3SL5iENWoQyaBm6SfsAAJTOG80DAAAAAAAAAAAUaMMTt8XJ285sexkAAAAAAAAAAAAAAAAAAAAAAAAAAADAAla2vQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArvFG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1b3fYCumLswFSMTkzF+KHDsWndmhg5cSiG1w+1vSwgMWYF1E9nUAYtQxm0DGXQMpRBy1AOPUP+dAwA6XAuQ7n0DXnRLDCbuQD0w8wAoF/Ojmq4HyFtGoX66AsYlPkB1dASlEHL0E3ah7xpGFiMGQHLpyMom8YhL5qFMmkbukPvkB5dAgDATN5ovgH37jsYl1xza1y/Z/TY7+3ePhKXX7AjTt28rsWVASkxK6B+OoMyaBnKoGUog5ahDFqGcugZ8qdjAEiHcxnKpW/Ii2aB2cwFoB9mBgD9cnZUw/0IadMo1EdfwKDMD6iGlqAMWoZu0j7kTcPAYswIWD4dQdk0DnnRLJRJ29Adeof06BIAAOZa2fYCSjd2YGrOE5GIiOv2jMY7r7k1xg5MtbQyICVmBdRPZ1AGLUMZtAxl0DKUQctQDj1D/nQMAOlwLkO59A150Swwm7kA9MPMAKBfzo5quB8hbRqF+ugLGJT5AdXQEpRBy9BN2oe8aRhYjBkBy6cjKJvGIS+ahTJpG7pD75AeXQIAwPy80XzNRiem5jwRmXbdntEYnfBkBDAroAk6gzJoGcqgZSiDlqEMWoZy6Bnyp2MASIdzGcqlb8iLZoHZzAWgH2YGAP1ydlTD/Qhp0yjUR1/AoMwPqIaWoAxahm7SPuRNw8BizAhYPh1B2TQOedEslEnb0B16h/ToEgAA5lf0G81ffvnlsWLFirj44osX/Jyrr746VqxYMeN/J5xwQmVrGD90eNGP71/i40A3mBVQP51BGbQMZdAylEHLUAYtQzn0DPnTMQCkw7kM5dI35EWzwGzmAtAPMwOAfjk7quF+hLRpFOqjL2BQ5gdUQ0tQBi1DN2kf8qZhYDFmBCyfjqBsGoe8aBbKpG3oDr1DenQJAADzW932Aury1a9+Nf7wD/8wduzYseTnbtq0Ke64445jv16xYkVl69h0wppFP75xiY8D3WBWQP10BmXQMpRBy1AGLUMZtAzl0DPkT8cAkA7nMpRL35AXzQKzmQtAP8wMAPrl7KiG+xHSplGoj76AQZkfUA0tQRm0DN2kfcibhoHFmBGwfDqCsmkc8qJZKJO2oTv0DunRJQAAzG9l2wuow8TERLzuda+L//bf/lucdNJJS37+ihUr4od+6IeO/e9JT3pSZWsZ2TAUu7ePzPux3dtHYmTDUGX/LSBfZgXUT2dQBi1DGbQMZdAylEHLUA49Q/50DADpcC5DufQNedEsMJu5APTDzACgX86OargfIW0ahfroCxiU+QHV0BKUQcvQTdqHvGkYWIwZAcunIyibxiEvmoUyaRu6Q++QHl0CAMD8inyj+be97W3x8pe/PF784hf39PkTExNx2mmnxdatW+OVr3xlfOMb31j08ycnJ2N8fHzG/xYyvH4oLr9gx5wnJLu3j8QVF+yI4fWejEAb+um4CWYFDMaZDGXQMpRBy1AGLUMZtAxl6Pd1bD1DmpzLUIbUvr4MDMa5DPmr4kzWN7TPmQxlaOu5srkA1Sr9dS8zg64ovWVoUptnR0ktO4Ppshxa1igsbdCW9QVpyeFcnmZ+wMJ8fRnKoGXIX93X19qHZtTVsoahWTm97hVhRsBCPFeGMvh5RyiDcxnKsJxzWduQDl+TgjK4xoYy5PY1KWB+WoZ8rW57AVX71Kc+FTfffHN89atf7enzzzzzzLjyyitjx44dMTY2Fh/84AfjBS94QXzjG9+IH/7hH573z1x22WVx6aWX9rymUzevi49euDNGJ6Zi/6HDsfGENTGyYcgTEWhRvx03wayA/jmToQxahjJoGcqgZSiDlqEMg7yOrWdIj3MZypDi15eB/jmXIX9Vncn6hnY5k6EMbT5XNhegOl143cvMoAu60DI0qa2zo7SWncF0VS4taxQWt5yW9QXpyOVcnmZ+wPx8fRnKoGXIXxPX19qH+tXZsoahObm97hVhRsB8PFeGMvh5RyiDcxnKsNxzWduQBl+TgjK4xoYy5Pg1KWAuLUO+Vhw9evRo24uoyne/+934sR/7sbj22mtjx44dERHxwhe+MH70R380PvzhD/f0dxw+fDjOOuusuPDCC+P973//vJ8zOTkZk5OTx349Pj4eW7dujbGxsdi0adOybwdQPx1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1CGQVu++eab49xzz42XvPuqOHnbmU0stS/3fOWz8ZUrL43zLv69ePJZO9tezhzWtzypry8i4qG9d8S1v/3muOmmm+Kcc86p/b/nXIb86RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliF/OoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZcjX6rYXUKWbbropHnjggRn/8PCjjz4a1113XXzsYx+LycnJWLVq1aJ/x5o1a2Lnzp1x5513Lvg5a9eujbVr11a2bqB5OoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfKnYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahvzpGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIV9FvdH8v/k3/yZuu+22Gb/35je/OZ7+9KfHJZdcsuSbzEc89sb0t912W7zsZS+ra5kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxxX1RvMbN26Ms88+e8bvnXjiibFly5Zjv/+GN7whnvzkJ8dll10WERHve9/74nnPe16cccYZsW/fvvgv/+W/xHe+8514y1ve0vj6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgG4o6o3me7F3795YuXLlsV//4Ac/iLe+9a1x//33x0knnRTnnntu3HjjjfGMZzyj57/z6NGjERExPj5e+XqB+W3cuDFWrFhR2d+nY2iHlqEMWoYyaBnKoGUog5ahDFqGMmgZytBWyxMTExERMfa9u+LII49W9t+vysQD34+IiPH774m1a9e2vJq5rG95Ul9fRMT++78TEY+10svZ6FyGMlTZso6hHc5kKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDL5/E/LnTIYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfI3aMcrjk4Xy8C+973vxdatW9teBnTK2NhYbNq0qbK/T8fQDi1DGbQMZdAylEHLUIaqW77rrrviqU99amV/H9Ab5zKUQctQBi1DGbQMZaiyZR1DO5zJUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGXz/JuTPmQxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRv0I690XwFjhw5Evfee29s3LgxVqxY0fZykjc+Ph5bt26N7373u5UePl3U5fuy6t7q6rjLj9Fs7ovHuB9mqqvlo0ePxrZt24q6n0vdOyXeri7eplzO5aqV+FhPK/W2lXq7Iqq5bXW0fMcdd8QznvGMIu/zXpW873rlPmj2Pmj6XPb4ug8i3AcR1d8HVbe8b9++OOmkk2Lv3r0xPDxc2d/bptL2XWm3J6K82zTI7enq8+Vppe2BfnT1tpd6u72O3ZvSHn+3J23O5d6V9tjXwX20tJTuo662fLyUHo/lcDvS0vTtqLK5Kjsu5fFskvtsMCXcb6mcySXcl3VwvyzMfTNTKi23rbR94fakrY7bk0rLpT1WEW5TLkq5Tam03IRSHrMUuC+rler3Ys/Xsse+Ou7LapR2P6ZwLud8n+a89gjrb1uV60+h5ark/rguxO3KTxu3raSWm1Dy/ltI125zrrfXzzv2J/f1R+R/G6x/fn6uYqZc94l1NyvFdaf6/ZtNSfExqZLbl7deb1+Jz5VLeWxLuB0l3IaIPG5HTi3ncH/OZs3NsOa8Wq5Cjo95atyHy1fy92LPx55ZmPtmfl2+X1JsOcfHI8c1R+S5bmueX4otVynHx30+bkc6Ur0NTbac6n1QCvdvfXK4b9s4l3O4X+ritnfztkfUf/vbusYu5XF1O9JSyu2I6P+2aHl53I60dPV2DNrx6kEWx0wrV66MH/7hH257GdnZtGlT1pGmxH25fHV37DF6nPviMe6Heky3PD4+HhFl3s8l3qaIMm+X2zS43K6vS3ysp5V620q9XRFp3baVK1fGk5/85IhIa11tcR+4DyLyvA96PZdzvG1Vcx+4DyLSvQ9WrlwZERHDw8NJrm85Ur3PB1Xa7Yko7za1eXtye748rbQ90I+u3vau3u5elf46ttuTNrenOrmdy6U99nVwHy2txPsot5aPV8rj4XakJcfbUUfHOd4PbXOfDcb99rjltuy+nJ/7ZWHum3rkfH0dUd6+cHvSlvLtcS7P5TblocTbtBw5nMses+q4L6uV0v25VMsprTV37stquB/nt5xzOef7NOe1R1h/21JcfwrX2CneL1Vwu/KT821LoeUm5PwYDaprt7lrt3e2rvy8Y+7rj8j/Nlh/vUr5uQrrbpZ1pyXn6+tSH5Npbl/emr59KbVcymNbwu0o4TZElHM7etFEyznen9bcDGuuTkrn8mJSvf9y4j5cvpTvQz/v2Cz3zfzcL8tXZcs5Ph45rjkiz3Vbc71SvcbO6T5cjNuRjhJuw2J6abn0+6Bt7t/6dOm+7edc7tL9Mpvb3s3bHpHP7e/3GjuX27UUtyMtpdyOiPZui5bz5nakpe7bsbK2vxkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAeXmjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGeaN5Grd27dp4z3veE2vXrm17KdlzX6bPY/Q498Vj3A/NKPF+LvE2RZR5u9ym7ij5fin1tpV6uyLSvW2prqtJ7gP3QUTZ90HJt61X7gP3QUT690Hq6xtEabeptNsTUd5tKu32NKHL91lXb3tXb/egSru/3J60uT3d5b5amvtoae6jtJTyeLgdaSnldiyX+6F/7rPBuN+q476cn/tlYe4b5lPavnB70lba7TleibfNbcpDibepdB6z6rgvq5XT/ZnTWlPnvqyG+7F6Od+nOa89wvrblvv661Lq/eJ25afk21aKLj5GXbvNXbu9g8r9fsp9/RH53wbrb1Zu651m3c2ybqpS+mPi9uWt9Nu3mFJuewm3o4TbEFHO7UhFjvenNTfDmrvH/bd87sPl69p92LXb2w/3zfzcL2nJ8fHIcc0Rea7bmruplPvQ7UhHCbdhudwH9XL/1sd9O78u3y9uezdve0S5t7+U2+V2pKWU2xGRz23JZZ1LcTvS4nb0Z8XRo0eP1vpfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCGlW0vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBrvNE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMO80TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw7zRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDvNE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMO80TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw7zRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDvNE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMO80XyFrrvuuvjpn/7pOPXUU2PFihXxmc98pu+/4+jRo/HBD34wnva0p8XatWvjyU9+cvz2b/929YsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWrO67QWU5OGHH45nP/vZcdFFF8VrXvOagf6OX/mVX4nPfe5z8cEPfjCe9axnxUMPPRQPPfRQxSsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2rTi6NGjR9teRIlWrFgRf/3Xfx2vetWrjv3e5ORkvPvd745PfvKTsW/fvjj77LPjiiuuiBe+8IUREXH77bfHjh074utf/3qceeaZ7SwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqN3KthfQJW9/+9vjS1/6UnzqU5+KW2+9NV772tfGT/7kT8aePXsiIuJ//I//ET/yIz8S//N//s84/fTT4ylPeUq85S1viYceeqjllQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABV8kbzDdm7d29cddVV8Zd/+Zdx/vnnx1Of+tT49V//9TjvvPPiqquuioiIu+66K77zne/EX/7lX8af/dmfxdVXXx033XRT/Nt/+29bXj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQpdVtL6Arbrvttnj00UfjaU972ozfn5ycjC1btkRExJEjR2JycjL+7M/+7Njn/cmf/Emce+65cccdd8SZZ57Z+LoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA6nmj+YZMTEzEqlWr4qabbopVq1bN+NiGDRsiIuKUU06J1atXz3gz+rPOOisiIvbu3euN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAQ3mi+ITt37oxHH300HnjggTj//PPn/Zxdu3bFI488Et/+9rfjqU99akREfOtb34qIiNNOO62xtQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1WnH06NGjbS+iFBMTE3HnnXdGxGNvLP87v/M78aIXvShOPvnk2LZtW7z+9a+PG264IT70oQ/Fzp0741//9V/jn/7pn2LHjh3x8pe/PI4cORLPec5zYsOGDfHhD384jhw5Em9729ti06ZN8bnPfa7lWwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUxRvNV+gLX/hCvOhFL5rz+2984xvj6quvjsOHD8dv/dZvxZ/92Z/F97///RgZGYnnPe95cemll8aznvWsiIi499574x3veEd87nOfixNPPDF+6qd+Kj70oQ/FySef3PTNAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrijeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGray7QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdI03mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDear8DRo0djfHw8jh492vZSgAHpGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyJ+OoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8qdjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGfHij+Qrs378/hoeHY//+/W0vBRiQjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahvzpGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX86hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyIc3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjY6rYXADB2YCpGJ6Zi/NDh2LRuTYycOBTD64faXhbQJy1D2jQK3aJ5KIOWoQxahoXpg6bZcwBlMM+hDFoGgDQ4k6EMWoYyaJlU2IvQLg0CVMdMhTJoGfKiWSibxqEMWqZE9jWQI7MLyqBlKIOWoQxahnpoCxiE2dENHmegCmYJQG/MSwDoHm80D7Tq3n0H45Jrbo3r94we+73d20fi8gt2xKmb17W4MqAfWoa0aRS6RfNQBi1DGbQMC9MHTbPnAMpgnkMZtAwAaXAmQxm0DGXQMqmwF6FdGgSojpkKZdAy5EWzUDaNQxm0TInsayBHZheUQctQBi1DGbQM9dAWMAizoxs8zkAVzBKA3piXANBNK9teANBdYwem5jwJiYi4bs9ovPOaW2PswFRLKwP6oWVIm0ahWzQPZdAylEHLsDB90DR7DqAM5jmUQcsAkAZnMpRBy1AGLZMKexHapUGA6pipUAYtQ140C2XTOJRBy5TIvgZyZHZBGbQMZdAylEHLUA9tAYMwO7rB4wxUwSwB6I15CQDd5Y3mgdaMTkzNeRIy7bo9ozE64YkI5EDLkDaNQrdoHsqgZSiDlmFh+qBp9hxAGcxzKIOWASANzmQog5ahDFomFfYitEuDANUxU6EMWoa8aBbKpnEog5YpkX0N5MjsgjJoGcqgZSiDlqEe2gIGYXZ0g8cZqIJZAtAb8xIAussbzQOtGT90eNGP71/i40AatAxp0yh0i+ahDFqGMmgZFqYPmmbPAZTBPIcyaBkA0uBMhjJoGcqgZVJhL0K7NAhQHTMVyqBlyItmoWwahzJomRLZ10COzC4og5ahDFqGMmgZ6qEtYBBmRzd4nIEqmCUAvTEvAaC7vNE80JpNJ6xZ9OMbl/g4kAYtQ9o0Ct2ieSiDlqEMWoaF6YOm2XMAZTDPoQxaBoA0OJOhDFqGMmiZVNiL0C4NAlTHTIUyaBnyolkom8ahDFqmRPY1kCOzC8qgZSiDlqEMWoZ6aAsYhNnRDR5noApmCUBvzEsA6C5vNA+0ZmTDUOzePjLvx3ZvH4mRDUMNrwgYhJYhbRqFbtE8lEHLUAYtw8L0QdPsOYAymOdQBi0DQBqcyVAGLUMZtEwq7EVolwYBqmOmQhm0DHnRLJRN41AGLVMi+xrIkdkFZdAylEHLUAYtQz20BQzC7OgGjzNQBbMEoDfmJQB0lzeaB1ozvH4oLr9gx5wnI7u3j8QVF+yI4fWeiEAOtAxp0yh0i+ahDFqGMmgZFqYPmmbPAZTBPIcyaBkA0uBMhjJoGcqgZVJhL0K7NAhQnf8/e/cepddZH/b+p9tIGkszMh7b2FQyClZsg61ExoT6pkAXLLeJ20C1TJYaEoKTtDTlUKAEMIRwLbZPSqBATyiltps/SlY4BpLTkKYkLOILhARwsJ2AIzvGCtiGjGPNeDzSjGzP+cMZMdLc3st+936eZ38+a7EWmpGsrXmf7+/Ze89lm6lQBi1DXjQLZdM4lEHLlMi6BnJkdkEZtAxl0DKUQcswGNoCemF2tIPXGaiCWQLQGfMSANprzdzc3FzTB5G7ycnJGB0djYmJiRgZGWn6cCA7E9OzMT41G48dORpbN22IsS1DtV+E6Bj6p2VIWwqNdkrL0L8Umtcy9E/LUAYtw/JS6CMnWu6fNUcKtAz9S2Geaxn6p2WgCjqG/tmToQxahjJomVSksBbpj5bzpkHmaRn6l8JM1TL0T8uQlxSaXY6WoX8pNK5l6J+WKVEK67ptdAz9S2F2aRn6p2Uog5ahDFqGwUihrbppGfqXwuzQ8uCl8DpTPi2XzyxpBy1D/1KYl1qGMmgZ8rG+6QMAGB12owZKoGVIm0ahXTQPZdAylEHLsDx9UDdrDqAM5jmUQcsAkAZ7MpRBy1AGLZMKaxGapUGA6pipUAYtQ140C2XTOJRBy5TIugZyZHZBGbQMZdAylEHLMBjaAnphdrSD1xmoglkC0BnzEgDaZ23TBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNh40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUrLgHzX/3u9+NV77ylXHKKafE5s2b44ILLoivfvWry/7+L37xi7FmzZpF/3v44YdrPGoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgTdY3fQBVevTRR+PSSy+NF7/4xfEHf/AHceqpp8aBAwfi5JNPXvXP3nPPPTEyMnLs16eddtogDxUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABosaIeNH/99dfH9u3b48Ybbzz2tp07d3b0Z0877bTYtm3bgI4MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4AfWNn0AVfq93/u9uOiii+Kqq66K0047Lfbs2RP/7b/9t47+7I/+6I/GGWecES996Uvj9ttvH/CRAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG22vukDqNLf/M3fxG/+5m/GG9/4xnjb294Wf/7nfx6ve93rYmhoKF71qlct+WfOOOOM+NjHPhYXXXRRzMzMxCc+8Yl40YteFF/5ylfiwgsvXPLPzMzMxMzMzLFfT05ODuTfAwyOjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahvzpGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX86hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyNfapg+gSk899VRceOGF8f73vz/27NkT//pf/+v4pV/6pfjYxz627J8555xz4t/8m38Tz3/+8+OSSy6JG264IS655JL44Ac/uOyfufbaa2N0dPTY/7Zv3z6Ifw4wQDqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnyp2Mog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWob86RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliFfa+bm5uaaPoiqnHXWWfHSl740PvGJTxx722/+5m/G+973vvjud7/b8X/nV37lV+K2226LL3/5y0u+f2ZmJmZmZo79enJyMrZv3x4TExMxMjLS+z8AqI2OoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqG/OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhfzqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXI1/qmD6BKl156adxzzz3Hve2v//qv46yzzurqv/MXf/EXccYZZyz7/o0bN8bGjRt7OkYgDTqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnyp2Mog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWob86RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliFfRT1o/g1veENccskl8f73vz9e8YpXxJ/92Z/Fxz/+8fj4xz9+7Pdcc8018d3vfjd+67d+KyIiPvShD8XOnTvjec97Xhw5ciQ+8YlPxBe+8IX4P//n/zT1zwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKV9SD5l/wghfEZz7zmbjmmmviPe95T+zcuTM+9KEPxc/8zM8c+z0PPfRQHDx48NivZ2dn4z/8h/8Q3/3ud2N4eDh2794df/RHfxQvfvGLm/gnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1Q1IPmIyKuvPLKuPLKK5d9/0033XTcr9/85jfHm9/85gEfFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAPrG36AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADaxoPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM08aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZh40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM08aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZh40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAzD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqNn6pg8A6M/E9GyMT83G5JGjMbJ5Q4ydNBSjw0NNHxYwIJqHxXQBDIr5AnnQKtANMwPKo2tSZn0CTTOHoHf6AYB02JeBbpkbkDaNAssxH8rm9QWgF/YPmmYNAm1mBgLzzAPojXYonTUO7aR96I12gFyZX5AXzQKlMM+gDFqul483sBpzAqA+Zi4AUBUPmoeMPXjocLzl5jvj1gPjx962d9dYXLdvd5y5bXODRwYMguZhMV0Ag2K+QB60CnTDzIDy6JqUWZ9A08wh6J1+ACAd9mWgW+YGpE2jwHLMh7J5fQHohf2DplmDQJuZgcA88wB6ox1KZ41DO2kfeqMdIFfmF+RFs0ApzDMog5br5eMNrMacAKiPmQsAVGlt0wcA9GZienbRhUFExC0HxuOtN98ZE9OzDR0ZMAiah8V0AQyK+QJ50CrQDTMDyqNrUmZ9Ak0zh6B3+gGAdNiXgW6ZG5A2jQLLMR/K5vUFoBf2D5pmDQJtZgYC88wD6I12KJ01Du2kfeiNdoBcmV+QF80CpTDPoAxarpePN7AacwKgPmYuAFA1D5qHTI1PzS66MJh3y4HxGJ9ycQAl0TwspgtgUMwXyINWgW6YGVAeXZMy6xNomjkEvdMPAKTDvgx0y9yAtGkUWI75UDavLwC9sH/QNGsQaDMzEJhnHkBvtEPprHFoJ+1Db7QD5Mr8grxoFiiFeQZl0HK9fLyB1ZgTAPUxcwGAqnnQPGRq8sjRFd//2CrvB/KieVhMF8CgmC+QB60C3TAzoDy6JmXWJ9A0cwh6px8ASId9GeiWuQFp0yiwHPOhbF5fAHph/6Bp1iDQZmYgMM88gN5oh9JZ49BO2ofeaAfIlfkFedEsUArzDMqg5Xr5eAOrMScA6mPmAgBV86B5yNTIpg0rvn/rKu8H8qJ5WEwXwKCYL5AHrQLdMDOgPLomZdYn0DRzCHqnHwBIh30Z6Ja5AWnTKLAc86FsXl8AemH/oGnWINBmZiAwzzyA3miH0lnj0E7ah95oB8iV+QV50SxQCvMMyqDlevl4A6sxJwDqY+YCAFXzoHlIwMT0bNz3/am44+Cjcd/fTcXE9Oyqf2Zsy1Ds3TW25Pv27hqLsS1DVR8mtFovnVZJ8zSh6XW/Gl0AvVptvpkvkId+Wk39PAfabhCN2t/Jkf1qZbpemnWTBusTaNog5pA9hraocx/XFQCsbLV9ecum9fZSaIFuzpvdl4O0pdyoa/Tu+HhRtZTnQ8nqatnrC0AvVts/1q9d43yUFfV7ruMcBmiD5WalGQh5GeQ9HvOAXKT2eQvtpCu1tZIraxzaqbT27QnUpcp2rFtg0BbOmfXr1hS190PpSjtfB3pTwjWDeUablNDscrRcLx9vaFYO89ycAKier8EGAOqyvukDgLZ78NDheMvNd8atB8aPvW3vrrG4bt/uOHPb5mX/3OjwUFy3b3e89eY745YT/uz1+3bH6LCLA6hKr51WSfPULYV1vxpdAL3oZL6ZL5CHXlvN4TwH2mxQjdrfyY39anW6Xsy6SYf1CTSt6jlkj6FN6trHdQUAq1tpX37fy86Pt3/mrvijb37/uLfbS6Es3Z43uy8HaUu1Udfo3fHxYhBSnQ8lq7Nlry8AvVhu/7h811j88ovPjn/24VtjevbJiHA+ymJVnOs4hwFKt9qsNAMhD4O+x+OciByk+HkL7aQpxbWSK2sc2qmk9u0J1KmqdqxbYNBOnDPDQ+vihp9/QcxFLJo9ue390AbTs0/GL7/47Hhybi5uv/eRY2+/XLPQGqVcM5R0/wFWUkqzy9FyvUaHh+J9Lzs/3vaZu+K2BeeCl519SrzvZef7eMMA5TLPzWWAavkabACgTmvm5ubmmj6I3E1OTsbo6GhMTEzEyMhI04dDRiamZ+O1n7zjuJP/eXt3jcVH9u9Z9SR/Yno2xqdm47EjR2Prpg0xtmXIhUEPdMxyqui06uPR/PK0XI3U1v1qdFEeLTMo3c4386U/WqYu3bSa23lOCrRMnepotK37u5bzYr/qTpu6Xqll6yZNbVqfdM6+TJ2qmEP2mKVpuXyD3Md1lQ4tQ/503A4n7stbNq1f9JD5efbSPGmZpfRz3uy+XDO0TKdSatQ1+mI+H0WTUpoPuUuxZa8vdM85Nhy/f5y0cX189YFH473/66+OPWR+Xsrno1quV9XnOs5hmKdlStLprCxxBmqZktR5jye1eaBl5qX+eYvU2klNnS2nvlZyZY1jT26n3Nu3Jyym5Xr00451Sye0TD+WmzPDQ+viHVc+Ny466+R4fOaJLPf+3GiZXsw3/LUHHo2rL9sZe7Zvi5knnoqN69fG9x+biZ84/5m6rZmWqVuJ1wwp3H/QMoNSYrPL0XI9JqZn4z986htx7hkjx50L3vG3h+KehybjP131I8WsKdorxZZznOcpzGXaLcWWoVtt/hrseVqGMmgZ8rG+6QOANhufml3y5D8i4pYD4zE+Nbvqif7ocDkXA5CiKjqtkuapQ2rrfjW6ADrV7XwzXyAP3bSa23kOtE0djdrfyYH9qju6fpp1kybrE2haFXPIHkNbDXIf1xUAdOfEffm+708t+ZD5CHsplKSf82b35SBtKTXqGr07Pl4MWkrzoWRNtez1BaAXC/eP+74/Fdd8+q4lf5/zUeZVfa7jHAYoUaez0gyEtNV5j8c8IFWpf95CO+lIfa3kyhqHdsq9fXsCTemnHesWGLTl5sz07JNxzafvij9+44/Hj+44uYEjAzqxsOGPfuHeRe//sWc/w7kCFK7Ea4bc7z/ASkpsdjlarsf41Gz80Te/v+z33Ze0piAlOc5zcxmgf74GGwCo29qmDwDabPLI0RXf/9gq7wcGT6e0kXUPlMp8A8wBSJtG4WlaoBfWDQCDYo+B6ukKAPpjL4V20DpQB7OmOz5eUAYtA5ArexidsE4AVmdWQhm0DDqgc9YKAPPsCeTIugUGzZyBvGkYMAcgL5qlatYUNEN7AO1k/gMAdfOgeWjQyKYNK75/6yrvBwZPp7SRdQ+UynwDzAFIm0bhaVqgF9YNAINij4Hq6QoA+mMvhXbQOlAHs6Y7Pl5QBi0DkCt7GJ2wTgBWZ1ZCGbQMOqBz1goA8+wJ5Mi6BQbNnIG8aRgwByAvmqVq1hQ0Q3sA7WT+AwB186B5aNDYlqHYu2tsyfft3TUWY1uGaj4i4EQ6pY2se6BU5htgDkDaNApP0wK9sG4AGBR7DFRPVwDQH3sptIPWgTqYNd3x8YIyaBmAXNnD6IR1ArA6sxLKoGXQAZ2zVgCYZ08gR9YtMGjmDORNw4A5AHnRLFWzpqAZ2gNoJ/MfAKibB81Dg0aHh+K6fbsXXQTs3TUW1+/bHaPDLgCgaTqljax7oFTmG2AOQNo0Ck/TAr2wbgAYFHsMVE9XANAfeym0g9aBOpg13fHxgjJoGYBc2cPohHUCsDqzEsqgZdABnbNWAJhnTyBH1i0waOYM5E3DgDkAedEsVbOmoBnaA2gn8x8AqNuaubm5uaYPIneTk5MxOjoaExMTMTIy0vThkKGJ6dkYn5qNx44cja2bNsTYliEn/zXTMavRaR60XC3rnqZomUEz3+qhZVJmDnROyzRBo9XTcp60wIk6adm6gfTZl8mVPeZ4WqYKumqeliF/Om43e2k5tMxKtJ4PLZMzs+YHfD4KyqBlKINzbFhabnuYlpuR2zohfVqmRG2clVqmRFrWMu3soARNtGytQLXsyeTMnvADWs6HdctKtEwVzJnmaZl+aDgdWqYp5kC1tMygabYebWrZmqJkKbesPehcyi1Dt9o8/7UMZdAy5GN90wcARIwOt+eEH3KlU9rIugdKZb4B5gCkTaPwNC3QC+sGgEGxx0D1dAUA/bGXQjtoHaiDWdMdHy8og5YByJU9jE5YJwCrMyuhDFoGHdA5awWAefYEcmTdAoNmzkDeNAyYA5AXzVI1awqaoT2AdjL/AYC6rG36AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADaxoPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM08aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZsU9aP673/1uvPKVr4xTTjklNm/eHBdccEF89atfXfHPfPGLX4wLL7wwNm7cGGeffXbcdNNN9RwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0EpFPWj+0UcfjUsvvTQ2bNgQf/AHfxB/9Vd/FR/4wAfi5JNPXvbP3H///fGTP/mT8eIXvzj+4i/+Il7/+tfHL/7iL8Yf/uEf1njkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJusb/oAqnT99dfH9u3b48Ybbzz2tp07d674Zz72sY/Fzp074wMf+EBERJx33nlx2223xQc/+MG44oorBnq8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDsV9aD53/u934srrrgirrrqqviTP/mTeNaznhW//Mu/HL/0S7+07J/58pe/HC95yUuOe9sVV1wRr3/965f9MzMzMzEzM3Ps15OTk30fO1AvHUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPnTMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQ/50DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkK+1TR9Alf7mb/4mfvM3fzN27doVf/iHfxj/9t/+23jd614X/+N//I9l/8zDDz8cp59++nFvO/3002NycjIOHz685J+59tprY3R09Nj/tm/fXum/Axg8HUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPnTMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQ/50DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkK81c3Nzc00fRFWGhobioosuii996UvH3va6170u/vzP/zy+/OUvL/lnfviHfzhe/epXxzXXXHPsbZ/73OfiJ3/yJ2N6ejo2b9686M/MzMzEzMzMsV9PTk7G9u3bY2JiIkZGRir8FwGDomMog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliF/OoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZcifjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfK1vukDqNIZZ5wRz33uc49723nnnRc333zzsn/mmc98Znzve9877m3f+973YmRkZMmHzEdEbNy4MTZu3Nj/AQON0TGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5A/HUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRPx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPkq6kHzl156adxzzz3Hve2v//qv46yzzlr2z1x88cXxuc997ri3ff7zn4+LL754IMcInZqYno3xqdmYPHI0RjZviLGThmJ0eKjpw4Ks6QpgMbORtrDWoQxaBvpljkCZtM2JrAkgZ2YY5EOvADBY9lpgnnkAx9MEtJf+oTfaAXJhXkE+9Aq0hXkHzdEf1EtzkBZNQjr0CPnTMRBhFkAb6BwwB6Asmm43rz9AM8xfaCftAwApK+pB8294wxvikksuife///3xile8Iv7sz/4sPv7xj8fHP/7xY7/nmmuuie9+97vxW7/1WxER8ZrXvCY++tGPxpvf/Oa4+uqr4wtf+EL8zu/8Tvz+7/9+U/8MiAcPHY633Hxn3Hpg/Njb9u4ai+v27Y4zt21u8MggX7oCWMxspC2sdSiDloF+mSNQJm1zImsCyJkZBvnQKwAMlr0WmGcewPE0Ae2lf+iNdoBcmFeQD70CbWHeQXP0B/XSHKRFk5AOPUL+dAxEmAXQBjoHzAEoi6bbzesP0AzzF9pJ+wBA6tY2fQBVesELXhCf+cxn4pOf/GScf/758d73vjc+9KEPxc/8zM8c+z0PPfRQHDx48Nivd+7cGb//+78fn//85+NHfuRH4gMf+EB84hOfiCuuuKKJfwLExPTsoouIiIhbDozHW2++MyamZxs6MsiXrgAWMxtpC2sdyqBloF/mCJRJ25zImgByZoZBPvQKAINlrwXmmQdwPE1Ae+kfeqMdIBfmFeRDr0BbmHfQHP1BvTQHadEkpEOPkD8dAxFmAbSBzgFzAMqi6Xbz+gM0w/yFdtI+AJCD9U0fQNWuvPLKuPLKK5d9/0033bTobS960YvijjvuGOBRQefGp2YXXUTMu+XAeIxPzcbo8FDNRwV50xXAYmYjbWGtQxm0DPTLHIEyaZsTWRNAzswwyIdeAWCw7LXAPPMAjqcJaC/9Q2+0A+TCvIJ86BVoC/MOmqM/qJfmIC2ahHToEfKnYyDCLIA20DlgDkBZNN1uXn+AZpi/0E7aBwBysLbpAwCON3nk6Irvf2yV9wOL6QpgMbORtrDWoQxaBvpljkCZtM2JrAkgZ2YY5EOvADBY9lpgnnkAx9MEtJf+oTfaAXJhXkE+9Aq0hXkHzdEf1EtzkBZNQjr0CPnTMRBhFkAb6BwwB6Asmm43rz9AM8xfaCftAwA58KB5SMzIpg0rvn/rKu8HFtMVwGJmI21hrUMZtAz0yxyBMmmbE1kTQM7MMMiHXgFgsOy1wDzzAI6nCWgv/UNvtAPkwryCfOgVaAvzDpqjP6iX5iAtmoR06BHyp2MgwiyANtA5YA5AWTTdbl5/gGaYv9BO2gcAcrC+6QOAkk1Mz8b41GxMHjkaI5s3xNhJQzE6PLTinxnbMhR7d43FLQfGF71v766xGNuy8p+HnPXSTCd0BSxlUDMnF2YjKRlkj9Y6dC7lvVHLQL9WmiMvPe+02LJpfdz3/akkZyC0SbfnI84ROFFdayLlc2cgTxPTs/HU3Fz891ddFGvWrImvH3w0brjt/piefTIi7GuQgoX7/5aN6+Paf3lBvPd//dWxTufpFYBBa8M1qXs+UIYq5pV5QF1y2V81AWXpZvboH3qzsJ3hoXVx9WU7Y8/2bTHzxFNx8vCG2LLJt9YCnfM9D+Qul2vf1OkVaItBzDt7EW3T65p3vkEbpLQnaI4cpdRQ1TQJ9VppnugR0uJn2kIZmjiXNwugPzlcg+sc6pXiXDAHoHpNtq7pduvk9U9xLwKoi2dZAVXyvacAQA7WzM3NzTV9ELmbnJyM0dHRmJiYiJGRkaYPh0Q8eOhwvOXmO+PWBTcD9u4ai+v27Y4zt21e9c++9eY7j7uRsHfXWFy/b3ecscqfpTc6bl4/zXT639dV+bRMpwY9c3KR6mzUcrvU0WOqa710Ws5LDnujlpuhZUqy1Bx56XmnxTuufG68/bN3Jz0D+6VlctDr+UibzhG03JlBr4kczp1Jm5Y50VJz5dKzT4lXX7ozXvfJO+Kis04ucl/LnZbbZalOL981Fv/uxWfH1Tf9+bGHzZd6HloyLUP+2tZxm65J23TPh/a13AZVzivzIB+5tpzb/qoJBi3XlnPTy+zRP93Q8g88eOhwvPN3746f/rEdcePt98ft9z5y7H0p7/kQoeWU+J4H+pFCy7ld+6ZOr+2UQstQtyrnXSp7kZapS79r3vnGyrSct1T2hBOPSXP103JvUmyoaprMh47z1sk80WM7aDl9fqYtndBy+po8lzcL8qHltOR0Da7ztGi5XCnPBXOgelpurxRa13R1cmx5udf//963O56KaHx9QhNybJnqeZZV/rRMinzvafe0DGXQMuTDg+YrYOhxoonp2XjtJ+847ibDvL27xuIj+/fE6PDQqv+N8anZeOzI0di6aUOMbRla9c/QOx03q4pmOv17dFU2LdOJumZOLlKcjVpujzp7THGtl07L+chpb9Ry/bRMaU6cI1s2rY83feobWczAfmiZ1PV7PtKWcwQtd25QayKnc2fSpWUWWmmuXL5rLN73U+fHtuENZkuCtNweq+3/7/2p8+PR6dmiz0NLpmXIX5s6buM1aVvu+dCulttgEPPKPMhDji3nur9qgkHKseXc9DN79E+ntHy8700eiTf9zl/ErQt+0Me8lPd80HIafM8D/Wq65VyvfVOn1/ZpumVoShXzLqW9SMvUoao173xjeVrOV0p7wok0Vz8tdy/lhqqmyTzoOF/dzBM9lk/LafMzbemUltOWwrm8WZAHLacjhW67pfN0aLlMOcwFc6BaWm6nlFrXdDVybXmp1z8iklmfULdcW6Y6nmVVBi2TKt972h0tQxm0DPlY3/QBQInGp2aXvMkQEXHLgfEYn5pd9SJgdNhNA9qjimY6oSsgor6ZkwuzkSbV2aO1DsvLaW/UMtCvE+fIfd+fymYGQsn6PR9xjsCJBrUmcjp3BvKw0ly59cB4PPHUnLkCDVtt/3/iqbn40R0n13xUALRRG69J3fOBPA1iXpkHDEqu+6smIG/9zB79Q2+mjjyx5A/6iEh7zwfS4HseyF2u176p0yvQFlXMO3sRbVPVmne+QYlS3hM0Rw5SbqhqmoTB6mae6BGa5WfaQhlSOJc3C6A7KXTbLZ3DYOUwF8wB6F9KrWu63ZZ6/f3MVKDNPMsKGCTfewoApGxt0wcAJZo8cnTF9z+2yvuhbTQD1MnMgXToEdKgRaDNzEBIgxbJhbUKVM1cgfTpFIBU2JOAXJhX5MR6BZpg9kD9dAf0wwwhd9YwAE2zF9E21jwsTx/QHw0BVTFPIB96hTJoGfKjW+BE5gK0g9ZJmfUJtJkZCAySGQMApMyD5mEARjZtWPH9W1d5P7SNZoA6mTmQDj1CGrQItJkZCGnQIrmwVoGqmSuQPp0CkAp7EpAL84qcWK9AE8weqJ/ugH6YIeTOGgagafYi2saah+XpA/qjIaAq5gnkQ69QBi1DfnQLnMhcgHbQOimzPoE2MwOBQTJjAICUedA8DMDYlqHYu2tsyfft3TUWY1uGaj4iSJtmgDqZOZAOPUIatAi0mRkIadAiubBWgaqZK5A+nQKQCnsSkAvzipxYr0ATzB6on+6Afpgh5M4aBqBp9iLaxpqH5ekD+qMhoCrmCeRDr1AGLUN+dAucyFyAdtA6KbM+gTYzA4FBMmMAgJR50DwMwOjwUFy3b/eiC4G9u8bi+n27Y3TYRQAspBmgTmYOpEOPkAYtAm1mBkIatEgurFWgauYKpE+nAKTCngTkwrwiJ9Yr0ASzB+qnO6AfZgi5s4YBaJq9iLax5mF5+oD+aAioinkC+dArlEHLkB/dAicyF6AdtE7KrE+gzcxAYJDMGAAgZWvm5ubmmj6I3E1OTsbo6GhMTEzEyMhI04dDQiamZ2N8ajYeO3I0tm7aEGNbhlwAJErHadAM/dIy3TBz0qXl9tFjmbScHy2yFC3TFqXPQC2Ti9Jb7JeW02Gt0g8tsxRzJT9abh+dlknLkL82dmxPokRtbLkNzKv2ybll6xV+IOeWc2P2MEhaXpruyI2W02KG0KtUWraGoT+ptAw5S2Ev0jJ1SmHNl0rL+dMHEVruh4ZIhY7zZ54QoeVc6JXVaDkPWmY1Wk6PbumFlstmLrSHlttN6+UosWXrkzYqsWV6YwbmTcukzozpjJahDFqGfKxv+gAgNfMn7pNHjsbI5g0xdlLvJ+6jw076aZd++9EMDEaVe1tJzBxYXV3zQ48wWJ22rEWgzVabga6roB4pn4+YAyxlLiJiTdNHAfQqpdme8h4Ig5ZSiyvRKQDzmt677EnQTk3Pnl6YVywl1bVsvQK96meumT3wtDrPD3QHZfI9D5SgjnVsDQOUIdV7rJ2wF1G6pfp8zmlbmj4sqETV+489AZbm5wEA3fLz/mCxnO+drESvkKZuZ46WIU0rtaxb4EQL58L8/Pib8ceLuv6A3FVxb8A5ACnrd32Wev8MKIfrdKBOi2bOFl/3CQCkxYPmYYEHDx2Ot9x8Z9x6YPzY2/buGovr9u2OM7dtbvDIIH36gTRpE+iV+QFl0DJA/8xSwBxgIesByqBlSIMWAciNvQtogtlDKaxloDTmGvRPR0C/zBFKYB0D0Cl7BqRLn5TM+oZ6aA3olrkBi+kCqJOZA2XQMtAr8wPSpE1YmUaA1JlTQJ3MHAAgB2ubPgBIxcT07KIT+IiIWw6Mx1tvvjMmpmcbOjJIn34gTdoEemV+QBm0DNA/sxQwB1jIeoAyaBnSoEUAcmPvAppg9lAKaxkojbkG/dMR0C9zhBJYxwB0yp4B6dInJbO+oR5aA7plbsBiugDqZOZAGbQM9Mr8gDRpE1amESB15hRQJzMHAMiFB83DPxifml10Aj/vlgPjMT7lJB6Wox9IkzaBXpkfUAYtA/TPLAXMARayHqAMWoY0aBGA3Ni7gCaYPZTCWgZKY65B/3QE9MscoQTWMQCdsmdAuvRJyaxvqIfWgG6ZG7CYLoA6mTlQBi0DvTI/IE3ahJVpBEidOQXUycwBAHLhQfPwDyaPHF3x/Y+t8n5oM/1AmrQJ9Mr8gDJoGaB/ZilgDrCQ9QBl0DKkQYsA5MbeBTTB7KEU1jJQGnMN+qcjoF/mCCWwjgHolD0D0qVPSmZ9Qz20BnTL3IDFdAHUycyBMmgZ6JX5AWnSJqxMI0DqzCmgTmYOAJALD5qHfzCyacOK79+6yvuhzfQDadIm0CvzA8qgZYD+maWAOcBC1gOUQcuQBi0CkBt7F9AEs4dSWMtAacw16J+OgH6ZI5TAOgagU/YMSJc+KZn1DfXQGtAtcwMW0wVQJzMHyqBloFfmB6RJm7AyjQCpM6eAOpk5AEAuPGge/sHYlqHYu2tsyfft3TUWY1uGaj4iyId+IE3aBHplfkAZtAzQP7MUMAdYyHqAMmgZ0qBFAHJj7wKaYPZQCmsZKI25Bv3TEdAvc4QSWMcAdMqeAenSJyWzvqEeWgO6ZW7AYroA6mTmQBm0DPTK/IA0aRNWphEgdeYUUCczBwDIhQfNwz8YHR6K6/btXnQiv3fXWFy/b3eMDjuJh+XoB9KkTaBX5geUQcsA/TNLAXOAhawHKIOWIQ1aBCA39i6gCWYPpbCWgdKYa9A/HQH9MkcogXUMQKfsGZAufVIy6xvqoTWgW+YGLKYLoE5mDpRBy0CvzA9IkzZhZRoBUmdOAXUycwCAXKyZm5uba/ogcjc5ORmjo6MxMTERIyMjTR8OfZqYno3xqdl47MjR2LppQ4xtGXIC3wI6roZ+aJqWl6ZNcqPldJgf9EPL6dAy/dAyPC33Wapl6F8Kc0DL6UhhPZAvLadDy/RDy9XRIk3SMuSviY7tXVA9e/LqzB5y0EnL1jKkz77cHXONVOXUso5geTm13CRzhNS5XoYy2JdJhT2jP1pmkPRZHy3Xz/pmELS8mNbIjY6bZ25QhdJa1gVtVVrLuTBzqJqWm6Flqqbl9jA/yqblfGmThbS8mEbIkZbbxZwql5ZJkZnTPS1DGbQM+Vjf9AFAakaHnbRDr/QDadIm0CvzA8qgZYD+maWAOcBC1gOUQcuQBi1CNQ4ePBjj4+NNH8ayxsbGYseOHU0fBlTC3gU0weyhFNYyUBpzDfqnI6Bf5gglsI4B6JQ9A9KlT0pmfUM9tAZ0y9yAxXQB1MnMgTJoGeiV+QFp0iasTCNA6swpoE5mDgCQuiweNH/48OHYvHlz04cBAAAAAAAAAAAAyTh48GCce+55cfjwdNOHsqzNm4fjW9/6pofNAwAAAAAAAAAAAAAAAAAAAAAAAAAALCHpB83PzMzERz/60fj1X//1ePjhh5s+HAAAAAAAAAAAAEjG+Ph4HD48HS+8+p0xcsazmz6cRSYf+nZ85YZ3x/j4uAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAALKHxB83PzMzEu971rvj85z8fQ0ND8eY3vzle9rKXxY033hhvf/vbY926dfGGN7yh6cMEAAAAAAAAAACAJI2c8ex4xo5zmj4MAAAAAAAAAAAAAAAAAAAAAAAAAAAAutT4g+Z/7dd+Lf7rf/2v8ZKXvCS+9KUvxVVXXRWvfvWr40//9E/jN37jN+Kqq66KdevWNX2YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJVp/EHzn/rUp+K3fuu34l/8i38Rd999d+zevTueeOKJ+MY3vhFr1qxp+vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKre26QP4zne+E89//vMjIuL888+PjRs3xhve8AYPmQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACK1fiD5p988skYGho69uv169fHli1bGjwiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMFa3/QBzM3Nxc///M/Hxo0bIyLiyJEj8ZrXvCZOOumk437fpz/96SYODwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKByjT9o/ud+7udizZo1x379yle+ssGjAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi8xh80/2u/9mvx7Gc/O9auXdv0oQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUovGnu+/atSvGx8eP/fqnf/qn43vf+16DRwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwWI0/aH5ubu64X3/uc5+Lxx9/vKGjAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi8xh80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA2jT9ofs2aNbFmzZpFbwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo1fqmD2Bubi5+/ud/PjZu3BgREUeOHInXvOY1cdJJJx33+z796U83cXgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlWv8QfOvetWrjvv1K1/5yoaOBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAejT9o/sYbb2z6EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqtbbpA6jSu971rlizZs1x/zv33HOX/f033XTTot+/adOmGo8YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaKP1TR9A1Z73vOfFH/3RHx379fr1K/8TR0ZG4p577jn26zVr1gzs2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiCnzQ/Pr16+OZz3xmx79/zZo1Xf1+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH4V96D5AwcOxJlnnhmbNm2Kiy++OK699trYsWPHsr9/amoqzjrrrHjqqafiwgsvjPe///3xvOc9b8W/Y2ZmJmZmZo79enJysrLjZzAmpmdjfGo2Jo8cjZHNG2LspKEYHR5q+rBokI67pyNSpGVK1baZq+VmtG2dMXha7o4GSZWW6YfZlg4tU7I2zRotQ+9SmhVabl5K64F8aTk/2mcpWob8tbljexslaUvLuqV0bWl5JTqnBFqmH+ZgOrTcHrorm5brpykGQcv5MxuIyKNlaxVWl0PL5Mf8rZ+Wq2P90iQtQ7WamOk6pnRtOVdqS8tteT1pr7a0XAXzgJRpuRnmAlXTcuf0R8q0XB2t0yQtsxyzKS9aHiw9UBct58mM4ERahjJoGfJV1IPmX/jCF8ZNN90U55xzTjz00EPx7ne/Oy6//PK4++67Y+vWrYt+/znnnBM33HBD7N69OyYmJuI//af/FJdcckn85V/+Zfyjf/SPlv17rr322nj3u989yH8KFXrw0OF4y813xq0Hxo+9be+usbhu3+44c9vmBo+MJum4OzoiVVqmRG2cuVquXxvXGYOn5c5pkJRpmV6ZbWnRMqVq26zRMvQmtVmh5Walth7Il5bzon2Wo2XIX1s7trdRmja0rFvaoA0tr0TnlKLtLdM7czAtWm4H3ZVPy/XSFIOi5byZDcxLvWVrFTqTesvkx/xthparYf3SNC1DdZqa6TqmZG06V2pDy216PWmvNrRcBfOA1Gm5fuYCg6DlzuiP1Gm5GlqnaVpmKWZTfrQ8OHqgTlrOjxnBUrQMZdAy5GvN3NzcXNMHMSiHDh2Ks846K37jN34jfuEXfmHV33/06NE477zzYv/+/fHe97532d83MzMTMzMzx349OTkZ27dvj4mJiRgZGank2KnGxPRsvPaTdxx3ETJv766x+Mj+PTE6PNTAkdE0HXdOR6RMy5SmrTNXy/Vq6zpj8LTcGQ2SOi3TC7MtPVqmRG2cNVqG7qU4K7TcnBTXA/nScj60z0pKbfnrX/96PP/5z4+Xvv3GeMaOc5o+nEX+/uA98fn/+Or42te+FhdeeGHTh7OkgwcPxvj44rmRirGxsdixY0fTh5GEUjteib2NEpXesm5pi9JbXonOKUmbW6Z35mB6tFw+3bWDluujKQZJy/kyG1go5ZatVehcyi2TH/O3OVrun/VLCrQM1WhypuuYUrXtXKn0ltv2etJepbdcBfOAHGi5XuYCg6Ll1emPHGi5f1onBVrmRGZTnrQ8GHqgblrOixnBcrQMZdAy5Gt90wcwSNu2bYsf/uEfjnvvvbej379hw4bYs2fPqr9/48aNsXHjxioOkQEbn5pd8iIkIuKWA+MxPjXrQqSldNw5HZEyLVOats5cLderreuMwdNyZzRI6rRML8y29GiZErVx1mgZupfirNByc1JcD+RLy/nQPivRMks5ePBgnHvueXH48HTTh7KszZuH41vf+qaHzUc7O7a3UaLSW9YtbVF6yyvROSVpc8v0zhxMj5bLp7t20HJ9NMUgaTlfZgMLpdyytQqdS7ll8mP+NkfL/bN+SYGWoRpNznQdU6q2nSuV3nLbXk/aq/SWq2AekAMt18tcYFC0vDr9kQMt90/rpEDLnMhsypOWB0MP1E3LeTEjWI6WoQxahnwV/aD5qampuO++++Jnf/ZnO/r9Tz75ZNx1113xEz/xEwM+MuoyeeToiu9/bJX3AzoCqJOZSx2sM2iWBoESmW1AHcwaoBNmBQtZD9BO2ge6NT4+HocPT8cLr35njJzx7KYPZ5HJh74dX7nh3TE+Pu5B8y1lb4P86BbKp3Og7cxBqJ/uoFqaApZiNpALaxWgGeYvObN+AcphpkP1dFUWrycwzzwATmQuQHP0B+2gdSBFZhP8gB6AlZgRAABpKupB829605vin//zfx5nnXVWPPjgg/HOd74z1q1bF/v374+IiJ/7uZ+LZz3rWXHttddGRMR73vOe+Mf/+B/H2WefHYcOHYpf//VfjwceeCB+8Rd/scl/BhUa2bRhxfdvXeX9gI4A6mTmUgfrDJqlQaBEZhtQB7MG6IRZwULWA7ST9oFejZzx7HjGjnOaPgxYxN4G+dEtlE/nQNuZg1A/3UG1NAUsxWwgF9YqQDPMX3Jm/QKUw0yH6umqLF5PYJ55AJzIXIDm6A/aQetAiswm+AE9ACsxIwAA0rS26QOo0ne+853Yv39/nHPOOfGKV7wiTjnllPjTP/3TOPXUUyMi4uDBg/HQQw8d+/2PPvpo/NIv/VKcd9558RM/8RMxOTkZX/rSl+K5z31uU/8EKja2ZSj27hpb8n17d43F2Jahmo8I8qMjgPqYudTBOoNmaRAokdkG1MGsATphVrCQ9QDtpH0ASmNvg/zoFsqnc6DtzEGon+6gWpoClmI2kAtrFaAZ5i85s34BymGmQ/V0VRavJzDPPABOZC5Ac/QH7aB1IEVmE/yAHoCVmBEAAGkq6kHzv/3bvx0PPvhgzMzMxHe+85347d/+7XjOc55z7P1f/OIX46abbjr26w9+8IPxwAMPxMzMTDz88MPx+7//+7Fnz54GjpxeTUzPxn3fn4o7Dj4a9/3dVExMzx73/tHhobhu3+5FFyN7d43F9ft2x+iwCxE40YldRYSOgGStdi6QG+cu1GG1dRYRRXUFTVhpfzLrgRINYraVdq4P9K+qWWO+UDVrKi2uudrN57igHP3sr/YCAJaS87WbvQ3yMT9rvv3I4/Genzpft9CgQe/99mfgRDlfc/TCHCRHuXeqO+iO7zumrXLf75pmNpALa7VdzHZIx3Lz9/JdY/H+l19g/jJQ/e4Hzh9oM+dTlMZMZylmXX90VY6J6dl45PHZeOe/eF5c7vWEWqW4F5nvUB73yCBfg+4vxXMRaKMqWtczVEtTrgNgoap7MGOgLE3tmWYJAMDK1jd9ANCrBw8djrfcfGfcemD82Nv27hqL6/btjjO3bT72tjO3bY6P7N8T41Oz8diRo7F104YY2zLkxh0sYbmurt+3W0dAcjo9F8iNcxfqsNw6m559Ml77yTuK6wrq1Mn+ZNYDJapytpV6rg/0r99ZY75QNWsqTa652snnuKAcVeyv9gIAFirh2s3eBuk7cdYMD62Ld1z53Hj7T54Xh2ef1C3UqK693/4MzCvhmqMX5iA5KaVT3UFnfN8xbVXKftc0s4FcWKvtYLZDes7ctjmu/ZcXxAOPTMehw0dj4/q1ccffHop3/39/Ge/+qfO1yUBUtR84f6CNnE9RKjOdhcy6augqfwtbGB5aF1dftjP+7Y8/JzZuWBvbNg95PWGAUt6LzHcoh3tkkL9B9ZfyuQi0UT+t6xmqpakfcB0AP1BVD2YMlKnuPdMsAQBYnQfNk6WJ6dlFJ/sREV994NH4k7/+u7jorJNjauaJGNm8IcZOevqiw806WNlyXd1yYDzecvOd8ZH9e+I5p21Z9s+OT83G5JGjx3UHMCgrzay3/sPMymEOLTc/nbtQh/l1Nr8O7/u7qZh54qn4ke3b4msPPBrTs09GRH5dQVMmpmfj+4/NxMG/n45XX7ozfmT7trjhtvtjevbJJTsy64ESVTHb5s/1v/bAo/Haf3J27Nm+LWaeeCo2bVgXf/LXfxc/cf4zzU+oQcr3+3qdNaXcSyAdda+plLtMkWuufPWy1vv5HBeQlqr2V/smAPM62VsiIot9w3UOpGupWTM9+2S893/9VbzjyufGRWedHJNHjkasefp9Wob+rHTNV/d9W/szkMPnIAd5r8wcJAd1dlrHvWndwcq6bT7lpny+i27kcF66lFTXecqzARaqc62m2mvJcp3tULqJ6dl466fvWtRmRMTME721acaykl5+vtZKnOvSJlWcT5nRpMxMJ6KMa8eUZq2u8rTcz/r56BfujY9+4d7Yu2ssixYgV73sRXXPfvMd8uceGZRjYXtVfJ9VCdfFUKJe9trvTR6Jb48/Hvt/bEe8+tKd8fWDj8YNt92vZ+hRCntkSvd+I1wHwEL99pDCjKF7qc1l0lXVz5Zfbb2ZJQAAnfGgebI0PjW76GR/eGhdfHj/nrjx9vvjmk/fdezte3eNxXX7dseZ2zbXfZiQlaW6mnfLgfEYn5pd8kL6wUOHF12A6w4YtF5nVkrMT1Kw1Dq89OxT4sP798TrPnnHcQ+bz6EraEonLekIoDPjU7PxtQcePXaf76NfuPfY+y49+5S4+IdOMUthwEq9Xi3hXgJpqXNNldolnKjXtW7GQzmq6Nm+CcBCK+0tX33g0Xh0+mi843fvtm8AffE1zVCf1a753CcC6pb63HGvDOrrVG+QhtT35k6ZKXQrx7VvnUM+9NqMHGc7tEHVbZqxrMbnoqF3/c5sMxrIQe7XjmYt/fKzfqB53e5FZj/QC/fIoBxVnwvkfl0MPO3BQ4fjLf/vN+LWex859raF1/d6hu41vUe6/oeyNT1j6J65TJ06XW9mCQBAZ9Y2fQDQi8kjRxe97erLdsaNt98fty/4ZEDE0xcAb735zpiYnq3r8CBLS3W10GNLvH9ienbRRXqE7oDB62VmpcT8JAXLrcPb730kbrz9/rj6sp3HvT31rqAp3bSkI4DVTR45uux9vtvvfSTe8bt3O1+GASr5ejX3ewmkp641VXKXsFA/a92Mh3L027N9E4ATrbS3XH3ZznjHZ++ybwB98zXNUI9OrvncJwLqlvLcca8MnlZHp3qDdKS8N3fKTKEXua196xzyodfm5DbboS2qbNOMpRM+Fw2962dmm9FALnK+djRr6Zef9QNp6GYvMvuBXrlHBmUYxLlAztfFwNOOzYYlft7kwut7PUN3mtwjXf9D+ZyH58Vcpk7drDezBACgMx40T5ZGNm1Y9LY927ct+gT/vFsOjMf4lAtUWMlSXS20dYn3j0/NLrpIn6c7YJB6mVkpMT9JwUrr8PZ7H4k927cd97bUu4KmdNOSjgBWN7Jpw4r3+W51vgwDVfL1au73EkhPXWuq5C5hoX7WuhkP5ei3Z/smACdaaW/Zs33boh8+MM++AXTD1zRDPTq55nOfCKhbynPHvTJ4Wh2d6g3SkfLe3CkzhV7ktvatc8iHXpuT22yHtqiyTTOWTvhcNPSun5ltRgO5yPna0aylX37WD6Shm73I7Ad65R4ZlGEQ5wI5XxcDT+v0+l7P0J0m90jX/1A+5+F5MZepUzfrzSwBAOjM+qYPAHoxtmUo9u4ai1sOjMfw0Lq4+rKdcerWjfH//MyFsWnDuvj6wUfjhtvuj+nZJ4/9mceOHG3wiCF9C7s60d5dYzG2ZSgiIiamZ2N8ajYmjxyNjevXxmv/ydmLepunO2BQOp1ZnVg410Y2b4ixk4ZidLjzP9+LyVXmo/lJHVZbhzNPPHXs/7/0vNNiy6b1cd/3p2ptBXLQaUvL7U9N7EMAKVhu/o1tGYpvP/L4in/W+TIMTpXXq6md51R5LwEi6ltTpd1HSm02UL/l1kA/a92MhzJMTM/GU3Nz8d9fdVGsWbNm0dd9dNJzafsmAP1b6VxxKfNfi7hn+7Z45PHZiL+bct0CrOrEWTM8tC6ecdJQ/PdXXRQzTzy15Nc1OzeF7nVyzbdz7KSe7xO5dwn0IuX700/+w7025yO03aA7nZiejZknnvQ9jZCIuvfmQVxH+HwXvUj5vHSh+WYeeXw2bvj5Fyy5b0ZY57RPyvel7EvNyWW2Q9v02uZSs35qxozlaSudCyy15hZ+//9SrB14Wj/nU86DV5byNQy0TZ3XjlW3b9bSqV6/F3G1n/UDVKObvaiO2e9cFcrU6T0y3xMGaav6XKCKn0sANG+52bDwuTP//VUXxVNzczExPWtfhw41+XVHg7r+d81PaXJe0762MS8+J8cgnTjLnpybi+GhdUs+uy7i+PVmlgAAdMaD5snS6PBQXLdvd7zzd++On/6xHXHj7ffHR79w77H3X3r2KfHh/XvidZ+849gFxNZNG5o6XMjCfFdvvfnO4y6m9+4ai+v37Y7R4aF48NDheMvNd8atC96/VG/zdAcMSiczqxNLzbW9u8biun2748xtmys/7nkjq8xH85M6rLYON65fGxFPP2T+HVc+N970qW/U3grkoJOWltufmtqHAJq22vz7RyevPAOdL8PgVHW9muJ5TlX3EmBeXWuqpPtIKc4G6rXSGhjd3PtaN+Mhf6t9Hvqis07uqOeS9k0AqrHSueKJ9yGHh9bFh/fvWfS1iK5bgNUsnDVffeDR+PD+PfEb/+eeuPXeR479nhO/ztK5KXSvk2u+Xu8TuXcJ9CrV+9MPHjoc7/3//tL5CMRgO+30e6z0BvWpc28e1HWEz3fRi1TPSxfq5nuTrXPaJPX7Uval5uQw26GNemlzuVn/np86f8UfqmrGtsNq5wJLrbn57/9fjrUDT+vnfMp58PJSv4aBtqnr2nEQ7Zu1dKKf70Vc6Wf9ANXpZi8a9Ox3rgrl6uQeme8Jg/RVeS5Q1c8lAJq31Gywr0P/mvy6o0Fc/7vmpzS5r2lf25gXn5NjUJaaZZfvGlv22XURx683swQAoDMeNE+2zty2Od738gviTb/zF3H7gh9+FBHHfn31ZTvjo1+4N/buGouxLS4CYDVnbtscH9m/J8anZuOxI0dj66YNMbZlKEaHh2JienbRhXrE4t7m6Q4YtJVmVieWm2u3HBiPt958Z3xk/56B3UQc2zIUe3eNHXfjcp75SV1WWoeX7xqLHc8Yjj9+44/Hlk3rFz1kPqKeViAHq7V09qlbluykyX0IoEmdzL9njmxyvgwNqeJ6NeXznH7vJcCJ6lhTpdxHSnk2UI/V1sCvX/Ujfa11Mx7ytdLnodeuWRN/8LrLY9vwho56LmXfBKBay50rRsRx+8bVl+2MG2+/f9HXIrpuAToxP2sOTR+NX/3sXcc91DXi+K+zvPNvDzk3hR50es3X7X0i9y6BfqV2f/rYXHM+AscMotNOv8fKvWmoXx178yCvI3y+i16ldl66UDffm2yd0yY53JeyLzUr5dkObdZNmyvN+l/73bvjHVc+N6759F2L/pwZ2w6dngucuOZOHrY/Q6d6PZ9yHry0HK5hoI0Gfe04qPbNWlbTz/cirvSzfoDqdboXDXL2O1eF8q12j8z3hEH6qjoXqPLnEgDNW2o22NehGk193VHV1/+u+SlNKWva1zbmw+fkGITlZtmtB8Zjbm5u0bPrIpZeb2YJAMDqPGiebE1Mz8ajj8/G/heeFa++7Ifi6wcfjRtuuz+mZ5+MiKc/uXf1pTtj766xuH7fbhcC0KHR4aUvnMenZhddqEdEDA+tiz07To4rnnd6PPeMkdi0YV18b/JIvPiHT9UdUImJ6dkYn5qNySNHY2Tzhhg76QdzarmZ1Ynl5lrE059UGZ+aHdgcGx0eiuv27Y633nzncTfXnbdQp4Xr8KsPPBpXX7Yz9mzfFhER208ejtO2bozR4aG47/tTjbUCOVhtpp+xbfOSf66bfWilvRCgV03Nlk7m33NO2+J8GRpSxfXqfOfDQ+uOXWfMPPFUbNqwLr5+8NF45PFmryH6uZcASxn0mirlPlKT9+IWcn3VnNXWwNSRJ/pe6yf2ODE9G/d9f8rrDYlbaT587YFHj/2evxl/fNWWS9k3AajectduC/eNPdu3LfpGpYinvzZq9/Zt8dDEkY72I6Cd5u85/P30bLz6sh+KH9lx8nFf0xzx9Nc1/7sXnR0/82M7zBDoQTfXfN3ct+3l3qX7jMCJUvoc5EpzzflIf8z/vFXd6Wqt5f49jdY7ueuk+X7W+SC/BsLnu+hHSuelC3Wyb0bkuc7tmfQjh/tS9qXmpTrbIQeDnJmdtrnarH/7T5636Af5mrFlW7guNw+tix/Zvi2+9sCjx31eOWLxucCJa87+DJ3r5XzKefDSUvm+oLZwz4FuDPLacVDtjw4PxbX/8oJ44JHpOHT46LHvP77nocl4z0+db73T9/ciLvxZP2YqDF4ne9Egz7N73a/MB8jLSvfIlvuesAg/zw9SsdK5wP+9b3dEREc/G2Slff/WA+PxxFNzmoYBqnofXWo2dLOvAytr4uuOqr7+9/mp5rmGqlZJa7qOGWP99c/XPzCvyp5WmmW33ftI/PKLzj7unH6l9ebrpAEAVuZB82TpwUOH4y0333nchcOlZ58SH96/J173yTuOfQPN6OYN8ZH9e1wUQAUmjxxd9LbhoXXx4f174sbb7190of7jP3xqnYcHFGqpPX/vrrG4bt/uOHOZB/d2aqm5ttBjq7y/X2du2xwf2b8nxqdm47EjR2Prpg0xtsXNTOo1vw4fnT4a7/jsXYv28+v27Y6pmWZbgRz0MtM73YcGuRcC7dXkbOl0/jlfhub029/kkaPL3je89OxT4uV7njWoQ4dilbAvNn0vLsL1VdM6WQPPOW1LZWvd6w35WG4+zJ9T/upn74pb733k2NtXa7mEfROA+izcNx55fHbR+1f62ijnlsC8Tr+mOSJi04Z1x/0AU6A7g7jm6/bepftOQOpWm2vOR3pj/nOi1VrL+XsarXfaoN91PuivgfD5LkqzWjNbN22IP37jj2e3zu2Z9CuX+1L2JSBHqezTq836w7NPmrEt0s3nlSNWvra0P8Pg6WyxFL4vqC1SOZeBiMG1/+Chw/HWT9913Dq/fNdYXPvyC3w+m4io7nsRzVRIy6DOs3vZr8wHyN9q3xO2kJ/nB2lY7lzg8dkn47WfvKOjNt2jguYMah89cTYcfWpuxd+vc0hfldf/9v5muYaqnjXdOeuvOr7+gap76uR7mP/4jT9uvQEAVGBt0wcA3ZqYnl10ARIRcfu9j8SNt98fV1+289jbTh52sQBVGdm0YdHbrr5sZ9x4+/1x+4If7B8RccuB8XjrzXfGxPTKX2wDsJLl9vyqZsxSc22hrau8vwqjw0PxnNO2xI/uODmec9oW5y005h2/e/dxD+qJ+EFr2zavvC7raAVy0O1M72QfGvReCLRT07Olm/Nw58vQnH76G9m0Ydn7hrff+0i86/f+0nkM9CD3fbHpe3FNnwPR+RqoYq17vSEvy82H+XPK5e5dr9Ry7vsmAPWa3zdOOWnxfuFro4DVdPM1zRFPP2wS6E/V13zd3Lt03wnIwWpzzflI98x/lrJaa7l+T6P1ThtUsc7r+BoIn++iJKs1c8pJQ9mtc3smVcjpvpR9CchJ0zNzoU5mvRnbDt1+Xjli9WtLawcGT2fHa/r7gtoipXMZiBhM+8ut81sPjMfbPnOXdU5EVPO9iGYqpGkQ59nd7lfmA5Rjpe8JW8jP84N0nHguEBFdtekeFTRj0PvowtnwjFWuEXQOeajq+t/e3xzXUINhTXfG+quer39or0H01Mn3MFtvAADV8KB5sjM+NbvoAmTe7fc+Enu2b4uIiL27xmJsi4sFqMrYlqHYu2vsuLft2b5t0Q9SnnfLgfEYn3KTDejdSnt+FTNmqbk2z3kEbbJaa7NPPqUVGIBO9qFB74VAOzU9W5yHQ/nGtgzFJT90yrL3DW91HgOt1PQ5QNPnQNS7BrzekJfl5oPPRQNQN18bBfSi069pjvB5EEhVN/et3HcCctD052RKZP6zlFJbs95pgyrWeakzAAalxGbsmVTBfSmAwUhpZpZ4HkRvuvm8coT1AaTJvlaPlM5lIGIw7VvndKKKtWetQXt0OzPMByiPn+cH+eq2TfeooBl17qM6BxYyE5rjGmowrOnOWH9QnUH0ZJYBANTHg+bJzuSRoyu+f+aJpx+Eef2+3TE67OIBqjI6PBTX7dt93AX7zBNPrfhnHlulV4CVrLbn9ztjlpprEeE8gtZZrbXHZ57QCgxAJ/vQoPdCoJ2ani3Ow6F8o8NDMbR+5U8/OY+B9mn6HKDpcyDqXQNeb8jLcvNhNVoGoGq+NgroRSdf0xzh8yCQsm7uW7nvBOSg6c/JlMj8Zymltma90wZVrPNSZwAMSonN2DOpgvtSAIOR0sws8TyI3nT6eeUI6wNIl32tHimdy0DEYNq3zulEFWvPWoP26HZmmA9QHj/PD/LVbZvuUUEz6txHdQ4sZCY0xzXUYFjTnbH+oDqD6MksAwCoz/qmDwC6NbJpw4rv/6Gxk+Ij+/e4cIABOHPb5vjI/j0xPjUbjx05Gps2rFvx929dpVeAlay251cxY06ca1s3bYixLUPOI2iVTlrTCgzGam3VsRcC7ZPCbHFuAeU7eZWencdAOzV5DpDCORD1rQGvN+Rnqfnw1Nzcin9GywAMgq+NArq12jXos08Zjj9+44/7PAgkrtP7Vu47AbnwdRnVMv9ZTomtWe+0QVXrvMQZAINUWjP2TKrivhRA9VKbmaWdB9GbTn5W1md/+RLrA0iefW3wUjuXgYjq27fO6VS/a89ag3bpZmaYD1AmP88P8tRLm+5RQf3q3kd1DixkJjTDNdTgWNOrs/6gOoPqySwDAKiHB82TnbEtQ7F311jccmB80fv27hqLM0Y3uXCAARod/sHF+cT07Io9jm3RItC71fb8qmbMwrkGbdRpa1qBwViprbr2QqBdUpktzi2gbKnMGiA9TZ0DmEvpqGMNeL0hTyfOB5+LBqApvjYK6MZq16DP2rbZ50MgE53ct3LfCciJr8uojvnPSkprzXqnDapc56XNABi0kpqxZ1Il96UAqpXizCzpPIje+FlZQEnsa4OV4rkMRFTbvnVON/pZe9YatE+nM8N8gHL5eX6Qn17bdI8K6tXEPqpzYCEzoX6uoQbLml6Z9QfVGWRPZhkAwOCtbfoAoFujw0Nx3b7dsXfX2HFv37trLK7ft9tFBNRIj8AgmTFQD61BuvQJDILZAtTBrAFSYy61i9cbyqBlAFJgPwJWY05Au2geoJ3Mf9rEeqcNrHOgCmYJdbPmADpnZpIi6xKATtkzaAPrnLpYa8ByzAdoJ+1DmrQJedAqQPuY/TTJ+oPq6AkAIG/rmz4A6MWZ2zbHR/bvifGp2XjsyNHYumlDjG0ZcgECDdAjMEhmDNRDa5AufQKDYLYAdTBrgNSYS+3i9YYyaJmUHDx4MMbHx5s+jCV985vfbPoQoGj2I2A15gS0i+YB2sn8p02sd9rAOgeqYJZQN2sOoHNmJimyLgHolD2DNrDOqYu1BizHfIB20j6kSZuQB60CtI/ZT5OsP6iOngAA8uVB82RrdNhFB6RCj8AgmTFQD61BuvQJDILZAtTBrAFSYy61i9cbyqBlUnDw4ME499zz4vDh6aYPZUVHZ2abPgQolv0IWI05Ae2ieYB2Mv9pE+udNrDOgSqYJdTNmgPonJlJiqxLADplz6ANrHPqYq0ByzEfoJ20D2nSJuRBqwDtY/bTJOsPqqMnAIA8edA8AAAAAAAAAAAALGF8fDwOH56OF179zhg549lNH84iD9315bj79z4eTzzxRNOHAgAAAAAAAAAAAAAAAAAAAAAAAAAAQA88aB4AAAAAAAAAAABWMHLGs+MZO85p+jAWmXzo200fAgAAAAAAAAAAAAAAAAAAAAAAAAAAAH1Y2/QBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTN+qYPgDJMTM/G+NRsTB45GiObN8TYSUMxOjzU9GEBA6R7oBtmBnROL5A/HUOZtA350i9As8xhIqwDKIWWAaAz9kwom8YhfzoGYJDsM7SRdQ+d0wsMlsZoG2seaAOzDqqhJWA15gSUR9eUwloGumVuQPN0CO2ieciPboFSmGdQFk1DdfQEAFAGD5qnbw8eOhxvufnOuPXA+LG37d01Ftft2x1nbtvc4JEBg6J7oBtmBnROL5A/HUOZtA350i9As8xhIqwDKIWWAaAz9kwom8YhfzoGYJDsM7SRdQ+d0wsMlsZoG2seaAOzDqqhJWA15gSUR9eUwloGumVuQPN0CO2ieciPboFSmGdQFk1DdfQEAFCOtU0fAHmbmJ5ddHEQEXHLgfF46813xsT0bENHBgyK7oFumBnQOb1A/nQMZdI25Eu/AM0yh4mwDqAUWgaAztgzoWwah/zpGIBBss/QRtY9dE4vMFgao22seaANzDqohpaA1ZgTUB5dUwprGeiWuQHN0yG0i+YhP7oFSmGeQVk0DdXREwBAWTxonr6MT80uujiYd8uB8RifcoEApdE90A0zAzqnF8ifjqFM2oZ86RegWeYwEdYBlELLANAZeyaUTeOQPx0DMEj2GdrIuofO6QUGS2O0jTUPtIFZB9XQErAacwLKo2tKYS0D3TI3oHk6hHbRPORHt0ApzDMoi6ahOnoCACiLB83Tl8kjR1d8/2OrvB/Ij+6BbpgZ0Dm9QP50DGXSNuRLvwDNMoeJsA6gFFoGgM7YM6FsGof86RiAQbLP0EbWPXROLzBYGqNtrHmgDcw6qIaWgNWYE1AeXVMKaxnolrkBzdMhtIvmIT+6BUphnkFZNA3V0RMAQFk8aJ6+jGzasOL7t67yfiA/uge6YWZA5/QC+dMxlEnbkC/9AjTLHCbCOoBSaBkAOmPPhLJpHPKnYwAGyT5DG1n30Dm9wGBpjLax5oE2MOugGloCVmNOQHl0TSmsZaBb5gY0T4fQLpqH/OgWKIV5BmXRNFRHTwAAZfGgefoytmUo9u4aW/J9e3eNxdiWoZqPCBg03QPdMDOgc3qB/OkYyqRtyJd+AZplDhNhHUAptAwAnbFnQtk0DvnTMQCDZJ+hjax76JxeYLA0RttY80AbmHVQDS0BqzEnoDy6phTWMtAtcwOap0NoF81DfnQLlMI8g7JoGqqjJwCAsnjQPH0ZHR6K6/btXnSRsHfXWFy/b3eMDrtAgNLoHuiGmQGd0wvkT8dQJm1DvvQL0CxzmAjrAEqhZQDojD0TyqZxyJ+OARgk+wxtZN1D5/QCg6Ux2saaB9rArINqaAlYjTkB5dE1pbCWgW6ZG9A8HUK7aB7yo1ugFOYZlEXTUB09AQCUZX3TB0D+zty2OT6yf0+MT83GY0eOxtZNG2Jsy5CLAyiY7oFumBnQOb1A/nQMZdI25Eu/AM0yh4mwDqAUWgaAztgzoWwah/zpGIBBss/QRtY9dE4vMFgao22seaANzDqohpaA1ZgTUB5dUwprGeiWuQHN0yG0i+YhP7oFSmGeQVk0DdXREwBAOTxonkqMDrsggLbRPdANMwM6pxfIn46hTNqGfOkXoFnmMBHWAZRCywDQGXsmlE3jkD8dAzBI9hnayLqHzukFBktjtI01D7SBWQfV0BKwGnMCyqNrSmEtA90yN6B5OoR20TzkR7dAKcwzKIumoTp6AgAow9qmDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgbTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBmHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDMPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAalbUg+bf9a53xZo1a47737nnnrvin/nUpz4V5557bmzatCkuuOCC+NznPlfT0QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtVdSD5iMinve858VDDz107H+33Xbbsr/3S1/6Uuzfvz9+4Rd+Ie6444542cteFi972cvi7rvvrvGIAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLZZ3/QBVG39+vXxzGc+s6Pf+5//83+Of/pP/2n8yq/8SkREvPe9743Pf/7z8dGPfjQ+9rGPDfIwAQAAAAAAAAAAoBW++c1vNn0IS0r1uAAAAAAAAAAAAAAAAAAAAAAAAAAAgPYo7kHzBw4ciDPPPDM2bdoUF198cVx77bWxY8eOJX/vl7/85XjjG9943NuuuOKK+OxnP1vDkQIAAAAAAAAAAEC5Dk88EhFr4pWvfGXTh7KiozOzTR8CAAAAAAAAAAAAAAAAAAAAAAAAAADQUkU9aP6FL3xh3HTTTXHOOefEQw89FO9+97vj8ssvj7vvvju2bt266Pc//PDDcfrppx/3ttNPPz0efvjhFf+emZmZmJmZOfbrycnJav4BQG10DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdByM45OPxYRc/Gj/+otcerOc5s+nEUeuuvLcffvfTyeeOKJpg+FDugYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhfzqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXI19qmD6BK/+yf/bO46qqrYvfu3XHFFVfE5z73uTh06FD8zu/8TqV/z7XXXhujo6PH/rd9+/ZK//vA4OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoOVmbTltRzxjxznJ/e+ksTOa/tDQBR1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz5WjM3NzfX9EEM0gte8IJ4yUteEtdee+2i9+3YsSPe+MY3xutf//pjb3vnO98Zn/3sZ+Mb3/jGsv/NmZmZmJmZOfbrycnJ2L59e0xMTMTIyEilxw8Mho6hDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMvbb89a9/PZ7//OfHS99+Yzxjxzl1HGpXvv2VP4yv3PDuuOz1/yWedd6epg9nEcfXn78/eE98/j++Or72ta/FhRde2PThNM6eDGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkD8dQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5Gt90wcwSFNTU3HffffFz/7szy75/osvvjj++I//+LgHzX/+85+Piy++eMX/7saNG2Pjxo1VHipQMx1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz50zGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUP+dAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5CvtU0fQJXe9KY3xZ/8yZ/Et7/97fjSl74UL3/5y2PdunWxf//+iIj4uZ/7ubjmmmuO/f5//+//ffzv//2/4wMf+EB861vfine9613x1a9+NV772tc29U8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWmB90wdQpe985zuxf//+eOSRR+LUU0+Nyy67LP70T/80Tj311IiIOHjwYKxdu/bY77/kkkvif/7P/xm/+qu/Gm9729ti165d8dnPfjbOP//8pv4JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAsU9aD53/7t317x/V/84hcXve2qq66Kq666akBHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDY2qYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBtPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGYeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQs/VNHwD9m5iejfGp2Zg8cjRGNm+IsZOGYnR4aNm3A70ZVFNaBdrMDEyP1+R4nX48fNygf4PuSKeQp07a1Tekqc42zQFong4X8zGhbgvX3OjmDXHSxvUxdeQJaxAy57oYAPKwcD/esnF9DK1bG4cOz8aWTfZmyJ3rbUjP9yaPxKOPz8bkkSdiZPP6OHl4KE4f2dT0YQGJS/0eWurHB6QjtXmR2vG0Ud2vgdcc8jLIZs0DWGypLiJCK5CZpve4pv9+KFVKbaV0LABUy/fULq3qY83p3w6l8POAoAxahrLk3FzOxw5V8TwJKJufYw15SbnFlI8NUjMxPRuHpo/G47NPxOOzT8a2zRvitK0bNQOFs1cCAFA6D5rP3IOHDsdbbr4zbj0wfuxte3eNxftedn6853/9VfzRN79/3Nuv27c7zty2uYlDhawt11q/TQ3qvwuQAzMwPV6T43X68fBxg/4NuiOdQp46aVffkKY62zQHoHk6XMzHhLotXHPDQ+viw/v3xI233x+33/vIsd9jDUJ+XBcDQB6W2o8vPfuUePWlO2P/f/tKXHTWyfZmyJTrbUjPwUcej2s+c9dxHV529inx/pdfEDtOOanBIwNSlvo9tNSPD0hHavMiteNpo7pfA6855GWQzZoHsNiJXQwPrYsbfv4F8V++cG/ceq9WIBdN73FN//1QqpTaSulYAKiW76ldWtXHmtO/HUrh5wFBGbQMZcm5uZyPHarieRJQNj/HGvKScospHxuk5qFDh+OBv5+Oj3zhwHHfe3z5rrG4XjNQLHslAABtsLbpA6B3E9Oziy5aIiJuOTAeb/vMXXHuGSOL3v7Wm++MienZOg8TsrdSa/00Naj/LkAOzMD0eE2O1+nHw8cN+jfojnQKeeqkXX1Dmups0xyA5ulwMR8T6nbimrv6sp2LHnoXYQ1CblwXA0AeltuPb7/3kbjx9vvj6st22pshU663IT3fmzyy6CHzERG33ftIvO0zd8X3Jo80dGRAylK/h5b68QHpSG1epHY8bVT3a+A1h7wMslnzABZbqourL9sZH/nCgeMeMh+hFUhZ03tc038/lCqltlI6FgCq5Xtql1b1seb0b4dS+HlAUAYtQ1lybi7nY4eqeJ4ElM3PsYa8pNxiyscGqZmYno0v/vXfLXrIfETErZqBYtkrAQBoCw+az9j41Oyii5Z5t937SOzZvm3R2285MB7jUy5ooBsrtdZPU4P67wLkwAxMj9fkeJ1+PHzcoH+D7kinkKdO2tU3pKnONs0BaJ4OF/MxoW4nrrk927ct+oL3edYg5MN1MQDkYaX9+PYFX8Npb4b8uN6G9Dz6+OyyHd527yPx6OM6BBZL/R5a6scHpCO1eZHa8bRR3a+B1xzyMshmzQNYbKku3FOG/DS9xzX990OpUmorpWMBoFq+p3ZpVR9rTv92KIWfBwRl0DKUJefmcj52qIrnSUDZ/BxryEvKLaZ8bJCa8anZOG3rRl+vCS1jrwQAoC3WN30A9G7yyNEV3z/zxFNLvv2xVf4ccLzVWuu1qUH9dwFyYAamx2tyvE4/Hj5u0L9Bd6RTyFMn7c6t8t/QNzSjzr3XPg/N0+FiPibU7cQ1t9zniOdZg5AH18UAkIduvobT3gx5cb0N6Zk88kRf7wfaKfXP26R+fEA6UpsXqR1PG9X9GnjNIS+DbNY8gMWW6sI9ZchP03tc038/lCqltlI6FgCq5Xtql1b1seb0b4dS+HlAUAYtQ1lybi7nY4eqeJ4ElM3PsYa8pNxiyscGqZk8ctTXa0IL2SsBAGgLD5rP2MimDSu+f+P6tUu+fesqfw443mqt9drUoP67ADkwA9PjNTlepx8PHzfo36A70inkqYp29Q3NqHPvtc9D83S4mI8JdTtxzS33OeJ51iDkwXUxAOShm6/htDdDXlxvQ3pGNq38rS+rvR9op9Q/b5P68QHpSG1epHY8bVT3a+A1h7wMslnzABZbqgv3lCE/Te9xTf/9UKqU2krpWAColu+pXVrVx5rTvx1K4ecBQRm0DGXJubmcjx2q4nkSUDY/xxryknKLKR8bpGZk04b4+8dnV/w9moHy2CsBAGiLlb9DkaSNbRmKvbvGlnzfZWefEnf87aFFb9+7ayzGtgwN+MigLCu11k9Tg/rvAuTADEyP1+R4nX48fNygf4PuSKeQp07a1Tekqc42zQFong4X8zGhbieuuTv+9lBcevYpS/5eaxDy4boYAPKw0n586YKv4bQ3Q35cb0N6Tj5pKC5bpsPLzj4lTj5Jh8Biqd9DS/34gHSkNi9SO542qvs18JpDXgbZrHkAiy3VhXvKkJ+m97im/34oVUptpXQsAFTL99QurepjzenfDqXw84CgDFqGsuTcXM7HDlXxPAkom59jDXlJucWUjw1SM7ZlKL7/2Iyv14SWsVcCANAWHjSfsdHhobhu3+5FFy97d43F+19+Qdzz0OSit1+/b3eMDruggW6s1Fo/TQ3qvwuQAzMwPV6T43X68fBxg/4NuiOdQp46aVffkKY62zQHoHk6XMzHhLqduOZuuO3+ePWlOxc9dMsahLy4LgaAPCy3H1969inx6kt3xg233W9vhky53ob0nD6yKd7/8gsWdXjZ2afE+19+QZw+sqmhIwNSlvo9tNSPD0hHavMiteNpo7pfA6855GWQzZoHsNhSXdxw2/3xf/2TXXG5ViAbTe9xTf/9UKqU2krpWAColu+pXVrVx5rTvx1K4ecBQRm0DGXJubmcjx2q4nkSUDY/xxryknKLKR8bpGZ0eChe9MOnxv/1T3Ytetj85ZqBYtkrAQBoizVzc3NzTR9E7iYnJ2N0dDQmJiZiZGSk9r9/Yno2xqdm47EjR2Prpg0xtuXpHyi+3NuBxTrpeFBNaRWq0/SeTPfMwPSk8Jqk1HKnH48UPm6Qmm5bHnRHOoXeNL0vd9KuvmF1TbRcZ5vmAG3R9L68Eh0u5mPCcgbV8sI1N7J5Q5y0cX1MHXnCGoQBqWtfdl0Mg9Vpy1//+tfj+c9/frz07TfGM3acU+MRdubbX/nD+MoN747LXv9f4lnn7Wn6cBZxfP35+4P3xOf/46vja1/7Wlx44YVNH05yUrlWXrgfn7RxfQytWxsTh2fjpI32ZuhEKi0vxfU2dK6ulr83eSQefXw2Jo88ESOb1sfJJw15yDxUKOV9uR+p30NL/fjIT6ktk968SO14StPk9zsux2sO3WtyXx5ks+YBbdPrvhwRWoGEpHiOndrfDzno5Rw7pbZSOhZokvvYlKht31PbacdVH2sK/3YoSQrXyrqG/mkZytDNtXLOzeV87NCJfvZlfUA6+rmH7edYQzpSuF7uR8rHBnXqtOVD00fj8dknYnr2yRjdvCFO27pRM5CQQXydiL0S6udrvqAMWoZ8rG/6AOjf6PDSFyrLvR3ozaCa0irQZmZgerwmx+v04+HjBv0bdEc6hTx10q6+IU11tmkOQPN0uJiPCXVbas2d7ut1IHuuiwEgD0vvxyc1cixAtVxvQ3pOH9nkwfJA11K/h5b68QHpSG1epHY8bVT3a+A1h7wMslnzABZb6Wd+APloeo9r+u+HUqXUVkrHAkC1fE/t0qo+1pz+7VAKPw8IyqBlKEvOzeV87FAVz5OAsvk51pCXlFtM+dggNXqBdtI+AAClW9v0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zfqmDwAAAAAAAAAAAACApX3zm99s+hBWNDY2Fjt27Gj6MAAAAAAAAAAAAAAAAAAAAAAAAAAAIEseNA8AAAAAAAAAAACQmMMTj0TEmnjlK1/Z9KGsaPPm4fjWt77pYfMAAAAAAAAAAAAAAAAAAAAAAAAAANADD5oHAAAAAAAAAAAASMzR6cciYi5+9F+9JU7deW7Th7OkyYe+HV+54d0xPj7uQfMAAAAAAAAAAAAAAAAAAAAAAAAAANADD5oHAAAAAAAAAAAASNSW03bEM3ac0/RhAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7C26QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaBsPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/P/s3X+UX3V94P/XJEMmCSETYJAkNIGgISASDFkXUUD7XSyhuuWXeMhRWSttd/tdd+vpwVr80QJiAb9qXet3PXtaDHB2hZZF0fX0IEIboQJqoecLVEsDgpFicCeYTIbATCTz/YPNyGQyM5/5/Lr3vu7jcU7OYebzyeTe+7nP1/t+JkMuAAAAQJe50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAl7nRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECXudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJf1Fr0BdbFz92gMDo/G0It7YvGCg2Lg4HnRv3Be0ZsFlIxZAZ2nM8hBy5CDliEHLUMOWoY89AzVp2PIQcsAUG7WaqgWzQL7MxeA2TAzAJgta0d7OI5QbhqFztEX0CzzA9pDS5CDlqGetA/VpmFgOmYEtE5HkJvGoVo0CzlpG+pD71A+ugQAgIncaL4LntnxQnz4tofj3i2D4587c/VAXHvh2li+ZEGBWwaUiVkBnaczyEHLkIOWIQctQw5ahjz0DNWnY8hBywBQbtZqqBbNAvszF4DZMDMAmC1rR3s4jlBuGoXO0RfQLPMD2kNLkIOWoZ60D9WmYWA6ZgS0TkeQm8ahWjQLOWkb6kPvUD66BACAyeYUvQHZ7dw9OumNSETEPVsG4w9vezh27h4taMuAMjEroPN0BjloGXLQMuSgZchBy5CHnqH6dAw5aBkAys1aDdWiWWB/5gIwG2YGALNl7WgPxxHKTaPQOfoCmmV+QHtoCXLQMtST9qHaNAxMx4yA1ukIctM4VItmISdtQ33oHcpHlwAAcGBuNN9hg8Ojk96I7HPPlsEYHPZmBDAroBt0BjloGXLQMuSgZchBy5CHnqH6dAw5aBkAys1aDdWiWWB/5gIwG2YGALNl7WgPxxHKTaPQOfoCmmV+QHtoCXLQMtST9qHaNAxMx4yA1ukIctM4VItmISdtQ33oHcpHlwAAcGBuNN9hQy/umfbxXTM8DtSDWQGdpzPIQcuQg5YhBy1DDlqGPPQM1adjyEHLAFBu1mqoFs0C+zMXgNkwMwCYLWtHeziOUG4ahc7RF9As8wPaQ0uQg5ahnrQP1aZhYDpmBLROR5CbxqFaNAs5aRvqQ+9QProEAIADc6P5Dls8/6BpHz9khseBejAroPN0BjloGXLQMuSgZchBy5CHnqH6dAw5aBkAys1aDdWiWWB/5gIwG2YGALNl7WgPxxHKTaPQOfoCmmV+QHtoCXLQMtST9qHaNAxMx4yA1ukIctM4VItmISdtQ33oHcpHlwAAcGBuNN9hA4vmxZmrBw742JmrB2Jg0bwubxFQRmYFdJ7OIActQw5ahhy0DDloGfLQM1SfjiEHLQNAuVmroVo0C+zPXABmw8wAYLasHe3hOEK5aRQ6R19As8wPaA8tQQ5ahnrSPlSbhoHpmBHQOh1BbhqHatEs5KRtqA+9Q/noEgAADsyN5jusf+G8uPbCtZPekJy5eiCuu3Bt9C/0ZgQwK6AbdAY5aBly0DLkoGXIQcuQh56h+nQMOWgZAMrNWg3Vollgf+YCMBtmBgCzZe1oD8cRyk2j0Dn6ApplfkB7aAly0DLUk/ah2jQMTMeMgNbpCHLTOFSLZiEnbUN96B3KR5cAAHBgvUVvQB0sX7Ig/mzjuhgcHo1dL+6JQ+YfFAOL5nkjAkxgVkDn6Qxy0DLkoGXIQcuQg5YhDz1D9ekYctAyAJSbtRqqRbPA/swFYDbMDABmy9rRHo4jlJtGoXP0BTTL/ID20BLkoGWoJ+1DtWkYmI4ZAa3TEeSmcagWzUJO2ob60DuUjy4BAGAyN5rvkv6F3nwAMzMroPN0BjloGXLQMuSgZchBy5CHnqH6dAw5aBkAys1aDdWiWWB/5gIwG2YGALNl7WgPxxHKTaPQOfoCmmV+QHtoCXLQMtST9qHaNAxMx4yA1ukIctM4VItmISdtQ33oHcpHlwAAMNGcojcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoG7caB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgy3qL3oAMxsbGIiJiaGio4C2B+jjkkEOip6enbV9Px1AMLUMOWoYctAw5aBly0DLkoGXIQcuQg5Yhh6JaHh4ejoiInU//KPb+4qW2/fntMvyzf4mIiKFtT0VfX1/BWzOZ7WtN2bcvImLXth9HxMutNLI2trNlazIUw/U15KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZcjBz29C9VmTIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP1NduxG823wa5duyIiYsWKFQVvCdTHzp07Y/HixW37ejqGYmgZctAy5KBlyEHLkEO7W96+fXtEaBm6zboMOWgZctAy5FB0y9+78RNt+7M74eFb/p+iN2Fatq81Zd++iIi3vOUtDT2vnS1bk6EYRa/JQHtoGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly8PObUH3WZMhBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQfc123DM2NjbWge2plb1798YzzzwThxxySPT09BS9OaU3NDQUK1asiJ/85CdtXXzqqM7Hst29darjOr9G+3MsXuY4TNSplsfGxmLlypWpjnPWcyfjftVxn6qyLrdbxtd6n6z7lnW/Itqzb51o+bHHHovXvva1KY95ozKfd41yDLp7DLq9Lnt9HYMIxyCi/ceg3S3v2LEjDj300Ni6dWv09/e37esWKdt5l21/IvLtUzP7U9f3y/tkOwdmo677nnW/fR+7Mdlef/tTbtblxmV77TvBMZpZmY5RXVt+pTK9Hq2wH+XS7f1oZ3Pt7DjL69lNjllzMhy3sqzJGY5lJzguU3NsJipLy0XLdl7Yn3LrxP6UpeVsr1WEfaqKLPtUlpa7IctrVgaOZXuV9WexD9Sy1759HMv2yHYcy7AuV/mYVnnbI2x/0dq5/WVouV2q/rpOxX5VTxH7lqnlbsh8/k2lbvtc1f31/zvOTtW3P6L6+2D7D8z/VzFRVc8T291dZdzusv78ZreU8TVpJ/tXbY3uX8b3ylle2wz7kWEfIqqxH1VquQrHc3+2uTtsc7VabocqvuZl4xi2LvPPYh+Ic2Zqjs2B1fm4lLHlKr4eVdzmiGput20+sDK23E5VfN0PxH6UR1n3oZstl/UYZOH4dk4Vjm0R63IVjkun2Pd67ntE5/e/qGvsLK+r/SiXLPsRMft90XJr7Ee51HU/mu24t5mNY6I5c+bEr/zKrxS9GZWzePHiSkdaJo5l6zrdsdfolxyLlzkOnbGv5aGhoYjIeZwz7lNEzv2yT82r2vV1xtd6n6z7lnW/Isq1b3PmzImjjjoqIsq1XUVxDByDiGoeg0bX5SruW7s5Bo5BRHmPwZw5cyIior+/v5Tb14qyHvNmZdufiHz7VOT+VO398j7ZzoHZqOu+13W/G5X9+9j2p9zsT/tUbV3O9tp3gmM0s4zHqGotv1KW18N+lEsV96MTHVfxOBTNMWuO4/ZLrbbsWB6Y4zI1x6Yzqnx9HZHvvLA/5Vbm/bEuT2afqiHjPrWiCuuy16x9HMv2KtPxnKnlMm1r1TmW7eE4Hlgr63KVj2mVtz3C9hetjNtfhmvsMh6XdrBf1VPlfStDy91Q5deoWXXb57rt7/7q8v87Vn37I6q/D7a/s7L8fxW2u7tsd7lU+fo662uyj/2rtm7vX5lazvLaZtiPDPsQkWc/GtGNlqt4PG1zd9jm9inTujydsh6/KnEMW1fmY+j/d+wux+bAHJfWtbPlKr4eVdzmiGput23urLJeY1fpGE7HfpRHhn2YTiMtZz8GRXN8O6dOx3Y263Kdjsv+7Hs99z2iOvs/22vsquzXTOxHuWTZj4ji9kXL1WY/yqXT+zGnY18ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgANyo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALnOjebqur68v/viP/zj6+vqK3pTKcyzLz2v0S47FyxyH7sh4nDPuU0TO/bJP9ZH5uGTdt6z7FVHefSvrdnWTY+AYROQ+Bpn3rVGOgWMQUf5jUPbta0a2fcq2PxH59inb/nRDnY9ZXfe9rvvdrGzHy/6Um/2pL8dqZo7RzByjcsnyetiPcsmyH61yHGbPMWuO49Y+juWBOS5Tc2w4kGznhf0pt2z780oZ980+VUPGfcrOa9Y+jmV7Vel4Vmlby86xbA/Hsf2qfEyrvO0Rtr9oVd/+Tsl6XOxX9WTetyzq+BrVbZ/rtr/Nqvpxqvr2R1R/H2x/d1Vte/ex3d1lu2mX7K+J/au27Ps3nSz7nmE/MuxDRJ79KIsqHk/b3B22uX4cv9Y5hq2r2zGs2/7OhmNzYI5LuVTx9ajiNkdUc7ttcz1lOYb2ozwy7EOrHIPOcnw7x7E9sDofF/tez32PyLv/WfbLfpRLlv2IqM6+VGU7Z2I/ysV+zE7P2NjYWEf/BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmmFP0BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUjRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSZG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdJkbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0mRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSZG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdJkbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0mRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSZG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdJkbzbfRPffcE//23/7bWL58efT09MTtt98+668xNjYWn/70p+O4446Lvr6+OOqoo+KTn/xk+zcWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKExv0RuQyfPPPx8nn3xyvP/9748LLrigqa/xe7/3e3HnnXfGpz/96TjppJPiueeei+eee67NWwoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUqWdsbGys6I3IqKenJ7761a/GeeedN/65kZGR+OhHPxo333xz7NixI173utfFddddF29961sjIuKHP/xhrF27Nh599NFYs2ZNMRsOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdNycojegTj7wgQ/E/fffH7fccks8/PDDcdFFF8WGDRtiy5YtERHxv/7X/4pjjz02vvGNb8SqVavimGOOid/6rd+K5557ruAtBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANrJjea7ZOvWrbFp06a49dZb44wzzohXv/rVcdlll8Xpp58emzZtioiIH/3oR/HjH/84br311rjpppvihhtuiAcffDDe+c53Frz1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDv1Fr0BdfHII4/ESy+9FMcdd9yEz4+MjMThhx8eERF79+6NkZGRuOmmm8afd/3118f69evjscceizVr1nR9uwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID2c6P5LhkeHo65c+fGgw8+GHPnzp3w2KJFiyIiYtmyZdHb2zvhZvQnnHBCRERs3brVjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCTea75J169bFSy+9FD/72c/ijDPOOOBz3vzmN8cvfvGLeOKJJ+LVr351RET88z//c0REHH300V3bVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCzesbGxsaK3ogshoeH4/HHH4+Il28s/9nPfjZ+9Vd/NQ477LBYuXJlvOc974nvfOc78ZnPfCbWrVsX//t//++4++67Y+3atfH2t7899u7dG294wxti0aJF8bnPfS727t0b//E//sdYvHhx3HnnnQXvHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAubjTfRps3b45f/dVfnfT5f/fv/l3ccMMNsWfPnrj66qvjpptuin/5l3+JgYGBeOMb3xhXXnllnHTSSRER8cwzz8R/+k//Ke688844+OCD45xzzonPfOYzcdhhh3V7dwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAOcaN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC6bU/QGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSNG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdJkbzbfB2NhYDA0NxdjYWNGbAjRJx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ah+nQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMlSfjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG6nCj+TbYtWtX9Pf3x65du4reFKBJOoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM1adjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqH6dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAyVIcbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0mRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSZG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdFllbjR/xRVXRE9Pz4Rfxx9//JTPf+tb3zrp+T09PfH2t799/Dnve9/7Jj2+YcOGbuwOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUGO9RW/AbJx44olx1113jX/c2zv15n/lK1+J0dHR8Y+3b98eJ598clx00UUTnrdhw4bYtGnT+Md9fX1t3GKgETt3j8bg8GgMvbgnFi84KAYOnhf9C+cVvVnALGkZyk2jUC+ahxy0DDloGaamD7rNOQeQg3kOOWgZctAyAJSDNRly0DJl4VyEYmkQoH3MVMhBy1AtmoXcNA45aJmMnNdAFZldkIOWIQctQw5ahs7QFtAMs6MevM5AO5glAI0xLwGgfip1o/ne3t5YunRpQ8897LDDJnx8yy23xMKFCyfdaL6vr6/hrwm03zM7XogP3/Zw3LtlcPxzZ64eiGsvXBvLlywocMuA2dAylJtGoV40DzloGXLQMkxNH3Sbcw4gB/McctAy5KBlACgHazLkoGXKwrkIxdIgQPuYqZCDlqFaNAu5aRxy0DIZOa+BKjK7IActQw5ahhy0DJ2hLaAZZkc9eJ2BdjBLABpjXgJAPc0pegNmY8uWLbF8+fI49thj493vfnds3bq14d97/fXXx8UXXxwHH3zwhM9v3rw5XvWqV8WaNWvid3/3d2P79u3t3mxgCjt3j056ExIRcc+WwfjD2x6OnbtHC9oyYDa0DOWmUagXzUMOWoYctAxT0wfd5pwDyME8hxy0DDloGQDKwZoMOWiZsnAuQrE0CNA+ZirkoGWoFs1CbhqHHLRMRs5roIrMLshBy5CDliEHLUNnaAtohtlRD15noB3MEoDGmJcAUF+9RW9Ao0499dS44YYbYs2aNfHTn/40rrzyyjjjjDPi0UcfjUMOOWTa3/u9730vHn300bj++usnfH7Dhg1xwQUXxKpVq+KJJ56Ij3zkI3HOOefE/fffH3Pnzp3y642MjMTIyMj4x0NDQ63tHNTU4PDopDch+9yzZTAGh0ejf+G8jvzZOob20TKUW5GNNkrL0D7WZchBy5CDlmFqVXivWgZabh/nHEXSMrSPa2zIQcuQQ1Et6xhy0DK0j+tryEHLlIW/U6suLeegQbQM7eMaG3LQMlRLGd/TaBnax7oMOWiZjMp4HZqVjqF9rMmQg5YhBy1DDlqGzqjT9960DO1jXa6HOq0RdJ+W68MsyU3L0D6usYFWaRmqqzI3mj/nnHPG/3vt2rVx6qmnxtFHHx1/9Vd/FZdeeum0v/f666+Pk046Kf71v/7XEz5/8cUXj//3SSedFGvXro1Xv/rVsXnz5vg3/+bfTPn1rrnmmrjyyiub3BNgn6EX90z7+K4ZHm+FjqF9tAzlVmSjjdIytI91GXLQMuSgZZhaFd6rloGW28c5R5G0DO3jGhty0DLkUFTLrXa8devWGBw88P84UwYDAwOxcuXKojcDOs6aDO3j+hpy0DJl4e/UqkvLOWgQLUP7uMaGHLQM1VLG9zRahvaxLkMOWiajMl6HZqVjaB9rMuSgZchBy5CDlqEz6vS9Ny1D+1iX66FOawTdp+X6MEty0zK0j2tsoFVahuqaU/QGNGvJkiVx3HHHxeOPPz7t855//vm45ZZbZrwZfUTEscceGwMDAzN+zcsvvzx27tw5/usnP/nJrLYdeNni+QdN+/ghMzzeCh1D+2gZyq3IRhulZWgf6zLkoGXIQcswtSq8Vy0DLbePc44iaRnaxzU25KBlyKGollvpeOvWrXH88SfE+vXrS/vr+ONPiK1bt3bk2EGZWJOhfVxfQw5apiz8nVp1aTkHDaJlaB/X2JCDlqFayvieRsvQPtZlyEHLZFTG69CsdAztY02GHLQMOWgZctAydEadvvemZWgf63I91GmNoPu0XB9mSW5ahvZxjQ20SstQXb1Fb0CzhoeH44knnoj3vve90z7v1ltvjZGRkXjPe94z49d8+umnY/v27bFs2bJpn9fX1xd9fX2z2l5gsoFF8+LM1QNxz5bBSY+duXogBhbN69ifrWNoHy1DuRXZaKO0DO1jXYYctAw5aBmmVoX3qmWg5fZxzlEkLUP7uMaGHLQMORTVcisdDw4Oxgsv7I5T3//HsXjZMe3dsDYY+ulT8d0vXRmDg4OxcuXKojcHOsqaDO3j+hpy0DJl4e/UqkvLOWgQLUP7uMaGHLQM1VLG9zRahvaxLkMOWiajMl6HZqVjaB9rMuSgZchBy5CDlqEz6vS9Ny1D+1iX66FOawTdp+X6MEty0zK0j2tsoFVahuqaU/QGNOqyyy6Lb3/72/HUU0/FfffdF+eff37MnTs3Nm7cGBERl1xySVx++eWTft/1118f5513Xhx++OETPj88PBwf+tCH4oEHHoinnnoq7r777jj33HPjNa95TZx99tld2Seou/6F8+LaC9fGmasHJnz+zNUDcd2Fa6N/oW/cQBVoGcpNo1AvmocctAw5aBmmpg+6zTkHkIN5DjloGXKocsuLlx0Th61cU7pfi5cdU/ShAaCCqrwmA7+kZcrCuQjF0iBA+5ipkIOWoVo0C7lpHHLQMhk5r4EqMrsgBy1DDlqGHLQMnaEtoBlmRz14nYF2MEsAGmNeAkB99Ra9AY16+umnY+PGjbF9+/Y44ogj4vTTT48HHnggjjjiiIiI2Lp1a8yZM2fC73nsscfi7/7u7+LOO++c9PXmzp0bDz/8cNx4442xY8eOWL58efzar/1afOITn4i+vr6u7BMQsXzJgvizjeticHg0dr24Jw6Zf1AMLJrnTQhUjJah3DQK9aJ5yEHLkIOWYWr6oNuccwA5mOeQg5YhBy0DQDlYkyEHLVMWzkUolgYB2sdMhRy0DNWiWchN45CDlsnIeQ1UkdkFOWgZctAy5KBl6AxtAc0wO+rB6wy0g1kC0BjzEgDqqTI3mr/lllumfXzz5s2TPrdmzZoYGxs74PMXLFgQ3/zmN9uxaUCL+hd64wEZaBnKTaNQL5qHHLQMOWgZpqYPus05B5CDeQ45aBly0DIAlIM1GXLQMmXhXIRiaRCgfcxUyEHLUC2ahdw0DjlomYyc10AVmV2Qg5YhBy1DDlqGztAW0Ayzox68zkA7mCUAjTEvAaB+5hS9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB140bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3mRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3mRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3mRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3mRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3mRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3mRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3mRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3mRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3mRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXVaZG81fccUV0dPTM+HX8ccfP+Xzb7jhhknPnz9//oTnjI2NxR/90R/FsmXLYsGCBXHWWWfFli1bOr0rAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM31Fr0Bs3HiiSfGXXfdNf5xb+/0m7948eJ47LHHxj/u6emZ8PinPvWp+PznPx833nhjrFq1Kj7+8Y/H2WefHT/4wQ8m3ZQeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoF0qdaP53t7eWLp0acPP7+npmfL5Y2Nj8bnPfS4+9rGPxbnnnhsRETfddFMceeSRcfvtt8fFF1/clm0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2F+lbjS/ZcuWWL58ecyfPz9OO+20uOaaa2LlypVTPn94eDiOPvro2Lt3b5xyyinxJ3/yJ3HiiSdGRMSTTz4Z27Zti7POOmv8+f39/XHqqafG/fffP+2N5kdGRmJkZGT846GhoTbsHdBNOoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM1adjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqH6dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAyVNecojegUaeeemrccMMNcccdd8QXv/jFePLJJ+OMM86IXbt2HfD5a9asiS996Uvxta99Lf77f//vsXfv3njTm94UTz/9dEREbNu2LSIijjzyyAm/78gjjxx/bCrXXHNN9Pf3j/9asWJFG/YQ6CYdQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWobq0zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUH06hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBmqq2dsbGys6I1oxo4dO+Loo4+Oz372s3HppZfO+Pw9e/bECSecEBs3boxPfOITcd9998Wb3/zmeOaZZ2LZsmXjz3vXu94VPT098Zd/+ZdTfq2RkZEYGRkZ/3hoaChWrFgRO3fujMWLF7e2Y0BX6Bhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAyVF8rHT/00EOxfv36eNtHN8VhK9d0elNn7bmtj8W3Pvmb8eCDD8Ypp5xS9OZAR1mTIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP16Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlqK7eojegWUuWLInjjjsuHn/88Yaef9BBB8W6devGn7906dKIiHj22Wcn3Gj+2Wefjde//vXTfq2+vr7o6+trbsOBUtAx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZag+HUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM1adjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqG65hS9Ac0aHh6OJ554YsJN4qfz0ksvxSOPPDL+/FWrVsXSpUvj7rvvHn/O0NBQfPe7343TTjutI9sMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEFGhG81fdtll8e1vfzueeuqpuO++++L888+PuXPnxsaNGyMi4pJLLonLL798/PlXXXVV3HnnnfGjH/0oHnrooXjPe94TP/7xj+O3fuu3IiKip6cnPvjBD8bVV18dX//61+ORRx6JSy65JJYvXx7nnXdeEbsIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ERv0RvQqKeffjo2btwY27dvjyOOOCJOP/30eOCBB+KII46IiIitW7fGnDlzxp//85//PH77t387tm3bFoceemisX78+7rvvvnjta187/pw/+IM/iOeffz5+53d+J3bs2BGnn3563HHHHTF//vyu7x8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQH5W50fwtt9wy7eObN2+e8PGf/umfxp/+6Z9O+3t6enriqquuiquuuqrVzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABo2JyiNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgbtxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDL3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMvcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgy9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDL3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMvcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgy9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDL3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMvcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgy9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDL3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMvcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgy9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDL3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMvcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgy9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDL3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMvcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgy9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDL3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMvcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgy9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDL3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoMvcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgy9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDLKnOj+SuuuCJ6enom/Dr++OOnfP6f//mfxxlnnBGHHnpoHHrooXHWWWfF9773vQnPed/73jfpa27YsKHTuwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUXG/RGzAbJ554Ytx1113jH/f2Tr35mzdvjo0bN8ab3vSmmD9/flx33XXxa7/2a/GP//iPcdRRR40/b8OGDbFp06bxj/v6+jqz8QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/R6VuNN/b2xtLly5t6Ln/43/8jwkf/8Vf/EXcdtttcffdd8cll1wy/vm+vr6GvyYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAO8wpegNmY8uWLbF8+fI49thj493vfnds3bq14d+7e/fu2LNnTxx22GETPr958+Z41ateFWvWrInf/d3fje3bt7d7swEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAm6C16Axp16qmnxg033BBr1qyJn/70p3HllVfGGWecEY8++mgccsghM/7+D3/4w7F8+fI466yzxj+3YcOGuOCCC2LVqlXxxBNPxEc+8pE455xz4v7774+5c+dO+bVGRkZiZGRk/OOhoaHWdg7oOh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahurTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQfTqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGaprTtEb0KhzzjknLrrooli7dm2cffbZ8dd//dexY8eO+Ku/+qsZf++1114bt9xyS3z1q1+N+fPnj3/+4osvjt/4jd+Ik046Kc4777z4xje+Ed///vdj8+bN0369a665Jvr7+8d/rVixotXdA7pMx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ah+nQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMlSfjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG6uoZGxsbK3ojmvWGN7whzjrrrLjmmmumfM6nP/3puPrqq+Ouu+6Kf/Wv/tWMX/OII46Iq6++Ov79v//3Uz5nZGQkRkZGxj8eGhqKFStWxM6dO2Px4sWz2wmIiJ27R2NweDSGXtwTixccFAMHz4v+hfOK3qzUdMxs6bSctNxZznu6Rct0m/nWGVqmSsyBqWmZMtBo67ScgxZopmXnDZSPdZks6r7GaJlOqHtXRdAyZWMOzF4rHT/00EOxfv36eNtHN8VhK9d0elNn7bmtj8W3Pvmb8eCDD8Ypp5xS9OZAR1mTmQ3rZXlpmUzqPGv8fRTkoGXIwTU2NKbsa5iWy6Hs5wnlp2XqoA6zUsvUgZa1TD06yKAMLTtXoDVl6Bjapc5rgparq87nLZNpmU4wZ7pPy7SThoujZcrCHGiNluk2zXZGnVt2TpFJlVrWHkytSi3DbNVp/msZctAyVFdv0RvQrOHh4XjiiSfive9975TP+dSnPhWf/OQn45vf/GZDN5l/+umnY/v27bFs2bJpn9fX1xd9fX2z3mY4kGd2vBAfvu3huHfL4Pjnzlw9ENdeuDaWL1lQ4JblpmNmQ6flpeXOcd7TTVqmm8y3ztEyVWEOTE/LFE2j7aHl6tMCEbNv2XkD5WRdJgNrjJZpP10VQ8uUiTnQHB1DDlqmUdbLctMyWdR91vj7KMhBy5CDa2yYWRXWMC0XrwrnCeWnZbKry6zUMtlpGerTQQZFt+xcgdYV3TG0S93XBC1XU93PWybTMu1mzhRDy7SLhoulZcrAHGidlukmzXZOXVt2TpFNVVrWHkyvKi3DbNVt/msZctAyVNecojegUZdddll8+9vfjqeeeiruu+++OP/882Pu3LmxcePGiIi45JJL4vLLLx9//nXXXRcf//jH40tf+lIcc8wxsW3btti2bVsMDw9HxMs3qv/Qhz4UDzzwQDz11FNx9913x7nnnhuvec1r4uyzzy5kH6mfnbtHJ138R0Tcs2Uw/vC2h2Pn7tGCtgzYR6fUkfMeyMp8A8wBKDeNwsu0QDOcNwB0ijUG2k9XgDkAADOzXgLdYNbMjuMFOWgZgKqyhtEI5wnAzMxKyEHLoAMa51wBYB9rAlXkvAU6zZyBatMwYA5AtWiWdnNOQTG0B1BP5j8A0G2VudH8008/HRs3bow1a9bEu971rjj88MPjgQceiCOOOCIiIrZu3Ro//elPx5//xS9+MUZHR+Od73xnLFu2bPzXpz/96YiImDt3bjz88MPxG7/xG3HcccfFpZdeGuvXr4977703+vr6CtlH6mdweHTSxf8+92wZjMFhbwCgaDqljpz3QFbmG2AOQLlpFF6mBZrhvAGgU6wx0H66AswBAJiZ9RLoBrNmdhwvyEHLAFSVNYxGOE8AZmZWQg5aBh3QOOcKAPtYE6gi5y3QaeYMVJuGAXMAqkWztJtzCoqhPYB6Mv8BgG7rLXoDGnXLLbdM+/jmzZsnfPzUU09N+/wFCxbEN7/5zRa3Cloz9OKeaR/fNcPjQOfplDpy3gNZmW+AOQDlplF4mRZohvMGgE6xxkD76QowBwBgZtZLoBvMmtlxvCAHLQNQVdYwGuE8AZiZWQk5aBl0QOOcKwDsY02gipy3QKeZM1BtGgbMAagWzdJuzikohvYA6sn8BwC6bU7RGwB1tnj+QdM+fsgMjwOdp1PqyHkPZGW+AeYAlJtG4WVaoBnOGwA6xRoD7acrwBwAgJlZL4FuMGtmx/GCHLQMQFVZw2iE8wRgZmYl5KBl0AGNc64AsI81gSpy3gKdZs5AtWkYMAegWjRLuzmnoBjaA6gn8x8A6LbeojcA6mxg0bw4c/VA3LNlcNJjZ64eiIFF82b8Gjt3j8bg8GgMvbgnFi84KAYOnhf9C2f+fUBj2tFpO2mebijbeT8TXQCNmu18M1+gGmbTatWuc6BuutGo9Z0qsF7Njq5f5rwpJ+cnULR2zCFrDHXVyXVcV8B0c+BtJ7wqFs3vjSd+Nuy9BAC11sp1s+/LQbmVqVHv0WfH8aLTyjQfMiuqZa8vAM145fqxqK83rrngpPjEN34Qu0dfmvA816Ps0+5rHdcwQEaNzkozEMqtm9/jMQ8oq7L/vYV2yqPs50pVOcehnqrevjWBorTSjvMW6LSp5szCeXPj4+94bewdG4t/2PrzSq79UAf7Gv77H/883n/6qli3YkmM/GJvzD9objw79KJrBaiBjO8Zqv79B5hOxmanouXuGFg0L952wqtizbLFE64FH9r683jsp0OpzikokyrOc3MZoHV+BhsA6DY3mocC9S+cF9deuDb+8LaHJ7wJOHP1QFx34doZL/Kf2fFCfPi2h+Pe/X7vtReujeVLFnRsu6FOWu20nTRPt5TpvJ+JLoDZmM18M1+gGmbbapWuc6COOt2o9Z2qsF41Tte/5LwpH+cnULR2zSFrDHXU6XVcV8BUc+BtJ7wqPv6O18Zlt/5/3ksAUHvNXjf7vhyUW9ka9R59dhwvOqls8yGzIlr2+gLQjAOtH2esHogvve8N8f4bvj9+s3nXo7xSO691XMMAWTUyK81AKL9ufY/HPKDMyvz3FtoplzKfK1XlHId6ytC+NYEitNqO8xbotAPNmYXz5saX3veG+H//5vG4/CuPjD+3ams/1EH/wnlx3YVr48fP7Y4/+5st8YW/eXz8sTNWD8Rbjjsi+hcWuIFAx2V7z5Dh+w8wnWzNTkXL3dO/cF58/B2vjcu/+siEa8HTX3N4/Mn5J6U5p6BsqjbPzWWA9vAz2ABAt/WMjY2NFb0RVTc0NBT9/f2xc+fOWLx4cdGbQwXt3D0ag8OjsevFPXHI/INiYNG8Gb/5s3P3aHzg5n+Y8MZgnzNXD8SfbVxXum8glZmOmUkznbb7z9f8zLTcXkWf9zPRRV5aptNmmm/mS3tomU5rpdWyX+eUiZYpQicarfv6ruVqsl5Nr45dN9Ky86Yc6nh+0jjrMt3QiTlkjZlIy3l1cx3XVfG0TNH2nwOL5vdOusn8Pt5LHNhsOn7ooYdi/fr18baPborDVq7p0hY27rmtj8W3Pvmb8eCDD8Ypp5xS9OZAV1mTmc5srpt9X65YWmYmZW7Ue/Rf8vdRFKHM86GqytSy1xea5xqbOptp/fjEua+Ln+8ercT1qJaL0eq1jmsY9qdlMppqVmaegVomo05+j6es80DL7K9sf29R1nbKpoiWy3auVJVznH2syfWSrX1rwi9pubPa2Y7zlulomXZ45Zw5dOG8+Njtj8a9j+dY+6tCyzRr5+7R+MCX/0GzJaFlipLhPUOZvv+gZTotQ7NT0XJ3lel4Q6eUueUqzHNzgrIoc8swW3X8Gex9tAw5aBmqo7foDQAi+hdO/obPvjcFQy/uicULDoqBgyc+Z3B49IBvDCIi7tkyGIPDo5V/cwDtNlNX0zlQp92keYpQ9Hk/E120RyuzEapk0rm+aF68+lWLDvhc8wXK65UtL5g3N05esSQe/PHPY/foSxOeN1OrZb/OgbrrRKODw6Px4I9/Hh/4v14T61YsiZFf7I35B82Nh7b+PL70d09a3ykl69X09l23L5w3N95/+qpJbW9/vp5dO29eVvT3O7yvBFrRjhnWiTlkjaEuZtNPq73qCsqv0+8t9p8DT/xs2HsJANjPK9e+oRf3RPRM/vw+vi9HXRT9PfBmlblR79Fnx/EqTlX7n0mZ50Nm3Wq5DK9v1naAfMyrX5pp/fjF3rF4/cpDu7xVVEmr1zrTnYN//+Ofx47de/QKVN5Us9LPaEM5NPr+oJPf4ynD93WgEe3ooJ3vybVTXv6Oqz26cY77PhmUx74en9s9Gr/55lVx8ool8aW/e3LCv+9RxfXNmkC3tHPdbPa8ta4CEY3NglfOmSd+NnzAG1ZHVHPth+y2Pz8aJ69cEu978zGT/k0tzUL9jEWM/79XVeP769TJTO/zq/x+Xsutm83r73hDsarw9w3mROOqvP4CzWum/Zl+BvtAzFwAoBluNA8l9MyOF+LDtz084eL/zNUDce2Fa2P5kgUR8X/+scRp7JrhcaibRroqM83DZLpoXdVnIzRqtue6+QLldKCW3/yaw+PzG9fFf775HybdbF6rwCsNj+yJz29cF5u+82R84W8eH//8vjny/IiZAVUz9OKeWDhv7pRtn7/uqAK3jiKV4fsd3lcCzWrXDDOHoHmN9lOGaw6gs4ro3BoOAJPNZk22llIHVX4/qlFoTZX7n4n5kFvRr2/mdoBczKuJil4/YKpzcN/PLH7s9kfi3se3j3++zr0C+fgZbSheWd4fuC6nLtrdnHbIrtPneFnWQWB2/76H9Q0OrOhrQ+sqENHcLCh6fgGzMxYR/7D15wf8N7X+883/oFmogSzX/q5B4GVVb1rLrfFvqAPtZk40purrL9AcPzcGAJTdnKI3AJho5+7RSW8iIiLu2TIYf3jbw7Fz92hERCyef9C0X+eQGR6HOmm0qzLTPEymi9ZkmI3QiGbOdfMFymeqlr/z+PbY9J0n4/2nr5r0e7QKvNKSBfNi03eejO+84h91jPjlHOlfMK+gLQOatXj+QfH+01dN2fYVX/9H721rqCzf7/C+EmhGO2eYOQTNa6SfslxzAJ1TVOfWcACYaLZrsrWU7Kr+flSj0Lyq9z8T8yG3Il/f7O0AeZhXk7k+oGhTnYP7fmbx3v1+ZrHOvQL5+BltKFaZ3h+4LqcOOtGcdsiuk+d4mdZBqLvZ/vse1jc4MH9fDhSt2VngvS1Ux87do3HF1x6d8t/Uev/pqzQLyWW69ncNAjma1nLz/BvqQCeYEzPLsP4Cs+fnxgCAKnCjeSiZweHRSW8i9rlny2AMDr/8RmJg0bw4c/XAAZ935uqBGFjk5liwT6NdlZnmYTJdtCbDbIRGNHOumy9QPtO1/J3Ht8e6FUsmfE6rwP5GX9o76X+I2ec7j2+P0Zf2dnmLgFYNLJoXbzr28Cnbvtd721oqy/c7vK8EmtHOGWYOQfMa6acs1xxA5xTVuTUcACaa7ZpsLSW7qr8f1Sg0r+r9z8R8yK3I1zd7O0Ae5tVkrg8o2lTn4LoVS6b8mcW69grk42e0oVhlen/gupw66ERz2iG7Tp7jZVoHoe5m8+97WN9gav6+HChas7PAe1uojsHh0bh3mn9T603HHq5ZSC7Ttb9rEMjRtJab599QBzrBnJhZhvUXmD0/NwYAVIEbzUPJDL24Z9rHd/2fx/sXzotrL1w76Q3CmasH4roL10b/Qm8OYJ9GuyozzcNkumhNhtkIjWjmXDdfoHxmannkF7+8QbRWgQMZHvnFtI8/P8PjQPn0L5wX83qn/2su723rpyzf7/C+EmhGO2eYOQTNa6SfslxzAJ1TVOfWcACYaLZrsrWU7Kr+flSj0Lyq9z8T8yG3Il/f7O0AeZhXk7k+oGhTnYMzqWOvQD5+RhuKVab3B67LqYNONKcdsuvkOV6mdRDqrtF/38P6BtPz9+VA0ZqdBd7bQnXM1HnfQXM0C8lluvZ3DQI5mtZy8/wb6kAnmBMzy7D+ArPn58YAgCroLXoDgIkWzz9o2scPecXjy5csiD/buC4Gh0dj14t74pD5B8XAonneGMB+ZtNVmWkeJtNF87LMRphJs+e6+QLlMlPLxw4cHLf/32/SKjAl17+Q06EzrPnarp8yzXvvK4HZavcMM4egeTP1U6ZrDqAziuzcGg4Av9TMmmwtJbMM70c1Cs3J0P9MzIfcinp969AOkIN5dWCuDyjagc7BvWNj0/6euvYK5ONntKE4ZXt/4Lqc7DrVnHbIrlPneNnWQaizmXo85vCFcffvv8X6Bg3w9+VAkVqZBd7bQjXM1PmSBZqF7LJd+7sGoe6yNK3l5vg31IFOMSeml2X9BWbHz40BAFVQ+I3m/+f//J/xzne+s+jNgNIYWDQvzlw9EPdsGZz02JmrB2Jg0cQL//6F3gzATGbbVZlpHibTRXMyzUaYTivnuvkC5TFTy8v65+sVmJbrX8hJ2+yvbOeE95XAbHRihplD0Lzp+inbNQfQfkV3bg0HgJc1uyZbS8mq6OvUdtEozF6W/mdiPuRWxOtbl3aA6jOvpub6gKLtfw7u3D2qV6AWXJ9AccrYn+tyMutkc9ohu06c42VcB6GuZurxqCULrHMwC/6+HChKq7PAe1soP2s+kHEOuAahzjI1reXZ82+oA51kTkwt0/oLNM7PjQEAVTCn03/AL37xi3j00Ufjn//5nyd8/mtf+1qcfPLJ8e53v7vTmwCV0r9wXlx74do4c/XAhM+fuXogrrtwrTcC0ARdAUxmNlIXznXIQctAq8wRyEnb7M85AVSZGQbVoVfIT+cAUA7WZJhIE1Bf+ofmaAeoCvMKqkOvQF2Yd1Ac/UF3aQ7KRZNQHnqE6tMxEGEWQB3oHDAHIBdN15vXH6AY5i/Uk/YBgCroGRsbG+vUF3/00UfjHe94R/zkJz+JiIhzzz03vvjFL8a73vWuePTRR+O3f/u34wMf+ED8yq/8Sqc2oSuGhoaiv78/du7cGYsXLy56c0hi5+7RGBwejV0v7olD5h8UA4vmeRPRQTquB13lp2WYvTLORi3TCWU817PTMp2g5e7TMtnUdY5omezq0raWG1eXc4Jq0jIzMcOqQctE6DUDLTMTnZffbDp+6KGHYv369fG2j26Kw1au6dIWNu65rY/Ftz75m/Hggw/GKaecUvTmQFdZk5mJNbkatNw9mqCTtFxu+qdRWp5IO1SVluvHvMpJyznptX60TF1lm3dapkqy9ddOWqYTNNd9WmY6mqwGHdeDHvPTcn46rgctMxOzoBq0TCt0Xh5apijmQHtpmaJpuj2q2rLXHyaqastUj/nbWVqmrLQ/O1qGHLQM1dHbyS/+4Q9/OF7zmtfEF77whbj55pvj5ptvjh/+8Idx6aWXxh133BELFizo5B8Plda/0BsHaDddAUxmNlIXznXIQctAq8wRyEnb7M85AVSZGQbVoVfIT+cAUA7WZJhIE1Bf+ofmaAeoCvMKqkOvQF2Yd1Ac/UF3aQ7KRZNQHnqE6tMxEGEWQB3oHDAHIBdN15vXH6AY5i/Uk/YBgDLr6I3mv//978edd94Zr3/96+OMM86Im2++OT7ykY/Ee9/73k7+sQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAClNqeTX3xwcDCWL18eERH9/f1x8MEHxxvf+MZO/pEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApdfbyS/e09MTu3btivnz58fY2Fj09PTECy+8EENDQxOet3jx4k5uBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECpdPRG82NjY3HcccdN+HjdunUTPu7p6YmXXnqpk5sBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUCodvdH83/7t33byywMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUUkdvNL9u3bpOfnkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACASurojeaXLFkSPT09Mz7vpZde6uRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRKR280/7d/+7fj/z02Nha//uu/Hn/xF38RRx11VCf/WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBS6+iN5t/ylrdM+Hju3Lnxxje+MY499thO/rEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApTan6A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqBs3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADosq7faL6np6fbfyQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAqfR28otfcMEFEz5+8cUX4z/8h/8QBx988ITPf+UrX+nkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUypxOfvH+/v4Jv97znvfE8uXLJ32+EVdccUX09PRM+HX88cdP+3tuvfXWOP7442P+/Plx0kknxV//9V9PeHxsbCz+6I/+KJYtWxYLFiyIs846K7Zs2dL0/gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0oreTX3zTpk1t/Xonnnhi3HXXXeMf9/ZOvfn33XdfbNy4Ma655pp4xzveEV/+8pfjvPPOi4ceeihe97rXRUTEpz71qfj85z8fN954Y6xatSo+/vGPx9lnnx0/+MEPYv78+W3ddgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB95hS9AbPR29sbS5cuHf81MDAw5XP/y3/5L7Fhw4b40Ic+FCeccEJ84hOfiFNOOSW+8IUvRETE2NhYfO5zn4uPfexjce6558batWvjpptuimeeeSZuv/32Lu0RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUEe9RW/AbGzZsiWWL18e8+fPj9NOOy2uueaaWLly5QGfe//998fv//7vT/jc2WefPX4T+SeffDK2bdsWZ5111vjj/f39ceqpp8b9998fF1988ZTbMTIyEiMjI+MfDw0NtbBXQBF0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBmqT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/XpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWorjlFb0CjTj311LjhhhvijjvuiC9+8Yvx5JNPxhlnnBG7du064PO3bdsWRx555ITPHXnkkbFt27bxx/d9bqrnTOWaa66J/v7+8V8rVqxodreAgugYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMlSfjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG6tMx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1BdPWNjY2NFb0QzduzYEUcffXR89rOfjUsvvXTS4/PmzYsbb7wxNm7cOP65//pf/2tceeWV8eyzz8Z9990Xb37zm+OZZ56JZcuWjT/nXe96V/T09MRf/uVfTvlnj4yMxMjIyPjHQ0NDsWLFiti5c2csXry4TXsIdJKOIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP1tdLxQw89FOvXr4+3fXRTHLZyTac3ddae2/pYfOuTvxkPPvhgnHLKKUVvDnSUNRly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAyVJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWobq6i16A5q1ZMmSOO644+Lxxx8/4ONLly6NZ599dsLnnn322Vi6dOn44/s+98obzT/77LPx+te/fto/u6+vL/r6+lrYeqBoOoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM1adjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqH6dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAyVNecojegWcPDw/HEE09MuEn8K5122mlx9913T/jct771rTjttNMiImLVqlWxdOnSCc8ZGhqK7373u+PPAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiEytxo/rLLLotvf/vb8dRTT8V9990X559/fsydOzc2btwYERGXXHJJXH755ePP/73f+72444474jOf+Uz80z/9U1xxxRXx93//9/GBD3wgIiJ6enrigx/8YFx99dXx9a9/PR555JG45JJLYvny5XHeeecVsYsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABATfQWvQGNevrpp2Pjxo2xffv2OOKII+L000+PBx54II444oiIiNi6dWvMmTNn/PlvetOb4stf/nJ87GMfi4985COxevXquP322+N1r3vd+HP+4A/+IJ5//vn4nd/5ndixY0ecfvrpcccdd8T8+fO7vn8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAfVTmRvO33HLLtI9v3rx50ucuuuiiuOiii6b8PT09PXHVVVfFVVdd1ermAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRsTtEbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFA3bjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GVuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQZW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBlbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GVuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQZW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBlbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GVuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQZW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBlbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GVuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQZW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBlbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GVuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQZW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBlbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GW9RW8AAAAAAAAAAAAAAFBeW7dujcHBwaI3Y0oDAwOxcuXKojcDAAAAAAAAAAAAAAAAAAAAAAAAAGDW3GgeAAAAAAAAAAAAADigrVu3xvHHnxAvvLC76E2Z0oIFC+Of/umHbjYPAAAAAAAAAAAAAAAAAAAAAAAAAFSOG80DAAAAAAAAAAAAAAc0ODgYL7ywO059/x/H4mXHFL05kwz99Kn47peujMHBQTeaBwAAAAAAAAAAAAAAAAAAAAAAAAAqx43mAQAAAAAAAAAAAIBpLV52TBy2ck3RmwEAAAAAAAAAAAAAAAAAAAAAAAAAkMqcojcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoG7caB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgy3qL3gDIbOfu0RgcHo2hF/fE4gUHxcDB86J/4byiNwtKSzNAN5k5UB56hHLQIlBnZiCUgxapCucq0G7mCpSfTiE3jQNA+1lfqRLnK1AEswe6T3dAK8wQqs45DEDRrEXUjXMepqYPaI2GgHYxT6A69Ao5aBmqR7fA/swFqAetU2bOT6DOzECgk8wYAKCM3GieWijiYvyZHS/Eh297OO7dMjj+uTNXD8S1F66N5UsWdPTPhk7odEeaAbqp7DPHNxLphrKcZ2XvETqlLA3uo0WgHco22xplBkI5NNpiVWcNeVg3qsGs4JXKfj6YK9AZ7Wxfp9C6Mq/HGgegU8q8/nWa9ZUqaeV8rXPnQGuyrJXmIFWiO+BAGm0qywyhvpzDs2O9pSqcq1SJtYhMGpm/znnKqgzXD/qA1miIfcow06k282QyXeWS6fXUK7SmLPNAy1AeflYEilOWdblZ5gI0RuvQOc7P5lV9NkE7VbUHMxC6o6ozolVmDABQVm40T3pFXIzv3D066c+MiLhny2D84W0Px59tXFeLN0Lk0emONAN0U9lnjm8k0g1lOc/K3iN0Slka3EeLQDuUbbY1ygyEcmi0xarOGvKwblSDWcErlf18MFegM9rZvk6hdWVejzUOQKeUef3rNOsrVdLK+VrnzoHWZFkrzUGqRHfAgTTaVJYZQn05h2fHektVOFepEmsRmTQyf53zlFUZrh/0Aa3REPuUYaZTbebJZLrKJdPrqVdoTVnmgZahPPysCBSnLOtys8wFaIzWoXOcn82r+myCdqpqD2YgdEdVZ0SrzBgAoMzmFL0B0EkzXYzv3D3akT93cHh00p/5yj97cLgzfy50Qjc60gzQTWWeOUVdu1AvZTrPytwjdEqZGtxHi0CryjjbGmUGQjk00mKVZw15WDfKz6zglapwPpgr0H7tbl+n0Jqyr8caB6ATyr7+dZr1lSpp9nyte+dAazKsleYgVaM7YH+zaSrDDKHenMONs95SFc5VqsZaRBaNzl/nPGVUlusHfUBrNEREeWY61WaeTKSrXLK9nnqF5pVpHmgZysHPikBxyrQuN8tcgJlpHTrL+dmcDLMJ2qXKPZiB0HlVnhGtMmMAgDKr7I3mr7322ujp6YkPfvCDUz7nrW99a/T09Ez69fa3v338Oe973/smPb5hw4Yu7AHdUNTF+NCLe6Z9fNcMj0OZdKMjzQDdVOaZ4xuJdEOZzrMy9widUqYG99Ei0KoyzrZGmYFQDo20WOVZQx7WjfIzK3ilKpwP5gq0X7vb1ym0puzrscYB6ISyr3+dZn2lSpo9X+veOdCaDGulOUjV6A7Y32yayjBDqDfncOOst1SFc5WqsRaRRaPz1zlPGZXl+kEf0BoNEVGemU61mScT6SqXbK+nXqF5ZZoHWoZy8LMiUJwyrcvNMhdgZlqHznJ+NifDbIJ2qXIPZiB0XpVnRKvMGACgzHqL3oBmfP/734//9t/+W6xdu3ba533lK1+J0dFfXmhu3749Tj755LjooosmPG/Dhg2xadOm8Y/7+vrau8EUpqiL8cXzD5r28UNmeBzKpBsdaQbopjLPHN9IpBvKdJ6VuUfolDI1uI8WgVaVcbY1ygyEcmikxSrPGvKwbpSfWcErVeF8MFeg/drdvk6hNWVfjzUOQCeUff3rNOsrVdLs+Vr3zoHWZFgrzUGqRnfA/mbTVIYZQr05hxtnvaUqnKtUjbWILBqdv855yqgs1w/6gNZoiIjyzHSqzTyZSFe5ZHs99QrNK9M80DKUg58V+f/Z+/cgT8vyTvy/5tRzYGZ6YFoEzCAIE8TgmIFsXAUnB2NM4u5qwroVfrFUiNmtfDUxldoNukmfQqhtAAEAAElEQVTKU4y4ZTauut+tbEpRK99olSEhh0olopYLIuUaoBZMDIIgg0GCPTLd08xM9zDTvz/YHqanD5/Tc7jv+3m9quaP6cPM/Tyf631d9/P04YH2pDSXh6UvQG+yDvVSn8MpoTdBVXLOgx4I9cu5R4xKjwEAUra27QUMamZmJn7hF34h/vAP/zDOPPPMVT/2rLPOinPOOefkn1tuuSW2bNmy5EHzGzduXPRxvf5d8tHWZnxi61js2z2x7Pv27Z6Iia1jtfy/UIcmciQzQJNS7jluJNKElOos5TxCXVLK4AJZBEaVYm/rlx4Iaegnizn3GsphbqRPr+BUOdSDvgLVqzr7cgqjSX0eyzgAdUh9/tXNfCUnw9Zr13MOjKaEWakPkhu5A043SKZK6CF0mxrun3lLLtQquTGLKEW//VfNk6JU9g/yAaORISLS6enkTT9ZTK7KUtrrKa8wvJT6gSxDGnyvCLQnpbk8LH0BepN1qJf6HE4JvQmqknMe9ECoX849YlR6DACQsuweNP/mN785XvWqV8VP/MRPDPy5H/3oR+Pnf/7n44wzzlj09i9+8Ytx9tlnxyWXXBK//Mu/HAcOHFj135mdnY3p6elFf0hTW5vx8S1jccPVe5b83/t2T8T7r94T41tcBLRNjvvXRI5khmHJMsNIued09UaiLDcrpTpLOY8MTpb7k1IGF8gip5JlhpFib+tXqT1QlslNP1nMudcMS5bTU+rcKEmKvUKW25NiPZxOX8mHLOej6uzLaVlkuXmpz2MZz48cQxlKz3Lq869u5mt3lJDlYeu16zmnLCVkOTclzEp9MD2yvDq5Ixey3JxBMlVCD6FZqWVZDffPvOVUqWX5VGqV3LQ5i1LOMvnpt//af1VPlkeXyv5BPrpNlkcnQ0S029PluBz6yWKp7JWaUnqWS3s95ZWVlJ7lKqTUD2SZlchys3yvCHWR5d5SmsvD0hfKJ8ujk3VSUHKW1edwSuhNXVRyltuUcx70wDzJcl5y7hGj0mNWJ8tQBlmGfK2Zn5+fb3sR/fr0pz8d733ve+OrX/1qbNq0KX70R380fvAHfzA++MEP9vzc//2//3e8+MUvjq985Svxwz/8w4v+zS1btsSFF14Y3/zmN+M//+f/HFu3bo077rgj1q1bt+y/9c53vjPe9a53LXn71NRUbN++fejjox6PHjwSb7vpnrj1/smTb1vYjJ+7Y3Ot//fU4bmYnJmLQ0ePxbZNG2Ji61jnLwBSIceDaSpHMsOgZJlRpNpz2ty7tEWWm5danaWaRwYjy/1LLYMLZJEIWWZ4qfa2fpXWA2WZXPXKYu69ZlCynK7S5kZpUusVstyu1OphJfpK+mQ5L3VkX07LIMvtyGEey3g+RsnxXXfdFVdccUW84jdvjLPOv6SuJQ7te/vvi1vee23ceeedcfnll7e9nCWcP6rUhZmcw/yrm/lavpKyPEy9yjmlKCnLucl9VuqDaZHl/sgdqZPlZg2aqdx7CM1JNctquD/mLQtSzfICtUqO2phFqWeZ/AzSf+2/qiPL1Uhp/yAf3STL1ZEh2urpclwe/eQZKe2V6taFLJf4esorp+tClquQWj+QZU4ny83zvSLUQZb7k9pcHpa+UC5Zroas07YuZFl9Dq6U3tQlXchyW3LPgx6YF1nOT+49YlR6zPJkGcogy5CvbB40/8gjj8QP/dAPxS233BJ79uyJiBjoQfP/4T/8h7jjjjvinnvuWfXjHnzwwbjooovic5/7XLz85S9f9mNmZ2djdnb25N+np6dj165dml7CbMY5nRwPTo5IkSxTqq71XFluR9fqjPrJ8mBkkFTJMqPQ29Ihy5SsS71GlmF4KfUKWW5fSvVAvmQ5P7LPcmS5PTJJVUbJsQelj8b5o0pdmcnmH6XrSpZXI+eUQJYZhT6YDlnuDrkrmyw3T6aogyznT28gIo8sq1XoLYcskx/9t3myXB31S5tkGarVRk+XY0rXlb1SV7LcldeT7upKlqugH5AyWW6HvkDVZLl/8kfKZLk6sk6bZJmV6E15keV6yQNNkeU86RGcTpahDLIM+Vrf9gL6deedd8bjjz++6BdAHj9+PG699db4yEc+ErOzs7Fu3bplP/fJJ5+MT3/60/Hud7+75//zvOc9LyYmJuKBBx5Y8UHzGzdujI0bNw53ILRifIsLDxaT48HJESmSZUrVtZ4ry+3oWp1RP1kejAySKllmFHpbOmSZknWp18gyDC+lXiHL7UupHsiXLOdH9lmOLLdHJqmKHEMZupJl84/SdSXLq5FzSiDLjEIfTIcsd4fclU2WmydT1EGW86c3EJFHltUq9JZDlsmP/ts8Wa6O+qVNsgzVaqOnyzGl68peqStZ7srrSXd1JctV0A9ImSy3Q1+garLcP/kjZbJcHVmnTbLMSvSmvMhyveSBpshynvQITifLUAZZhnxl86D5l7/85XHvvfcuetu1114bz3/+8+P6669f8SHzERGf+cxnYnZ2Nl73utf1/H++/e1vx4EDB+Lcc88dec0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAy8nmQfPbtm2Lyy67bNHbzjjjjNi5c+fJt7/+9a+P5zznOfG+971v0cd99KMfjde85jWxc+fORW+fmZmJd73rXXH11VfHOeecE9/85jfjN37jN+Liiy+OV77ylfUeEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBZ2Txovh/79++PtWvXLnrbfffdF1/60pfis5/97JKPX7duXdxzzz3xiU98Ig4ePBjnnXde/ORP/mS85z3viY0bNza1bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjsn7Q/Be/+MVV/x4Rcckll8T8/Pyyn7958+b427/92xpWBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALCytW0vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBrPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHr214AAAAAAAAAAAAAAHTd17/+9baXsKxU1wUAAAAAAAAAAAAAAAAAAAAAAAAAUAIPmgcAAAAAAAAAAACAlhyZOhARa+J1r3td20tZ1bHZubaXAAAAAAAAAAAAAAAAAAAAAAAAAABQHA+aBwAAAAAAAAAAAICWHDt8KCLm4wf/f9fHsy58ftvLWeI7994RX/uL/xlPPfVU20sBAAAAAAAAAAAAAAAAAAAAAAAAACiOB80DAAAAAAAAAAAAQMu2nn1+nHX+JW0vY4np73yr7SUAAAAAAAAAAAAAAAAAAAAAAAAAABRrbdsLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOia9W0vgPpMHZ6LyZm5mD56LLZv3hATZ4zF+Jax7P8vKE2u+cl13UA7VuoZegmlqLKW5QLq4RoZytVU5mQbBpNSZlJaC5RKzliN+mhG6uc59fVBqlLLTmrrgVy1lSUZBoDBLTc/I8JMhRZVsa+1NwZSoy+VxetJlyzU+9SRudiycX2sXbMm1q9dEzvVfbH0uNE5h5Qi1VpOdV10Qxv1p+ahPHK9lHNCaXzvGJAqfSIvOb1eOa21NM49uehVq2oZ8pBSVlNaC3TVajmUUVhZrvnIdd3QtjazI7fwDHnIm9ePBWqhDF5HBqVmVubcAACUwYPmC/XowSNx/U33xG33T558277dE3HD1XvivB2bs/2/oDS55ifXdQPtWK5nvOLSs+O3/9UL4jdv/ppeQvaqnItmLNTDNTKUq6nMyTYMJqXMpLQWKJWcsRr10YzUz3Pq64NUpZad1NYDuWorSzIMAINbbn6+bPdEvPnHLo7rPv7VODx3PCLMVGhSFftae2MgNfpSWbyedMly9X7lxTvj2isvjPf99dfjXa++TN0XRo8bnXNIKVKt5VTXRTe0UX9qHsoj10s5J5TG944BqdIn8pLT65XTWkvj3JOLXrWqliEPKWU1pbVAV62Uw/dfvSfmI2QUVpDrDMt13dC2NrMjt/AMecib148FaqEMXkcGpWZW5twAAJRjbdsLoHpTh+eWbNgjIm69fzLedtM9MXV4Lsv/C0qTa35yXTfQjpV6xiXnbo+3/9m9egnZq3IumrFQD9fIUK6mMifbMJiUMpPSWqBUcsZq1EczUj/Pqa8PUpVadlJbD+SqrSzJMAAMbqX5edv9k/HhL9wf11114cm3manQjCr2tfbGQGr0pbJ4PemSler99gcOxI23PxSXnLtd3RdGjxudc0gpUq3lVNdFN7RRf2oeyiPXSzknlMb3jgGp0ifyktPrldNaS+Pck4tetfrP00fVMmQgpbmT0lqgq1bL4Re/8d24/k9kFJaT6wzLdd3QtjazI7fwDHnIm9ePBWqhDF5HBqVmVubcAACUZX3bC2B0U4fnYnJmLqaPHovtmzfE+jVr4s6Hn1j2Y2+9fzImZ+ZifMtYJf/35MzckouDuv4vaNvpWZs4Y2yk+s41P7muG2jHSj1j764d8ZEvPLDs5+gl7ap63uWu1/moci6asXRdXf2nyWzJMVRvtd7QVOZkGwbTRmZW6hXyC/WTs5W5x6I+mrLced4yti6uu+rC2LtrR3zj8Zk464yx1mpQHcBwBslOEzNHlqEakzNzcefDT8Rbfvzi2LtrR8w+dSI2bVgXd+1/Ij72pYdqy5IMA8Dgel1vnzG2Pi4//8yTc9xMhfpVsZ+2N4buSvXrNvpSWbyeNCGVfrZavd/+wIG47soL4yNfeEDdN6CpmtDjRucc0oY6ekSqtZzquuiGlepvy9i62LNrR3xn6mg8OPlktj8rBV3T1nWXXC/lnFClFO6ptFXTsgT0ok9Ux/f1L1bXWlOY66nLqU7IQ1u/D+iJJ9UyVKmE3+2V01qgbqnui1fL4dnbNsZtD8goRLT7PIkqmb2wvCZ/j/Wg5BaekUMeUt33pyCH149mLNTCqb8D4NSfPT7wpFrIgUwzKDWzMucGAKAsHjSfuUcPHonrb7pn0Sb9Zbsn4kPX7I1f/dTdcXju+JLPOXT0WGX//3SPf6vK/wvatFzW9u2eiBuu3hPn7dg81L+Za35yXTfQjpV6xuxTJ1b9PL2kHXXMu5z1cz6qnItmLF1WZ/9pMltyDNXq1Ruaypxsw2CazsxqvWJmVn6hbubk8txjeZr6aMbp53nL2Lr40DV748bbH4qPfOGBk29vqwbVAQyn3+w0NXNkGaoxM3ts2Tl95cU740PX7I0ne1zHDkuGAWBw/V5vL8zxX/3U3WYq1KyK/bS9MXRTyl+30ZfK4vWkbin1s171vvDzIuq+Xk3WhB43OueQptXVI1Kt5VTXRTcsV391fw+Xmod6tHndJddLOSdUJZV7Km3VtCwBvegT1fB9/UvVsdZU5nrqcqoT0tfm7wOaPvrUqu9Xy9C/Un63Vy8prQXqlPK+eLUc+v2z8LS2nydRJbMXlmr691gPSm7hGannIeV9fwpSf/1ozvTRY6v+DoCf3fucFldHv2SaQamZlTk3AABlWdv2Ahje1OG5JTf4IiJuu38ybrz9objuqguX/bxtmzZUtobtPf6tKv8vaMtKWbv1/sl42033xNThuaH+3Vzzk+u6gXas1DM2rl99G6qXNK+ueZerfs9HlXPRjKWr6u4/TWZLjqE6/fSGpjIn2zCYJjPTq1fs2DzW2Fqgq8zJpdxjeYb6aMbp5/m6qy6MG29/KG5/4MCit7dVg+oAhtNPdpqcObIM1dixeWzZOX37AwfixtsfivEe17HDkmEAGFy/19sLc/y6qy40U6FmVeyn7Y2he1L/uo2+VBavJ3VKrZ/1qveFnxdR9/Vpuib0uNE5hzSpzh6Rai2nui66Ybn6q/t7uNQ8VK/t6y65Xso5oQptZ/tUbdW0LAG96BOj8339y6t6rSnN9dTlVCekre3fB7R90/pV36+WoT9tZ7nJrKa0FqhL6vvi1XLo989CGs+TqJLZC4u18XusByW38IyU85D6vj8FKb9+NGv7pg2r/g6Ad/7F38tMBmSaQamZlTk3AABl8aD5jE3OzC25wbfg9gcOxN5dO5a8fd/uiZjYWt0vJZ7YOhb7dk8s+76q/y9oy2pZu/X+yZicGe7mYK75yXXdQDtW6hl3P3Iwrrp457Kfo5e0o655l6t+z0eVc9GMpavq7j9NZkuOoTr99IamMifbMJgmM9OrV8wdPyG/UDNzcin3WJ6hPppx+nneu2vHkm94X9BGDaoDGE4/2Wly5sgyVGPu+IkV5/TtDxyIueMnavl/ZRgABjfI9fbtDxyIlz5vp5kKNatiP21vDN2T+tdt9KWyeD2pU2r9bLV6v/LinXH3IwfVfc2argk9bnTOIU2qs0ekWsuprotuWK7+6v4eLjUP1Wv7ukuul3JOqELb2T5VWzUtS0Av+sTofF//8qpea0pzPXU51Qlpa/v3AZ15hlqGKrSd5SazmtJaoC6p74tXy+Hjh2ZllM5L4XkSVTJ7YbE2fo/1oOQWnpFyHlLf96cg5dePZk1sHYuXPm/nit+veZvMZEGmGZSaWZlzAwBQFg+az9j00WMDffy+3RPx/qv3xPiW6jbt41vG4oar9yy5SKjj/4K29MraoQGzuCDX/OS6bqAdK/WM+74zHb/7sy/USxJS17zLVb/no8q5aMbSVXX3nyazJcdQnX56Q1OZk20YTJOZ6dUrnpx9Sn6hZubkUu6xPEN9NOP08zz71OoP1Gq6BtUBDKef7DQ5c2QZqjEz+9Sq73+yx/uHJcMAMLhBr7c3blhrpkLNqthP2xtD96T+dRt9qSxeT+qUWj9bqd6vvHhnXHvlhXHfd6bVfc2argk9bnTOIU2qs0ekWsuprotuWK7+6v4eLjUP1Wv7ukuul3JOqELb2T5VWzUtS0Av+sTofF//8qpea0pzPXU51Qlpa/v3AT17+ya1DBVoO8tNZjWltUBdUt8Xr5bDH/v+Z8konZfC8ySqZPbCYm38HutByS08I+U8pL7vT0HKrx/NGt8yFmPrV3/snsykT6YZlJpZmXMDAFCW9W0vgOFt37Rh1feff9aW+Pyv/0gcOnostm3aEBNbx2rZsJ+3Y3N8+Jq9MTkzV/v/BW3olbVtPd6/mlzzk+u6gXas1jP0knTUOe9yNMj5qHIumrF0URP9p8lsyTFUo9/e0FTmZBsG01Rm+ukV8gv1k7PF3GNZTH0049TzPPvU8VU/to0aVAcwnF7ZaXrmyDKMrs29ogwDwOAGud7esdlMhbpVtZ+2N4ZuyeHrNvpSWbye1CXFfnZqvU8dORZbxtbFurVrYt3aNfGB175I3desjZrQ40bnHNKUuntEqrWc6rrohtPrb9OGdat+fG4/KwVdkMJ1l1wv5ZwwqhSyfaq2alqWgF70idH4vv6VVbnW1OZ66nKqE9KVwu8DUsswuhSy3KSU1gJ1yGFf3CuHMkqXpfI8iSqZvfCMtn6P9aDkFp6Rah5y2PenINXXj+ad2eM1l5k8yDSDUjMrc24AAMrhQfMZm9g6Fvt2T8St908ued++3RNx9raNjW3Sx7eUc0EwdXguJmfmYvrosdi+eUNMnFHOsTGcXlmb2DpafeSan+XWLT+QphSyuVKvy7UHlqjueZebQc9HlbWcUi5S6B+Ur6n+02S2UspxhCyTp0F6Q1OZSy3bNEsvHVwTmem3V8gvVdAHVte1nK1WD+6xLNW1+mjLwnmeOjyXZA2mWAd6OzlYLTttzJw6siyLdEnbe8UU53Hd9BgARpXK9baZRilGqeUq99Nd3BtDV9V9LV7VjNaXyuL1HIy9bn/avre4EvXenrZqIsXXPLc+kuI5pH1V13ETPSLVWk51XXTDqfXX1D1lNd89ue19cpLKdZdcL5XLOZHPNKWS7VO1VdOj/L/qG5rRdtZymbkpKuX7+utS1VpTnOtt69U3cqoT0pTK7wMapJbbnqeQolSy3KSm1qLn0IZc9sWr5TClfhEhyzQrpedJVCm1XDdF/+B0bf4e60GVnFvZZFAp5qHOfX9pGUnx9aN5uVwr09upeZ4+eixizdK3w6nMgZU5N/0pbW8EAJTHg+YzNr5lLG64ek+87aZ7Ft202Ld7It5/9R4bzyE8evBIXH/TPXHbaefzhqv3xHk7Nre4Mtoka/2RH0iTbNIv824x50P/oDnyVi9ZJld6AynRS9OlV9AUfYBT9aoHvYm2qcH+6O2UoIS8yyJdU0Juc6LHAFClNue4mUYpRq1l+2lgGHX2DjMaRidH/bMX4nRq4mn6CCWoo471CGifHFIHe596yS2jkM90yfbo1Dc0Q9byZt40w3leTN+gCbnlTi5gebllORd6Dm2R6WrJMk2T4XLoHyxHxtsnm5Sirn4iI5TKDC6HPgU0Sc8BAHKwZn5+fr7tReRueno6xsfHY2pqKrZv3974/z91eC4mZ+bi0NFjsW3ThpjYOuZmxRCmDs/FWz5196IN/IJ9uyfiw9fsdV4L1k+OZW1l8kMq2p7JqZFNhpHCvEspyymcjzboH1Rh0Cx3NW91kmWq0PZc1htoWym9tO0s102voE4p9YHSs5yDQepBb2IlTWVZDa4spd5OvlKay7nmXRZJQVtZzjW3OdFjumOQHN91111xxRVXxCt+88Y46/xLGlph/771lb+Nr3zsXXHVr/33eM6le9tezhKpr+97+++LW957bdx5551x+eWXt70cBpTS/rqXpue4mUZOVstylbVsPw31ymkuD6Lq3mFGk7ocsixHw7EX6hY/77g6fYRcNHW9vJwu9wio2rB7bDmkKvY+1bDHpg7y2bxh5rJsD0d9U6cc7mM3RdbK0bV54/uw26NvUKVSrpXlgq4rJcu50HOoyyB7bJkenSxTF3O5fPpHN4xy70vG2yGbLCf3r0dV2U9khJz1m2UzOG/6VPlyn8uURc8ZnixDGWQZ8rG+7QUwuvEt3bxBsXCjZvrosdi+eUNMnDHaeZicmVt2Ax8Rcev9kzE5M9fJ88wzupq1fhw8fCze+NIL4pofPj82bVgXd+1/Ij72pYfi8Nxx+YEWlTLbqp75rM68W6xL5+PUrG0eWxcv2rUj7nz4iTg8d3zRx+XUP8hLl/I2qGFnYSl7AbpNb6iPfXZ/9NI86BXpKqHX6AOcapB60JvSVEJf6pcaXPn11tspTa557zeLXerddEduuc0xh+Y9AHVZaY7XNS/NNEpRZS2nsJ/OcY8MXVd17zCju0n/r5YcDaepvZB6z0cK++O2jNpH1DkpqHsedrlHNEUvoZeqc6jmuss1VHPMz3I01TPlMw+pZDu3Wa6+oRmyVo4q501uM6NJqcz1NpXSN9R5PnLI3Uq52DK2Lvbs2hHfmToaD04+qdbotByy3DS/04ucyfTwFrL/vcNzce2VF8aLdu04+fuzF8gydZPhpXK6RrQXoJeSM55yVmWTElXZT2SEYaXc+09X8gzugtP71JaxdXHdVRfG3l07YvapE/Gd6aMREV5jGFJO/bwJ9kYAQC48aJ4sPXrwSFx/0z2LNt37dk/EDVfvifN2bB7q35w+emzV9x/q8X7oqkcPHonfuvneuO2BAyffduXFO+ND1+yNX/3U3XF47rj8QEtKmG11zHxgqeWydvo8P1UO/QNKMcosLGEvANTDPrt/eikMr5Reow9wKvWQt1L6Ev1Z7fWemZVlSEGvufrk7DG9GxKQaw7t3QFoUp3z0kyjFCXVcq57ZKBaJfU1+qP/V0+O0qXeycUofUSdkwrzMG96CU1Tc91mZsBgmuyZ8km/cpzl6huaIWucLseZQbNK6BvqnKotl4stY+viQ9fsjRtvfyg+8oUHTr5drQERfqcXdNUgv29TlqE5uV0j2gvQValnVTZhdTLCMFLv/ZTl1D7l/j5USz9fyt4IAMjF2rYXAIOaOjy35AIkIuLW+yfjbTfdE1OH54b6d7dv2rDq+7f1eD900ck8nvKQ+YiI2x84EDfe/lBcd9WFESE/0JbcZ1tdMx9YbKWsnT7PT5V6/4BSjDoLc98LAPWwzx6MXgrDKanX6AOcSj3kq6S+RG+9Xu8dm8dW/XxZhmb0mqvjm8f0bmhZznsoe3cAmlL3vDTTKEUptZzzHhmoVil9jf7o//WQozSpd3IybB9R56TEPMyXXkLT1BxmBvSv6Z4pn/Qj11muvqEZssapcp0ZNCv3vqHOqcNyubjuqgvjxtsfittP+x2Zag3wO72gmwb9fZuyDM3I8RrRXoAuyiGrsgmrkxEGlUPvpyyn9in396E6+vny7I0AgFx40DzZmZyZW3IBsuDW+ydjcma4i5CJrWOxb/fEsu/bt3siJrau/sAB6KLV8nj7Awdi764d8gMtyn221TXzgcX6meenyqF/QClGnYW57wWAethnD0YvheGU1Gv0AU6lHvJVUl+it16v99zxE7IMCeg1V+eOn9C7oWU576Hs3QFoSt3z0kyjFKXUcs57ZKBapfQ1+qP/10OO0qTeycmwfUSdkxLzMF96CU1Tc5gZ0L+me6Z80o9cZ7n6hmbIGqfKdWbQrNz7hjqnDsvlYu+uHUseQrNArUG3+Z1e0E2D/L5NWYbm5HiNaC9AF+WQVdmE1ckIg8qh91OWU/uU+/tQHf18efZGAEAuPGie7EwfPbbq+584PBdThwe/EBnfMhY3XL1nyUZ+3+6JeP/Ve2J8i008RERMHZ6Lbz4+E3fvfyK+10fW5Afak/ts6zXzD/V4f79O7Wvf/O7MUPsIyFmvrM0+dSK2jK2Lt/z4xfHHb3pxvPXlu2PyyeH23MBSq82hUWdh7nsBoB5N7bN7yWUfrpfCcFLpNVXQBziVehhdW3uAkvpS7pqogV6v95OzT8kyJODUubpwD/qjb/ih+Ogbfih+61Uv6Nmb9W6oX6+ZeuDJuWTv69i7A9CUuuelmUYpcqjlfu5buc8ILCilr9Ef/b8eOeSoH6VlTb2Tk2H7SJV1XloPoHmlzMN+lZQZM5MquS9FP7o2M2AUTffMfvJZ0j6I4fTzu7JSrA/zB5qRW9bMtXq5/qMfbfSNKrOvzhlEv7W3XC5mnzqx6r+t1qA8/fYMv9MLyjXK7/Nb2DvIMjRr2Lnc5j0qewG6qI37OYPmXDZhdblnxNenmudefr3U9FKn9in396E6dfbznHtZ7nsjAKA71re9ABjU9k0bVn3/1JFj8SufujtuuHpPnLdj80D/9nk7NseHr9kbkzNzcejosdi2aUNMbB2zgYf/69GDR+L6m+6J2+6fjIiIj77hh1b9+PPP2hLnDphDoFo5z7ZeM39bj/f34/S+FvH0Dbxh9hGQq15Ze96zzoi//JWr4p1//rX4yBceOPl2WYHR9ZpDVczCnPcCQD2a2Gf3kts+XC+FwW0ZW7fq+5voNVXSBziVehhem3uAFPZANFcD/bzesgxpWMjiE4ePxW/ffO+ie9B//KYXr/q5ejfUr9dMPXT0WPy7P7gj2fs65j2Qmv3798fk5GTvD2zJxMREnH/++W0vIztNzEszjVKkXMv93rdynxE4VQl9jf7o//VJOUf9KDFr6p3cDNNHqqrzEnsA7ch9HvartMyYmVTFfSkG0ZWZAaNqo2euls/S9kEMp5/flfWLn/i7iEivPswfaEYuWTPX6uf6j3412Teqzr46p1+D1t7pudi0oayfdQdWN0jP8Du9oEyj/j6/C3Zuic//+o/IMjRsmLmcwj0qewG6pun7OcPmXDZhdblmJIXZ30Xu5ddHTa9soU99Z+roqh+n/qB/dfXzEnpZrnsjAKBbPGie7ExsHYt9uyfi1vuX/sLNKy/eGXc/cjBuvX8y3nbTPfHha/YOvAEf32LTDsuZOjy35EL97kcOxpUX74zbHziw5OP37Z6Is7dtbHKJwApynW2rzfx9uydiYutox7RcX4uIkfYRkKNeWTtzy1j8x8/8n7jttHkvKzCafuZQVbMw170AUI+699m95LoP10uhf1OH5+Ku/avfN6y719RBH+BU6mFwbe8B2t4D0WwN9Pt6yzKk47f//GtL7kF/+cEDcdXFO+NLBe0pITf9fI9WRNr3dcx7IBX79++P5z//0jhy5HDbS1nR5s1b4h//8eseNj+gpualmUYpUqzlQe5buc8InC73vkZ/9P96pZijfpSaNfVOjgbtI1XUeak9gPbkOg/7VWJmzEyq4L4Uwyh9ZkAV2uqZy+WzxH0Qw+n368oRadaH+QPNSD1r5lozXP8xiCb6Rh3ZV+f0Y9jaOzUXU4fn1Bp0xKA9w+/0gvJU8fv8nrNjs0xDCwadyyndo7IXoEuavJ8zas5lE1aXW0ZSmv1d415+PdR0bwvHr/6gGnX085J6WW57IwCge7J90PwNN9wQb3/72+Otb31rfPCDH1z2Yz7+8Y/Htddeu+htGzdujKNHj578+/z8fLzjHe+IP/zDP4yDBw/GlVdeGf/jf/yP2L17d53LZwTjW8bihqv3xNtuumfRhciVF++Ma6+8MH71U3dHxNMXEJMzczbkUJHJmbklF+of+9JD8aFr9kZELHpo1L7dE/H+q/fIHzCSlWZ+VT1mub62wD6CLumVtSdnn5IVqEE/c+iis7fWOguBbqp7n92LfTiUb3JmLt7zV/+w7H3DKy/eGe9+9WVyDh3U9h6g7T0QzdaA1xvyslJ/WPha9Jo1axa9X5ahOf1+j1aE+zoAvUxOTsaRI4fjxde9I7afe0Hby1li+jvfiq987F0xOTnpQfMDMi8hf4Pct3LfCchB21+TKZH+z3JKzZp6pwuqqPNSewDUpcTMmJlUwX0pgHqk1DNL3AcxnEG+rhyhPoA0mWvNSGkvAxH1ZF+d048qak+tQXcM2jP0ByiP3+cH+Rp0LrtHBe1ocg8t58Cp9IT2uH9SDzXdH/UH1akjT3oZAEBzsnzQ/Fe/+tX4gz/4g9izZ0/Pj92+fXvcd999J/++Zs2aRe//L//lv8SHPvSh+MQnPhEXXnhh/PZv/3a88pWvjH/4h3+ITZs2Vb52qnHejs3x4Wv2xj8dPBLfOnA4Nq5fG3c/cjB+9VN3x+G54yc/7onDczF12AUEVGH66LElbzs8dzx+9VN3x3VXXRj/+WcujSdnj8f2zevjzC1j8ezteigwuoWZPzkzF4eOHottmzbExNaxSmb7cn3tVId6vL8KU4fnYnJmLqaPHovtmzfExBnVHBsMYurwXBw9djx+61+9IE7Mz8fh2eMxvvmZrN29/4lVP7+JrEAOBu3p/c6hOmch0F1t9pZB9uH2y9CeUfI3ffTYovuG1115Ycw+deLkffzpI3MRcUa9BwAFyn0upnAvzvVVu/qtgapq3esN+VipPyzsKf/8zVfG2jVrBspy7nMTUnLqTD3w5NNzdbnv0YrwfVoA/dh+7gVx1vmXtL0MKjbIvJw64nssYFRVX/MNeu/SfScgdb36mv3IcPR/TtcraznfK1PvdMGodd7E90D4ehcl6ZWZA0/ORXx3Jrs6NzMZVU73pcwlIDepzOl+er0e2x2n1+XY+rXx1197bNmvK0f0vrZUO1A/OVsshZ8L6opU9jIQUV/2F+r88UOzMXXkWGwZWxdnbFwfW8bWDfXvUZ6qfhZRT4X01LHPHmZe6Q9QhoWecuDJuVU/zu/zg3QstxcYJJvuUUF76pyjp/aGp07Mr/qxcg55qOr63+xvl2uo6qnp/qm/avn+h26rOk/9/AzzNx+fUW8AABXI7kHzMzMz8Qu/8Avxh3/4h/E7v/M7PT9+zZo1cc455yz7vvn5+fjgBz8Yv/VbvxWvfvWrIyLik5/8ZDz72c+Om2++OX7+53++0rVTrfEtYzE5Mxf/z/9314ofM3XkWPzKp+6OG67eE+ft2Nzg6qA82zdtWPbth+eOx0e+8EDs3bUjfvETfxcREft2T8gdUJnxLfXc/Fupry3Y1uP9o3r04JG4/qZ74rb7J0++Tf+kaavV4ULu2s4K5GCYnj5ItuqahUC3tdVb+u1/9svQnlHzt5DzhfuGp/vZH3xOdYuFjihhLqZyf8H1VXv6qYGqa93rDXlYrT8cnjsea9esiYvO3tr3v1fC3ITUnJypj8/Ev/uDO1b8ON+nBUCX9Tsvjx47Ho8ePGJWwpDquOYb5t6l+05Aynr1NfuR4en/nKpX1nK/V6be6YJR6rzu74Hw9S5K0yszh44ei3/3B3dkWedmJqPI5b6UuQTkKoU53avXbx5bF2/51N16bIecWpfffHxm2Z+5WbDataX5DPWTs6VS+bmgrkhhLwMR9Wb/ybnj8e6/+ge9lmVV+bOIeiqko6599rDzSn+AvJ3aUz76hh9a9WP9Pj9IQ6+9QD/ZdI8K2lXHHD29Nwwy14E0VXn9b/a3zzVUtdT0YNRfNXz/AxHV5qmfn2H+uf/x5ZN/V28AAMNb2/YCBvXmN785XvWqV8VP/MRP9PXxMzMz8dznPjd27doVr371q+Pv//7vT77voYceiscee2zRvzU+Ph4vfvGL4447Vv4lf8OYOjwX33x8Ju7e/0R887szMXV4rtJ/v6smto7Fvt0Ty77vyot3xt2PHIxb75+Mt910j3NOFlLuFf3kbYHckbKUc0azVutr+3ZPxMTW+r54MHV4bslN9Qj9cxCyPLp+67DNrFC+ErI8bE+XLUpSQpZpTj/9z365HbJMRDXXq/Y57ZPnspQyF/WGwZSY4141sHXT+iJqHU5VYpbrUOWMKGVukhZZfobv0wKgTbnM5F7z8ssPHjArYUinXvNtGVsXb/nxi+Ojb/ih+PkfPj8ePvBk/PP00aH+XfcuoRty2UtUwX4EmuFeWfm6NDvqVOp5rPM6wte7aFJTGe33Z5PVOSXpJ1853Jcyl6B5pe6hu6pXr79r/0E9tiY5ZGnYvYD5TJe0lWU5W14O1zCUIYc53iV1ZV+vLVdVGfaziFCeqcNz8b++8d1440sviP/3Fy6Pj73xX8Rbfvzi+LuHnxg5t/aqdIn98tNO30/e/cjBuPLinct+rD5ATkrOeFXXgeY+KSk5s01ZrjeY67RNtkdT9b1fs586tZF3NU3TcvuanDmch9V62VX/92eYT5VqvQEA5GB92wsYxKc//em466674qtf/WpfH3/JJZfExz72sdizZ09MTU3FBz7wgXjpS18af//3fx/f933fF4899lhERDz72c9e9HnPfvazT75vObOzszE7O3vy79PT06uu49GDR5ZcOO3bPRE3XL0nztuxua9jYXnjW8bihqv3xNtuuiduPeX8Xnnxzrj2ygvjVz91d0Q8fdEwOTMX41vcGOFpg+a4Can3in7ztkDuaIKZzChW6mv7dk/E+6/eU2v/mpyZW3JTfUEX+6cst6PfOmwzK+Slq1ketqfLFqnqapZpTj/975uPz9gvj0iWGVYV16v2OdUZ5j62PJenlPtIXe4N5vLTetXAk7NPFVHrlEuW61PljChlblIfWR6N79MiBSl+zxcwuJJn8sK8PH29p87Lw3PHzUqK0PRcXrjm2zK2Lj50zd648faH4iNfeODk+1/2f68jB+0LXb53CRHd2GPntJeogv1IN3Uhy6lxr6xsbc2O0rJc8gyu8zrC17vyl0uWm8zoID+brM5JxShZ7jdfOdyXMpfIXS5zeUHJe+iuWq3Xv/vVl8XPfOi2ZT9Pj12s1K8vD7sXMJ/JVU5ZlrPl5XANQ72a2F/nMse7pK7s67XtqTPLVWbYzyLC6nK77xUR8cThY/FX9zwatz/wzANmrrx4Z3zomr3xq5+6e6Tc2quSq5yulVNz+n7yY196KD50zd6IiEV9Rh+gCVXN5dIzXtV1oLlPXczldizXG8x1RjHqXJbt0VV979fs76aSvyalpmlam1+Ts8cu10q97GW7J+INL71gybPrInz9Lmc5fk0KWEqWIV/ZPGj+kUceibe+9a1xyy23xKZNm/r6nJe85CXxkpe85OTfX/rSl8all14af/AHfxDvec97hl7L+973vnjXu97V18dOHZ5bciES8fQG9m033RMfvmavTeyIztuxOT58zd74p4NH4lsHDsfG9Wvj7kcOnvzlRwsOHT3W4ipJzSA5bkIuvWIhb5Mzc3Ho6LEYW782/vprjy3J2wK5o25mMqM6va9t27QhJraO1V4L0z36Y9f6pyy3Y5A6bCsr5KWrWR6lp8sWKepqlmlWr/5nvzw6WWZYVeXPPqcag97HlucylTQXu9obzOVnrFYDd+9/YtXPzanWKZMs16uqGVHS3KQesjw636dF21L7ni9gOKXP5PN2bI7f/lcviEe+dzhmnzqx7Lw0KylB03N54ZrvuqsujBtvf2jRLwuKiLhthL7Q1XuXEFH+HjvHvUQV7Ee6p/Qsp8q9sjK1OTtKynIXZnBd1xG+3pW/HLLcRkZPzcyBJ5/OzXJzM0Kdk4ZhszxovlK/L2Uukbsc5vKCLuyhu2qlXv+tA08u+ztaFuixzyj568vD7AXMZ3KVU5blbGWpX8NQr7r3121nn5XVkX29tj11ZbmODPtZRFhZTve9Ip7uEb99871Lvu9z4e/XXXXhyLm1VyVHOV0rp+b0/eThuePxq5+6O6676sK47soLY9umDbHzjDF9gEZUMZe7kPEqrwPNfepgLrdjud5w6lz/zZ+5NOaeOiHn9G2UuSzb1ajj3q/Z3z2lf01KTdOkNr8mZ49dtuV62fH5+XjNf799xe+L9PW7POX2NSlgebIM+Vrb9gL6deedd8bjjz8el19+eaxfvz7Wr18f/+t//a/40Ic+FOvXr4/jx1f+4ZkFGzZsiL1798YDDzwQERHnnHNORET88z//86KP++d//ueT71vO29/+9piamjr555FHHlnxYydn5pZciCy49f7JmJyZ67luehvfMhYb16+L/+f/uyt+8RN/Fx/5wgNLLhy2bdrQ0upI0SA5bkJOvWJ8y1hcdPbW+MHzz4yN69ctm7cFckfdzGSqcGpfu+jsrY3cKN7eoz92rX/KcjsGrcM2skJeuprlUXu6bJGarmaZ5q3W/+yXRyfLDKvK/NnnjG7Q+9jyXKbS5mIXe4O5vNhKNVBarVMeWa5fFTNCL6EXWa6G79OiTal9zxcwnC7M5HVr1sQvfuLvVpyXZiUlaHouL1zz7d21Y8kvG10wSl/o4r1LiCh/j53rXqIK9iPdUnqWU+ZeWXnanB0lZbkrM7iO6whf78pfDlluK6MLmdl5xtiKczNCnZOGYbM8TL5Svi9lLpG7HObygq7sobtquV6/daMe26/Sv7486F7AfCZXOWVZzlaX8jUM9ap7f9129lld1dnXa9tTV5bryrCfRYTl5XTfK+L/9ogVvu/z9gcOxN5dOyrJrb0qucnpWjk1y+0FDs8dj4984YH4xU/8Xew8Y0wfoDFVzOUuZLzqPby5T9XM5Xas1BsW5vrG9evknIGMMpdluxp13bcz+7ulC1+TUtM0pc2vp9hjl+/0XrZuzZoVn10X4et3ucrta1LA8mQZ8rW+7QX06+Uvf3nce++9i9527bXXxvOf//y4/vrrY926dT3/jePHj8e9994bP/MzPxMRERdeeGGcc8458fnPfz5+8Ad/MCIipqen4ytf+Ur88i//8or/zsaNG2Pjxo19rXv66LFV33+ox/vp38TWsdi3eyJuXebib9/uiZjY6uYIzxgkx03ItVfIHW0zk8mV/rmYLLdDHVK1rmZZlihNV7NMWvTW0ckyw5K/tAx6H1ueyySX+TOX+6PWSZ0s50EvoRdZro680ZbUvucLGE4XZrJZSRc0PZcXcjX71IlVPy7VvgCpKn2Pneteogr2I91SepZTJ29laXN2lJTlLs/gUekp+cshy21nVJ2Tg2Gz3Ha+qiav5C6HubygtP5Bb3ps/7rw9eVBqB1ylVOW5QyWV/f+uu3s0yy9tj11ZbnpDKshui6n+14RvXtERMgtnZTTtXJq7AVISRVzuQsZl1tSZy63Q2+gaqPMZdmuhlxTBV+Tguq02ZftsbvHPqBMuX1NClieLEO+1ra9gH5t27YtLrvsskV/zjjjjNi5c2dcdtllERHx+te/Pt7+9ref/Jx3v/vd8dnPfjYefPDBuOuuu+J1r3tdPPzww/GmN70pIiLWrFkTv/Zrvxa/8zu/E3/xF38R9957b7z+9a+P8847L17zmtdUsu7tmzasflw93s/qpg7PxTcfn4m79z8RB56ci9/92RfGvt0Tiz5m3+6JeP/Ve2J8iwsG0pVSrzg1V9/87kxMHZ5b8WPHt4zFDVfvkTuykFLOqM4gPSsl+ufwZLk6q9Xhu199WXzrwJNZ5Yq8lJTllbL0st0T8Y5/8wNx4Mk5OaJYJWWZtIxvGYvf/dkXxsvslxshy5yqC9erud5L6Ic8t6PumupCLnlGl3NcRa2X3OPJS5ezXJVh82xuUiVZXt1q98bf/erLWloVACXKaSb7nmao18IedMfm3n3BfSJgQVN7iRT7jntlsFidOZW3suR0HZqyts9jirO5X3oKo+i39tvOqDqnZG3nq2ry2r6c9zUMprT+UboqsqnH1qPULPlaNF1TZZaH6dl6NLSj1DnehByvHfXa8jSdYb/rB9LSaxb16hHfd+ZmvR96sF92j4yydSHjdV4H5nhdTN66kNmm+H0FpKTEbLcxI937JQcl5r0N9uF5yKUvy2UZhqk3vQQAYHXr215Alfbv3x9r1649+fcnnngifumXfikee+yxOPPMM+OKK66IL3/5y/GCF7zg5Mf8xm/8Rjz55JPx7//9v4+DBw/GVVddFX/zN38TmzZtqmRNE1vHYt/uibj1/skl79u3eyImtqZx0ZSjRw8eietvuiduO+XcvuLSs+N9P/fCOHrsRBw6eiy2bdoQE1vHkrk4hZWk0iuWy9W+3RNxw9V74rwdm5f9nPN2bI4PX7M3Jmfm5I6kpZIzqjNMz0qJ/jkcWa7W6XW4eWxd3LX/YPzMh26Lw3PHIyKvXJGP0rJ8apYOHpmL2WMn4ssPHoh//eEvxeG543JEsUrLMul49OCReOdf/n28aNeOeONLL4jZp07Ejs0b4rk7t8S5emnlZJnTlXy9mvu9hF7kuXlN1VTJuWSxrud4lFovvceTl65neVSj5tncpCqy3NtC3h6bPhrffuJIRETc/cjTX2f6oeeeaQ4DUIlcZrLvaYZmnLdjc6xbuyZetntiUd4W7Ns9EZs2rI23fOpu94mAiGhmL5Hy/Wn3yuBpTeRU3sqRy3Vo6to8jynP5n7pKQxjkNpPodepc0qVQr6qJq/tKWFfQ/9K7B+lqjKbemz1SsySr0XTRVVleZSerUdD80qc403I+dpRry1LGxn2u34gDf3Mol494pzt1fz+byhZ1/fL7pFRuq5kvI7rwJyvi8lXVzLbFL+vgFSUlu02Z6R7v6SutLy3wT48Lzn0ZbksxyD1ppcAAPS2Zn5+fr7tReRueno6xsfHY2pqKrZv377k/Y8ePBJvu+meRRck+3ZPxPuv3uPBSEOaOjy35BfALdi3eyI+fM3epC5KSV+vHDeh7V4hV5TATO4OPatsstwOuaJqXcyyHFGiLmaZduml9ZBlKKO/9HMfW56bU0JN0Q5zuXrySBtkuR7yTNNkeXRyS9sG+Z6vu+66K6644op4xW/eGGedf0lDK+zft77yt/GVj70rrvq1/x7PuXRv28tZIvX1fW//fXHLe6+NO++8My6//PK2l7NE6vXX9vnLfSabh/C0Jr8Xe6W+8Ls/+8J451/+fXzu648v+Rx5hP6k8HMVVatzL2EfQKpKzPKw5JRhpHIdmnuW2ziPMk+KmsjyMLWfSq+DXAySZfmiCvY19Uh9j61/pE8205D715cHoeYoWd1Zlh+oXx3765LmeBP0OqpQZZbbyrAsQHv3vQbJnzkPvXXpvtcgzHpyM+xc7mrGR6E/UCdzuVnyTF0GnculZFumKI2vSaVFj2FY9ticSi/JV+rfiw30R5YhH+vbXkAXnLdjc3z4mr0xOTMXh44ei22bNsTE1jEb0hFMzswtu9mPiLj1/smYnJlzfslO271CruiCtnNGdfSsbpPlesgVTSsxy3JEF5WYZdqll7ZDlumCrvQXeW5OV2qK5snx4OSRFMnycOSZ1Mhyb3ILQBNSn8nmITRvpb5w4Mm5ZR8yHyGP0GV17iXsAyB9csowUr8OzUUb51Hm6aphal+vg/rIF1Wwr+km/SN9spmHkrKk5uiyUbMsP5CnkuZ4E/Q6UtNWhmUB2jNI/sx5GF1Xc2TW0xVdzfgo9AfaJLPVkmdSUUq2ZQp6KyXvbdBjqItcdoteAgDQHw+ab8j4FhcfVZo+emzV9x/q8X5IVZu9Qq7oCjO5DHoWslw9uaINpWVZjuiq0rJMu/TS9sgypetSf5HnZnSppmieHA9GHkmVLA9OnkmRLK9ObgFoSsoz2TyEdizXFx6cfHLVz5FH6K669hL2AZA+OWVYKV+H5qTp8yjzdNWwta/XQX3ki1HZ13SX/pE22cxHKVlSc3TdKFmWH8hXKXO8CXodKWojw7IA7Rk0f+Y8jK6LOTLr6ZIuZnwU+gNtk9nqyDMpKSHbMgX9KSHvbdBjqJNcdodeAgDQn7VtLwCGsX3ThlXfv63H+4Gl5ArIiZ4F1ZMrGJ0cAYxOLwXqor9QNTUF6ZBHKIc8Q37kFgDMQ0iJPAJN03cgfXIK3SLzdJXaByiP3g5pkk2apuZgePIDdIFeB0+TBWiP/AFN0GuAlegPUA55hmrJFFAnPQaogl4CANAfD5onSxNbx2Lf7oll37dv90RMbB1reEWQP7kCcqJnQfXkCkYnRwCj00uBuugvVE1NQTrkEcohz5AfuQUA8xBSIo9A0/QdSJ+cQrfIPF2l9gHKo7dDmmSTpqk5GJ78AF2g18HTZAHaI39AE/QaYCX6A5RDnqFaMgXUSY8BqqCXAAD0x4PmydL4lrG44eo9Szb9+3ZPxPuv3hPjW2z4YVByBeREz4LqyRWMTo4ARqeXAnXRX6iamoJ0yCOUQ54hP3ILAOYhpEQegabpO5A+OYVukXm6Su0DlEdvhzTJJk1TczA8+QG6QK+Dp8kCtEf+gCboNcBK9AcohzxDtWQKqJMeA1RBLwEA6M/6thcAwzpvx+b48DV7Y3JmLg4dPRbbNm2Iia1jNvswArkCcqJnQfXkCkYnRwCj00uBuugvVE1NQTrkEcohz5AfuQUA8xBSIo9A0/QdSJ+cQrfIPF2l9gHKo7dDmmSTpqk5GJ78AF2g18HTZAHaI39AE/QaYCX6A5RDnqFaMgXUSY8BqqCXAAD05kHzZG18iw0+VE2ugJzoWVA9uYLRyRHA6PRSoC76C1VTU5AOeYRyyDPkR24BwDyElMgj0DR9B9Inp9AtMk9XqX2A8ujtkCbZpGlqDoYnP0AX6HXwNFmA9sgf0AS9BliJ/gDlkGeolkwBddJjgCroJQAAq1vb9gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAusaD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1b3/YCSjA/Px8REdPT0y2vBLpj27ZtsWbNmsr+PTmGdsgylEGWoQyyDGWQZSiDLEMZZBnKIMtQBlmGMsgylKHKLA+S45mZmYiImPr2g3HiqeOV/P9Vmnn8nyIiYvqxb8XGjRtbXs1Sqa/v0GMPR0TEXXfddfK1Tsk3vvGNiEi3/hbO38zMTF95MpOhDLIMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZahDLIMZWjr+zeB6pjJUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhvwNm+M18wuJZWjf/va3Y9euXW0vAzplamoqtm/fXtm/J8fQDlmGMsgylEGWoQyyDGWoOssPPvhgXHTRRZX9e0B/zGUogyxDGWQZyiDLUIYqsyzH0A4zGcogy1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy1AG378J+TOToQyyDGWQZSiDLEMZZBnKIMtQBlmGMsgylEGWoQyyDPkbNsceNF+BEydOxKOPPhrbtm2LNWvWtL2c5E1PT8euXbvikUceqXT4dFGXz2XVeasrx11+jU7nXDzNeVisrizPz8/H+eefX9R5LrV2SjyuLh5TLnO5aiW+1gtKPbZSjyuimmOrI8v33XdfvOAFLyjynPer5Lrrl3PQ7Dloei57fZ2DCOcgovpzUHWWDx48GGeeeWbs378/xsfHK/t321Ra3ZV2PBHlHdMwx9PV6+UFpdXAILp67KUet/vY/Snt9Xc8aTOX+1faa18H56i3lM5RV7N8qpRej1E4jrQ0fRxVZq7KHJfyejbJORtOCectlZlcwrmsg/OyMudmsVSy3LbS6sLxpK2O40kly6W9VhGOKRelHFMqWW5CKa9ZCpzLaqX6vdjLZdlrXx3nshqlnccU5nLO5zTntUdYf9uqXH8KWa5K7q/rShxXfto4tpKy3ISS628lXTvmXI/XzzsOJvf1R+R/DNa/PD9XsViudWLdzUpx3al+/2ZTUnxNquT48tbv8ZV4rVzKa1vCcZRwDBF5HEdOWc7hfJ7OmpthzXlluQo5vuapcQ5HV/L3Yi9HzazMuVlel89LilnO8fXIcc0Rea7bmpeXYparlOPrvhzHkY5Uj6HJLKd6Dkrh/NYnh3PbxlzO4bzUxbF389gj6j/+tvbYpbyujiMtpRxHxODHIsujcRxp6epxDJvj9cMsjsXWrl0b3/d939f2MrKzffv2rEOaEudydHXn2Gv0DOfiac5DPRayPD09HRFlnucSjymizONyTMPLbX9d4mu9oNRjK/W4ItI6trVr18ZznvOciEhrXW1xDpyDiDzPQb9zOcdjq5pz4BxEpHsO1q5dGxER4+PjSa5vFKme82GVdjwR5R1Tm8eT2/XygtJqYBBdPfauHne/Sr+P7XjS5niqk9tcLu21r4Nz1FuJ5yi3LJ+qlNfDcaQlx+OoI8c5noe2OWfDcd6eMWqWncvlOS8rc27qkfP+OqK8unA8aUv5eMzlpRxTHko8plHkMJe9ZtVxLquV0vnsleWU1po757IazuPyRpnLOZ/TnNceYf1tS3H9KeyxUzwvVXBc+cn52FLIchNyfo2G1bVj7trxnq4rP++Y+/oj8j8G669XKT9XYd3Nsu605Ly/LvU1WeD48tb08aWU5VJe2xKOo4RjiCjnOPrRRJZzPJ/W3Axrrk5Kc3k1qZ6/nDiHo0v5HPp5x2Y5N8tzXkZXZZZzfD1yXHNEnuu25nqlusfO6RyuxnGko4RjWE0/WS79HLTN+a1Pl87tIHO5S+fldI69m8cekc/xD7rHzuW4enEcaSnlOCLaOxZZzpvjSEvdx7G2tn8ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGV50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwzxonsZt3Lgx3vGOd8TGjRvbXkr2nMv0eY2e4Vw8zXloRonnucRjiijzuBxTd5R8Xko9tlKPKyLdY0t1XU1yDpyDiLLPQcnH1i/nwDmISP8cpL6+YZR2TKUdT0R5x1Ta8TShy+esq8fe1eMeVmnny/GkzfF0l3PVm3PUm3OUllJeD8eRllKOY1TOw+Ccs+E4b9VxLpfnvKzMuWE5pdWF40lbacdzqhKPzTHlocRjKp3XrDrOZbVyOp85rTV1zmU1nMfq5XxOc157hPW3Lff116XU8+K48lPysZWii69R1465a8c7rNzPU+7rj8j/GKy/Wbmtd4F1N8u6qUrpr4njy1vpx7eaUo69hOMo4RgiyjmOVOR4Pq25GdbcPc7f6JzD0XXtHHbteAfh3CzPeUlLjq9HjmuOyHPd1txNpZxDx5GOEo5hVM5BvZzf+ji3y+vyeXHs3Tz2iHKPv5TjchxpKeU4IvI5llzW2YvjSIvjGMya+fn5+Vr/BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWWdv2AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6xoPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzVfo1ltvjX/9r/91nHfeebFmzZq4+eabB/435ufn4wMf+EB8//d/f2zcuDGe85znxHvf+97qFwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0Zn3bCyjJk08+GS960Yviuuuui5/7uZ8b6t9461vfGp/97GfjAx/4QLzwhS+M733ve/G9732v4pUCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbVozPz8/3/YiSrRmzZr4sz/7s3jNa15z8m2zs7Pxm7/5m/GpT30qDh48GJdddlm8//3vjx/90R+NiIivf/3rsWfPnvja174Wl1xySTsLBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGq3tu0FdMlb3vKWuOOOO+LTn/503HPPPfHa1742fuqnfiruv//+iIj4y7/8y3je854Xf/VXfxUXXnhhXHDBBfGmN70pvve977W8cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBKHjTfkP3798eNN94Yn/nMZ+JlL3tZXHTRRfEf/+N/jKuuuipuvPHGiIh48MEH4+GHH47PfOYz8clPfjI+/vGPx5133hn/9t/+25ZXDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRpfdsL6Ip77703jh8/Ht///d+/6O2zs7Oxc+fOiIg4ceJEzM7Oxic/+cmTH/fRj340rrjiirjvvvvikksuaXzdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPU8aL4hMzMzsW7durjzzjtj3bp1i963devWiIg499xzY/369YseRn/ppZdGRMT+/fs9aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK4UHzDdm7d28cP348Hn/88XjZy1627MdceeWV8dRTT8U3v/nNuOiiiyIi4hvf+EZERDz3uc9tbK0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAvdbMz8/Pt72IUszMzMQDDzwQEU8/WP6//tf/Gj/2Yz8WZ511Vpx//vnxute9Lm6//fb4vd/7vdi7d29897vfjc9//vOxZ8+eeNWrXhUnTpyIf/Ev/kVs3bo1PvjBD8aJEyfizW9+c2zfvj0++9nPtnx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQFU8aL5CX/ziF+PHfuzHlrz9DW94Q3z84x+PY8eOxe/8zu/EJz/5yfinf/qnmJiYiH/5L/9lvOtd74oXvvCFERHx6KOPxq/8yq/EZz/72TjjjDPip3/6p+P3fu/34qyzzmr6cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPWtr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK7xoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQfAXm5+djeno65ufn214KMCQ5hjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhjLIMuRPjqEMsgxlkGUogyxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGXInxxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLkA8Pmq/AoUOHYnx8PA4dOtT2UoAhyTGUQZahDLIMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZYhf3IMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlKIMsQ/7kGMogy1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy1AGWYZ8eNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0bH3bCwCYOjwXkzNzMX30WGzfvCEmzhiL8S1jbS8LGJAsQ9pkFLpF5qEMsgxlkGVYmXzQNDUHUAb9HMogy1AGWYb8yTEApMNcJhVqEdolgwDV0VOhDLIMeZFZKJuMQxlkmRKpayBHeheUQZahDLIMZZBlqIdsAcPQO7rB6wxUQS8B6I9+CQDd40HzQKsePXgkrr/pnrjt/smTb9u3eyJuuHpPnLdjc4srAwYhy5A2GYVukXkogyxDGWQZViYfNE3NAZRBP4cyyDKUQZYhf3IMAOkwl0mFWoR2ySBAdfRUKIMsQ15kFsom41AGWaZE6hrIkd4FZZBlKIMsQxlkGeohW8Aw9I5u8DoDVdBLAPqjXwJAN61tewFAd00dnltyERIRcev9k/G2m+6JqcNzLa0MGIQsQ9pkFLpF5qEMsgxlkGVYmXzQNDUHUAb9HMogy1AGWYb8yTEApMNcJhVqEdolgwDV0VOhDLIMeZFZKJuMQxlkmRKpayBHeheUQZahDLIMZZBlqIdsAcPQO7rB6wxUQS8B6I9+CQDd5UHzQGsmZ+aWXIQsuPX+yZiccSECOZBlSJuMQrfIPJRBlqEMsgwrkw+apuYAyqCfQxlkGcogy5A/OQaAdJjLpEItQrtkEKA6eiqUQZYhLzILZZNxKIMsUyJ1DeRI74IyyDKUQZahDLIM9ZAtYBh6Rzd4nYEq6CUA/dEvAaC7PGgeaM300WOrvv9Qj/cDaZBlSJuMQrfIPJRBlqEMsgwrkw+apuYAyqCfQxlkGcogy5A/OQaAdJjLpEItQrtkEKA6eiqUQZYhLzILZZNxKIMsUyJ1DeRI74IyyDKUQZahDLIM9ZAtYBh6Rzd4nYEq6CUA/dEvAaC7PGgeaM32TRtWff+2Hu8H0iDLkDYZhW6ReSiDLEMZZBlWJh80Tc0BlEE/hzLIMpRBliF/cgwA6TCXSYVahHbJIEB19FQogyxDXmQWyibjUAZZpkTqGsiR3gVlkGUogyxDGWQZ6iFbwDD0jm7wOgNV0EsA+qNfAkB3edA80JqJrWOxb/fEsu/bt3siJraONbwiYBiyDGmTUegWmYcyyDKUQZZhZfJB09QcQBn0cyiDLEMZZBnyJ8cAkA5zmVSoRWiXDAJUR0+FMsgy5EVmoWwyDmWQZUqkroEc6V1QBlmGMsgylEGWoR6yBQxD7+gGrzNQBb0EoD/6JQB0lwfNA60Z3zIWN1y9Z8nFyL7dE/H+q/fE+BYXIpADWYa0ySh0i8xDGWQZyiDLsDL5oGlqDqAM+jmUQZahDLIM+ZNjAEiHuUwq1CK0SwYBqqOnQhlkGfIis1A2GYcyyDIlUtdAjvQuKIMsQxlkGcogy1AP2QKGoXd0g9cZqIJeAtAf/RIAumvN/Pz8fNuLyN309HSMj4/H1NRUbN++ve3lQHamDs/F5MxcHDp6LLZt2hATW8cavwiRYxidLEPaUshov2QZRpdC5mUZRifLUAZZhpWlkI+cyPLo1BwpkGUYXQr9XJZhdLIMZWg7y3IMo2s7xxGyDKWQZRiduUwqUqhFRiPLeZNBFsgyjC6FnirLMDpZhrykkNmVyDKMLoWMyzKMTpYpUQp13TVyDKNLoXfJMoxOlqEMsgxlkGWoRwrZaposw+hS6B2yXL8UXmfKJ8vl00u6QZZhdCn0S1mGMsgy5GN92wsAGN/iRg2UQJYhbTIK3SLzUAZZhjLIMqxMPmiamgMog34OZZBlKIMsQ/7kGADSYS6TCrUI7ZJBgOroqVAGWYa8yCyUTcahDLJMidQ1kCO9C8ogy1AGWYYyyDLUQ7aAYegd3eB1BqqglwD0R78EgO5Z2/YCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALrGg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlbUg+YvuOCCWLNmzZI/b37zm5f9+I9//ONLPnbTpk0NrxoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomvVtL6BKX/3qV+P48eMn//61r30tXvGKV8RrX/vaFT9n+/btcd999538+5o1a2pdIwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBRD5p/1rOetejvN9xwQ1x00UXxIz/yIyt+zpo1a+Kcc86pe2kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJxX1oPlTzc3NxR/90R/Fr//6r8eaNWtW/LiZmZl47nOfGydOnIjLL788fvd3fzd+4Ad+YNV/e3Z2NmZnZ0/+fXp6urJ1A82QYyiDLEMZZBnKIMtQBlmGMsgylEGWoQyyDGWQZSiDLEP+5BjKIMtQBlmGMsgylEGWoQyyDGWQZSiDLEMZZBnKIMtQBlmG/MkxlEGWoQyyDGWQZSiDLEMZZBnKIMtQBlmGMsgylEGWoQyyDPla2/YC6nLzzTfHwYMH441vfOOKH3PJJZfExz72sfjzP//z+KM/+qM4ceJEvPSlL41vf/vbq/7b73vf+2J8fPzkn127dlW8eqBucgxlkGUogyxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGXInxxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLkD85hjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhjLIMpRBliFfa+bn5+fbXkQdXvnKV8bY2Fj85V/+Zd+fc+zYsbj00kvjmmuuife85z0rftzs7GzMzs6e/Pv09HTs2rUrpqamYvv27SOtG2iGHEMZZBnKIMtQBlmGMsgylEGWoQyyDGWQZSiDLEMZZBnyJ8dQBlmGMsgylEGWoQyyDGWQZSiDLEMZZBnKIMtQBlmGMsgy5E+OoQyyDGWQZSiDLEMZZBnKIMtQBlmGMsgylEGWoQyyDGWQZcjX+rYXUIeHH344Pve5z8Wf/umfDvR5GzZsiL1798YDDzyw6sdt3LgxNm7cOMoSgZbJMZRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhjLIMpRBliF/cgxlkGUogyxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGUogyxD/uQYyiDLUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhnytbXsBdbjxxhvj7LPPjle96lUDfd7x48fj3nvvjXPPPbemlQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU+KD5EydOxI033hhveMMbYv369Yve9/rXvz7e/va3n/z7u9/97vjsZz8bDz74YNx1113xute9Lh5++OF405ve1PSyAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgA5Z3/tD8vK5z30u9u/fH9ddd92S9+3fvz/Wrl178u9PPPFE/NIv/VI89thjceaZZ8YVV1wRX/7yl+MFL3hBk0sGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOqa4B83/5E/+ZMzPzy/7vi9+8YuL/v77v//78fu///sNrAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgGWvbXgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA13jQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaVtSD5i+44IJYs2bNkj9vfvObV/ycz3zmM/H85z8/Nm3aFC984Qvjr//6rxtcMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBFRT1o/qtf/Wp85zvfOfnnlltuiYiI1772tct+/Je//OW45ppr4hd/8Rfj7rvvjte85jXxmte8Jr72ta81uWwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgY4p60PyznvWsOOecc07++au/+qu46KKL4kd+5EeW/fj/9t/+W/zUT/1U/Kf/9J/i0ksvjfe85z1x+eWXx0c+8pGGVw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0SVEPmj/V3Nxc/NEf/VFcd911sWbNmmU/5o477oif+ImfWPS2V77ylXHHHXc0sUQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgo9a3vYC63HzzzXHw4MF44xvfuOLHPPbYY/HsZz970due/exnx2OPPbbqvz07Oxuzs7Mn/z49PT3SWoHmyTGUQZahDLIMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZYhf3IMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlKIMsQ/7kGMogy1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy1AGWYZ8rW17AXX56Ec/Gj/90z8d5513XuX/9vve974YHx8/+WfXrl2V/x9AveQYyiDLUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLkD85hjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhjLIMpRBliF/cgxlkGUogyxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGUogyxDvtbMz8/Pt72Iqj388MPxvOc9L/70T/80Xv3qV6/4ceeff378+q//evzar/3aybe94x3viJtvvjn+z//5Pyt+3uzsbMzOzp78+/T0dOzatSumpqZi+/btlRwD9Gvq8FxMzszF9NFjsX3zhpg4YyzGt4y1vazkyTG5kvnFZJkIuSiBLJMq/WUwskxbZLVaskzputIzZJkuKTnXspy/kuuT/skybdKHqiPL3SM/ZZJlcqEHrUyOu0kmyiPLUAZZZlhme1pkmZToD8PLIcteX+gthyxD03KcH7JclhxrkGrIMpTRA2UZqtF2P5BlctV2dlIjy+VR490jx0TIfglkuR2yQ9VkmaboX/WSZaoms+2QZaheG/1MlqF6stwse0FK0uUs10mfoGmyTJeV1HNlGcogy5Cv9W0voA433nhjnH322fGqV71q1Y97yUteEp///OcXPWj+lltuiZe85CWrft7GjRtj48aNVSwVRvLowSNx/U33xG33T558277dE3HD1XvivB2bW1xZ+uSYHMn8UrKMXJRBlkmR/jI4WaYNslo9WaZkXeoZskxXlJ5rWc5b6fVJ/2SZtuhD1ZLlbpGfcskyOdCDVifH3SMTZZJlKIMsMwyzPT2yTCr0h9GknmWvL/Qn9SxD03KdH7JcjlxrkGrIMl1XSg+UZRhdCv1AlslRCtlJjSyXRY13kxwj+2WQ5ebJDnWQZZqgf9VPlqmSzLZHlqFabfUzWYZqyXKz7AUpTVezXCd9gjbIMl1VWs+VZSiDLEO+1ra9gKqdOHEibrzxxnjDG94Q69evX/S+17/+9fH2t7/95N/f+ta3xt/8zd/E7/3e78U//uM/xjvf+c74u7/7u3jLW97S9LJhYFOH55ZcGERE3Hr/ZLztpnti6vBcSysD6iDzsJRcAHXRXyAPsgoMQs+A8sg1KVOfQNv0IRie/ABt0oNgMZkAgLKY7cBK9IeyeX0BGIb5QdvUINBleiCwQD+A4cgOpVPj0E2yD8ORHSBX+hfkRWaBUuhnUAZZbpbzDfSiTwA0R88FAKpW3IPmP/e5z8X+/fvjuuuuW/K+/fv3x3e+852Tf3/pS18af/zHfxz/83/+z3jRi14Uf/InfxI333xzXHbZZU0uGYYyOTO35MJgwa33T8bkjIsDKInMw1JyAdRFf4E8yCowCD0DyiPXpEx9Am3Th2B48gO0SQ+CxWQCAMpitgMr0R/K5vUFYBjmB21Tg0CX6YHAAv0AhiM7lE6NQzfJPgxHdoBc6V+QF5kFSqGfQRlkuVnON9CLPgHQHD0XAKja+rYXULWf/MmfjPn5+WXf98UvfnHJ21772tfGa1/72ppXBdWbPnps1fcf6vF+IC8yD0vJBVAX/QXyIKvAIPQMKI9ckzL1CbRNH4LhyQ/QJj0IFpMJACiL2Q6sRH8om9cXgGGYH7RNDQJdpgcCC/QDGI7sUDo1Dt0k+zAc2QFypX9BXmQWKIV+BmWQ5WY530Av+gRAc/RcAKBqa9teADCc7Zs2rPr+bT3eD+RF5mEpuQDqor9AHmQVGISeAeWRa1KmPoG26UMwPPkB2qQHwWIyAQBlMduBlegPZfP6AjAM84O2qUGgy/RAYIF+AMORHUqnxqGbZB+GIztArvQvyIvMAqXQz6AMstws5xvoRZ8AaI6eCwBUzYPmIVMTW8di3+6JZd+3b/dETGwda3hFQJ1kHpaSC6Au+gvkQVaBQegZUB65JmXqE2ibPgTDkx+gTXoQLCYTAFAWsx1Yif5QNq8vAMMwP2ibGgS6TA8EFugHMBzZoXRqHLpJ9mE4sgPkSv+CvMgsUAr9DMogy81yvoFe9AmA5ui5AEDVPGgeMjW+ZSxuuHrPkguEfbsn4v1X74nxLS4OoCQyD0vJBVAX/QXyIKvAIPQMKI9ckzL1CbRNH4LhyQ/QJj0IFpMJACiL2Q6sRH8om9cXgGGYH7RNDQJdpgcCC/QDGI7sUDo1Dt0k+zAc2QFypX9BXmQWKIV+BmWQ5WY530Av+gRAc/RcAKBqa+bn5+fbXkTupqenY3x8PKampmL79u1tL4eOmTo8F5Mzc3Ho6LHYtmlDTGwdc2EwBDkmFzK/OlnuJrkojyyTCv1lNLJMU2S1XrJMabraM2SZknUp17Kcny7VJ/2TZZqkD9VHlssnP90gy6RKD+qfHHeDTJRPlqEMsky/zPa0yTJt0h+qk2KWvb4wuBSzDE0rYX7Ict5KqEGqIct0UYk9UJZhOKn1A1kmF6llJzWynD81jhx3k+yXR5abITvUTZapi/7VLFlmVDKbBlmG0aXQz2QZRifLzUrhfENdupTlOukTtE2W6ZKSe64sQxlkGfKxvu0FAKMZ31LOxQDQm8zDUnIB1EV/gTzIKjAIPQPKI9ekTH0CbdOHYHjyA7RJD4LFZAIAymK2AyvRH8rm9QVgGOYHbVODQJfpgcAC/QCGIzuUTo1DN8k+DEd2gFzpX5AXmQVKoZ9BGWS5Wc430Is+AdAcPRcAqMrathcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DUeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQsPVtLwBY3tThuZicmYvpo8di++YNMXHGWIxvGWt7WZA1uQJYSm+kK9Q6lEGWgVHpI1Am2eZ0agLImR4G+ZBXKJ+cQ7tkkOXs378/Jicn217GqiYmJuL8889vexlAwcxI6C75h+HIDpAL/QryIa9AV+h30B75g2bJHKRFJiEd8gj5k2MgQi+ALpBzQB+Assh0t3n9Adqh/0I3yT4AkDIPmocEnHrRML55Q4ytWxtv/7N747b7n/llmPt2T8QNV++J83ZsbnGlkK9HDx6J62+6Z+hcubini9R9+UbtjZCL5Wr9Zbsn4p3/5gdiTUTs1N8gC1XOLfscSFtdGbX/JTfmVX9kezF1oyaAvKXcw8wYWKyKvMoVpK2JuawPwMr6yaAMdc/+/fvj+c+/NI4cOdz2Ula1efOW+Md//LqHzQO1SPn+Uc7sKwbjfLVD/qlaV7IsO0Au9Kv+dWWGMZo660RegVL06pX6HbRnkPzZH8PoOTDzukPPzINMQjpKzqOZQI6GqduScwz0r99eYD5Cvh49eCSu/5N74rYHzHzoKn0A8rPa/tv1fLcN+/q7poN2yF45zF/oJnsvACB1a+bn5+fbXkTupqenY3x8PKampmL79u1tL4fMnH7R8JYfvzju3v9E3P7AgSUfu2/3RHz4mr0uDmogx2WbOjwXb/nU3Ysuzhf0kys39vIhy9VR9+UbtTfWSZap0mq1fuXFO2Pv+WfGPY8c1N9qIMtUqcq5ZZ8zGFmmaXVlNOX9bxNkOT/mVX+6lu1eWVY33asJ8mQus5KUe5gZs5Qsd1sVeZWrNMgyK2liLusD1ZDjMvWTwSfnjstQQfrN8l133RVXXHFFvPi6d8T2cy9oboEDmP7Ot+IrH3tX3HnnnXH55Ze3vRxolLlcv5TvH+XM3nwxX49Kk/wzKFl+muyQO3vs7tCv+pfjDJPl5tVZJ/LaXbJMaXr1ylL7nSyTg0Hyl+P+uAqyzKlGzUGpMy8HTWe5qz0zNzKZFzO5bCXn0UxYTJbzMEzdlpxjlpJlVtJvLzAf0yDLDGPq8Fy85Y/vXvRw6QUv2z0RHzHzGyfLNE0fqIcsU6fV9t9njK1zPV+h3LI87P0c13SULtUsy1453E9vRqpZprvsvYYjy1AGWYZ8rG17AdBlU4fnlmz+9+7asexD5iMibr1/MiZn5ppaHhRjcmZu2YvziN65Wi6nC5/3tpvuianDMkl51H03jNIbISer1frtDxyIvbt26G+Qgarmln0OpK3OjNr/khPzqn+y/Qx18zQ1AeQs1R5mxsBSo+ZVriB9dc9lfQBW1yuDjx+alaGO237uBXHW+Zck+Wf7uRe0fXqAgqV6/yhn9uaDcb7aI/9UqUtZlh0gF/pVf7o0wxhe3XUir0AJ+umV+h20p9/82R9DNTkw87pBz8yHTEI6Ss2jmUCOhq3bUnMMDKafXmA+Qt4ePzS77MOlIyJu+78/gwWUTR+AvPTafz9+aNb1fIcNcz/HNR20Q/bK4n46dJO9FwCQAw+ahxYtd9Ew+9SJVT/n0NFjdS4JijTdIzer5cqNPbpI3XfDKL0RctKr1hf23/obpK2quWWfA2mrM6P2v+TEvOqfbD9D3TxNTQA5S7WHmTGw1Kh5lStIX91zWR+A1fXK4NSRYzIEQCelev8oZ/bmg3G+2iP/VKlLWZYdIBf6VX+6NMMYXt11Iq9ACfrplfodtKff/NkfQzU5MPO6Qc/Mh0xCOkrNo5lAjoat21JzDAymn15gPkLeDh7p/TNYQNn0AchLr/13r0y7ni/bMPdzXNNBO2SvLO6nQzfZewEAOfCgeWjRchcNG9evHsttmzbUtRwo1vYeuVktV27s0UXqvhtG6Y2Qk161fur+W3+DdFU1t+xzIG11ZtT+l5yYV/2T7Weom6epCSBnqfYwMwaWGjWvcgXpq3su6wOwul4Z3DK2btX3yxAApUr1/lHO7M0H43y1R/6pUpeyLDtALvSr/nRphjG8uutEXoES9NMr9TtoT7/5sz+GanJg5nWDnpkPmYR0lJpHM4EcDVu3peYYGEw/vcB8hLyd0eNnrHr9DBaQP30A8tJr/90r067nyzbM/RzXdNAO2SuL++nQTfZeAEAOPGgeWrTcRcPdjxyMKy/euezH79s9ERNbx+peFhRnYutY7Ns9sez7euXKjT26SN13wyi9EXKyWq1fefHOuPuRgyf/rr9BuqqaW/Y5kLY6M2r/S07Mq/7J9jPUzdPUBJCzVHuYGQNLjZpXuYL01T2X9QFYXa8MnjG2ftXPlyEASpXq/aOc2ZsPxvlqj/xTpS5lWXaAXOhX/enSDGN4ddeJvAIl6KdX6nfQnn7zZ38M1eTAzOsGPTMfMgnpKDWPZgI5GrZuS80xMJh+eoH5CHk7Y2z9ir/H/sqLd/b8GSwgf/oA5KXX/vuMsfWu5ztsmPs5rumgHbJXFvfToZvsvQCAHHjQPLRouYuGj33pobj2ygvjqtO+OLdv90S8/+o9Mb7FTQQY1PiWsbjh6j1L8tZPrtzYo4vUfTeM0hshJyvV+pUX74xrr7wwPvalhyJCf4PUVTW37HMgbXVm1P6XnJhX/ZPtZ6ibp6kJIGep9jAzBpYaNa9yBemrey7rA7C6XhncsWWDDAHQSaneP8qZvflgnK/2yD9V6lKWZQfIhX7Vny7NMIZXd53IK1CCfnqlfgft6Td/9sdQTQ7MvG7QM/Mhk5COUvNoJpCjYeu21BwDg+mnF5iPkLcdWzbEr/z47iUPmb7y4p3xKz++O3Zs8XArKJ0+AHnptf/esWWD6/kOG+Z+jms6aIfslcX9dOgmey8AIAdr5ufn59teRO6mp6djfHw8pqamYvv27W0vh8w8evBIvO2me+LW+ydPvu0Vl54d7/w3PxBHj52IQ0ePxbZNG07+QCb1kONumDo8F5MzcwPnarmcLlzcn7tjc51LZkCyXB113x3D9sY6yTJ1WKj1g0fmYvbYifjygwfiY196KA7PHdffaiLL1KGKuWWfMxhZpml1ZzTF/W8TZDk/5tVgupLtXllWN8/oSk2QJ3OZXlLsYWbMUrJMxGh5las0yDK91DmX9YFqyHHZVsugDJWl3yzfddddccUVV8QrfvPGOOv8SxpcYf++t/++uOW918add94Zl19+edvLgUaZy81J8f5RzuwrFvP1qLTJP/2S5cVkh1zZY3ePftVbjjNMlpvXRJ3Ia/fIMqXpt1eW1u9kmZz0k78c98dVkGVOVVUOSpt5OWg6y13tmbmSyTyYyd1QYh7NhMVkOQ+j1G2JOWYpWaaXXr3AfEyDLDOs7xw8El/8xnfj7G0bY/apE7Fx/dp4/NBs/Nj3PyvOkeHGyTJt0AeqJ8vUqZ/9t+v5auSa5UFff9d0lC7VLMteeczfeqWaZbD3GowsQxlkGfLhQfMV0PQYlRsG7ZNjepHTPMhytdQ9bZFl6qa/NUOWSZk+0D9Zpg0yWj1ZzpMscLp+sqxuIH3mMrkyYxaTZaogV+2TZdqmD4xOjrtNhsrhQfNQBnOZnNlXPMPXo6AMsgxlsMeG5eU2w2S5HbnVCemTZUrUxV4py5RIlmWZbuagBG1kWa1AtcxkcmYmPEOW86FuWY0sUwV9pn2yzChkOB2yTFv0gWrJMnWT2WZ0KctqipKlnGXZg/6lnGUYVJf7vyxDGWQZ8rG+7QUAEeNburPhh1zJKV2k7oFS6W+APgBpk1F4miwwDHUDQF3MGKieXAH6AIxGhgCAqthXDMb5gjLIMgC5MsPohzoB6E2vhDLIMsgB/VMrACwwE8iRugXqps9A3mQY0AcgLzJL1dQUtEP2ALpJ/wcAmrK27QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdI0HzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAD/f/buP8yuur4X/Se/JskQkkCG3yaYmoCgBANaCwlUe+tjrfSo5XJuc+ujgvX0l4djPRwt19qCtiCnx2qrtj2eHsA+T8XblqKeHluvlUP54Y9zgHgQqzQRMAhBHCQzhCQzIZn7B51hJjN7z/6x9lrf9d2v1/PwPGT23jPftfb3/fl+13etvRcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULLsbjT/6KOPxpvf/OZYs2ZNLF++PM4666y4++67Gz7/tttuiwULFsz67/HHHy+x1QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA/WVx1A4r01FNPxZYtW+LVr351/N3f/V0cd9xxsWPHjjjmmGPmfe0DDzwQK1eunPr38ccf38um0idG9o3H8N7xGD1wMFYuXxJDRw3EqsGBqpsFyZIZoExqDqRDHiENsgj0MzUQ0iCL1IW+ChRNXYH0ySnkTcapE/0VAIpnfAWqoPZA+eQO6IYaQt3pwwBUzVhEv9HnoTH5gO7IEFAU9QTqQ14hD7IM9SO3wJHUBegPsk7K9E+gn6mBQC+pMQBAirK60fx1110Xa9eujRtuuGHqZ+vXr2/ptccff3ysXr26Ry2jHz22Z3+89+b74o4dw1M/u3DjUHzo4k1x8urlFbYM0iQzQJnUHEiHPEIaZBHoZ2ogpEEWqQt9FSiaugLpk1PIm4xTJ/orABTP+ApUQe2B8skd0A01hLrThwGomrGIfqPPQ2PyAd2RIaAo6gnUh7xCHmQZ6kdugSOpC9AfZJ2U6Z9AP1MDgV5SYwCAVC2sugFF+vznPx8vf/nL45JLLonjjz8+Nm/eHP/lv/yXll77spe9LE466aR4zWteE3fddVfT546NjcXo6OiM/2C6kX3jsw4AIiJu3zEcv3nzfTGyb7yiljFJjtMiM3RKlumEmpMeWe5f8pgXWa4vWWQ6Wabf5FoDZZm6yTWL3ZLl9OirdEKWaUZdqQ9Z7l9ymhdZ5kgyXj/9nGP9lZz0c5YhJzlk2fgKeWS5btQeekGWm5M76kKW06SG0K7UsqwPQ2dSyzLUWZVjkSxTBfOv4slyPuSjv8ly92SIqslxPtST/ibL9SKvNCLL9SLLNCLL6ZJb2iHL/UFdyJ8sEyHrOcg5y/on/STnLNMZNbCeZJm6UGOak2XIgyxDfWV1o/kHH3ww/uRP/iQ2btwYX/ziF+NXf/VX4/LLL49PfepTDV9z0kknxZ/+6Z/GzTffHDfffHOsXbs2XvWqV8W9997b8DXXXnttrFq1auq/tWvX9mJzqLHhveOzDgAm3b5jOIb39vdBQArkOC0yQ6dkmU6oOemR5f4lj3mR5fqSRaaTZfpNrjVQlqmbXLPYLVlOj75KJ2SZZtSV+pDl/iWneZFljiTj9dPPOdZfyUk/ZxlykkOWja+QR5brRu2hF2S5ObmjLmQ5TWoI7Uoty/owdCa1LEOdVTkWyTJVMP8qniznQz76myx3T4aomhznQz3pb7JcL/JKI7JcL7JMI7KcLrmlHbLcH9SF/MkyEbKeg5yzrH/ST3LOMp1RA+tJlqkLNaY5WYY8yDLUV1Y3mj98+HCcc845cc0118TmzZvj3/ybfxPveMc74k//9E8bvub000+PX/7lX45zzz03zj///Lj++uvj/PPPj4985CMNX3PllVfGyMjI1H+PPPJILzaHGhs9cLDp40/P8zi9J8dpkRk6Jct0Qs1Jjyz3L3nMiyzXlywynSzTb3KtgbJM3eSaxW7Jcnr0VTohyzSjrtSHLPcvOc2LLHMkGa+ffs6x/kpO+jnLkJMcsmx8hTyyXDdqD70gy83JHXUhy2lSQ2hXalnWh6EzqWUZ6qzKsUiWqYL5V/FkOR/y0d9kuXsyRNXkOB/qSX+T5XqRVxqR5XqRZRqR5XTJLe2Q5f6gLuRPlomQ9RzknGX9k36Sc5bpjBpYT7JMXagxzcky5EGWob4WV92AIp100klx5plnzvjZGWecETfffHNbv+fHf/zH484772z4+NKlS2Pp0qUdtZH+sHLZkqaPHz3P4/SeHKdFZuiULNMJNSc9sty/5DEvslxfssh0sky/ybUGyjJ1k2sWuyXL6dFX6YQs04y6Uh+y3L/kNC+yzJFkvH76Ocf6Kznp5yxDTnLIsvEV8shy3ag99IIsNyd31IUsp0kNoV2pZVkfhs6klmWosyrHIlmmCuZfxZPlfMhHf5Pl7skQVZPjfKgn/U2W60VeaUSW60WWaUSW0yW3tEOW+4O6kD9ZJkLWc5BzlvVP+knOWaYzamA9yTJ1ocY0J8uQB1mG+lpYdQOKtGXLlnjggQdm/Oyf//mf49RTT23r93zjG9+Ik046qcim0WeGVgzEhRuH5nzswo1DMbRioOQWQdpkBiiTmgPpkEdIgywC/UwNhDTIInWhrwJFU1cgfXIKeZNx6kR/BYDiGV+BKqg9UD65A7qhhlB3+jAAVTMW0W/0eWhMPqA7MgQURT2B+pBXyIMsQ/3ILXAkdQH6g6yTMv0T6GdqINBLagwAkLKsbjT/G7/xG/G1r30trrnmmti5c2d8+tOfjk9+8pPx67/+61PPufLKK+Mtb3nL1L8/+tGPxuc+97nYuXNn3H///fGud70rbr311hmvgXatGhyID128adaBwIUbh+K6izfFqkEHATCdzABlUnMgHfIIaZBFoJ+pgZAGWaQu9FWgaOoKpE9OIW8yTp3orwBQPOMrUAW1B8ond0A31BDqTh8GoGrGIvqNPg+NyQd0R4aAoqgnUB/yCnmQZagfuQWOpC5Af5B1UqZ/Av1MDQR6SY0BAFK2YGJiYqLKBnzgAx+IK664IgYHBwv5fX/7t38bV155ZezYsSPWr18f7373u+Md73jH1ONve9vb4uGHH47bbrstIiL+43/8j/HJT34yHn300RgcHIxNmzbFb//2b8erX/3qlv/m6OhorFq1KkZGRmLlypWFbAd5GNk3HsN7x+PpAwfj6GVLYmjFgAOARMlxGmSGbsky7VBz0iXL/Uce8yTL9SOLzEWW6Re510BZpi5yz2K3ZDkd+irdkGXmoq7Ujyz3HznNkywzScbrqx9zrL+So1azfO+998a5554br3nfDXHsutNLbGHrfrTrgfjS710a99xzT5xzzjlVNwdKVedx2fgKz6tzlutG7aGXZHluckfdyHJa1BA6lUqW9WHoTipZhjpLYSySZcqUQp/PlSzXn3wQIcvdkCFSIcf1p54QIct1Ia/MR5brQZaZjyynR27phCznTV3oH7Lc32Q9HzlmWf+kH+WYZTqjBtabLJM6NaY1sgx5kGWoj8VVN+Dqq6+OX/mVXynsRvMXXXRRXHTRRQ0fv/HGG2f8+z3veU+85z3vKeRvw5FWDZr0QztkBiiTmgPpkEdIgywC/UwNhDTIInWhrwJFU1cgfXIKeZNx6kR/BYDiGV+BKqg9UD65A7qhhlB3+jAAVTMW0W/0eWhMPqA7MgQURT2B+pBXyIMsQ/3ILXAkdQH6g6yTMv0T6GdqINBLagwAkKKFVTdgYmKi6iYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlKryG81HRCxYsKDqJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUZnHVDYiIOO200+a92fyPfvSjkloDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FtJ3Gj+6quvjlWrVlXdDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBSJHGj+V/4hV+I448/vupmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRiYdUNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOg3SdxofsGCBVU3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKA0i6tuwBve8Ib45V/+5Xmf9zd/8zcltAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg9yq/0fzq1aurbgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAqSq/0fwNN9xQdRMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASrWw6gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9Bs3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlc6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJK50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyRZX3QAAAAAAAAAAAAAAAMjBt7/97aqb0NDQ0FCsW7eu6mYAAAAAAAAAAAAAAAAAAAAAAAAAMI0bzQMAAAAAAAAAAAAAQBf2jzwZEQvizW9+c9VNaWj58sH4zne+7WbzAAAAAAAAAAAAAAAAAAAAAAAAAAlxo3kAAAAAAAAAAAAAAOjCwX1PR8REvOz/fm8ct/7FVTdnltHdD8fXr786hoeH3WgeAAAAAAAAAAAAAAAAAAAAAAAAICFuNA8AAAAAAAAAAAAAAAVYcfy6OHbd6VU3AwAAAAAAAAAAAAAAAAAAAAAAAICaWFh1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6jRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQsuxvNP/roo/HmN7851qxZE8uXL4+zzjor7r777qavue222+Kcc86JpUuXxoYNG+LGG28sp7EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAX8rqRvNPPfVUbNmyJZYsWRJ/93d/F//0T/8UH/7wh+OYY45p+JqHHnooXv/618erX/3q+MY3vhHvete74pd+6Zfii1/8YoktBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPrJ4qobUKTrrrsu1q5dGzfccMPUz9avX9/0NX/6p38a69evjw9/+MMREXHGGWfEnXfeGR/5yEfita99bU/bCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPSnrG40//nPfz5e+9rXxiWXXBL/+I//GKecckr82q/9WrzjHe9o+JqvfvWr8dM//dMzfvba17423vWudzV8zdjYWIyNjU39e3R0tOu2A+WSY8iDLEMeZBnyIMuQB1mGPMgy5EGWIQ+yDHmQZciDLEP9yTHkQZYhD7IMeZBlyIMsQx5kGfIgy5AHWYY8yDLkQZYhD7IM9SfHkAdZhjzIMuRBliEPsgx5kGXIgyxDHmQZ8iDLkAdZhjzIMtTXwqobUKQHH3ww/uRP/iQ2btwYX/ziF+NXf/VX4/LLL49PfepTDV/z+OOPxwknnDDjZyeccEKMjo7G/v3753zNtddeG6tWrZr6b+3atYVuB9B7cgx5kGXIgyxDHmQZ8iDLkAdZhjzIMuRBliEPsgx5kGWoPzmGPMgy5EGWIQ+yDHmQZciDLEMeZBnyIMuQB1mGPMgy5EGWof7kGPIgy5AHWYY8yDLkQZYhD7IMeZBlyIMsQx5kGfIgy5AHWYb6WjAxMTFRdSOKMjAwEC9/+cvjK1/5ytTPLr/88vhf/+t/xVe/+tU5X3PaaafFpZdeGldeeeXUz77whS/E61//+ti3b18sX7581mvGxsZibGxs6t+jo6Oxdu3aGBkZiZUrVxa4RUCvyDHkQZYhD7IMeZBlyIMsQx5kGfIgy5AHWYY8yDLkQZah/uQY8tBplu+9994499xz4zXvuyGOXXd6GU1t28Nf/2J8/fqrY+u7PhGnnLG56ubM8qNdD8SXfu/SuOeee+Kcc86pujnUnHEZ8iDLkAdZhjzIMuRBliEPsgx5kGXIgyxDHmQZ6k+OIQ+yDHmQZciDLEMeZBnyIMuQB1mGPMgy5EGWIQ+yDHmQZaivxVU3oEgnnXRSnHnmmTN+dsYZZ8TNN9/c8DUnnnhi/OAHP5jxsx/84AexcuXKOW8yHxGxdOnSWLp0afcNBiojx5AHWYY8yDLkQZYhD7IMeZBlyIMsQx5kGfIgy5AHWYb6k2PIgyxDHmQZ8iDLkAdZhjzIMuRBliEPsgx5kGXIgyxDHmQZ6k+OIQ+yDHmQZciDLEMeZBnyIMuQB1mGPMgy5EGWIQ+yDHmQZaivhVU3oEhbtmyJBx54YMbP/vmf/zlOPfXUhq8577zz4stf/vKMn33pS1+K8847rydtBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMjqRvO/8Ru/EV/72tfimmuuiZ07d8anP/3p+OQnPxm//uu/PvWcK6+8Mt7ylrdM/ftXfuVX4sEHH4z3vOc98Z3vfCf++I//OP7yL/8yfuM3fqOKTQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6QFY3mn/FK14Rt9xyS9x0003x0pe+ND74wQ/GRz/60fjFX/zFqefs3r07du3aNfXv9evXx3//7/89vvSlL8XZZ58dH/7wh+PP/uzP4rWvfW0VmwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0gcVVN6BoF110UVx00UUNH7/xxhtn/exVr3pVbN++vYetok5G9o3H8N7xGD1wMFYuXxJDRw3EqsGBqpsFtSA/kCbZBDqlfkAeZBmge2opoA4wnf4AeZBlSIMsAr2kxtAL+hUAdM44CuRGXYPuyRHQLXWEHOjHALTKmAHpkk9ypn9DOWQNaJe6AbPJBVAmNQfyIMtAp9QPSJNsQnMyAqROnQLKpOYAAKnL7kbz0I3H9uyP9958X9yxY3jqZxduHIoPXbwpTl69vMKWQfrkB9Ikm0Cn1A/IgywDdE8tBdQBptMfIA+yDGmQRaCX1Bh6Qb8CgM4ZR4HcqGvQPTkCuqWOkAP9GIBWGTMgXfJJzvRvKIesAe1SN2A2uQDKpOZAHmQZ6JT6AWmSTWhORoDUqVNAmdQcAKAOFlbdAEjFyL7xWRP4iIjbdwzHb958X4zsG6+oZZA++YE0ySbQKfUD8iDLAN1TSwF1gOn0B8iDLEMaZBHoJTWGXtCvAKBzxlEgN+oadE+OgG6pI+RAPwagVcYMSJd8kjP9G8oha0C71A2YTS6AMqk5kAdZBjqlfkCaZBOakxEgdeoUUCY1BwCoCzeah38xvHd81gR+0u07hmN4r0k8NCI/kCbZBDqlfkAeZBmge2opoA4wnf4AeZBlSIMsAr2kxtAL+hUAdM44CuRGXYPuyRHQLXWEHOjHALTKmAHpkk9ypn9DOWQNaJe6AbPJBVAmNQfyIMtAp9QPSJNsQnMyAqROnQLKpOYAAHXhRvPwL0YPHGz6+NPzPA79TH4gTbIJdEr9gDzIMkD31FJAHWA6/QHyIMuQBlkEekmNoRf0KwDonHEUyI26Bt2TI6Bb6gg50I8BaJUxA9Iln+RM/4ZyyBrQLnUDZpMLoExqDuRBloFOqR+QJtmE5mQESJ06BZRJzQEA6sKN5uFfrFy2pOnjR8/zOPQz+YE0ySbQKfUD8iDLAN1TSwF1gOn0B8iDLEMaZBHoJTWGXtCvAKBzxlEgN+oadE+OgG6pI+RAPwagVcYMSJd8kjP9G8oha0C71A2YTS6AMqk5kAdZBjqlfkCaZBOakxEgdeoUUCY1BwCoCzeah38xtGIgLtw4NOdjF24ciqEVAyW3COpDfiBNsgl0Sv2APMgyQPfUUkAdYDr9AfIgy5AGWQR6SY2hF/QrAOiccRTIjboG3ZMjoFvqCDnQjwFolTED0iWf5Ez/hnLIGtAudQNmkwugTGoO5EGWgU6pH5Am2YTmZARInToFlEnNAQDqwo3m4V+sGhyID128adZE/sKNQ3HdxZti1aBJPDQiP5Am2QQ6pX5AHmQZoHtqKaAOMJ3+AHmQZUiDLAK9pMbQC/oVQDl27doV9957b7L/7dq1q+pdVEvGUSA36hp0T46Abqkj5EA/BqBVxgxIl3ySM/0byiFrQLvUDZhNLoAyqTmQB1kGOqV+QJpkE5qTESB16hRQJjUHAKiLBRMTExNVN6LuRkdHY9WqVTEyMhIrV66sujl0aWTfeAzvHY+nDxyMo5ctiaEVAybwfUCOiyE/VE2W5yab1I0sp0P9oBuynA5ZphuyDM+pey2VZeheCnVAltORQn+gvmQ5HbJMN2S5OLJIlWQ5f2pM/qrIsX4FxWs1y/fee2+ce+658Zr33RDHrju9xBa27uGvfzG+fv3VsfVdn4hTzthcdXNm+dGuB+JLv3dp3HPPPXHOOedU3ZxZdu3aFS9+8Rmxf/++qpvS0PLlg/Gd73w71q1bV3VTktNKlo2jkD7Hyu1R10hVnbIsR9BYnbJcJXWE1DlehjwYl0mFMaM7skwvyWd5ZLl8+je9IMuzyRp1I8fVUzcoQm5Zlgv6VW5Zrgs1h6LJcjVkmaLJcv9QP/Imy/Ulm0wny7PJCHUky/1FncqXLJMiNad9sgx5kGWoj8VVNwBSs2rQpB06JT+QJtkEOqV+QB5kGaB7aimgDjCd/gB5kGVIgywCvaTG0Av6FUDvDA8Px/79++KVl/1OrDzphVU3Z5bR3Q/H16+/OoaHh91ovkPGUSA36hp0T46Abqkj5EA/BqBVxgxIl3ySM/0byiFrQLvUDZhNLoAyqTmQB1kGOqV+QJpkE5qTESB16hRQJjUHAEidG80DAAAAAAAAAAAAAACVW3nSC+PYdadX3QwAAAAAAAAAAAAAAAAAAAAAAACA0iysugEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/caN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABK5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVzo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkrnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDJ3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGRuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQssVVNwCKNrJvPIb3jsfogYOxcvmSGDpqIFYNDlTdLMia3AF0Rv0kBfohFEOWAIqntkJ15A/SI5f0C30dKIJaAuWRN3KgHwNAvRi7AdqjbkJ55A0okppCP9DPoT7kFaB31Fg6pe9A78kZQO+ptXRLH4L6kVugSGoK1I/cAnNRGyA/cg2QFnWZMulvAADFcaN5svLYnv3x3pvvizt2DE/97DVnHB9X/auXxIGDhx1EQBcaHYzPlbsLNw7Fhy7eFCevXl5hiwHS1qh+XnfxphgcWGQBlJ4b2Tcej48eiO8/tT8WLFgQ9+56Kq6/86F4+anHGMehTZ3MiZ3sAnJUZG2z3gDVST1/5lH0o9RzmSK1op561df1B+gvj+3ZH7/9ufvjxSetjM1rV8fukQPxxOCSWHfsYJxyzGDVzYOstDN2G49JVZ2Ot+QIANIbu43PQOp6XTfVQXheWfMUuYNipZqp1I59oBdS7uep1gY4Ull9NeW8AlTBZ6dIQad9x1wXWqdGkzo1nRykVmvlqn58fxvUTxW1X32HfFkjg/p59Kl98b0n98We/Qdj2ZJF8eXvPBEP7B6Nq9/wUmtukJF2x9rU1oiA7qWYa8cB8Dx56D8p1mXS1W2N0N8AAIrlRvNkYWTfeDzx9Fjs+tG+uHTL+jh77eq4/s6HIiLi//rxdfGem++Lu3Y+OfV8BxHQnrkOxi/YOBQfeMNL4u6Hn4p7vvfUjOffvmM4fvPm++Jj2zZbGASSV8VJjZF947PqakTE3d97Kr73o33xiVt3xh07LYDSO4/t2R/v/ev7ZvSzLRvWxB9t2xyX37R9znHcCUCYW6Oa3mxO3Gh+/cE3vDSOGVwiW0AttXsiv9ncopPaChSjyPz14hjCRUP0o9zGxTLWF9SKtDXqA73q6/oD1EcRY8TIvvH47c/dH7/w4+vihrseio/funPqsa0b1sSHfn5TvOBYN5uHbjW6Tmvf+KE5x27jMamaaw46OLAoNq1dHQ8PPxOPj+yPVYMDSZwXlSMA6P1aqS8yAnLzg9ED8fDwM7Htx9fFpVvWx727norr73yosLqpDsJz2l0r64bcQbGKyFQvroHI7ToRmG4yMyP7x2Ps2cNx9trVcc/3nop944ciIo1+brylCp2MJ2X1VeMSwExF3rgoItRYIqL9uUCn47O5LrTOPLg53ztSPTWdKhSd/dRqrVylq93PIvr+NkhXGbV/es1YtXxJDCxaGFfe8k31HTLU6WfCzPugOt//0b5479/MvEfElg1r4tIt6+N3Pnd//KdLzm5rLmCNCtLUyXdRNjq+/8d//mG8/NRjYu/Ys3IONdKr4/9uxn7HAaSoqvmsPPSf1M7JkbZuv1t+xdLF8dufu19/AwAokBvNU3tzHWhM3iTz/kdH4oa7HppxAjHCQQS0o9Hizx07huO3Pnt/vP6sk6ZuSjv5hQ4Rz+VseO+4jAFJq+qkxvDe8Vl1NSLisq3r42O37jB3oaemxvadM/vgZL+7bOv6+PitO2eM404AQmONanrE3HPiZvPr9332m3HRppPjJ087TraAWmn3wpH55hbt1lagOEXlrxfHEC5So1/lNC6Wsb6gVqStWR84cPBQ4X1df4D6KGqMGN47Hi8+aeWc14ncufPJuPKWb8bHZR+60uw6rcnrRqaP3cZjUnbk8dbgwKL4o22b44a7HoqP37pz6udVnxeVIwB4Ti/XSov6IiPjM5CKx/bsj/f+9f+OO474MsbJ4/du66Y6CM9pd62sG3IHxSoiU726BiKn60RgulbGzYhq+7nxlip0Mp6U2VeNSwDPK/rm3h94w0vjnu89NeffUmP7RydzgU7GZ3NdaI95cGO+d6R6ajpV6EX2U6q1cpWuTj6L6PvbIF29rv1H1ox3/tSG2L7rKfUAMtXJZ8LM+6A6I/vG48ojbjIf8fz3325ed0xbcwFrVJCmTsbauY4Tpo/rV/7NN6d+LudQD704/u9m7HccQIqqms/KQ39K6ZwcaSviu+Uv2DgUbz3/hfGV7z454951k79HfwMAaN/CqhsA3Wh0oHHXzifjhrseiq0bhmadQJw0eRABNNds8eeunU/GCSuXxQ13PRSXbV0/6/GnDxzsdfMAOjbfguXIvt7NE0Yb1MfNa1ebu9Bz843tm9eujojnx/EqswJ10KimTzpyTjxfBo8/eqlsAbXTyoUjk1qZW7RbW4HiFJG/Xh1DtFNrICe5jItlrS+oFemarw88e3ii6es76ev6A9RDkWPE6IGDTc+13CH70JX5rtOaft3I5NhtPCZlRx5vXbZ1fdxw10MNv0isqnM3cgQAz+nVWmknx6XGZyBlU3Vtji9jnH783s05JnUQOlsr64bcQbG6zVQvr4HI5ToRmK6dcTOiun5uvKVsnY4nZfZV4xLA8zqpv81q/fs/d/+c39EySY3NX6dzgU7GZ3NdaI958Nx870ga1HTK1qvsp1Rr5SpNnX4W0fe3Qbp6WfvnqhnqAeStk8+EmfdBdYb3js+6rnnS5PfftjoXsEYF6epkrJ3rOCHVz3oDrSn6+L/bsd9xAKmpcj4rD/0ppXNypK2I75a/Y8dww3vXRehvAACdWFx1A6AbTzw91vQGff/21cXfkAByN3kBzOiBg7Fy+ZIY2d98UW/s2cNx184n47Itsw/Wj162pFfNBIiI2TVr6KiBWDU40NJrW1mwbPV3tWtlg/o49uzhpq8zd6EI853YmeyHA4sXxnd/uDcOH56oLCtQB41q+qRlA4tiZN/zOWklg7IF1E07F460Mg+fr7Zab4DeKSJ/vTreLuoitW7WEmAuve5TuYyLZa3FuaA1XfP1gcPz3Gi+lb7e7jku/QHSMF992D16ICKipXFi5bIlsXvkQNPnyD50rllej7xu5Kilz12WaH5GKuY6djvyeGvz2tXx8Vt3zvn6Ks/dyBEAPKedtdJ21m07Wbs0PgNHSukcZKvH792cY1IHqaOic9rOWlkR53TlDtozX+a7zVQvr4HI5ToRqpHSvHS6dsbNiOr6ufGWsnU6npTZV41L1Uu1tkM/Kvrm3nfsGI63nf/Chr9Pjc1fO3OB6ePB8oFFTX/vXH3HXJd+1sl8yjx4blV+Rw/PU9OZSy+PHXuV/ZRqrVylqdPPIvr+NqhGK2NRL2v/XDVDPYD8NFsja+UzYeZ9UJ1Wvnuz1blAkd9LABSrk7F2ruOEVD/rDXVUxXVHRR//d7tG7TiA1FR5zrXoPLi2sR5SOidH2or6bvlG966LmLu/qSUAAM1ldaP5q666Kq6++uoZPzv99NPjO9/5zpzPv/HGG+PSSy+d8bOlS5fGgQPNv3SaNDz61L448Oyh+ONfPCeWLVkU9+56Kq6/86HYN35o6jmDS9v/cAz0s8f27I/33nzfjIPyT//SK5u+ZnDJonjnT22I445eOiOPD+wejaEVDsCB7jVa4JurZl24cSg+dPGmOHn18nl/b5Un+YZWDMSFG4fi9iMWQZcuXtj0deYuFGGuEzuDA4visq3rY/Pa1XHUwOL49DteGbtHDsS/vWl7fGzb5qa/zwlx+l2jmh4RsWXDmvjb+3bHfY/smRqf5ju5OjkWTM+Wk11ALxRZW9q5cKSVefhxRy+NrRvWxJ07n5z1+IUbh6w3QA81m9u0mr/JnE8/zhh79vDUuuEzY50dQxRxkVq3awlwpDL6VBG5TEFZa3HNasXgwKI4ZnAgvvvEXsdXFZivD+wbP9RVXz8yj4MDi+Kvf+W8+K9vffmMcWj6+WTrrZCGZvVhcGBR7B8/FN96bDQGFi+MY44aaFq7h1YMxA9GfbgBija5jvTkM+Nx/dteMec1WhHPfwnTlg1r4u7vPRVHLV3sA0ckodGx27U/f9aMOWijLxKbXOMYe/ZQbN/1VOnHEnIEAM9pda203XXbTtYujx0csO4ETEntHGQrX8bY7Tmmfj1OcR1fffUip61kbfLvFHFOt+zc6e/UWSuZX7V8SbzzpzbMuq5pcl4/X6Z6eQ1ELteJUL7U5qXTtTpuRlTbzzsZb42ZdKOT8WRk33gsX7Ko6fdrFDk3NC5VK+XaDnVQ9Dg931xhrpt/z1frG1Fj8zW9Xy5dvDDe+VMb5rwOK+L5ucCR48E7f2pD25+769c1Xeh0PmUePDc34ihXo7mMms6Ren3s2KvsD60YiGt//qw4/uils9bpX37qMaXWWrlKU6efRTzy+9tmfdZ9YFGM7HNDOihSq2NRL+fZc9WM+b7PceXyJc7zQI3Mt0bW6DNhk54+cDBWLlvS8Htwrr/zIfM+6KH5jruOHVwSK5Ytbum7YOY7Vnjwh8/ENf/9286pQo80m0N3ssYy13FCK+M6ML+qrjsq+vi/2zVq67/ds35SrCrPuRaZh7JqjP7XPdc/MGm+PBX53fJzzenn6m+ukwYAmF9WN5qPiHjJS14S//AP/zD178WLm2/iypUr44EHHpj694IFC3rWNorz/R/ti/f+zX1x17QPvWzZsCb+aNvmuPym7TM+QOOmVNCakX3jsw6iIyK+8uCTDXP0Uy8+LlYfNRDbdz0VH79159TPt25YE9e86SwLbUDXGi3wXfOms+Kq//atWTXr9h3D8Zs33xcf27Z53hpU5Um+VYMD8aGLN8Vv3nzfjMX1J54eiws2Ds3arghzF4pz5ImdwYFF8UfbNscNdz00YzyfnF8vmucYyQlx+l2jmr5lw5q4dMv6qWPUyfFpvhvTb39kT0Q8ny0nu4BeKLq2tHPhyHzz8KOWLo7f+fy34m1b1sdExIz1P+sN0HuN5jYXbhyK6y7e1FL+Jj9c1+g44/885wUdta3bi9QarX+2s5YA05XVp4rIZQrKWotrVCsGBxbF9W97RfzWZ++PO3Y6vqrCfH1g1fIlHff1I/M4OQ5d84Vvzzi/Nf18ctlfOgQ01qg+TGb5D/6/B+KOaVluVrtXDQ7EqWsGXScCBZprHanRNVpLFy+csTb+d6ceE79/ydk+cESlmh27XfX5b8U1bzor/p9bvhm37xie84vEGq1xlHks4YN7APCcVtZKO1m3bXft8rE9+2etM1p3gv6V4jnI+era6uVLuj7H1I/HKa7jq69e5XS+rC1dvLDQc7pl5k5/p85azfzAooWzPg85Oa//f//nrnkz1ctrIHK5ToRypTgvna6VcTOi+n7e7nhrzKRbnaxLzXfutui5oXGpOqnXdkhdL8bp+T4Xeu+uPXHiymVtffnqC45ZPut3qrH5auc6rIjn5gJzjQfX3/lQ/NG2zRERM66TbNZ3+nFNF7qZT5kHz82NOMrTbC6jpjNdGceOvcr+M+OH4gv37Z51/c31b3tFvPDYwVJrrVylqdPPIv5g9EBcsGEo7tg5nMR14JC7dsaiXs6z56oZ2x/ZE1s2rJnxnTWTXnPG8TGwaGG886btzvNADbSyRjbXZ8KmO3rZkhhaMRDXv+0V8bFbd8y6XuT6t73CvA96qNlx1//x4uPipNXL44q/+t8tjcutXIPinCr0xnznYDtZY5nrOKGVcR1orsrrjoo+/u92jdr6b3dcJ1u8Ks+5FpWHsmqM/lcM1z8Q0Vqeivxu+dXLZz4+V39znTQAQGuyu9H84sWL48QTT2z5+QsWLGjr+VRvZN94XHnETeYjnr/p1GVb18fHb90ZF2wcitXLlsSHfn7T1JfBTnLQCrMN7x2f88bGkxfQLFiwYNYH1t7106fFdX//nVl5vHPnk/Fbn73fwTfQlWYLfFfe8s04e+3q+IdvPzHrdbfvGI7hvePz1p+qT/KdvHp5fGzb5hjeOx5PHzg4dQHiT552nAV3eurIEzuXbV0fN9z1UOP59Zb1DS+Yd0IcnjNZ03ePHIgHh5+JpYsXxvZH9sz4cofJ8elFx6+Y98b0k9lysgvohV7UlnYuHJlvHj6waGH8w7efiK9898m4bOv6uGzL+hh79vBUbR0/dLjNLQba1eh4tdXaMLRiIN5/0ZkNjzN++3OdrRt2e5Fao/XPiNbXEmC6MvtUt7lMQVlrcY1qxfsvOjM+cevOGV8+E+H4qkyt9IFVgwMd9fUj8zjfetf7LzozXnXacd5zSESj+tAoy/PV7lOOGYwP/fymuPKWb866sN25FmhPo3WkI6/Rioi4YMOaOO7opbF53TFTa+O37xiOZ8ae9YEjKtXs2O1L334irvzZM6bmoIcnJuKCjUMtzS3LPJbwwT0AeN58a6WdrNu2s3Y5NUfeOfcc2boT9J8Uz0E2q2sXbByKFx2/Ik5Yuayrv9Fvxymu46u3XuV0vqxtOG5FoX2jrNzp79RdK5mPiLjylm/OeT55QURLmer1NRA5XCdCuVKcl04337i57tjB+PK7f7Lyft7OeGvMpAgdrUs1OXd73yN7enJMZlyqRuq1HVLWq3F61eBAfOANL433fXbm8cT0z4X++AuPbeszVCeuXKbG9ol2rsOKeH4uMNd4sG/8UFx+0/a4bOv6+K3XnxkHDh6at+/025ouRHQ/nzIPnq3q7+jpF63MZdR0JpVx7NiL7De7/mbRggXxsX+5YWhZzJXS1M5nEad/18/9j43EpVtfGIdjIjavO6by68Ahd+2ORb2aZ89VM6a+Qzee+27cSRduHIqr/tVL4jf/5pvO80BNtLJGtmjhglmfCZs0fd76iVt3znm9yMIFC+LjJc9DoZ80Ou66YONQXP2vXjrrOwEiGo/LzY4VtmxYE9sf2TP1eudUoTitnoPtZI3l5NXL44NveGns/OHeGHv2cBx39NK4YMOauMN3YEPHqr7uqMjj/27XqK3/ds51sr1R5TnXovJQRo3R/4rl+of+1mqeivxu+RcdvyK+/O6fbNrfqp6vAADURXY3mt+xY0ecfPLJsWzZsjjvvPPi2muvjXXr1jV8/t69e+PUU0+Nw4cPxznnnBPXXHNNvOQlLymxxbRreO/4nAv8Ec+dnL9sy/q4YONQ/MeLN8VJq5dHRDhohRaMHjg4588nL6D53K9vicMTE/H9p/ZHRMT2R/bE8N7xOW86G+HgG+heswW+O3YMx9vOf2HD1z7doKZNl8JJvsmF05k/M3eh96af2Bl79tCMD59Pd9fOJ+PtW38sLt2yPhYuWOCmPNDEqsGBeHD4mfi1v7i34XMmx6fJDD4+emDG/Prym7bHy089Zipb331ir5NdQOF6dSK91QtH5puHP/H0gYh4bj1irjnKT7/4+LbbBrRvruPVdl57zrrVceXffHPOx8uoNXNptP45qZW1BJiu7D7VTS5TUOZa3Fy14vDERE/qEq1rtQ900tePzOPmtaubrndd9XMvmTqPDFSvUX0478fWNMzyfLX7BccOxseda4GuNVtHmrxGK+K5L19465b18Quf/FrsGz8043mj+w/Gj/3LTbVkkirMd+w22Ucn++N1R4xJzeaWZR5L+OAeADyv2fpRJ+u27axdzjdHtu4E/SfFc5Dz1bVubzI/qZ+OU3xpRb31KqfzZa0Xc4Iycqe/U3etZr5RP79z55Nx4ODhef9OGddA1P06EcqV4rx0uirGzU61Ot4aMylCketS73/9mfGOret71u+MS+VLvbZDyno5To/sH4/N646Jy7asj7FnD8fSxQunPhe6b/zQrGy2c+0seWv1OqyImf3jweFn5nzN5OfufvrFx8fL1h3TUhv6aU0XIoqZT5kHz5TCd/T0g1bmMi863nW5PKeMY8deZD/FtTVzpfS0czx15Hf9DA4sisu2ro/XvuSEJK4Dh5x1es1m0dmbq2bsGz8U/+//3BXXXbwpDhw8PKO+pzgWAY01+67s6WtkR34mLGLm3OG7T+yNO3Y2/m5b2YfeanTc1e643OhYYcuGNXHplvVx+U3bp37mnCoUp9WsdrrG8qN94/H2T90dEc8d1//Rts1xOGLGvS+sRUPrUrjuqKjj/yLWqK3/dsb6SW9Ufc61iDyUUWP0v+K5/qF/tZOnor5b/oSVy+KElc3blcJ8BQCgDrK60fwrX/nKuPHGG+P000+P3bt3x9VXXx0XXHBB3H///XH00UfPev7pp58e119/fWzatClGRkbiP/2n/xTnn39+fOtb34oXvOAFDf/O2NhYjI2NTf17dHS0J9vD3Oab7B+1dHH87hteOuOD5Q5aOZIcz7Zy2ZKGj+0bPxQLFyyIjSccHSeuXBbDe8djzVEDcfDwRNPf6eCbXpPlvM035o892/jLm45uUtOmS/UkX7/NXWS5GpP9bPuup5o+78DBQ3HFX/3v+LvLL4hnD08klRXSIsvN59QRM8enyQxOn1+/6WWnzMiWk11UQZbz18va0uo8ttk8/MibkR2p1bl+v5NlqjZflsuoNUdqZ66WCllOWx37VNXKXIs7slbMt/7Ry+MrWX5er/rAkXlstnYcEfHM2LNd/T36kyz31mR92D1yIB4cfiaWLl4Yh7o8F91v51pojSy3Z751pKOXLYm//3cXxN9+c/fUF2bP9ZwImaQ47ea43WO3I+esKV0bJUfkxJgMeUgxy52u27a6bjXfHNm6E3WUYpbrJNXzRWWdk+mX45Q6XMcny431MqdVfBah17mrQ3/PmSx3r5XMF9XPU/08EtWrIsupzkunq1NmWhlvjZn5KyvLRa1LHTh4KMk80bk61PY6MMfuT70cp1csXdLwJoURc2ezTvOgVOWQ5fn65arlS+Kzv3b+rP5R9HjQL2u6pKnsLJtP9YZxrfdanctUUdNzGJNzU1atKzr7qa6t9ctcqU5ZbrXvHZmFyZvOnnlS8ztYWMelzlLJckrz7nbGqweHn2n6u9QHypJKllPXaq2Zrw6kOg+l/mS5dXMdd3UyLs/1vQTbH9kz63PO1gBphyw318442skay/Txft/4obj8pu1x2db1cdmW9TH27OH4saGj4qRVy/pi7YbuyPJzUjpeL0IRa9T9sv5bpCqPoXLPctXnXLvNQxk1xjF8HnLPcl20m6civlu+FbnNV3Imy5AHWYb6yupG86973eum/n/Tpk3xyle+Mk499dT4y7/8y3j7298+6/nnnXdenHfeeVP/Pv/88+OMM86I//yf/3N88IMfbPh3rr322rj66quLbXwXRvaNx/De8Rg9cDBWLl8SQ0eVv1BVZhvmm+wfPjwRqwdN+GmukxynkLVeGloxEBduHIrbdwzPeuzCjUMxtOK5bZ08sB/ZNx67Rw7EH//iObFsyaK4d9dTcf2dDzmhTqlSG5NprJMaOt+Yv3r53I9Pr1mtcJJvpirGu5SzXMX+KPtvzpe1pYsXxstPPSZWDy6RFZrqNss5zLeHVgzEa844Pk4/aWVsXrs6xp49PDVXfmD36JzjU7NxyMkuqpDauJxSbUipLd1IpbY0qn+trk/QXGpZ7rX58plLfusklVozXR3rS79luW6a9anXnHF8rFi2OL77xF61J+aowysG4kXHryi1DVXWpaqynNr4d2R71g8dVVh7jszj0sULmz7f8TSdSHlcLjPvvfxbk7/nmi98O27fMRz/9a0vb/p8WaYTqWS5qnG63b873xxqzVEDMbRiIO57ZM+cN5lP9ViLems3x52sB0xfu/zuE3ub/v7J8ejIfK1YujieGXs2RvanMR+H1KQyJgPdSXHdq9Wxv9Hv6PaaRseq1FG/jMu9OhZP+Ryk66OL0279dy12Wnqd07Kz1uv+1el8J7Vzk3Xl847dKyLz7czrO6kB3rP8VTEuz9X3BwcWxWVb18f5P7YmRvaPx3d/uLfy/lbGuFlWxqwR5K+oLLfSJztdl5rM+ea1q+Pg4Ykkck5xUl5zqBNz7DwUfb1LN+N0p9m0VtedIsblqrM9X788ZnDu6+uLHA+q3gdQ9vGy+VT7Wq0TxrXGiqi1Ka85pHI+ypj2vDI/31hk9lPu5/2gbsfK0//O6IGDEQtm/7xRFnzGkJylkuXU5t3Tvyd3eO94PDj8TKxcPj5rW41FpKKbOXbq8+Ii29dOrfF9flQhlXG5St1sT6fZPPJ7CY5kDZB2Fbn2VYeMp3QONmL2eL9v/FB8/NadEfFcnj+2bXNy+5A0pbKOXZRO60lqx+tFaDTXr0PNras6fmdfnfpDnc+59rLGTL6Hzx6eiOvf9oo5738V4Ri+LnIbl+umjDx1U8tynK/kSpYhD7IM9bVgYmJioupG9NIrXvGK+Omf/um49tprW3r+JZdcEosXL46bbrqp4XPGxsZibGxs6t+jo6Oxdu3aGBkZiZUrV3bd5nY8tmd/vPfm++KOaRPfCzcOxYcu3hQnr16eZRtG9o3Hv71p+5yT/a0b1sR1F2+KU44ZLPzvkpd2c5xC1srw2J798Zs33zcjXxduHIrrLt4UJ03bzrn2x5YNa+LSLevj8pu2x77xQ07AUYqUxmQa67SGNhvzL9w4FNf+/Flx5d98c96aReuqGu9SzXIV+6OKv9ksa1s2rImLNp0crzrtOLliXt1kOaf59q4nn4krb/lm3LXzyamfbd2wJq5501mxbs1Rbf2u+cZC8216IaVxOaXakFJbulWH2tLq+gSNpZTlXpsvnznlt05SrTV1qy/9lOW6mqtPveaM4+P9F50Z7/vs/WpPpDOPqrIuVZHlVPZ7me2Znsd3/tSG2L7rqRnH5tP/bgpzXuon1XG5zLyX9bcm87xp7WpZpnApZLmqcbqTv9vqHKpux1rUWyc57qaPtpKDZ8YPzcrX1g1r4m1HXEfVj8eE0EinY/K9994b5557brzmfTfEsetOL6OpbXv461+Mr19/dWx91yfilDM2V92cWX6064H40u9dGvfcc0+cc845VTdnltTf49T3X9lSXfeab+zvZk6e6vkP6EYKx8q91utjccfF+Wun/rsWO0255LSM/tXJfCe1c5N15vOOxZgv81XO671n/aGqcXl63x8cWBR/tG1z3HDXQzPOt+be38rMmDWC/BWR5SL75JF9rl9z3m9yOZapkjl2/fXyepdu2iSb5ep2XE4h2930yyL6XAr7AKo6v6xmt0ad6F5R+zDlNYcUzkfpq7PV8fONKffzflC3Y+VW//5cWbj258+KL3xz94zXTv8d+hp1llKWU5t3t7KtxiJS0ekcu+rxeT69aF8RtUb26ZWUxuUqdLs93WYztbkI9VXU2lcdMp7iOdjJdskz3UphHbso3daTfshUHWpundXtO/v0h3L1osa0cv+ryb/jGL4echqX66YueeqH+UoOZBnyIMtQX1nfaH7v3r2xbt26uOqqq+Lyyy+f9/mHDh2Kl7zkJfGzP/uz8Qd/8Act/53R0dFYtWpV6UVvZN94vPOm7ZVevFZVG+aa7F+wcSiufdNZ8YJj3WSe9jXLcQpZK9PIvvEY3jseTx84GEcvWxJDKwZmbF+z/bFlw5rYvO6YuO+RPQ6+qURVYzKNdVtDW/mCp2Y1i9alNN6lkOUq9keV70Gj+fUH3/DSOGZwiVzRkVaznFL96VYvtsXJLqrWz+teKbalKHWoLeb6xUphjt0L8+Xz9y85O674q/+dVX7rJNVaU+f6kmuW6+7IPrVi2WK151+kNo9KpS71Osup7fcy2zOZx2fGDsbK5QPx25+7v/L3m3ylMC6Xna8ya8vIvvF48pnxmIiIqz7/rVkf4pFlilJ2lqsap7v5u63Ooep8rEW9tXM+qtM+2iwHgwOL5r2O6uO37px6TT8dE0I7Ws1y6jchj3Cj+W6l/h6nvv+qltK6V6Oxv4g5eSrrjNArKax7FamsY3HHxflrpf6ndI4mtywXoe45LbN/tTPfSanf58jnHTs3X+armNd7z/pXmePyZN8/PDERH/hv34o7pt18elKu/a2KjFkj6C/tZrnXny96509tiO27nppxk/lufz9pqvuxTGrMseuljOtdummbbFannXE5pWx30y+76XMp7QOYrqzjZTV7fupE94reh3VZc+iX67DroI6fb6xLP+8HKR8rt/v35xr3nxk/pK/RF6rOcirz7na21VhEilqZY1c9Ps+nl+0rotbIPmWoelwuU1Hb0202U5mLkJdO1r7qkPGUz8FOtk+eKVJdP1dRVD3JOVN1qLk5SOUYar4s6w/VKLLGtHL/q4/futMxfM3VdVyum7rlKef5Sq5kGfIgy1Afi6tuQJGuuOKK+Lmf+7k49dRT47HHHovf+Z3fiUWLFsW2bdsiIuItb3lLnHLKKXHttddGRMQHPvCB+Imf+InYsGFD7NmzJ37/938/vve978Uv/dIvVbkZLRveOz7nxDwi4vYdwzG8d7znk9+q2nDy6uXxsW2bTfYpRQpZK9OqweZZarY/7tr5ZLz/9WfGO7auz2qfAJ3rtobON+bPV7NoXb+Nd/OpYn9U+R6YX1OlnOpPL7ZFPulXKdWGlNpSlDrUFnN9WjFfPp96Jr/81kmqtUZ9oWhH9qnvPrFX7fkXqc2jUq1LRUttv5fZniPz2A/vN/2tzHyVXVum5/njskxGqhqnu/m7rc6hHGuRum76aLMcNDsGvGvnk3HZlvVT/+63Y0IAKFo789pGY38Rc/J+WWeEXJR1LO64OH+t1P/UztEwU91zWmb/ame+o99Xx75vbr7MVzGv955Rhsm+/90n9s55k/mIfPtbFRmzRkAzvf580dizh+Ljt+4s9PeTprofy9SJ+Vp6yrjepVOyWR8pZbubftlNn0tpH0AV1Oz5qRPdK3ofWnOYm77aWB0/36if10PVuWv378817q8a9BlDKCPLqcy729lWYxF1VfX4PJ9etq+IWiP7VC31DLerqO3pNpupzEWgDhlP+RxshDzDpKLqSc6ZqkPNzUFdjqH0h2oUWWPmu//V+372jHjTy05Jsv9BauqWp5znKwAARcjqRvPf//73Y9u2bfHkk0/GcccdF1u3bo2vfe1rcdxxx0VExK5du2LhwoVTz3/qqafiHe94Rzz++ONxzDHHxLnnnhtf+cpX4swzz6xqE9oyeuBg08dH9h+M7z6xN0YPHIyVy5fE0FHFT47na8PT8zzeDZN9ytLrfj6ybzyG9473NKtFmm9/HDh4KOn2A+VqVjMGBxbF4YmJeecrxvxyVDmvS1G7+6OI8bzq90DWqEpZfb+MeXevtkU+6Uft5KnX+a56jO4VtYVeS2HsHT3wbNPH65rfOlFr+kfd1rl7Kde5QydS3Bc516XJHD75zHjT55W9351Phu40G2PLzJcsQzGqylK3f1cOoXEO5svXUUsXxzt/akNcf+dDsW/8UF8dEwJA0YqYTxc1JzdHhvpI8VzFXJxrq4f56n9d+hv1VHb/anW+c2hiIv7rW18eY88ejmVLFsW9u56aWgfpRbt4XlU1J6cxq+x5vXGCMpXR31KrB1VlzBoB003PxbOHJ5o+t9vPF23f9VRPfj/0s1Tma6mNsVVyvQtFSCXbk6b3ydEDByMWzP550VLbB0B61Inu9WIfzjeXqdO8sai26qutq8u+MmdPX9XfB+RaLyhG1VkuU7vbqj5QR6nP9eZr3zNjByuvF7JPlVK4n0SRiqxJskkOqvge63Y5BwuzVT0/nUvq8/4U2EflqUPt1x/qb773cPzZw3HmyatKag11kuI4XjV5AgDIS1Y3mv/MZz7T9PHbbrttxr8/8pGPxEc+8pEetqi3Vi5b0vTxAwcPxc//yVem/n3hxqH40MWb4uTVy0trw9HzPA510Mt+/tie/fHem++LO3YMT/2sF1ktktwD7WhUMwYHFsUfbdscH/hv34o7dj459fPUa2DO1PeZ2tkfRY3n3gP6VRl9v6x5txxDcVrNUxn5lm1oXypj78plzU+ByC8Uo47r3L1k7vA8+6I803P4X9/68qbPLXu/6wfQufnG2DLzJctQjKqyJMPQO/Pl65mxZ2P7rqfij7Ztjstv2i5vANCFIua15sbQf+qQe+fa8lGH/kZ9pdi/HtuzPz54xOdBtmxYM7UOsm/8kH7fQ1X0CWNWd1LMMfnqdX9LsR7IGFU7Mhe9voZLn4fipZCrFMfYKqXwnlB/qfWjKnKe2j4A0qNOdK/sfVineWORbdVXW2dfUZSqvw9o1XJ9GYpQdZbLnJ8YA+kHqffzZu0bHFgUK5cPxDtv2l55vYCqpHA/iSKlXpOgbFV8j3Uv2wj9IJXj2SPJ6vzsI6YbHFjU9HH9IX0yTSdSHcerJk8AAHlZWHUD6NzQioG4cOPQnI9t3bAmvvLgkzN+dvuO4fjNm++LkX3jpbThwo1DMbRioLC/BVXpVT8f2Tc+a+EhojdZLZLcA+1oVDMu27o+brjroRlfKhaRfg3Mmfo+U6v7o8jx3HtAv+p13y9z3i3HUJxW8lRWvmUb2pPS2HvMUfILvVbXde5eMnd4nn1RjiNzuP2RPbFlw5o5n1vFftcPoDOtjLFl5kuWoRgrli2OrQ3G6a0b1sSKZYt78ndlGHqnWb62bFgT2x/ZE3ftfDJuuOuheP9FZ8obAHShiPm0uTH0n9Rz71xbXlLvb9Rbav1rqn4d8XmQyXWQy7au1+97rOw+YczqXmo5Jm+97G+p1gMZo0pz5aLX13Dp81C8qnOV6hhbparfE/KQUj+qKucp7QMgTepE98rch3WaNxbdVn21dfYVRan6+4COWrpYX4YCVJ3lMucnxkD6Qer9vFn73n/RmfH+z96fRL2AqqRwP4kipV6ToGxVfI91r9oI/SCl49kjyer87CMmjewbj3t3pfWde7RPpmlXyuN41eQJACAvbjRfY6sGB+JDF2+aNUG/YONQvG3L+rj+zodmveb2HcMxvLe4A5pGbbhw41Bcd/GmWDXoAIH661U/H947PmvhYVLRWS2S3APtaFQzzv+xNXHXEV8qNinlGpgz9X2mVvdHkeO594B+1eu+X+a8W46hOK3kqax8yza0J6Wx94SVy+QXeqyu69y9ZO7wPPuiHEfm8Po7H4pLt6yfdeF7VftdP4DOtDLGlpkvWYZiPDP2bLxtjnF6y4Y18bYt6+OZsWd78ndlGHqnUb62bFgTl067hvOunU/GOetWyxsAdKGI+bS5MfSf1HPvXFteUu9v1Ftq/atZ/bpr55Nx/o+t0e97rOw+YczqXmo5Jm+97G+p1gMZo0pz5aLX13Dp81C8qnOV6hhbparfE/KQUj+qKucp7QMgTepE98rch3WaNxbdVn21dfYVRan6+4D2HnhWX4YCVJ3lMucnxkD6Qer9vFn7zlm3Ou7YmUa9gKqkcD+JIqVek6BsVXyPda/aCP0gpePZI8nq/OwjJg3vHY8P/u0/zXm95pYNa+IDb3ip/lADMk27Uh7HqyZPAAB5WVx1A+jOyauXx8e2bY7hvePx9IGDcfSyJXFoYiLe+Im7Yt/4oTlf8/SBgz1vw9CKAQcHZKUX/Xx0niwWndUiyT3Qjrlqxsj+5gusKdfAnKnvM7WyP4oez70H9Kte9v2y591yDMWZL09l5lu2oXWpjb3yC71V53XuXlJ7nmdf9N6ROdw3figuv2l7XLZ1fVy2ZX0cvWxJrDlqoNL9rh9A+1odY8vMlyxD90b2H5wxTo89eziWLl4Y2x/ZE5fftD0+/Uuv7NnflmHoncl8Pbpnfzz85L4ZuZ5+Def+BtdzAgCtKWo+bW4M/Sfl3DvXlp+U+xv1l1L/mq9+LVuyKE5avbyk1vSvMvuEMasYKeWY/PWqv6VcD2SMqsyVi+nXcL3vZ8+I8WcPF94n9XkoXpW5SnmMrZJaRxFS6UdV5jyVfQCkS53oXln7sE7zxl60VV9tnX1FUar+PqAXHb9CX4YCVJ3lMhkD6Qep9/NG7Xtw+Jmmr0vpeAZ6KYX7SRQp9ZoEZavie6x70UboB1VncT6yOj/7iIjnsnzkd+5N/+zx6P7xiDiq6mbSApmmHamP41WTJwCAfLjRfAZWDc6cjH/3ib0NTwpGRBy9bEnP2wA5Krqfr5wni73IapHkHmjHXPOVZlKvgTlT32eab3/0Yjz3HtCvetX3q5h3yzEUp1meys63bENrUhx75Rd6p+7r3L2k9jzPvuituXK4b/xQfPzWnRER8eV3/2S86PgVZTdrFv0A2tPOGFtmvmQZurNy2ZIZ4/SRej1/lmHonVWDAzG8dzx+7S/ubficfj5GBoAiFDmfNjeG/pNq7p1ry1Oq/Y08pNK/5qtfq5arX2Upq08Ys4qTSo7pD73ob6nXAxmjCo1yMbmW9aaXnRJnnryqJ39bn4fiVZWr1MfYKql1FCGFflR1zlPYB0Da1InulbEPqx5P2tGrtuqrrbOvKErV3wekL0Mxqs5ymdQN+kHq/Xyu9q1cNt70NSkdz0CvpXA/iSKlXpOgbFV8j3W75BbSyOJ8ZHV+9hGTWW702eM3veyUsptEF2SaVtVhHK+aPAEA5GFh1Q2geEMrBuLCjUNzPnbhxqEYWmEiDymQVaCfqYHkQl+G9Mkp5Eu+IU2yCf1F5qF6cgh5km3Ik2xD3mQcAHrLWAvkSG0D6kr96j/ec2CSegCzyQVQBLUE8ifnABShTuNJndoKVEOdgDzIMtAq9QIakw/oLzIPaZBFyIMsQ3+SfQAA+oUbzWdo1eBAfOjiTbMOai7cOBTXXbwpVg06oIEUyCrQz9RAcqEvQ/rkFPIl35Am2YT+IvNQPTmEPMk25Em2IW8yDgC9ZawFcqS2AXWlfvUf7zkwST2A2eQCKIJaAvmTcwCKUKfxpE5tBaqhTkAeZBlolXoBjckH9BeZhzTIIuRBlqE/yT4AAP1icdUNoDdOXr08PrZtcwzvHY+nDxyMo5ctiaEVAw5mIDGyCvQzNZBc6MuQPjmFfMk3pEk2ob/IPFRPDiFPsg15km3Im4wDQG8Za4EcqW1AXalf/cd7DkxSD2A2uQCKoJZA/uQcgCLUaTypU1uBaqgTkAdZBlqlXkBj8gH9ReYhDbIIeZBl6E+yDwBAP3Cj+YytGnQAA3Ugq0A/UwPJhb4M6ZNTyJd8Q5pkE/qLzEP15BDyJNuQJ9mGvMk4APSWsRbIkdoG1JX61X+858Ak9QBmkwugCGoJ5E/OAShCncaTOrUVqIY6AXmQZaBV6gU0Jh/QX2Qe0iCLkAdZhv4k+wAA5G5h1Q0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6DduNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMjeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiZG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlMyN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABK5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVzo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkrnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDJ3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGSLq24AAAAAAAAAAAAAAADQe9/+9rerbsKcUm3XkVJu59DQUKxbt67qZgAAAAAAAAAAAAAAAAAAAAAAAABtcqN5AAAAAAAAAAAAAADI2P6RJyNiQbz5zW+uuilNHRwbr7oJc6rD/lu+fDC+851vu9k8AAAAAAAAAAAAAAAAAAAAAAAA1IwbzQMAAAAAAAAAAAAAQMYO7ns6IibiZf/3e+O49S+uujmz7P7mV+P+z38ynn322aqbMqfU99/o7ofj69dfHcPDw240DwAAAAAAAAAAAAAAAAAAAAAAADXjRvMAAAAAAAAAAAAAANAHVhy/Lo5dd3rVzZhldPfDVTehJanuPwAAAAAAAAAAAAAAAAAAAAAAAKC+FlbdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB+40bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVzo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkmV1o/mrrroqFixYMOO/F7/4xU1f81d/9Vfx4he/OJYtWxZnnXVWfOELXyiptQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEC/yupG8xERL3nJS2L37t1T/915550Nn/uVr3wltm3bFm9/+9tj+/bt8cY3vjHe+MY3xv33319iiwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB+k92N5hcvXhwnnnji1H9DQ0MNn/uHf/iH8TM/8zPxH/7Df4gzzjgjPvjBD8Y555wTH//4x0tsMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBvFlfdgKLt2LEjTj755Fi2bFmcd955ce2118a6devmfO5Xv/rVePe73z3jZ6997Wvjs5/9bNO/MTY2FmNjY1P/Hh0dnbddI/vGY3jveIweOBgrly+JoaMGYtXgwPwbBPREJzkug1oB7TEmQx5kGfIgy5AHWYY8yDLkodN1bHmGtBiXIQ+yDHmQZai/Iq/5km+oTqrXbwLtqTrLxnIoRtVZLouaQe76JctQpirGjhyzbAymH9UpyzIKjXWbZfmCNNRpXJ6kfsBsrvmCPMgy1F9Z82vZh97qdZZlGMpRx3WvCDUCjuRYGfLg846QB+My5KGIcVm2oXrOSUEezLEhD3U9JwXMJMtQX1ndaP6Vr3xl3HjjjXH66afH7t274+qrr44LLrgg7r///jj66KNnPf/xxx+PE044YcbPTjjhhHj88ceb/p1rr702rr766pbb9die/fHem++LO3YMT/3swo1D8aGLN8XJq5e3/HuA4rSb4zKoFdA+YzLkQZYhD7IMeZBlyIMsQx46WceWZ0iPcRnyIMuQB1mG+ivqmi/5hmqleP0m0L4qs2wsh+L0w7isZtAP+iHLUKaqxo7csmwMpl/VJcsyCs11k2X5gnTUZVyepH7A3FzzBXmQZai/MubXsg+918ssyzCUp27rXhFqBMzFsTLkwecdIQ/GZchDt+OybEManJOCPJhjQx7qeE4KmE2Wob4WTExMTFTdiF7Zs2dPnHrqqfEHf/AH8fa3v33W4wMDA/GpT30qtm3bNvWzP/7jP46rr746fvCDHzT8vWNjYzE2Njb179HR0Vi7dm2MjIzEypUrZzx3ZN94vPOm7TMORCZduHEoPrZtc6waHOhk84AutJPjMqgV0BljMuRBliEPsgx5kGXIgyxDHtpdx5ZnSJNxGfIgy5AHWYb6K+KaL/mG6nWa5XvvvTfOPffceM37bohj151eRlPb9vDXvxhfv/7q2PquT8QpZ2yuujmzaF93Um/fj3Y9EF/6vUvjnnvuiXPOOafnf6+qa7GN5VCs1D5XUTQ1g36Re5ahTFWOHTll2RhMP6tDlmUU5tdpluUL0lKHcXmS+gGNueYL8iDLUH+9nl/LPpSjV1mWYShXnda9ItQIaMSxMuTB5x0hD8ZlyEM347JsQzqck4I8mGNDHup2TgqYmyxDfS2uugG9tHr16jjttNNi586dcz5+4oknzrqh/A9+8IM48cQTm/7epUuXxtKlS1tqw/De8TkPRCIibt8xHMN7xx2MQAXayXEZ1ArojDEZ8iDLkAdZhjzIMuRBliEP7a5jyzOkybgMeZBlyIMsQ/0Vcc2XfEP1Urt+E+hMVVk2lkOxch+X1Qz6Re5ZhjJVOXbklGVjMP2sDlmWUZhfp1mWL0hLHcblSeoHNOaaL8iDLEP99Xp+LftQjl5lWYahXHVa94pQI6ARx8qQB593hDwYlyEP3YzLsg3pcE4K8mCODXmo2zkpYG6yDPW1sOoG9NLevXvju9/9bpx00klzPn7eeefFl7/85Rk/+9KXvhTnnXdeYW0YPXCw6eNPz/M40B/UCug9OYM8yDLkQZYhD7IMeZBlyIc8Q/3JMeRBliEPsgz5km8AqDdjOdAONQOAdhk7imE/QtpkFHpHvoBOqR9QDFmCPMgy9CfZh3qTYaAZNQK6J0eQNxmHepFZyJNsQ/+Qd0iPXAIAwNyyutH8FVdcEf/4j/8YDz/8cHzlK1+JN73pTbFo0aLYtm1bRES85S1viSuvvHLq+f/u3/27+Pu///v48Ic/HN/5znfiqquuirvvvjve+c53FtamlcuWNH386HkeB/qDWgG9J2eQB1mGPMgy5EGWIQ+yDPmQZ6g/OYY8yDLkQZYhX/INAPVmLAfaoWYA0C5jRzHsR0ibjELvyBfQKfUDiiFLkAdZhv4k+1BvMgw0o0ZA9+QI8ibjUC8yC3mSbegf8g7pkUsAAJhbVjea//73vx/btm2L008/Pf71v/7XsWbNmvja174Wxx13XERE7Nq1K3bv3j31/PPPPz8+/elPxyc/+ck4++yz46//+q/js5/9bLz0pS8trE1DKwbiwo1Dcz524cahGFoxUNjfAupLrYDekzPIgyxDHmQZ8iDLkAdZhnzIM9SfHEMeZBnyIMuQL/kGgHozlgPtUDMAaJexoxj2I6RNRqF35AvolPoBxZAlyIMsQ3+Sfag3GQaaUSOge3IEeZNxqBeZhTzJNvQPeYf0yCUAAMwtqxvNf+Yzn4nHHnssxsbG4vvf/3585jOfiRe96EVTj992221x4403znjNJZdcEg888ECMjY3F/fffHz/7sz9baJtWDQ7Ehy7eNOuA5MKNQ3HdxZti1aCDEUCtgDLIGeRBliEPsgx5kGXIgyxDPuQZ6k+OIQ+yDHmQZciXfANAvRnLgXaoGQC0y9hRDPsR0iaj0DvyBXRK/YBiyBLkQZahP8k+1JsMA82oEdA9OYK8yTjUi8xCnmQb+oe8Q3rkEgAA5ra46gb0g5NXL4+Pbdscw3vH4+kDB+PoZUtiaMWAAxFgBrUCek/OIA+yDHmQZciDLEMeZBnyIc9Qf3IMeZBlyIMsQ77kGwDqzVgOtEPNAKBdxo5i2I+QNhmF3pEvoFPqBxRDliAPsgz9Sfah3mQYaEaNgO7JEeRNxqFeZBbyJNvQP+Qd0iOXAAAwmxvNl2TVoIMPYH5qBfSenEEeZBnyIMuQB1mGPMgy5EOeof7kGPIgy5AHWYZ8yTcA1JuxHGiHmgFAu4wdxbAfIW0yCr0jX0Cn1A8ohixBHmQZ+pPsQ73JMNCMGgHdkyPIm4xDvcgs5Em2oX/IO6RHLgEAYKaFVTcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoN+40TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAydxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBki6tuQA4mJiYiImJ0dLTilkD/OProo2PBggWF/T45hmrIMuRBliEPsgx5kGXIgyxDHmQZ8iDLkAdZhjzIMuShyCzLMVSjqjF57969EREx8v0H4/Czhwr7+0Xa+8SjEREx+vjDsXTp0opbM5v2dSf19j39+Pci4rmstDI2ml9DHmQZ8iDLkAdZhjzIMuRBliEPsgx5kGXIgyxDHly/CfVnTIY8yDLkQZYhD7IMeZBlyIMsQx5kGfIgy5AHWYY8yDLUX6c5dqP5Ajz99NMREbF27dqKWwL9Y2RkJFauXFnY75NjqIYsQx5kGfIgy5AHWYY8FJ3lJ598MiJkGcpmXIY8yDLkQZYhD7IMeSgyy3IM1ah6TP6fn/pgYX+7V+77zO9X3YSmtK87qbfvJ3/yJ1t6XtVZBoohy5AHWYY8yDLkQZYhD7IMeZBlyIMsQx5kGfLg+k2oP2My5EGWIQ+yDHmQZciDLEMeZBnyIMuQB1mGPMgy5EGWof46zfGCiYmJiR60p68cPnw4HnvssTj66KNjwYIFVTcneaOjo7F27dp45JFHCh18+lE/78ui89arHPfze3Qk++I59sNMvcryxMRErFu3Lqv9nGvfyXG7+nGb6jIuFy3H93pSrtuW63ZFFLNtvcjyAw88EGeeeWaW+7xVOfe7VtkH5e6Dssdl7699EGEfRBS/D4rO8p49e+KYY46JXbt2xapVqwr7vVXKrd/ltj0R+W1TJ9vTr8fLk3LrA+3o123PdbutY7cmt/ff9qTNuNy63N77XrCP5pfSPurXLE+X0vvRDduRlrK3o8jMFZnjXN7PMtlnnclhv6UyJuewL3vBfmnMvpkplSxXLbd+YXvS1ovtSSXLub1XEbapLnLZplSyXIZc3rMU2JfFSvVa7Lmy7L0vjn1ZjNz2Ywrjcp33aZ3bHqH9VSuy/SlkuSh1f18bsV31U8W25ZTlMuTc/xrpt22u6/b6vGN76t7+iPpvg/bPzecqZqprP9HucqXY7lSv3yxLiu9JkWxfvbW6fTkeK+fy3uawHTlsQ0Q9tqNOWa7D/jySNpdDm+uV5SLU8T1PjX3YvZyvxZ6LPtOYfTO3ft4vKWa5ju9HHdscUc92a/PcUsxyker4vs/FdqQj1W0oM8up7oNc2L+9U4d9W8W4XIf90iu2vT+3PaL321/VHDuX99V2pCWX7Yhof1tkuTu2Iy39uh2d5nhxJ41jpoULF8YLXvCCqptROytXrqx1SFNiX3av1zn2Hj3PvniO/dAbk1keHR2NiDz3c47bFJHndtmmztVtfp3jez0p123Ldbsi0tq2hQsXximnnBIRabWrKvaBfRBRz33Q6rhcx20rmn1gH0Skuw8WLlwYERGrVq1Ksn3dSHWfdyq37YnIb5uq3J66HS9Pyq0PtKNft71ft7tVua9j25602Z7i1G1czu297wX7aH457qO6ZXm6XN4P25GWOm5HL3Jcx/1QNfusM/bb87rNsn05N/ulMfumN+o8v47Ir1/YnrSlvD3G5dlsUz3kuE3dqMO47D0rjn1ZrJT253xZTqmtdWdfFsN+nFs343Kd92md2x6h/VVLsf0pzLFT3C9FsF31U+dtSyHLZajze9SpftvmftveI/XL5x3r3v6I+m+D9vdWLp+r0O5yaXda6jy/zvU9mWT76q3s7Uspy7m8tzlsRw7bEJHPdrSijCzXcX9qczm0uTgpjcvNpLr/6sQ+7F7K+9DnHctl38zNfulekVmu4/tRxzZH1LPd2txbqc6x67QPm7Ed6chhG5ppJcu574Oq2b+900/7tp1xuZ/2y5Fse39ue0R9tr/dOXZdtms+tiMtuWxHRHXbIsv1ZjvS0uvtWNiz3wwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAnNxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBkbjRP6ZYuXRq/8zu/E0uXLq26KbVnX6bPe/Q8++I59kM5ctzPOW5TRJ7bZZv6R877Jddty3W7ItLdtlTbVSb7wD6IyHsf5LxtrbIP7IOI9PdB6u3rRG7blNv2ROS3TbltTxn6eZ/167b363Z3Krf9ZXvSZnv6l301P/tofvZRWnJ5P2xHWnLZjm7ZD+2zzzpjvxXHvpyb/dKYfcNccusXtidtuW3PdDlum22qhxy3KXfes+LYl8Wq0/6sU1tTZ18Ww34sXp33aZ3bHqH9Vat7+3sl1/1iu+on523LRT++R/22zf22vZ2q+36qe/sj6r8N2l+uurV3knaXS7spSu7vie2rt9y3r5lctj2H7chhGyLy2Y5U1HF/anM5tLn/2H/dsw+712/7sN+2tx32zdzsl7TU8f2oY5sj6tlube5PuexD25GOHLahW/ZBb9m/vWPfzq2f94tt789tj8h3+3PZLtuRlly2I6I+21KXds7HdqTFdrRnwcTExERP/wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMyysugEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/caN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABK5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVzo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkrnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDJ3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGRuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMjeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiZG80X6Pbbb4+f+7mfi5NPPjkWLFgQn/3sZ9t6/VVXXRULFiyY9d9RRx3VmwYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlXCj+QI988wzcfbZZ8cnPvGJjl5/xRVXxO7du2f8d+aZZ8Yll1xScEsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAKrnRfIFe97rXxe/+7u/Gm970pjkfHxsbiyuuuCJOOeWUOOqoo+KVr3xl3HbbbVOPr1ixIk488cSp/37wgx/EP/3TP8Xb3/72krYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIMbzZfone98Z3z1q1+Nz3zmM3HffffFJZdcEj/zMz8TO3bsmPP5f/ZnfxannXZaXHDBBSW3FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOglN5ovya5du+KGG26Iv/qrv4oLLrggXvSiF8UVV1wRW7dujRtuuGHW8w8cOBB/8Rd/EW9/+9sraC0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQS4urbkC/+OY3vxmHDh2K0047bcbPx8bGYs2aNbOef8stt8TTTz8db33rW8tqIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFASN5ovyd69e2PRokVxzz33xKJFi2Y8tmLFilnP/7M/+7O46KKL4oQTTiiriQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBJ3Gi+JJs3b45Dhw7FE088ERdccEHT5z700EPxP/7H/4jPf/7zJbUOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJMbzRdo7969sXPnzql/P/TQQ/GNb3wjjj322DjttNPiF3/xF+Mtb3lLfPjDH47NmzfHD3/4w/jyl78cmzZtite//vVTr7v++uvjpJNOite97nVVbAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQYwsmJiYmqm5ELm677bZ49atfPevnb33rW+PGG2+MgwcPxu/+7u/Gn//5n8ejjz4aQ0ND8RM/8RNx9dVXx1lnnRUREYcPH45TTz013vKWt8Tv/d7vlb0JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAncaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZAurbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAv3GjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICSudF8ASYmJmJ0dDQmJiaqbgrQITmGPMgy5EGWIQ+yDHmQZciDLEMeZBnyIMuQB1mGPMgy1J8cQx5kGfIgy5AHWYY8yDLkQZYhD7IMeZBlyIMsQx5kGfIgy1B/cgx5kGXIgyxDHmQZ8iDLkAdZhjzIMuRBliEPsgx5kGXIgyxDfbjRfAGefvrpWLVqVTz99NNVNwXokBxDHmQZ8iDLkAdZhjzIMuRBliEPsgx5kGXIgyxDHmQZ6k+OIQ+yDHmQZciDLEMeZBnyIMuQB1mGPMgy5EGWIQ+yDHmQZag/OYY8yDLkQZYhD7IMeZBlyIMsQx5kGfIgy5AHWYY8yDLkQZahPtxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBkbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDI3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASra46gYAjOwbj+G94zF64GCsXL4kho4aiFWDA1U3C2iTLEPaZBT6i8xDHmQZ8iDL0Jh8UDZ9DiAP6jnkQZYhD7IM9SfHkAdZBqBIxhWolgwCFEdNhTzIMtSLzELeZBzyIMvkSL8G6kjtgjzIMuRBliEPsgy9IVtAJ9SO/uB9BoqglgC0Rr0EgP7jRvNApR7bsz/ee/N9cceO4amfXbhxKD508aY4efXyClsGtEOWIW0yCv1F5iEPsgx5kGVoTD4omz4HkAf1HPIgy5AHWYb6k2PIgywDUCTjClRLBgGKo6ZCHmQZ6kVmIW8yDnmQZXKkXwN1pHZBHmQZ8iDLkAdZht6QLaATakd/8D4DRVBLAFqjXgJAf1pYdQOA/jWyb3zWQUhExO07huM3b74vRvaNV9QyoB2yDGmTUegvMg95kGXIgyxDY/JB2fQ5gDyo55AHWYY8yDLUnxxDHmQZgCIZV6BaMghQHDUV8iDLUC8yC3mTcciDLJMj/RqoI7UL8iDLkAdZhjzIMvSGbAGdUDv6g/cZKIJaAtAa9RIA+pcbzQOVGd47PusgZNLtO4ZjeK8DEagDWYa0ySj0F5mHPMgy5EGWoTH5oGz6HEAe1HPIgyxDHmQZ6k+OIQ+yDECRjCtQLRkEKI6aCnmQZagXmYW8yTjkQZbJkX4N1JHaBXmQZciDLEMeZBl6Q7aATqgd/cH7DBRBLQFojXoJAP3LjeaByoweONj08afneRxIgyxD2mQU+ovMQx5kGfIgy9CYfFA2fQ4gD+o55EGWIQ+yDPUnx5AHWQagSMYVqJYMAhRHTYU8yDLUi8xC3mQc8iDL5Ei/BupI7YI8yDLkQZYhD7IMvSFbQCfUjv7gfQaKoJYAtEa9BID+5UbzQGVWLlvS9PGj53kcSIMsQ9pkFPqLzEMeZBnyIMvQmHxQNn0OIA/qOeRBliEPsgz1J8eQB1kGoEjGFaiWDAIUR02FPMgy1IvMQt5kHPIgy+RIvwbqSO2CPMgy5EGWIQ+yDL0hW0An1I7+4H0GiqCWALRGvQSA/uVG80BlhlYMxIUbh+Z87MKNQzG0YqDkFgGdkGVIm4xCf5F5yIMsQx5kGRqTD8qmzwHkQT2HPMgy5EGWof7kGPIgywAUybgC1ZJBgOKoqZAHWYZ6kVnIm4xDHmSZHOnXQB2pXZAHWYY8yDLkQZahN2QL6ITa0R+8z0AR1BKA1qiXANC/3GgeqMyqwYH40MWbZh2MXLhxKK67eFOsGnQgAnUgy5A2GYX+IvOQB1mGPMgyNCYflE2fA8iDeg55kGXIgyxD/ckx5EGWASiScQWqJYMAxVFTIQ+yDPUis5A3GYc8yDI50q+BOlK7IA+yDHmQZciDLENvyBbQCbWjP3ifgSKoJQCtUS8BoH8tmJiYmKi6EXU3Ojoaq1atipGRkVi5cmXVzYHaGdk3HsN7x+PpAwfj6GVLYmjFQOkHIXIM3ZNlSFsKGW2VLEP3Usi8LEP3ZBnyIMvQWAr5qBNZ7p4+RwpkGbqXQj2XZeieLEMeqs6yHEP3qs5xhCxDEWQZKIosE5HGuEJ3ZLneZJBJsgzdS6GmyjJ0T5ahXlLIbCOyDN1LIeOyDN2TZXKUQr/uN3IM3UuhdskydE+WIQ+yDHmQZeiNFLJVNlmG7qVQO2S591J4n8mfLOdPLekPsgzdS6FeyjLkQZahPhZX3YAi3X777fH7v//7cc8998Tu3bvjlltuiTe+8Y0Nn7979+749//+38fdd98dO3fujMsvvzw++tGPltZe4DmrBi3UQA5kGdImo9BfZB7yIMuQB1mGxuSDsulzAHlQzyEPsgx5kGWoPzmGPMgyAEUyrkC1ZBCgOGoq5EGWoV5kFvIm45AHWSZH+jVQR2oX5EGWIQ+yDHmQZegN2QI6oXb0B+8zUAS1BKA16iUA9J+FVTegSM8880ycffbZ8YlPfKKl54+NjcVxxx0Xv/VbvxVnn312j1sHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8JzFVTegSK973evida97XcvPf+ELXxh/+Id/GBER119/fa+aBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBDVjeaL8vY2FiMjY1N/Xt0dLTC1gCdkGPIgyxDHmQZ8iDLkAdZhjzIMuRBliEPsgx5kGXIgyxD/ckx5EGWIQ+yDHmQZciDLEMeZBnyIMuQB1mGPMgy5EGWIQ+yDPUnx5AHWYY8yDLkQZYhD7IMeZBlyIMsQx5kGfIgy5AHWYY8yDLU18KqG1BH1157baxatWrqv7Vr11bdJKBNcgx5kGXIgyxDHmQZ8iDLkAdZhjzIMuRBliEPsgx5kGWoPzmGPMgy5EGWIQ+yDHmQZciDLEMeZBnyIMuQB1mGPMgy5EGWof7kGPIgy5AHWYY8yDLkQZYhD7IMeZBlyIMsQx5kGfIgy5AHWYb6WjAxMTFRdSN6YcGCBXHLLbfEG9/4xpae/6pXvSpe9rKXxUc/+tF5nzs2NhZjY2NT/x4dHY21a9fGyMhIrFy5ssMWA2WSY8iDLEMeZBnyIMuQB1mGPMgy5EGWIQ+yDHmQZciDLEP9yTHkQZYhD7IMeZBlyIMsQx5kGfIgy5AHWYY8yDLkQZYhD7IM9SfHkAdZhjzIMuRBliEPsgx5kGXIgyxDHmQZ8iDLkAdZhjzIMtTX4qobUEdLly6NpUuXVt0MoAtyDHmQZciDLEMeZBnyIMuQB1mGPMgy5EGWIQ+yDHmQZag/OYY8yDLkQZYhD7IMeZBlyIMsQx5kGfIgy5AHWYY8yDLkQZah/uQY8iDLkAdZhjzIMuRBliEPsgx5kGXIgyxDHmQZ8iDLkAdZhvpaWHUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPrN4qobUKS9e/fGzp07p/790EMPxTe+8Y049thjY926dXHllVfGo48+Gn/+538+9ZxvfOMbU6/94Q9/GN/4xjdiYGAgzjzzzLKbDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPSJrG40f/fdd8erX/3qqX+/+93vjoiIt771rXHjjTfG7t27Y9euXTNes3nz5qn/v+eee+LTn/50nHrqqfHwww+X0mYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg/2R1o/lXvepVMTEx0fDxG2+8cdbPmj0fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBcWVt0AAAAAAAAAAAAAAAAA/n/2/j3Kr7M+7H8/uo2ksTwj2wMqdmUwWHEgwUZ2AiU2CjkL6oaEEKr+mp/za0lNShrOYaWEnoINNhRywZwGygoxJSeNnSyymtJTA2kSCsuFUl+gZkWyfzaNoXIwiNTmMsKasTySRpbm/KGMGM31e9mX53n267WW//DMSLM187w/z957LhsAAAAAAAAAAAAAAAAAAAAAAADoGg+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3b2PYBABFTM7MxeWQ2po+diLGtm2LinJEYHx1p+7CABXRKF1n3QKnMN8AcgLRpFE7TAoOwbgCoiz0GqqcrwByA4WgIukHrAOkxm6EMWgYgV/YwemGdAKzNrIQyaBl0QO+sFQDm2RPIkXUL1M2cgbxpGDAHIC+apWrWFLRDewDdZP4DAE3xoHlo2WOHj8bb7ngw7j4weeZle3ZNxC17L48Lt29t8ciAeTqli6x7oFTmG2AOQNo0CqdpgUFYNwDUxR4D1dMVYA7AcDQE3aB1gPSYzVAGLQOQK3sYvbBOANZmVkIZtAw6oHfWCgDz7AnkyLoF6mbOQN40DJgDkBfNUjVrCtqhPYBuMv8BgCatb/sAoMumZmaXnPxHRNx1YDJuuOPBmJqZbenIgHk6pYuse6BU5htgDkDaNAqnaYFBWDcA1MUeA9XTFWAOwHA0BN2gdYD0mM1QBi0DkCt7GL2wTgDWZlZCGbQMOqB31goA8+wJ5Mi6BepmzkDeNAyYA5AXzVI1awraoT2AbjL/AYCmedA8tGjyyOySk/95dx2YjMkjLgCgbTqli6x7oFTmG2AOQNo0CqdpgUFYNwDUxR4D1dMVYA7AcDQE3aB1gPSYzVAGLQOQK3sYvbBOANZmVkIZtAw6oHfWCgDz7AnkyLoF6mbOQN40DJgDkBfNUjVrCtqhPYBuMv8BgKZ50Dy0aPrYiVVf/+Qarwfqp1O6yLoHSmW+AeYApE2jcJoWGIR1A0Bd7DFQPV0B5gAMR0PQDVoHSI/ZDGXQMgC5sofRC+sEYG1mJZRBy6ADemetADDPnkCOrFugbuYM5E3DgDkAedEsVbOmoB3aA+gm8x8AaJoHzUOLxrZsWvX1567xeqB+OqWLrHugVOYbYA5A2jQKp2mBQVg3ANTFHgPV0xVgDsBwNATdoHWA9JjNUAYtA5Arexi9sE4A1mZWQhm0DDqgd9YKAPPsCeTIugXqZs5A3jQMmAOQF81SNWsK2qE9gG4y/wGApnnQPLRoYttI7Nk1sezr9uyaiIltIw0fEbCYTuki6x4olfkGmAOQNo3CaVpgENYNAHWxx0D1dAWYAzAcDUE3aB0gPWYzlEHLAOTKHkYvrBOAtZmVUAYtgw7onbUCwDx7AjmyboG6mTOQNw0D5gDkRbNUzZqCdmgPoJvMfwCgaR40Dy0aHx2JW/ZevuQiYM+uiXjf3stjfNQFALRNp3SRdQ+UynwDzAFIm0bhNC0wCOsGgLrYY6B6ugLMARiOhqAbtA6QHrMZyqBlAHJlD6MX1gnA2sxKKIOWQQf0zloBYJ49gRxZt0DdzBnIm4YBcwDyolmqZk1BO7QH0E3mPwDQtHVzc3NzbR9E7qanp2N8fDympqZibGys7cMhQ1MzszF5ZDaePHYizt2yKSa2jTj5b5iOWYtO86Dlaln3tEXL1M18a4aWSZk50Dst0waNVk/LedICi/XSsnUD6bMvkyt7zNm0TBV01T4t0zZzYHg67jYNlUPLrEbr+dAylMHXo6AMWoYyOMeG5eW2h2m5HbmtE9KnZUrUxVmpZUqkZS3TzQ5K0EbL1gpUy55MzuwJ36flfFi3rEbLVMGcaZ+WGYaG06Fl2mIOVEvL1E2zzehSy9YUJUu5Ze1B71JuGfrV5fmvZSiDliEfG9s+ACBifLQ7J/yQK53SRdY9UCrzDTAHIG0ahdO0wCCsGwDqYo+B6ukKMAdgOBqCbtA6QHrMZiiDlgHIlT2MXlgnAGszK6EMWgYd0DtrBYB59gRyZN0CdTNnIG8aBswByItmqZo1Be3QHkA3mf8AQFPWt30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3jQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0rKgHzd91113x6le/Oi688MJYt25dfPKTn1zzz3z+85+PK6+8MjZv3hyXXnpp/MEf/EHtxwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0W1EPmn/qqafiiiuuiFtvvbWnt3/00Ufjp37qp+InfuIn4oEHHog3v/nN8U//6T+Nz3zmMzUfKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBlG9s+gCr95E/+ZPzkT/5kz2//kY98JC655JJ4//vfHxERz3/+8+Oee+6Jf/Nv/k1ce+21dR0mAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0HHr2z6ANn3xi1+MV7ziFWe97Nprr40vfvGLLR0RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0AUb2z6ANn3rW9+KHTt2nPWyHTt2xPT0dBw9ejS2bt267J87fvx4HD9+/Mz/T09P13qcQPV0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5E/HUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+dMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1Dvta3fQA5eu973xvj4+Nn/tu5c2fbhwT0ScdQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUP+dAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5A/HUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRr3dzc3FzbB1GHdevWxSc+8Yn42Z/92RXfZs+ePXHllVfGBz/4wTMvu/322+PNb35zTE1Nrfjnjh8/HsePHz/z/9PT07Fz586YmpqKsbGxKg4fqJmOoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqG/OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhfzqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXI18a2D6BNL33pS+NTn/rUWS+7884746Uvfemqf27z5s2xefPmOg8NqJmOoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqG/OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhfzqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXI1/q2D6BKR44ciQceeCAeeOCBiIh49NFH44EHHoiDBw9GRMSNN94Yr3vd6868/S//8i/H1772tXjrW98aX/nKV+LDH/5w/Mf/+B/jV3/1V9s4fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAjinrQ/F/8xV/E7t27Y/fu3RER8Za3vCV2794d73znOyMi4vHHHz/z0PmIiEsuuST+/M//PO6888644oor4v3vf3/8u3/37+Laa69t5fgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAbtjY9gFU6eUvf3nMzc2t+Po/+IM/WPbP3H///TUeFdRramY2Jo/MxvSxEzG2dVNMnDMS46MjbR8WUBPNw1K6AOpivkAetAr0w8yA8uialFmfQNvMIRicfoA2mUFwNk0A/TI3ACBP9vCy+fwCMAj7B22zBoEuMwOBeeYBDEY7lM4ah27SPgxGO0CuzC/Ii2aBUphnUAYtN8vHG1iLOQHQHDMXAKhKUQ+ah6557PDReNsdD8bdBybPvGzProm4Ze/lceH2rS0eGVAHzcNSugDqYr5AHrQK9MPMgPLompRZn0DbzCEYnH6ANplBcDZNAP0yNwAgT/bwsvn8AjAI+wdtswaBLjMDgXnmAQxGO5TOGodu0j4MRjtArswvyItmgVKYZ1AGLTfLxxtYizkB0BwzFwCo0vq2DwAYzNTM7JILg4iIuw5Mxg13PBhTM7MtHRlQB83DUroA6mK+QB60CvTDzIDy6JqUWZ9A28whGJx+gDaZQXA2TQD9MjfycfDgwdi/f3/r/x08eLDtDwUAYQ8vnc8vAIOwf9A2axDoMjMQmGcewGC0Q+mscegm7cNgtAPkyvyCvGgWKIV5BmXQcrN8vIG1mBMAzTFzAYCqbWz7AIDBTB6ZXXJhMO+uA5MxeWQ2xkdHGj4qoC6ah6V0AdTFfIE8aBXoh5kB5dE1KbM+gbaZQzA4/QBtMoPgbJoA+mVu5OHgwYPxgz/4/Dh6dKbtQ4mtW0fjK195OC6++OK2DwWg0+zhZfP5BWAQ9g/aZg0CXWYGAvPMAxiMdiidNQ7dpH0YjHaAXJlfkBfNAqUwz6AMWm6WjzewFnMCoDlmLgBQNQ+ah0xNHzux6uufXOP1QF40D0vpAqiL+QJ50CrQDzMDyqNrUmZ9Am0zh2Bw+gHaZAbB2TQB9MvcyMPk5GQcPToTL3n9u2LsWc9p7TimH/963Hfbu2NyctKD5gFaZg8vm88vAIOwf9A2axDoMjMQmGcewGC0Q+mscegm7cNgtAPkyvyCvGgWKIV5BmXQcrN8vIG1mBMAzTFzAYCqedA8ZGpsy6ZVX3/uGq8H8qJ5WEoXQF3MF8iDVoF+mBlQHl2TMusTaJs5BIPTD9AmMwjOpgmgX+ZGXsae9Zw4/+LL2j4MABJgDy+bzy8Ag7B/0DZrEOgyMxCYZx7AYLRD6axx6Cbtw2C0A+TK/IK8aBYohXkGZdBys3y8gbWYEwDNMXMBgKqtb/sAgMFMbBuJPbsmln3dnl0TMbFtpOEjAuqkeVhKF0BdzBfIg1aBfpgZUB5dkzLrE2ibOQSD0w/QJjMIzqYJoF/mBgDkyR5eNp9fAAZh/6Bt1iDQZWYgMM88gMFoh9JZ49BN2ofBaAfIlfkFedEsUArzDMqg5Wb5eANrMScAmmPmAgBV86B5yNT46EjcsvfyJRcIe3ZNxPv2Xh7joy4OoCSah6V0AdTFfIE8aBXoh5kB5dE1KbM+gbaZQzA4/QBtMoPgbJoA+mVuAECe7OFl8/kFYBD2D9pmDQJdZgYC88wDGIx2KJ01Dt2kfRiMdoBcmV+QF80CpTDPoAxabpaPN7AWcwKgOWYuAFC1dXNzc3NtH0TupqenY3x8PKampmJsbKztw6FjpmZmY/LIbDx57EScu2VTTGwbcWEwAB2TC82vTsvdpIvyaJlUmC/D0TJN0Wq9tExpujoztEzJutS1lvPTpfVJ77RMk8yh+mi5fPrpBi2TKjOodzruBk2UT8tUzdxoR68t79+/P6666qp45Ttuj/MvvqzBIzzb9w5+Ne78jetj3759ceWVV7Z2HJAa+zJtsodXJ8WWfX6hfym2DE0rYf/Qct5KWINUQ8t0UYkzUMswmNTmgZbJRWrtpEbL+bPG0XE3ab88Wm6GdqiblqmL+dUsLTMszaZByzC8FOaZlmF4Wm5WCh9vqEuXWq6TOUHbtEyXlDxztQxl0DLkY2PbBwAMZ3y0nIsBYG2ah6V0AdTFfIE8aBXoh5kB5dE1KbM+gbaZQzA4/QBtMoPgbJoA+mVuAECe7OFl8/kFYBD2D9pmDQJdZgYC88wDGIx2KJ01Dt2kfRiMdoBcmV+QF80CpTDPoAxabpaPN7AWcwKgOWYuAFCV9W0fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDXeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq2sc13/ta3vjV+/dd/PUZGRto8DAAAAAAAAAAAAAAAADrk4YcfbvX9T0xMxMUXX9zqMQAAAAAAAAAAAAAAAAAAAAAAANC+Vh80f8cdd8R/+S//JT760Y/Gi170ojYPBQAAAAAAAAAAAAAAgMIdnToUEeviH/2jf9TqcWzdOhpf+crDHjYPAAAAAAAAAAAAAAAAAAAAAADQca0+aP6hhx6Kf/kv/2W89KUvjXe84x3x9re/PdavX9/mIQEAAAAAAAAAAAAAAFCoEzNPRsRcvOjn3xbPuOQHWzmG6ce/Hvfd9u6YnJz0oHkAAAAAAAAAAAAAAAAAAAAAAICOa/VB86Ojo3HrrbfGP/gH/yB+8Rd/Mf70T/80brjhhtiwYcNZb/czP/MzLR0hAAAAAAAAAAAAAAAApdn2zIvj/Isva/swAAAAAAAAAAAAAAAAAAAAAAAA6LhWHzQ/7yd+4ifigx/8YPz9v//3Y+/evWe9bt26dXHy5MmWjgwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeuvbPoCjR4/Gr/zKr8Q//If/MG6++eY4ceJEnDp16sx/HjIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGZjm+/8C1/4QvzCL/xCbN68Oe6999646qqr2jwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEasb/Odv/zlL4/XvOY1sW/fPg+ZBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqj1QfN33TTTfGpT30qjh8/vuR1U1NT8UM/9ENx9913t3BkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPVp9UHz+/bti1/6pV+KsbGxJa8bHx+Pf/bP/ll84AMfaOHIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrT6oPmH3jggbj22mtXfP3f/bt/N/bt29fgEQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUr9UHzX/729+OTZs2rfj6jRs3xne/+90GjwgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgfq0+aP6iiy6KL3/5yyu+/sEHH4xnPetZDR4RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQP1afdD8q171qrj55pvj2LFjS1539OjReNe73hU//dM/3cKRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANRnY5vv/KabboqPf/zj8QM/8APxpje9KS677LKIiPjKV74St956a5w8eTLe8Y53tHmIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJVr9UHzO3bsiC984Qvxxje+MW688caYm5uLiIh169bFtddeG7feemvs2LGjzUMEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqNz6tg/g2c9+dnzqU5+KycnJuO++++J//I//EZOTk/GpT30qLrnkkoH+zltvvTWe85znxJYtW+IlL3lJfOlLX1rxbU+cOBHvec974nnPe15s2bIlrrjiivj0pz896D8HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYE2tP2h+3nnnnRc/+qM/Gi9+8YvjvPPOG/jv+djHPhZvectb4l3velfs378/rrjiirj22mvjO9/5zrJvf9NNN8Xv/u7vxoc+9KH4y7/8y/jlX/7leO1rXxv333//wMcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsJpkHjRflQ984APxhje8Ia6//vp4wQteEB/5yEdidHQ0brvttmXf/qMf/Wi8/e1vj1e96lXx3Oc+N974xjfGq171qnj/+9/f8JEDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXbGx7QOo0uzsbOzbty9uvPHGMy9bv359vOIVr4gvfvGLy/6Z48ePx5YtW8562datW+Oee+5Z8f0cP348jh8/fub/p6enhzxyoGk6hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8qdjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqG/OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhX+vbPoAqTU5OxsmTJ2PHjh1nvXzHjh3xrW99a9k/c+2118YHPvCBOHDgQJw6dSruvPPO+PjHPx6PP/74iu/n7nG1OAABAABJREFUve99b4yPj5/5b+fOnZX+O4D66RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZcifjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfKnYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahnytm5ubm2v7IKry2GOPxUUXXRRf+MIX4qUvfemZl7/1rW+N//7f/3vcd999S/7Md7/73XjDG94Qf/qnfxrr1q2L5z3vefGKV7wibrvttjh69Oiy7+f48eNx/PjxM/8/PT0dO3fujKmpqRgbG6v+H0YnTc3MxuSR2Zg+diLGtm6KiXNGYnx0pO3DKoaOu0lX5dEyDC+F2ahlmpDCWi+dlmmCluunZUrXlTmiZbqm1La1PLhS1wR50jL9MsPSpGWWo9f8aJl+6Tw9Ou4WDZZLy/TLPEjToC3v378/rrrqqnjlO26P8y++rIlDXdbX7/tM3Hfbu+OaN98aFz1/dyvH8L2DX407f+P62LdvX1x55ZWtHAPYl/NiT2QlWl6ddsiFljGvyqDlbtBr+bQMp+U+77RMznLvr0papgmaq5+W6Ycm06TjbtJjebTcPTouk5bpl1mQJi1TJZ23R8ukwhwYjpZJjaYHU0rLPv90XSktkx/zt1paJhfaX52WoQxahnxtbPsAqjQxMREbNmyIb3/722e9/Nvf/nb8rb/1t5b9M894xjPik5/8ZBw7diwOHToUF154Ydxwww3x3Oc+d8X3s3nz5ti8eXOlxw4LPXb4aLztjgfj7gOTZ162Z9dE3LL38rhw+9YWj6wcOu4eXZVJyzCcVGajlqlbKmu9dFqmblpuhpYpWZfmiJbpkpLb1vJgSl4T5EnL9MMMS5eWWUyvedIy/dB5mnTcHRosm5bph3mQLi1DGbScD3siq9HyyrRDTrTcbeZVObRcPr12g5ahjHmnZXJVQn9V0jJ101wztEyvNJkuHXePHsuk5W7Rcbm0TD/MgnRpmarovF1aJgXmwPC0TEo0PbgSWvb5hzJaJj/mb/W0TA60vzYtQxm0DPla3/YBVGlkZCSuuuqq+OxnP3vmZadOnYrPfvaz8dKXvnTVP7tly5a46KKL4umnn4477rgjXvOa19R9uLCsqZnZJRcRERF3HZiMG+54MKZmZls6MsiXrgCWMhvpCmsdyqBlYFjmCJRJ2yxmTQA5M8MgH3qF8ukc2qVBYJ55AACn2RNhMNoBcmFeQT70CnSFeQft0R80S3OQFk1COvQI+dMxEGEWQBfoHDAHoCya7jaff4B2mL/QTdoHAHJQ1IPmIyLe8pa3xO/93u/FH/7hH8bDDz8cb3zjG+Opp56K66+/PiIiXve618WNN9545u3vu++++PjHPx5f+9rX4u67746/9/f+Xpw6dSre+ta3tvVPoOMmj8wuuYiYd9eByZg84kIC+qUrgKXMRrrCWocyaBkYljkCZdI2i1kTQM7MMMiHXqF8Ood2aRCYZx4AwGn2RBiMdoBcmFeQD70CXWHeQXv0B83SHKRFk5AOPUL+dAxEmAXQBToHzAEoi6a7zecfoB3mL3ST9gGAHGxs+wCq9nM/93Px3e9+N975znfGt771rXjRi14Un/70p2PHjh0REXHw4MFYv379mbc/duxY3HTTTfG1r30ttm3bFq961aviox/9aGzfvr2lfwFdN33sxKqvf3KN1wNL6QpgKbORrrDWoQxaBoZljkCZtM1i1gSQMzMM8qFXKJ/OoV0aBOaZBwBwmj0RBqMdIBfmFeRDr0BXmHfQHv1BszQHadEkpEOPkD8dAxFmAXSBzgFzAMqi6W7z+Qdoh/kL3aR9ACAHxT1oPiLiTW96U7zpTW9a9nWf//znz/r/H//xH4+//Mu/bOCooDdjWzat+vpz13g9sJSuAJYyG+kKax3KoGVgWOYIlEnbLGZNADkzwyAfeoXy6RzapUFgnnkAAKfZE2Ew2gFyYV5BPvQKdIV5B+3RHzRLc5AWTUI69Aj50zEQYRZAF+gcMAegLJruNp9/gHaYv9BN2gcAcrC+7QMAzjaxbST27JpY9nV7dk3ExLaRho8I8qcrgKXMRrrCWocyaBkYljkCZdI2i1kTQM7MMMiHXqF8Ood2aRCYZx4AwGn2RBiMdoBcmFeQD70CXWHeQXv0B83SHKRFk5AOPUL+dAxEmAXQBToHzAEoi6a7zecfoB3mL3ST9gGAHHjQPCRmfHQkbtl7+ZKLiT27JuJ9ey+P8VEXEtAvXQEsZTbSFdY6lEHLwLDMESiTtlnMmgByZoZBPvQK5dM5tEuDwDzzAABOsyfCYLQD5MK8gnzoFegK8w7aoz9oluYgLZqEdOgR8qdjIMIsgC7QOWAOQFk03W0+/wDtMH+hm7QPAORg3dzc3FzbB5G76enpGB8fj6mpqRgbG2v7cCjE1MxsTB6ZjSePnYhzt2yKiW0jLiJqpONu0FX5tAz9S3E2apk6pLjWS6dl6qDl5mmZ0nR1jmiZ0nWlbS33ritrgjxpmbWYYXnQMhF6LYGWWYvO06fjsmmwO7TMWsyDPPTa8v79++Oqq66KV77j9jj/4ssaPMKzff2+z8R9t707rnnzrXHR83e3cgzfO/jVuPM3ro99+/bFlVde2coxwGL25bTZE+mVls+mHXKl5e4xr8qk5TLptXu0TFeVNu+0TE5K669KWqYOmmuellmNJvOg427QY/m0XD4dd4OWWYtZkActMwydp0PLtMUcqJaWaZumq5Fryz7/cLZcWyY/5m+9tEyqtN8fLUMZtAz52Nj2AQDLGx914QBV0xXAUmYjXWGtQxm0DAzLHIEyaZvFrAkgZ2YY5EOvUD6dQ7s0CMwzDwDgNHsiDEY7QC7MK8iHXoGuMO+gPfqDZmkO0qJJSIceIX86BiLMAugCnQPmAJRF093m8w/QDvMXukn7AEDK1rd9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd40HzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDNrZ9ANCEqZnZmDwyG9PHTsTY1k0xcc5IjI+OtH1YkBUdATTHzKUJ1hm0S4NAicw2oAlmDdALs4KFrAfoJu1DWjQJw9MR5Ee3AEDpnO9A83QH1dIUsByzgVxYqwDtMH/JmfULUA4zHaqnq7L4fALzzANgMXMB2qM/6AatAykym+D79ACsxowAAEiLB82TrV4vLh47fDTedseDcfeByTMv27NrIm7Ze3lcuH1rk4cM2VqrIxf7QJ26NmOcu9CExetsdGRD3PzTL4grL94eM7MnO9EatKnfWd+1vRBoRtWzxXkssByzBmjDSrPifXsvj9GRDa6vOmRqZja+NX0s/vqJo7Fu3brYf/CJuO2eR+NHnn2evQMyMsg5pfNGqNaw13aapARtf61GR5C+xXNiy8b18a7//D/jvz78nTNvo1sAoCRdvE5p+9oQmuzOeqcL/vcTM/GNQzNx+OiJ2LJpQ3z2K9+Jrz4+He9+zQ8Xu5cBa/OzHqRufs09MTMbJ06einv/6lDcds+jMTN7svhrMoB+1bFPd/GeGNVq8/zR+gXIy2p7hplOKVK6t6arsiz8fI6ObIjXX3NJ/NhzL4iRjevjvHNG3MeFDvE7dIHFHj98ND7/v74bzzx3cxx/+lQ8MXMivvTo9+LlP/CMeJbzPqiVfRnKsFar7rEAKTKbhuM8rSy59WD9QXV66Sm3GQEA0AUeNE+Wer24mJqZXfJ2ERF3HZiMG+54MD503W43AmANq3X0rj/5crzr1T8UN37iIRf7QC26dkPRuQtNWLzORkc2xG9ftztuv/fRuPHjD515u5Jbgzb1O+u7thcCzah6tjiPBZZj1gBtWGlW/MU3nohvfG8mbv3cI3H3I66vuuCxw0fjbf/pwbM+31dfekH89nW741f++H57B2RikHNK541QrWGv7TRJCdr+Wo2OIH3LzYlrLr0g/snVl8QX/upQzMyejAjdAgDl6OJ1StvXhtBkd9Y7XfDX35uJt338wbj3kUNnXnb1pRfE9VdfEu/6ky/Hb/0fVxS3lwFr87MepG65Nbfw+6FKviYD6Fcd+3QX74lRrTbPH61fgLystmecM7LBTKcIKd1bc65UloWfz4W/U+t3PvfImbdxHxe6we/QBRabmpmNb3xvJv7swceWfL/IJRPnxOjIBud9UBP7MpRhrfs57rEAKTKbhpPSvXyGl1sP1h9Up5eecpsRAABdsb7tA4B+rXVxMTUze+Zlk0dml7zdwrefPDK77OuA71uto8ueNRY3fry3HgH61c+eXwrnLjRh8Tp7/TWXxO33PnrWN71GlN0atKmfWd/FvRCoXx2zxXkssJhZA7RlpVnx+msuiQ997sBZDx2PcH1VqjP70KLP972PHIrb7300Xn/NJfYOyMCg55TOG6E6VVzbaZLcpfC1Gh1B2laaE/csuAZdSLcAQAm6dp2SwrUhNNWd9U4XTM3Mxo2LHjIf8f2vJ1/2rLHi9jKgN37Wg5SttObuXXQvusRrMoB+1bVPd+2eGNVq+/zR+gXIx1p7xuGZE2Y62Wv73Ggx50plWfj59Du1oNv8Dl1gscMzJ+JDnzuw7PeLfOhzB+LwzImWjgzKZ1+G/PVyP8c9FiBFZtPgUruXz/By6sH6g+r02lNOMwIAoEs8aJ7s9HNxMX1s9S/SP7nG64HVO9q9c3vcveibZOa52AeG1cUbis5daMLidbZ75/Yl3/Q6r9TWoE39zPou7oVA/eqYLc5jgcXMGqAtK80K9z+6ZbV96N5HDsXundsjwt4BqRv0nNJ5I1Snims7TZK7FL5WoyNIW6/XoAvpFgDIXdeuU1K4NoSmurPe6YLJI7Mr/jzk/LV8aXsZ0Bs/60HK+rkXbR8Duq6ufbpr98SoVtvnj9YvQD7W2jOemn161T9vppODts+NFnOuVJaFn08/Uwrd5nfoAos9Nfv0iucG9z5yaM3rLWBw9mXIXy/3c9xjAVJkNg0utXv5DC+nHqw/qE6vPeU0IwAAusSD5slOPxcXY1s2rfq2567xemD1jo4/fWrVP+tiHxhGF28oOnehCYvXmf0cmtXPrO/iXgjUr47Z4jwWWMysAdqy0qxw/6Nb1tqH5teDvQPSNug5pfNGqE4V13aaJHcpfK1GR5C2Xq9BF9ItAJC7rl2npHBtCE11Z73TBb1cy5e2lwG98bMepKyfe9H2MaDr6tqnu3ZPjGq1ff5o/QLkY609Y2b25KqvN9PJQdvnRos5VyrLws+nnymFbvM7dIHFnlrjemqt6y1gcPZlyF8v93PcYwFSZDYNLrV7+Qwvpx6sP6hOrz3lNCMAALrEg+bJTj8XFxPbRmLProll327PromY2DZS6bFBiVbraPtWF/tAfbp4Q9G5C01YvM42b1z9srDE1qBN/cz6Lu6FQP3qmC3OY4HFzBqgLSvNCvc/umWtfWjzxvX2DsjAoOeUzhuhOlVc22mS3KXwtRodQdp6uQZdSLcAQAm6dp2SwrUhNNWd9U4XrLXOt2/dVNxeBvTGz3qQsl7vRZd4TQbQr7r26a7dE6NabZ8/Wr8A+VhrzxjfuslMJ3ttnxst5lypLAs/n36mFLrN79AFFlur/fE1Xg8Mzr4M+evlfo57LECKzKbBpXYvn+Hl1IP1B9XptaecZgQAQJd40DzZ6efiYnx0JG7Ze/mSt9+zayLet/fyGB91IQJrWa2jZ18w6mIfqE0Xbyg6d6EJi9fZ/d88HFdfesGyb1tqa9CmfmZ9F/dCoH51zBbnscBiZg3QlpVmxXeePB4vc33VGavtQ1dfekF858nj9g7IwKDnlM4boTpVXNtpktyl8LUaHUHaVpsT11x6Qdz/zcNn/l+3AEApunadksK1ITTVnfVOF6x1Lf/sC0aL28uA3vhZD1K21vdD3f/Nw8VekwH0q659umv3xKhW2+eP1i9APtbaM5557mYzney1fW60mHOlsiz8fPqdWtBtfocusNgzz9284u+beNnfXG8B9bAvQ/56uZ/jHguQIrNpcKndy2d4OfVg/UF1eu0ppxkBANAl6+bm5ubaPojcTU9Px/j4eExNTcXY2Fjbh9MJjx0+Gjfc8WDcdWDyzMvmLy6etX3rkrefmpmNySOz8eSxE3Hulk1nvugA83S8tpU66rdHqJOWy9PVGdP1cxctN2N+nT11/ESMbR2Jd/7JlzvXGvXS8up6nfVd3QtJh5bLVNds6fp5bMq0TBvMmuppGXq33Kx4avZkEtdXWm7GcvvQy3ZNxK+95ofjvNFNndk7qI+WmzHMOWWXzxvpnZbXVtW1nSapSxMdp/K1Gh1Rstz35JXmxG++9oUxe/JUTB/VLd3Qa8v79++Pq666Kl75jtvj/Isva/AIz/b1+z4T99327rjmzbfGRc/f3coxfO/gV+PO37g+9u3bF1deeWUrxwCL5b4v06wuXaekcm3YKy2Xq4nuclvvJdNyfVb6evJ7X/vC+Nvnj7Z4ZJRIy/nxsx4sJ4WWV9q/3v0zPxQRERecU+41GVQlhZZpRp37dJfuiaUq15ZTOH+0fklJri1DE3rZM1KY6TpmGCmcGy2WQldtKLXlqZnZOPTUbMxFxL/6z/8z7k5orUEdSm25Cn6HLjnRcv20TxO0vDL7MjnR8lK9ttrVeyykScvMM5sGk8p5mparlUsPqaw/qqPl9vTTUy4zgvZoGcqgZciHB81XwNBrh4sLqqTj4eiRVGi5TGZM92i5HVqjalqujj5pk5bLZbZ0i5Zpi1lTLS3D8FKYS1puTgqfb8ql5eZomTppuTc6JGVNdawDqFcJe7I5AR40PwgPmidFJezLUJeczvm0zLByWu8l03K9rHOaouWymSXdkUrL1hwMJ5WWaYaZWa6cW7Yu4ftybhmakMOeoWOGlcM674IutGyt0QVdaLkO5gOp0XIztE/dtDwYbZIaLS9Pq+RGyzC8FGa/lrsrhfVHdbTcLj1RFS1DGbQM+djY9gHAoMZHXXRAKvQI1MmMgWZoDdKlT6AOZgvQBLMGSI251C0+31AGLUP7dAg6ANZmTgAAlM85H11ivdMF1jlQBbOEpllzAL0zM0mRdQlAr+wZdIF1TlOsNWAl5gN0k/YhTdqEPGgVoHvMftpk/UF19AQAkKf1bR8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNdsbPsAoApTM7MxeWQ2po+diLGtm2LinJEYHx1p+7CgSHoDSmOuQW+0AvXQFtBV5h+UT+fAcswGrAFgJeYD5EOvlM4aB6pglgAAbXM+As3QGnSbGQD90QwsTxsA5TPrWY31AeTG3IJu0j5tsfaAfpgZgDkA3aF3KJ/OgYXMBEpjTQMlMMsAAOrnQfNk77HDR+NtdzwYdx+YPPOyPbsm4pa9l8eF27e2eGQuaihP3b1pBmjS1MxsPDFzIm7+5ENx9yOHzrw8lfMISIlzAKhHatezWgSaktr8izADoWqDdq5FcmGtDibFcwCaZQ2szFyh63KYDzqF03LodRAaZ14Oa9x6hfTlMEuaYF4BwOrq3Cudj8Dyqu5Oa9AtC2fI+NZNMbJhfdz4iYfMALLR9r0a+yYsTxt0Sdt7ETRtamY2Dj01G3MR8a/+5Mt+lwHL6uq5gD0BhtNmQ12dW1CqXueJ9mmLtfd9zqFhbTnMDC1DveqYA7qFNLW575sL0Iy2z++1Tsq6uD7bnglQNWt6cF2cgZCqEmeZGQMApMiD5sna1MzskguHiIi7DkzGDXc8GB+6bndrJ90lXtTQbXX3phmgSY8dPhr//X99N/7swcfi3gU/mB2RxnkEpMQ5ANQjtetZLQJNSW3+RZiBULVBO9ciubBWB5PiOQDNsgZWZq7QdTnMB53CaTn0OgiNMy+HNW69QvpymCVNMK8AYHV17pXOR2B5VXenNeiWxTPkTf+PS+P+g0/4eSSy0fa9GvsmLE8bdEnbexE0bX7NX7Fzu2sHVtTVcwF7Agyn7YdodXFuQal6nSfapy3W3vc5h4a15TAztAz1qmMO6BbS1Oa+by5AM9o+v9c6Kevi+mx7JkDVrOnBdXEGQqpKnGVmDACQqvVtH0Adbr311njOc54TW7ZsiZe85CXxpS99adW3/+AHPxiXXXZZbN26NXbu3Bm/+qu/GseOHWvoaBnG5JHZJRcO8+46MBmTR2YbPqLT1rqomZpp57hgGHX2phmgSfMz55nnbl7yg9nz2jyPgNQ4B4B6pHQ9q0WgSSnNvwgzEOowSOdaJBfW6uBSOwegedbA8swVSH8+6BS+L/VeB6FxFkp9jVuvkIfUZ0kTzCsAWF3de6XzEViqju60Bt2x3AzZvXO7n0ciGyncq7FvwvK0QVeksBdBkxauedcOrKaL5wL2BBhO2w11cW5BqfqZJ9qnLdbeaW3v/5CL1GeGlqF+Vc8B3UK62tr3zQVoTpvn91onZV1dn6lf80O/rOnBdHUGQqpKm2VmDACQsuIeNP+xj30s3vKWt8S73vWu2L9/f1xxxRVx7bXXxne+851l3/7f//t/HzfccEO8613viocffjh+//d/Pz72sY/F29/+9oaPnEFMHzux6uufXOP1dSntogYi6u1NM0CT5mfO8adPrfp2bZ1HQGqcA0A9Urqe1SLQpJTmX4QZCHUYpHMtkgtrdXCpnQPQPGtgeeYKpD8fdArfl3qvg9A4C6W+xq1XyEPqs6QJ5hUArK7uvdL5CCxVR3dag+5Ybob4eSRyksK9GvsmLE8bdEUKexE0aeGad+3Aarp4LmBPgOG03VAX5xaUqp95on3aYu2d1vb+D7lIfWZoGepX9RzQLaSrrX3fXIDmtHl+r3VS1tX1mfo1P/TLmh5MV2cgpKq0WWbGAAAp29j2AVTtAx/4QLzhDW+I66+/PiIiPvKRj8Sf//mfx2233RY33HDDkrf/whe+EFdffXX8/M//fEREPOc5z4nrrrsu7rvvvkaPO3dTM7MxeWQ2po+diLGtm2LinJEYHx2p/f2Obdm06uvPXeP1dSntogYizu5tdGRDvP6aS2L3zu1x/OlTsWXThjhviOY1A+Vr61xhOfMzZ/PG9au+XVvnEZBSLxH1nnM7B6BUvXSc0vWsFqE3qe3RuUpp/kWYgV2h32YN0rkWyYW1OpipmdnYumlDfPj/ujK2bNoQ+w8+Ebfd82jMzJ488zbuxZXv/NGR+P1f+JEzX1davA66ugbMFXJTx7l1ateJi+mUkgzbcOq9DkLjLFTlGq9jz7ReIR2rNV7iftkv8woAVlf3Xul8pH2+RyE9dXSntbNZ95RsuRkyzM8j6YWmpXCvpsl9U2PkpIo2rHlykMJeRN5ym3UL17zfZcBqmr6/lEJL9gQYTt0NrTUn3BeH/KzUdT/zRPu0ZX7tLff7LvcffCLGtnZj7TmHht7U+Xtyq6Bluqjpe1FVn7fqFvrTZPNtXaeaC5Qmha8braTN+1FaJ2VdXZ+rzYTRkdPX/H/1nSNJzjNYjq+7rK6Kr20Bp9V5zl/aLDNjAICUFfWg+dnZ2di3b1/ceOONZ162fv36eMUrXhFf/OIXl/0zP/ZjPxZ/9Ed/FF/60pfixS9+cXzta1+LT33qU/GP//E/buqws/fY4aPxtjsejLsPTJ552Z5dE3HL3svjwu1ba33fE9tGYs+uibhrwfteeAwT29q5kVfaRQ1EfL+3v/jGE/Hb1+2O2+99NH7nc4+cef0w3WsGytbmucJy5mfO/d88HFdfekHc+8ihJW/T5nkE3ZZaLxH1nnM7B6BEvXac0vWsFmFtKe7RuUpp/kWYgV2g3+YN0rkWyYW12r/l5vDVl14Qv33d7viVP74/ZmZPuhfXAY8dPho3ffLLcfcjy6+DH3n2eZ1dA+YKOanr3Dq168TFdEopqmg49V4HoXEWqmqN17VnWq+QhrUaL3G/7Jd5BQCrq3uvdD7SLt+jkKY6utPa91n3lG65GTLozyPphTakcK+mqX1TY+Rm2DaseXKRwl5EvnKcdQvXvN9lwGqavL+USkv2BBhOnQ31MifcF4e8rNb1+BoP6F44T7RPWya2jcQrn//M+LkXX7zk911ec+kF8X/+yM4Wj645zqGhN3X+ntwqaJmuaeNeVNXnrbqF3jXdfFvXqeYCJUnl60YrafN+lNZJWVfX50ozYXRkQ9z2T350ye80S2mewXJ83WVlVX1tC6j/nL+0WdbV8ywAIA/r2z6AKk1OTsbJkydjx44dZ718x44d8a1vfWvZP/PzP//z8Z73vCeuueaa2LRpUzzvec+Ll7/85fH2t799xfdz/PjxmJ6ePuu/rpqamV1ycRARcdeBybjhjgdjama21vc/PjoSt+y9PPbsmjjr5Xt2TcT79l4e46PtXDzMX9QsJ8eLmhLpuH/zvd380y+I2+99dMkPMw7TvWYYlJbT1/a5wnLmZ85t9zwa1199SVx96QVnvb7t84gu0vJpKfYSUe85t3OAsmi5v45Tup7VIgtpealU9+hcpTT/IsqdgVo+Tb/tGKTzUlsclpbTY632Z6U5fO8jh+L2ex+N119zSSfuxXW95TPr4JHl18HNP/2C4tfAasyVfGi5vnPr1K4TF9NpWbraclUNp97rIDSenzo7rmKN17lnWq+UJNc9uZfGS9wv+2VedUeuLQNn03Lz6t4rnY+0p83vUdDy6uroTmun+d6camk5TcvNkPmfR7qmj59H0kt3pNZyCvdqmtg3NUbVmmh5mDaseXLS5l6U2r5Mf3KddQvXvN9lUI1SW27q/lJKLaVwfUJ7Sm25SXU11OuccF8cHedjra7P2byx53mi/fLk0vL46Ej8q5/5oWV/3+U9jxyKt3/ioWSvC6vkHJqV5NJyU+r8PblV0DIrKbHltu5FVX3eqlv6UWLLvWqj+bauU82F8nWl5ZS+brSSNu9HaT1/Jbfc1fW50ky4+adfELd+7pElv9MspXnG4Epu2dddllfl17ZIR8ktp6yJc/7SZllXz7N6pWUog5YhXxvbPoC2ff7zn4/f/M3fjA9/+MPxkpe8JB555JH45//8n8ev/dqvxc0337zsn3nve98b7373uxs+0jRNHpldcnEw764DkzF5ZLb2E/gLt2+ND123OyaPzMaTx07EuVs2xcS2kVYvHOYvam6448G4a8HHJ9eLmhLpeDAXbt8aP/Ls8+LGjz+07OsH7V4zDErL6UvhXGGxhTPnV/74/nj9NZfE66++JCIi/vZ5W+NvjW0xdxqm5dNS7GVeXefczgHKouX+O07lelaLLKTlpVLeo3OVyvyLKHcGavk0/ban385LbXFYWk6Ptdqf1ebwvY8cipt/6gXxhmsuKf7j1vWW11oH/+rVPxTP2r614aNKh7mSDy3Xe26d0nXiYjotS1dbrrLhlHsdhMbzU3fHw67xOvdM65WS5Lon99p4aftlv8yr7si1ZeBsWm5eE3tl189H2tLm9yhoeXV1dac135tTNS2nabkZMjN7Mj72pYPxvr2Xx7ETp3qaAXrpjtRaTuVeTd37psaoWlMtD9qGNU9O2tyLUtuX6U+us27xmp//XQb/r5dfGps3rY/tW0c6d/9gWCW33MT9pZRaSuX6hHaU3HJT6mqonznhvni36Tgfa3V95NjTfc0T7Zclp5aPnTi15GHR81K+LqySc2hWklPLTanr9+RWQcuspMSW27wXVeV5q27pR4kt96qt5tu4TjUXyteVllP6utFq2rofpfX8ldxyl9fncjPh1NxckvcAqEbJLUf4ustyqv7aFmkoveVUNXXOX9Is6/J5Vi+0DGXQMuRr3dzc3FzbB1GV2dnZGB0djf/0n/5T/OzP/uyZl//CL/xCHD58OP7kT/5kyZ952cteFn/n7/yd+Nf/+l+fedkf/dEfxS/90i/FkSNHYv369Uv+zPHjx+P48eNn/n96ejp27twZU1NTMTY2Vu0/KnH3H3wiXvvhL6z4+k/+P38sXnTxeQ0eUVqmZmaLuKgpkY4HV2f3mqFfWk5fyucKZk46tHxayr3UTY9l0HL+HWuRCC0vJ/e26U1pM1DLp+k3P6W1OCwtp8ta7Y05fFrXW7YOemOupE/LWtZpGbrasobXpvF8pN5xE71Zr5Qg9ZZXYk/tj3lVvkFb3r9/f1x11VXxynfcHudffFkTh7qsr9/3mbjvtnfHNW++NS56/u5WjuF7B78ad/7G9bFv37648sorWzkGyHVfLoG9sjxtni9quTe6q57rpGppOW3DzhC9dEeqLZe+D2qMqqXa8jxrnhy1sRel3jKry33WlX7+1SQtDyfFlvTRTVquTtUNpTgnSJOO89Fr1/bkbsqpZXvU9+mVxXJquUmpzw0ts1iJLafeYb90Sy9KbLlXpTXfC3OhXF1puYvdDkLr+epCy9bnaeZZ2brQMmfzta0yabkd9sjBmTHL0zKUQcuQr41tH0CVRkZG4qqrrorPfvazZx40f+rUqfjsZz8bb3rTm5b9MzMzM0seJr9hw4aIiJibm1v2z2zevDk2b95c3YFnbGzLplVff+4ary/d+KiT/lTpeHB1dq8Z+qXl9KV8rmDmpEPLp6XcS930WAYt59+xFonQ8nJyb5velDYDtXyafvNTWovD0nK6rNXemMOndb1l66A35kr6tKxlnZahqy1reG0az0fqHTfRm/VKCVJveSX21P6YV+XLtWXgbFpuj72yPG2eL2q5N7qrnuukamk5bcPOEL10R6otl74PaoyqpdryPGueHLWxF6XeMqvLfdaVfv7VJC0PJ8WW9NFNWq5O1Q2lOCdIk47z0WvX9uRuyqlle9T36ZXFcmq5SanPDS2zWIktp95hv3RLL0psuVelNd8Lc6FcXWm5i90OQuv56kLL1udp5lnZutAyZ/O1rTJpuR32yMGZMcvTMpRBy5Cv9Wu/SV7e8pa3xO/93u/FH/7hH8bDDz8cb3zjG+Opp56K66+/PiIiXve618WNN9545u1f/epXx7/9t/82/sN/+A/x6KOPxp133hk333xzvPrVrz7zwHlWNrFtJPbsmlj2dXt2TcTENifAUBrdA/0wM6B3eoH86RjKpG3Il34B2mUOE2EdQCm0DHnTMDRHb1A2jQMAsBrni3SRdQ+90wvUS2N0jTUPdIFZB9XQErAWcwLKo2tKYS0D/TI3oH06hG7RPORHt0ApzDMoi6ahOnoCAChLcQ+a/7mf+7n4rd/6rXjnO98ZL3rRi+KBBx6IT3/607Fjx46IiDh48GA8/vjjZ97+pptuin/xL/5F3HTTTfGCF7wgfvEXfzGuvfba+N3f/d22/glZGR8diVv2Xr7kImHProl4397LY3zUBQKURvdAP8wM6J1eIH86hjJpG/KlX4B2mcNEWAdQCi1D3jQMzdEblE3jAACsxvkiXWTdQ+/0AvXSGF1jzQNdYNZBNbQErMWcgPLomlJYy0C/zA1onw6hWzQP+dEtUArzDMqiaaiOngAAyrJubm5uru2DyN309HSMj4/H1NRUjI2NtX04rZiamY3JI7Px5LETce6WTTGxbaSRi4P59zt97ESMbd0UE+c0834pj46/r9eu2uoeVqPldNU1M5wLlKnrLbe9x+qKqnS55W9PH4snnpqN6WNPx9jWjXHe6EjsGNvS9mHBQLrc8mJt79Fd45ykWl1vWb8slPN86XrLqcp5TTXFHD5bV1tuYh3okSZpud6Zrmea0rWW62xYt7Sl146bXqOug6A/ue3JKzVuP6Trem15//79cdVVV8Ur33F7nH/xZQ0e4dm+ft9n4r7b3h3XvPnWuOj5u1s5hu8d/Grc+RvXx759++LKK69s5Rhgsdz25VQ4D2ChFK4JtbyUTuuVwrovkZYHl3LzeumeJltOee03RWPUJdV92Zovn9lerVRbZnUpzjpttquLLVex5lJsiW5rqmUzu3fmBP3q4p6cqpVmna7pRQ4t97qW7ft0Wdstp9afPZBctd1yleroMLVZAyspqeVetb33mg/UofSW2+52rePSM1UpveW1dKGpVOcZ1ep6y6mqY8ZoumxablYuPXXhfKU0WoYyaBnysbHtA6AM46PNn2g/dvhovO2OB+PuA5NnXrZn10TcsvfyuHD71kaPBUrRT1dtdA/kq46Z4VyAUrW5x+oKhqcjKJfr4OaYpVRNv8wzX6iaNdUbc5iI+teBHqEZTcx0PUN96mpYt6SujTXqOgjKtlzj9kMA6C7nASzmmjA9Oq2fdU9KUm9eL9Ql9bXfFI3RNdZ82cx2OC21WadNmlbVmkutJWiCmd0fcwLytNas0zUl6GWPsu9De1Lsz7kttK/qDlOcNcD3+f25kJ8Uz5n1DNXqSlMpzjPogrpmjKahOjn01JXzFQCAYaxv+wBgEFMzs0tO9iMi7jowGTfc8WBMzcy2dGSQL10BOTGzoHq6guHpCGB4ZilQF/OFqllTkA49Qjn0DPnRLamzRoEmmDUA0F3OAyB9OoVu0TxdZe0DlMdshzRpk6ZZczA4/QBdYNbBaVqA9ugPaIJZA6zEfIBy6BmqpSmgTmYMUAWzBACgNx40T5Ymj8wuOdmfd9eByZg84oQf+qUrICdmFlRPVzA8HQEMzywF6mK+UDVrCtKhRyiHniE/uiV11ijQBLMGALrLeQCkT6fQLZqnq6x9gPKY7ZAmbdI0aw4Gpx+gC8w6OE0L0B79AU0wa4CVmA9QDj1DtTQF1MmMAapglgAA9MaD5snS9LETq77+yTVeDyylKyAnZhZUT1cwPB0BDM8sBepivlA1awrSoUcoh54hP7olddYo0ASzBgC6y3kApE+n0C2ap6usfYDymO2QJm3SNGsOBqcfoAvMOjhNC9Ae/QFNMGuAlZgPUA49Q7U0BdTJjAGqYJYAAPTGg+bJ0tiWTau+/tw1Xg8spSsgJ2YWVE9XMDwdAQzPLAXqYr5QNWsK0qFHKIeeIT+6JXXWKNAEswYAust5AKRPp9AtmqerrH2A8pjtkCZt0jRrDganH6ALzDo4TQvQHv0BTTBrgJWYD1AOPUO1NAXUyYwBqmCWAAD0xoPmydLEtpHYs2ti2dft2TURE9tGGj4iyJ+ugJyYWVA9XcHwdAQwPLMUqIv5QtWsKUiHHqEceob86JbUWaNAE8waAOgu5wGQPp1Ct2ierrL2AcpjtkOatEnTrDkYnH6ALjDr4DQtQHv0BzTBrAFWYj5AOfQM1dIUUCczBqiCWQIA0BsPmm/I1Mxs/NV3jsT9B5+Iv/rukZiamW37kLI2PjoSt+y9fMlJ/55dE/G+vZfH+KgTfvLU5qzQFV1hTy6DmYWWq6cr2lBayzqiq0prmXaZpe3RMqXr0nzRczO6tKZono77o0dSpeX+6ZkUaXl1uiV1K63RVz7/mfHev//CmDwyq2/IRMp7sv0QANJX17mE8wBIn04ZVMrXoTlp+uOoebpq0LVv1kF99MWwnNd0l/mRNm3mo5SWrDm6bpiW9QP5KmUfb4JZR4raaFgL0J5++7PPw/C62JG9ni7pYuPDMB9om2aro2dSUkLbmoLelNB7G8wY6qTL7jBLAAB6s25ubm6u7YPI3fT0dIyPj8fU1FSMjY0tef1jh4/G2+54MO4+MHnmZXt2TcQtey+PC7dvbfJQizM1MxuTR2bjyWMn4twtm2Ji2+kT/ckjszF97ESMbd0UE+eMuABgTWt13IRUZsVyXa3V0Pyf0R1tsyd3zyAzKyXm5/K03KzF63Db5o3x1PGnY/ponl2Rjq61vLClbZs3xsiG9TF1dDbO2awj8ta1lknH1MxsHJ45EU/NPh1PzZ6M7Vs3xTPP3WyeDkjL9Kvk69Wc7yX0ch9bz81rak2V3GXX2JdXN8xaz3nGkx8t12vYnu2b9ErLw5vvberobIxu3hgb1q2LDevXxQW6oyG9fs/Xwr1lbOumGNmwPm78xENn9f2yXRPxa6/54ThvdJP1Cw0rZU/2Pc10Xa/78v79++Oqq66KV77j9jj/4ssaPMKzff2+z8R9t707rnnzrXHR83e3cgzfO/jVuPM3ro99+/bFlVde2coxwGIp/FxF1Zo4l0j5/rR7Zd1UYsvDaqJTvZUjlevQ3Ftu8+OY8t7cKzOlHE223M/aT2HWWefkpJ+WU+iranptTwnnNSlJ/Ry7xPlRqirbNGP7V8rXl/vha9GUqKmWh5nZZjSsro7z6xL38SbkfO1o1ravypbbaNjv+oHT2r7v1ctetNyMeNmuiXjva18Yf/v80aYPGZLUxfte/XCPjFwMui93pfE6rgNzvi4mXfblZvl9BdSl3325tLbb3CPd+6VKviaVJufheUlhLjvH7o5+1ptZkp+2vyYFVEPLkA8Pmq/AakNvamY23vTH9591ITJvz66J+NB1uyv7QtbiE+QULtSa5sKPQfVy8lJXU1Mzs/GdJ4/Hwe/NxLp162L/wSfitnsejZnZkxFR3ayoi+5ISdt7Mv3r4vnKvFTnZwqfk5Ra7vXjkcLHbRCprkPK0E/LoyMb4vXXXBK7d26PiIiLzx+t/GHCdXaqJUrW9r7cS7u57sOszmytVhstN9mmOVAt/aVrrfvYbd7/0uFSVX5MdFmWuvblhWtufOumOGfzxjhy7OmsurTWyUlT59iui/tnltCPtu59fXv6WDzx1GxMH3s6xrZujPNGR2LH2JaB/q426Y0UDPIN66v1ffWlF8RPX35h/PgPPGOgX0i88JcUHj46G9u22JuhF21/PWo1w1xv2yvpGg+a758HzZOi0n4odGpmNv7F/+//jh981ljs3rk9jj99KrZs2hD7Dz4RX318On7r/7giifP1uu7xOR/prtJazkFTvaX2NYHUjqcKbV+HLtTmzzuupJ+fr0jl45gje3hZ2tyXV/v9A8M2Ouz8sc7JTa/78sLfF/DQ/z4cc3MRL7xoPI4/fSrOG90Uz33Gtuy+NqxXSpLiOfbC95vDfSyqZcYOpt+vL8///PKPPfeC2LJpfYyPjrR6D6OKOWPtUIKUv1ckQmcMpms/U9vrfa+q7yun8G+nGmZtGqq6Vq7q5yL76doagu9L4b7Xan//ajPimksviPftvTwuOs/D5qHXa+WFv68vx69BVTWPnAuQqkH25W2bN8Z7/vR/xiXP2Fb014l0S04GvYf9yuc/M379tS/s6ecP3ec6zWygTv3sy1NHZ+P406fi3r86dNYzYiLa+97nXOeErqlary0fnjkRT80+HU/NnoztWzet+LvtU/h6NDQplblcx/eJ5LpXliyV9UZ9/OwylEHLkI+NbR9A6SaPzC57IRIRcdeByZg8MjvURcZKJ8i//rM/HO/5s7+M//rwd856ecknzlMzs0s+FhGnP8433PGgGzIMpa6L0eX+3qsvvSB++7rd8St/fH/MzJ6sZFbURXfkpO49mf51+UZfqvMzh89Jky33+vHI4eO2nFTXId2wsOXRkQ3x29ftjtvvfTR+53OPnHmbKjuqs1Mt0WVt3fda2G6u+zCrM1ubVUfLTbZpDlRLf3lr6/6XDpeq8mOiy24ZtOOFa27hdfa9jxw68zapd2mtU5Kq9mTXxf0zS6hSXefXBw89FTd+4qGz9ulrLr0gfvO1L4yLLzhn4ONtmt7I2Wp93/vIoXj91Zf0tY5X+v6v66++JK77vfviR559Xmf3ZqhCm9/zNcz1tr0SANJw6KnZ+D9ffPGS702bP2c/9FT73z9e1z0+5yPQnKZ6S+1rAqkdT1Vy+tmjpj8H/by/nD6OqbGHU5XVmj124uRQjQ47f6xzSrS4i9GRDfH7v/Aj8eH/9kh88L8eOPN2L9s1Ee/L6HxJr3RNm9c5OdzHolpmbD0WX4828fPL/ahizlg7dEHb95Z0xiD8TO3yqryvfOip2Xhq9mQ2/3ZWZ9bmo9eOq/i5yNX+/sWsIehP3ecPa/39q82Iex45FN84NBPbNm/ULaxivqOV7nfl8jWoquaRcwFytlwHL9s1ETf91AvifZ9+uNivE+mWkqx0fjs6siF+7sUXx//7Pz4Qd6/x84c53eOrk9lA23p5RkxEO9/7nOuc0DVtePzw0fjG92biQ587cNbvAFjpWrntr0dDk3KZy4N0meteWbJc1hsAQE7Wt30ApZs+dmLV1z+5xutXs9oJ8ts/8VD84LPGlrz8hjsejKmZ2YHfZ8p6ufCDQax1MTpoUyv9vfc+cihuv/fReP01l5x52TCzok66Iyd17sn0r67ZmosU52cun5OmWu7145HLx205Ka5DumNhy6+/5pIlv4w/orqO6u5US3RZW/e95tvNeR9mdWZrs6puuck2zYHq6S9vbdz/0uFSVX9MdNktg3S8eM3VfZ1dF2udklSxJ7suHoxZQpXqOL/+9vSxJQ+Zjzj9S5He/omH4tvTx/r+O9uiN3K2Vt/Hnz7V8zru5fu/urw3QxXa+p6vYa+37ZUAkIanT80tu4fPn7OfPDXX0pGdVuc9Pucj0JwmekvtawKpHU+VcvnZo6Y/B/2+v1w+jimyh1OFtZp9eo3z4NUarWL+WOeUZrkuXn/NJfE7/+2Rs35xeETE3ZmdL+mVLmn7Oif1+1hUz4ytx+Lr0ZS+r7qqOWPt0AVt31vSGf3yM7XLq/q+8slTc9n821mbWZuHfjqu4uciV/v7F7OGoHd1nz/08vevNSMOHz2hW1jDfEcr3e/K4WtQVc4j5wLkaqUO7j4wGb/2Z/8zXnDh+FkvL+nrRLqlJCud387v04u/V6Sk32NdNbOBNvXzjJiIZr/3Oec5oWuaNjUzG5//X99d8pD5iJWvldv+ejQ0KZe53G+XOe+VJctlvQEA5MSD5ms2tmXTqq8/d43Xr2a1E+R7HjkUu3duX/Lykk+c3ZChLnVdjK729967qOFhZkWddEdO6tyT6V/Xb/SlOD9z+Zw01XKvH49cPm7LSXEd0h0LW969c/uSL8TPq6KjujvVEl3W1n2v+XZz3odZndnarKpbbrJNc6B6+stbG/e/dLhU1R8TXXbLIB0vXnN1X2fXxVqnJFXsya6LB2OWUKU6zq+feGp2xX36nkcOxRNP5dOt3sjZWn1v3nj622p7Wce9fv9XV/dmqEJb3/M17PW2vRIA0nDq1NyKe/i9jxxq/Rcv1nmPz/kINKeJ3lL7mkBqx1OlXH72qOnPQb/vL5ePY4rs4VRhrWZPrXEevFqjVcwf65zSLNdFrt/DtZhe6ZK2r3NSv49F9czYeiy+Hk1pT65qzlg7dEHb95Z0Rr/8TO3yqr6vfPLUXDb/dtZm1uahn46r+LnI1f7+xawh6F3d5w+9/P29/AyHbmF18x2ldL+rX1XOI+cC5GqQ50mU8nUi3VKSlc5ve92nc7rHVzezgTb184yYiGa/9znnOaFrmjZ5ZDaeee7mvq6V2/56NDQpl7ncb5c575Uly2W9AQDkxIPmazaxbST27JpY9nV7dk3ExLaRgf/utU6Qjz99atmXl3ri7IYMdanrYrTXhoedFXXSHTmpc0+mf12/0Zfi/Mzlc9JUy71+PHL5uC0nxXVIdyxseaVr13nDdlR3p1qiy9q87/XksRNZ78OszmxtVtUtN9mmOVA9/eWtjftfOlyq6o+JLrtlkI4Xr7m6r7PrYq1Tkir2ZNfFgzFLqFId59fTx54e6vUp0Rs5W63vqy+9IO7/5uGI6G0d9/M9nF3cm6EKbX3P17DX2/ZKAEjDzOzq19ozsycbOpLl1XmPz/kINKeJ3lL7mkBqx1OlXH72qOnPQb/vL5ePY4rs4VRhrWZnZk8O3GgV88c6pzTLdZHr93Atple6pO3rnNTvY1E9M7Yei69HU9qTq5oz1g5d0Pa9JZ3RLz9Tu7yq7yuvdc6c0r+dtZm1eein4yp+LnK1v38xawh6V/f5Qy9//8S2kXjZGj/DoVtY3fxem9L9rn5VOY+cC5CrQZ8nUcLXiXRLSVa6Bu51n87pHl/dzAba1M++3PT3Puc8J3RN06aPnej7Wrntr0dDk3KZy/12mfNeWbJc1hsAQE48aL5m46Mjccvey5dckOzZNRHv23t5jI8OfpNgrRPkzRuX//SWeuLshgx1qetitJeGq5gVddIdOalzT6Z/Xb/Rl+L8zOVz0lTLvX48cvm4LSfFdUh3LGx5pWvXecN2VHenWqLL2rzvde6WTVnvw6zObG1W1S032aY5UD395a2N+186XKrqj4kuu2WQjhevubqvs+tirVOSKvZk18WDMUuoUh3n12NbNg71+pTojZyt1PfVl14Q1199Sdx2z6M9r+N+voezi3szVKGt7/ka9nrbXgkAaRjfuvqeO7613fP0Ou/xOR+B5jTRW2pfE0jteKqUy88eNf056Pf95fJxTJE9nCqs1ez41k0DN1rF/LHOKc1yXeT6PVyL6ZUuafs6J/X7WFTPjK3H4uvRlPbkquaMtUMXtH1vSWf0y8/ULq/y+8prnDOn9G9nbWZtHvrpuIqfi1zt71/MGoLe1X3+0MvfPz46Eu997QvjmksvOOt18z/D8dXHp3ULa5jfa7evca845fPiKueRcwFyNejzJEr4OpFuKclK18C97tM53eOrm9lAm3rdl9v43uec54SuadrYlk19f29I21+PhiblMpf77TLnvbJkuaw3AICc5PPbaTN24fat8aHrdsfkkdl48tiJOHfLppjYNjL0DYL5E+S7Dkwued01l14Q93/z8JKXl3ziPH/hd8MdD571MXFDhmGt1towTa32975s10Rc+oxt8aHrdie9dnVHburak+lfXbM1FynOz5w+J0203OvHI6eP22IprkO6Zb7lwzMn4mW7JuLumjqqu1Mt0XVt3Pda2G6u+zCrM1ubV2XLTZ4j53w+nir95a/p+186XKrqj4kuu6ffjhevufu/eTiuvvSCuPeRQ0veNuUurXVKM+ye7Lp4MGYJVav6/Pq8c0bimksviHuW2aevufSCOO+cfNao3sjdfN/fmj4Wf/3E0Yg4fS79K398f/zIs8/reR2vtmdfveB7OLu6N0NV2vier2Gvt+2VQD8efvjhtg8hjh8/Hps3b+78MaRyHBMTE3HxxRe3egylSP1rWXUen/MRaE4TvaU2z1I7nqrl8LNHTX8OBnl/OXwcU2QPpwq9NDs+OjJQo1XMH+uc0izXRa7fw7WYXumStq9z2n7/NM+Mrc/C69FTc3O1/vxyP6rq3NqhK9q8t6Qz+uVnapdX9X3lqZnZbP7trM2szUO/HQ/7c5Fr/f0LWUPQu7rPH3r9+//2+aPxvr2XxzcOzcThoydi88b1cf83D8fHvnQw3vOaH9Yt9ODC7Vtjw/p1ydzv6leV88i5ALnq8vMkdEtplrsG3rZlY/G/x7pqZgNtWusZMRefPxqffcuPt/K9zznPCV3TtIltI/Glr3+v7+/X9LMOdEVOc7mfLnPeK0uW03oDAMjFurm5ubm2DyJ309PTMT4+HlNTUzE2Ntbo+37s8NFlT5B//Wd/OH7tz/4y7nz4O2e9/H17L49nbd/a6DE2bWpm1g0Z+rZWxyu1NmxTdf29TdMdqWhzT6Z/pczAYaQ2P1P5nKTScq8fj1Q+boNKbR1Sjn5arrujJjrVEqVK8b7XwnZz34dZndlanaZbbrJNc6Ae+ktTKtfLi+lwqTo+JrosRx0tL1xzoyMb4rev2x1/cO+jZz3ENpcurXVy0cS+7Lp4cGYJvWrjHPvgoafi7Z946Kx9+ppLL4jffO0L4+ILzmnkGKqkN9pWRcfDruPl9uOrL70grr/6krMeXN/lvRnWksN9r0Gvt+2VdEmvLe/fvz+uuuqqeOU7bo/zL76swSM829fv+0zcd9u745o33xoXPX93K8fwvx/6QtzzO/8yIhL4kZ516yLa/tGiFI4hkePYunU0vvKVh1t52Hyq+/IwUr+HVvfxOR/pphJbzkHdvaU2z1I7nhK19fOOK/E5b5Y9vBxt7ct1NlvV322dk5N+9+XRkQ1x2z/50bj1vz1y1oM+ct079UopUjvHTu390w4ztn/9nmOn1FaVx2LtkLsc7mPrjH508Wdqe+m46mNN5d9Odcza9rV9rTzs328NwWk5taxbWFmv18o5nxdXfexmCikadF/uyvMkdEsuBr2H3ZXfY101s4G6tH29PIyUj60XuqZKa7X8+OGj8Y3vzcSHPnfgrIfNv2zXRPx/MmkG6pbCXK76+0Ry3ytLlsJ6oz45fM8XsDYtQz48aL4CbQ+9lU6QnThD73rpuK6mtArVaXtPpn9mYHpS+Jyk1HKvH48UPm6Qmn5brrsjncJg2t6Xe2lX37C2Nlpusk1zgK5oe19ejQ6X8jFhJXW1vHDNjW3dFOds3hhHjj1tDUJNmtqXXRdDvdo6x/729LF44qnZmD72dIxt2RjnnTMSO8a2NPb+oSSpXCsv3I/P2bwxRjasj6mjs3HOZnsz9CKVlpfjeht650Hzgx/Di37+bfGMS36wlWOIiHj8oS/Gl//z/7fV40jhGFI5junHvx733fbu2LdvX1x55ZXNv/+E9+VhpH4PLfXjIz+ltkx68yK14ylNmz/vuBKfc+hfm/tync2aB3TNoPtyRGgFEpLiOXZq7x9yMMg5dkptpXQs0Cb3sSlR136mtteOqz7WFP7tUJIUrpV1DcPTMpShn2vlnJvL+dihF8Psy/qAdAxzD9vvsYZ0pHC9PIyUjw2a1GvLh2dOxFOzT8fM7MkY37opnnnuZs1AQur4PhF7JTTP93xBGbQM+djY9gEwvPHR5S9UVno5MJi6mtIq0GVmYHp8Ts7W68fDxw2GV3dHOoU89dKuviFNTbZpDkD7dLiUjwlNW27N7fD9OpA918VQph1jWzxYHgqz/H58TivHAlTL9TbQhG3PvDjOv/iy1t7/9ONfb/04UjiGlI6D6qV+Dy314wPSkdq8SO14uqjpz4HPOeSlzmbNA1hqtd/5AeSj7T2u7fcPpUqprZSOBYBq+Zna5VV9rDn926EUfh8QlEHLUJacm8v52KEqnicBZfN7rCEvKbeY8rFBavQC3aR9AABKt77tAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoGg+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhm1s+wAgNVMzszF5ZDamj52Isa2bYuKckRgfHWn7sCAL+oE0aRMYlPkBZdAywPDMUsAcYCHrAcqgZUiDFoE6mTHUwboC2mD2AECa7NEwPB0BwzJHKIF1DECv7BmQLn1SMusbmqE1oF/mBiylC6BJZg6UQcvAoMwPSJM2YXUaAVJnTgFNMnMAgNR50Dws8Njho/G2Ox6Muw9MnnnZnl0Tccvey+PC7VtbPDJIn34gTdoEBmV+QBm0DDA8sxQwB1jIeoAyaBnSoEWgTmYMdbCugDaYPQCQJns0DE9HwLDMEUpgHQPQK3sGpEuflMz6hmZoDeiXuQFL6QJokpkDZdAyMCjzA9KkTVidRoDUmVNAk8wcACAH69s+AEjF1MzskhP4iIi7DkzGDXc8GFMzsy0dGaRPP5AmbQKDMj+gDFoGGJ5ZCpgDLGQ9QBm0DGnQIlAnM4Y6WFdAG8weAEiTPRqGpyNgWOYIJbCOAeiVPQPSpU9KZn1DM7QG9MvcgKV0ATTJzIEyaBkYlPkBadImrE4jQOrMKaBJZg4AkAsPmoe/MXlkdskJ/Ly7DkzG5BEn8bAS/UCatAkMyvyAMmgZYHhmKWAOsJD1AGXQMqRBi0CdzBjqYF0BbTB7ACBN9mgYno6AYZkjlMA6BqBX9gxIlz4pmfUNzdAa0C9zA5bSBdAkMwfKoGVgUOYHpEmbsDqNAKkzp4AmmTkAQC48aB7+xvSxE6u+/sk1Xg9dph9IkzaBQZkfUAYtAwzPLAXMARayHqAMWoY0aBGokxlDHawroA1mDwCkyR4Nw9MRMCxzhBJYxwD0yp4B6dInJbO+oRlaA/plbsBSugCaZOZAGbQMDMr8gDRpE1anESB15hTQJDMHAMiFB83D3xjbsmnV15+7xuuhy/QDadImMCjzA8qgZYDhmaWAOcBC1gOUQcuQBi0CdTJjqIN1BbTB7AGANNmjYXg6AoZljlAC6xiAXtkzIF36pGTWNzRDa0C/zA1YShdAk8wcKIOWgUGZH5AmbcLqNAKkzpwCmmTmAAC58KB5+BsT20Ziz66JZV+3Z9dETGwbafiIIB/6gTRpExiU+QFl0DLA8MxSwBxgIesByqBlSIMWgTqZMdTBugLaYPYAQJrs0TA8HQHDMkcogXUMQK/sGZAufVIy6xuaoTWgX+YGLKULoElmDpRBy8CgzA9IkzZhdRoBUmdOAU0ycwCAXHjQPPyN8dGRuGXv5UtO5Pfsmoj37b08xkedxMNK9ANp0iYwKPMDyqBlgOGZpYA5wELWA5RBy5AGLQJ1MmOog3UFtMHsAYA02aNheDoChmWOUALrGIBe2TMgXfqkZNY3NENrQL/MDVhKF0CTzBwog5aBQZkfkCZtwuo0AqTOnAKaZOYAALnY2PYBQEou3L41PnTd7pg8MhtPHjsR527ZFBPbRpzAQw/0A2nSJjAo8wPKoGWA4ZmlgDnAQtYDlEHLkAYtAnUyY6iDdQW0wewBgDTZo2F4OgKGZY5QAusYgF7ZMyBd+qRk1jc0Q2tAv8wNWEoXQJPMHCiDloFBmR+QJm3C6jQCpM6cAppk5gAAOfCgeVhkfNRJOwxKP5AmbQKDMj+gDFoGGJ5ZCpgDLGQ9QBm0DGnQIlAnM4Y6WFdAG8weAEiTPRqGpyNgWOYIJbCOAeiVPQPSpU9KZn1DM7QG9MvcgKV0ATTJzIEyaBkYlPkBadImrE4jQOrMKaBJZg4AkLr1bR8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNd40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwza2fQAlmJubi4iI6enplo8EuuPcc8+NdevWVfb36RjaoWUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZShDlS3rGNphT4YytNXykSNHIiJi6q+/FqeePlnZ++/Xke/874iImP7W12Pz5s2dPYZUjiOFY0jlOJ781jdOH8uRIz3tjfZlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnK4Ps3IX/2ZCiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX+Ddrxubr5YBvbXf/3XsXPnzrYPAzplamoqxsbGKvv7dAzt0DKUQctQBi1DGbQMZai65a997WvxvOc9r7K/D+iNfRnKoGUog5ahDFqGMlTZso6hHfZkKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDL5/E/JnT4YyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfI3aMceNF+BU6dOxWOPPRbnnnturFu3ru3DSd709HTs3LkzvvnNb1a6+XRRlz+WVfdWV8dd/hwt5mNxmo/D2epqeW5uLi6++OKiPs6lrp0S/11d/Dflsi9XrcTP9bxS/22l/rsiqvm31dHyV7/61XjBC15Q5Me8VyWvu175GDT7MWh6X/b59TGI8DGIqP5jUHXLhw8fjv8/e38fpOddH/b+H8nS6sHyrjBrsEUlY4hsOBDl2G5DHds6zZnSQBtOQhRmjlLiBOjvN9OSljbjjiHAwSYhtlPwNA0NnTJgl5mTeAbcOE2acYAQY4eHzNROj2F+PMjGRhBjyNrRrhZZWmHv7w/OypL26X64nr6f6/Wa8R/eey19r/v+vj/Xde2D7+c973lx+PDhmJqaquzPbVO2fZfteCLyHdMox9PX++Ul2fbAMPp67FmP29exB5Pt9Xc83ea8PLhsr30dPEfr69Jz1NeWT9el12McjqNbmj6OKpursuMsr2eTPGejyfC8deWcnOG5rIPnZXWemzN1peW2ZdsXjqfb6jierrSc7bWKcEylyHJMXWm5CVlesy7wXFarqz+LvVLLXvvqeC6rke157MJ5ueTntOS1R1h/26pcfxdarkrpr+tqHFd52ji2TC03IfP+W03fjrnU4/X7jsMpff0R5R+D9a/M71WcqdR9Yt3N6uK6u/rzm03p4mtSJcdXtkGPL+O9cpbXNsNxZDiGiDKOo6SWS3g+z2bNzbDmslquQomvedd4DseX+WexV2LPrM5zs7I+Py9dbLnE16PENUeUuW5rXlkXW65Sia/7ShxHd3T1GJpsuavPQRae3/qU8Ny2cV4u4Xmpi2Pv57FH1H/8bV1jZ3ldHUe3ZDmOiOGPRcvjcRzd0tfjGLXjTaMsjjNt3Lgx/s7f+TttL6M4k5OTRUfaJZ7L8dXdsdfoOZ6LH/I81GOp5bm5uYjI+TxnPKaInMflmEZX2vV1xtd6SdZjy3pcEd06to0bN8aLXvSiiOjWutriOfAcRJT5HAx6Xi7x2KrmOfAcRHT3Odi4cWNERExNTXVyfePo6nM+qmzHE5HvmNo8ntLul5dk2wPD6Oux9/W4B5X969iOp9scT3VKOy9ne+3r4DlaX8bnqLSWT5fl9XAc3VLicdTRcYnPQ9s8Z6PxvD1n3JY9lyvzvKzOc1OPkq+vI/LtC8fTbV0+Hufl5RxTGTIe0zhKOC97zarjuaxWl57P9Vru0lpL57mshudxZeOcl0t+Tktee4T1t62L6+/CNXYXn5cqOK7ylHxsXWi5CSW/RqPq2zH37XjP1pffdyx9/RHlH4P11yvL71VYd7Osu1tKvr7O+poscXxla/r4utRyltc2w3FkOIaIPMcxiCZaLvH5tOZmWHN1unReXktXn7+SeA7H1+Xn0O87NstzszLPy/iqbLnE16PENUeUuW5rrldXr7FLeg7X4ji6I8MxrGWQlrM/B23z/NanT8/tMOflPj0vZ3Ps/Tz2iHKOf9hr7FKOaz2Oo1uyHEdEe8ei5bI5jm6p+zg21vYnAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAibzQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DBvNE/jtmzZEu95z3tiy5YtbS+leJ7L7vMaPcdz8UOeh2ZkfJ4zHlNEzuNyTP2R+XnJemxZjyuiu8fW1XU1yXPgOYjI/RxkPrZBeQ48BxHdfw66vr5RZDumbMcTke+Ysh1PE/r8nPX12Pt63KPK9nw5nm5zPP3luVqf52h9nqNuyfJ6OI5uyXIc4/I8DM9zNhrPW3U8lyvzvKzOc8NKsu0Lx9Nt2Y7ndBmPzTGVIeMxZec1q47nslolPZ8lrbXrPJfV8DxWr+TntOS1R1h/20pff12yPi+OqzyZjy2LPr5GfTvmvh3vqEp/nkpff0T5x2D9zSptvUusu1nWTVWyvyaOr2zZj28tWY49w3FkOIaIPMfRFSU+n9bcDGvuH8/f+DyH4+vbc9i34x2G52ZlnpduKfH1KHHNEWWu25r7Kctz6Di6I8MxjMtzUC/Pb308tyvr8/Pi2Pt57BF5jz/LcTmObslyHBHlHEsp61yP4+gWxzGcDYuLi4u1/g0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnGFj2wsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6BtvNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMG80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwbzQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DBvNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMG80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwbzQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DBvNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMG80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwbzRfofvuuy9e97rXxa5du2LDhg1x9913D/1nLC4uxvvf//649NJLY8uWLfGiF70o3ve+91W/WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKA1m9peQCbf//7348d+7MfizW9+c/zcz/3cSH/G2972tvjkJz8Z73//++NHf/RH46mnnoqnnnqq4pUCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbdqwuLi42PYiMtqwYUP8wR/8Qfzsz/7sqY+dOHEi3vnOd8bv//7vx5EjR+KVr3xl3HrrrfEP/sE/iIiIr3zlK7Fv37748pe/HJdddlk7CwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqt7HtBfTJr/zKr8QXvvCFuPPOO+Ohhx6KN7zhDfGa17wmDh06FBERf/RHfxQveclL4o//+I/jkksuiRe/+MXxz/7ZP4unnnqq5ZUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVfJG8w05fPhw3H777fHxj388rr322njpS18a119/fVxzzTVx++23R0TEN77xjfjmN78ZH//4x+NjH/tY3HHHHfHAAw/Ez//8z7e8egAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBKm9peQF986UtfimeeeSYuvfTSMz5+4sSJeP7znx8REc8++2ycOHEiPvaxj536vI985CNx5ZVXxte+9rW47LLLGl83AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUD1vNN+Q+fn5OOecc+KBBx6Ic84554zHduzYERERF110UWzatOmMN6N/+ctfHhERhw8f9kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkIQ3mm/I5ZdfHs8880x873vfi2uvvXbFz7n66qvjBz/4QTzyyCPx0pe+NCIivv71r0dExMUXX9zYWgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB6bVhcXFxsexFZzM/Px8MPPxwRP3xj+dtuuy1+8id/Ms4///zYs2dPvPGNb4zPfe5z8YEPfCAuv/zy+Ju/+Zv4sz/7s9i3b1/8k3/yT+LZZ5+Nv/f3/l7s2LEj/v2///fx7LPPxlvf+taYnJyMT37yky0fHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAVbzRfoXvvvTd+8id/ctnHf+mXfinuuOOOOHnyZPzGb/xGfOxjH4u//uu/junp6fj7f//vx0033RQ/+qM/GhERjz/+ePzLf/kv45Of/GSce+658drXvjY+8IEPxPnnn9/04QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA18UbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3b2PYCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPrGG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMwbzVdgcXEx5ubmYnFxse2lACPSMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUon44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvLpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUohzear8DRo0djamoqjh492vZSgBHpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/l0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUwxvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANGxT2wsgh9ljCzEzvxBzx0/G5LbNMX3uRExtn2h7WUCNdA8Mw8yAwekFyqdjyEnbUC79ArTLHCbCPoAstAxl0zA0R2+Qm8ahfDoGAKiW6ysYnF6gXhqjb+x5oA/MOqiGloD1mBOQj67Jwl4GhmVuQPt0CP2ieSiPboEszDPIRdNQHT0BAOTgjeYZ2+NHno4b7noo7j80c+pj+/dOxy0H9sWundtaXBlQF90DwzAzYHB6gfLpGHLSNpRLvwDtMoeJsA8gCy1D2TQMzdEb5KZxKJ+OAQCq5foKBqcXqJfG6Bt7HugDsw6qoSVgPeYE5KNrsrCXgWGZG9A+HUK/aB7Ko1sgC/MMctE0VEdPAAB5bGx7AZRt9tjCspuDiIj7Ds3E2+96KGaPLbS0MqAuugeGYWbA4PQC5dMx5KRtKJd+AdplDhNhH0AWWoayaRiaozfITeNQPh0DAFTL9RUMTi9QL43RN/Y80AdmHVRDS8B6zAnIR9dkYS8DwzI3oH06hH7RPJRHt0AW5hnkommojp4AAHLxRvOMZWZ+YdnNwZL7Ds3EzLwbBMhG98AwzAwYnF6gfDqGnLQN5dIvQLvMYSLsA8hCy1A2DUNz9Aa5aRzKp2MAgGq5voLB6QXqpTH6xp4H+sCsg2poCViPOQH56Jos7GVgWOYGtE+H0C+ah/LoFsjCPINcNA3V0RMAQC7eaJ6xzB0/uebjR9d5HCiP7oFhmBkwOL1A+XQMOWkbyqVfgHaZw0TYB5CFlqFsGobm6A1y0ziUT8cAANVyfQWD0wvUS2P0jT0P9IFZB9XQErAecwLy0TVZ2MvAsMwNaJ8OoV80D+XRLZCFeQa5aBqqoycAgFy80Txjmdy6ec3Hz1vncaA8ugeGYWbA4PQC5dMx5KRtKJd+AdplDhNhH0AWWoayaRiaozfITeNQPh0DAFTL9RUMTi9QL43RN/Y80AdmHVRDS8B6zAnIR9dkYS8DwzI3oH06hH7RPJRHt0AW5hnkommojp4AAHLxRvOMZXrHROzfO73iY/v3Tsf0jomGVwTUTffAMMwMGJxeoHw6hpy0DeXSL0C7zGEi7APIQstQNg1Dc/QGuWkcyqdjAIBqub6CwekF6qUx+saeB/rArINqaAlYjzkB+eiaLOxlYFjmBrRPh9Avmofy6BbIwjyDXDQN1dETAEAu3miesUxtn4hbDuxbdpOwf+903HpgX0xtd4MA2egeGIaZAYPTC5RPx5CTtqFc+gVolzlMhH0AWWgZyqZhaI7eIDeNQ/l0DABQLddXMDi9QL00Rt/Y80AfmHVQDS0B6zEnIB9dk4W9DAzL3ID26RD6RfNQHt0CWZhnkIumoTp6AgDIZcPi4uJi24so3dzcXExNTcXs7GxMTk62vZxWzB5biJn5hTh6/GSct3VzTO+YcHNAUXQ8PN3TRVruLjODYfS9Zb2QRZ9b1jGZ9Lnls2mbkvW9Zf2SRd9bplzm8Jn62rJ9QDZa1jI59K1lDZNRVzvWGwynqy2vRuOwspJa1jGsrqSWgdVpmaa5vqqHlnPSS/9ouVkaoy5dbdmeh+F0tWXWZtZxNi2PRkt0jZa7x5xgWDruPl0ziBJatpdhfSW03CRzg1JlalmH9FmmlgeleTLK3rJu6YvsLWOe9YWW+0PTuWm5WXqiLlqGHLQM5djU9gLIYWp78zcESzclc8dPxuS2zTF9rpsSaNLp3S/1+I2Z7+sRWNE41wrO+fRNG9fWEVqDKlXdsT6hG9o6R9fFbKFPsvVbErMGiOjWHDaX2uP7yZCDlqFsozasQxi+gy7dBwHVW6lx50soy7jnas0DANn5Wgh90NZ1vV6gXk035msENG2lPffSF+xoe1kAtfLzLmTS5r50Pwqsx5zoFtcyVKHrXdvnDMrPegHDGnRumA9Qny5fi2ofqldF89qEZvkeLJBFl+89sjD7adLZTc8eW4hHvjdv/8EI9AQAkIM3mqdIjx95Om6466G4/9DMqY/t3zsdtxzYF7t2bmtxZdA/egTqZMZAM7QG3aVPoA5mC9AEswboGnOpX7zekIOWoX06BB0A6zMnoF80DwBk53qHPrDPgSqYJTTNngMYnJlJF9mXAAzKOYM+sM9pir0GrMZ8gH7SPnSTNqEMWgXoH7OfNtl/UB09AQCUa2PbC4BhzR5bWHYDEhFx36GZePtdD8XssYWWVgb9o0egTmYMNENr0F36BOpgtgBNMGuArjGX+sXrDTloGdqnQ9ABsD5zAvpF8wBAdq536AP7HKiCWULT7DmAwZmZdJF9CcCgnDPoA/ucpthrwGrMB+gn7UM3aRPKoFWA/jH7aZP9B9XREwBA2bzRPMWZmV9YdgOy5L5DMzEz7yYEmqJHoE5mDDRDa9Bd+gTqYLYATTBrgK4xl/rF6w05aBnap0PQAbA+cwL6RfMAQHaud+gD+xyogllC0+w5gMGZmXSRfQnAoJwz6AP7nKbYa8BqzAfoJ+1DN2kTyqBVgP4x+2mT/QfV0RMAQNm80TzFmTt+cs3Hj67zOFAdPQJ1MmOgGVqD7tInUAezBWiCWQN0jbnUL15vyEHL0D4dgg6A9ZkT0C+aBwCyc71DH9jnQBXMEppmzwEMzsyki+xLAAblnEEf2Oc0xV4DVmM+QD9pH7pJm1AGrQL0j9lPm+w/qI6eAADK5o3mKc7k1s1rPn7eOo8D1dEjUCczBpqhNegufQJ1MFuAJpg1QNeYS/3i9YYctAzt0yHoAFifOQH9onkAIDvXO/SBfQ5UwSyhafYcwODMTLrIvgRgUM4Z9IF9TlPsNWA15gP0k/ahm7QJZdAqQP+Y/bTJ/oPq6AkAoGzeaJ7iTO+YiP17p1d8bP/e6ZjeMdHwiqC/9AjUyYyBZmgNukufQB3MFqAJZg3QNeZSv3i9IQctQ/t0CDoA1mdOQL9oHgDIzvUOfWCfA1UwS2iaPQcwODOTLrIvARiUcwZ9YJ/TFHsNWI35AP2kfegmbUIZtArQP2Y/bbL/oDp6AgAoW6o3mr/xxhtjw4YNZ/zzspe9bM3/5siRI/HWt741LrrootiyZUtceuml8Sd/8icNrZhRTG2fiFsO7Ft2I7J/73TcemBfTG13EwJN0SNQJzMGmqE16C59AnUwW4AmmDVA15hL/eL1hhy0DO3TIegAWJ85Af2ieQAgO9c79IF9DlTBLKFp9hzA4MxMusi+BGBQzhn0gX1OU+w1YDXmA/ST9qGbtAll0CpA/5j9tMn+g+roCQCgbBsWFxcX215EVW688cb4xCc+EZ/+9KdPfWzTpk0xPT294ucvLCzE1VdfHS94wQvi137t1+JFL3pRfPOb34ydO3fGj/3Yjw38987NzcXU1FTMzs7G5OTk2MfBYGaPLcTM/EIcPX4yztu6OaZ3TLgBYWQ6Ho8e6Qot52TG9I+W26E1qqbl6uiTNmk5L7OlX7RMW8yaamkZxteFuaTl5nTh9SYvLTdHy9RJy4PRIV3WVMc6gHplOCebE5Cj5UFpnsz61DJkpmXG5XqnG7RcL/ucpmg5N7OkP7rSsj0H4+lKyzTDzMyr5JbtS3hOyS1DE0o4Z+iYcZWwz/ugDy3ba/RBH1qug/lA12i5GdqnbloejTbpGi2vTKuURsswvi7Mfi33Vxf2H9XRcrv0RFW0DDloGcqxqe0FVG3Tpk1x4YUXDvS5H/3oR+Opp56Kz3/+87F58+aIiHjxi19c4+qo0tR2Nx3QFXoE6mTGQDO0Bt2lT6AOZgvQBLMG6BpzqV+83pCDlqF9OgQdAOszJ6BfNA8AZOd6hz6wz4EqmCU0zZ4DGJyZSRfZlwAMyjmDPrDPaYq9BqzGfIB+0j50kzahDFoF6B+znzbZf1AdPQEAlCndG80fOnQodu3aFVu3bo2rrroqbr755tizZ8+Kn/vf/tt/i6uuuire+ta3xh/+4R/GBRdcEL/wC78QN9xwQ5xzzjmr/h0nTpyIEydOnPr3ubm5yo8DqJeOIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP5dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylE/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUO5Nra9gCq96lWvijvuuCPuueee+NCHPhSPPvpoXHvttXH06NEVP/8b3/hGfOITn4hnnnkm/uRP/iTe/e53xwc+8IH4jd/4jTX/nptvvjmmpqZO/bN79+46DgeokY4hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/l0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ7k2LC4uLra9iLocOXIkLr744rjtttviLW95y7LHL7300jh+/Hg8+uijcc4550RExG233Rb/7t/9u/jOd76z6p974sSJOHHixKl/n5ubi927d8fs7GxMTk5WfyBA5XQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfDqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcq1qe0F1Gnnzp1x6aWXxsMPP7zi4xdddFFs3rz51JvMR0S8/OUvjyeeeCIWFhZiYmJixf9uy5YtsWXLllrWDDRDx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfDqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahXBvbXkCd5ufn45FHHomLLrpoxcevvvrqePjhh+PZZ5899bGvf/3rcdFFF636JvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA40r1RvPXX399fPazn43HHnssPv/5z8frX//6OOecc+LgwYMREXHdddfFO97xjlOf/8//+T+Pp556Kt72trfF17/+9fjv//2/x2/+5m/GW9/61rYOAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiBTW0voErf/va34+DBg/Hkk0/GBRdcENdcc0188YtfjAsuuCAiIg4fPhwbN2489fm7d++OP/3TP41/82/+Tezbty9e9KIXxdve9ra44YYb2joEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAdSvdH8nXfeuebj995777KPXXXVVfHFL36xphUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALLex7QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9I03mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjYprYXAIxn9thCzMwvxNzxkzG5bXNMnzsRU9sn2l4WUBPNw3K6AOpivkAZtAoMw8yAfHRNl9mfQNvMIRidfoA2mUFwJk0AwzI3oNs0CtBP5j8Ao3D+oG32INBnZiCwxDyA0WiH7Oxx6Cftw2i0A5TK/IKyaBbIwjyDHLTcLM83sB5zAqA5Zi4AUBVvNA8Fe/zI03HDXQ/F/YdmTn1s/97puOXAvti1c1uLKwPqoHlYThdAXcwXKINWgWGYGZCPruky+xNomzkEo9MP0CYzCM6kCWBY5gZ0m0YB+sn8B2AUzh+0zR4E+swMBJaYBzAa7ZCdPQ79pH0YjXaAUplfUBbNAlmYZ5CDlpvl+QbWY04ANMfMBQCqtLHtBQCjmT22sOzGICLivkMz8fa7HorZYwstrQyog+ZhOV0AdTFfoAxaBYZhZkA+uqbL7E+gbeYQjE4/QJvMIDiTJoBhmRvQbRoF6CfzH4BROH/QNnsQ6DMzEFhiHsBotEN29jj0k/ZhNNoBSmV+QVk0C2RhnkEOWm6W5xtYjzkB0BwzFwComjeah0LNzC8suzFYct+hmZiZd3MAmWgeltMFUBfzBcqgVWAYZgbko2u6zP4E2mYOwej0A7TJDIIzaQIYlrkB3aZRgH4y/wEYhfMHbbMHgT4zA4El5gGMRjtkZ49DP2kfRqMdoFTmF5RFs0AW5hnkoOVmeb6B9ZgTAM0xcwGAqnmjeSjU3PGTaz5+dJ3HgbJoHpbTBVAX8wXKoFVgGGYG5KNrusz+BNpmDsHo9AO0yQyCM2kCGJa5Ad2mUYB+Mv8BGIXzB22zB4E+MwOBJeYBjEY7ZGePQz9pH0ajHaBU5heURbNAFuYZ5KDlZnm+gfWYEwDNMXMBgKp5o3ko1OTWzWs+ft46jwNl0TwspwugLuYLlEGrwDDMDMhH13SZ/Qm0zRyC0ekHaJMZBGfSBDAscwO6TaMA/WT+AzAK5w/aZg8CfWYGAkvMAxiNdsjOHod+0j6MRjtAqcwvKItmgSzMM8hBy83yfAPrMScAmmPmAgBV80bzUKjpHROxf+/0io/t3zsd0zsmGl4RUCfNw3K6AOpivkAZtAoMw8yAfHRNl9mfQNvMIRidfoA2mUFwJk0AwzI3oNs0CtBP5j8Ao3D+oG32INBnZiCwxDyA0WiH7Oxx6Cftw2i0A5TK/IKyaBbIwjyDHLTcLM83sB5zAqA5Zi4AUDVvNA+Fmto+Ebcc2LfsBmH/3um49cC+mNru5gAy0TwspwugLuYLlEGrwDDMDMhH13SZ/Qm0zRyC0ekHaJMZBGfSBDAscwO6TaMA/WT+AzAK5w/aZg8CfWYGAkvMAxiNdsjOHod+0j6MRjtAqcwvKItmgSzMM8hBy83yfAPrMScAmmPmAgBV27C4uLjY9iJKNzc3F1NTUzE7OxuTk5NtL4eemT22EDPzC3H0+Mk4b+vmmN4x4cZgBDqmFJpfm5b7SRf5aJmuMF/Go2WaotV6aZls+joztExmfepay+Xp0/5kcFqmSeZQfbScn376Qct0lRk0OB33gyby0zJVMzfaoWUGpdFu0zLk0MWWzX8YXhdbhqZlOH9ouWwZ9iDV0DJ9lHEGahlG07V5oGVK0bV2ukbL5bPH0XE/aT8fLTdDO9RNy9TF/GqWlhmXZrtByzC+LswzLcP4tNysLjzfUJc+tVwnc4K2aZk+yTxztQw5aBnKsantBVTpxhtvjJtuuumMj1122WXx1a9+dd3/9s4774yDBw/Gz/zMz8Tdd99d0wqhelPb89wMAOvTPCynC6Au5guUQavAMMwMyEfXdJn9CbTNHILR6QdokxkEZ9IEMCxzA7pNowD9ZP4DMArnD9pmDwJ9ZgYCS8wDGI12yM4eh37SPoxGO0CpzC8oi2aBLMwzyEHLzfJ8A+sxJwCaY+YCAFVJ9UbzERGveMUr4tOf/vSpf9+0af1DfOyxx+L666+Pa6+9ts6lAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEREwjea37RpU1x44YUDf/4zzzwT//Sf/tO46aab4v77748jR47UtzgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACASPhG84cOHYpdu3bF1q1b46qrroqbb7459uzZs+rnv/e9740XvOAF8Za3vCXuv//+gf6OEydOxIkTJ079+9zc3NjrBpqlY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQro1tL6BKr3rVq+KOO+6Ie+65Jz70oQ/Fo48+Gtdee20cPXp0xc//i7/4i/jIRz4SH/7wh4f6e26++eaYmpo69c/u3burWD7QIB1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvLpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUon44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahnJtWFxcXGx7EXU5cuRIXHzxxXHbbbfFW97yljMeO3r0aOzbty9+93d/N1772tdGRMQv//Ivx5EjR+Luu+9e8889ceJEnDhx4tS/z83Nxe7du2N2djYmJycrPw6gejqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOXa1PYC6rRz58649NJL4+GHH1722COPPBKPPfZYvO51rzv1sWeffTYiIjZt2hRf+9rX4qUvfemKf+6WLVtiy5Yt9SwaaISOIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP5dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylE/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUO5Ur/R/Pz8fDzyyCPxi7/4i8see9nLXhZf+tKXzvjYu971rjh69Gj89m//duzevbupZQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9k+qN5q+//vp43eteFxdffHE8/vjj8Z73vCfOOeecOHjwYEREXHfddfGiF70obr755ti6dWu88pWvPOO/37lzZ0TEso8DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVCnVG81/+9vfjoMHD8aTTz4ZF1xwQVxzzTXxxS9+MS644IKIiDh8+HBs3Lix5VUCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfZfqjebvvPPONR+/995713z8jjvuqG4xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKtI9UbzsJrZYwsxM78Qc8dPxuS2zTF97kRMbZ9oe1lQFB0BNMfMpQn2GbRLg0BGZhvQBLMGGIRZwensB+gn7UO3aBLGpyMoj24hP50DAE1z/QHV0hSwErOBUtirAO0wfymZ/QuQh5kO1dNVLl5PYIl5AJzNXID26A/6QetAF5lN8Bw9AGsxIwAAusUbzZPe40eejhvueijuPzRz6mP7907HLQf2xa6d21pcGZRDRwDNMXNpgn0G7dIgkJHZBjTBrAEGYVZwOvsB+kn70C2ahPHpCMqjW8hP5wBA01x/QLU0BazEbKAU9ipAO8xfSmb/AuRhpkP1dJWL1xNYYh4AZzMXoD36g37QOtBFZhM8Rw/AWswIAIDu2dj2AqBOs8cWlt2ERETcd2gm3n7XQzF7bKGllUE5dATQHDOXJthn0C4NAhmZbUATzBpgEGYFp7MfoJ+0D92iSRifjqA8uoX8dA4ANM31B1RLU8BKzAZKYa8CtMP8pWT2L0AeZjpUT1e5eD2BJeYBcDZzAdqjP+gHrQNdZDbBc/QArMWMAADoJm80T2oz8wvLbkKW3HdoJmbm3YjAenQE0BwzlybYZ9AuDQIZmW1AE8waYBBmBaezH6CftA/dokkYn46gPLqF/HQOADTN9QdUS1PASswGSmGvArTD/KVk9i9AHmY6VE9XuXg9gSXmAXA2cwHaoz/oB60DXWQ2wXP0AKzFjAAA6CZvNE9qc8dPrvn40XUeB3QE0CQzlybYZ9AuDQIZmW1AE8waYBBmBaezH6CftA/dokkYn46gPLqF/HQOADTN9QdUS1PASswGSmGvArTD/KVk9i9AHmY6VE9XuXg9gSXmAXA2cwHaoz/oB60DXWQ2wXP0AKzFjAAA6CZvNE9qk1s3r/n4ees8DugIoElmLk2wz6BdGgQyMtuAJpg1wCDMCk5nP0A/aR+6RZMwPh1BeXQL+ekcAGia6w+olqaAlZgNlMJeBWiH+UvJ7F+APMx0qJ6ucvF6AkvMA+Bs5gK0R3/QD1oHushsgufoAViLGQEA0E3eaJ7UpndMxP690ys+tn/vdEzvmGh4RVAeHQE0x8ylCfYZtEuDQEZmG9AEswYYhFnB6ewH6CftQ7doEsanIyiPbiE/nQMATXP9AdXSFLASs4FS2KsA7TB/KZn9C5CHmQ7V01UuXk9giXkAnM1cgPboD/pB60AXmU3wHD0AazEjAAC6yRvNk9rU9om45cC+ZTcj+/dOx60H9sXUdjcisB4dATTHzKUJ9hm0S4NARmYb0ASzBhiEWcHp7AfoJ+1Dt2gSxqcjKI9uIT+dAwBNc/0B1dIUsBKzgVLYqwDtMH8pmf0LkIeZDtXTVS5eT2CJeQCczVyA9ugP+kHrQBeZTfAcPQBrMSMAALppw+Li4mLbiyjd3NxcTE1NxezsbExOTra9HFYwe2whZuYX4ujxk3He1s0xvWPCTQhn0PH6dEQJtEwWfZ+5Wm5G3/cZ9dPy2jRIKbTMMMy27tIymfR51mgZBtflWaHl5nV5P1AuLXef9hmElpujSerSp451RGZZW9YtfZO15bXonIz62DJkpOW8XH/0i5brpymaoOXymA2spIst26swvC62THnM3/ZpeXT2L12iZRhPF2a6jsmmC121IWvLfX096a+sLVfBPKAkWm6GuUDdtLw6/VESLY9O63SJllliNpVNy9XSA23RchnMCNajZchBy1COTW0vAJowtd2NR5ct3SjOHT8Zk9s2x/S5Xq8u0hHr0TJUp46Zq1HO5tyem+a7T4MMQsuUxmxbmZZhdaP0YdYwDjO5P8wKTmc/5GOeMwjtd5+W+0WTeWm5OTqiLjquj25pkpbboXOqpmUAItY+H7j+gGppKj/X2IzCbOgeLa/MXqWrNEt2fZ+/Gi9b3/cvz9EyGfVtX5vpUL02uurb7GqSOUmTtNxt5gGD0nJ/mAu5abnb9FcubTEMrbPE7OiHUl5nswme08UeSpkl0AddnBE8x7wEgP7xRvNAqx4/8nTccNdDcf+hmVMf2793Om45sC927dzW4sqAYWgZuk2j0C+ahxy0DDloGVanD5pmzwHkYJ5DDlqGHLQM5dMx5KBlyEHLAEQ4HwBUyUyFHLQMZdEs5KZxyEHLZGRfAyUyuyAHLUMOWoYctAz10BYwCrOjH7zOQBXMEoDBmJcA0E8b214A0F+zxxaW3YRERNx3aCbeftdDMXtsoaWVAcPQMnSbRqFfNA85aBly0DKsTh80zZ4DyME8hxy0DDloGcqnY8hBy5CDlgGIcD4AqJKZCjloGcqiWchN45CDlsnIvgZKZHZBDlqGHLQMOWgZ6qEtYBRmRz94nYEqmCUAgzEvAaC/vNE80JqZ+YVlNyFL7js0EzPzbkSgBFqGbtMo9IvmIQctQw5ahtXpg6bZcwA5mOeQg5YhBy1D+XQMOWgZctAyABHOBwBVMlMhBy1DWTQLuWkcctAyGdnXQInMLshBy5CDliEHLUM9tAWMwuzoB68zUAWzBGAw5iUA9Jc3mgdaM3f85JqPH13ncaAbtAzdplHoF81DDlqGHLQMq9MHTbPnAHIwzyEHLUMOWoby6Rhy0DLkoGUAIpwPAKpkpkIOWoayaBZy0zjkoGUysq+BEpldkIOWIQctQw5ahnpoCxiF2dEPXmegCmYJwGDMSwDoL280D7RmcuvmNR8/b53HgW7QMnSbRqFfNA85aBly0DKsTh80zZ4DyME8hxy0DDloGcqnY8hBy5CDlgGIcD4AqJKZCjloGcqiWchN45CDlsnIvgZKZHZBDlqGHLQMOWgZ6qEtYBRmRz94nYEqmCUAgzEvAaC/vNE80JrpHROxf+/0io/t3zsd0zsmGl4RMAotQ7dpFPpF85CDliEHLcPq9EHT7DmAHMxzyEHLkIOWoXw6hhy0DDloGYAI5wOAKpmpkIOWoSyahdw0DjlomYzsa6BEZhfkoGXIQcuQg5ahHtoCRmF29IPXGaiCWQIwGPMSAPrLG80DrZnaPhG3HNi37GZk/97puPXAvpja7kYESqBl6DaNQr9oHnLQMuSgZVidPmiaPQeQg3kOOWgZctAylE/HkIOWIQctAxDhfABQJTMVctAylEWzkJvGIQctk5F9DZTI7IIctAw5aBly0DLUQ1vAKMyOfvA6A1UwSwAGY14CQH9tWFxcXGx7EaWbm5uLqampmJ2djcnJybaXA8WZPbYQM/MLcfT4yThv6+aY3jHR+E2IjmF8WoZu60Kjg9IyjK8LzWsZxqdlyEHLsLou9FESLY/PnqMLtAzj68I81zKMT8uQQ9st6xjG13bHEVqGKmgZctAyUBUtl60L5wO6Qcswvi7MVC3D+LQMZelCs6vRMoyvC41rGcanZTLqwr7uGx3D+Lowu7QM49My5KBlyEHLUI8utNU0LcP4ujA7tFy/LrzO5Kfl/MySftAyjK8L81LLkIOWoRyb2l4AwNR2X6iBDLQM3aZR6BfNQw5ahhy0DKvTB02z5wByMM8hBy1DDlqG8ukYctAy5KBlACKcDwCqZKZCDlqGsmgWctM45KBlMrKvgRKZXZCDliEHLUMOWoZ6aAsYhdnRD15noApmCcBgzEsA6J+NbS8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoG+80TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw7zRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDNrW9AKja7LGFmJlfiLnjJ2Ny2+aYPnciprZPtL0sSE13AKMxP+kC+xCqoSWA6pmt0B79Qffokr6w14EqmCXQHL2RgX0M1MmMgerpCgDoKtcpQJXMFPrAPody6BWgPmYso7J3oH46A6ifWcu47CEoj26BKpkpUB7dAisxGyAfXQN0i7lMk+w3AIDqeKN5Unn8yNNxw10Pxf2HZk59bP/e6bjlwL7YtXNbiyuDvHQHMBrzky6wD6EaWgKontkK7dEfdI8u6Qt7HaiCWQLN0RsZ2MdAncwYqJ6uAICucp0CVMlMoQ/scyiHXgHqY8YyKnsH6qczgPqZtYzLHoLy6BaokpkC5dEtsBKzAfLRNUC3mMs0yX4DAKjWxrYXAFWYPbYQh757NL7ynbl409WXxK/87z8S2yfOiYiI+w7NxNvveihmjy20vErIYfbYQjzyvfn4q8N/G4e+ezQ++/W/iQe++bdnfI7ugJKcPtce+Zv5RmbX7LGFZV/kjDA/adaw+7CNVqAE4850bQF9tdb8c70M7amyP9c5UI1s50WzgdX2QLa9DgyvinOEWQLN8HNaZLHSeWP7xDmxb/fOeGzm+/HgN59y3wKM7Ltzx+Oxme/HwR/fEx/95b936nzpXAmjq/uez9cuAYBR+FoZ9Fsd9xG+30VmS808+M2n4ptPfj9+bPfOU+fNCPuc/ury16WclwCqsdKsN2NZMuy1gL0D9dPZ2rp8DwPUp+r2zVoG5XcRIY8munWtCv3hd8KgPFVfCzjvQw6rzYb/8c2/jc9+/W/i0HeP6hwKU9f9v3M/2djTNMX3U6jT2bPsu3PH4//6wy/bbwAAFdrU9gJgXI8feXrZjenVP/L8+A8HL49/9ft/FccWnon7Ds3EzPxCTG2faHGlUL5BeluiO6AEK821/Xun45YD+2LXzm21/b0z8wvLvsi5xPykKcPsw7ZagRKMM9O1BfTVevPP9TK0p6r+XOdAdTKdF80G1toDx08+k2avA8Or6hyR6bwJXeXntMjk7PPG9olz4j8cvDxu/9yj8cHPPHzq4+5bgGE9fuTpuOET/0/c//CTpz52+vnSuRJGU+c9n69dAgCj8LUy6Le67iN8v4usBv3dZPucvun616WclwDGt9qsf+/PvDIe+ObfrvjfmLH9Mcq1gPMz1E9nq+v6PQxQjzraN2sZhN9FhFzqnv2uVaFf/E4YlKfKawHnfchjpdlw+nn9Hf/1S6c+rnMoQx33/879ZGNP0yTfk6MuK82ya/dOxy/9xIvj8488ecZ710XYbwAAo9rY9gJgHLPHFpbdOEREfO7hJ+P2zz0ab77mklMfO3r8ZNPLg1SG6W2J7oAuW22u3XdoJt5+10Mxe2yhtr97bp35aH7ShEH3YZutQAlGnenaAvpqkPnnehnaU0V/rnOgWlnOi2YD6+2BHzy7uOZ/X8peB4ZX5Tkiy3kTusrPaZHN2eeNN19zSdz+uUfjc6e9MXSE+xZgOKfOl2fNkrPPl86VMLy67vl87RJo0+HDh+PBBx/s7D+HDx9u+ymCzvK1Mui3Ou8jfL+LjIb93WT7nL4o4etSzksA41lr1r/7D7+84v+jZYkZm9+o1wLOz1A/na2shHsYoHp1tW/Wsh6/iwj51Dn7XatC//idMChPVdcCzvuQy0qzwXkdylb1/b9zP9nY0zTN9+Sow2qz7P5DM6u+d12E/QYAMIpNbS8AxjEzv7DsxmHJ5x5+Mt589XM3D+dt3dzUsiClYXpbojugy9aaa/cdmomZ+YWY2j5Ry989uc58ND9pwqD7sM1WoASjznRtAX01yPxzvQztqaI/1zlQrSznRbOB9fbAs+v8z11K2evA8Ko8R2Q5b0JX+Tktsjn7vHH57p3xwc88vOLnum8BBjXo+dK5EoZX1z2fr10CbTl8+HC87GUvj6efPtb2Ula1bdv2+OpXvxJ79uxpeynQOb5WBv1W532E73eR0bC/m2yf0xclfF3KeQlgPGvN+vsPzcQv/8SLV/1vzdj8Rr0WcH6G+ulsZSXcwwDVq6t9s5b1+F1EyKfO2e9aFfrH74RBeaq6FnDeh1xWmg3O61C2qu//nfvJxp6mab4nRx1Gee+6CPsNAGAUrb/R/Ac/+MF44xvfGDt37mx7KRRo7vjJNR8/8YNnIyJi/97pmN7hCyIwjkF7W6I7oOvWm2tH13l8HNM7JmL/3um4b4UvgpqfNGXQfdhmK1CCUWe6toC+GmT+XTJ9rutlaEkV96uuc6BaWb6OZDaw3h44tvBMir0ODK/Kc0SW8yZ0lZ/TIpuzzxtn/+zT2dy3AIMY5HzpXAmjqeuez9cugbbMzMzE008fi1e9+T0xedGL217OMnPfeSz+8qM3xczMjDeahxX4Whn0W533Eb7fRUbD/G6yfU6flPB1KeclgPGsN+tXY8b2w6jXAs7PUD+drayEexigenW1b9ayHr+LCPnUOftdq0L/+J0wKE9V1wLO+5DLSrPBeR3KVvX9v3M/2djTNM335KjDsO9dF2G/AQCMamPbC3jnO98Zu3btil/4hV+Iz3zmM20vh8JMbt285uNbNm2M/Xun49YD+2JquxsGGMcgvS3RHVCC9ebaees8Po6p7RNxy4F9sX/v9BkfNz9p0qD7sM1WoASjznRtAX01yPxzvQztqaI/1zlQrSznRbOB9fbA1LbNKfY6MLwqzxFZzpvQVX5Oi2zOPm+c/rNPK3HfAgxivfPlzm2bnSthRHXd8/naJdC2yYteHOfvuaxz/0xe9OK2nxroNF8rg36r8z7C97vIaNDfTbbP6ZsSvi7lvAQwnvVm/d953jYztsdGvRZwfob66WxlJdzDANWrq32zlvX4XUTIp87Z71oV+sfvhEF5qroWcN6HXFaaDc7rULaq7/+d+8nGnqZpvidHHQb5f6qczn4DABjdprYX8MQTT8THP/7xuP322+PVr3517NmzJ9785jfHL//yL8fu3buH+rNuvPHGuOmmm8742GWXXRZf/epXV/z8D3/4w/Gxj30svvzlL0dExJVXXhm/+Zu/GT/+4z8+2sHQuOkdE7F/73Tcd2hm2WPX7p2OH7lgR/zOwcvdLEAF1upt///b293/4ifivK2bY3rHhO6Azltvrk3vqHeO7dq5LX7n4OUxM78QR4+fND9pxSD7sO1WoASjzHRtAX016PxzvQztGbc/1zlQvQznRbOBQfbA1PaJ4vc6MLyqzxEZzpvQVX5Oi4xOP288u7gY1+6djvvdtwBjWO98+dIX7IgXTm5tYWWQQx33fL52CQCMwtfKoN/qvo/w/S6yWe+8uef87fFnv/q/2ef0Tilfl3JeAhjderP+wsmtZmyPjXMt4PwM9dPZcqXcwwDVqrN9s5a1+F1EyKmu2e9aFfrJ74RBeaq4FnDeh3zOng3P265zKF2V9//O/WRjT9MG35OjauvNspe+YEf82a/+b/YbAEAFNra9gG3btsV1110Xf/7nfx6HDh2KX/zFX4yPfOQjcckll8RrXvOa+PjHPx4nT54c+M97xSteEd/5zndO/fMXf/EXq37uvffeGwcPHow///M/jy984Quxe/fu+Ef/6B/FX//1X1dxaDRgavtE3HJgX+zfO33Gx/fvnY7fOrAvLp4+180CVGSt3m79f3v7X/c8L176gh26A4qw3lxrYpZNbZ+Il75gh/lJq9bbh11oBUow7EzXFtBXw8w/18vQnnH6c50D9Sj9vGg2MOgeKH2vA8Or4xxhlkA9/JwWWS2dN/a+8Ly41X0LMKb1zpfeZB7GV/U9n69dAgCj8LUy6Lcm7iN8v4tM1jtv7n3hefY5vVTS16WclwBGM8isN2P7a9xrAXsH6qezM5V0DwNUp+72zVpW43cRIa86unWtCv3ld8KgPONeCzjvQ06nz4aLp8/VOSRQ1f2/cz/Z2NO0xfdTqNJ6s+yFk1vtNwCAimxYXFxcbHsRZ1tcXIxPf/rTcccdd8Tdd98d5557bnzve99b97+78cYb4+67747/+T//50h/7zPPPBPPe97z4oMf/GBcd911A/93c3NzMTU1FbOzszE5OTnS3814Zo8txMz8Qhw9fjLO27o5pndMuFFgKDoenN7oMi0zCnOte7TcTVphWFoejLboOi1TF/OvWVqmDTqvnpbJwGzQsj1AFn1vuQ7mA23Q8mj0SpfU0bE9Ds3LeE42S+ij0lvWLfxQ6S2X5MEHH4wrr7wyXv3O2+P8PZe1vZxlnjr8tfjU+94UDzzwQFxxxRVtL4chabk5riGok5a7zwxgEFp+jmYoWZ0tawOa47xMW8z6amVr2f6gr7K13CfmFkt03C/az6vrLdt7MJiut9wUM4PSaXl85gBdoOVm6J26abl9OqcKWs7DTOi3jC3b0/RRxpb7zizrJy1DDlqGcmxqewEr2bBhQ2zatCk2bNgQi4uLcfLkyYH/20OHDsWuXbti69atcdVVV8XNN98ce/bsGei/PXbsWJw8eTLOP//8NT/vxIkTceLEiVP/Pjc3N/D6qMfUdjcLDEfHo9MbXaJlqmCutU/LZdAK69HyaLRF12iZpph/9dIyXaDz8WmZjPo4G7R8pj7uAXLQcv3MB5qg5WrolTY10bE9DvXrwznZLKEPsrWsW/oqW8vQV1puj2sIqqTl8pgBrETLq9MMJWmyZW1AfZyX6QqzfjzZW7Y/6IvsLfeJudVfOu437edRWsv2HqystJabYmZQGi1XzxygDVpuh96pmpa7R+eMQst5mQn90oeW7Wn6oA8t951Z1g9ahhy0DOXa2PYCTvetb30r3vve98ZLXvKSePWrXx2PP/54fPjDH47vfOc7A/33r3rVq+KOO+6Ie+65Jz70oQ/Fo48+Gtdee20cPXp0oP/+hhtuiF27dsU//If/cM3Pu/nmm2NqaurUP7t37x7ozwe6Q8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoXw6hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnKp2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoVwbFhcXF9tcwMLCQvzX//pf46Mf/Wh85jOfiYsuuih+6Zd+Kd785jfHS17ykvj2t78d733ve+M//+f/PPSffeTIkbj44ovjtttui7e85S1rfu4tt9wSv/VbvxX33ntv7Nu3b83PPXHiRJw4ceLUv8/NzcXu3btjdnY2Jicnh14nrGT22ELMzC/E3PGTMbltc0yfOxFT2yfaXlYaOu4nXeWjZRhfF2ajlmlCF/Z6dlqmCVqun5bJri9zRMv0Tda2tTy6rHuCMmmZYZlh3aRlVqLX8miZYem8e3TcLxrMS8sMyzzoJi23RxNUScvtefDBB+PKK6+MV7/z9jh/z2VtL2eZpw5/LT71vjfFAw88EFdccUXby2EdWl6bcyel0DLmVQ5a7ge95qdl+KHS552WKVnp/VVJyzRBc/XTMsPQZDfpuJ/0mI+W+0fHOWmZYZkF3aRlqqTz9miZrjAHxqNlukbTo8nSstefvsvSMuUxf6ulZUqh/bVpGXLQMpRrU9sLuPDCC+PYsWPx0z/90/FHf/RH8VM/9VOxcePGU48/+eST8ZGPfGSkN5rfuXNnXHrppfHwww+v+Xnvf//745ZbbolPf/rT677JfETEli1bYsuWLUOvBwb1+JGn44a7Hor7D82c+tj+vdNxy4F9sWvnthZXloeO+0dXOWkZxtOV2ahl6taVvZ6dlqmblpuhZTLr0xzRMn2SuW0tjybznqBMWmYYZlh3aZmz6bVMWmYYOu8mHfeHBnPTMsMwD7pLy+3QBFXTMuSg5dU5d1ISLfebeZWHlvPTaz9oGXLMOy1Tqgz9VUnL1E1zzdAyg9Jkd+m4f/SYk5b7Rcd5aZlhmAXdpWWqovN2aZkuMAfGp2W6RNOjy9Cy1x9ytEx5zN/qaZkSaH99WoYctAzl2rj+p9TrXe96V3zrW9+KT3ziE/Ha1772jDeZH9f8/Hw88sgjcdFFF636Ob/1W78Vv/7rvx733HNP/N2/+3cr+7thVLPHFpbdRERE3HdoJt5+10Mxe2yhpZVBuXQFsJzZSF/Y65CDloFxmSOQk7Y5mz0BlMwMg3LoFfLTObRLg8AS8wDOpAkAGI5zJ1AK8wrKoVegL8w7aI/+oFmag27RJHSHHqF8OgYizALoA50D5gDkoul+8/oDtMP8hX7SPgBQgtbfaP5Xf/VX44ILLqjkz7r++uvjs5/9bDz22GPx+c9/Pl7/+tfHOeecEwcPHoyIiOuuuy7e8Y53nPr8W2+9Nd797nfHRz/60Xjxi18cTzzxRDzxxBMxPz9fyXpgFDPzC8tuIpbcd2gmZubdSMCwdAWwnNlIX9jrkIOWgXGZI5CTtjmbPQGUzAyDcugV8tM5tEuDwBLzAM6kCQAYjnMnUArzCsqhV6AvzDtoj/6gWZqDbtEkdIceoXw6BiLMAugDnQPmAOSi6X7z+gO0w/yFftI+AFCCTW0voErf/va34+DBg/Hkk0/GBRdcENdcc0188YtfPPVG9ocPH46NGzee+vwPfehDsbCwED//8z9/xp/znve8J2688cYmlw6nzB0/uebjR9d5HFhOVwDLmY30hb0OOWgZGJc5Ajlpm7PZE0DJzDAoh14hP51DuzQILDEP4EyaAIDhOHcCpTCvoBx6BfrCvIP26A+apTnoFk1Cd+gRyqdjIMIsgD7QOWAOQC6a7jevP0A7zF/oJ+0DACVo/Y3mf+7nfm7Nx48cOTLwn3XnnXeu+fi99957xr8/9thjA//Z0JTJrZvXfPy8dR4HltMVwHJmI31hr0MOWgbGZY5ATtrmbPYEUDIzDMqhV8hP59AuDQJLzAM4kyYAYDjOnUApzCsoh16BvjDvoD36g2ZpDrpFk9AdeoTy6RiIMAugD3QOmAOQi6b7zesP0A7zF/pJ+wBACTa2vYCpqak1/7n44ovjuuuua3uZ0JjpHROxf+/0io/t3zsd0zsmGl4RlE9XAMuZjfSFvQ45aBkYlzkCOWmbs9kTQMnMMCiHXiE/nUO7NAgsMQ/gTJoAgOE4dwKlMK+gHHoF+sK8g/boD5qlOegWTUJ36BHKp2MgwiyAPtA5YA5ALpruN68/QDvMX+gn7QMAJWj9jeZvv/32gf6BvpjaPhG3HNi37GZi/97puPXAvpja7kYChqUrgOXMRvrCXocctAyMyxyBnLTN2ewJoGRmGJRDr5CfzqFdGgSWmAdwJk0AwHCcO4FSmFdQDr0CfWHeQXv0B83SHHSLJqE79Ajl0zEQYRZAH+gcMAcgF033m9cfoB3mL/ST9gGAEmxYXFxcbHsRpZubm4upqamYnZ2NycnJtpdDErPHFmJmfiGOHj8Z523dHNM7JtxE1EjH/aCr/LQMw+vibNQydejiXs9Oy9RBy83TMtn0dY5omez60raWB9eXPUGZtMx6zLAyaJkIvWagZdaj8+7TcW4a7A8tsx7zoAxabo4mqJOWm/Pggw/GlVdeGa9+5+1x/p7L2l7OMk8d/lp86n1vigceeCCuuOKKtpfDkLR8JudOSqXl/jGvctJyTnrtHy3TV9nmnZYpSbb+qqRl6qC55mmZtWiyDDruBz3mp+X8dNwPWmY9ZkEZtMw4dN4dWqYt5kC1tEzbNF2NUlv2+sOZSm2Z8pi/9dIyXaX94WgZctAylGNT2wugPksXonPHT8bkts0xfa4L0ZJMbfd69YVWm6Mr6B4zsH1mYzXs5e6z19FpDlpmJfpmGOZIc7RJk7Tdvq41b0/QR13rkNGZYZxO292mV0al7XLonFFovDoapAs03Q3mAafTpSYAYFjOnfVxbdY/XvN6mVeUpO/zQK+spO9dkJN51zyzhCX6y0vn3aQ56BZNrq+k80lJa2U5PdIEc6JeOqYpWu42s4AuMS/qofMc9ME4zIHyaJ61aLo5XWzR6w/D62LLlMf8LY/2qYL2AYAu80bzST1+5Om44a6H4v5DM6c+tn/vdNxyYF/s2rmtxZUBp9Mq0GdmIFnYy9B9OoW89A3dpE3oF81D+3QIOWkbctI25KZxyEXT0D26BADoDtdm/eM1B5aYB7CcLoAqmCWQn84BqEJJ55OS1gq0w5yAHLQMDMq8gNXpA/pF89ANWoQctAz9pH0AAPpgY9sLoHqzxxaW3cxERNx3aCbeftdDMXtsoaWVAafTKtBnZiBZ2MvQfTqFvPQN3aRN6BfNQ/t0CDlpG3LSNuSmcchF09A9ugQA6A7XZv3jNQeWmAewnC6AKpglkJ/OAahCSeeTktYKtMOcgBy0DAzKvIDV6QP6RfPQDVqEHLQM/aR9AAD6whvNJzQzv7DsZmbJfYdmYmbeDQ10gVaBPjMDycJehu7TKeSlb+gmbUK/aB7ap0PISduQk7YhN41DLpqG7tElAEB3uDbrH685sMQ8gOV0AVTBLIH8dA5AFUo6n5S0VqAd5gTkoGVgUOYFrE4f0C+ah27QIuSgZegn7QMA0Beb2l4A1Zs7fnLNx4+u8zjVmT22EDPzCzF3/GRMbtsc0+dOxNT2ibaXRUdodTnNQH90YQaaOVShC3s5Az1SJ50OTouURt9UyQysjjYZhxbL09fm7VW6pK8dZmOucDZtd49OqYK2u0vjVKGpxu1XaIbz9vjMK6pWZ5f2K+R0+PDhmJlZ+X8W0QVf+cpX2l4C9I5zfnXcM/WP19wMoXxV7WHzAJbTBQzG9dTazJJ87HnOpvPn6APGo6F+K+l8UtJa+8o8oW3mxOD0SpdpeXBapu9KnBe6pSkl9tFX5gJV0Hz3ab0fSm3R/oQzldoyozEDWaJ96mDGAABd5I3mE5rcunnNx89b53Gq8fiRp+OGux6K+w899z+m2r93Om45sC927dzW4sroCq2eSTPQL23PQDOHqrS9lzPQI3XT6WC0SIn0TVXMwGppk1FpsUx9bN5epWv62GE25gor0Xa36JSqaLubNE5VmmjcfoXmOG+Px7yiDnV1ab9CTocPH46Xvezl8fTTx9peyrpOnlhoewnQC8751XLP1D99f83NEEpX5R7u+zyAlegC1ud6an1mSS72PCvR+Q/pA8ajIUo6n5S01j4yT+gCc2IweqXrtDwYLUN580K3NKm0PvrKXKAqmu82rfdHiS3an7BciS0zGjOQ02mfqpkxAEBXbWx7AVRvesdE7N87veJj+/dOx/SOiYZX1D+zxxaW3QBERNx3aCbeftdDMXvM/wgKrZ5OM9A/bc5AM4cqOZ+PR480Qafr0yKl0jdVMAOrp01GocVy9a15e5Uu6luH2ZgrrEbb3aFTqqTt7tE4Vaq7cfsVmuW8PTrzirrU0aX9CnnNzMzE008fi1e9+T3x6nfe3sl/Xvl//H8jIuIHP/hBy88W5OecXz33TP3T59fcDKF0Ve/hPs8DWI0uYG2upwZjluRhz7ManesDxqUhIso6n5S01r4xT+gKc2J9eqUEWl6fluGHSpoXuqVpJfXRV+YCVdJ8d2m9X0pr0f6ElZXWMqMxAzmb9qmSGQMAdJk3mk9oavtE3HJg37Kbmv17p+PWA/tiarsbmrrNzC8suwFYct+hmZiZdxOAVk+nGeifNmegmUOVnM/Ho0eaoNP1aZFS6ZsqmIHV0yaj0GK5+ta8vUoX9a3DbMwVVqPt7tApVdJ292icKtXduP0KzXLeHp15RV3q6NJ+hfwmL3pxnL/nsk7+c+70RW0/PdAbzvnVc8/UP31+zc0QSlf1Hu7zPIDV6ALW5npqMGZJHvY8q9G5PmBcGiKirPNJSWvtG/OErjAn1qdXSqDl9WkZfqikeaFbmlZSH31lLlAlzXeX1vultBbtT1hZaS0zGjOQs2mfKpkxAECXbWp7AdRj185t8TsHL4+Z+YU4evxknLd1c0zvmHAz05C54yfXfPzoOo/TH1r9Ic1AP7U1A80cquZ8Pjo90hSdrk2LlEzfjMsMrIc2GZYWy9an5u1VuqpPHWZjrrAWbXeDTqmatrtF41StzsbtV2ie8/ZozCvqVHWX9isA9INzfj3cM/VPX19zM4TS1bGH+zoPYC26gNW5nhqcWZKDPc9a+t65PmA8GmJJSeeTktbaJ+YJXWJOrE2vlELLa9MyPKeUeaFb2lBKH31lLlA1zXeT1vunpBbtT1hdSS0zGjOQlWifqpgxAECXeaP5xKa2u4Fpy+TWzWs+ft46j9MvWtUM9FkbM9DMoQ7O56PRI03S6eq0SOn0zTjMwPpok2FosXx9ad5epcv60mE25grr0Xb7dEodtN0dGqcOdTVuv0I7nLeHZ15Rtyq7tF8BoB+c8+vjnql/+viamyGUrq493Md5AOvRBazM9dRwzJLy2fOsp8+d6wPGoyFOV9L5pKS19oV5QteYE6vTKyXR8uq0DGcqYV7olraU0EdfmQvUQfPdo/V+KqVF+xPWVkrLjMYMZDXapwpmDADQZRvbXgBkNL1jIvbvnV7xsf17p2N6hxtNOJ1mgCaZOdAdeoRu0CLQZ2YgdIMWKYW9ClTNXIHu0ynkpnFKYr8CpTCvKIn9CgD94JwPjMMMoXT2MABtcy6ib+x5WJ0+YDwaAqpinkA59Ao5aBnKo1vgbOYC9IPW6TL7E+gzMxCokxkDAHSZN5qHGkxtn4hbDuxbdiOwf+903HpgX0xtdxMAp9MM0CQzB7pDj9ANWgT6zAyEbtAipbBXgaqZK9B9OoXcNE5J7FegFOYVJbFfAaAfnPOBcZghlM4eBqBtzkX0jT0Pq9MHjEdDQFXMEyiHXiEHLUN5dAuczVyAftA6XWZ/An1mBgJ1MmMAgC7bsLi4uNj2Iko3NzcXU1NTMTs7G5OTk20vhw6ZPbYQM/MLcfT4yThv6+aY3jHhBqCjdNwNmmFcWmYYZk53abl/9JiTlsujRVaiZfoi+wzUMqXI3uK4tNwd9irj0DIrMVfKo+X+0WlOWmaJxsvVx47tVzLqY8t9YF71T8kt26/wnJJbPt2DDz4YV155Zbz6nbfH+Xsua3s5K3rsL/80/vKjN8U1//o/xotefnnby1nmqcNfi0+9703xwAMPxBVXXNH2chhSlpar5pxPabTcLWYIo+pKy/YwjKcrLUPJunAu0jJN6sKez0rL5dMHEVoeh4boCh2XzzwhQsul0Cvr0XIZtMx6tNw9umUUWs7NXOgPLfeb1vPI2LL9SR9lbJnRmIFl0zJdZ8YMRsuQg5ahHJvaXgBkNrXdRT8MQzNAk8wc6A49QjdoEegzMxC6QYuUwl4FqmauQPfpFHLTOCWxX4FSmFeUxH4FgH5wzgfGYYZQOnsYgLY5F9E39jysTh8wHg0BVTFPoBx6hRy0DOXRLXA2cwH6Qet0mf0J9JkZCNTJjAEAumhj2wsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JtNbS8AxjF7bCFm5hdi7vjJmNy2OabPnYip7RNtLwuKpiugJGYWVE9XMD4dAYzPLAXqYr5QNXsKukOPkIeeoTy6pevsUaAJZg10hx4BgLO5PoB+0Tx9Ze8D5GO2Qzdpk6bZczA6/QB9YNbBD2kB2qM/oAlmDbAa8wHy0DNUS1NAncwYoApmCQDA2rzRPMV6/MjTccNdD8X9h2ZOfWz/3um45cC+2LVzW4srg3LpCiiJmQXV0xWMT0cA4zNLgbqYL1TNnoLu0CPkoWcoj27pOnsUaIJZA92hRwDgbK4PoF80T1/Z+wD5mO3QTdqkafYcjE4/QB+YdfBDWoD26A9oglkDrMZ8gDz0DNXSFFAnMwaoglkCALC+jW0vAEYxe2xh2cV+RMR9h2bi7Xc9FLPHFlpaGZRLV0BJzCyonq5gfDoCGJ9ZCtTFfKFq9hR0hx4hDz1DeXRL19mjQBPMGugOPQIAZ3N9AP2iefrK3gfIx2yHbtImTbPnYHT6AfrArIMf0gK0R39AE8waYDXmA+ShZ6iWpoA6mTFAFcwSAIDBbGp7ATCKmfmFZRf7S+47NBMz8wsxtX1ipD979thCzMwvxNzxkzG5bXNMnzsx8p8FJamiK/1AN2Vss85rAeir9br6ztzxiAhtwRq6en7KeC0A5GWWAnUZd76YA5xu9thCfGf2eCfPWdBHo854sx264fQWt02c4/wKhenq13KWON9Txx61r4CzNXE+NHvIou693PXrUwBgOdcHwLh8r4kMxj0fOt8B5LPebP/rI0/HzPcXfL8AGrbu72HPHo9vzHzf9/OoTFeu9X2/mhJ1pZ9haA0Y1veOnihu1kEdSjzvQxZ97881PDSj7lmjZShX29ci5gdUp8qetQl+tgGol/t0oApt39MvMXMAgK7zRvMUae74yTUfP7rO46t5/MjTccNdD51xM7F/73TccmBf7Nq5baQ/E0oxblf6gW7K2mZd1wLQZ+t19Y2/+X785n//SvHzA+rUxfNT1msBIC+zFKjLOPPFHOB0S/vh4I/vWfPzfH0KmjPKjDfboRvObvF3/+kVa36+8yt0Txe/lrPE+Z6I6veofQWspO7zodlDFk3s5S5fnwIAy7k+AMble01kUMX50PkOIJ/1ZvtjTx6Lf/F/P+j7BdCwdX8Pe+b78S/+7wcjwvfzqEYXrvV9v5pSdaGfYWgNGNbjR56Ow08dW/NzujbroC7rnfePPL3Q0Eqgf0q77q6Sa3hoTp2zRstQtjavRcwPqFZVPWsTfsjPNgB1cp8OVKEL318wcwCAEmxsewEwismtm9d8/Lx1Hl/J7LGFZRfwERH3HZqJt9/1UMwe80OC5DZOV/qBbsrcZh3XAtB363W1ZdPGFPMD6tS181PmawEgL7MUqMuo88Uc4HSn74ctm9b+NquvT0Fzhp3xZjt0w0otOr9Cebr2tZwlzvcsqXKP2lfAauo8H5o9ZNHUXu7q9SkAsJzrA2BcvtdEBlWdD53vAPIZ5Hc9I3y/AJo2aJsR+qQabV/r+341JWu7n2FoDRjW0txYT5dmHdRpvfP+iZPPOp9CTUq67q6Sa3hoVl2zRstQvrauRcwPqF4VPWsTnuNnG4A6uU8HqtD29xfMHACgFN5oniJN75iI/XunV3xs/97pmN4xMfSfOTO/sOwCfsl9h2ZiZt5FPLmN05V+oJsyt1nHtQD03VpdXf0jz4+/+taRiCh/fkCdunZ+ynwtAORllgJ1GXW+mAOc7vT98FffOhJX/8jzV/w8X5+CZg0748126IaVWnR+hfJ07Ws5S5zvWVLlHrWvgNXUeT40e8iiqb3c1etTAGA51wfAuHyviQyqOh863wHkM+jvekb4fgE0aZg2I/TJ+Nq+1vf9akrWdj/D0BowrKW54Wvi8EPTOybi2jXu1T7/jSedT6EmJV13V8k1PDSrrlmjZShfW9ci5gdUr4qetQnP8bMNQJ3cpwNVaPv7C2YOAFAKbzRPkaa2T8QtB/Ytu+jfv3c6bj2wL6a2D3/BP3f85JqPH13ncSjdOF3pB7opc5t1XAtA363W1dU/8vx409WXxEf/4tFTHyt5fkCdunZ+ynwtAORllgJ1GXW+mAOc7vT98NG/eDTedPUly/5nLL4+Bc0bdsab7dANK7Xo/Arl6drXcpY437Okyj1qXwGrqfN8aPaQRVN7uavXpwDAcq4PgHH5XhMZVHU+dL4DyGeY3/WM8P0CaMqwbUbok/G0fa3v+9WUrO1+hqE1YFhLc2O1r4lf28FZB3Wa2j4RN/4fr1jWwun3as6nUI+Srrur5BoemlXXrNEylK+taxHzA6pXRc/ahOf42QagTu7TgSq0/f0FMwcAKMWmthcAo9q1c1v8zsHLY2Z+IY4ePxnnbd0c0zsmRr7Yn9y6ec3Hz1vncchg1K70A92Uvc2qrwWA57r6zuzx+MbM92PLpo3xV986Ev/q9/8qji08c+rzSp8fUKcunZ+yXwsAeZmlQF1GmS/mAKc7fT8cW3gm/tXv/1W8+ZpL4s1XXxInfvBsvGT63LhoaquvT0ELhpnxZjt0w0otnn5+ffc/+V/i+MlnfP8HCtClr+Uscb7ndFXtUfsKWEtd50Ozhyya3MtdvD4FAJZzfQCMy/eayKDK86HzHUA+p8/2vz22ELNPn1zxdz0jfL8AmnT2ddfWzefEH3/pOyu2GaFPxtfmtb7vV1O6Uu6VtQYMa2lurPT7jVs2bYwfuWBHXLRzW8urhGZtiIjL9zzvjBZO/zqK8ynUp5Tr7iq5hofm1TFrtAw5tHEtYn5APcbtWZtwJj/bANTJfTpQBT8XBwCwPm80T9Gmtld3gT+9YyL2752O+w7NLHts/97pmN6R9weV4HSjdKUf6KY+tFnltQDwQ0tN/eaffCX1/IA6deX81IdrASAvsxSoy7DzxRzgdGfvh2MLz8QHP/NwRPxwP/zOwcs7cf6Cvhp0xpvt0A2rtXhs4Zl46FtH4v9zzSXOq1CQrnwtZ4nzPWerYo/aV8B66jgfmj1k0fRe7tr1KQCwnOsDYFy+10QGVZ8Pne8A8lma7bPHFuJf/v5f+X4BdMTp112zxxbioW8dWfF/xK5PqtLWtb7vV5NBCffKWgOGdfrcOP33GyOe+x1H6JvnnzsRD33ryBk9LHE+hfqVcN1dJdfw0I6qZ42WIY+mr0XMD6jPOD1rE5bzsw1AndynA1Xwc3EAAGvb2PYCoCumtk/ELQf2xf6902d8fP/e6bj1wL5e/eASDEs/0E3aBEZlfkAOWgYYn1kKmAOczn6AHLQM3aBFoE5mDHWwr4A2mD1kYS8DAGdzfQCMyxwhA/sYgEE5Z0B36ZPM7G9ohtaAYZkbsJwugCaZOZCDloFRmR/QTdqEtWkE6DpzCmiSmQMAlGLD4uLiYtuLKN3c3FxMTU3F7OxsTE5Otr0cxjR7bCFm5hfi6PGTcd7WzTG9Y8IFfA/ouBr6oW1aXpk2KY2Wu8P8YBxa7g4tMw4tww+VPku1DOPrwhzQcnd0YT9QLi13h5YZh5aro0XapOX8zJj82ujYvoLqOSevz+yhBIO0bC9D92U5Lz/44INx5ZVXxqvfeXucv+eytpezosf+8k/jLz96U1zzr/9jvOjll7e9nGWeOvy1+NT73hQPPPBAXHHFFW0vhyGV1LLrA1hdSS23yRyh69wvQw7Oy3SFc8Z4tEyd9NkcLTfP/qYOWl5Oa5RGx+0zN6hCtpZ1QV9la7kUZg5V03I7tEzVtNwf5kduWi6XNjmdlpfTCCXScr+YU3lpmS4yc4anZchBy1COTW0voEo33nhj3HTTTWd87LLLLouvfvWrq/43H//4x+Pd7353PPbYY7F379649dZb4x//439c91LpsKntLtphVPqBbtImMCrzA3LQMsD4zFLAHOB09gPkoGXoBi0CdTJjqIN9BbTB7CELexmgPF/5ylfaXsKqpqenY8+ePW0vgzG5PgDGZY6QgX0MwKCcM6C79Elm9jc0Q2vAsMwNWE4XQJPMHMhBy8CozA/oJm3C2jQCdJ05BTTJzAEAui7VG81HRLziFa+IT3/606f+fdOm1Q/x85//fBw8eDBuvvnm+Omf/un4vd/7vfjZn/3ZePDBB+OVr3xlE8sFAAAAAAAAAAAAAAAAgE54evbJiNgQb3zjG9teyqq2bdseX/3qV7zZPAAAAAAAAAAAAAAAAAAAAACQQro3mt+0aVNceOGFA33ub//2b8drXvOa+Lf/9t9GRMSv//qvx6c+9an44Ac/GP/pP/2nOpcJAAAAAAAAAAAAAAAAAJ1y8tjRiFiM//UXbogLLnlZ28tZZu47j8VffvSmmJmZ8UbzAAAAAAAAAAAAAAAAAAAAAEAK6d5o/tChQ7Fr167YunVrXHXVVXHzzTev+j+M+cIXvhC/+qu/esbHfuqnfiruvvvuNf+OEydOxIkTJ079+9zc3NjrBpqlY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPh1DDlqGHLQMOWiZ9ex4wZ44f89lbS+DdWgZctAy5KBlyEHLkIOWIQctQw5ahvLpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUo18a2F1ClV73qVXHHHXfEPffcEx/60Ifi0UcfjWuvvTaOHj264uc/8cQT8cIXvvCMj73whS+MJ554Ys2/5+abb46pqalT/+zevbuyYwCaoWPIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUD4dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAzl0zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUK4Ni4uLi20voi5HjhyJiy++OG677bZ4y1vesuzxiYmJ+C//5b/EwYMHT33sd3/3d+Omm26K7373u6v+uSdOnIgTJ06c+ve5ubnYvXt3zM7OxuTkZLUHAdRCx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfDqGHLQMOWgZcsja8oMPPhhXXnllvPqdt8f5ey5rezkreuwv/zT+8qM3xTX/+j/Gi15+edvLWabr63vq8NfiU+97UzzwwANxxRVXtL2c1mVtGfpGy5CDliEHLUMOWoYctAw5aBnKp2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoVyb2l5AnXbu3BmXXnppPPzwwys+fuGFFy57Q/nvfve7ceGFF675527ZsiW2bNlS2TqB5ukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMpRPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1D+XQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMpRrY9sLqNP8/Hw88sgjcdFFF634+FVXXRV/9md/dsbHPvWpT8VVV13VxPIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnkr1RvPXX399fPazn43HHnssPv/5z8frX//6OOecc+LgwYMREXHdddfFO97xjlOf/7a3vS3uueee+MAHPhBf/epX48Ybb4z/8T/+R/zKr/xKW4cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9MCmthdQpW9/+9tx8ODBePLJJ+OCCy6Ia665Jr74xS/GBRdcEBERhw8fjo0bN576/J/4iZ+I3/u934t3vetd8Wu/9muxd+/euPvuu+OVr3xlW4cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9ECqN5q/884713z83nvvXfaxN7zhDfGGN7yhphUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALLex7QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9M2mthfQF7PHFmJmfiHmjp+MyW2bY/rciZjaPtH5Pxt4ThOt6RnqpzNYWymNNLXOUp4PKNVSY/MnTsbO7ROx8INnY/7ED/QGhfF1L8ih5N5KXjvUQRPd4HVgHFXsH3sQ2ufr2JBDHY3pFrqhyhZ1DfXrSmddWQf02VKHs08vxPYtm2Ljhg2xaeOGeL4eAYAecE/SnFKe666vs+vrg+zWa1CjUJ/ZYwvx5PcX4gfPLsazi4tx7MQPYmr7hM6gAG2fH9v++yGL01ua2rY5zt2yKeaP/0BbUBjnRUpjz1bD17Sge4bpTqPQXV3oswtrgNL5HhTksNo50bkSyqJlyKlLDXdpLVCCYZvRGHSPLgEA4EzeaL4Bjx95Om6466G4/9DMqY/t3zsdtxzYF7t2buvsnw08p4nW9Az10xmsrZRGmlpnKc8HlGqpsQe++bfxHw5eHr/1p1+Lzz385KnH9QZl8HUvyKHk3kpeO9RBE93gdWAcVewfexDa5+vYkEMdjekWuqHKFnUN9etKZ11ZB/TZSh1e/SPPjzddfUnc/CdfiZt+5pV6BADSck/SnFKe666vs+vrg+zWa1CjUJ/Hjzwd/9cffjn+zx/fE7d/7lG/KwUFafv82PbfD1mc3tL2iXPiPxy83DkZCuS8SGns2Wr4mhZ0zzDdaRS6qwt9dmENUDrfg4IcVjsn/sbPvjLe+8f/v/j0V753xse1Dd20UsuvfvkL4t0//b/EO+/+suteKFSX7l27tBYowbDNaAy6R5cAALDcxrYXkN3ssYVlNyIREfcdmom33/VQzB5b6OSfDTynidb0DPXTGaytlEaaWmcpzweU6vTG3nzNJct+aD1Cb1ACX/eCHErureS1Qx000Q1eB8ZRxf6xB6F9vo4NOdTRmG6hG6psUddQv6501pV1QJ+t1uHnHn4ybv/co3HZRZN6BADSck/SnFKe666vs+vrg+zWa/C7c8c1CjVZ6u9lF036XSkoTNvXsG3//ZDF2S35/WUok/MipbFnq+FrWtA9w8w3sxC6qwt9dmENUDrfg4Ic1jon/toffCledtHkso9rG7pntZYvu2gy3vEHX3LdC4Xq0r1rl9YCJRi2GY1B9+gSAABW5o3mazYzv7DsRmTJfYdmYmZ+9JuROv9s4DlNtKZnqJ/OYG2lNNLUOkt5PqBUpzd2+e6dy35ofYneoNt83QtyKLm3ktcOddBEN3gdGEcV+8cehPb5OjbkUEdjuoVuqLJFXUP9utJZV9YBfbZWh597+Mm4fPdOPQIAabknaU4pz3XX19n19UF26zX4t9/XKNRlqT+/KwXlafsatu2/H7I4uyXnZCiT8yKlsWer4Wta0D3DzDezELqrC33+/9m7/2BNy/qw/5+zLLvsspyDehRFF0GyoqlsArS1oll10qgpw2iCTkNiUKhpM9F+1UysGLWWRAIkiqTatLFViONEpw6GfpM4E9DvMFjNRAOmaMYQrMqaKNqj4RzWhXMWON8/truwu+fHc57n/nFdn/v1mslM2LPLXvf9XO/P9TyHXe8S1gC189+gIIe1zsT/+X//TsTRtA3lWa1l5zTUraTPriWtBWqw0WY0BuXRJQAArMyD5lu28OCBNb9+/zpf7+vfDTyqi9b0DO3TGaytlka6Wmct9wNq9djGFh96ZM2fqzcol+97QQ4191bz2qENmiiD14FJNLF/7EHon+9jQw5tNKZbKEOTLeoa2ldKZ6WsA4ZsvQ4P/fkTPQIAGflM0p1a7nXp6yx9fZDdeg0uPPjQml/XKIzvUH/+rhTUp+/3sH3//pDF0S05k6FOzkVqY882w/e0oDwbmW9mIZSrhD5LWAPUzn+DghxG/TsRR9M2lGW1lp3TULeSPruWtBaowUab0RiUR5cAALAyD5pv2fQJx6/59ZPW+Xpf/27gUV20pmdon85gbbU00tU6a7kfUKvHNrZ189rfmtAblMv3vSCHmnuree3QBk2UwevAJJrYP/Yg9M/3sSGHNhrTLZShyRZ1De0rpbNS1gFDtl6Hh/78iR4BgIx8JulOLfe69HWWvj7Ibr0Gp0/YvObXNQrjO9SfvysF9en7PWzfvz9kcXRLzmSok3OR2tizzfA9LSjPRuabWQjlKqHPEtYAtfPfoCCHUf9OxNG0DWVZrWXnNNStpM+uJa0FarDRZjQG5dElAACszIPmWza7Y0vs2TW74tf27JqN2R1bivx3A4/qojU9Q/t0BmurpZGu1lnL/YBaPbaxL33rvnj+jzxhxZ+nNyib73tBDjX3VvPaoQ2aKIPXgUk0sX/sQeif72NDDm00plsoQ5Mt6hraV0pnpawDhmytDp//I0+IL33rPj0CAGn5TNKdWu516essfX2Q3XoNPu5EjUJbDvXn70pBffp+D9v37w9ZHN2SMxnq5FykNvZsM3xPC8qzkflmFkK5SuizhDVA7fw3KMhhrTPxBf/370QcTdtQntVa/tK37osXOKehWiV9di1pLVCDjTajMSiPLgEAYGUeNN+yme1b4uqLdh/zgWTPrtm45qLdMbN9/A8jbf67gUd10ZqeoX06g7XV0khX66zlfkCtHtvYh//nN+LS559xzB9e1xuUz/e9IIeae6t57dAGTZTB68Akmtg/9iD0z/exIYc2GtMtlKHJFnUN7Suls1LWAUO2WofP/5EnxKXPPyPu+s6CHgGAtHwm6U4t97r0dZa+PshuvQZPmT5Bo9CSQ/3d9Z0Ff1cKKtP3e9i+f3/I4uiWDv395aMf6qEtKJtzkdrYs83wPS0oz0bmm1kI5SqhzxLWALXz36Agh7XOxN/6mbPjru8sHPPj2obyrNbyXd9ZiN/6mbO974VKlfTZtaS1QA022ozGoDy6BACAlU0tLy8v972I2i0sLMTMzEzMz8/H9PT0ij9nfv9SzO1bivsfPBAnnXB8zO7Y0tgHkTb/3TAUfXfc5e8BmZXSMtSshEZKarmE+wG12kjLP1w8EDPbtsTSw4/EDxcf0hsUpO9z2VkMzei75bbVvHbYiFFajtBEKbwOrKarc9kehHaV9B5b7zC+vlrWLTRn1M/KK2myRV3DZEp6f72eUtYBJZrkXN6IQx3OP3Agtm85Lo7bNBXHbZqKJ5yoR2hCVy237Y477ojzzjsvfurt18fjTzur7+Ws6Jt/8WfxFx++Il7wpv8UT332OX0v5xilr+8He++KW668NG6//fY499xz+15OcbK0zLF8JulOCfe6ps/Lqyl9fdCFPs/l9RrUKIxuoy3P71+K7/9wKR5+ZDkefmQ59i89HDPbdAZ9q+E9dt+/P9Rgoy1Pbzs+Tty6OfY9+JC2oCA1nMuwUUPbs21938v3tKBbTZ/JGoV+1PL+uoQ1QMlGbdl/g4KyTXIuOyuhHFqGHMb5PnZJDZe0FuhTW//7mxqDbtXyfWxgbf7uMuSgZajH5r4XMBQz29v78NHmvxt4VBet6RnapzNYWy2NdLXOWu4H1EpjkIPve0EONfdW89qhDZoog9eBSTSxf+xB6J/vY0MObTSmWyhDky3qGtpXSmelrAOGTIcAwJB5L9SdWu516essfX2Q3XoNahTaoy+oV9/99v37QxYrtXSK/x1EqI5zkdrYs83wPS0oz0a60yiUq4Q+S1gD1E5HkMNqLWsc6qJlyKmkhktaC9Rgo81oDMqjSwAAONKmvhcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDSb+14AAAAAAAAAAAAAAAAAAMCovvrVr/a9hFXNzs7Gaaed1vcyAAAAAAAAAAAAAAAAAAAAAIBKeNA8AAAAAAAAAAAAAAAAAFC8B+a/HxFT8epXv7rvpaxq27bt8Td/81UPmwcAAAAAAAAAAAAAAAAAAAAARuJB8wAAAAAAAAAAAAAAAABA8Q7svz8iluPHf/6t8cQzntX3co6x8J1vxl98+IqYm5vzoHkAAAAAAAAAAAAAAAAAAAAAYCQeNA8AAAAAAAAAAAAAAAAAVGPHk06Lx592Vt/LAAAAAAAAAAAAAAAAAAAAAACY2Ka+FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNB40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAxD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMc8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYx40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAxD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUv7oPmrr746pqam4k1vetOaP++6666Ls846K7Zt2xY7d+6MN7/5zfHggw92s0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgkDb3vYA2fPGLX4zf//3fj927d6/58/7wD/8wLr/88vjwhz8c559/fvzt3/5tvPa1r42pqam49tprO1otAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDSb+l5A0/bt2xe/8Au/EP/1v/7XeNzjHrfmz/385z8fz3/+8+Pnf/7n4/TTT4+XvOQlcfHFF8cXvvCFjlYLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADNHmvhfQtNe//vVxwQUXxD//5/883v3ud6/5c88///z46Ec/Gl/4whfin/7Tfxpf//rX41Of+lT84i/+4pq/bnFxMRYXFw//88LCQiNrB7qjY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQr1QPmv/4xz8ed9xxR3zxi18c6ef//M//fMzNzcULXvCCWF5ejoceeih++Zd/OX791399zV931VVXxRVXXNHEkoGe6Bhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1E/HkIOWIQctQw6TtLx3796Ym5treEXN+OpXv9r3EqBTzmXIQcuQg5YhBy1DDlqGHLQMOWgZ6qdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqFeU8vLy8t9L6IJ3/rWt+If/+N/HLfcckvs3r07IiJe9KIXxY//+I/Hddddt+KvufXWW+Pnfu7n4t3vfnc897nPja997Wvxxje+MX7pl34p3vnOd676ey0uLsbi4uLhf15YWIidO3fG/Px8TE9PN3pdQDt0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnqp2PIQcuQg5Yhh3Fb3rt3bzzrWc+OBx7Y38Uyx/aiX/v9OGXX2X0vY0Xf/Is/i7/48BXxgjf9p3jqs8/peznHsL7J/GDvXXHLlZfG7bffHueee27rv59zGXLQMuSgZchBy5CDliEHLUMOWob66Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlqNfmvhfQlNtvvz2+973vHfE/vvLwww/HbbfdFh/4wAdicXExjjvuuCN+zTvf+c74xV/8xXjd614XERFnn312/PCHP4x//a//dbz97W+PTZs2rfh7bd26NbZu3drexQCt0zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlqJ+OIQctQw5ahhzGbXlubi4eeGB/PPeyd8X0U05vfmET+s6X/zy+8v9+MB566KG+lwKdcC5DDlqGHLQMOWgZctAy5KBlyEHLUD8dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz1SvOg+Z/8yZ+ML3/5y0f82KWXXhrPetaz4q1vfesxD5mPiNi/f/8xD5M/9POWl5fbWywAAAAAAAAAAAAAAABApaafcno8/rSz+l7GMRa+882+lwAAAAAAAAAAAAAAAAAAAAAAABuS5kHzJ510UjznOc854sdOPPHEeMITnnD4xy+55JJ46lOfGldddVVERFx44YVx7bXXxjnnnBPPfe5z42tf+1q8853vjAsvvHDFB9MDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCHNg+ZHsXfv3ti0adPhf37HO94RU1NT8Y53vCP+/u//Pp74xCfGhRdeGFdeeWWPqwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyS/2g+VtvvXXNf968eXO8613vine9613dLQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYvE19LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgaDxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LHNfS8AiJjfvxRz+5Zi4cEDMb3t+Jg9cUvMbN/S97KAx9ApQ2TfA1mZb4A5AGXTKBykBcZh3wDQFmcMNE9XgDkAk9EQDIPWgS6YNcAQmX0A1MoZxijsE4D1mZWQg5ZBB4zOXgHgEGcCNbJvgbaZM1A3DQPmANRFszTNnoJ+aA9gmMx/AKArHjQPPfv2fQ/EW2+8Mz5799zhH9uzazauvmh3nHryth5XBhyiU4bIvgeyMt8AcwDKplE4SAuMw74BoC3OGGiergBzACajIRgGrQNdMGuAITL7AKiVM4xR2CcA6zMrIQctgw4Ynb0CwCHOBGpk3wJtM2egbhoGzAGoi2Zpmj0F/dAewDCZ/wBAlzb1vQAYsvn9S8e8+Y+IuO3uubj8xjtjfv9STysDDtEpQ2TfA1mZb4A5AGXTKBykBcZh3wDQFmcMNE9XgDkAk9EQDIPWgS6YNcAQmX0A1MoZxijsE4D1mZWQg5ZBB4zOXgHgEGcCNbJvgbaZM1A3DQPmANRFszTNnoJ+aA9gmMx/AKBrHjQPPZrbt3TMm/9Dbrt7Lub2+QAAfdMpQ2TfA1mZb4A5AGXTKBykBcZh3wDQFmcMNE9XgDkAk9EQDIPWgS6YNcAQmX0A1MoZxijsE4D1mZWQg5ZBB4zOXgHgEGcCNbJvgbaZM1A3DQPmANRFszTNnoJ+aA9gmMx/AKBrHjQPPVp48MCaX79/na8D7dMpQ2TfA1mZb4A5AGXTKBykBcZh3wDQFmcMNE9XgDkAk9EQDIPWgS6YNcAQmX0A1MoZxijsE4D1mZWQg5ZBB4zOXgHgEGcCNbJvgbaZM1A3DQPmANRFszTNnoJ+aA9gmMx/AKBrHjQPPZo+4fg1v37SOl8H2qdThsi+B7Iy3wBzAMqmUThIC4zDvgGgLc4YaJ6uAHMAJqMhGAatA10wa4AhMvsAqJUzjFHYJwDrMyshBy2DDhidvQLAIc4EamTfAm0zZ6BuGgbMAaiLZmmaPQX90B7AMJn/AEDXPGgeejS7Y0vs2TW74tf27JqN2R1bOl4RcDSdMkT2PZCV+QaYA1A2jcJBWmAc9g0AbXHGQPN0BZgDMBkNwTBoHeiCWQMMkdkHQK2cYYzCPgFYn1kJOWgZdMDo7BUADnEmUCP7FmibOQN10zBgDkBdNEvT7Cnoh/YAhsn8BwC65kHz0KOZ7Vvi6ot2H/MhYM+u2bjmot0xs90HAOibThki+x7IynwDzAEom0bhIC0wDvsGgLY4Y6B5ugLMAZiMhmAYtA50wawBhsjsA6BWzjBGYZ8ArM+shBy0DDpgdPYKAIc4E6iRfQu0zZyBumkYMAegLpqlafYU9EN7AMNk/gMAXdvc9wJg6E49eVu8/+JzYm7fUtz/4IE46YTjY3bHFm/+oSA6ZYjseyAr8w0wB6BsGoWDtMA47BsA2uKMgebpCjAHYDIagmHQOtAFswYYIrMPgFo5wxiFfQKwPrMSctAy6IDR2SsAHOJMoEb2LdA2cwbqpmHAHIC6aJam2VPQD+0BDJP5DwB0yYPmoQAz273hh9LplCGy74GszDfAHICyaRQO0gLjsG8AaIszBpqnK8AcgMloCIZB60AXzBpgiMw+AGrlDGMU9gnA+sxKyEHLoANGZ68AcIgzgRrZt0DbzBmom4YBcwDqolmaZk9BP7QHMEzmPwDQlU19LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgaDxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LHNfS8gg+Xl5YiIWFhY6HklMBwnnXRSTE1NNfbv0zH0Q8uQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkEOTLesY+uFMhhy0DDn01fK+ffsiImL+774ejzz0cGO/f1P2fe/vIyJi4d5vxtatW3tezcpKX6P1Teb+e++JiIOtjHI2OpchBy1DDlqGHLQMOWgZctAy5KBlyMGf34T6OZMhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/3G7diD5htw//33R0TEzp07e14JDMf8/HxMT0839u/TMfRDy5CDliEHLUMOWoYcmm75+9//fkRoGbrmXIYctAw5aBly0DLk0GTLOoZ+OJMhBy1DDn23/IU/+M3Gfu823Pnx3+l7CesqfY3WN5kXvvCFI/28vlsGmqFlyEHLkIOWIQctQw5ahhy0DDn485tQP2cy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZajfuB1PLS8vL7ewnkF55JFH4tvf/nacdNJJMTU11fdyirewsBA7d+6Mb33rW40ePkM05HvZdG9tdTzk1+ho7sVB7sOR2mp5eXk5TjvttFT3OeveyXhdQ7ymWs7lpmV8rQ/Jem1ZryuimWtro+W77rorfvRHfzTlPR9V5n03Kveg23vQ9bns9XUPItyDiObvQdMt33ffffG4xz0u9u7dGzMzM439e/uUbd9lu56IfNc0zvUM9fPyIdn2wEYM9dqzXrfvY48m2+vvesrmXB5dtte+De7R+kq6R0Nt+bFKej0m4TrK0vV1NNlckx1neT275J6NJ8N9K+VMznAv2+C+rM69OVIpLfct275wPWVr43pKaTnbaxXhmmqR5ZpKabkLWV6zEriXzSr1z2Kv1LLXvjnuZTOy3ccSzuWa72nNa4+w/r41uf4SWm5K7a/ralxXffq4tkwtdyHz/lvN0K651uv19x03pvb1R9R/Dda/Mn+v4ki17hPr7laJ6y71z292pcTXpEmur26jXl/Gz8pZXtsM15HhGiLquI6aWq7hfh7NmrthzXW13IQaX/PSuIeTy/xnsVdiz6zOvVnZkO9LiS3X+HrUuOaIOtdtzSsrseUm1fi6r8R1lKPUa+iy5VLvQRbub3tquLd9nMs13Je2uPZhXntE+9ff13vsLK+r6yhLluuI2Pi1aHkyrqMsQ72OcTvePM7iONKmTZviaU97Wt/LqM709HTVkZbEvZxc2x17jR7lXhzkPrTjUMsLCwsRkfM+Z7ymiJzX5ZrGV9v764yv9SFZry3rdUWUdW2bNm2Kpz71qRFR1rr64h64BxF13oNRz+Uar61p7oF7EFHuPdi0aVNERMzMzBS5vkmUes/Hle16IvJdU5/XU9vn5UOy7YGNGOq1D/W6R5X9+9iup2yupzm1ncvZXvs2uEfry3iPamv5sbK8Hq6jLDVeRxsd13gf+uaejcd9e9SkLbuXK3NfVufetKPm99cR+faF6ylbydfjXD6Wa6pDxmuaRA3nstesOe5ls0q6n+u1XNJaa+deNsN9XNkk53LN97TmtUdYf99KXH8J77FLvC9NcF31qfnaSmi5CzW/RuMa2jUP7XqPNpS/71j7+iPqvwbrb1eWv1dh3d2y7rLU/P4662tyiOurW9fXV1LLWV7bDNeR4Roi8lzHKLpoucb7ac3dsObmlHQur6XU+1cT93ByJd9Df9+xW+7NytyXyTXZco2vR41rjqhz3dbcrlLfY9d0D9fiOsqR4RrWMkrL2e9B39zf9gzp3m7kXB7SfTmaax/mtUfUc/0bfY9dy3Wtx3WUJct1RPR3LVqum+soS9vXsam1fzMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK/KgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOedA8ndu6dWu8613viq1bt/a9lOq5l+XzGj3KvTjIfehGxvuc8Zoicl6XaxqOzPcl67Vlva6Icq+t1HV1yT1wDyJy34PM1zYq98A9iCj/HpS+vnFku6Zs1xOR75qyXU8XhnzPhnrtQ73ucWW7X66nbK5nuNyr9blH63OPypLl9XAdZclyHZNyHzbOPRuP+9Yc93Jl7svq3BtWkm1fuJ6yZbuex8p4ba6pDhmvKTuvWXPcy2bVdD9rWmvp3MtmuI/Nq/me1rz2COvvW+3rb0vW++K66pP52rIY4ms0tGse2vWOq/b7VPv6I+q/BuvvVm3rPcS6u2XdNCX7a+L66pb9+taS5dozXEeGa4jIcx2lqPF+WnM3rHl43L/JuYeTG9o9HNr1boR7szL3pSw1vh41rjmiznVb8zBluYeuoxwZrmFS7kG73N/2uLcrG/J9ce3DvPaIvNef5bpcR1myXEdEPddSyzrX4zrK4jo2Zmp5eXm51d8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCNs6nsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEPjQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMc8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYx40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAxD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0zIPmG3TbbbfFhRdeGKeeempMTU3FTTfdtOF/x/LycrznPe+JZz7zmbF169Z46lOfGldeeWXziwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6s7nvBWTywx/+MH7sx34sLrvssvjZn/3Zsf4db3zjG+Pmm2+O97znPXH22WfHD37wg/jBD37Q8EoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPk0tLy8v972IjKampuKP/uiP4hWveMXhH1tcXIy3v/3t8bGPfSzuu+++eM5znhPXXHNNvOhFL4qIiK9+9auxe/fu+MpXvhJnnXVWPwsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWrep7wUMyRve8Ib48z//8/j4xz8ed955Z7zqVa+Kl73sZXH33XdHRMQf//EfxzOe8Yz4kz/5kzjjjDPi9NNPj9e97nXxgx/8oOeVAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE3yoPmO7N27N66//vr4xCc+ET/xEz8RZ555Zvzar/1avOAFL4jrr78+IiK+/vWvxz333BOf+MQn4iMf+UjccMMNcfvtt8crX/nKnlcPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANGlz3wsYii9/+cvx8MMPxzOf+cwjfnxxcTGe8IQnRETEI488EouLi/GRj3zk8M/70Ic+FOedd17cddddcdZZZ3W+bgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5HjTfkX379sVxxx0Xt99+exx33HFHfG3Hjh0REfGUpzwlNm/efMTD6J/97GdHRMTevXs9aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACS8KD5jpxzzjnx8MMPx/e+9734iZ/4iRV/zvOf//x46KGH4n//7/8dZ555ZkRE/O3f/m1ERDz96U/vbK0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAu6aWl5eX+15EFvv27Yuvfe1rEXHwwfLXXnttvPjFL47HP/7xcdppp8WrX/3q+NznPhfvfe9745xzzon/83/+T3zmM5+J3bt3xwUXXBCPPPJI/JN/8k9ix44dcd1118UjjzwSr3/962N6ejpuvvnmnq8OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIoHzTfo1ltvjRe/+MXH/PhrXvOauOGGG+LAgQPx7ne/Oz7ykY/E3//938fs7Gz8s3/2z+KKK66Is88+OyIivv3tb8e//bf/Nm6++eY48cQT46d/+qfjve99bzz+8Y/v+nIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlnjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHNvW9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICh8aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI550DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxzxovgHLy8uxsLAQy8vLfS8FGJOOIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP9dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1E/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUM9PGi+Affff3/MzMzE/fff3/dSgDHpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/10DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLUw4PmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMc2972AoZjfvxRz+5Zi4cEDMb3t+Jg9cUvMbN/S97KAwpgV0D6dQQ5ahhy0DDloGXLQMuShZ6ifjiEHLUMOWoa89A110SxwNHMB2AgzAwD64QyGsmkU2qMvYFzmBzRDS5CDlmGYtA910zCwFjMCJqcjyE3jUBfNQk7ahuHQO5RHlwAAcCQPmu/At+97IN56453x2bvnDv/Ynl2zcfVFu+PUk7f1uDKgJGYFtE9nkIOWIQctQw5ahhy0DHnoGeqnY8hBy5CDliEvfUNdNAsczVwANsLMAIB+OIOhbBqF9ugLGJf5Ac3QEuSgZRgm7UPdNAysxYyAyekIctM41EWzkJO2YTj0DuXRJQAAHGtT3wvIbn7/0jEfRCIibrt7Li6/8c6Y37/U08qAkpgV0D6dQQ5ahhy0DDloGXLQMuShZ6ifjiEHLUMOWoa89A110SxwNHMB2AgzAwD64QyGsmkU2qMvYFzmBzRDS5CDlmGYtA910zCwFjMCJqcjyE3jUBfNQk7ahuHQO5RHlwAAsDIPmm/Z3L6lYz6IHHLb3XMxt8+HEcCsgC7oDHLQMuSgZchBy5CDliEPPUP9dAw5aBly0DLkpW+oi2aBo5kLwEaYGQDQD2cwlE2j0B59AeMyP6AZWoIctAzDpH2om4aBtZgRMDkdQW4ah7poFnLSNgyH3qE8ugQAgJV50HzLFh48sObX71/n68AwmBXQPp1BDlqGHLQMOWgZctAy5KFnqJ+OIQctQw5ahrz0DXXRLHA0cwHYCDMDAPrhDIayaRTaoy9gXOYHNENLkIOWYZi0D3XTMLAWMwImpyPITeNQF81CTtqG4dA7lEeXAACwslQPmn/44Yfjne98Z5xxxhmxbdu2OPPMM+M3f/M3Y3l5ec1fd+utt8a5554bW7dujR/5kR+JG264obE1TZ9w/JpfP2mdrwPDYFZA+3QGOWgZctAy5KBlyEHLkIeeoX46hhy0DDloGfLSN9RFs8DRzAVgI8wMAOiHMxjKplFoj76AcZkf0AwtQQ5ahmHSPtRNw8BazAiYnI4gN41DXTQLOWkbhkPvUB5dAgDAylI9aP6aa66J//yf/3N84AMfiK9+9atxzTXXxG//9m/H+9///lV/zTe+8Y244IIL4sUvfnH81V/9VbzpTW+K173udfFnf/ZnjaxpdseW2LNrdsWv7dk1G7M7tjTy+wB1MyugfTqDHLQMOWgZctAy5KBlyEPPUD8dQw5ahhy0DHnpG+qiWeBo5gKwEWYGAPTDGQxl0yi0R1/AuMwPaIaWIActwzBpH+qmYWAtZgRMTkeQm8ahLpqFnLQNw6F3KI8uAQBgZakeNP/5z38+Xv7yl8cFF1wQp59+erzyla+Ml7zkJfGFL3xh1V/zX/7Lf4kzzjgj3vve98azn/3seMMb3hCvfOUr433ve18ja5rZviWuvmj3MR9I9uyajWsu2h0z230YAcwK6ILOIActQw5ahhy0DDloGfLQM9RPx5CDliEHLUNe+oa6aBY4mrkAbISZAQD9cAZD2TQK7dEXMC7zA5qhJchByzBM2oe6aRhYixkBk9MR5KZxqItmISdtw3DoHcqjSwAAWNnU8vLyct+LaMpv/dZvxQc/+MG4+eab45nPfGb8r//1v+IlL3lJXHvttfELv/ALK/6aPXv2xLnnnhvXXXfd4R+7/vrr401velPMz8+v+GsWFxdjcXHx8D8vLCzEzp07Y35+Pqanp1f8NfP7l2Ju31Lc/+CBOOmE42N2xxYfRKBH43TcBbMCNsaZDDloGXLQMuSgZchBy5DDuN/H1jOUxbkMOWgZctAy1K/JP/Olb+iPMxly6PvPYpsL0Iy+W+6KmUF2Q2kZssvYsjOYIaqpZY3C6iZtWV9QhprO5UPMDziW/74MOWgZ6tfV+2vtQ7vablnD0I0av+8VYUbA0XxWhhz8fUfIwbkMOTRxLmsb+ue/SUEO3mNDDrX+NyngSFqGem3uewFNuvzyy2NhYSGe9axnxXHHHRcPP/xwXHnllas+ZD4i4t57741TTjnliB875ZRTYmFhIR544IHYtm3bMb/mqquuiiuuuGJDa5vZ7sMHlGScjrtgVsDGOJMhBy1DDlqGHLQMOWgZchj3+9h6hrI4lyEHLUMOWob6NflnvvQN/XEmQw59/1lscwGa0XfLXTEzyG4oLUN2GVt2BjNENbWsUVjdpC3rC8pQ07l8iPkBx/LflyEHLUP9unp/rX1oV9staxi6UeP3vSLMCDiaz8qQg7/vCDk4lyGHJs5lbUP//DcpyMF7bMih1v8mBRxJy1CvqeXl5eW+F9GUj3/84/GWt7wlfud3fif+0T/6R/FXf/VX8aY3vSmuvfbaeM1rXrPir3nmM58Zl156abztbW87/GOf+tSn4oILLoj9+/ev+KD5xcXFWFxcPPzPCwsLsXPnzpifn4/p6enmLwxonI4hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/10DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ702972AJr3lLW+Jyy+/PH7u534uIiLOPvvsuOeee+Kqq65a9UHzT37yk+O73/3uET/23e9+N6anp1d8yHxExNatW2Pr1q3NLh7olI4hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/10DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ7029b2AJu3fvz82bTryko477rh45JFHVv01z3ve8+Izn/nMET92yy23xPOe97xW1ggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQ6kHzF154YVx55ZXxp3/6p/HNb34z/uiP/iiuvfba+Jmf+ZnDP+dtb3tbXHLJJYf/+Zd/+Zfj61//evy7f/fv4m/+5m/i937v9+K///f/Hm9+85v7uAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgADb3vYAmvf/97493vvOd8Su/8ivxve99L0499dT4N//m38S///f//vDP+c53vhN79+49/M9nnHFG/Omf/mm8+c1vjt/93d+Npz3tafHf/tt/i5e+9KV9XAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAKkeNH/SSSfFddddF9ddd92qP+eGG2445sde9KIXxZe+9KX2FgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwGJv6XgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA0HjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGMeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMQ+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGMeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMQ+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGMeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMQ+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGMeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMQ+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOhYqgfNn3766TE1NXXM/73+9a9f8effcMMNx/zcE044oeNVAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEOzue8FNOmLX/xiPPzww4f/+Stf+Ur81E/9VLzqVa9a9ddMT0/HXXfddfifp6amWl0jAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKoHzT/xiU884p+vvvrqOPPMM+OFL3zhqr9mamoqnvzkJ7e9NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDDNvW9gLYsLS3FRz/60bjssstiampq1Z+3b9++ePrTnx47d+6Ml7/85fHXf/3XHa4SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGKLNfS+gLTfddFPcd9998drXvnbVn3PWWWfFhz/84di9e3fMz8/He97znjj//PPjr//6r+NpT3vaqr9ucXExFhcXD//zwsJCk0sHOqBjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1A/HUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM9dMx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1CvTX0voC0f+tCH4qd/+qfj1FNPXfXnPO95z4tLLrkkfvzHfzxe+MIXxic/+cl44hOfGL//+7+/5r/7qquuipmZmcP/t3PnzqaXD7RMx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfjqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGeqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahXlPLy8vLfS+iaffcc0884xnPiE9+8pPx8pe/fEO/9lWvelVs3rw5Pvaxj636cxYXF2NxcfHwPy8sLMTOnTtjfn4+pqenx153zeb3L8XcvqVYePBATG87PmZP3BIz27f0vSxYlY4np3tKoOV6mBmsRctH0gu10vKjdEzNtLw6bVMTLR9Jv9RKy2Qx9Dms5YOGvg+on5YP0jK1G3rLGiaDWjrWG6ytlpZXo3E4qOaWdQyPqrllKFUf54yWIQctD4PPI/lpuV8aoym1tGzPw9pqaZm1mXVouRlaom9aLp85wXp0XB9ds5IaW7aX4Vg1ttwlc4NaZG5ZhwxJ5pZHpXkyGFrLuiWrobWMeZaVlodL07louV96oilahhy0DPXa3PcC2nD99dfHk570pLjgggs29Osefvjh+PKXvxz/4l/8izV/3tatW2Pr1q2TLDGVb9/3QLz1xjvjs3fPHf6xPbtm4+qLdsepJ2/rcWWwOh1PRveUQst1MDNYj5YfpRdqpuWDdEzttLwybVMbLT9Kv9RMy2RgDms5wj4gBy1rmRyG3LKGyaKGjvUG66uh5dVoHB5Va8s6hiPV2jKUqq9zRsuQg5bz83lkGLTcH43RpBpatudhfTW0zNrMOiK03AQtUQItl82cYBQ6rouuWU1tLdvLsLLaWu6SuUFNsrasQ4Yma8uj0jxZDKll3ZLZkFrGPMtMy8Ok6Xy03B890SQtQw5ahnpt6nsBTXvkkUfi+uuvj9e85jWxefPmI752ySWXxNve9rbD//wbv/EbcfPNN8fXv/71uOOOO+LVr3513HPPPfG6172u62VXa37/0jEfDiIibrt7Li6/8c6Y37/U08qAtuge2AgzA0anF6ifjiEnbUO99AvQL3OYCPsAstAy1E3D0B29QW4ah/rpGIA2OWcAWItzAtqlMYbGngeGwKyDZmgJWI85AfnomizsZWCjzA3onw5hWDQP9dEtkIV5BrloGpqjJwCAXDav/1Pq8ulPfzr27t0bl1122TFf27t3b2zatOnwP//DP/xD/NIv/VLce++98bjHPS7OO++8+PznPx8/+qM/2uWSWzO/fynm9i3FwoMHYnrb8TF74paY2b6l0d9jbt/SMR8ODrnt7rmY27fU+O8J2XTRapN0D2zEWjPjL+/5h7hv/4GqZiCsponz3BkL7fIZGfJqu29tw3hK+J6XfqE7JTRPeczhbpXaoX0AkymlbS1Ds7puW8PQne//cCl+bOfJ8drzT4/Fhx6JE44/Lu7Y+w/x4f/5Db1BpR57bm/bclz82M6T4/Z7/iH2Lz18xM/TOHRnkvfT3hsDpSrl+4BMxjkDDIEza3zOCbIpbR5ojBJ02YU9D3mVdsb2yawjK392DCiNOVGnmt431rTWLHRNbVabE/Yy1KWEM9/cgP6t1+H3f7h0+Of5jADHKuE83QhnL0ymj+Z1C8eq7fzlIPOMo2m5bppmXNo/lp4AAHJJ96D5l7zkJbG8vLzi12699dYj/vl973tfvO997+tgVd379n0PxFtvvPOIN+97ds3G1RftjlNP3tbY77Pw4IE1v37/Ol+Hoeuq1SbpHtiI1WbG9i3HxX+8+Jx4x01fjs9+7fuHf7z0GQgraeo8d8ZCe3xGhry66FvbsHGlfM9Lv9CNUpqnPOZwd0ru0D6A8ZXUtpahOX20rWHoznJEfGnvP8QH/r+vHf6x5//IE+I/XnxO/D8f+5LeoDIrnduPbfroh81rHNo36ftp742BEpX0fUAm45wBsnNmTcY5QSYlzgON0beuu7DnIacSz9g+mXVk5M+OASUyJ+pT0/vGmtaaia6pyVpzYt+ivQy1KOXMdwZC/9bqcPuW42I5It7wsS/1Pi+gRKWcpxvh7IXx9dW8buFINZ6/HGSe8Vharp+mGYf2V6YnAIBcNvW9AJo3v3/pmA8zERG33T0Xl994Z8zvX2rs95o+4fg1v37SOl+HIeuy1SbpHtiI1WbGZS84I67/3DeOeMh8RPkzEI7W5HnujIV2+IwMeXXVt7ZhY0r6npd+oX0lNU95zOFulN6hfQDjKa1tLUMz+mpbw9CN+f1L8R/+x1fic0f9OYjPfe37cf3nvhGXveAMvUFFVju3H9v00TQO7Wri/bT3xkBpSvs+IJNxzgCZObMm55wgi1LngcboUx9d2POQT6lnbJ/MOrLxZ8eAUpkTdanpfWNNa81G19RivTlx8rYta/56exnKUNKZ7wyE/q3V4WUvOCP+w//4ShHzAkpT0nm6Ec5eGE+fzesWHlXr+ctB5hmHaDkHTbNR2l+dngAAcvGg+YTm9i0d82HmkNvunou5fc19oJndsSX27Jpd8Wt7ds3G7I61/4AeDFmXrTZJ98BGrDYzztl58jH/4+qHlDwD4WhNnufOWGiHz8iQV1d9axs2pqTveekX2ldS85THHO5G6R3aBzCe0trWMjSjr7Y1DN2Y27cUn13lz0F87mvfj/Of8QS9QUXWOrc/97Xvxzk7Tz7ix5yp0L4m3k97bwyUprTvAzIZ5wyQmTNrcs4Jsih1HmiMPvXRhT0P+ZR6xvbJrCMbf3YMKJU5UZea3jfWtNZsdE0t1psTSw8/Yi9DBUo6852B0L+1Ojz/GU9Y9e9d+YzA0JV0nm6EsxfG02fzuoVH1Xr+cpB5xiFazkHTbJT2V6cnAIBcPGg+oYUHD6z59fvX+fpGzGzfEldftPuYDwl7ds3GNRftjpntPiDAarpstUm6BzZitZmxnlJnIBytyfPcGQvt8BkZ8uqqb23DxpT0PS/9QvtKap7ymMPdKL1D+wDGU1rbWoZm9NW2hqEb6zW+9fhNeoOKrNf04kOPHP7/nanQjSbeT3tvDJSmtO8DMhnnDJCZM2tyzgmyKHUeaIw+9dGFPQ/5lHrG9smsIxt/dgwolTlRl5reN9a01mx0TS3WmxM/XHzIXoYKlHTmOwOhf2t1uHXz2o9B8BmBISvpPN0IZy+Mp8/mdQuPqvX85SDzjEO0nIOm2Sjtr05PAAC5bO57ATRv+oTj1/z6Set8faNOPXlbvP/ic2Ju31Lc/+CBOOmE42N2xxYfDmAdXbfaJN0DG7HSzHhkeXnNX1PyDITHavo8d8ZC83xGhry67FvbMLrSvuelX2hXac1THnO4fTV0aB/AxpXYtpZhcn22rWFo33qNn7xNb1CT9Zp+xuyJcdOvnO9MhQ419X7ae2OgJCV+H5DJOGeArJxZzXBOkEHJ80Bj9KWvLux5yKXkM7ZPZh2Z+LNjQMnMiXrU9L6xprVmpGtqMMqcsJehfKWd+eYG9G+1Duf2La3563xGYMhKO083wtkLG9d387qFg/pukcmZZ0RoORNNsxHaX5ueAADy8KD5hGZ3bIk9u2bjtrvnjvnanl2zMbuj+TfuM9t9IICN6qPVJuke2IijZ8b8/qWqZyAc0sZ57oyFZvmMDHl13be2YTQlfs9Lv9CeEpunPOZwu2rp0D6AjSm1bS3DZPpuW8PQrr4bB5q1XtNPmTnBuQoda/Ks9d4YKIXPETk5Z4CMnFnNcU5Qu9LngcboQ59d2POQR+lnbJ/MOrLou3MtAesxJ+rQ93myETWtNStdU7pR54S9DGUr8cw3N6B/q3VY2ryAUpR4nm6Esxc2poTmdQtltMjkzDO0nIumGZX216cnAIAcNvW9AJo3s31LXH3R7tiza/aIH9+zazauuWi3N/JQCK0CQ2YGkoW9DOXTKeSlbyiTNmFYNA/90yHkpG3ISduQm8YhF01DeXQJZGS2AVALZxZwiHkAx9IF0ASzBPLTOQBNqOk8qWmtQD/MCchBy8CozAtYnT5gWDQPZdAi5KBlGCbtAwAwFFPLy8vLfS+idgsLCzEzMxPz8/MxPT3d93IOm9+/FHP7luL+Bw/ESSccH7M7tvgwA6vos2OtQnNKPZNZnRnISmps2V6GY5XWsk5hPKW1vBJ9w/r6aFmb0LySz2XNw+jaalmH0K2uzmVtQ7v6eo+tbWhOiZ+VNQ4bV2LLh2gaRuezMuRQ8rmcmdlG07QMOZTYsjMLNq7ElptgHjA0o7SsCyhfDeeyWQLrq6HltegcDqq9ZehbCefJqB2XsFZgdSWcyeYETE7LkEMJLXfBvCC7SVrWB5Sji3NZ89A+f+YLctAy5NDGe2ztQ/eG8n1syE7LUI/NfS+A9sxs9wEGaqBVYMjMQLKwl6F8OoW89A1l0iYMi+ahfzqEnLQNOWkbctM45KJpKI8ugYzMNgBq4cwCDjEP4Fi6AJpglkB+OgegCTWdJzWtFeiHOQE5aBkYlXkBq9MHDIvmoQxahBy0DMOkfQAAsvOgeao1v38p5vYtxcKDB2J62/Exe6IPcNAXPQJtMmOgG1qDcukTaIPZAnTBrAFKYy4Ni9cbctAy9E+HoANgfeYEDIvmAYbJ/AfIxVwHmmCW0DV7DmB0ZiYlsi8BGJUzgyGwz+mKvQasxnyAYdI+lEmbUAetAgyP2U+f7D9ojp4AAOrkQfNU6dv3PRBvvfHO+Ozdc4d/bM+u2bj6ot1x6snbelwZDI8egTaZMdANrUG59Am0wWwBumDWAKUxl4bF6w05aBn6p0PQAbA+cwKGRfMAw2T+A+RirgNNMEvomj0HMDozkxLZlwCMypnBENjndMVeA1ZjPsAwaR/KpE2og1YBhsfsp0/2HzRHTwAA9drU9wJgo+b3Lx3zASQi4ra75+LyG++M+f1LPa0MhkePQJvMGOiG1qBc+gTaYLYAXTBrgNKYS8Pi9YYctAz90yHoAFifOQHDonmAYTL/AXIx14EmmCV0zZ4DGJ2ZSYnsSwBG5cxgCOxzumKvAasxH2CYtA9l0ibUQasAw2P20yf7D5qjJwCAunnQPNWZ27d0zAeQQ267ey7m9vkQAl3RI9AmMwa6oTUolz6BNpgtQBfMGqA05tKweL0hBy1D/3QIOgDWZ07AsGgeYJjMf4BczHWgCWYJXbPnAEZnZlIi+xKAUTkzGAL7nK7Ya8BqzAcYJu1DmbQJddAqwPCY/fTJ/oPm6AkAoG4eNE91Fh48sObX71/n60Bz9Ai0yYyBbmgNyqVPoA1mC9AFswYojbk0LF5vyEHL0D8dgg6A9ZkTMCyaBxgm8x8gF3MdaIJZQtfsOYDRmZmUyL4EYFTODIbAPqcr9hqwGvMBhkn7UCZtQh20CjA8Zj99sv+gOXoCAKibB81TnekTjl/z6yet83WgOXoE2mTGQDe0BuXSJ9AGswXoglkDlMZcGhavN+SgZeifDkEHwPrMCRgWzQMMk/kPkIu5DjTBLKFr9hzA6MxMSmRfAjAqZwZDYJ/TFXsNWI35AMOkfSiTNqEOWgUYHrOfPtl/0Bw9AQDUzYPmqc7sji2xZ9fsil/bs2s2Znds6XhFMFx6BNpkxkA3tAbl0ifQBrMF6IJZA5TGXBoWrzfkoGXonw5BB8D6zAkYFs0DDJP5D5CLuQ40wSyha/YcwOjMTEpkXwIwKmcGQ2Cf0xV7DViN+QDDpH0okzahDloFGB6znz7Zf9AcPQEA1M2D5qnOzPYtcfVFu4/5ILJn12xcc9HumNnuQwh0RY9Am8wY6IbWoFz6BNpgtgBdMGuA0phLw+L1hhy0DP3TIegAWJ85AcOieYBhMv8BcjHXgSaYJXTNngMYnZlJiexLAEblzGAI7HO6Yq8BqzEfYJi0D2XSJtRBqwDDY/bTJ/sPmqMnAIC6TS0vLy/3vYjaLSwsxMzMTMzPz8f09HTfyxmM+f1LMbdvKe5/8ECcdMLxMbtjiw8gjE3Hk9EjpdByTmbM8Gi5H1qjaVpujj7pk5bzMluGRcv0xaxplpZhciXMJS13p4TXm7y03B0t0yYtj0aHlKyrjnUA7cpwJpsTkKPlUWmezIbUMmxUTfNfy5CDlttV01ynblrOzSwZjlJatudgMqW0TDfMzLxqbtm+hEfV3DJ0oYYzQ8dMqoZ9PgRDaNleYwiG0HIbzAdKo+VuaJ+2aXk82qQ0Wl6ZVqmNlmFyJcx+LQ9XCfuP5mi5X3qiKVqGHLQM9djc9wJgXDPbfeiAUugRaJMZA93QGpRLn0AbzBagC2YNUBpzaVi83pCDlqF/OgQdAOszJ2BYNA8wTOY/QC7mOtAEs4Su2XMAozMzKZF9CcConBkMgX1OV+w1YDXmAwyT9qFM2oQ6aBVgeMx++mT/QXP0BABQp019LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgaDxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DEPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI550DwAAFqWOHIAAQAASURBVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DEPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoWKoHzZ9++ukxNTV1zP+9/vWvX/XXfOITn4hnPetZccIJJ8TZZ58dn/rUpzpcMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBEqR40/8UvfjG+853vHP6/W265JSIiXvWqV6348z//+c/HxRdfHP/qX/2r+NKXvhSveMUr4hWveEV85Stf6XLZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwMCketD8E5/4xHjyk598+P/+5E/+JM4888x44QtfuOLP/93f/d142cteFm95y1vi2c9+dvzmb/5mnHvuufGBD3yg45UDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ7K57wW0ZWlpKT760Y/Gr/7qr8bU1NSKP+fP//zP41d/9VeP+LGXvvSlcdNNN635715cXIzFxcXD/7ywsDDxeicxv38p5vYtxcKDB2J62/Exe+KWmNm+pdc1lcY94mjjdDz0fTT066dMpZ3J0JQ+Z24fv3fJLWc+/zJfG/2YtOWh7cmhXS/1KO1c1kpdvF7lKK3lttl7wzKk13toLWczpL1aopLuf18tl3QP+uZe0ISSz2V7fGXuCysppeUh7s8hXjPtKKXjo3Wxx3VEJqW2PIqNtKhbsvN9r7LWAuOq+VzeCL22w30tx1Bahuz8fcfuuX+0oaRz2R4fj/tGRHMtt7mf7FVYn/fYtMEe6V4T57LX7SD3gT6V9HkZ2tLlnB3y/zaQ84y2DGVvDeWzco1rho0YSstNGOp1U4dJ3mPb2+Nz72iac3l0Q71u6tDk976GvteHfv30q5TvYzdFT81xL+sybste59G4T3Ql27k8FGYER9My5KBlqFfaB83fdNNNcd9998VrX/vaVX/OvffeG6eccsoRP3bKKafEvffeu+a/+6qrroorrriiiWVO7Nv3PRBvvfHO+Ozdc4d/bM+u2bj6ot1x6snbelxZOdwjVrLRjoe+j4Z+/ZSrpDMZmtLnzO3r9y615cznX+Zroz+TtDy0PTm066UuJZ3LWqmL16ssJbXcNntvWIb2eg+p5WyGtldLU9r976Pl0u5Bn9wLmlLquWyPr8x9YTUltDzE/TnEa6Y9JXR8tC72uI7IpsSWR7GRFnXLEAz9+14lrQUmUeu5vBF6bYf7WpYhtAxD4O87dsv9oy2lnMv2+HjcNw5pouU295O9CqPxHpum2SP9mPRc9rod5D7Qt1I+L0NbupyzQ/7fBnKe0ZYh7a0hfFaucc2wUUNouQlDvW7qMe57bHt7fO4dbXAuj2ao1009mvre19D3+tCvn/6V8H3spuipOe5lfcZp2es8GveJLmU6l4fCjGAlWoYctAz1mlpeXl7uexFteOlLXxpbtmyJP/7jP17152zZsiX+4A/+IC6++OLDP/Z7v/d7ccUVV8R3v/vdVX/d4uJiLC4uHv7nhYWF2LlzZ8zPz8f09HQzFzCC+f1L8YaPfemIN9iH7Nk1G++/+JyY2b6ls/WUyD1iNRvpeOj7aOjXT9lKOZOhKX3O3D5/7xJbznz+Zb42+jVuy0Pbk0O7XupTyrmslbp4vcpTSstts/eGZYiv91BazmaIe7UkJd7/rlsu8R70xb2gSSWey/b4ytwX1tJ3y0Pcn0O8ZtrVd8dH62KP64iMSmt5FBtpUbcMxZC/71XSWmBSNZ7LG6HXdriv5cneMgyFv+/YHfePNpVwLtvj43HfeKxJW25zP9mrMDrvsWmSPdKfSc5lr9tB7gMlKOHzMrSlyzk75P9tIOcZbRna3sr+WbnGNcM4srfchKFeN3UZ5z22vT0+9462OJfXN9Trpi5NfO9r6Ht96NdPGfr+PnZT9NQc97JOG23Z6zwa94muZTmXh8KMYDVahhy0DPXa3PcC2nDPPffEpz/96fjkJz+55s978pOffMwD5b/73e/Gk5/85DV/3datW2Pr1q0Tr3NSc/uWVnyDHRFx291zMbdvafBvst0jVrORjoe+j4Z+/ZStlDMZmtLnzO3z9y6x5cznX+Zro1/jtjy0PTm066U+pZzLWqmL16s8pbTcNntvWIb4eg+l5WyGuFdLUuL977rlEu9BX9wLmlTiuWyPr8x9YS19tzzE/TnEa6ZdfXd8tC72uI7IqLSWR7GRFnXLUAz5+14lrQUmVeO5vBF6bYf7Wp7sLcNQ+PuO3XH/aFMJ57I9Ph73jceatOU295O9CqPzHpsm2SP9meRc9rod5D5QghI+L0NbupyzQ/7fBnKe0Zah7a3sn5VrXDOMI3vLTRjqdVOXcd5j29vjc+9oi3N5fUO9burSxPe+hr7Xh379lKHv72M3RU/NcS/rtNGWvc6jcZ/oWpZzeSjMCFajZchBy1CvTX0voA3XX399POlJT4oLLrhgzZ/3vOc9Lz7zmc8c8WO33HJLPO95z2tzeY1ZePDAml+/f52vD4F7RBOGvo+Gfv0AXepz5pr3R8p8PzJfG3Ua2p4c2vXCuLRSF68XfbH3hsXrTS3s1X65/+7BY7kXZGePr8x9oWRD3J9DvGaGpYs9riMow0Za1C20o6S2SloLsDa9tsN9BeifWTwZ94/s7PHxuG80qc39ZK9CO7TFeuyROnndDnIfANrV5Zwd8kwf8rXTLntrdTXemxrXDG0bahdDvW7ys7fH595RgqHuw6FeN8Mz9L0+9OuHJumpOe7lMHidR+M+AWsxIwAAyrS57wU07ZFHHonrr78+XvOa18TmzUde3iWXXBJPfepT46qrroqIiDe+8Y3xwhe+MN773vfGBRdcEB//+MfjL//yL+ODH/xgH0vfsOkTjl/z6yet8/UhcI9owtD30dCvH6BLfc5c8/5Ime9H5mujTkPbk0O7XhiXVuri9aIv9t6weL2phb3aL/ffPXgs94Ls7PGVuS+UbIj7c4jXzLB0scd1BGXYSIu6hXaU1FZJawHWptd2uK9wpL1798bc3Fzfy1jV7OxsnHbaaX0vg4aZxZNx/8jOHh+P+0aT2txP9iq0Q1usxx6pk9ftIPcBoF1dztkhz/QhXzvtsrdWV+O9qXHN0LahdjHU6yY/e3t87h0lGOo+HOp1MzxD3+tDv35okp6a414Og9d5NO4TsBYzAgCgTOkeNP/pT3869u7dG5dddtkxX9u7d29s2rTp8D+ff/758Yd/+Ifxjne8I3791389du3aFTfddFM85znP6XLJY5vdsSX27JqN2+4+9n+IZM+u2ZjdsaWHVZXFParD/P6lmNu3FAsPHojpbcfH7IlbYmZ7Oa/N0PfR0K+f0ZXeMtSgzZm7XqPm/ZEy34/M18ajajqXh7Ynh3a9TKamlpumlbp4vdY25JbbZu/VbyN9eL1pQhcz2V7tl/vvHjyWe5GX99gH2eMrc1/qMcSWh7g/h3jNQzPElh+riz2uI9o29I5HtZEWdUsfhtBySW2VtBZyGULLXdPrePyZYxjd3r1741nPenY88MD+vpeyqm3btsff/M1XPWw+GbN4Mu7fcAz1PbY9Ph73rVw1ttzmfrJXKV2NzUZoi/XZIwfV1rjX7SD3gaPV1jKMos993eWcHfJMH/K1064+91bpZ3KN3dW4Zuqn5TIN9boZX+ktH2Jvj8+9G4bSWx7qPhzqdWdSelulGPpeH/r1cyyzY3w19VT661zTvWR8XufRlHyfSp8lMAQlzwgeZV4CwPBMLS8vL/e9iNotLCzEzMxMzM/Px/T0dKe/97fveyAuv/HOI95o79k1G9dctDuecvK2TtdSKveobN++74F46413xmePen2uvmh3nNrh67Nex0PfR0O/ftZXS8tQgzZm7qiNljLvS2m5lPvRhszXRp3n8tD25NCul/HU2HLTtFIXr9fKtNw+e69e4/Qx9Nc7c8td6HImD32v9q30+99Fy6Xfgy65F/l4j30ke3xl7kv5htzyEPfnEK95KEpouYQzuYs9riPaUkLHEWW0PIqNtKhbujSklktqq6S1kMOQWu6aXjemtj9zzMoytlyqO+64I84777x47mXviumnnN73co6x8J1vxl98+Iq4/fbb49xzz+17OWyQv+/YLvcvv6G/x7bHx+O+lafmltvcT/YqpSql2dV4j82khr5HSml8o+fy0F+3Q9wHDqm1ZVhLCfu6yzlbykz357DJpI+9VcLsisj5WbnGNVMvLZdtqNfNxtXS8iH29vjcu9xqaXmo+3Co151BKW11bdzvfQ19rw/9+nlUKbOj5v8eVUNPpbzO66nhXrK2UVr2Oo+mxPtUyyxhcjWfy0NR4ozgUaXMSy1DDlqGevT+oPmPfOQj8S//5b+MrVu39rmMifQ99Ob3L8XcvqW4/8EDcdIJx8fsji0xs31L5+somXtUpvn9S/GGj33piA8hh+zZNRvvv/iczl6nUToe+j4a+vWzutpahho0OXM32mgJ876klku4H23JfG1DVvO5PLQ9ObTrZWNqbrlpWqmL1+tIWu6OvVefSfoY8uudveU29TGTh7xXS1Dy/e+q5ZLvQdfcizy8x16ZPb4y96VcWh7m/hziNWdXSsulnMld7HEd0bRSOo4op+VRbKRF3dKFIbZcUlslrYW6DbHlrul1NDX+mWNWlrXlEh160PxPvf36ePxpZ/W9nGP8YO9dccuVl3rQfKX8fcf2uX95eY99kD0+HvetHBlabnM/2auUpqRmV+M9Nk0Y6h4pqfFxzuWhvm5Hcx+ovWVYSUn7uss5W8JM9+ewyabrhkuZXVk/K9e4Zuqj5ToM9boZXW0tH2Jvj8+9y6m2loe6D4d63TUrqa2uTfK9r6Hv9aFfP2XNjtr/e1TJPZX0Oo+i5HvJ+kZt2es8mpLuU22zhMnUfi4PRUkzgkeVNC+1DDloGeqxue8FXHrppfGyl70snvSkJ/W9lGrNbPemej3uUZnm9i2t+CEkIuK2u+dibt9SUa/b0PfR0K+f1dXWMtSgyZm70UbN+yNlvh+Zr23Iaj6Xh7Ynh3a9bEzNLTdNK3Xxeh1Jy92x9+ozSR9eb8bRx0y2V/vl/rsHj+Ve5OE99srs8ZW5L+XS8jD35xCvOTstH6mLPa4jmqbj8WykRd3ShSG2XFJbJa2Fug2x5a7pdTT+zDFAfcziybh/eXmPfZA9Ph73rRwZWm5zP9mrlCZDsxHaYn1D3SO1Nz7U1+1o7gO1twwrKWlfdzlnhzzTh3zttKvLvVXS7BpFjd3VuGbqo+U6DPW6GV1tLR9ib4/PvcuptpaHug+Het01q62tUgx9rw/9+jE7mlRyT7W9ziXfS5rjdR5NSfeptlkCQ1DSjOBR5iUADNemvhewvLzc9xKAniw8eGDNr9+/zteBMmgZyqZRGBbNQw5ahhy0DKvTB12z5wByMM8hBy1DDlqG+ukYctAy5KBlSmEvAgBZeF8DOWgZ6qJZyE3jkIOWyci+BmpkdkEOWoYctAw5aBnaoS1gHGbHMHidgSaYJQCjMS8BYLh6f9B8RMTU1FTfSwB6MH3C8Wt+/aR1vg6UQctQNo3CsGgectAy5KBlWJ0+6Jo9B5CDeQ45aBly0DLUT8eQg5YhBy1TCnsRAMjC+xrIQctQF81CbhqHHLRMRvY1UCOzC3LQMuSgZchBy9AObQHjMDuGwesMNMEsARiNeQkAw1XEg+Z/8id/Ms4999w1/w/IZ3bHltiza3bFr+3ZNRuzO7Z0vCJgHFqGsmkUhkXzkIOWIQctw+r0QdfsOYAczHPIQcuQg5ahfjqGHLQMOWiZUtiLAEAW3tdADlqGumgWctM45KBlMrKvgRqZXZCDliEHLUMOWoZ2aAsYh9kxDF5noAlmCcBozEsAGK4iHjT/0pe+NF7+8pev+X9APjPbt8TVF+0+5sPInl2zcc1Fu2Nmuw8iUAMtQ9k0CsOiechBy5CDlmF1+qBr9hxADuY55KBlyEHLUD8dQw5ahhy0TCnsRQAgC+9rIActQ100C7lpHHLQMhnZ10CNzC7IQcuQg5YhBy1DO7QFjMPsGAavM9AEswRgNOYlAAzX1PLy8nKfC9i0aVPce++98aQnPWnFr//d3/1d/MZv/EZ88IMf7Hhlo1tYWIiZmZmYn5+P6enpvpcD1ZnfvxRz+5bi/gcPxEknHB+zO7Z0/iFExzA5LUPZSmh0VFqGyZXQvJZhclqGHLQMqyuhj5poeXL2HCXQMkyuhHmuZZicliGHvlvWMUyu744jtAxN0DLkoGVKUcJeZDJa7s4dd9wR5513XvzU26+Px592Vt/LOcYP9t4Vt1x5adx+++1x7rnn9r0cNkjLMLkS3tdoGSanZahLCc2uRsswuRIa1zJMTstkVMK+Hhodw+RKmF1ahslpGXLQMuSgZWhHCW11TcswuRJmh5bbV8LrTH5azs8sGQYtw+RKmJdahhy0DPXY3PcCpqam1vz697///fjQhz5U9IPmgcnMbPeNGshAy1A2jcKwaB5y0DLkoGVYnT7omj0HkIN5DjloGXLQMtRPx5CDliEHLVMKexEAyML7GshBy1AXzUJuGocctExG9jVQI7MLctAy5KBlyEHL0A5tAeMwO4bB6ww0wSwBGI15CQDDs6nvBSwvL/e9BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBO9f6g+W984xsxOzvb9zIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrO57wU8/elP73sJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ3q/UHzP/uzP7vm1++7775uFgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQkd4fND8zM7Pu1y+55JKOVgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQvt4fNH/99df3vQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATm3qewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ+NB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd29z3AqBp8/uXYm7fUiw8eCCmtx0fsyduiZntW/peFqSmO4DxmJ+UwD6EZmgJoHlmK/RHf1AeXTIU9jrQBLMEuqM3MrCPgTaZMdA8XQFsjLkJAHVyhjME9jnUQ68A7TFjGZe9A+3TGUD7zFomZQ9BfXQLNMlMgfroFliJ2QD56BqgLOYyXbLfAACa40HzpPLt+x6It954Z3z27rnDP7Zn12xcfdHuOPXkbT2uDPLSHcB4zE9KYB9CM7QE0DyzFfqjPyiPLhkKex1oglkC3dEbGdjHQJvMGGiergA2xtwEgDo5wxkC+xzqoVeA9pixjMvegfbpDKB9Zi2TsoegProFmmSmQH10C6zEbIB8dA1QFnOZLtlvAADN2tT3AqAp8/uXjvmwEBFx291zcfmNd8b8/qWeVgZ56Q5gPOYnJbAPoRlaAmie2Qr90R+UR5cMhb0ONMEsge7ojQzsY6BNZgw0T1cAG2NuAkCdnOEMgX0O9dArQHvMWMZl70D7dAbQPrOWSdlDUB/dAk0yU6A+ugVWYjZAPrr+/9m7/yC/zvqw9x/J0sqSZa2xNxAbZKMGQSBBRDY0DQYF5pZST0ya1CX3Eig/TEg7aYYJlAAObRISAqa93JAQCkONTdNp09vWNcOdDk0pBGy4KQk2viaFGDl2KmIbyBJ7V7KsXYP3/uGukLS/vt/vnh/P8zmv14z/sFayzzn7vD/PObuSDkBZzGW6ZL0BADRvW98HAE2YO74Y98+diJf99YvjNZfvi9uOPBDXf/aeOL74nYh47KFh9thiTO+a6vlIoX5zxxdj9thizJ94JHZOnRXP2nte3Po/HzjZ2zLdAbU4da7t2bk9Zs6Zan12zR5bXPFFzmXmJ10Zdx320QrUYLMzXVvAUK03/9wvQ3+a7M99DjQj275oNrDWGsi21oHxNbFHmCXQDb9PiyxW2zd2TZ0VVz9vXxzce1589ZvH4vxzpjy3ABN58Pgj8ernPjle9tcvjrO3n3XafmmvhMm0/czna5dANu5HAKB9bTxH+H4XmS0381fHF+M1l++LZ+0977TvMUVY5wxTyV+Xsi8BNGO1Wf+th8xYHjPuvYD9Gdqns/WV/AwDtKfp9s1aRuXPIkIeXXTrXhWGw58Jg/o0fS9g34cc1poNu6bOigN7z4v7507E3bMP6Rwq0tbzv72fbKxpuuL7KbTpzFm2bcuWuPV/PrDqz7XeAAAm40XzVO++Bx+Ot9x4x2kPp5c/5YL47ZcdjNf/3hdP/gHzoyce6esQIY1Re1umO6B0q821Q/tn4tqrDsRF5+1s7f87v8F8ND/pwjjrsK9WoAabmenaAoZqo/nnfhn601R/7nOgOZn2RbOB9dbAsYU8ax0YX1N7RKZ9E0rl92mRyZn7xq6ps+K3X3YwbvjcPfE7n7rr5I97bgHGdd+DD8c/+eiX4pa7vnXyx87cL+2VML42n/l87RLIxv0IALSvrecI3+8iq3H+bLJ1zpCU/nUp+xLA5q0163/lx38gdk2dteLvaFlmxg7DJPcC9mdon87WVvozDNCONto3axmFP4sIubQ9+92rwrD4M2FQnybvBez7kMdqs8G+DnVr4/nf3k821jRd8j052rLaLHv+/pk1310XYb0BAExia98HAJsxd3xxxYNDRMTn7vpW3PC5e+Lq5+07+WPnnr2968ODVMbpbZnugJKtNdduPjwbb73xjpg7vtja/3vPBvPR/KQLo67DPluBGkw607UFDNUo88/9MvSnif7c50CzsuyLZgMbrYHzdk6t++trWevA+JrcI7Lsm1Aqv0+LbM7cN65+3r644XP3xOdOeRFjhOcWYDwn98szZsmZ+6W9EsbX1jOfr10C2bgfAYD2tfkc4ftdZDTun022zhmKGr4uZV8C2Jz1Zv2vfux/rPp3tCwzY/Ob9F7A/gzt09nqaniGAZrXVvtmLRvxZxEhnzZnv3tVGB5/Jgzq09S9gH0fclltNtjXoW5NP//b+8nGmqZrvidHG9aaZbccnl3z3XUR1hsAwCS8aJ6qzR5bXPHgsOxzd30rDu49LyIiDu2fiZnd6/+GQGB9o/a2THdA6dabazcfno3ZY+19Q2Vm91Qc2j+z6sfMT7oy6jrssxWowaQzXVvAUI0y/9wvQ3+a6M99DjQry75oNrDRGlj8zqMp1jowvib3iCz7JpTK79MimzP3jYN7z1vxFw8s89wCjGqU/dJeCZNp65nP1y6BbNyPAED72nyO8P0uMhrnzyZb5wxJDV+Xsi8BbM56s/6Ww7Px3L92waofM2OHYdJ7AfsztE9nq6vhGQZoXlvtm7VsxJ9FhHzanP3uVWF4/JkwqE9T9wL2fchltdlgX4e6Nf38b+8nG2uarvmeHG0Y9911EdYbAMCkvGieqs2feGTdjy98+7HfBPjuqw7E9C4PDLAZo/S2THdADTaaa0c3+PhmTO+aimuvOrDii+vmJ10adR322QrUYNKZri1gqEaZf+6XoT9N9Oc+B5qVZV80G9hoDTy08O0Uax0YX5N7RJZ9E0rl92mRzZn7xqm/92k1nluAUWy0X0aEvRIm1NYzn69dAtm4HwGA9rX5HOH7XWQ06p9Nts4Zmhq+LmVfAticjWb9ju1bzdgBm/RewP4M7dPZ6mp4hgGa11b7Zi0b8WcRIZ82Z797VRgefyYM6tPUvYB9H3JZbTbY16FuTT//2/vJxpqma74nRxtG+TPMp7LeAAAmt63vA4DN2HP29nU//tdmzon3veyghwVowCi9ffTnnhvnnr09ZnZP6Q4o3kZz7dwNPr5ZF523M973soMxe2wxjp54xPykF6Osw75bgRpMMtO1BQzVqPPP/TL0Z7P9uc+B5mXYF80GRlkDGdY6ML6m9wizBNrj92mR0an7xsK3v7Puz/XcAoxio/3y4vN3xYXn7ezoaCCfNp75fO0SyMb9CAC0r+3nCN/vIpuNmnnyBbvik2/8Ueucwanl61L2JYDJbTTrz9s5ZcYO2GbuBezP0D6drVTLMwzQrDbbN2tZjz+LCDm11a17VRgmfyYM6tPEvYB9H/I5czacvf2sdX++zqF8TT7/2/vJxpqmD76fQtNG+TPMn3zjj1pvAAAN8KJ5qjazeyoO7Z+Jmw/PrvjYof0zceH02R4WoCF6A7LZaK7N7G5/pk3v8oVN+rfROiyhFajBuDNdW8BQjTP/3C9DfzbTn/scaEft+6LZwKhroPa1DoyvjT3CLIF2+H0jZLW8b8wdX/TcAmzaRvvl48/d0cNRQS5NP/P52iWQjfsRAGhfF88Rvt9FJhs188TzdlrvDFJNX5eyLwFMZpRZb8YO12bvBawdaJ/OTlfTMwzQnLbbN2tZiz+LCHm10a17VRgufyYM6rPZewH7PuR06mywr0MOTT3/2/vJxpqmL76fQpNG+TPM1hsAQDO29n0AsBnTu6bi2qsOxKH9M6f9+KH9M/Huqw54cIAG6Q3IxlyD0WgF2qEtYKjMP8hP58BqzAasAWAt5gPUQ69kZ40DTTBLoD66BbIx1wCgffZbGI9mYHXaAMjPrGc91gdQG3MLhkn79MXaA8ZhZgDmAAyH3iE/nQOnMhPIxpoGMjDLAAC6s2VpaWmp74Oo3fz8fExPT8fc3Fzs2bOn78MZpLnjizF7bDGOnngkzj17e8zsnvLgwFh0PDq9UTItMwlzrTxaLpNWGJeWR6MtSqdl2mL+dUvL9EHnzdMyGZgNWrYGyGLoLbfBfKAPWp6MXilJGx1b49C9jHuyWcIQ1d6ybuExtbfMd5lrw6bl7tx2221x2WWXxYvedkOcf/HT+j6cFf7qyJ3xid94Tdx6661x6aWX9n04jEnL5bPfMgotf5dmqFmbLWsDumNfpi9mfbOytWx9MFTZWh4Sc4tlOh4W7edVesvWHoym9Ja7YmZQOy1vnjlACbTcDb3TNi33T+c0Qct5mAnDlrFla5ohytjy0Jllw6RlyEHLUI9tfR8ANGF6l4cF6IregGzMNRiNVqAd2gKGyvyD/HQOrMZswBoA1mI+QD30SnbWONAEswTqo1sgG3MNANpnv4XxaAZWpw2A/Mx61mN9ALUxt2CYtE9frD1gHGYGYA7AcOgd8tM5cCozgWysaSADswwAoH1b+z6Apt17773xile8Ii644ILYuXNnPPOZz4wvfOELa/78T3/607Fly5YV/3z961/v8KgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAIdnW9wE06YEHHojLL788XvjCF8bHP/7x+J7v+Z44fPhwPO5xj9vw1955552xZ8+ek//++Mc/vs1DBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYs1Yvm3/3ud8fevXvjhhtuOPlj+/btG+nXPv7xj4/zzjuvpSMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+K6tfR9Akz72sY/Fs5/97HjpS18aj3/84+PgwYPxL//lvxzp1/7QD/1QXHjhhfGiF70oPve5z7V8pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCQbev7AJp09913xwc+8IF44xvfGL/0S78Uf/zHfxyvf/3rY2pqKl71qlet+msuvPDC+OAHPxjPfvazY2FhIa677rp4wQteEJ///Ofj0ksvXfXXLCwsxMLCwsl/n5+fb+V8gPboGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/10DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLUa2vfB9CkRx99NC699NJ45zvfGQcPHoyf/dmfjde97nXxwQ9+cM1f87SnPS3+wT/4B3HZZZfFc5/73Lj++uvjuc99bvzmb/7mmr/mXe96V0xPT5/8Z+/evW2cDtAiHUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG+ukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZaifjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGem1ZWlpa6vsgmnLJJZfEi170orjuuutO/tgHPvCBeMc73hH33nvvyP+dX/zFX4zPfvaz8Yd/+IerfnxhYSEWFhZO/vv8/Hzs3bs35ubmYs+ePZOfANAZHUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG+ukYctAy5KBlyEHLkIOW+3PbbbfFZZddFi962w1x/sVP6/twVvirI3fGJ37jNXHrrbfGpZde2vfhsAEtQw5ahhy0DDloGXLQMuSgZaifjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGem3r+wCadPnll8edd9552o999atfjUsuuWSs/87tt98eF1544Zof37FjR+zYsWOiYwTKoGPIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUD8dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz10zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUK9UL5p/wxveEM997nPjne98Z/zUT/1U/NEf/VF86EMfig996EMnf84111wT9957b/zu7/5uRES8973vjX379sUP/MAPxIkTJ+K6666LT33qU/Ff/+t/7es0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgORSvWj+Oc95Ttx0001xzTXXxK/92q/Fvn374r3vfW+8/OUvP/lz7r///jhy5MjJf19cXIx//I//cdx7772xa9euOHDgQPy3//bf4oUvfGEfpwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMQKoXzUdEXHnllXHllVeu+fGPfOQjp/37m9/85njzm9/c8lExVHPHF2P22GLMn3gk9uzcHjPnTMX0rqm+DwuKpRmgS2YOlEOPUAYtAkNmBkIZtEgtrFWgaeYKlE+nkJvGqYn1CtTCvKIm1ivQB7MHAOpi76Z21jAAfbMXMTTWPKxNH7A5GgKaYp5APfQKOWgZ6qNb4EzmAgyD1imZ9QkMmRkItMmMAQBKlO5F8wxLyTfZ9z34cLzlxjvilsOzJ3/s0P6ZuPaqA3HReTt7PDJYX19daQaYxKQzy8yBtXV9L6BHMir5WXUtWgRK0+UsNQOhDF21WOO9GmU5da3umjorrn7evnjuX7sgprZtjcedM2VNQY9qnfHuR2Gl0nrWKWystG7HofFhqHmNnsp6hbJlmTVNMK/o2zg9Wq9AE8a9DzB7AKBdTT+j27upxVpr3xoGqFeW7z3Yi8hmozateZqWZT+I0Afdy9RPhIaA1U0y68wTMsq27y/TKzXI2l+TtAyb5+/HBNbS1XwwF6B9JTxbaJ2Sjbs+S2gKyMtzOtCEUu5XzBgAoFRblpaWlvo+iNrNz8/H9PR0zM3NxZ49e/o+nMEo+SZ77vhi/PzvffG0Y1t2aP9MvO9lBzd8MCnlYWYodPyYvrpqoplR/z+6yk3LwzLpzOpq5tSixNmo5f50fS/QZY8lrvXshtpyyc+qa6lpb9Ry94baMv1qc5aeOUd279gWb/oP/18VM3AztEzpNns/Muo9Qo33aqfS8ujaum88da3umjorfvtlB+OGz90Tn7vrWyd/Tk1rin5ouR21zvj19sDn75+Jd/zED8Z5O7enuCfNRsvtKa3nje5Vf/3v/GD81fFFX6uqlJabUVq349io8X/+0mfFsRPf9jXpgo3Scc1r9FQ1fT+nKb4vNBwZ9uQss6YJbcwr86AOpbQ8To+17q+aoE2ltFyTSf6ipklnj/4ZlZa7c9ttt8Vll10WL3rbDXH+xU/r+3BW+Ksjd8YnfuM1ceutt8all17a9+EwJi1PpulndH/mgc3qquW11v47f/KZ8av/z/+I//aVb674NSU/+5ZOr8NjX6YPJXzvoYl5V9LXYbVMEzZqs6k1735jbUNruYT9oCkl7Qln0lz3umg5Uz8RZTfUNE3WYWh7cqkmmXXjzBM95pel5Wz7/jJ/py2j6rPlrP01qYR7ebOgDln25TZk/vsxm6Lzcmi5W13NhxrmgjnQLC13r4Rni5Ja13Qzam15tc9/RIy1PktoCppSa8uZZX1Ot/+2S8ucqZT7lW/Mn4g3/fvb45ZT/k7hU4+nhGf+kmgZctAy1GNb3wcAk5g7vrjiZj8i4ubDs/HWG+/o/SZ79tjiql9kiHjsGGePLa57fKU8zDAsfXa12WZGoSvIZTMzq4uZUwuzkVP1cS/QVY/WOl0p/Vl1LbXsjVqGYWhzlq42R/7tz/xwFTMQstvM/cio9wi13qsxvjbvG09dq1c/b9+Kl8xHWFPQh5pn/Hp74C2HZ+Oubx6Lf/X//rlnXwajxJ43ule96y+PxWv/1RciwteqGKYSux3HRo3/2TePxU9f9/mTP6bz+tS+Rk9Vy/dzmuL7QtQk06xpQtPzyjxgHOP2WOP+qgkoyyT3AZPOHv0DwMbaeEb3Zx6owXpr/5qbvhTP2nveqi+aL/XZt3R6BbpQwvcempp3NX4dFtYySptNrHn3GywrYT9oUql7guZyytZPRLkNNU2TMLpJZ92o80SP1CLjvr/M32lL6TL316S+7+XNAmqX+e/HbIrOGaou50Ppc8EcoHalPFuU0rqmh22tz//bfuzpI6/PUpoCcsr6nG7/hW6Vcr9y34MPx5/PPrTqS+aXj6fvZ34AYNi8aJ4qlfLF9rXMn3hk3Y8fXefjpTzMMDx9drWZZkahK8hnMzOr7ZlTC7ORM/VxL9BFj9Y6XSr9WXUtNeyNWobhaGuWrjVHHny4/BkIQzDp/cg49wi13qsxnrbvG09dqwf3nhe/86m7Vv151hR0q+YZv9EeuPDtRz37Migl9jxKp8v0yhCV2O04Nmr8zK8d6bw+ta/RU9Xw/Zym+L4Qtck0a5rQ5LwyDxjXuD3Wtr9qAsozyX3AJLNH/7TpyJEjMTu7+jouwcLCQuzYsaPvw1jTV77ylb4PYSQlH+fMzExcfPHFfR8GSbTxjO7PPFCD9db+LYdn49XPffKav7a0Z9/S6RXoSt/fe2hy3tX2dVhYzyhtbnbNu9/gVH3vB00rcU/QXF7Z+okos6GmaRLGM+msG2We6JGaZNz3l/k7bSld5v6a1Oe9vFlABln/fsym6Jwh63I+lDwXzAEyKOXZooTWNT1s633+X/XAw+v+2lPXZylNATllfE63/0L3SrhfWW7/ZX99/T/XWNLXAgGA4fGieapUwhfb17Pn7O3rfvzcdT5ewsMMw9RnV5tpZhS6gnw2M7Panjm1MBs5Ux/3Al30aK3TpdKfVddSw96oZRiOtmbpWnNkx7at6/66EmYgDMGk9yPj3CPUeq/GeNq+bzx1rZ76UtnVWFPQnZpn/EZ74PL9qmdfhqLEnkftdJleGZoSux3HuI1H6Lw2ta/RU9Xw/Zym+L4Qtck0a5rQ5LwyDxjXuD3Wtr9qAsozyX3AJLNH/7TlyJEj8f3f//R4+OHjfR/K2rZsiVha6vsoNvTIwmLfh7Cqh+e+FRFb4hWveEXfh7KmnTt3xZ/+6Ve8bJ5GtPGM7s88UION1v56v8+ptGff0ukV6Erf33toct7V9nVYWM8obW52zbvf4FR97wdNK3FP0Fxe2fqJKLOhpmkSxjPprBtlnuiRmmTc95f5O20pXeb+mtTnvbxZQAZZ/37MpuicIetyPpQ8F8wBMijl2aKE1jU9bOt9/jdy6vospSkgp4zP6fZf6F4J9yvL7b/6uU9e9+eV9LVAAGB4vGieKpXwxfb1zOyeikP7Z+LmVb4YcGj/TMzsXvuLACU8zDBMfXa1mWZGoSvIZzMzq+2ZUwuzkTP1cS/QRY/WOl0q/Vl1LTXsjVqG4Whrlq41R774tQfj8qdcEJ+761srPlbKDIQhmPR+ZJx7hFrv1RhP2/eNp67V1V44eSprCrpT84xfbw+8/CkXxBe/9uDJf/fsyxCU2PM4nS7TK0NSYrfjmKTxCJ3XpPY1eqoavp/TFN8XojaZZk0TmpxX5gHjGrfH2vZXTUB5JrkPmGT26J+2zM7OxsMPH48fvvpXYs+FT+77cFa4/0t/GH/ysQ/FD/30W+J79n1/34ezquVj/Pa3v933oazqkeNHI2Kp2Gs4f/+fx+evf3vMzs560TyNaOMZ3Z95oAYbrf3zdq7+8RKffUunV6ArfX/vocl5V9vXYWE9o7S52TXvfoNT9b0fNK3EPUFzeWXrJ6LMhpqmSRjPpLNulHly9+xD6/639UhJMu77y/ydtpQuc39N6vNe3iwgg6x/P2ZTdM6QdTkfSp4L5gAZlPJsUULrmh629T7/X/zag/H8/TOrvgj5zPVZSlNAThmf0+2/0L0S7leW2/d30wMAJVv/DQhQqOUH+dWUcJM9vWsqrr3qwIpjPLR/Jt591YGY3rX28ZXwMMMw9dnVZpoZha4gn83MrLZnTi3MRs7Ux71AFz1a63Sp9GfVtdSwN2oZhqOtWbrWHLn+s/fEay7fF88veAbCEEx6PzLOPUKt92qMp+37xlPX6vJvCFuNNQXdqnnGr7UHXv6UC+I1l++L6z97z8kf8+zLEJTY8zidLtMrQ1Jit+NYq/Hn759Zs/EIndek9jV6qhq+n9MU3xeiNplmTROanFfmAeMat8fa9ldNQHkmuQ+YZPbon7btufDJcf7FTyvun3NmLoyIiN2Pv7j3Y9noGEtX6jXcc+GT+740JNPGM7o/80ANNlr7l1ywq5pn39LpFehK3997aHLe1fZ1WFjPKG1uds273+BUfe8HTStxT9BcXtn6iSizoaZpEsYz6awbZZ7okZpk3PeX+TttKV3m/prU5728WUAGWf9+zKbonCHrcj6UPBfMATIo5dmihNY1PWzrff6v/+w98et/5wdHWp+lNAXklPE53f4L3SvhfmW5/eW/m/7Mv1v4+QU88wMAbOv7AGASyw/yb73xjrj58OzJHy/hG2vLLjpvZ7zvZQdj9thiHD3xSJx79vaTfyhsPcsPM6ee1zJffKVNfXc1aTOj0BXks9mZ1ebMqYXZyJn6uhdou0drnS71fU+9GaXvjVqG4Whrlq41R44vfif+7z86Ev/nS58Vx058u8gZCEMxyf3IOPcINd+rMbou7huX1+q3HlqMnzz4xPjVj/2PuMWagl7VPuOX58o3jy7Ekb86HhERX/zag/H63/tiHF/8TkR49mU4Su35zHvVc3Zsiy/8zwdO6/TUY9UrQ1Jqt+NY7Xl099nb4p/c9KUVjUfovDYZ1uipSv9+TlN8X4jaZJs1TWhqXpkHjGuSHmvaXzUB5Zn0PmDc2aN/ABhNW8/o/swDpdto7V9Y0bNv6fQKdKXv7z00Pe9q+josrGfUNjez5t1vcKq+94M2lLYnaC6vjP1ElNdQ0zQJ49nMrNtonuiRmmTd95f5O20pWfb+mtTXvbxZQAZZ/37MpuicIet6PpQ6F8wBMijp2aLv1jU9bOt9/p99yePicbu2j7Q+S2oKyCfjc7r9F7pXwv3Kqe2//ve+GFc/b19cffm+WPj2o3Hezu3xfY/fHU/Yc3brxwEAsJ4tS0tLS30fRO3m5+djeno65ubmYs+ePX0fzqDMHV8s7htrTbjvwYfX/QP9NE/H36Uraqbl4ck6s7pS6mzUcr8ydlXqWs9uyC1n7KgEWu7HkFumX23M0iHPES2T2bht13yvpuXRdD3va15T9EPL7cnQ45DvWWuj5XbV0LNec9Byc2rodlw6r8OoHWdco9lpcFiy7MlmTTvMg3qU1HLmHjVB20pquSZdzB39M45RW77tttvisssuixe97YY4/+KndXiEo/nzz/9+fP76t8fzfuH98cSnH+z7cFZV+jGWfnx/deTO+MRvvCZuvfXWuPTSS/s+nOLYlydX4zOBvT6vLluuce3XSK/DZF+mL33O9ozzTss0pe02M/bXpCG27F6/XZrrR1ct66c+mqzHEPfkUrU16/Q4DJlatu+vpOPh6Ltl/ZXNLKhH3y2XzqxZm87LouXumQ/mQBu03A89P0bTzamx5SY//5oiixpbHoJsM8b+2z4ts5q+Z4n2x6dlyEHLUA8vmm+AoUcb+n6YGRodD4Ou8tMyjK/E2ahl2lDiWs9Oy7RBy93TMtkMdY5omeyG0raWRzeUNUGdtMxGzLA6aJkIvWagZTai8/LpODcNDoeW2Yh5UActd0cTtEnLZdM/o/Ki+e6UfoylH58Xza/Pvjw89vqctJyTXodHywxVtnmnZWqSrb8maZk2aK57WmY9mqyDjodBj/lpOT8dD4OW2YhZUActsxk6L4eW6Ys50Cwt0zdNN6PWln3+4XS1tkx9zN92aZlSaX88WoYctAz12Nb3AQCrm97lwQGapiuAlcxGhsJahxy0DGyWOQI5aZszWRNAzcwwqIdeIT+dQ780CCwzD+B0moDh0j8A5Gavh3roFRgK8w76oz/oluagLJqEcugR6qdjIMIsgCHQOWAOQC6aHjaff4B+mL8wTNoHAEq2te8DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgaL5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JgXzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0zIvmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOedE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMe8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgY140DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAxL5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JgXzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0zIvmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICObev7AKA0c8cXY/bYYsyfeCT27NweM+dMxfSuqb4PC6qgHyiTNoFJmR+Qg5YBNs8sBcwBTmU9QA5ahjJoEWiTGUMbrCugD2YPWVjLQDbmGgD0z35MBtYxAKOyZ0C59Elm1jd0Q2vAuMwNWEkXQJfMHMhBy8CkzA8okzZhfRoBSmdOAV0ycwCA0nnRPJzivgcfjrfceEfccnj25I8d2j8T1151IC46b2ePRwbl0w+USZvApMwPyEHLAJtnlgLmAKeyHiAHLUMZtAi0yYyhDdYV0AezhyysZSAbcw0A+mc/JgPrGIBR2TOgXPokM+sbuqE1YFzmBqykC6BLZg7koGVgUuYHlEmbsD6NAKUzp4AumTkAQA229n0AUIq544srbuAjIm4+PBtvvfGOmDu+2NORQfn0A2XSJjAp8wNy0DLA5pmlgDnAqawHyEHLUAYtAm0yY2iDdQX0wewhC2sZyMZcA4D+2Y/JwDoGYFT2DCiXPsnM+oZuaA0Yl7kBK+kC6JKZAzloGZiU+QFl0iasTyNA6cwpoEtmDgBQCy+ah/9l9tjiihv4ZTcfno3ZY27iYS36gTJpE5iU+QE5aBlg88xSwBzgVNYD5KBlKIMWgTaZMbTBugL6YPaQhbUMZGOuAUD/7MdkYB0DMCp7BpRLn2RmfUM3tAaMy9yAlXQBdMnMgRy0DEzK/IAyaRPWpxGgdOYU0CUzBwCohRfNw/8yf+KRdT9+dIOPw5DpB8qkTWBS5gfkoGWAzTNLAXOAU1kPkIOWoQxaBNpkxtAG6wrog9lDFtYykI25BgD9sx+TgXUMwKjsGVAufZKZ9Q3d0BowLnMDVtIF0CUzB3LQMjAp8wPKpE1Yn0aA0plTQJfMHACgFuleNH/vvffGK17xirjgggti586d8cxnPjO+8IUvrPtrPv3pT8ell14aO3bsiKc85SnxkY98pJuDpSh7zt6+7sfP3eDjMGT6gTJpE5iU+QE5aBlg88xSwBzgVNYD5KBlKIMWgTaZMbTBugL6YPaQhbUMZGOuAUD/7MdkYB0DMCp7BpRLn2RmfUM3tAaMy9yAlXQBdMnMgRy0DEzK/IAyaRPWpxGgdOYU0CUzBwCoRaoXzT/wwANx+eWXx/bt2+PjH/94fPnLX473vOc98bjHPW7NX3PPPffEj/3Yj8ULX/jCuP322+MXfuEX4md+5mfi93//9zs8ckows3sqDu2fWfVjh/bPxMzuqY6PaDRzxxfjz755LL545IH4s788FnPHF/s+JAao1n5qpHnGMZQ2dQHNG8r82Ij5Qu2G0rJWgXGMOzOGMkuhZm3fC5gDnGrc9eBeFco0pNluDlGy0lvUD9St9BmzETOoTLWvq5ppgiEzeyZjbpTHWuZUGiUDc60d5gMA47AfD0P2+wPruHzZ1yBQjz72DDMQRjOEezrzYLiGsL7bpB1GVWtr1jj0p8+5oX1KVfp+qh3IpfSZ0yTzi8wytqxZ6EbG+VEa84xJaLM8Wu7WRtdbI0Dpc9mcArrU9swpfeYCAPXY1vcBNOnd73537N27N2644YaTP7Zv3751f80HP/jB2LdvX7znPe+JiIinP/3p8dnPfjZ+8zd/M1784he3eryUZXrXVFx71YF46413xM2HZ0/++KH9M/Huqw7E9K7yvnBw34MPx1tuvCNuOeN4r73qQFx03s4ej4yhqbGfGmmecQ2hTV1AO4YwPzZivpDBEFrWKjCOSWbGEGYp1KyLewFzgFONsx7cq0K5hjLbzSFKV3KL+oH6lTxjNmIGlavmdVUzTTB0Zs/4zI0yWcss0yhZmGvNMx8AGJf9OL8h3B9Yx2UbwhoE6tH1nmEGwuiy39OZB8OWfX23STuMo8bWrHHoV19zQ/uUrOT9VDuQT8kzp0nmF9lla1mz0J1s86M05hmT0mZZtNytUa63RmDYapjL5hTQpTZnTg0zFwCox5alpaWlvg+iKc94xjPixS9+cfzFX/xFfOYzn4knPvGJ8XM/93Pxute9bs1fc+jQobj00kvjve9978kfu+GGG+IXfuEXYm5ubtVfs7CwEAsLCyf/fX5+Pvbu3Rtzc3OxZ8+exs6HfswdX4zZY4tx9MQjce7Z22Nm91SRXzSYO74YP/97XzztwWDZof0z8b6XHSzyuEuh43bU0k+NNL86LY8ma5u6yEPL5co6PzZivkxGy+XK2rJW26FlstrszKhtlmqZIej6XqCPOaDlcm20Htyrciotl6u2e7xxmEPN03J7SmtRP7lpeXhKmzEbMYM2VkLHta2rmmkirxJaro3ZMxpzo1uTtGwtD5tGy2Rf3hxzrRnmw+ZN2vJtt90Wl112WbzobTfE+Rc/rYtDHcuff/734/PXvz2e9wvvjyc+/WDfh7Oq0o+x9OP7qyN3xid+4zVx6623xqWXXtr34fTOvjwZ+3FONd8feF7OoeY1SDPsy5Sqiz0j0wzUMl3KeE9XyjzQcv8yru82ldJOabS8sVpas8aHS8fl6XJuaD+P7C2Xtp9qh7Zkb7kWpc2cJplf3dByGTK0rNl+aXm4MsyP0vQ5z7Schzb7p+VujXu9NUINhthym2p7ZjSn8tAyNWh65tQ2c0ehZchBy1CvbX0fQJPuvvvu+MAHPhBvfOMb45d+6Zfij//4j+P1r399TE1Nxate9apVf83Xv/71eMITnnDajz3hCU+I+fn5ePjhh2Pnzp0rfs273vWuePvb397KOdC/6V11fKFg9tjiqg8GERE3H56N2WOLVZxHX3Tcjlr6qZHmV6fl0WRtUxd5aLlcWefHRsyXyWi5XFlb1mo7tExWm50Ztc1SLTMEXd8L9DEHtFyujdaDe1VOpeVy1XaPNw5zqHlabk9pLeonNy0PT2kzZiNm0MZK6Li2dVUzTeRVQsu1MXtGY250a5KWreVh02iZ7MubY641w3zYPC1DDlqejP04p5rvDzwv51DzGqQZ9mVK1cWekWkGapkuZbynK2UeaLl/Gdd3m0pppzRa3lgtrVnjw6Xj8nQ5N7SfR/aWS9tPtUNbsrdci9JmTpPMr25ouQwZWtZsv7Q8XBnmR2n6nGdazkOb/dNyt8a93hqhBkNsuU21PTOaU3lomRo0PXNqm7mj0DLkoGWo19a+D6BJjz76aFx66aXxzne+Mw4ePBg/+7M/G6973evigx/8YKP/n2uuuSbm5uZO/vO1r32t0f8+jGL+xCPrfvzoBh8fOh1TG82vTsvDpos8tExpzJfJaJmuabUdWiaroc0MLTMEQ+hay/UawvpkdFqmD+ZQ87Q8HPrJTcuUzgzamI6HRRN5aZm2mBvd0jLj0miZtEwJzIfN0zLkoGX4rprvD7ScQ81rkGZomSHLNAO1DJtTyjzQMrUppZ3SaDkPa3y4dDxs2s9Dy93SDm3RMm0zv7qhZZqi2X5pGZrT5zzTMjRHy91yL0hGQ2y5TeYEfdEyQ5Rx5moZctAy1Gtb3wfQpAsvvDCe8YxnnPZjT3/60+PGG29c89d87/d+b3zjG9847ce+8Y1vxJ49e2Lnzp2r/podO3bEjh07Nn/AsAl7zt6+7sfP3eDjQ6djaqP51Wl52HSRh5YpjfkyGS3TNa22Q8tkNbSZoWWGYAhda7leQ1ifjE7L9MEcap6Wh0M/uWmZ0plBG9PxsGgiLy3TFnOjW1pmXBotk5YpgfmweVqGHLQM31Xz/YGWc6h5DdIMLTNkmWaglmFzSpkHWqY2pbRTGi3nYY0Pl46HTft5aLlb2qEtWqZt5lc3tExTNNsvLUNz+pxnWobmaLlb7gXJaIgtt8mcoC9aZogyzlwtQw5ahnpt7fsAmnT55ZfHnXfeedqPffWrX41LLrlkzV/zIz/yI/HJT37ytB/7xCc+ET/yIz/SyjFCU2Z2T8Wh/TOrfuzQ/pmY2T3V8REBbdI8rKQLoC3mC9RBq8A4zAzIR9eUzPoE+mYOweT0A/TJDILTaQIYl7kBZdMosBbzAQA4k/sD+mYNAkNmBgLLzAOYjHbIzhqHYdI+TEY7QK3ML6iLZoEszDPIQcvdcr2BjZgTAN0xcwGApqV60fwb3vCG+O///b/HO9/5zrjrrrvi3/7bfxsf+tCH4h/9o3908udcc8018cpXvvLkv//Df/gP4+677443v/nN8ad/+qfxL/7Fv4h//+//fbzhDW/o4xRgZNO7puLaqw6seEA4tH8m3n3VgZje5eEAMtE8rKQLoC3mC9RBq8A4zAzIR9eUzPoE+mYOweT0A/TJDILTaQIYl7kBZdMosBbzAQA4k/sD+mYNAkNmBgLLzAOYjHbIzhqHYdI+TEY7QK3ML6iLZoEszDPIQcvdcr2BjZgTAN0xcwGApm3r+wCa9JznPCduuummuOaaa+LXfu3XYt++ffHe9743Xv7yl5/8Offff38cOXLk5L/v27cv/vN//s/xhje8IX7rt34rnvSkJ8V1110XL37xi/s4BRjLReftjPe97GDMHluMoyceiXPP3h4zu6c8GEBSmoeVdAG0xXyBOmgVGIeZAfnompJZn0DfzCGYnH6APplBcDpNAOMyN6BsGgXWYj4AAGdyf0DfrEFgyMxAYJl5AJPRDtlZ4zBM2ofJaAeolfkFddEskIV5BjlouVuuN7ARcwKgO2YuANCkVC+aj4i48sor48orr1zz4x/5yEdW/NgLXvCC+OIXv9jiUUF7pnd5GIAh0TyspAugLeYL1EGrwDjMDMhH15TM+gT6Zg7B5PQD9MkMgtNpAhiXuQFl0yiwFvMBADiT+wP6Zg0CQ2YGAsvMA5iMdsjOGodh0j5MRjtArcwvqItmgSzMM8hBy91yvYGNmBMA3TFzAYCmbO37AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGxovmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOedE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMe8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgY140DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCxbX0fAAAAAAAAAAAAAAAAAAAAMCxf+cpX+j6ENc3MzMTFF1/c92EAAAAAAAAAAAAAAAAAAAAAA+BF8wAAAAAAAAAAAAAAAAAAQCcenvtWRGyJV7ziFX0fypp27twVf/qnX/GyeQAAAAAAAAAAAAAAAAAAAKB1XjQPAAAAAAAAAAAAAAAAAAB04pHjRyNiKX7op98S37Pv+/s+nBXm7//z+Pz1b4/Z2VkvmgcAAAAAAAAAAAAAAAAAAABa50XzAAAAAAAAAAAAAAAAAABAp3Y//uI4/+Kn9X0YAAAAAAAAAAAAAAAAAAAAAL3a2vcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyNF80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyL5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kXzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3zonkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjnnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHtvV9AEDE3PHFmD22GPMnHok9O7fHzDlTMb1rqu/DAk6hU4bIugeyMt8AcwDKplF4jBaYhHUDQFvsMdA8XQHmAGyOhmAYtA50wawZj+sFAECf3I8yCusEYGNmJeSgZdABo7NWAFhmT6BG1i3QNnMG6qZhwByAumiWpllT0A/tAQyT+Q8AdMWL5qFn9z34cLzlxjvilsOzJ3/s0P6ZuPaqA3HReTt7PDJgmU4ZIuseyMp8A8wBKJtG4TFaYBLWDQBtscdA83QFmAOwORqCYdA60AWzZjyuFwAAfXI/yiisE4CNmZWQg5ZBB4zOWgFgmT2BGlm3QNvMGaibhgFzAOqiWZpmTUE/tAcwTOY/ANClrX0fAAzZ3PHFFTf/ERE3H56Nt954R8wdX+zpyIBlOmWIrHsgK/MNMAegbBqFx2iBSVg3ALTFHgPN0xVgDsDmaAiGQetAF8ya8bheAAD0yf0oo7BOADZmVkIOWgYdMDprBYBl9gRqZN0CbTNnoG4aBswBqItmaZo1Bf3QHsAwmf8AQNe8aB56NHtsccXN/7KbD8/G7DEPANA3nTJE1j2QlfkGmANQNo3CY7TAJKwbANpij4Hm6QowB2BzNATDoHWgC2bNeFwvAAD65H6UUVgnABszKyEHLYMOGJ21AsAyewI1sm6BtpkzUDcNA+YA1EWzNM2agn5oD2CYzH8AoGteNA89mj/xyLofP7rBx4H26ZQhsu6BrMw3wByAsmkUHqMFJmHdANAWeww0T1eAOQCboyEYBq0DXTBrxuN6AQDQJ/ejjMI6AdiYWQk5aBl0wOisFQCW2ROokXULtM2cgbppGDAHoC6apWnWFPRDewDDZP4DAF3zonno0Z6zt6/78XM3+DjQPp0yRNY9kJX5BpgDUDaNwmO0wCSsGwDaYo+B5ukKMAdgczQEw6B1oAtmzXhcLwAA+uR+lFFYJwAbMyshBy2DDhidtQLAMnsCNbJugbaZM1A3DQPmANRFszTNmoJ+aA9gmMx/AKBrXjQPPZrZPRWH9s+s+rFD+2diZvdUx0cEnEmnDJF1D2RlvgHmAJRNo/AYLTAJ6waAtthjoHm6AswB2BwNwTBoHeiCWTMe1wsAgD65H2UU1gnAxsxKyEHLoANGZ60AsMyeQI2sW6Bt5gzUTcOAOQB10SxNs6agH9oDGCbzHwDomhfNQ4+md03FtVcdWPEQcGj/TLz7qgMxvcsDAPRNpwyRdQ9kZb4B5gCUTaPwGC0wCesGgLbYY6B5ugLMAdgcDcEwaB3oglkzHtcLAIA+uR9lFNYJwMbMSshBy6ADRmetALDMnkCNrFugbeYM1E3DgDkAddEsTbOmoB/aAxgm8x8A6Nq2vg8Ahu6i83bG+152MGaPLcbRE4/EuWdvj5ndU27+oSA6ZYiseyAr8w0wB6BsGoXHaIFJWDcAtMUeA83TFWAOwOZoCIZB60AXzJrxuF4AAPTJ/SijsE4ANmZWQg5aBh0wOmsFgGX2BGpk3QJtM2egbhoGzAGoi2ZpmjUF/dAewDCZ/wBAl7xoHgowvcsNP5ROpwyRdQ9kZb4B5gCUTaPwGC0wCesGgLbYY6B5ugLMAdgcDcEwaB3oglkzHtcLAIA+uR9lFNYJwMbMSshBy6ADRmetALDMnkCNrFugbeYM1E3DgDkAddEsTbOmoB/aAxgm8x8A6MrWvg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGi8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgY140DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCxbX0fQAZLS0sRETE/P9/zkcBwnHvuubFly5bG/ns6hn5oGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBlyaLJlHUM/7MmQg5YhBy1DDn21fOzYsYiImPuLu+PRb3+nsf9/U459896IiJj/+p/Hjh07ej6a1ZV+jI5vc45+/X9GxGOtjLI32pchBy1DDlqGHLQMOWgZctAy5OD3b0L97MmQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoX6TduxF8w04evRoRETs3bu35yOB4Zibm4s9e/Y09t/TMfRDy5CDliEHLUMOWoYcmm75W9/6VkRoGbpmX4YctAw5aBly0DLk0GTLOoZ+2JMhBy1DDlqGHPpu+Y/+1a839v9uwx3/7p/3fQgbKv0YHd/m/OiP/uhIP6/vloFmaBly0DLkoGXIQcuQg5YhB79/E+pnT4YctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM9Zu04y1LS0tLLRzPoDz66KNx3333xbnnnhtbtmzp+3CKNz8/H3v37o2vfe1rjW4+QzTka9l0b211POTP0Zlci8e4Dqdrq+WlpaW4+OKLU13nrGsn43kN8Zxq2ZeblvFzvSzruWU9r4hmzq2Nlu+88854xjOekfKajyrzuhuVa9DtNeh6X/b5dQ0iXIOI5q9B0y0/+OCD8bjHPS6OHDkS09PTjf13+5Rt3WU7n4h85zTJ+Qz1eXlZtjUwjqGee9bz9nXs0WT7/DufstmXR5ftc98G12hjJV2jobZ8qpI+H5vhPMrS9Xk02VyTHWf5fHbJNZtMhutWyp6c4Vq2wXVZm2tzulJa7lu2deF8ytbG+ZTScrbPVYRzqkWWcyql5S5k+ZyVwLVsVqm/F3u1ln3um+NaNiPbdSxhX675mtZ87BGOv29NHn8JLTel9s/rWpxXffo4t0wtdyHz+lvL0M651vP15x3HU/vxR9R/Do5/df5cxelqXSeOu1slHnepv3+zKyV+Tprk/Oo26vllfFbO8rnNcB4ZziGijvOoqeUarueZHHM3HHNdLTehxs95aVzDzcv8e7FXY82szbVZ3ZCvS4kt1/j5qPGYI+o8bse8uhJbblKNn/fVOI9ylHoOXbZc6jXIwvVtTw3Xto99uYbr0hbnPsxzj2j//Pu6x87yeXUeZclyHhHjn4uWN8d5lGWo5zFpx9smOThOt3Xr1njSk57U92FUZ8+ePVVHWhLXcvPa7tjn6Ltci8e4Du1Ybnl+fj4icl7njOcUkfO8nNPkaru/zvi5Xpb13LKeV0RZ57Z169Z44hOfGBFlHVdfXAPXIKLOazDqvlzjuTXNNXANIsq9Blu3bo2IiOnp6SKPbzNKveaTynY+EfnOqc/zqe15eVm2NTCOoZ77UM97VNm/ju18yuZ8mlPbvpztc98G12hjGa9RbS2fKsvnw3mUpcbzaKPjGq9D31yzybhu37XZll3L1bkua3Nt2lHz/XVEvnXhfMpW8vnYl1dyTnXIeE6bUcO+7HPWHNeyWSVdz41aLulYa+daNsN1XN1m9uWar2nNxx7h+PtW4vGXcI9d4nVpgvOqT83nVkLLXaj5czSpoZ3z0M73TEP58461H39E/efg+NuV5c9VOO5uOe6y1Hx/nfVzssz51a3r8yup5Syf2wznkeEcIvKcxyi6aLnG6+mYu+GYm1PSvryeUq9fTVzDzSv5Gvrzjt1ybVbnumxeky3X+Pmo8Zgj6jxux9yuUu+xa7qG63Ee5chwDusZpeXs16Bvrm97hnRtx9mXh3RdzuTch3nuEfWc/7j32LWc10acR1mynEdEf+ei5bo5j7K0fR5bW/svAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAqL5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JgXzdO5HTt2xK/8yq/Ejh07+j6U6rmW5fM5+i7X4jGuQzcyXueM5xSR87yc03Bkvi5Zzy3reUWUe26lHleXXAPXICL3Nch8bqNyDVyDiPKvQenHN4ls55TtfCLynVO28+nCkK/ZUM99qOc9qWzXy/mUzfkMl2u1MddoY65RWbJ8PpxHWbKcx2a5DuNzzSbjujXHtVyd67I214bVZFsXzqds2c7nVBnPzTnVIeM5Zedz1hzXslk1Xc+ajrV0rmUzXMfm1XxNaz72CMfft9qPvy1Zr4vzqk/mc8tiiJ+joZ3z0M53UrVfp9qPP6L+c3D83arteJc57m45bpqS/XPi/OqW/fzWk+XcM5xHhnOIyHMepajxejrmbjjm4XH9Ns813LyhXcOhne84XJvVuS5lqfHzUeMxR9R53I55mLJcQ+dRjgznsFmuQbtc3/a4tqsb8nVx7sM894i855/lvJxHWbKcR0Q951LLcW7EeZTFeYxny9LS0lKr/wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATrO17wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBovmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomBfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMi+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZF8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd86J5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI550TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAx7xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjXjTfoJtvvjle8pKXxEUXXRRbtmyJj370o2P9+l/91V+NLVu2rPjnnHPOaeeAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgF540XyDHnrooXjWs54V73//+yf69W9605vi/vvvP+2fZzzjGfHSl7604SMFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+uRF8w264oor4h3veEf85E/+5KofX1hYiDe96U3xxCc+Mc4555z44R/+4fj0pz998uO7d++O7/3e7z35zze+8Y348pe/HK997Ws7OgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgC14036Gf//mfjz/8wz+Mf/fv/l3ccccd8dKXvjT+9t/+23H48OFVf/51110XT33qU+P5z39+x0cKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMmL5jty5MiRuOGGG+I//If/EM9//vPj+77v++JNb3pTPO95z4sbbrhhxc8/ceJE/Jt/82/ita99bQ9HCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRpW98HMBRf+tKX4jvf+U489alPPe3HFxYW4oILLljx82+66aY4evRovOpVr+rqEAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOeNF8R44dOxZnnXVW3HrrrXHWWWed9rHdu3ev+PnXXXddXHnllfGEJzyhq0MEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuJF8x05ePBgfOc734lvfvOb8fznP3/dn3vPPffEH/zBH8THPvaxjo4OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JIXzTfo2LFjcdddd53893vuuSduv/32OP/88+OpT31qvPzlL49XvvKV8Z73vCcOHjwYf/mXfxmf/OQn48CBA/FjP/ZjJ3/d9ddfHxdeeGFcccUVfZwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LItS0tLS30fRBaf/vSn44UvfOGKH3/Vq14VH/nIR+KRRx6Jd7zjHfG7v/u7ce+998bMzEz8jb/xN+Ltb397PPOZz4yIiEcffTQuueSSeOUrXxm/8Ru/0fUpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3wonkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjm3t+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhsaL5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kXzDVhaWor5+flYWlrq+1CACekYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMtRPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1D/XQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMtTDi+YbcPTo0Zieno6jR4/2fSjAhHQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGeqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfjqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGerhRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOedE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMdSvWj+5ptvjpe85CVx0UUXxZYtW+KjH/3ouj//1a9+dWzZsmXFPz/wAz/QzQEDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg5TqRfMPPfRQPOtZz4r3v//9I/383/qt34r777//5D9f+9rX4vzzz4+XvvSlLR8pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMGTb+j6AJl1xxRVxxRVXjPzzp6enY3p6+uS/f/SjH40HHnggXvOa17RxeMAa5o4vxuyxxZg/8Ujs2bk9Zs6ZiuldU30fFjAmLUPZNArDonnIQcuQg5Zhbfqga9YcQA7mOeSgZchBy1A/HUMOWoYctEwprEXolwYBAE7n/gjqolnITeOQg5bJyLoGamR2QQ5ahhy0DDloGdqhLWASZscw+DwDTTBLAEZjXgLA8KR60fxmffjDH46/+Tf/ZlxyySXr/ryFhYVYWFg4+e/z8/NtHxqkdd+DD8dbbrwjbjk8e/LHDu2fiWuvOhAXnbeztf+vjqFZWoay9dXoqLQMzbIvQw5ahhy0DGsr/Vm1BFpuljVHX7QMzXKPDTloGXLoo2UdQ7PsyZCDliEHLVMK31Ork5bz0OCwaRly0DI0y/My1KW0ZxotQ7Psy5CDlsmotPvQrHQMzbInQw5ahhy0DDloGdoxlK+9aRmaZV8ehqHsEXRPy8NiluSlZWiWe2xgM7QM9dra9wGU4r777ouPf/zj8TM/8zMb/tx3vetdMT09ffKfvXv3dnCEkM/c8cUVDyERETcfno233nhHzB1fbO3/rWNojpahbH02OiotQ3Psy5CDliEHLcPaanhWLYGWm2PN0SctQ3PcY0MOWoYc+mpZx9AcezLkoGXIQcuUwvfU6qXlHDSIliEHLUNzPC9DXUp8ptEyNMe+DDlomYxKvA/NSsfQHHsy5KBlyEHLkIOWoR1D+tqblqE59uVhGNIeQfe0PBxmSW5ahua4xwY2S8tQry1LS0tLfR9EG7Zs2RI33XRT/MRP/MRIP/9d73pXvOc974n77rsvpqam1v25CwsLsbCwcPLf5+fnY+/evTE3Nxd79uzZzGHDoPzZN4/F//Z/fWbNj3/yjT8a3/f43a38v3UMzdEylK3PRkelZWiOfRly0DLkoGVYWw3PqiXQcnOsOfqkZWiOe2zIQcuQQ18t6xiaY0+GHLQMOWiZUvieWr20nIMG0TLkoGVojudlqEuJzzRahubYlyEHLZNRifehWekYmmNPhhy0DDloGXLQMrRjSF970zI0x748DEPaI+ielofDLMlNy9Ac99jAZmkZ6rWt7wMowdLSUlx//fXx9//+39/wJfMRETt27IgdO3Z0cGSQ2/yJR9b9+NENPr4ZOobmaBnK1mejo9IyNMe+DDloGXLQMqythmfVEmi5OdYcfdIyNMc9NuSgZcihr5Z1DM2xJ0MOWoYctEwpfE+tXlrOQYNoGXLQMjTH8zLUpcRnGi1Dc+zLkIOWyajE+9CsdAzNsSdDDlqGHLQMOWgZ2jGkr71pGZpjXx6GIe0RdE/Lw2GW5KZlaI57bGCztAz12tr3AZTgM5/5TNx1113x2te+tu9DgUHZc/b2dT9+7gYfB8qgZSibRmFYNA85aBly0DKsTR90zZoDyME8hxy0DDloGeqnY8hBy5CDlimFtQj90iAAwOncH0FdNAu5aRxy0DIZWddAjcwuyEHLkIOWIQctQzu0BUzC7BgGn2egCWYJwGjMSwAYrlQvmj927Fjcfvvtcfvtt0dExD333BO33357HDlyJCIirrnmmnjlK1+54td9+MMfjh/+4R+OH/zBH+zycGHwZnZPxaH9M6t+7ND+mZjZPdXxEQGT0DKUTaMwLJqHHLQMOWgZ1qYPumbNAeRgnkMOWoYctAz10zHkoGXIQcuUwlqEfmkQAOB07o+gLpqF3DQOOWiZjKxroEZmF+SgZchBy5CDlqEd2gImYXYMg88z0ASzBGA05iUADFeqF81/4QtfiIMHD8bBgwcjIuKNb3xjHDx4MH75l385IiLuv//+ky+dXzY3Nxc33nhjvPa1r+38eGHopndNxbVXHVjxMHJo/0y8+6oDMb3LgwjUQMtQNo3CsGgectAy5KBlWJs+6Jo1B5CDeQ45aBly0DLUT8eQg5YhBy1TCmsR+qVBAIDTuT+CumgWctM45KBlMrKugRqZXZCDliEHLUMOWoZ2aAuYhNkxDD7PQBPMEoDRmJcAMFxblpaWlvo+iNrNz8/H9PR0zM3NxZ49e/o+HKjO3PHFmD22GEdPPBLnnr09ZnZPdf4QomPYPC1D2UpodFRahs0roXktw+ZpGXLQMqythD5qouXNs+YogZZh80qY51qGzdMy5NB3yzqGzeu74wgtQxO0DDlomVKUsBbZHC3XTYMs0zLkoGXYvBLuj7QMoyuh2bVoGTavhMa1DJunZTIqYV0PjY5h80qYXVqGzdMy5KBlyEHL0I4S2uqalmHzSpgdWm5fCZ9n8tNyfmbJMGgZNq+EeallyEHLUI9tfR8AwPQuX6iBDLQMZdMoDIvmIQctQw5ahrXpg65ZcwA5mOeQg5YhBy1D/XQMOWgZctAypbAWoV8aBAA4nfsjqItmITeNQw5aJiPrGqiR2QU5aBly0DLkoGVoh7aASZgdw+DzDDTBLAEYjXkJAMOzte8DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiabX0fABAxd3wxZo8txvyJR2LPzu0xc85UTO+a6vuwgFPolCGy7oGszDfAHICyaRQeowUmYd0A0BZ7DDRPV4A5AJujIRgGrQNdMGvG43pBDloGADJzrwOwMbMSctAy6IDRWSsALLMnUCPrFmibOQN10zBgDkBdNEvTrCnoh/YAhsn8BwC64kXz0LP7Hnw43nLjHXHL4dmTP3Zo/0xce9WBuOi8nT0eGbBMpwyRdQ9kZb4B5gCUTaPwGC0wCesGgLbYY6B5ugLMAdgcDcEwaB3oglkzHtcLctAyAJCZex2AjZmVkIOWQQeMzloBYJk9gRpZt0DbzBmom4YBcwDqolmaZk1BP7QHMEzmPwDQpa19HwAM2dzxxRU3/xERNx+ejbfeeEfMHV/s6ciAZTpliKx7ICvzDTAHoGwahcdogUlYNwC0xR4DzdMVYA7A5mgIhkHrQBfMmvG4XpCDlgGAzNzrAGzMrIQctAw6YHTWCgDL7AnUyLoF2mbOQN00DJgDUBfN0jRrCvqhPYBhMv8BgK550Tz0aPbY4oqb/2U3H56N2WMeAKBvOmWIrHsgK/MNMAegbBqFx2iBSVg3ALTFHgPN0xVgDsDmaAiGQetAF8ya8bhekIOWAYDM3OsAbMyshBy0DDpgdNYKAMvsCdTIugXaZs5A3TQMmANQF83SNGsK+qE9gGEy/wGArnnRPPRo/sQj63786AYfB9qnU4bIugeyMt8AcwDKplF4jBaYhHUDQFvsMdA8XQHmAGyOhmAYtA50wawZj+sFOWgZAMjMvQ7AxsxKyEHLoANGZ60AsMyeQI2sW6Bt5gzUTcOAOQB10SxNs6agH9oDGCbzHwDo2ra+DwCGbM/Z29f9+LkbfDwiYu74YsweW4z5E4/Enp3bY+acqZjeNdXUIcLgNdFpkzRPF0pb9xvRBTCqceeb+QJ1GKfV2u5zYGi6aNT+Tg3sV+PR9WOsmzJZn0DfmphD9hiGqs19XFfAenNg19RZ8bhdU/Fn3zzmWQL+lzP35fN3TcWuqbPi+OJ3Vv359lLIYTP3zb4uB2UrqVHP6ONxvWhbSfMhs75a9vkFALrQ9L2Oexggo1FnpRkIZevyazzmAaUq/fsW2ilH6WulVtY4DFPt7dsT6Mtm2rFugbatNWd2TZ0VVz9vX5y9/az44pEHqtz7YQiWG15u9uDe82Lh24/G2dvPitv+V7tAbhmfGWr/+gOsJ2Oza9FyN/acvX3Ne8HrP3tPqjUFJalxnpvLAJvn92ADAF3zonno0czuqTi0fyZuPjy74mOH9s/EzO71b/Lve/DheMuNd8Qtp/z6Q/tn4tqrDsRF5+1s/HhhiDbbaZM0T1dKWvcb0QUwjnHmm/kCdRi31Zruc2CI2m7U/k4t7Fej0/V3WTflsT6BvjU1h+wxDFHb+7iugLXmwK6ps+L6Vz8n/slH/yRuucuzBESsvS9f/+rnxNUf+eMVL5u3l0Iek943+7oclK20Rj2jj8f1ok2lzYfM+mjZ5xcA6EqT9zruYYCsRpmVZiCUr6uv8ZgHlKzk71topywlr5VaWeMwTBnatyfQh822Y90CbVttzuyaOit++2UH44bP3RO/86m7Tv54bXs/DMHM7ql40dMfH//7X794RbPPe8oF8X88e2+PRwd0IdszQ4avP8B6sjW7Fi13Z2b3VFz/6ufE+z51+LR7wcufckFc/+rnpFlTUJra5rm5DNAMvwcbAOja1r4PAIZsetdUXHvVgTi0f+a0Hz+0fybefdWBmN619heA5o4vrngwiIi4+fBsvPXGO2Lu+GIrxwxDs5lOm6R5ulTKut+ILoBxjTrfzBeowySt1nKfA0PVZqP2d2pivxqNrk9n3ZTF+gT61uQcsscwNF3s47oC1poD//TKZ8T7P3XXaS+Zj/AswXCtty+//w/uin965TNO+3F7KeQyyX2zr8tB2Ups1DP6eFwv2lLifMis65Z9fgGALjV1r+MeBshso1kZEWYgVKCLr/G4J6J0pX7fQjvlKXWt1Moah2HK0r49ga410Y51C7RttTlz9fP2xQ2fuyc+d9e3Tvu5te39MATTu6biV3/8B1Zt9rN3fSt+6aYvaRaSy/TMkOXrD7CeTM2uRcvde/+n7lpxL/i5u74V7/+Du9b4FcBm1TTPzWWA5vg92ABA17b1fQAwdBedtzPe97KDMXtsMY6eeCTOPXt7zOye2vCLP7PHFlc8GCy7+fBszB5bLOoLSFCzSTttkubpWgnrfiO6ACYxynwzX6AOk7Zaw30ODFlbjdrfqY39amO6Xsm6KYf1CfSt6Tlkj2FIutrHdQWsNgceXVqKa/7Tl1b9+Z4lGKL19uVbDs/GL1/5jPjkG3/UXgqJjXvf7OtyULZSG/WMPh7XizaUOh8y67Jln18AoGtN3Ou4hwGyW29W/tk3j5mBUIm2v8bjnogalPh9C+2UqcS1UitrHIYpU/v2BLrUVDvWLdC2M+fM2dvPit/51OovJKxt74chOPHIoyteLLpMszAMWZ4ZMn39AdaTpdm1aLlbs8cW45a71v6z+K43tKeWeW4uAzTL78EGALrkRfNQgOld43/BZ/7EI+t+/OgGHwfGM0mnTdI8feh73W9EF8CkNppv5gvUYTOtln6fA0PXRqP2d2pkv1qfrldn3ZTB+gT61sYcsscwFF3u47oCzpwDXzzywLo/37MEQ7PRvvzQwrfjhy5+XEdHA/RlnPtmX5eDspXcqGf08bheNK3k+ZBZVy37/AIAfdjsvY57GGAI1pqVZiDUpc2v8ZgH1KK071top1ylrZVaWeMwTNnatyfQlSbbsW6Btp06Z/z5JqhLtvt1YDIZnhnMM4YkQ7Nr0XK3XG/oVw3z3JwAaJ7fgw0AdGVr3wcATGbP2dvX/fi5G3wcqIvmYSVdAG0xX6AOWgXGYWZAPrqmZNYn0DdzCCanH6BPZhCcThPAuMwNKJtGgbWYD7n5/AIANXIPAwyZGQgsMw9gMtohO2schkn7MBntALUyv6AumgWyMM8gBy13y/UGNmJOAHTHzAUAmuZF81Cpmd1TcWj/zKofO7R/JmZ2T3V8RECbNA8r6QJoi/kCddAqMA4zA/LRNSWzPoG+mUMwOf0AfTKD4HSaAMZlbkDZNAqsxXzIzecXAKiRexhgyMxAYJl5AJPRDtlZ4zBM2ofJaAeolfkFddEskIV5BjlouVuuN7ARcwKgO2YuANA0L5qHSk3vmoprrzqw4gHh0P6ZePdVB2J6l4cDyETzsJIugLaYL1AHrQLjMDMgH11TMusT6Js5BJPTD9AnMwhOpwlgXOYGlE2jwFrMh9x8fgGAGrmHAYbMDASWmQcwGe2QnTUOw6R9mIx2gFqZX1AXzQJZmGeQg5a75XoDGzEnALpj5gIATduytLS01PdB1G5+fj6mp6djbm4u9uzZ0/fhMDBzxxdj9thiHD3xSJx79vaY2T3lwWACOqYWml+flodJF/lomVKYL5ujZbqi1XZpmWyGOjO0TGZD6lrL9RnS+mR0WqZL5lB7tJyffoZBy5TKDBqdjodBE/lpmaaZG/3QMqPSaNm0TJ/Mh+aU2LLPL4yvxJaB8Wm5bu5hWKZlhijjDNQyTKa0eaBlalFaO6XRcv2scXQ8TNrPR8vd0A5t0zJtMb+6pWU2S7Nl0DJsXgnzTMuweVruVgnXG9oypJbbZE7QNy0zJJlnrpYhBy1DPbb1fQDA5kzvyvMwAGxM87CSLoC2mC9QB60C4zAzIB9dUzLrE+ibOQST0w/QJzMITqcJYFzmBpRNo8BazIfcfH4BgBq5hwGGzAwElpkHMBntkJ01DsOkfZiMdoBamV9QF80CWZhnkIOWu+V6AxsxJwC6Y+YCAE3Z2vcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyNF80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyL5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kXzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3zonkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjnnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHvGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGNeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMS+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiYF80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyL5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kXzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1L9aL5m2++OV7ykpfERRddFFu2bImPfvSjG/6ahYWFeNvb3haXXHJJ7NixI5785CfH9ddf3/7BAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIO1re8DaNJDDz0Uz3rWs+Lqq6+Ov/t3/+5Iv+anfuqn4hvf+EZ8+MMfjqc85Slx//33x6OPPtrykQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABDlupF81dccUVcccUVI//8//Jf/kt85jOfibvvvjvOP//8iIh48pOf3NLRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwm1Yvmx/Wxj30snv3sZ8c/+2f/LP71v/7Xcc4558SP//iPx6//+q/Hzp071/x1CwsLsbCwcPLf5+fnuzhcoEE6hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz10zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUD8dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz12tr3AfTp7rvvjs9+9rPxJ3/yJ3HTTTfFe9/73viP//E/xs/93M+t++ve9a53xfT09Ml/9u7d29ERA03RMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWon44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvrpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWo15alpaWlvg+iDVu2bImbbropfuInfmLNn/O3/tbfiltuuSW+/vWvx/T0dERE/Kf/9J/i7/29vxcPPfRQ7Ny5c9Vft7CwEAsLCyf/fX5+Pvbu3Rtzc3OxZ8+eRs8DaIeOIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP9dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1E/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUO9tvV9AH268MIL44lPfOLJl8xHRDz96U+PpaWl+Iu/+IvYv3//qr9ux44dsWPHjq4OE2iBjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1D/XQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMtRPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1Dvbb2fQB9uvzyy+O+++6LY8eOnfyxr371q7F169Z40pOe1OORAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJmletH8sWPH4vbbb4/bb789IiLuueeeuP322+PIkSMREXHNNdfEK1/5ypM//6d/+qfjggsuiNe85jXx5S9/OW6++eb4xV/8xbj66qtj586dfZwCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMACpXjT/hS98IQ4ePBgHDx6MiIg3vvGNcfDgwfjlX/7liIi4//77T750PiJi9+7d8YlPfCIefPDBePaznx0vf/nL4yUveUn89m//di/HDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzDtr4PoEkveMELYmlpac2Pf+QjH1nxY9///d8fn/jEJ1o8KgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDTbe37AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGxovmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOedE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMe8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgY140DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAxL5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JgXzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0zIvmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOedE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMe8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgY140DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAxL5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JgXzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0zIvmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOedE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMe8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgY9v6PgAAAP5/9v49Ss+zPuy9fxLSyJJljbEnZNlEAhcUSBfIyM6hqUFAE6/UO2VtdtTkLXmzcGGTNCscAm5XsEt2gDQEe5e0tAk5sBLs0O6QNnGAJk2a0FAiQw6rPuHwBowcnIhiEzIYzWgsa0a25v3DW7KkOT2H+7nv6/rdn89a/kOakXw9z1zf33Xfz0h6AAAAAAAAAAAAAAAAAGjTkSNHYnZ2tutlrGtmZib27NnT9TIAAAAAAAAAAAAAAAAAAACYIG80DwAAAAAAAAAAAAAAAAAAQG8cOXIknv/8b4rHHjve9VLWtX37jvjc5z7rzeYBAAAAAAAAAAAAAAAAAAAS80bzAAAAAAAAAAAAAAAAAAAA9Mbs7Gw89tjx+LbXvj12XfbsrpezqvmH/yr+7APvjNnZWW80DwAAAAAAAAAAAAAAAAAAkJg3mgcAAAAAAAAAAAAAAAAAAKB3dl327Lhkz/O6XgYAAAAAAAAAAAAAAAAAAAA9trnrBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0jTeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaFmqN5o/dOhQvOIVr4jLL788Nm3aFB/5yEfW/fxPfOITsWnTphX/ffnLX25nwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAvpXqj+UcffTSuvPLKeN/73jfUr7v//vvj4YcfPvPfM57xjAmtEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBiS9cLaNJ1110X11133dC/7hnPeEZcfPHFzS+ITswdX4rZhaWYP3Eydm3fGjMXTsX0jqmulwWp6Q5gNOYnJbAPoRlaAmie2Qrd0R+UR5f0hb0ONMEsgfbojQzsY2CSzBhonq4AhmNuQnv0BgDDcXZCPfQKMDlmLKOyd2DydAYweWYt47KHoD66BZpkpkB9dAusxmyAfHQNUBZzmTbZbwAAzUn1RvOjetGLXhSLi4vxghe8IN7xjnfENddcs+7nLy4uxuLi4pkfz8/PT3qJDOiho4/FW2+/L+44PHvm5w7snYmbD+6Lyy/e3uHKKI2Om6M7uqRlamZ+PkXL3bEPaVKfW9YSmfS5Zcpito5Hy4xDf+XQMqfpsm5aHpy9Tsm0XA+zhPVouVl6owtNd2wfQzf6ciabMWTXRcu6gub15VzuK3OzP7TcPb3RBC1DDloejLOT0mn5KXqlZlqmdGbsYLS8kr1DjWprWWewUm0dUz6zthuZWraH6LNaW9YtnKvWlkthplAKLQ9Ot5RMy90xG2iSlsuga8alZWhWV3NZy/3kOiAfLUMOWoZ6be56AV267LLL4hd/8Rfj9ttvj9tvvz12794dL3vZy+Luu+9e99e9+93vjunp6TP/7d69u6UVs56540srbhYiIg4dno0bb78v5o4vdbQySqTjZuiOrmmZWpmf59JyN+xDmtbXlrVENn1tmbKYrePTMqPSX1m0TIQuM9DyYOx1SqflOpglbETLzdEbXWmyY/sYutOHM9mMoQ/abllXMBl9OJf7ytzsFy13S280RcuQg5Y35uykBlp+kl6pnZYpmRk7OC2fy96hVjW1rDNYXU0dUz6ztjtZWraH6LsaW9YtrFRjy6UwUyiJlgejW0qn5W6YDTRNy93TNU3QMjSny7ms5f5xHZCTliEHLUO9Ni0vLy93vYhJ2LRpU3z4wx+OV77ylUP9upe+9KWxZ8+e+A//4T+s+TmLi4uxuLh45sfz8/Oxe/fumJubi127do26ZMb0l19ZiO/4N3+05sf/8IaXxnOesbPFFY1n7vhSzC4sxfyJk7Fr+9aYuXAqpndMdb2sNHTcjNq601U+WqZWJc3PEmajlrtR0j5sQwl7Pbu+tty3lrqm5cnra8uUZZKztS9zRMuMqtZrm6xta3l0mfZErV3yFC0Pxl5/SqYZlomW69D2LNFrfbTcnL6c3TovT5Md92Uf10yDefXhTDZjmmUelKntlnX1FE3QpD6cy5kM07+52S9aXt+kz0690RQtd+Puu++Oq6++Oq59261xyZ7ndb2cVT1y5P742LteE3fddVdcddVVXS+HDWh5YxnOTvfm+Wn5SRl6ZTy1zzstU7KNZuzH3nIgNm/aVG1/TdLyuZzPk1H7mVeDmlrWWfc0WaaaOqY5k+rRrO1OlpbtocE5V3OqsWXddsssKFONLZfCTFlJ593R8mB0O3nmwHi03A2zYW2aHk2Wlmv++uuaJmRpmfrUPH/X0uVc1nL/1HodkLH9JmkZctAy1GtL1wsozbd+67fGJz/5yXU/Z9u2bbFt27aWVsSg5k+cXPfjxzb4eEkeOvpYvPX2++KOw7Nnfu7A3pm4+eC+uPzi7R2uLA8dN6Om7nSVk5apVSnzs5TZqOVulLIP21DKXs+ury33qaWuabkdfW2ZskxqtvZpjmiZUdV4bZO5bS2PJtueqLFLzqXlwdjrT8o2wzLRch3anCV6rZOWm9OHs1vnZWqy4z7s45ppMLc+nMlmTHPMg3K13bKunqQJmtaHczmLYfs3N/tFy2tr4+zUG03RMuSg5Y3Vfna6N+8HLT+p9l4ZT4Z5p2VKttGMPfLI8fg/f/XOMz+urb8maflczufmZTjzalBTyzrrlibLVVPHNGOSPZq13cnSsj00GOdqXjW2rNvumAXlqrHlUpgp59J5t7Q8GN1OljkwPi13w2xYnaZHl6Hl2r/+uqYJGVqmPrXP37V0OZe13D81Xgdkbb9JWoYctAz12tz1Akpz7733xmWXXdb1MhjBrgu2rvvxizb4eCnmji+tuImIiDh0eDZuvP2+mDu+1NHKYKVautMVUJoS5qfZSAn7sA32OpPWl5a6pmXol0nMVnMEBlPbtY22OV/GPVFblzAqez3nDIO2tTVL9Ar5z26d90P2fVwzDZKBGdMM84Cz6UoT0Gej9G9uQntnp94AYDg1n53uzembmntlPOYdTN5GM/Z8+uM053OznHmsRmfd0SSUY9I9mrWMyx7amHOV0ui2G2YBWZkpT9E5tdDt5JgD1MxsWEnT/Zbh669roEYZ5u9azGXaVNt+y9w+AJBHqjeaX1hYiHvvvTfuvffeiIh48MEH4957740jR45ERMRNN90Ur371q898/nvf+9746Ec/Gg888EB85jOfiTe/+c3x8Y9/PF7/+td3sXzGNLNzKg7snVn1Ywf2zsTMzqmWVzSa2YWlFTcRpx06PBuzC24kKEct3ekKKE0J89NspIR92AZ7nUnrS0td0zL0yyRmqzkCg6nt2kbbnC/jnqitSxiVvZ5zhkHb2poleoX8Z7fO+yH7Pq6ZBsnAjGmGecDZdKUJ6LNR+jc3ob2zU28AMJyaz0735vRNzb0yHvMOJm+9GXvNcy+Ne754dMXP648I53PTnHmsRmfd0SSUY9I9mrWMyx7amHOV0ui2G2YBWZkpT9E5tdDt5JgD1MxsWEnT/Zbh669roEYZ5u9azGXaVNt+y9w+AJBHqjeav/POO2P//v2xf//+iIi44YYbYv/+/fETP/ETERHx8MMPn3nT+YiIpaWl+Of//J/HC1/4wnjpS18an/70p+O///f/Ht/xHd/RyfoZz/SOqbj54L4VNw0H9s7ELQf3xfSOsm4Y1jJ/4uS6Hz+2wcehTbV0pyugNCXMT7OREvZhG+x1Jq0vLXVNy9Avk5it5ggMprZrG21zvox7orYuYVT2es4ZBm1ra5boFfKf3Trvh+z7uGYaJAMzphnmAWfTlSagz0bp39yE9s5OvQHAcGo+O92b0zc198p4zDuYvLVm7Ev2zsRrrrkiPvDJB1f9dfrD+dwsZx6r0Vl3NAnlmHSPZi3jsoc25lylNLrthllAVmbKU3ROLXQ7OeYANTMbVtJ0v2X4+usaqFGG+bsWc5k21bbfMrcPAOSxpesFNOllL3tZLC8vr/nx22677Zwf/9iP/Vj82I/92IRXRZsuv3h7/Oyr9sfswlIcO3EyLrpga8zsnCruZmE9uy7Yuu7HL9rg49C2GrrTFVCiruen2UhE9/uwDfY6behDS13TMvRP07PVHIHB1XRto23Ol3VP1NQljKPvez3rDIO2tTFL9ApPynx267w/Mu/jmmmQLMyY8ZkHnK/vXWkC+mvU/vs+N6HNs1NvADCcWs9O9+b0Ua29Mh7zDtqx2ozdsnlTXPfv74jjS0+s+mv0R4TzuUnOPNais25oEsrRRo9mLeOyh9bnXKVEum2fWUBmZsqTdE5NdDsZ5gC1MxvOpel+y/L11zVQmyzzdy3mMm2qab9lbx8AyCHVG81DRMT0jjJvEAY1s3MqDuydiUOHZ1d87MDemZjZWe9jI6/Su9MVUKou56fZyGmln+PjstdpS/aWuqZl6KcmZ6s5AsOp5dpG25wv856opUsYV5/3euYZBm2b9CzRKzwl69mt837Juo9rpkEyMWPGYx6wmj53pQnor3H67/PchLbPTr0BwHBqPDvdm9NXNfbKeMw7aM/5M3bu+FJ887Oerj825HxuhjOP9eisfZqEcrTVo1nLuOyhtTlXKZVu22UWkJ2ZonPqo9vmmQNkYDY8RdP9lunrr2ugJpnm71rMZdpUy37rQ/sAQP02d70Acpg7vhR/+ZWFuOfI1+Iv/3Yh5o4vdb2kak3vmIqbD+6LA3tnzvn5A3tn4paD+6q4GaIfaupeV9C9mmZGX5iN5dJLs+x1uqDj5mmZEmi7buZIv+k3L21zPnuiTOYwEfbBIMwwaqDlJ+mVWml4cDpnXHobjwYpncbbYx4wKbV2rAnoL/3XpdZzJiPttMe+B6AUkz6TXF9QGtdhTIp5R0n6Nuv0x6T0raVBaQ6eUsKc0CQ0a5yu9UhJSjijaqRj+szceIpZQFd02B6dUwLNd8scYBS6LZem+83Xf3jmGeTSVdPmLxk5IzemfQCgBpuWl5eXu15E7ebn52N6ejrm5uZi165dXS+ndQ8dfSzeevt9ccfh2TM/d2DvTNx8cF9cfvH2DldWt7njSzG7sBTHTpyMiy7YGjM7p9xETFDfOx5Wrd3rKj8tl6nWmdEXJc7GPresl8kpca9n19eWdTxZWm5fX1s+n7bz6Osc6XPL+u2HvrTd55aH1Zc9UQNzeKU+tmwfDMcMq4OWn9T3lvVavz61rOHR6Lx8JXast+ZosD9KbHktGu+GeVCHWlrO0LEmmKRaWu4r/ZevlHNGy+fSzmSVsu8z0nI77r777rj66qvj2rfdGpfseV7Xy1nVI0fuj4+96zVx1113xVVXXdX1chiSltvT5pnk+qJ/SmzZdRhtyDbvSmyZ9fV51mXrr0laHl6fWxqU5tqn5bKUNic0WQcdl62prvWYX+ktl3ZG1UjH/VB6y20yN1ZnFtQhS8s67IbOy5Gl5UFpvhzmQLMyt6zbOmi6GbW27Os/GPOsP2ptmeGU0LT5O1labk8JPdVE+8PRMuSgZaiHN5pvQJ+H3tzxpXjDh+455+bgtAN7Z+JnX7XfxS9V6HPHw9I9JdNyecwMRtHXlvVCNn1sWcdk1MeWz6dtMuhry/olm762TL3M4dX1rWX7gKy0/BQtU7O+tKxhMiutY73BaEpreS0ah/XV0LKOYWM1tAylKumc0TJtKWnfZ6TldnijeSZNy+1wJjFppbVsz8NoSmuZ9Zl1rEXLw9ESpdJyOcwJRqXjcumaYZTcsr0Mgyu55TaZG9QuQ8s6hBwtD0rzZJa1Zd3SN1lbxjzrGy3np+l+0HI79MSkaRly0DLUY3PXC6BuswtLq94cREQcOjwbswtLLa8ImDTdA8MwM2BweoH66Rhy0jbUS78A3TKHibAPIAstQ900DO3RG+SmcaifjgGYJOcMfWTfA1AKZxJ9Y88DfWDWQTO0BGzEnIB8dE0W9jIwLHMDuqdD6BfNQ310C2RhnkEumobm6AkAIBdvNM9Y5k+cXPfjxzb4OFAf3QPDMDNgcHqB+ukYctI21Eu/AN0yh4mwDyALLUPdNAzt0RvkpnGon44BmCTnDH1k3wNQCmcSfWPPA31g1kEztARsxJyAfHRNFvYyMCxzA7qnQ+gXzUN9dAtkYZ5BLpqG5ugJACAXbzTPWHZdsHXdj1+0wceB+ugeGIaZAYPTC9RPx5CTtqFe+gXoljlMhH0AWWgZ6qZhaI/eIDeNQ/10DMAkOWfoI/segFI4k+gbex7oA7MOmqElYCPmBOSja7Kwl4FhmRvQPR1Cv2ge6qNbIAvzDHLRNDRHTwAAuXijecYys3MqDuydWfVjB/bOxMzOqZZXBEya7oFhmBkwOL1A/XQMOWkb6qVfgG6Zw0TYB5CFlqFuGob26A1y0zjUT8cATJJzhj6y7wEohTOJvrHngT4w66AZWgI2Yk5APromC3sZGJa5Ad3TIfSL5qE+ugWyMM8gF01Dc/QEAJBLp280//SnPz0uueSSFf9dccUV8V3f9V3xsY99rMvlMYDpHVNx88F9K24SDuydiVsO7ovpHW4QIBvdA8MwM2BweoH66Rhy0jbUS78A3TKHibAPIAstQ900DO3RG+SmcaifjgGYJOcMfWTfA1AKZxJ9Y88DfWDWQTO0BGzEnIB8dE0W9jIwLHMDuqdD6BfNQ310C2RhnkEumobm6AkAIJdNy8vLy139z3/1V3911Z8/evRo3HXXXfGf/tN/it/8zd+MV7ziFS2vbDjz8/MxPT0dc3NzsWvXrq6X04m540sxu7AUx06cjIsu2BozO6fcHFAVHQ9P95RIy+UyMxhG31vWC1n0uWUdk0mfWz6ftqlZ31vWL1n0vWXqZQ6fq68t2wdko2Utk0PfWtYwGZXasd5gOKW2vBaNw+pqalnHsLaaWoZSlXDOaJm2lbDvM9JyO+6+++64+uqr49q33RqX7Hle18tZ1SNH7o+Pves1cdddd8VVV13V9XIYkpbb5UxiUkpt2Z6H4ZTaMusz6ziflkejJUqj5fKYEwxLx+XTNYOooWV7GTZWQ8ttMjeoVaaWdUifZWp5UJono+wt65a+yN4y5llfaLk/NJ2bltulJyZFy5CDlqEeW7r8n19//fXrfvxFL3pRvPvd7y7+jeaJmN7hhgD6RvfAMMwMGJxeoH46hpy0DfXSL0C3zGEi7APIQstQNw1De/QGuWkc6qdjACbJOUMf2fcAlMKZRN/Y80AfmHXQDC0BGzEnIB9dk4W9DAzL3IDu6RD6RfNQH90CWZhnkIumoTl6AgDIYXPXC1jPP/pH/yg+97nPdb0MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEYV/Ubzi4uLMTU11fUyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq1pesFrOeXf/mX48orr+x6GVRg7vhSzC4sxfyJk7Fr+9aYuXAqpndMdb0sSElvQDbmGgxGKzAZ2gL6yvyD/HQOrMZswB4A1mI+QD30Snb2ONAEswTqo1sgG3MN2qE1ABiccxNWpw2A/Mx61mN/ALUxt6CftE9X7D1gGGYGYA5Af+gd8tM5cDYzgWzsaSADswwAYPI6faP5G264YdWfn5ubi7vvvjs+//nPx6FDh1peFbV56Ohj8dbb74s7Ds+e+bkDe2fi5oP74vKLt3e4MshHb0A25hoMRiswGdoC+sr8g/x0DqzGbMAeANZiPkA99Ep29jjQBLME6qNbIBtzDdqhNQAYnHMTVqcNgPzMetZjfwC1Mbegn7RPV+w9YBhmBmAOQH/oHfLTOXA2M4Fs7GkgA7MMAKAdm7v8n99zzz2r/jc7OxvXXntt/N7v/V780i/9UpdLpHBzx5dW3DhERBw6PBs33n5fzB1f6mhlkI/egGzMNRiMVmAytAX0lfkH+ekcWI3ZgD0ArMV8gHrolezscaAJZgnUR7dANuYatENrADA45yasThsA+Zn1rMf+AGpjbkE/aZ+u2HvAMMwMwByA/tA75Kdz4GxmAtnY00AGZhkAQHu2dPk//x//43+s+/FPf/rT8Su/8ivx/ve/v6UVUZvZhaUVNw6nHTo8G7MLSzG9Y6rlVUFOegOyMddgMFqBydAW0FfmH+Snc2A1ZgP2ALAW8wHqoVeys8eBJpglUB/dAtmYa9AOrQHA4JybsDptAORn1rMe+wOojbkF/aR9umLvAcMwMwBzAPpD75CfzoGzmQlkY08DGZhlAADt6fSN5mFc8ydOrvvxYxt8fNLmji/F7MJSzJ84Gbu2b42ZC6fczFCtNnrTDNCmuceW1v1419cRUArXADAZJd7PahFoQ4nzL8IMhCaN07kWqYW9OrxSrwFojz2wPnOFPqtlPugU6ul1FBonop49br9C2WqZJW0wr6iFboGuTOqsNNdgbU12pzUAatPlazXOTVidNugb3zegb+aOL8Ujx/1bBqytz9cCzgQYT1cN9XluQVaDzBPt0xV771yuoWF9tcwMLcPkTGoO6BbK0/W5by7A5HXdeYTWKVvf9mcJMwGaZE+Pp28zEEqVdZaZMQBAibzRPFXbdcHWdT9+0QYfn6SHjj4Wb739vrjj8OyZnzuwdyZuPrgvLr94e2frglFNujfNAG166OhjceLkqXU/p8vrCCiJawCYjNLuZ7UItKW0+RdhBkLTRu1ci9TCXh1NidcAtMseWJu5Qt/VMB90Ck+qoddRaJzTatjj9iuUr4ZZ0gbziprsmHrauh/vS7dAuyZ5VroegdU13Z3WAKhJ16/VODdhddqgT7o+i6Btp/f8P/37z17388z6fuvrtYAzAcbTZUN9nVuQ1aDzRPt0xd57imto2FgNM0PLMFmTmAO6hTJ1ee6bC9COrq/vtU7J+rg/u54J0DR7enR9nIFQqoyzzIwBAEq1uesFwDhmdk7Fgb0zq37swN6ZmNk51fKKnjR3fGnFDUBExKHDs3Hj7ffF3PGlTtYF45hkb5oB2nR65vzxF74a1zz30lU/p8vrCCiNawCYjJLuZ7UItKmk+RdhBsIkjNK5FqmFvTq60q4BaJ89sDpzBcqfDzqFp5Te6yg0ztlK3+P2K9Sh9FnSBvOKmswdX4q7jxz15wiBVk36rHQ9AitNojutAVCLEl6rcW7C6rRBX5RwFkGbzt7z93zR9yBYWx+vBZwJMJ6uG+rj3IKshpkn2qcr9t6Tuj7/oRalzwwtw+Q1PQd0C+Xq6tw3F6A9XV7fa52S9XV/ln7PD8Oyp0fT1xkIpco2y8wYAKBknb7R/Pd8z/es+99b3vKWLpdHBaZ3TMXNB/etuIE4sHcmbjm4L6Z3dHPzMLuwtOIG4LRDh2djdsFNAPWZZG+aAdp0euZ84JMPxmuuuWLFX9B+ScfXEVAa1wAwGSXdz2oRaFNJ8y/CDIRJGKVzLVILe3V0pV0D0D57YHXmCpQ/H3QKTym911FonLOVvsftV6hD6bOkDeYVNZldWIp/9Tt/seqfI7zmuZfGT/7vL+hFt0C7Jn1Wuh6BlSbRndYAqEUJr9U4N2F12qAvSjiLoE1n7/m1/i0Ds56Ifl4LOBNgPF031Me5BVkNM0+0T1fsvSd1ff5DLUqfGVqGyWt6DugWytXVuW8uQHu6vL7XOiXr6/4s/Z4fhmVPj6avMxBKlW2WmTEAQMm2dPk/n56e3vDjr371q1taDbW6/OLt8bOv2h+zC0tx7MTJuOiCrTGzc6rTG4f5EyfX/fixDT4OpZpUb5oB2nR65hxfeiLe9KF74rUvviJee80Vsfj4qdi2ZXPsuWRHXHbx9o5XCWVxDQCTUcr9rBaBtpUy/yLMQJiUYTvXIrWwV8dT0jUA3bAHVjJX4EklzwedwrlK7nUUGud8Je9x+xXqUfIsaYN5RU3mT5xc888R3vPFozH/2FJEXNj1MoFk2jgr+349AuebVHdaA6AGpbxW49yE1WmDPijlLIK2nL3nV/sexLMv3RHPvHi7WU9E9O9awJkA4ymhob7NLchq2Hmifbpi75Vx/kMtSp4ZWoZ2NDkHdAtl6+LcNxegXV1d32udkvV5f5Z8zw+jsKeH1+cZCKXKNMvMGACgZJ2+0fytt97a5f+eRKZ3lHWzsOuCret+/KINPg4lm0RvmgHadPbMOb70RPzcxx845+N/eMNL214SVME1AExGCfezWgS6UML8izADYZKG6VyL1MJeHV8p1wB0xx44l7kCTyl1PugUViq111FonNWUusftV6hLqbOkDeYVNTm9X1f7c4QREf/Hi57Z9pKAHmjrrOzz9Qicb5LdaQ2A0pX0Wo1zE1anDbIr6SyCNpy/58//HsQf3vBSc59z9OlawJkA4ymloT7NLchqlHmifbrS971XyvkPtSh1ZmgZ2tPUHNAtlK/tc99cgPZ1cX2vdUrW9/1Z6j0/jMqeHk7fZyCUKsssM2MAgJJt7noBkNHMzqk4sHdm1Y8d2DsTMzvrv9GBJmkGaJOZA+XQI5RBi0CfmYFQBi1SC3sVaJq5AuXTKeSmcWpivwK1MK+oif0KdMHsgfbpDoA+cw4C0DVnEX1jz8Pa9AHj0RDQFPME6qFXyEHLUB/dAuczF6AftE7J7E+gz8xAYJLMGACgZN5oHiZgesdU3Hxw34obgQN7Z+KWg/tieoebADibZoA2mTlQDj1CGbQI9JkZCGXQIrWwV4GmmStQPp1CbhqnJvYrUAvziprYr0AXzB5on+4A6DPnIABdcxbRN/Y8rE0fMB4NAU0xT6AeeoUctAz10S1wPnMB+kHrlMz+BPrMDAQmyYwBAEq2aXl5ebnrRdRufn4+pqenY25uLnbt2tX1cijI3PGlmF1YimMnTsZFF2yNmZ1TbgAKpeMyaIZxaZlhmDnl0nL/6DEnLddHi6xGy/RF9hmoZWqRvcVxabkc9irj0DKrMVfqo+X+0WlOWuY0jderjx3br2TUx5b7wLzqn5pbtl/hKTW3XBuzh0nS8up0R2203I677747rr766rj2bbfGJXue1/VyVvXIkfvjY+96Tdx1111x1VVXdb0chlRKy85BGE8pLUPNSjiLtEybStjzWWm5fvogQsvj0BCl0HH9zBMitFwLvbIRLddBy2xEy+XRLaPQcm7mQn9oud+0nkfGlu1P+ihjy4zGDKyblimdGTMYLUMOWoZ6bOl6AZDZ9A4X/TAMzQBtMnOgHHqEMmgR6DMzEMqgRWphrwJNM1egfDqF3DROTexXoBbmFTWxX4EumD3QPt0B0GfOQQC65iyib+x5WJs+YDwaAppinkA99Ao5aBnqo1vgfOYC9IPWKZn9CfSZGQhMkhkDAJRoc9cLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOibLV0vANowd3wpZheWYv7Eydi1fWvMXDgV0zumul4WVEVHAO0xc2mDfQbd0iCQkdkGtMGsAQZhVnA2+wH6SftQFk3C+HQE9dEt5KdzoO/MQWif7gBg8py31MJeBeiG+UvN7F+APMx0aJ6ucvH1BE4zD4DzmQvQHf1BP2gdKJHZBE/RA7AeMwIAoCyp3mj+0KFD8a//9b+Ou+66Kx5++OH48Ic/HK985SsH+rWf+tSn4qUvfWm84AUviHvvvXei66RdDx19LN56+31xx+HZMz93YO9M3HxwX1x+8fYOVwb10BFAe8xc2mCfQbc0CGRktgFtMGuAQZgVnM1+gH7SPpRFkzA+HUF9dAv56RzoO3MQ2qc7AJg85y21sFcBumH+UjP7FyAPMx2ap6tcfD2B08wD4HzmAnRHf9APWgdKZDbBU/QArMeMAAAoz+auF9CkRx99NK688sp43/veN9SvO3r0aLz61a+O7/iO75jQypiEueNL8ZdfWYh7jnwt/vJvF2Lu+NKqn3P+TUhExKHDs3Hj7fet+muAcw3S0SA9AoyqTzPGtQttWG2f7Zh6WuzbfXH81eyjcfdfP5K+NejSKLO+T2ch0J4mZ4vrWGAtZg3QtvVmxds/+pn4m/kT7q965G/mT8RfzT4ar/rWPfGBf/ot8YZ/8NzYMfU0ZwdUZthrSteN0Lxx7u00SRZdfq9GR1CHs+fE4b85Fn/0+b+Nu/76a+d8jm4hD687AX3X1/sUf46PLrXdnf0OQB/5ux7UYO74Uhz+m2Px2Yfn4zXXXHHmdamI/PdkAMNq+pzu62tiNKur60f7F6A+a50ZZjqZlPLamq5yOf/ruWPqafGGf/DcuP7vPzs++/B8HP6bY76m0BP+DV3gfHPHl+InPvqZuHL3xfEr139z/Pz/96r4wD/9lti3++J4+0c/YwbABDmXIY/1WvUaC1Ais2l8rtPyqLEH+w+as1FPNc4IAIA+2NL1App03XXXxXXXXTf0r/vhH/7h+P7v//542tOeFh/5yEeaXxiNe+joYytuMA7snYmbD+6Lyy/efubnZheWVtyEnHbo8GzMLizF9I6pia8XarZeR3f+9dfia8dPxv/10c9s2CPAKAY987Nw7UIbzt9nO6aeFv/+Vfvj1k89GD/38QfO/Hzm1qBLw876vp2FQDuani2uY4HVmDVAF9aaFTumnhb/n2/dE//iP98bdzzw1TM/7/4qr4eOPhZv/c1Pn/P1vua5l8a/f9X+eNOH7nF2QCVGuaZ03QjNGvfeTpNk0PX3anQE5VttTpx9D3p86YkzP69bqJ/XnQD6eZ/S9b0htNmd/Q5AX/m7HpRukNeis96TAQxrEud0H18To1ldXj/avwB1We/MOHHyCTOdFEp6bc21Ui5nfz39m1rQb/4NXeB8X310Kf7Jt+5ZcW1wzXMvjddcc0V89VHXfTApzmXIYaPXc7zGApTIbBpPSa/lM77aerD/oDmD9FTbjAAA6IvNXS+ga7feemt84QtfiLe//e0D/5rFxcWYn58/5z/aM3d8acUNSMSTNxY33n5fzB1fOvNz8ydOrvt7Hdvg4+Sl48Gt19FrX3xF/F8f+fOBeoRJ0HJuw5z5WfT12kXL7Tp/n732xVfErZ96MD511j9+HJG7NSZDy4MZZtb38Syke1rObxKzpa/XsSXTMl0za5qhZRjeWrPi9Osfd3Tw+oeW23fmHDrv6/2pB74at37qwXjti6+IiJxnB5Oj5faNek3Zx+tGBqfl4TRxb6dJmtZ2xyV8r0ZHZJTpTF5rTpx/D3o23ZJFppYH5XUnMupjy4yvb/cpJdwbbkTL+bXVXQ37PTMtQw5arpe/68HZSmt5mNeis92TwThKa5l2TOqc7ttrYiXJ0HLX14/2LyXI0DK0YaMz4/FTy+v++knOdB3TlK6vjc7Xt2ul7C2f/fX0b2qRWfaWm+Df0KUGWm7X46eWV702OP39tic2uN+CtWh5Y85laqDl9Q3yek7fXmOhTFrmfGbT6Lp8LV/Lk1FTD6V9L4nRaLkMg/ZU04ygXVqGHLQM9er1G80fPnw4brzxxviP//E/xpYtWwb+de9+97tjenr6zH+7d++e4Co53+zC0oobkNMOHZ6N2YWnbup3XbB13d/rog0+Tl46Htx6He3fffGKfyzxtPN7hEnQcm7DnPlZ9PXaRcvtOn+f7d998Yo/9Hpa1taYDC0PZphZ38ezkO5pOb9JzJa+XseWTMt0zaxphpZheGvNii5f/9By+9Y7hz71wFdj/+6LIyLn2cHkaLl9o15T9vG6kcFpeThN3Ntpkqa13XEJ36vRERllOpMHvQc9m27JIlPLg/K6Exn1sWXG17f7lBLuDTei5fza6q6G/Z6ZliEHLdfL3/XgbKW1PMxr0dnuyWAcpbVMOyZ1TvftNbGSZGi56+tH+5cSZGgZ2rDRmXFqgzc+nORM1zFN6fra6Hx9u1bK3vLZX0//phaZZW+5Cf4NXWqg5XadOrW85rXBpx74qjeaZ2Ra3phzmRpoeX2DvJ7Tt9dYKJOWOZ/ZNLouX8vX8mTU1ENp30tiNFouw6A91TQjaJeWIQctQ716+0bzTzzxRHz/939/vPOd74xv/MZvHOrX3nTTTTE3N3fmvy9+8YsTWiWrmT9xct2PHzvr4zM7p+LA3plVP+/A3pmY2TnV6Nqoh44Ht15HGzm2Qa8wLi3nNsyZn0Vfr1203K7z99ni46fW/fyMrTEZWh7MMLO+j2ch3dNyfpOYLX29ji2ZlumaWdMMLcPw1poVXb7+oeX2bXQOLT5+Ku3ZweRouX2jXlP28bqRwWl5OE3c22mSprXdcQnfq9ERGWU6kwe5Bz2bbskkU8uD8roTGfWxZcbXt/uUEu4NN6Ll/Nrqrob9npmWIQct18vf9eBspbU86GvRGe/JYByltUw7JnVO9+01sZJkaLnr60f7lxJkaBnasNGZcXzpic5muo5pStfXRufr27VS9pbP/nr6N7XILHvLTfBv6FIDLbfr+NLjG3z8iZZWQjZa3phzmRpoeX2DvJ7Tt9dYKJOWOZ/ZNLouX8vX8mTU1ENp30tiNFouw6A91TQjaJeWIQctQ716+0bzx44dizvvvDPe8IY3xJYtW2LLli3xkz/5k/HpT386tmzZEh//+MfX/LXbtm2LXbt2nfMf7dl1wdZ1P37RWR+f3jEVNx/ct+Jm5MDembjl4L6Y3uFGpK90PLj1OvqGp29f99detEGvMC4t5zbMmZ9FX69dtNyu8/fZti3r3xZmbI3J0PJghpn1fTwL6Z6W85vEbOnrdWzJtEzXzJpmaBmGt9asuHh7d/dXWm7fRufQxdu3pj07mBwtt2/Ua8o+XjcyOC0Pp4l7O03StLY7LuF7NToio0xn8kZz4uw/k6FbssnU8qC87kRGfWyZ8fXtPqWEe8ONaDm/trqrYb9npmXIQcv18nc9OFtpLQ/yWnTWezIYR2kt045JndN9e02sJBla7vr60f6lBBlahjZsdGZMb9/a2UzXMU3p+trofH27Vsre8tlfT/+mFpllb7kJ/g1daqDldk1vX/+6bnqDf48C1qLljTmXqYGW1zfI6zl9e42FMmmZ85lNo+vytXwtT0ZNPZT2vSRGo+UyDNpTTTOCdmkZctAy1GtL1wvoyq5du+LP//zPz/m5n//5n4+Pf/zj8Zu/+ZtxxRVXdLQyNjKzcyoO7J2JQ4dnV3zswN6ZmNl57s3F5Rdvj5991f6YXViKYydOxkUXbI2ZnVNuQmAIa3UUEUP1CDCMYc/8LFy70Iaz99mp5eV4yd6ZuKNnrUGXBp31fT0Lgcma1GxxHQuczawBurTarNh5wRb3Vz2y3jn0kr0z8Zxn7Iyv33VBBysDhjHONaXrRmhGU/d2mqRmpXyvRkdQro3mxHO/bmd85Ef+vm4hCa87ATylT/cppdwbQhvd2e8A9J2/60GpNnpd6rlftzN+9lX7U96TAQxrkud0n14To1klXD/avwB1GOTMmN4xZaZTtRKujc7nWimX01/Po8dP+je1oOf8G7rA2Uq8DoU+cS5D3QY9R73GApTIbBqNe6icaunB/oPmDNNTLTMCAKBPNne9gCYtLCzEvffeG/fee29ERDz44INx7733xpEjRyIi4qabbopXv/rVERGxefPmeMELXnDOf894xjPiggsuiBe84AVx4YUXdvUw2MD0jqm4+eC+OLB35pyfP7B3Jm45uG/VG4zpHVPxnGfsjBfteXo85xk73YTACFbraJQeAQbV5xnj2oU2nN5ne7/+orilp61BlwaZ9X0+C4HJmeRscR0LnGbWAF07f1Z8/a4L3F/1yHrn0P99cJ83+4JKjHtN6boRxtfkvZ0mqVVJ36vREZRpoznxrJkLdQuJeN0J4Fx9uU8p6d4QJt2d/Q4A/q4HZdrodalnzVxo3wH8vyZ9TvflNTGaVcr1o/0LUL5BzwwznZqVcm202rp0lcf0jql41syF/k0twL+hC5yhfeiecxnqNUyrXmMBSmQ2Dc91Wl419GD/QXOG7amGGQEA0Cdbul5Ak+688854+ctffubHN9xwQ0REXH/99XHbbbfFww8/fOZN56nb5Rdvj5991f74yrHFmHvsZOyYelpcuG1L7Jh6WtdLg+rNHV+K2YWlmD9xMnZt3xozF06te/N+usfZhaU4duJkXHTB1pjZuf6vARjURjNm2JkFrO7s1k5fX2/evCkeO/lEzB1f0hUMqcnzyfU2MAk1zBbX+lC/UmeN+ULT7Kl6lDqXaM7ZPU5v3xr/+nuvjIUTj/t6Q4VO97yweDL+1StfEEuPn4pHFx/XMnRg0Gso18WUbpw96l4C2Ig/0wzlmeT1qWsDYDXui/Mz/+un08HZ7wD1ct61y5lJ2+y5fjLbYTSTnpnaZBTj7Et7DkanH2rk/o9h1Tjr7HMmYbUW7DVoh7MIaEMTs0b7UKZx26zxWgRq1MY5qmdolqYYl3so1jPpGWP/QXNK7sn1CgDA+lK90fzLXvayWF5eXvPjt91227q//h3veEe84x3vaHZRTMyjS0/ET/7OX8Qdh2fP/NyBvTNx88F9cfnF2ztcGdTroaOPxVtvv2/orqZ3uNkGJmetGTPqzAJWN71jKh5deiLe8dv/P13BGCZxPrneBiah5NniWh/yKG3WmC80zZ6qT2lzieas1+NznrGzw5UBw3K+Qnk2uobSLaVrYo+6lwA24s80QznauD51bQCczX1xf5j/9dLp8Ox3gPo477rhzKRt9ly/mO0wnknNTG0yjlH2pT0Ho9MPNXP/x6BqnnX2OU3aqAV7DSbHWQS0oclZo30o06ht1nwtAjWa5DmqZ2iWpmiKeyhW09aMsf+gOSX25HoFAGBjm7teAIxi7vjSiov9iIhDh2fjxtvvi7njSx2tDOqlK6AmZhY0T1cwPh0BjM8sBSbFfKFp9hSUQ4+Qh56hPrqldPYo0AazBsqhR6Bt5g6UT6cA9IHzDiAfsx3KpE3aZs/B6PQD9IFZB0/SAnRHf0AbzBpgLeYD5KFnaJamgEkyY4AmmCUAAIPxRvNUaXZhacXF/mmHDs/G7IILfhiWroCamFnQPF3B+HQEMD6zFJgU84Wm2VNQDj1CHnqG+uiW0tmjQBvMGiiHHoG2mTtQPp0C0AfOO4B8zHYokzZpmz0Ho9MP0AdmHTxJC9Ad/QFtMGuAtZgPkIeeoVmaAibJjAGaYJYAAAxmS9cLgFHMnzi57sePbfDx9cwdX4rZhaWYP3Eydm3fGjMXTsX0jqmRfz+oRRNd6QfKlLHNSV4LQF9t1NXXji/F3PGl6ucHTFKp51PGawEgL7MUmJRx54s5wNnmji/FI8fX/8NnXp+C9ow64812KMPZLT5+anndz3W+QnlKfS3nNOc9k9ij9hVwvjbOQ7OHLCa9l0u/PgXymXvM94tgXK4PAGD889B5B5DPRrP9q48uRfztgu8XQMsG+XvY9xz5mu/n0ZhSrvV9v5oaldLPMLQGDMv3q+FJNZ77kEXf+3MND+2Y9KzRMtSr62sR8wOa02TP2gR/tgGYLPfpQBO6vqc/zcwBAErnjeap0q4Ltq778Ys2+PhaHjr6WLz19vvijsOzZ37uwN6ZuPngvrj84u0j/Z5Qi3G70g+UKWubk7oWgD7bqKu5x07GGz90T/XzAyapxPMp67UAkJdZCkzKOPPFHOBsp/fDP/37z17387w+Be0ZZcab7VCG81v8leu/ed3Pd75CeUp8Lec05z0Rze9R+wpYzaTPQ7OHLNrYyyVfnwL5PHT0sThx8tS6n2PuwPpcHwBAM+eh8w4gn41m+7ETJ+P7fulPfL8AWjbI38P+P3/1zojw/TyaUcK1vu9XU6sS+hmG1oBh+X41PGWjc3/71NNaWgn0T23X3U1yDQ/tmeSs0TLUrctrEfMDmtVUz9qEJ/mzDcAkuU8HmlDC9xfMHACgBpu7XgCMYmbnVBzYO7Pqxw7snYmZnVND/55zx5dWXMBHRBw6PBs33n5fzB1fGmmtUItxutIPlClzm5O4FoC+W6+ra557adzzxaMp5gdMUmnnU+ZrASAvsxSYlFHniznA2c7eD/d88Whc89xLV/08r09Bu4ad8WY7lGG1Fp2vUJ/SXss5zXnPaU3uUfsKWMskz0Ozhyza2sulXp8C+Zyea3/8ha96PQtG5PoAAJo7D513APkM8nc9I3y/ANo2aJsR+qQZXV/r+341Neu6n2FoDRiW71fDuTa6V7v7yFHnKUxITdfdTXIND+2a1KzRMtSvq2sR8wOa10TP2oSn+LMNwCS5Twea0PX3F8wcAKAW3mieKk3vmIqbD+5bcdF/YO9M3HJwX0zvGP6Cf3ZhacUF/GmHDs/G7IKLeHIbpyv9QJkytzmJawHou7W6uua5l8ZrrrkiPvDJByOi/vkBk1Ta+ZT5WgDIyywFJmXU+WIOcLaz98MHPvlgvOaaK1b8Yyxen4L2DTvjzXYow2otOl+hPqW9lnOa857Tmtyj9hWwlkmeh2YPWbS1l0u9PgXyOT3X1no96yXmDmzI9QEANHceOu8A8hn073pG+H4BtGmYNiP0yfi6vtb3/Wpq1nU/w9AaMCzfr4ZzTe+Yip/831+wooXT92r/6nf+wnkKE1LTdXeTXMNDuyY1a7QM9evqWsT8gOY10bM24Sn+bAMwSe7TgSZ0/f0FMwcAqMWWrhcAo7r84u3xs6/aH7MLS3HsxMm46IKtMbNzauSL/fkTJ9f9+LENPg4ZjNqVfqBM2dts+loAeKqrLx19LP7qq8dj25bNcc8Xj8abPnRPHF964szn1T4/YJJKOp+yXwsAeZmlwKSMMl/MAc529n44vvREvOlD98RrX3xFvPaaK2Lx8VPx7Et3xDMv3u71KejAMDPebIcyrNbi2efr2/63b4qlx0/5/g9UoKTXck5z3nO2pvaofQWsZ1LnodlDFm3u5RKvT4F8Ts+11b5ftG3L5thzyY647OLtHa8Syub6AACaPQ+ddwD5nD3bv/rok/N9tb/rGeH7BdCm86+7prZsjt/9zJdXbTNCn4yvy2t936+mdrXcK2sNGJbvV8NKc48txf49Tz+nhbNfR3GewuTUct3dJNfw0L5JzBotQw5dXIuYHzAZ4/asTTiXP9sATJL7dKAJ/lwcAMDGvNE8VZve0dwF/q4Ltq778Ys2+DhkMUpX+oEy9aHNJq8FgCdN75iK2YWl+JH/5+41PyfD/IBJKuV86sO1AJCXWQpMyrDzxRzgbOfvh+NLT8TPffyBMz/+wxteWsT5BX016Iw326EMa7V4+nz9P170zPi7l0+3vCpgVKW8lnOa857zNbFH7StgI5M4D80esmh7L5d2fQrkc/ZcO//7RRFPfs8IWJ/rAwBo/jx03gHkc2a2f2Uhvu+X/mTNz/P9AmjX2dddf/mVhRWvD55NnzShq2t9368mgxrulbUGDMv3q2Glndu2ujeDDtVw3d0k1/DQjaZnjZYhj7avRcwPmJxxetYmrOTPNgCT5D4daII/FwcAsL7NXS8ASjGzcyoO7J1Z9WMH9s7EzM7+/MElGJZ+oEzaBEZlfkAOWgYYn1kKmAOczX6AHLQMZdAiMElmDJNgXwFdMHvIwl4GsjHXYHw6AgDnIQCDc2ZAufRJZvY3tENrwLDMDVhJF0CbzBzIQcvAqMwPKJM2YX0aAUpnTgFtMnMAgFp4o3n4f03vmIqbD+5bcSF/YO9M3HJwX0zvcBEPa9EPlEmbwKjMD8hBywDjM0sBc4Cz2Q+Qg5ahDFoEJsmMYRLsK6ALZg9Z2MtANuYajE9HAOA8BGBwzgwolz7JzP6GdmgNGJa5ASvpAmiTmQM5aBkYlfkBZdImrE8jQOnMKaBNZg4AUItNy8vLy10vonbz8/MxPT0dc3NzsWvXrq6Xw5jmji/F7MJSHDtxMi66YGvM7JxyAd8DOm6GfuiallenTWqj5XKYH4xDy+XQMuPQMjyp9lmqZRhfCXNAy+UoYT9QLy2XQ8uMQ8vN0SJd0nJ+Zkx+XXRsX0HznMkbM3uowSAt28tQPufycMw1SlVTyzqCtdXUcs3uvvvuuPrqq+Pat90al+x5XtfLWdUjR+6Pj73rNXHXXXfFVVdd1fVyGJL7ZcjBuUwpnBnj0TKTpM/2aLl99jeToOWVtEZtdNw9c4MmZGtZF/RVtpZrYebQNC13Q8s0Tcv9YX7kpuV6aZOzaXkljVAjLfeLOZWXlimRmTM8LUMOWoZ6bOl6AVCa6R0u2mFU+oEyaRMYlfkBOWgZYHxmKWAOcDb7AXLQMpRBi8AkmTFMgn0FdMHsIQt7GcjGXIPx6QiaceTIkZidne16GWtaXFyMbdu2db2MVX32s5/tegkplL4HZ2ZmYs+ePV0vY03OQwAG5cyAcumTzOxvaIfWgGGZG7CSLoA2mTmQg5aBUZkfUCZtwvo0ApTOnALaZOYAAKXzRvMAAAAAAAAAAAAAAAAAAAAVOXLkSDz/+d8Ujz12vOulrG3Tpojl5a5Xsa6Ti0tdL6FaNezB7dt3xOc+99mi32weAAAAAAAAAAAAAAAAAADAG80DAAAAAAAAAAAAAAAAAABUZHZ2Nh577Hh822vfHrsue3bXy1nh4T//k/jMf3l/vOj73xpfd8Xzu17OCqfX9/jjj3e9lGqVvgfnH/6r+LMPvDNmZ2e90TwAAAAAAAAAAAAAAAAAAFA0bzQPAAAAAAAAAAAAAAAAAABQoV2XPTsu2fO8rpexwvzDfxURETufsafo9TG+UvcgAAAAAAAAAAAAAAAAAABALTZ3vQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAvvFG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3zRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3zRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3zRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3b0vUC+mLu+FLMLizF/ImTsWv71pi5cCqmd0x1vSygMGYFTJ7OIActQw5ahhy0DDloGfLQM9RPx5CDliEHLUNe+oa6aBY4n7kADMPMAGBYzg6gD8w6mBx9AaMyP6AZWoIctAz9pH2om4aB9ZgRMD4dQW4ah7poFnLSNvSH3qE8ugQAgHN5o/kWPHT0sXjr7ffFHYdnz/zcgb0zcfPBfXH5xds7XBlQErMCJk9nkIOWIQctQw5ahhy0DHnoGeqnY8hBy5CDliEvfUNdNAucz1wAhmFmADAsZwfQB2YdTI6+gFGZH9AMLUEOWoZ+0j7UTcPAeswIGJ+OIDeNQ100CzlpG/pD71AeXQIAwEqbu15Akw4dOhSveMUr4vLLL49NmzbFRz7ykXU//5Of/GRcc801cemll8b27dvj+c9/fvzbf/tvG13T3PGlFTciERGHDs/GjbffF3PHlxr9/wF1Mitg8nQGOWgZctAy5KBlyEHLkIeeoX46hhy0DDloGfLSN9RFs8D5zAVgGGYGAMNydgB9YNbB5OgLGJX5Ac3QEuSgZegn7UPdNAysx4yA8ekIctM41EWzkJO2oT/0DuXRJQAArC7VG80/+uijceWVV8b73ve+gT7/wgsvjDe84Q1x6NCh+OxnPxs//uM/Hj/+4z8e73//+xtb0+zC0oobkdMOHZ6N2QU3I4BZAW3QGeSgZchBy5CDliEHLUMeeob66Rhy0DLkoGXIS99QF80C5zMXgGGYGQAMy9kB9IFZB5OjL2BU5gc0Q0uQg5ahn7QPddMwsB4zAsanI8hN41AXzUJO2ob+0DuUR5cAALC6LV0voEnXXXddXHfddQN//v79+2P//v1nfvzsZz87fuu3fivuuOOO+KEf+qFG1jR/4uS6Hz+2wceBfjArYPJ0BjloGXLQMuSgZchBy5CHnqF+OoYctAw5aBny0jfURbPA+cwFYBhmBgDDcnYAfWDWweToCxiV+QHN0BLkoGXoJ+1D3TQMrMeMgPHpCHLTONRFs5CTtqE/9A7l0SUAAKwu1RvNj+uee+6JP/7jP46f+qmfWvfzFhcXY3Fx8cyP5+fn1/zcXRdsXff3umiDjwOTMUzHbTArYDTOZMhBy5CDliEHLUMOWoYchn0dW89QJucy5KBlyEHLUL8m/syXvqF7zmTIoas/i20uQLNK+3sVTTMz6IvsLUObujw7tAw51NCy62TY2Kgt6wvKUsO5fJr5AWvz/WXIQctQv0lfX2sf2jGpljUM7arpda8IMwLW4l4ZcvD3HSEH5zLkMM65rG0oh+9JQQ6usSGH2r4nBaxOy1CvzV0voATf8A3fENu2bYtv/uZvjte//vXxute9bt3Pf/e73x3T09Nn/tu9e/eanzuzcyoO7J1Z9WMH9s7EzM6psdYOjGaYjttgVsBonMmQg5YhBy1DDlqGHLQMOQz7OraeoUzOZchBy5CDlqF+TfyZL31D95zJkENXfxbbXIBmlfb3KppmZtAX2VuGNnV5dmgZcqihZdfJsLFRW9YXlKWGc/k08wPW5vvLkIOWoX6Tvr7WPrRjUi1rGNpV0+teEWYErMW9MuTg7ztCDs5lyGGcc1nbUA7fk4IcXGNDDrV9TwpYnZahXpuWl5eXu17EJGzatCk+/OEPxytf+coNP/fBBx+MhYWF+NM//dO48cYb4+d+7ufiVa961Zqfv7i4GIuLi2d+PD8/H7t37465ubnYtWvXis9/6OhjcePt98Whw7Nnfu7A3pm45eC+uOzi7cM9MKARw3bcBrMChudMhhy0DDloGXLQMuSgZchhlNex9QzlcS5DDlqGHLQM9Wvqz3zpG7rlTIYcuvyz2OYCNKfEv1fRNDODPuhDy9Cmrs6OUVu+++674+qrr45r33ZrXLLneRNb36j+6s9+P/7sA++MF7/5ffHMb9rf9XJWKH19ERGPHLk/Pvau18Rdd90VV111VdfLWaH0Pdj281fLuew6GdY3Tsv6gnLUci6fZn7A6nx/GXLQMtSvjetr7cPkTbJlDUN7anvdK8KMgNW4V4Yc/H1HyMG5DDmMey5rG8rge1KQg2tsyKHG70kBK2kZ6rWl6wWU4IorroiIiBe+8IXxN3/zN/GOd7xj3Tea37ZtW2zbtm3g3//yi7fHz75qf8wuLMWxEyfjogu2xszOqZjeMTX22oHRDNtxG8wKGJ4zGXLQMuSgZchBy5CDliGHUV7H1jOUx7kMOWgZctAy1K+pP/Olb+iWMxly6PLPYpsL0JwS/15F08wM+qAPLUObujo7tAw51NKy62RY3zgt6wvKUcu5fJr5Aavz/WXIQctQvzaur7UPkzfJljUM7antda8IMwJW414ZcvD3HSEH5zLkMO65rG0og+9JQQ6usSGHGr8nBaykZaiXN5o/z6lTp2JxcbHx33d6h5sPYGNmBUyeziAHLUMOWoYctAw5aBny0DPUT8eQg5YhBy1DXvqGumgWOJ+5AAzDzABgWM4OoA/MOpgcfQGjMj+gGVqCHLQM/aR9qJuGgfWYETA+HUFuGoe6aBZy0jb0h96hPLoEAIBzpXqj+YWFhXjggQfO/PjBBx+Me++9Ny655JLYs2dP3HTTTfGlL30pPvjBD0ZExPve977Ys2dPPP/5z4+IiEOHDsV73vOeeNOb3tTJ+gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB+SPVG83feeWe8/OUvP/PjG264ISIirr/++rjtttvi4YcfjiNHjpz5+KlTp+Kmm26KBx98MLZs2RLPec5z4pZbbol/9s/+Wetrn4S540sxu7AU8ydOxq7tW2PmwqmY3jHV9bKA82gV6DMzkCzsZSifTiEvfUOZtAn9onnong4hJ21DTtqG3DQOuWgayqNLICOzDaiV+QXQX84AWEkXQBPMEshP5wA0oabzpKa1At0wJyAHLQODMi9gbfqAftE8lEGLkIOWoZ+0DwBAdqneaP5lL3tZLC8vr/nx22677Zwfv/GNb4w3vvGNE15VNx46+li89fb74o7Ds2d+7sDembj54L64/OLtHa4MOJtWgT4zA8nCXoby6RTy0jeUSZvQL5qH7ukQctI25KRtyE3jkIumoTy6BDIy24BamV8A/eUMgJV0ATTBLIH8dA5AE2o6T2paK9ANcwJy0DIwKPMC1qYP6BfNQxm0CDloGfpJ+wAA9MHmrhdA8+aOL624mYmIOHR4Nm68/b6YO77U0cqAs2kV6DMzkCzsZSifTiEvfUOZtAn9onnong4hJ21DTtqG3DQOuWgayqNLICOzDaiV+QXQX84AWEkXQBPMEshP5wA0oabzpKa1At0wJyAHLQODMi9gbfqAftE8lEGLkIOWoZ+0DwBAX3ij+YRmF5ZW3MycdujwbMwuuKGBEmgV6DMzkCzsZSifTiEvfUOZtAn9onnong4hJ21DTtqG3DQOuWgayqNLICOzDaiV+QXQX84AWEkXQBPMEshP5wA0oabzpKa1At0wJyAHLQODMi9gbfqAftE8lEGLkIOWoZ+0DwBAX3ij+YTmT5xc9+PHNvg40A6tAn1mBpKFvQzl0ynkpW8okzahXzQP3dMh5KRtyEnbkJvGIRdNQ3l0CWRktgG1Mr8A+ssZACvpAmiCWQL56RyAJtR0ntS0VqAb5gTkoGVgUOYFrE0f0C+ahzJoEXLQMvST9gEA6AtvNJ/Qrgu2rvvxizb4ONAOrQJ9ZgaShb0M5dMp5KVvKJM2oV80D93TIeSkbchJ25CbxiEXTUN5dAlkZLYBtTK/APrLGQAr6QJoglkC+ekcgCbUdJ7UtFagG+YE5KBlYFDmBaxNH9AvmocyaBFy0DL0k/YBAOgLbzSf0MzOqTiwd2bVjx3YOxMzO6daXhGwGq0CfWYGkoW9DOXTKeSlbyiTNqFfNA/d0yHkpG3ISduQm8YhF01DeXQJZGS2AbUyvwD6yxkAK+kCaIJZAvnpHIAm1HSe1LRWoBvmBOSgZWBQ5gWsTR/QL5qHMmgRctAy9JP2AQDoC280n9D0jqm4+eC+FTc1B/bOxC0H98X0Djc0UAKtAn1mBpKFvQzl0ynkpW8okzahXzQP3dMh5KRtyEnbkJvGIRdNQ3l0CWRktgG1Mr8A+ssZACvpAmiCWQL56RyAJtR0ntS0VqAb5gTkoGVgUOYFrE0f0C+ahzJoEXLQMvST9gEA6IstXS+Aybj84u3xs6/aH7MLS3HsxMm46IKtMbNzys0MFEarQJ+ZgWRhL0P5dAp56RvKpE3oF81D93QIOWkbctI25KZxyEXTUB5dAhmZbUCtzC+A/nIGwEq6AJpglkB+OgegCTWdJzWtFeiGOQE5aBkYlHkBa9MH9IvmoQxahBy0DP2kfQAA+sAbzSc2vcMNDNRAq0CfmYFkYS9D+XQKeekbyqRN6BfNQ/d0CDlpG3LSNuSmcchF01AeXQIZmW1ArcwvgP5yBsBKugCaYJZAfjoHoAk1nSc1rRXohjkBOWgZGJR5AWvTB/SL5qEMWoQctAz9pH0AALLb3PUCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPrGG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0bEvXC2B8c8eXYnZhKeZPnIxd27fGzIVTMb1jqutlQTpaA6APnHfn8nxAe/QGrMZsAAZhVgAlMpvomj0I/aF3qI9uIR9dQ3/oHbqnQ2AUZgeQhXkGwDCcG9A9HUJ9dAs5aRuANjhv2uF5hvbpDnLQMuSiaaibhiE3jQNNMU9gOJoBAAAgG280X7mHjj4Wb739vrjj8OyZnzuwdyZuPrgvLr94e4crg1y0BkAfOO/O5fmA9ugNWI3ZAAzCrABKZDbRNXsQ+kPvUB/dQj66hv7QO3RPh8AozA4gC/MMgGE4N6B7OoT66BZy0jYAbXDetMPzDO3THeSgZchF01A3DUNuGgeaYp7AcDQDAABARpu7XgCjmzu+tOLFioiIQ4dn48bb74u540sdrQxy0RoAfeC8O5fnA9qjN2A1ZgMwCLMCKJHZRNfsQegPvUN9dAv56Br6Q+/QPR0CozA7gCzMMwCG4dyA7ukQ6qNbyEnbALTBedMOzzO0T3eQg5YhF01D3TQMuWkcaIp5AsPRDAAAAFmleqP5Q4cOxSte8Yq4/PLLY9OmTfGRj3xk3c//rd/6rbj22mvj677u62LXrl3x7d/+7fH7v//77Sy2AbMLSyterDjt0OHZmF3wggU0QWsA9IHz7lyeD2iP3oDVmA3AIMwKoERmE12zB6E/9A710S3ko2voD71D93QIjMLsALIwzwAYhnMDuqdDqI9uISdtA9AG5007PM/QPt1BDlqGXDQNddMw5KZxoCnmCQxHMwAAAGSV6o3mH3300bjyyivjfe9730Cff+jQobj22mvjd3/3d+Ouu+6Kl7/85fGKV7wi7rnnngmvtBnzJ06u+/FjG3wcGIzWAOgD5925PB/QHr0BqzEbgEGYFUCJzCa6Zg9Cf+gd6qNbyEfX0B96h+7pEBiF2QFkYZ4BMAznBnRPh1Af3UJO2gagDc6bdnieoX26gxy0DLloGuqmYchN40BTzBMYjmYAAADIakvXC2jSddddF9ddd93An//e9773nB//9E//dHz0ox+N3/7t3479+/c3vLrm7bpg67ofv2iDjwOD0RoAfeC8O5fnA9qjN2A1ZgMwCLMCKJHZRNfsQegPvUN9dAv56Br6Q+/QPR0CozA7gCzMMwCG4dyA7ukQ6qNbyEnbALTBedMOzzO0T3eQg5YhF01D3TQMuWkcaIp5AsPRDAAAAFmleqP5cZ06dSqOHTsWl1xyybqft7i4GIuLi2d+PD8/P+mlrWpm51Qc2DsThw7PrvjYgb0zMbNzqoNVQR2G6VhrUK5SzmTIoMvzrsSWnf8wvFFb1huUpZRz2WyA8ZTS8qSZFWTXl5azMZs4X9st24MwGSWey3qH4XXdsm5hfF13fD5dw2hKa3kQeoeVvO4FOdR4Lg/D7KAvsreMedYXWoYcSmjZuQHjG7dlHUIZ/JsikMM457K2oRwl3C/DpPTlvOm64748zzBp7pUhBy1DDqNcY2sayuNchhyaeO1L49C9rl/Hbop5Qt8N27JmoExZzmXoOy1DDlqGem3uegElec973hMLCwvxfd/3fet+3rvf/e6Ynp4+89/u3btbWuG5pndMxc0H98WBvTPn/PyBvTNxy8F9Mb3DCxawlmE61hqUq5QzGTLo8rwrsWXnPwxv1Jb1BmUp5Vw2G2A8pbQ8aWYF2fWl5WzMJs7Xdsv2IExGieey3mF4XbesWxhf1x2fT9cwmtJaHoTeYSWve0EONZ7LwzA76IvsLWOe9YWWIYcSWnZuwPjGbVmHUAb/pgjkMM65rG0oRwn3yzApfTlvuu64L88zTJp7ZchBy5DDKNfYmobyOJchhyZe+9I4dK/r17GbYp7Qd8O2rBkoU5ZzGfpOy5CDlqFem5aXl5e7XsQkbNq0KT784Q/HK1/5yoE+/9d+7dfiB3/wB+OjH/1ofOd3fue6n7u4uBiLi4tnfjw/Px+7d++Oubm52LVr1zjLHsnc8aWYXViKYydOxkUXbI2ZnVNerIANjNKx1qA8pZ3JkEEX513JLTv/YXDjtqw3KENp57LZAKMpreVJMyvIqm8tZ2M2cVpXLduD0KySz2W9w+BKaVm3MLpSOj6frmE4pbY8CL3DU7zuBTnUfC4Pw+wgu760jHmW3agt33333XH11VfHtW+7NS7Z87w2ljqUv/qz348/+8A748Vvfl8885v2d72cFUpfX0TEI0fuj4+96zVx1113xVVXXdX1clYofQ+2/fyVdC47N2B0TbWsQ+iWf1MEcmjiXNY2dK+k+2WYlOznTSkdZ3+eYdLcK0MOWoYcxrnG1jSUw7kMOTT52pfGoTulvI7dFPOEvhq1Zc1AWbKdy9BXWoYctAz12tL1Akrw67/+6/G6170ufuM3fmPDN5mPiNi2bVts27athZUNZnqHFyhgWKN0rDUoT2lnMmTQxXlXcsvOfxjcuC3rDcpQ2rlsNsBoSmt50swKsupby9mYTZzWVcv2IDSr5HNZ7zC4UlrWLYyulI7Pp2sYTqktD0Lv8BSve0EONZ/LwzA7yK4vLWOeZadlyKGklp0bMLqmWtYhdMu/KQI5NHEuaxu6V9L9MkxK9vOmlI6zP88wae6VIQctQw7jXGNrGsrhXIYcmnztS+PQnVJex26KeUJfjdqyZqAs2c5l6CstQw5ahnpt7noBXfvQhz4Ur3nNa+JDH/pQfPd3f3fXywEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6YEvXC2jSwsJCPPDAA2d+/OCDD8a9994bl1xySezZsyduuumm+NKXvhQf/OAHIyLi137t1+L666+Pf/fv/l1827d9W3z5y1+OiIjt27fH9PR0J48BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyG9z1wto0p133hn79++P/fv3R0TEDTfcEPv374+f+ImfiIiIhx9+OI4cOXLm89///vfH448/Hq9//evjsssuO/Pfj/7oj3ayfgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAftnS9gCa97GUvi+Xl5TU/ftttt53z40984hON/H9P/z/n5+cb+f2AjV100UWxadOmxn4/HUM3tAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOTTZso6hG85kyEHLkIOWIQctQw5dtbywsBAREXP/6wtx6vEnGvv/N2XhK1+KiIj5L/9VbNu2rePVrFT6+iIijn35ryMi4u677z7z9S7J5z//+Ygodw+efv4WFhYGOhudy5CDliEHLUMOWoYctAw5+PObUD9nMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWo36gdb1pe753ZGcj/+l//K3bv3t31MqBX5ubmYteuXY39fjqGbmgZctAy5KBlyEHLkEPTLX/hC1+I5zznOY39fsBgnMuQg5YhBy1DDlqGHJpsWcfQDWcy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZcjBn9+E+jmTIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP9Ru3YG8034NSpU/HQQw/FRRddFJs2bep6OcWbn5+P3bt3xxe/+MVGD58+6vNz2XRvk+q4z1+j83kunuR5ONekWl5eXo49e/akep6z7p2Mj6uPj6mWc7lpGb/Wp2V9bFkfV0Qzj20SLd9///3xd//u3035nA8q874blOeg3eeg7XPZ19dzEOE5iGj+OWi65aNHj8bTn/70OHLkSExPTzf2+3Yp277L9ngi8j2mUR5PX++XT8u2B4bR18ee9XF7HXsw2b7+Hk/ZnMuDy/a1nwTP0cZKeo762vLZSvp6jMPjKEvbj6PJ5prsOMvXs02es9FkeN5KOZMzPJeT4HlZm+fmXKW03LVs+8LjKdskHk8pLWf7WkV4TLXI8phKabkNWb5mJfBcNqvUP4u9Wsu+9s3xXDYj2/NYwrlc83Na89ojrL9rTa6/hJabUvvXdS0eV326eGyZWm5D5v23lr495lofr7/vOJza1x9R/2Ow/tX5exXnqnWfWHe7Slx3qX9+sy0lfk2a5PHVbdDHl/FeOcvXNsPjyPAYIup4HDW1XMPzeT5rboc119VyE2r8mpfGczi+zH8WezX2zNo8N6vr8/NSYss1fj1qXHNEneu25tWV2HKTavy6r8bjKEepj6HNlkt9DrLw/E5ODc9tF+dyDc/LpHjs/XzsEZN//F1dY2f5unocZcnyOCKGfyxaHo/HUZa+Po5RO94yyuI41+bNm+MbvuEbul5GdXbt2lV1pCXxXI5v0h37Gj3Fc/Ekz8NknG55fn4+InI+zxkfU0TOx+Uxja626+uMX+vTsj62rI8roqzHtnnz5njmM58ZEWWtqyueA89BRJ3PwaDnco2PrWmeA89BRLnPwebNmyMiYnp6usj1jaPU53xU2R5PRL7H1OXjqe1++bRse2AYfX3sfX3cg8r+OrbHUzaPpzm1ncvZvvaT4DnaWMbnqLaWz5bl6+FxlKXGxzGJjmt8HrrmORuN5+0p47bsuVyd52VtnpvJqPn6OiLfvvB4ylby43Eur+Qx1SHjYxpHDeeyr1lzPJfNKun53KjlktZaO89lMzyPqxvnXK75Oa157RHW37US11/CNXaJz0sTPK761PzYSmi5DTV/jUbVt8fct8d7vr78fcfa1x9R/2Ow/snK8vcqrLtd1l2Wmq+vs35NTvP46tb24yup5Sxf2wyPI8NjiMjzOAbRRss1Pp/W3A5rbk5J5/J6Sn3+auI5HF/Jz6G/79guz83qPC/ja7LlGr8eNa45os51W/NklXqNXdNzuB6PoxwZHsN6Bmk5+3PQNc/v5PTpuR3mXO7T83I+j72fjz2insc/7DV2LY9rIx5HWbI8jojuHouW6+ZxlGXSj2PzxH5nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbljeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWuaN5mndtm3b4u1vf3ts27at66VUz3NZPl+jp3gunuR5aEfG5znjY4rI+bg8pv7I/LxkfWxZH1dEuY+t1HW1yXPgOYjI/RxkfmyD8hx4DiLKfw5KX98osj2mbI8nIt9jyvZ42tDn56yvj72vj3tU2Z4vj6dsHk9/ea425jnamOeoLFm+Hh5HWbI8jnF5HobnORuN5605nsvVeV7W5rlhNdn2hcdTtmyP52wZH5vHVIeMjyk7X7PmeC6bVdPzWdNaS+e5bIbnsXk1P6c1rz3C+rtW+/onJevz4nHVJ/Njy6KPX6O+Pea+Pd5R1f481b7+iPofg/W3q7b1nmbd7bJumpL9a+Lx1S3741tPlsee4XFkeAwReR5HKWp8Pq25HdbcP56/8XkOx9e357Bvj3cYnpvVeV7KUuPXo8Y1R9S5bmvupyzPocdRjgyPYVyeg8ny/E6O53Z1fX5ePPZ+PvaIvI8/y+PyOMqS5XFE1PNYalnnRjyOsngcw9m0vLy8PNH/AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADn2Nz1AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6xhvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMG8036NChQ/GKV7wiLr/88ti0aVN85CMfGfr3WF5ejve85z3xjd/4jbFt27Z45jOfGe9617uaXywAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQmS1dLyCTRx99NK688sp47WtfG9/zPd8z0u/xoz/6o/EHf/AH8Z73vCde+MIXxiOPPBKPPPJIwysFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAurRpeXl5uetFZLRp06b48Ic/HK985SvP/Nzi4mK87W1viw996ENx9OjReMELXhC33HJLvOxlL4uIiM9+9rOxb9+++MxnPhPPe97zulk4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHGbu15An7zhDW+IP/mTP4lf//Vfj/vuuy++93u/N/7hP/yHcfjw4YiI+O3f/u34O3/n78Tv/M7vxBVXXBHPfvaz43Wve1088sgjHa8cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJI3mm/JkSNH4tZbb43f+I3fiJe85CXxnOc8J/7Fv/gX8eIXvzhuvfXWiIj4whe+EH/9138dv/EbvxEf/OAH47bbbou77ror/vE//scdrx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABo0pauF9AXf/7nfx5PPPFEfOM3fuM5P7+4uBiXXnppREScOnUqFhcX44Mf/OCZz/uVX/mVuPrqq+P++++P5z3vea2vGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieN5pvycLCQjztaU+Lu+66K572tKed87GdO3dGRMRll10WW7ZsOefN6L/pm74pIiKOHDnijeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCW8035L9+/fHE088EV/5ylfiJS95yaqfc80118Tjjz8ef/mXfxnPec5zIiLi85//fEREPOtZz2ptrQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBkbVpeXl7uehFZLCwsxAMPPBART76x/L/5N/8mXv7yl8cll1wSe/bsiR/4gR+IT33qU/EzP/MzsX///vjbv/3b+MM//MPYt29ffPd3f3ecOnUqvuVbviV27twZ733ve+PUqVPx+te/Pnbt2hV/8Ad/0PGjAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrijeYb9IlPfCJe/vKXr/j566+/Pm677bY4efJk/NRP/VR88IMfjC996UsxMzMTf+/v/b145zvfGS984QsjIuKhhx6KN77xjfEHf/AHceGFF8Z1110XP/MzPxOXXHJJ2w8HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmBBvNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQss1dLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgb7zRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDLvNF8A5aXl2N+fj6Wl5e7XgowIh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvrpGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWon44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahnp4o/kGHDt2LKanp+PYsWNdLwUYkY4hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/10DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQz280TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAy7zRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDLvNE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMu80TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAy7zRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDLtnS9AIC540sxu7AU8ydOxq7tW2PmwqmY3jHV9bKAIWkZyqZR6BfNQw5ahhy0DGvTB22z5wByMM8hBy1DDlqG+ukYctAy5KBlSmEvQrc0CNAcMxUA2uf8hdw0DjlomYzsa6BGZhfkoGXIQcuQg5ZhMrQFjMLs6AdfZ6AJZgnAYMxLAOgfbzQPdOqho4/FW2+/L+44PHvm5w7snYmbD+6Lyy/e3uHKgGFoGcqmUegXzUMOWoYctAxr0wdts+cAcjDPIQctQw5ahvrpGHLQMuSgZUphL0K3NAjQHDMVANrn/IXcNA45aJmM7GugRmYX5KBlyEHLkIOWYTK0BYzC7OgHX2egCWYJwGDMSwDop81dLwDor7njSytuQiIiDh2ejRtvvy/mji91tDJgGFqGsmkU+kXzkIOWIQctw9r0QdvsOYAczHPIQcuQg5ahfjqGHLQMOWiZUtiL0C0NAjTHTAWA9jl/ITeNQw5aJiP7GqiR2QU5aBly0DLkoGWYDG0BozA7+sHXGWiCWQIwGPMSAPrLG80DnZldWFpxE3LaocOzMbvgRgRqoGUom0ahXzQPOWgZctAyrE0ftM2eA8jBPIcctAw5aBnqp2PIQcuQg5Yphb0I3dIgQHPMVABon/MXctM45KBlMrKvgRqZXZCDliEHLUMOWobJ0BYwCrOjH3ydgSaYJQCDMS8BoL+80TzQmfkTJ9f9+LENPg6UQctQNo1Cv2gectAy5KBlWJs+aJs9B5CDeQ45aBly0DLUT8eQg5YhBy1TCnsRuqVBgOaYqQDQPucv5KZxyEHLZGRfAzUyuyAHLUMOWoYctAyToS1gFGZHP/g6A00wSwAGY14CQH95o3mgM7su2Lruxy/a4ONAGbQMZdMo9IvmIQctQw5ahrXpg7bZcwA5mOeQg5YhBy1D/XQMOWgZctAypbAXoVsaBGiOmQoA7XP+Qm4ahxy0TEb2NVAjswty0DLkoGXIQcswGdoCRmF29IOvM9AEswRgMOYlAPRXujea/9KXvhQ/8AM/EJdeemls3749XvjCF8add9657q/5xCc+EVdddVVs27Ytnvvc58Ztt93WzmKh52Z2TsWBvTOrfuzA3pmY2TnV8oqAUWgZyqZR6BfNQw5ahhy0DGvTB22z5wByMM8hBy1DDlqG+ukYctAy5KBlSmEvQrc0CNAcMxUA2uf8hdw0DjlomYzsa6BGZhfkoGXIQcuQg5ZhMrQFjMLs6AdfZ6AJZgnAYMxLAOivVG80/7WvfS2uueaa2Lp1a/ze7/1e/MVf/EX8zM/8TDz96U9f89c8+OCD8d3f/d3x8pe/PO69995485vfHK973evi93//91tcOfTT9I6puPngvhU3Iwf2zsQtB/fF9A43IlADLUPZNAr9onnIQcuQg5ZhbfqgbfYcQA7mOeSgZchBy1A/HUMOWoYctEwp7EXolgYBmmOmAkD7nL+Qm8YhBy2TkX0N1Mjsghy0DDloGXLQMkyGtoBRmB394OsMNMEsARiMeQkA/bVpeXl5uetFNOXGG2+MT33qU3HHHXcM/Gve+ta3xn/9r/81PvOZz5z5uX/yT/5JHD16NP7bf/tvA/0e8/PzMT09HXNzc7Fr166h1w19N3d8KWYXluLYiZNx0QVbY2bnVOs3ITqG8WkZylZCo4PSMoyvhOa1DOPTMuSgZVhbCX3URMvjs+cogZZhfCXMcy3D+LQMOXTdso5hfF13HKFlaIKWIQctU4oS9iLj0XLdNMhpWobxlTBTtQw5aBkGV8L5uxYtw/hKaFzLMD4tk1EJ+7pvdAzjK2F2aRnGp2XIQcuQg5ZhMkpoq21ahvGVMDu0PHklfJ3JT8v5mSX9oGUYXwnzUsuQg5ahHlu6XkCT/st/+S/xXd/1XfG93/u98Ud/9EfxzGc+M37kR34kfvAHf3DNX/Mnf/In8Z3f+Z3n/Nx3fdd3xZvf/OYJrxY4bXqHF2ogAy1D2TQK/aJ5yEHLkIOWYW36oG32HEAO5jnkoGXIQctQPx1DDlqGHLRMKexF6JYGAZpjpgJA+5y/kJvGIQctk5F9DdTI7IIctAw5aBly0DJMhraAUZgd/eDrDDTBLAEYjHkJAP2T6o3mv/CFL8Qv/MIvxA033BD/8l/+y/if//N/xpve9KaYmpqK66+/ftVf8+Uvfzm+/uu//pyf+/qv//qYn5+Pxx57LLZv377i1ywuLsbi4uKZH8/Pzzf7QICJ0zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlqJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWob66Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlqNfmrhfQpFOnTsVVV10VP/3TPx379++PH/qhH4of/MEfjF/8xV9s9P/z7ne/O6anp8/8t3v37kZ/f2DydAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6qdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF+OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6rVpeXl5uetFNOVZz3pWXHvttfHLv/zLZ37uF37hF+Knfuqn4ktf+tKqv+bAgQNx1VVXxXvf+94zP3frrbfGm9/85pibm1v11ywuLsbi4uKZH8/Pz8fu3btjbm4udu3a1cyDASZKx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfjqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGeqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahXlu6XkCTrrnmmrj//vvP+bnPf/7z8axnPWvNX/Pt3/7t8bu/+7vn/NzHPvax+PZv//Y1f822bdti27Zt4y0W6JSOIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP9dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1E/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUO9Nne9gCa95S1viT/90z+Nn/7pn44HHnggfu3Xfi3e//73x+tf//ozn3PTTTfFq1/96jM//uEf/uH4whe+ED/2Yz8Wn/vc5+Lnf/7n4z//5/8cb3nLW7p4CAAAAAAAAADA/5+9vw/y86wP+9+PnlYPlrQyXhssjmxsUGwKUWo7rgO2lUyOKYWEKUSlrWLw4aHTSQMBmuMOJpBjOxRkpw1JCr/QaajxmWnBh9Qpza9xk4EQ4ydMEtvE8e8EIhscHcdikjVoV8tau7Kt84crWavd/e734X64rut+vWY0Y+13JV/avd6f675XDzcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAcU9aD5Sy+9NP77f//v8fnPfz5e/epXx0c/+tH4jd/4jbj66qtPvM/BgwfjwIEDJ75/3nnnxe///u/Hl770pfiRH/mR+LVf+7X4zGc+E69//evb+CUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHbC27QVU7ad/+qfjp3/6p5d9/dZbb130tp/4iZ+Ihx56qMZVAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALxgddsLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgaD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaFhRD5q/4YYbYtWqVQu+XXjhhT1/zG/8xm/EBRdcEBs3bowdO3bEv/7X/zqOHDnS0IoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALlrb9gKq9qpXvSq+/OUvn/j+2rXL/xI/97nPxXXXXRe33HJLvPa1r42/+qu/ine84x2xatWq+MQnPtHEcgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAOKu5B82vXro2XvOQlfb3vfffdF5dffnn87M/+bEREvOxlL4u9e/fG17/+9TqXCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTc6rYXULX9+/fH9u3b4/zzz4+rr746Dhw4sOz7vva1r40HHngg/uRP/iQiIr797W/HHXfcEW984xubWi4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQQWvbXkCVLrvssrj11lvjggsuiIMHD8aNN94YV155ZTzyyCOxZcuWRe//sz/7szE5ORlXXHFFHDt2LJ555pn4uZ/7ufilX/qlnv+fubm5mJubO/H96enpyn8tQL10DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5E/HUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+dMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1Dvla3vYAqveENb4i3vvWtsWvXrnj9618fd9xxRxw6dCi+8IUvLPn+d955Z3z84x+P3/qt34oHH3wwfvd3fzd+//d/Pz760Y/2/P/s27cvxsfHT3zbsWNHHb8coEY6hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8qdjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqG/OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhX6uOHTt2rO1F1OnSSy+Nq666Kvbt27fotSuvvDJ+7Md+LP7dv/t3J972X/7Lf4l/+S//ZczMzMTq1auX/Dnn5uZibm7uxPenp6djx44dMTU1FVu3bq3+FwFUTsdQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUP+dAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5A/HUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRrbdsLqNPMzEw89thj8fa3v33J12dnZxc9TH7NmjUREXHs2LFlf97169fH+vXrq1so0DgdQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+dMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1D/nQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQr9Urv0s+rr322vjqV78ajz/+eNx3333xlre8JdasWRN79+6NiIhrrrkmPvShD514/ze96U3x6U9/Om677bb4zne+E1/60pfil3/5l+NNb3rTiQfOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRtbdsLqNITTzwRe/fujaeeeirOPPPMuOKKK+L++++PM888MyIiDhw4EKtXrz7x/h/5yEdi1apV8ZGPfCT+5m/+Js4888x405veFB/72Mfa+iUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHVDUg+Zvu+22nq/feeedC76/du3auP766+P666+vcVUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC61uewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeNB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGra27QUAAAAAAAAAAAAAAAAAAAAAwKAOHDgQk5OTbS+jp4mJiTjnnHPaXgYAAAAAAAAAAAAAAAAAAInyoHkAAAAAAAAAAAAAAAAAAAAAsnLgwIG48MJXxtNPz7a9lJ42btwU3/zmX3rYPAAAAAAAAAAAAAAAAAAAS/KgeQAAAAAAAAAAAAAAAAAAAACyMjk5GU8/PRuXvev62Hr2y9pezpKmDz4eX7/lxpicnPSgeQAAAAAAAAAAAAAAAAAAluRB8wAAAAAAAAAAAAAAAAAAAABkaevZL4sXnXNB28sAAAAAAAAAAAAAAAAAAIChrG57AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd40HzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGFFPWj+hhtuiFWrVi34duGFF/b8MYcOHYr3vOc9cfbZZ8f69evjh37oh+KOO+5oaMUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAF61tewFVe9WrXhVf/vKXT3x/7drlf4nz8/Pxute9Ls4666z4b//tv8VLX/rS+Ou//uvYtm1bAysFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuqq4B82vXbs2XvKSl/T1vrfcckt873vfi/vuuy/WrVsXEREve9nLalwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMTqthdQtf3798f27dvj/PPPj6uvvjoOHDiw7Pv+3u/9XrzmNa+J97znPfHiF784Xv3qV8fHP/7xePbZZxtcMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA1a9teQJUuu+yyuPXWW+OCCy6IgwcPxo033hhXXnllPPLII7Fly5ZF7//tb387vvKVr8TVV18dd9xxRzz66KPx8z//83H06NG4/vrrl/3/zM3Nxdzc3InvT09P1/LrAeqjYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX86hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyJ+OoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8rW67QVU6Q1veEO89a1vjV27dsXrX//6uOOOO+LQoUPxhS98Ycn3f+655+Kss86K//Sf/lNccskl8c/+2T+LD3/4w/Ef/+N/7Pn/2bdvX4yPj5/4tmPHjjp+OUCNdAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRPx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPnTMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQ75WHTt27Fjbi6jTpZdeGldddVXs27dv0Ws//uM/HuvWrYsvf/nLJ972v/7X/4o3vvGNMTc3F2NjY0v+nHNzczE3N3fi+9PT07Fjx46YmpqKrVu3Vv+LACqnYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX86hjJoGcqgZSiDlqEMWoYyaBnKoOV2PPjgg3HJJZfE6z782XjRORe0vZwlfe/At+JLH3tnPPDAA3HxxRe3vRxWoGUog5ahDFqGMmgZ8qdjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGfK1tewF1mpmZicceeyze/va3L/n65ZdfHp/73Ofiueeei9WrV0dExF/91V/F2WefvexD5iMi1q9fH+vXr69lzfRvanY+JmfmY/rI0di6cV1MnDYW45uW/7zByXRcLT3SFi13gxlTPi2nQWuMSsv10SdN0nJ3mC1l0zKpMGtGo2WoXhtzScvtcQ5RJS23R8tUScvD0SEpaatjHUC1SjyTzQm6qMSW+6V5StLllmFQKc9/LVO1lPd7ybTcLPucumgZypBqy84vGEyqLdMMM7McJbVsX9JlJbUMTUjxzNAxVUtxn3dBF1u21yhRF1uug/lA27TcDu1TNS1XQ5u0Tcv90Sqp0zJUz7/ZR5tce+RNy2nRE8PSMpRBy5Cvoh40f+2118ab3vSmOPfcc+PJJ5+M66+/PtasWRN79+6NiIhrrrkmXvrSl8a+ffsiIuJf/at/FZ/61Kfi/e9/f/zCL/xC7N+/Pz7+8Y/H+973vjZ/GfThyUNPxwdvfzju3j954m27d07ETXt2xfZtG1tcGXSPHoE6mTHQDK1BuvQJ1MFsAZpg1gCpMZe6xecbyqBlaJ8OQQfAyswJ6BbNA3ST+U+X2O90gX0OQI6cXwD9MzNJkX0JQL+cGXSBfU5T7DVgOeYDdJP2IU3ahDxoFaB7zH7aZP9BdfQEAJCv1W0voEpPPPFE7N27Ny644IL4p//0n8YZZ5wR999/f5x55pkREXHgwIE4ePDgifffsWNH/OEf/mH86Z/+aezatSve9773xfvf//647rrr2vol0Iep2flFNyAREXftn4zrbn84pmbnW1pZtaZm5+Oxv52Jhw58Px77u5lifl2UJbcedQV5yW3G5MpspCut2evkqCt9DkLLMLquzxZzBJrR9KzRNqeyJzhV16+Buib3z7cZBs/LoWW9UrocOqybztFBuzRIDsyJZpgHpCKV5jUB3aX/dqQy/xmedvpnv9MFKe9z8wqA5aR8flE21yfkqJSZqb+ylLIvS6Y5SEuXm3RmkJo6erTPaYq99rwun6uwnC7OB7MAym9f5+Sq9DabZA5QJ602T9Pd5vNPCsx+2tTW/jN/KZF5vjLtAwApW9v2Aqp022239Xz9zjvvXPS217zmNXH//ffXtCLqMDkzv+gG5Li79k/G5Mx8jG8aa3hV1Xry0NOLbrR275yIm/bsiu3bNra4Mlgopx51BfnJacbkymwkohut2evkqgt9DkLLUI0uzxZzBJrT5KzRNqeyJ1hKl6+Buijnz7cZBi9IvWW90gWpd1g3nROhgzZpkFyYE/UzD0hJCs1rArpL/+1JYf4zPO0Mxn6nC1Ld5+YVAL2ken5RNtcn5KqEmam/8pSwL0umOUhL15t0ZpCSunq0z2mKveZcheV0bT6YBfC8ktvXOTkruc0mmQPUTavN0nS3+fyTCrOfNrWx/8xfSmWe96Z9ACB1q9teAAxq+sjRnq8fXuH11E3Nzi+6iYh4/gbrutsfjqnZ+ZZWBovl0qOuIE+5zJhcmY0cV3pr9jo5K73PQWgZqtPV2WKOQLOamjXa5lT2BMvp6jVQV+X6+TbDYKGUW9YrXZFyh3XTOcd1uYM2aZCcmBP1Mg9ITdvNawK6S//tanv+MzztDM5+pwtS3OfmFQArSfH8omyuT8hZ7jNTf2XKfV+WTHOQFk06M0hHnT3a5zSl63vNuQrL69J8MAvgBaW2r3NyV2qbTTIHaIJWm6PpbvP5JyVmP21qev+Zv5TMPF+e9gGAHHjQPNnZumFdz9e3rPB66iZn5hfdRBx31/7JmJxxI0E6culRV5CnXGZMrsxGjiu9NXudnJXe5yC0DNXp6mwxR6BZTc0abXMqe4LldPUaqKty/XybYbBQyi3rla5IucO66ZzjutxBmzRITsyJepkHpKbt5jUB3aX/drU9/xmedgZnv9MFKe5z8wqAlaR4flE21yfkLPeZqb8y5b4vS6Y5SIsmnRmko84e7XOa0vW95lyF5XVpPpgF8IJS29c5uSu1zSaZAzRBq83RdLf5/JMSs582Nb3/zF9KZp4vT/sAQA48aJ7sTGwei907J5Z8bffOiZjYPNbwiqo1feRoz9cPr/A6NCmXHnUFecplxuTKbOS40luz18lZ6X0OQstQna7OFnO3hNxEAAEAAElEQVQEmtXUrNE2p7InWE5Xr4G6KtfPtxkGC6Xcsl7pipQ7rJvOOa7LHbRJg+TEnKiXeUBq2m5eE9Bd+m9X2/Of4WlncPY7XZDiPjevAFhJiucXZXN9Qs5yn5n6K1Pu+7JkmoO0aNKZQTrq7NE+pyld32vOVVhel+aDWQAvKLV9nZO7UttskjlAE7TaHE13m88/KTH7aVPT+8/8pWTm+fK0DwDkYG3bC/i93/u9Jd8+Pj4eP/RDPxRnn312wysideObxuKmPbviutsfjrv2T554++6dE3Hznl0xvinvm5CtG9b1fH3LKa9Pzc7H5Mx8TB85Gls3rouJ08ay/xiQj1x6HLSrlGmeLul3xuhiOCXNRkaTy3k+rFH2uvlC20rvcxArtbxh3Zp46MD3tQp96Opscf0LzWpq1mibU6W2J9xXpqOr10Bdlevnu44ZZg6Rs7Zb7tVPatccUJe2O2xT2507w9PR5Q7atFKDp61v/Y8+wwnmRL2GPZOdpdSl7ebbvk6tikZhcKX0v5JU50Pb878UbXx+u9JOlex3uiDFfW5eLS/V64O6HDhwICYnJ1d+x5ZMTEzEOeec0/YyoJNSPL8om+sTcpb7zEyxv65dl9ch931Zsjqb0w6lq2OPp3gONs2ZQSpW6nFs7ep47O9mhmrfPqcpKe01v18OaUlpPtRt1Fng3paSlNq+M5/cldpmk0qcA65B0qPV5pTUtJYH599QJyVmf3lymhNN77+Szl84lXm+PH9uDADIQev/2uKb3/zmZV9btWpV/PN//s/jt3/7t2PTpk3NLYrkbd+2MT6596KYnJmPw0eOxpYN62JicxkXxRObx2L3zokFN1jH7d45ERObX/g1Pnno6fjg7Q/H3afcjN20Z1ds37axkfVCDj0O0lXKNE8XrTRjdDG8UmYj1cjhPB/WsHvdfCEVJfc5iF4tX/GKM+J//sXB+NRXHo0IrUI/ujhbJjaPxZU7Jxac7cdd6foXatHErNmwbnVc8Yoz4p5Hn1r0mnvbbkrp6x3uK9PTxWugLsvx8131DDOHKEFbLa/UT0rXHFC3HM/UKrTZuTM8PV3toE29Grz8FWfEn/319+O09Ws1QTLMifoMcyY7S6lbm82XcD+qURhOCf2vJPX54JpvNG19frvQTh3sd7ogtX1uXi0t9euDqh04cCAuvPCV8fTTs20vZVkbN26Kb37zLz1sHlqS2vlF2fwZbXKX88xM7f6ga9fldcp5X5asrua0Q+nq2uOpnYNtcWaQgpX+HOcdj3w3PvWVR4du3z6nKSnsNb9fDmlKYT40YZRZ4N6WEpXY/kr/Nt+GdatbWBUMpsQ2m1Tatb9rkHRptRmlNK3l4fg31EmN2V+OHOdEk/uvlPMXlmOeL82fGwMAcrDq2LFjx9pexFKmpqbigQceiPe85z3xlre8JT7+8Y+3vaRlTU9Px/j4eExNTcXWrVvbXg4FePLQ03Hd7Q8vuJnYvXMibt6zK87+3xf9U7Pz8d7PP7Tkw7F275yIT+69qPM3ZYPQcfn66Splmu+PlrtFF6NLdTZqmaoNutfNl2pomaot1fIVrzgj3nH5efG+zz8Us/PPnni7VqujZUoxNTsff/ndw/HJr+yPe0/6x84uf8UZ8Qs/uTNe+ZItRc8MLVOiqdn5+H/+zp/HP/8H58Rn7/3OgraveMUZcdPP7Ir/24s2tbjC6mm5Pyl8vcN9Jb1omV6qmmHmUP20XK5++0nhmoPRaZle2ujcGT44HZdrqQYvf8UZ8c7//ftCP3ru6ZooiJbpZZAz2VnaLi03I+f7UY3mQcvpyrn/lZgP1Uup5bY/vyW3Q/lSapn6mVcLtX1+VKnflh988MG45JJL4rJ3XR9bz35Zcwvs0/TBx+Prt9wYDzzwQFx88cVtL2eR4x+/1334s/Gicy5oezlL+t6Bb8WXPvbOZD+G9OZcpktK/jPaWiYXqdwfpHpdrmWqVnVzqbaTGi3nq+49nso5yMp0XL6V/hzn8X/fw/mWNy3Xq+1rQ+dqd2iZXoaZBW3Pr67SMsN64nuzcd3vPhz3nPJvar3z8vPi//MnB+Lfv/VHNNsgLdOGUq79U7oG0TJtyr1pLY/Gv6EOi+XYckrMif7kfv7mQMukyJ8bG5yWoQxahnysbXsByxkfH4+f/MmfjF//9V+PD3zgA0k/aJ70Tc3Ox+TMfEwfORpbN66LidPGkr5w3r5tY3xy70UxOTMfh48cjS0b1sXE5oVrnpyZX/LGICLirv2TMTkzn/Svkfzk1tGp+ukqZZqHxUruoqmZm/tsZDS5n+2DGHSvlzxfSEeXGqzKqS1vWLcm/udfHFz0kPkIrUJbUp5tkzPz8a5b/zTedcV58a7Lz4u5Z56L9WtXx0P/v0Pxrlv/NP7P916RzFqB3o7Pmu/NzsfPXnZuPPzEofgH571oUdvzzz7X9lJpSQpf73Bf2b6Ur0toXk77oaoZZg7B8O33208K1xyQk5zO4+Pa6NwZTi85djSK7ds2xkf/8avj0b+bWfA1n+O/L6QJctC1busyyJnsLKVpbXSe8/2oRmE0KfZf1Rw0H8rW9uc3xXZG4T4DqpVSU6XNq1G1fX60aevZL0v2QelAWlI6xyjL5Mx8fPkv/zbue+ypJf/+hT+jTdc1MX9TuT/o8nV5qVw/LK3q5rRD6ere46mcg6kz02nCyT1+f3Y+pp4+uuDPcR5Xyvmmq7Kk8vls+9rQuQrpzIM2DTML2p5fUKcS58L8s8/F3z/n9HjnKb+nc/zaXbOkosT+UlHKtb9rkDJofXS5N63l0fg31OthNtFlJ8+JTWNr4l1XnBcX7dgWc888FxvWrYlDs0f1EPmfv1CVrp2Z/twYAJC6ZB80f9yFF14YTzzxRNvLIGNPHno6Pnj7wwsupHfvnIib9uyK7ds2triy3sY39b5xmD5ytOePP7zC6zCIXDs61UpdpUzzsFipXTQ9c3OejQyvlLN9EIPs9VLnC+noYoNVObnlhw58Pz71lUeXfV+tQrNSn23TR47G7Pyzy84NMwPysNSsufwVZ8Q7Lz8vfuGUf5ziqgvPamOJJKLtr3e4r2xX6tclNCvH/VDFDDOH6LpR2h+kn7avOSAXOZ7HxzXduTOc5eTc0Si+Nzsf7/5//9myr2uClHW127r0eyY7S2lSm53nej+qURhdSv1XOQfNh7Kl8PlNqZ1RuM+AaqXYVCnzqgopnB8AKUvxHKMcx8/h5f7+hT+jTZc1OX9TuD9wXV4W1w+9VdmcdihdE3s8hXMwZWY6TTre40MHvl/0n+fUVVlS+nymcG3oXKXLUpoHbRt0FqQwv6AOpc6FqaeP+rf4SF6p/aWkhGt/1yD503p1cm5ay6Pzb6hXy2yi647PiU1ja+I/7L0oPnvvdxbcQ165cyJu1kNE5H3+QhW6emb6c2MAQMpWt72AlXz729+O7du3t70MMjU1O7/oJiQi4q79k3Hd7Q/H1Ox8Sysb3dYN63q+vmWF16FfJXeUE83DYiV2YebSBPtsZSXOF9KhwepoFdKRw2wzMyB/y82aex99Kj5773fiXVect+DtuqZNzp325HBdQnO6vB/MIbps1Pb1A9Xq8nk8DDOIpXS5I02Qqy532zZzg6bofDgahXJUPQfNh7L5/FbD9QdUS1Ppc34ALM85Rt2cw7C0Ls5f86AcXdy/bdIOpbPH22Wm05aS29dVWVL7fJbcDqQutXmQG/OLEpU8FzRL6kruj2qZZ3nTOsdpuVk+3r2ZTfDCnHjXFefFZ+/9Ttz76FMLXr9bD0A4M6vi2gwAqFrSD5r/xje+Eddee2381E/9VNtLIVOTM/OLbkKOu2v/ZEzO5HsjMrF5LHbvnFjytd07J2Ji81jDK6JUJXeUE83DYiV2YebSBPtsZSXOF9KhwepoFdKRw2wzMyB/vWbNvY8+FRft2Hbi+7qmbc6d9uRwXUJzurwfzCG6bNT29QPV6vJ5PAwziKV0uSNNkKsud9s2c4Om6Hw4GoVyVD0HzYey+fxWw/UHVEtT6XN+ACzPOUbdnMOwtC7OX/OgHF3cv23SDqWzx9tlptOWktvXVVlS+3yW3A6kLrV5kBvzixKVPBc0S+pK7o9qmWd50zrHablZPt69mU3wwpy4aMe2RQ+ZP04PgDOzGq7NAICqtf6g+dNPPz1e9KIXLfq2fv36uOSSS+Kss86KG2+8se1lkqnpI0d7vn54hddTNr5pLG7as2vRDcLunRNx855dMb7JzQHVKLmjnGgeFiuxCzOXJthnKytxvpAODVZHq5COHGabmQH5W2nWzD3zXETomjQ4d9qTw3UJzenyfjCH6LJR29cPVKvL5/EwzCCW0uWONEGuutxt28wNmqLz4WgUylH1HDQfyubzWw3XH1AtTaXP+QGwPOcYdXMOw9K6OH/Ng3J0cf+2STuUzh5vl5lOW0puX1dlSe3zWXI7kLrU5kFuzC9KVPJc0CypK7k/qmWe5U3rHKflZvl492Y2wQtzYiV6gG5zZlbDtRkAULW1bS/g13/912PVqlWL3r5169a44IIL4u/9vb/XwqooxdYN63q+vmWF11O3fdvG+OTei2JyZj4OHzkaWzasi4nNY24MqFTpHeVE87BYaV2YuTTBPutPafOFdGiwWlqFNOQy28wMyNtKs+ZlZ2yKP/rFH9c1yXDutCOX6xKa0fX9YA7RVVW0rx+oTtfP42GYQZyq6x1pghx1vdu2mRs0QefD0yiUoY45aD6Uzed3dK4/oFqayoPzA2BpzjGa4ByGxbo6f82DMnR1/7ZJO5TOHm+PmU6bSm1fV2VJ8fNZajuQuhTnQW7ML0pT+lzQLCkrvT+qZZ7lS+ucTMvN8vFentkEz9u+bWP8YO6Znu+jB+g2Z2Z1XJsBAFVq/UHzP/MzP9Pz9enp6Yh4/sHzMKiJzWOxe+dE3LV/ctFru3dOxMTm/C+ixze5GaBeXegoJ5qHxUrqwsylCfZZ/0qaL6RDg9XTKrQvp9lmZkC+Vpo1L922Ud8kx7nTvJyuS6if/WAO0U1Vta8fqIbzeDhmECfTkSbIj27bZ25QN52PRqOQv7rmoPlQNp/f0bj+gGppKh/OD4DFnGM0xTkMC3V5/poH+evy/m2TdiidPd4OM522ldi+rsqS6uezxHYgdanOg9yYX5SkC3NBs6SqC/1RLfMsT1rnVFpulo/30swmeMFZW9brAViWM7Nars0AgKqsbnsB27Zti9NPP33Zb8dfh2GMbxqLm/bsit07Jxa8fffOibh5zy4X1dAHHQE0x8ylCfYZtEuDQInMNqAJZg3QD7OCk9kP0E3ah7RoEkanI8iPbqF8Oge6zhyE5ukOqqUpAHLmHANoh/lLzuxfgHKY6VA9XZXF5xM4zjwATmUuQHv0B92gdSBFZhO8QA9AL2YEAECa1ra9gD/+4z8+8d/Hjh2LN77xjfGZz3wmXvrSl7a4KkqyfdvG+OTei2JyZj4OHzkaWzasi4nNY25CYAA6AmiOmUsT7DNolwaBEpltQBPMGqAfZgUnsx+gm7QPadEkjE5HkB/dQvl0DnSdOQjN0x1US1MA5Mw5BtAO85ec2b8A5TDToXq6KovPJ3CceQCcylyA9ugPukHrQIrMJniBHoBezAgAgPS0/qD5H//xH1/w/TVr1sSP/diPxfnnn9/SiijR+CY3HjAqHQE0x8ylCfYZtEuDQInMNqAJZg3QD7OCk9kP0E3ah7RoEkanI8iPbqF8Oge6zhyE5ukOqqUpAHLmHANoh/lLzuxfgHKY6VA9XZXF5xM4zjwATmUuQHv0B92gdSBFZhO8QA9AL2YEAEBaVre9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICu8aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIYl+aD5VatWtb0EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNqsbXsBP/MzP7Pg+0eOHImf+7mfi9NOO23B23/3d3+3yWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1Kb1B82Pj48v+P7b3va2llYCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0IzWHzT/2c9+tu0lQOumZudjcmY+po8cja0b18XEaWMxvmms7WUBJ9EpXWTfA6Uy3wBzANKmUXieFhiGfQNAXZwxUD1dAeYAjEZD0A1aB5pg1gzGxwvKoGUAcuUMA4BqOFOhDFoGHdA/ewWA45wJ5Mi+BepmzkDeNAyYA5AXzVI1ewraoT2AbjL/AYCmtP6geei6Jw89HR+8/eG4e//kibft3jkRN+3ZFdu3bWxxZcBxOqWL7HugVOYbYA5A2jQKz9MCw7BvAKiLMwaqpyvAHIDRaAi6QetAE8yawfh4QRm0DECunGEAUA1nKpRBy6AD+mevAHCcM4Ec2bdA3cwZyJuGAXMA8qJZqmZPQTu0B9BN5j8A0KTVbS+AMkzNzsdjfzsTDx34fjz2dzMxNTvf9pKyMDU7v+jiPyLirv2Tcd3tD/s4krSudK9TuqiOfd+VmQFV0Et9nOs0RcfpMgcYhbbrp1Hqklu/WmAY9g0py20OUw/7IF/OGE6m5WroirZoOB3mQPn0Vi8N0TaNN0Pr1EnHHGfWDMbHC/qT+jmjZeqQ+r6HlOhleM4wgMWcKwzDmUpuzLqlaZlBldiSDuiXvdKfEucEdJ2uF3Mm5Knre9m+hcF1fW4MypyhDjpsjoZJgebbZQ4wDN22R7NUret7yjyjLV1vry6ahuroqR7mPwDQtLVtL4D8PXno6UUXsbt3TsRNe3bF9m0bW1xZ+iZn5hdd/B931/7JmJyZj/FNYw2vClbWpe51ShdVve+7NDNgVHqpl3OdJug4beYAw9J2MzRKHXLsVwsMw74hVTnOYapnH+TNGcNxWq6OrmiDhtNiDpRNb/XTEG3SeHO0Tl10zMnMmsH4eMHKcjhntEzVctj3kAq9jMYZBrCQc4VhOVPJiVm3PC0ziFJb0gH9sldWVuqcgC7T9dKcCfmxl+1bGJS5MThzhqrpsFkapm2ab585wKB02y7NUrUu7ynzjDZ1ub26aBqqo6f6mP8AQNNWt70A8jY1O7/o5iDi+YvX625/OKZm51taWR6mjxzt+frhFV6HNnSte53SRVXu+67NDBiFXurnXKduOk6fOcAwtN0cjVK1XPvVAsOwb0hRrnOYatkH+XPGEKHlqumKpmk4PeZAufTWDA3RFo03S+vUQcecyqwZjI8X9JbLOaNlqpTLvocU6GV0zjCAFzhXGIUzlVyYdb1pmX6V3JIO6Je90lvJcwK6StfLcybkxV5+nn0L/TM3hmPOUCUdNk/DtEnzaTAHGIRu26dZqtbVPWWe0bautlcXTUN19FQv8x8AaFpRD5q/4YYbYtWqVQu+XXjhhX392Ntuuy1WrVoVb37zm+tdZGEmZ+YX3Rwcd9f+yZiccYPQy9YN63q+vmWF16ENXetep3RRlfu+azMDRqGX+jnXqZuO02cOMAxtN0ejVC3XfrXAMOwbUpTrHKZa9kH+nDFEaLlquqJpGk6POVAuvTVDQ7RF483SOnXQMacyawbj4wW95XLOaJkq5bLvIQV6GZ0zDOAFzhVG4UwlF2Zdb1qmXyW3pAP6Za/0VvKcgK7S9fKcCXmxl59n30L/zI3hmDNUSYfN0zBt0nwazAEGodv2aZaqdXVPmWe0ravt1UXTUB091cv8BwCaVtSD5iMiXvWqV8XBgwdPfLvnnntW/DGPP/54XHvttXHllVc2sMKyTB852vP1wyu83nUTm8di986JJV/bvXMiJjaPNbwiWFnXutcpXVTlvu/azIBR6KV+znXqpuP0mQMMQ9vN0ShVy7VfLTAM+4YU5TqHqZZ9kD9nDBFarpquaJqG02MOlEtvzdAQbdF4s7ROHXTMqcyawfh4QW+5nDNapkq57HtIgV5G5wwDeIFzhVE4U8mFWdeblulXyS3pgH7ZK72VPCegq3S9PGdCXuzl59m30D9zYzjmDFXSYfM0TJs0nwZzgEHotn2apWpd3VPmGW3rant10TRUR0/1Mv8BgKYV96D5tWvXxkte8pIT3yYmlr64Ou7ZZ5+Nq6++Om688cY4//zzG1plObZuWNfz9S0rvN5145vG4qY9uxbdBOzeORE379kV45vcAJCernWvU7qoyn3ftZkBo9BL/Zzr1E3H6TMHGIa2m6NRqpZrv1pgGPYNKcp1DlMt+yB/zhgitFw1XdE0DafHHCiX3pqhIdqi8WZpnTromFOZNYPx8YLecjlntEyVctn3kAK9jM4ZBvAC5wqjcKaSC7OuNy3Tr5Jb0gH9sld6K3lOQFfpennOhLzYy8+zb6F/5sZwzBmqpMPmaZg2aT4N5gCD0G37NEvVurqnzDPa1tX26qJpqI6e6mX+AwBNW9v2Aqq2f//+2L59e2zYsCFe85rXxL59++Kcc85Z9v1/5Vd+Jc4666x497vfHXfffXeDKy3DxOax2L1zIu7aP7notd07J2JiswvYlWzftjE+ufeimJyZj8NHjsaWDetiYvOYi3+S1cXudUoXVbXvuzgzYFh6aYZznTrpOA/mAIPSdrM0SpVy7lcLDMO+ITU5z2GqYx+UwRmDlqunK5qk4TSZA2XSW3M0RBs03jytUzUdsxSzZjA+XrC8nM4ZLVOVnPY9tE0v1XCGATzPucKonKnkwKxbmZbpR+kt6YB+2SvLK31OQBfpujdnQj7s5RfYt9Afc2N45gxV0WE7NExbNJ8Oc4B+6TYNmqVqXdxT5hkp6GJ7ddE0VEdP9TP/AYAmFfWg+csuuyxuvfXWuOCCC+LgwYNx4403xpVXXhmPPPJIbNmyZdH733PPPfGf//N/jm984xsD/X/m5uZibm7uxPenp6dHXXq2xjeNxU17dsV1tz+84CZh986JuHnPLhexfRrf5IK/aToeXle712matFyvKvZ9V2cGg9Hy8/TSHOd6PbSs45yYA8vT8mLabp5GR6fl5+XerxYYpmX7hpTkPoer0vVz2T4oR9fPGC1ruQ5d76oNXW1Zw+kyBwaXesd6a5aG8pV6y8vReDu0nq4cW9Yxy+nyrPH7UVCdNs8ZLdMW11fVyvEam/7ppTqpn2FahjKk3rJzhSqkfqZWIfWW6c2s64+WWUkXWupCByVIoWV7ZWldmBNUI4WO6Y+uV9blMyGnlu3lhbq8b1ksp5abZG6MxpxpXokt67A9Gm5PiS33S/NpMQdG05WWdZsOzdajKy0vpWt7yjwrW04td629umi6TDm1XBI9NaNL81/LUAYtQ75WHTt27Fjbi6jLoUOH4txzz41PfOIT8e53v3vBa4cPH45du3bFb/3Wb8Ub3vCGiIh4xzveEYcOHYovfvGLPX/eG264IW688cZFb5+amoqtW7dWtv6cTM3Ox+TMfBw+cjS2bFgXE5u7c0FLnnQ8Ot2TAi3nw8ygFy0vpBdypeUX6JicaXl52iYnWl5Iv+RKy5Si63NYy8/r+j4gf1p+npbJXddb1jAlyKVjvUFvubS8HI3D83JuWcfwgpxbhlS1cc5omba5vqqGlrtBL+UbtuUHH3wwLrnkknjdhz8bLzrngjqXOJTvHfhWfOlj74wHHnggLr744raXs0jqH7+I9D+GLJTLuexcgd5yaZnezDq0XA0t0TYtp8+cYCU6zo+uWUqOLdvLsFiOLTfJ3CAXJbesQ7qk5Jb7pXlK0LWWdUuputYy5lmptNxdmi6LltulJ6qiZSiDliFfRT9oPiLi0ksvjauuuir27du34O3f+MY34qKLLoo1a9aceNtzzz0XERGrV6+Ob33rW/Hyl798yZ9zbm4u5ubmTnx/eno6duzYYehBRnQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxmGbTn1B6Wn/pD01D9+Eel/DFnIuQxl0DKUQctQBi1D/nQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQr7VtL6BOMzMz8dhjj8Xb3/72Ra9deOGF8Rd/8RcL3vaRj3wkDh8+HL/5m78ZO3bsWPbnXb9+faxfv77y9QLN0TGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5A/HUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRPx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPkq6kHz1157bbzpTW+Kc889N5588sm4/vrrY82aNbF3796IiLjmmmvipS99aezbty82bNgQr371qxf8+G3btkVELHo7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJWKetD8E088EXv37o2nnnoqzjzzzLjiiivi/vvvjzPPPDMiIg4cOBCrV69ueZUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA1xX1oPnbbrut5+t33nlnz9dvvfXW6hYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsIzVbS8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq2tu0FQNWmZudjcmY+po8cja0b18XEaWMxvmms7WVB0XQHMBzzkxTYh1ANLQFUz2yF9ugP0qNLusJeB6pglkBz9EYJ7GOgTmYMVE9XAIMxN6E5egOqZKYAkBLnEkB9zFiGZe9A/XQGUD+zllHZQ5Af3QJVMlMgP7oFlmI2QHl0DZAWc5km2W8AANXxoHmK8uShp+ODtz8cd++fPPG23Tsn4qY9u2L7to0trgzKpTuA4ZifpMA+hGpoCaB6Ziu0R3+QHl3SFfY6UAWzBJqjN0pgHwN1MmOgeroCGIy5Cc3RG1AlMwWAlDiXAOpjxjIsewfqpzOA+pm1jMoegvzoFqiSmQL50S2wFLMByqNrgLSYyzTJfgMAqNbqthcAVZmanV90sxARcdf+ybju9odjana+pZVBuXQHMBzzkxTYh1ANLQFUz2yF9ugP0qNLusJeB6pglkBz9EYJ7GOgTmYMVE9XAIMxN6E5egOqZKYAkBLnEkB9zFiGZe9A/XQGUD+zllHZQ5Af3QJVMlMgP7oFlmI2QHl0DZAWc5km2W8AANXzoHmKMTkzv+hm4bi79k/G5IwbBqia7gCGY36SAvsQqqElgOqZrdAe/UF6dElX2OtAFcwSaI7eKIF9DNTJjIHq6QpgMOYmNEdvQJXMFABS4lwCqI8Zy7DsHaifzgDqZ9YyKnsI8qNboEpmCuRHt8BSzAYoj64B0mIu0yT7DQCgemvbXgBUYWp2PuaeeTZ+6+qLY8O6NfHgge/HLfd8J2bnnz3xPoePHG1xhVCOqdn5mJyZj+kjR2P92tXx3p98xaLejtMdkIOT59rWjeti4rSxGN80Vuv/c3qF+Wh+0oRB92EbrUAORp3p2gK6qtf8c70M7amyP9c5UI3SzkWzgeX2QGl7HRhcFWeEWQLN8Oe0KMVS58amsTXxrivOi4t2bIunfjAf8Xcz7luAoTx77Fj85//Hj8bcM88teV46K2Fwdd/z+dolUBrXI9AMXyuDbqvjPsLvdwF0T8pfl3IuAVRjqVk/M2fG8rxBrwWcz1A/nfWW8j0MUJ+q2zdr6Ze/iwjlaKJb16rQHf5OGOSn6msB5z6UYbnZcPxcn3vm2XjowPd1Dhmp6/7f2U9p7Gma4vdTqNOps+zZY8di09iaJZ9dF2G/AQAMw4Pmyd6Th56OD97+cNy9f/LE2y5/xRnxH/ZeFO/7/EMnbiC2bFjX1hKhGP32dpzugNQtNdd275yIm/bsiu3bNtb2/926wnw0P2nCIPuwrVYgB6PMdG0BXbXS/HO9DO2pqj/XOVCdks5Fs4Fee2B8Yzl7HRhcVWdESecmpMqf06Ikp54bm8bWxH/Ye1F89t7vxKe+8uiJt7tvAQb15KGn46P/5/8Vdz/61Im3nXpeOithcHXe8/naJVAa1yPQDF8rg26r6z7C73eRur/8y79sewlLSnVdsJLUvy7lXAIY3XKz/lf+8at7/qOqZmw3DHMt4HyG+ulseanfwwD1qKN9s5Z++LuIUJa6Z79rVegWfycM8lPltYBzH8qx1GxwrkPe6rj/d/ZTGnuaJvk9Oeqy1Cy7cufEss+ui7DfAACGsbrtBcAopmbnF904RETc++hT8dl7vxPvuuK8iHj+CyMTm8faWCIUo9/ejtMdkLrl5tpd+yfjutsfjqnZ+dr+3xObx2L3zoklXzM/aUq/+7DNViAHw850bQFd1c/8c70M7amiP9c5UK1SzkWzgZX2wGnr1xax14HBVXlGlHJuQqr8OS1Kc+q58a4rzovP3vuduPekBzFGuG8BBnPivDxllpx8XjorYTh13fP52iVQGtcj0AxfK4Nuq/M+wu93kaqnp56KiFXxtre9LS655JLkvr3tbW+LiIijc+7jyUcOX5dyLgGMptes/3/9j0fil3/67y3548zYbhj2WsD5DPXT2dJyuIcBqldX+2YtK/F3EaE8dc5+16rQPf5OGOSnqmsB5z6UZanZ4FyHvFV9/+/spzT2NE3ze3LUYblZdvf+ybh1iWfXRdhvAADDWtv2AmAUkzPzi24cjrv30afiXZc//w8g3bxnV4xvcsMAo+int+N0B+Sg11y7a/9kTM7M1zbHxjeNxU17dsV1tz8cd520BvOTJvW7D9tsBXIw7EzXFtBV/cy/l5+12fUytKSK+1XXOVCtUr6OZDaw0h6YOfJMEXsdGFyVZ0Qp5yakyp/TojSnnhsX7dgWn/rKo0u+r/sWoF8rnZfv+YlXxNX/4BzzBIZQ1z2fr10CpXE9As3wtTLotjrvI/x+F6k6Ons4Io7F3//ZD8aZ513Y9nIWOfgXX4tHfu8/xTPPPNP2UqBvOXxdyrkEMJqVZv2Hf+qVsXvnhBnbUcNeCzifoX46W1oO9zBA9epq36xlJf4uIpSnztnvWhW6x98Jg/xUdS3g3IeyLDUbnOuQt6rv/539lMaepml+T4469Jpl9zz6VPz8T7xiwTW9/QYAMDwPmidr00eO9nx9fOO6+OTei9wsQAX66e2LP//a2LJhXUxsHtMdkLyV5trhFV4f1fZtG+OTey+KyZn5OHzkqPlJK/rZh223AjkYZqZrC+iqfuef62Voz6j9uc6B6pVwLpoN9LMHXn7W5uz3OjC4qs+IEs5NSJU/p0WJTj43nvrBfM/3dd8C9GOl83LDujVx9raNDa0GylPHPZ+vXQKlcT0CzfC1Mui2uu8j/H4XKdt81jnxonMuaHsZi0wffLztJcDAcvm6lHMJYHgrzfqn5581YztslGsB5zPUT2eL5XIPA1SrzvbNWnrxdxGhTHXNfteq0E3+Thjkp4prAec+lOfU2XD0uWM931/nkL4q7/+d/ZTGnqYNfk+OqvXzd5j/6Bd/3H4DAKiAB82Tta0b1vV8/fRNbhagKv309vKzNje0GoDRrTTXtqzwehXGXauQgJX2YQqtQA4GnenaArpqkPnnehnaM0p/rnOgHrmfi2YD/e6B3Pc6MLg6zgizBOrhz2lRqhPnxt/O9Hw/9y1AP1Y6L8c3miUwqqrv+XztEiiN6xFohq+VQbc1cR/h97sAypfT16WcSwDD6WfWm7HdNeq1gL0D9dPZQjndwwDVqbt9s5bl+LuIUK46unWtCt3l74RBfka9FnDuQ5lOng2POdehCFXd/zv7KY09TVv8fgpV6ufvMHt2HQBANVa3vQAYxcTmsdi9c2LJ13bvnIiJzW5UoSp6A0pjrkF/tAL10BbQVeYflE/nwFLMBuwBYDnmA+RDr5TOHgeqYJZAfnQLlMZcg2ZoDbrNDACgCs4TgPKZ9fRifwC5Mbegm7RPW+w9YBBmBmAOQHfoHcqnc+BkZgKlsaeBEphlAADN8aB5sja+aSxu2rNr0Q3E7p0TcfOeXTG+yc0DVEVvQGnMNeiPVqAe2gK6yvyD8ukcWIrZgD0ALMd8gHzoldLZ40AVzBLIj26B0phr0AytQbeZAQBUwXkCUD6znl7sDyA35hZ0k/Zpi70HDMLMAMwB6A69Q/l0DpzMTKA09jRQArMMAKA5a9teAIxq+7aN8cm9F8XkzHwcPnI0tmxYFxObx9w4QA30BpTGXIP+aAXqoS2gq8w/KJ/OgaWYDdgDwHLMB8iHXimdPQ5UwSyB/OgWKI25Bs3QGnSbGQBAFZwnAOUz6+nF/gByY25BN2mftth7wCDMDMAcgO7QO5RP58DJzARKY08DJTDLAACa4UHzFGF8k5sFaIregNKYa9AfrUA9tAV0lfkH5dM5sBSzAXsAWI75APnQK6Wzx4EqmCWQH90CpTHXoBlag24zAwCogvMEoHxmPb3YH0BuzC3oJu3TFnsPGISZAZgD0B16h/LpHDiZmUBp7GmgBGYZAED9Vre9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICu8aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw9a2vQDqMzU7H5Mz8zF95Ghs3bguJk4bi/FNY20vCziFVoEuMwMphb0M6dMplEvfkCZtQrdoHtqnQyiTtqFM2oayaRzKomlIjy6BEpltQK7Mr+7xOQeA5TkngSqYJVA+nQNQhZzOk5zWCrTDnIAyaBnol3kBy9MHdIvmIQ1ahDJoGbpJ+wAAlM6D5gv15KGn44O3Pxx375888bbdOyfipj27Yvu2jS2uDDiZVoEuMwMphb0M6dMplEvfkCZtQrdoHtqnQyiTtqFM2oayaRzKomlIjy6BEpltQK7Mr+7xOQeA5TkngSqYJVA+nQNQhZzOk5zWCrTDnIAyaBnol3kBy9MHdIvmIQ1ahDJoGbpJ+wAAdMHqthdA9aZm5xfdzERE3LV/Mq67/eGYmp1vaWXAybQKdJkZSCnsZUifTqFc+oY0aRO6RfPQPh1CmbQNZdI2lE3jUBZNQ3p0CZTIbANyZX51j885ACzPOQlUwSyB8ukcgCrkdJ7ktFagHeYElEHLQL/MC1iePqBbNA9p0CKUQcvQTdoHAKArinrQ/A033BCrVq1a8O3CCy9c9v1/+7d/O6688so4/fTT4/TTT4+rrroq/uRP/qTBFddjcmZ+0c3McXftn4zJGTc0kAKtAl1mBlIKexnSp1Mol74hTdqEbtE8tE+HUCZtQ5m0DWXTOJRF05AeXQIlMtuAXJlf3eNzDgDLc04CVTBLoHw6B6AKOZ0nOa0VaIc5AWXQMtAv8wKWpw/oFs1DGrQIZdAydJP2AQDoiqIeNB8R8apXvSoOHjx44ts999yz7PveeeedsXfv3vjjP/7j+NrXvhY7duyIf/gP/2H8zd/8TYMrrt70kaM9Xz+8wutAM7QKdJkZSCnsZUifTqFc+oY0aRO6RfPQPh1CmbQNZdI2lE3jUBZNQ3p0CZTIbANyZX51j885ACzPOQlUwSyB8ukcgCrkdJ7ktFagHeYElEHLQL/MC1iePqBbNA9p0CKUQcvQTdoHAKAr1ra9gKqtXbs2XvKSl/T1vv/1v/7XBd//zGc+E7fffnv80R/9UVxzzTV1LK8RWzes6/n6lhVeB5qhVaDLzEBKYS9D+nQK5dI3pEmb0C2ah/bpEMqkbSiTtqFsGoeyaBrSo0ugRGYbkCvzq3t8zgFgec5JoApmCZRP5wBUIafzJKe1Au0wJ6AMWgb6ZV7A8vQB3aJ5SIMWoQxahm7SPgAAXbG67QVUbf/+/bF9+/Y4//zz4+qrr44DBw70/WNnZ2fj6NGj8aIXvajGFdZvYvNY7N45seRru3dOxMTmsYZXBCxFq0CXmYGUwl6G9OkUyqVvSJM2oVs0D+3TIZRJ21AmbUPZNA5l0TSkR5dAicw2IFfmV/f4nAPA8pyTQBXMEiifzgGoQk7nSU5rBdphTkAZtAz0y7yA5ekDukXzkAYtQhm0DN2kfQAAuqKoB81fdtllceutt8Yf/MEfxKc//en4zne+E1deeWUcPny4rx//wQ9+MLZv3x5XXXVVz/ebm5uL6enpBd9SMr5pLG7as2vRTc3unRNx855dMb7JDQ2k0LFWYXQptMxwzEBOlnPL9jK8INWWdQqDSbXlpegbltdmy9qE6uRwLmseVlZ3yzqEZjR9Lmsb6tH2Nba2YXRtd9yLxqF/Kbd8nKZhZe6VoQw5nMslM9uoipZpmvlVj5Rb9jmH/qXcMtC/QVp2TkK6cjqXzRJYXk4t96Jzuq6UlqFtbZ4ng3bs7IM0pXQmmxMwPC1DGVJquQnmBaWqomV9QPuaPJc1D/XxZ76gDFqGMtR5ja19aE7Xvo4NpdIy5GvVsWPHjrW9iLocOnQozj333PjEJz4R7373u3u+70033RS/+qu/GnfeeWfs2rWr5/vecMMNceONNy56+9TUVGzdunWkNVdpanY+Jmfm4/CRo7Flw7qY2DzmZgb+t5Q61ioML6WWGY4ZSEQZLdvLkH7LOoX+pN7yUvQNi6XQsjZhdCm03C/Nw/KaalmHUK+2zmVtQ7VSucbWNgwvlY570TisLIeWj9M0LM+9MpQhp3O5ZGYbo9IybTG/qpVDyz7nsLJhW37wwQfjkksuidd9+LPxonMuqHOJQ3n8638YX7/lxrjiA/9HvPSVF7W9nEVSX19ExPcOfCu+9LF3xgMPPBAXX3xx28thBcO07JyE9ORwjX0qswQWy7HlXnROV5XWMrStjfNk2I6dfZCWFM9kcwIGp2UoQ4otN8G8oDRVtqwPaE8b57LmoXr+zBeUQctQhiausbUP9evq17GhNFqGfBX9oPmIiEsvvTSuuuqq2Ldv37Lv8+///b+Pf/tv/218+ctfjh/90R9d8eecm5uLubm5E9+fnp6OHTt2GHqQER1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz50zGUQctQBi1DGbQMZdAylEHLUIZhW/ag+dGkvr4ID5rPjXMZyqBlKIOWoQxahvzpGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIV9r215AnWZmZuKxxx6Lt7/97cu+z6/+6q/Gxz72sfjDP/zDvh4yHxGxfv36WL9+fVXLBFqgYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX86hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyJ+OoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8rW67QVU6dprr42vfvWr8fjjj8d9990Xb3nLW2LNmjWxd+/eiIi45ppr4kMf+tCJ97/55pvjl3/5l+OWW26Jl73sZfHd7343vvvd78bMzExbvwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgA9a2vYAqPfHEE7F379546qmn4swzz4wrrrgi7r///jjzzDMjIuLAgQOxevXqE+//6U9/Oubn5+Of/JN/suDnuf766+OGG25ocukAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAhxT1oPnbbrut5+t33nnngu8//vjj9S0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBlFPWg+ZVOz8zE5Mx/TR47G1o3rYuK0sRjfNNb2soDEmBVQP51BGbQMZdAylEHLUAYtQzn0DPnTMZRBy1AGLUO59A150SxwKnMBGISZAcCgnB3V8HEEoKucgcCwzA+ohpagDFqGbtI+5E3DQC9mBIxOR1A2jUNeNAtl0jZ0h94hPboEAICFPGi+AU8eejo+ePvDcff+yRNv271zIm7asyu2b9vY4sqAlJgVUD+dQRm0DGXQMpRBy1AGLUM59Az50zGUQctQBi1DufQNedEscCpzARiEmQHAoJwd1fBxBKCrnIHAsMwPqIaWoAxahm7SPuRNw0AvZgSMTkdQNo1DXjQLZdI2dIfeIT26BACAxVa3vYDSTc3OL7oRiYi4a/9kXHf7wzE1O9/SyoCUmBVQP51BGbQMZdAylEHLUAYtQzn0DPnTMZRBy1AGLUO59A150SxwKnMBGISZAcCgnB3V8HEEoKucgcCwzA+ohpagDFqGbtI+5E3DQC9mBIxOR1A2jUNeNAtl0jZ0h94hPboEAICledB8zSZn5hfdiBx31/7JmJxxMwKYFdAEnUEZtAxl0DKUQctQBi1DOfQM+dMxlEHLUAYtQ7n0DXnRLHAqcwEYhJkBwKCcHdXwcQSgq5yBwLDMD6iGlqAMWoZu0j7kTcNAL2YEjE5HUDaNQ140C2XSNnSH3iE9ugQAgKV50HzNpo8c7fn64RVeB7rBrID66QzKoGUog5ahDFqGMmgZyqFnyJ+OoQxahjJoGcqlb8iLZoFTmQvAIMwMAAbl7KiGjyMAXeUMBIZlfkA1tARl0DJ0k/YhbxoGejEjYHQ6grJpHPKiWSiTtqE79A7p0SUAACxtbdsLKN3WDet6vr5lhdfJ29TsfEzOzMf0kaOxdeO6mDhtLMY3jbW9LBJkVjxPM9RJZ5zKzMmTlsukx+7Rcpq0yKC0TEm6PAO1TEq63GIV9Nwce5W66Li7zJWyaLlMOu0eLXeLxrsl977tV7om92a7zLyiLnXMBfsVypXytYTZA83THf1I+ezISYkfRzMEgH6UeAZCVVxP9WZ+lMeeb4eW8qAPVqLl3jREqbTfPPOEKmm4Xnold2bE87TMKHTUDt3SFI3nw1wgQrNdoPVuyqVt+xNGl0vvLGYGlkuXpMCMAQBS5EHzNZvYPBa7d07EXfsnF722e+dETGx2QViqJw89HR+8/eG4+6TP/e6dE3HTnl2xfdvGFldGiswKzVA/nXEyMydfWi6PHrtJy+nRIsPQMqXo+gzUMqnoeotV0HMz7FXqpONuMlfKo+Xy6LSbtNwdGu+enPu2X+minJvtMvOKOlU9F+xXKFuq1xJmDzRPd/Qr1bMjN6V9HM0QAPpV2hkIVXE9tTLzoyz2fHu0lD590A8tL09DlEz7zTJPqJqG66NXSmBGaJnR6ah5uqVJGs+DucBxmi2b1rsrh7btT6hGDr2zmBlYNl3SNjMGAEjV6rYXULrxTWNx055dsXvnxIK37945ETfv2RXjm9yMlGhqdn7RDUBExF37J+O62x+Oqdn5llZGqro+KzRDE7reGS8wc/Km5bLosbu0nBYtMiwtUwIzUMukQYvV0HP97FXqpuPuMVfKpOWy6LS7tNwNGu+mXPu2X+mqXJvtMvOKulU5F+xXKF+K1xJmDzRPdwwixbMjRyV9HM0QAAZR0hkIVXE91R/zoxz2fLu0lDZ90C8tL01DlE77zTFPqIOG66FXStH1GaFlqtD1jpqmW5qm8fSZC5xMs+XSerel3rb9CdVJvXcWMwPLp0vaZMYAAClb2/YCumD7to3xyb0XxeTMfBw+cjS2bFgXE5vHKrsRmZqdj8mZ+Zg+cjS2blwXE6dV93MznMmZ+UU3AMfdtX8yJmfmfY4yVHdrdc+KlGmGpnS5M15g5vSWw7Vlky3n8PHImR677eSWfzB3NMY3jsX8s8/Fd6ePxOzRZ/XWIC0yCl/3Indm4PNyv182K/Knxerk3nPqBtmrZhPDqqpjezAPzsBy+Tp2OXTabXW1rNt0aLy7qu67ia7tV7ospa95OcdXZl5Rt6nZ+Xh6/tn4wFU745d+6pWxZtWqWLN6VZwxRI/2K3TD9m0b49+99Ufi+z+Yj+kjz8TWjWvj9E1j8eKtG1pZj9kDzSupO/ckzUjpPnQlKe+JnD6OvZQ0QwBoxvEz8KkfzMezzx2LZ587FrPzz8Ts0Wdjata5Qffkdj3V5jV2KdfQXZfbni/RqS1t3bguTlu/NmaOPBMPHfh+cvfPXaIPBuFcXExD6Uv567W56Kd9H+fRmScMqt/unN/V0ytVavsM7fKM0DJV8XtQzdEtdVvqXO7yWZkDc4FT9Wq27Wtvhqd1UjuPT54nG8fWxI/s2BYP/PX3Y3b+2QXvZ3/C8wY5g1Prnd6c0d2gS9pixgAAKfOg+YaMb6rn5uPJQ0/HB29/eMEF5+6dE3HTnl2xfdvGyv9/9Gf6yNGerx9e4XXS01Rrdc2K1GmGJnW1M15g5iwvp2vLJlrO6eORKz1yvGW9tUuLjMrXvciZGfiCXO+XzYoyaLFaufacg373qtnEqEbt2B7MhzOwbL6OXQadUnXLuk2Lxrutqr6b6tp+petS+JqXc7w/5hV16tXhMDPCfoVuSO0MN3ugeaV0l9o8K10K96EryWFP5PBxXEkpMwSAZo1vGosfzD+b/FkNTcjpeiqFa+wSrqG7Lqc9X7KTW3ry0NNx7e/8uTM5AfpgUM7FhTSUthSuJUvRq30f52qYJwxi0O6c39XSK1VJ5Qzt6ozQMlXye1DN0C11Wulc7uJZmQNzgaUsdX2byrU3w9E6Eencuy41Ty5/xRnxH/ZeFO/7/EOLHjZvf9J1w5zBqfTOypzR3aFL2mDGAAApW932Ahje1Oz8oi9WRETctX8yrrv94ZianW9pZWzdsK7n61tWeJ20aK1+mgGaZOYszXm3kI9HM/RIhN5SoEVSZDbQFDMwb2ZFObRILvrZq2YTbbMH8+IMZBR6b4ZOqZJu06NxRtVk1/YrtMs53j/zirrU0aH9CuVL8Qw3e6B5JXSX4jyjXfZEc0qYIQA0z1kNL8jlekq3VCWXPd8V2k6LPmA0GkqX86YZPs7VMU/ol+7ap1eqoOX2aZkqaboZuqUuGs6XuUA/NJ4/rZOK5ebJvY8+FZ+99zvxrivOW/Rj7E+6zBlcPmc0UCczBgBImQfNZ2xyZn7RFyuOu2v/ZEzO+IJFWyY2j8XunRNLvrZ750RMbB5reEWMQmv10wzQJDNnac67hXw8mqFHIvSWAi2SIrOBppiBeTMryqFFctHPXjWbaJs9mBdnIKPQezN0SpV0mx6NM6omu7ZfoV3O8f6ZV9Sljg7tVyhfime42QPNK6G7FOcZ7bInmlPCDAGgec5qeEEu11O6pSq57Pmu0HZa9AGj0VC6nDfN8HGujnlCv3TXPr1SBS23T8tUSdPN0C110XC+zAX6ofH8aZ1U9Jon9z76VFy0Y9uCt9mfdJ0zuHzOaKBOZgwAkDIPms/Y9JGjPV8/vMLrJZianY/H/nYmHjrw/Xjs72ZiajaNL9KMbxqLm/bsWnQjsHvnRNy8Z1eMb3ITkJOutdZGV5oBhjXMzDJzlta1824lXf54NHktoEciyuwt1XvV5WiRFJU4GxhMU7PUDMybWVGOJlvM7VqNtJy6VzeNrYn3/uQr4nP/4rJ4//99Z0z+YD6mnu69p8wm6tbl8zHHGe96lFGU3HtKPeuUKuk2PRrvjrr2aJNd26/Qrn56z/U8rJp5RV0GOXf77dF+hfI1dc0+yHWA2QPNG980Fvt+5ofjc//isvitqy+OW95xabz3J18Rr3vlWdl0V/LXFhmOPdFblffozm4AhuGspiol/N5DLtdTumUQvdrMZc93RSltl3AeROiDdpTST4SGUlbKeZM6H+flDTrrzBP6lVt3JZ37x+mVKjTRcon9VUnLVCm387lK/n1MStDlhuvUxHwwF+iHxkfX9r2F1knFSvNk7pnnTvx3r/3ZdlPQFGdwO9ynA1VI4XrFjAEAUra27QUwvK0b1vV8fcsKr+fuyUNPxwdvfzju3j954m27d07ETXt2xfZtG1tc2fO2b9sYn9x7UUzOzMfhI0djy4Z1MbF5zA1AhrrUWptdaQYY1Cgzy8xZrEvnXT+6+vFo41pAj5TWW+r3qsvRIqkpbTYwmKZnqRmYL7OiLE20mOu1Gmk5vlef+sF8HIuIG/7HI/Gprzx64vXP/YvLev54s4m6dfV8zHnGux5lWKX2nmLPOqUquk2TxstX5x5tumv7FdqzUu8bx9bEez//ULbnYdXMK+rQ77k76Nlvv0LZmrhmH+aew+yBZj156Om47nf/YkGnV+6ciH1v+eE4O5Pr9VK/tsjw7Inl1fH1QGc3AINyVlOF3H8v/mQ5XE/pln7102YOe74rSmi7pPMgQh80q7R+IjSUqhLOmxz4OC9t2FlnntCPnLor8dw/Tq+Mqu6WS+6vSlqmKjmdz1Xy72NSiq42XKcm54O5wEo0PppU7i20TgpWmifnT5wWX/z51/bcn6k0BU1wBjfPfTpQhZSuV8wYACBVq9teAMOb2DwWu3dOLPna7p0TMbG53IvNqdn5RRf7ERF37Z+M625/OKZm51ta2ULjm8bi5Wdtjr9/zunx8rM2uwHIVFdaS6ErzQD9qmJmmTkLdeW861cXPx5tXgvosdtK6i2Fa+pRaJGUlDQbGExbs9QMzJNZUZ46W8z9Wo20jG8aizNOG4sbfu//irsffWrBa/d9+6m44hVnLPnjzCaa0MXzsYQZ73qUYZTYe8o965Qq6DZdGi9X3Xu0ja7tV2jHSr0/eOBQ9udh1cwrqtbPuTvs2W+/QrnqvmYf5Z7D7IFmLNfp3fsn45f++19kc71e4tcWGY09sbQ6vx7o7AZgEM5qRlXK78WfLPXrKd3Sj0HaTH3Pd0XubZd4HkTog2aU2k+EhlKU+3mTCx/nxUaddeYJK8mlu5LP/eP0yijqbLkL/VVJy1Qhl/O5Sv59TErSxYbr1MZ8MBfoRePDS+3eQuu0baV5cvb4hp77M7WmoG7O4Ga5TweqkOL1ihkDAKTIg+YzNr5pLG7as2vRFy1275yIm/fsKvqCc3JmftHF/nF37Z+MyRlfoKQ6XWlNV0BOzKzqdeW861cXPx66oi0l9aYjqE5Js4HBmKUMwqxgEOYLVVtuT91yz3fiHZefF1eaTbSki+ejGU9Xldi7nimdbqF5de/RErsGltar91/5x6+Oj/7P/++SP855CNXp59x1fQqcqu5rdnMH0ldKp74GwansiaWV0jwA+XNWMyrXNc3TLf3QZn5yb9ueg+Hphyblft7kwsd5MbOOuuXSnRagtzpb1h80L5fzuUpmDSXpYsN1Mh9IjcaHp2dYaNR5oim6xhncLDMGqIJZAgDQn7VtL4DRbN+2MT6596KYnJmPw0eOxpYN62Ji81jxX6yYPnK05+uHV3gdBtWF1nQF5MTMqkcXzrtBdO3joSvaVEpvOoJqlTIbGIxZyqDMCvplvlC15fbU7Pyz8b7PPxT/4z2Xx+pVq8wmWtG189GMp8tK613PdIFuoVlN7NHSugaWt1zvjz/1g5idf3bZH+c8hOqsdO66PgWWUuc1u7kD6SupU1+D4FT2xGIlNQ9A/pzVjMJ1TTt0y0q0maec27bnYHj6oWk5nzc58XFeyKyjCTl0pwVYWV0t6w/akcP5XCWzhtJ0reE6mQ+kSOPD0TMsNso80RRd5AxujhkDVMEsAQDojwfNF2B8U/e+QLF1w7qer29Z4XUYRumt6QrIiZlVn9LPu0F16eOhK9pWQm86guqVMBsYjFnKMMwK+mG+ULVee2p2/tlYvWpVvPyszQ2uCBbq0vloxtN1JfWuZ7pCt9CcpvZoSV0DvS3V++aZ+Z4/xnkI1ep17ro+BZZT1zW7uQPpK61TX4PgVPbEQqU1D0D+nNUMy3VNe3RLL9rMV65t23MwPP3QhlzPm9z4OL/ArKMpqXenBehPHS3rD9qT+vlcJbOGEnWp4TqZD6RK44PTMyxt2HmiKbrKGdwMMwaoglkCANCf1W0vAIYxsXksdu+cWPK13TsnYmKzL+DAoHQF5MTMgurpCkanI4DRmaVAXcwXqmZPQTr0COXQM+RHt6TOHgWaYNZAOvQINM3cgfTpFLpF8wBAKVzXQJq0SdPsORiefoAuMOvgeVqA9ugPaIJZAyzHfIBy6BmqpSmgTmYMUAWzBACgPx40T5bGN43FTXt2Lbro371zIm7esyvGN7ngh0HpCsiJmQXV0xWMTkcAozNLgbqYL1TNnoJ06BHKoWfIj25JnT0KNMGsgXToEWiauQPp0yl0i+YBgFK4roE0aZOm2XMwPP0AXWDWwfO0AO3RH9AEswZYjvkA5dAzVEtTQJ3MGKAKZgkAQH/Wtr0AGNb2bRvjk3svismZ+Th85Ghs2bAuJjaPudiHEegKyImZBdXTFYxORwCjM0uBupgvVM2egnToEcqhZ8iPbkmdPQo0wayBdOgRaJq5A+nTKXSL5gGGd+DAgZicnGx7GcuamJiIc845p+1lQGNc10CatEnT7DkYnn6ALjDr4HlagPboD2iCWQMsx3yAcugZqqUpoE5mDFAFswQAYGUeNE/Wxje5wIeq6QrIiZkF1dMVjE5HAKMzS4G6mC9UzZ6CdOgRyqFnyI9uSZ09CjTBrIF06BFomrkD6dMpdIvmAQZ34MCBuPDCV8bTT8+2vZRlbdy4Kb75zb/0sHk6xXUNpEmbNM2eg+HpB+gCsw6epwVoj/6AJpg1wHLMByiHnqFamgLqZMYAVTBLAAB686B5AAAAAAAAAAAAAAAAAAAAAOiYycnJePrp2bjsXdfH1rNf1vZyFpk++Hh8/ZYbY3Jy0oPmAQAAAAAAAAAAAAAAAIBiedA8AAAAAAAAAAAAAAAAAAAAAHTU1rNfFi8654K2lwEAAAAAAAAAAAAAAAAA0Emr214AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNd40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw4p60PwNN9wQq1atWvDtwgsv7Pljfud3ficuvPDC2LBhQ/zwD/9w3HHHHQ2tFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiqoh40HxHxqle9Kg4ePHji2z333LPs+953332xd+/eePe73x0PPfRQvPnNb443v/nN8cgjjzS4YgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBrinvQ/Nq1a+MlL3nJiW8TExPLvu9v/uZvxj/6R/8o/s2/+Tfxyle+Mj760Y/GxRdfHJ/61KcaXDEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNcU9aH7//v2xffv2OP/88+Pqq6+OAwcOLPu+X/va1+Kqq65a8LbXv/718bWvfa3uZQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdtrbtBVTpsssui1tvvTUuuOCCOHjwYNx4441x5ZVXxiOPPBJbtmxZ9P7f/e5348UvfvGCt734xS+O7373uz3/P3NzczE3N3fi+9PT09X8AkjC1Ox8TM7Mx/SRo7F147qYOG0sxjeNtb0sKqbjeuiHpmm5P9okdVpOl/nBILScLi0zCC3D0nKbpVqG6rUxB7ScrtzOBdql5XRpmUFouT5apEla7h4zpjwpdGxfwehSaDk3Zg8pGqZlexnS41wejblGKnJuWUfwgpxbbpM5Qmq0DGXQMqly7TMYLdMkfdZHy+2zv6mCllemNVKn4/SYGwyj9JZ1QVeU3nIuzBxGpeU0aJlRabm7zI+yaLkc2uw2La9MI+RAy91mTpVDy+TAzFmZlqEMWoZ8FfWg+Te84Q0n/nvXrl1x2WWXxbnnnhtf+MIX4t3vfndl/599+/bFjTfeWNnPRzqePPR0fPD2h+Pu/ZMn3rZ750TctGdXbN+2scWVUTUdV08/tEHLK9MmOdBymswPBqXlNGmZQWkZFstxlmoZqtXWHNBymnI8F2iXltOkZQal5XpokaZpuVvMmDK13bF9BdVou+XcmD2katCW7WVIk3N5eOYaKcm1ZR3BQrm23CZzhBRpGcqgZVLk2mdwWqYp+qyXlttlf1MVLfemNXKg47SYGwyr5JZ1QZeU3HIuzByqoOX2aZkqaLmbzI/yaLkM2kTLvWmEXGi5u8ypsmiZ1Jk5/dEylEHLkK9Vx44dO9b2Iup06aWXxlVXXRX79u1b9No555wTv/iLvxgf+MAHTrzt+uuvjy9+8Yvx53/+58v+nHNzczE3N3fi+9PT07Fjx46YmpqKrVu3Vrp+mjM1Ox/v/fxDCy7gj9u9cyI+ufeiGN801sLKqIOOq6Uf2qLl3rRJLrScHvODYWg5PVpmGFqGhXKdpVqG6rQ5B7ScnlzPBdql5fRomWFouXpapA1a7g4zplxtdmxfQXWcyf0ze0jZIC3by5Au5/JwzDVSk2PLOoLFcmy5TeYIqRq25QcffDAuueSSeN2HPxsvOueCJpY6kMe//ofx9VtujCs+8H/ES195UdvLWST19UVEfO/At+JLH3tnPPDAA3HxxRe3vZxFUt+DTX/8nMukxrXPcLRME/RZPy23x/6mSlpentbIhY7TYW4wilJb1gVdU2rLuTBzqIqW26VlqqLl7jE/yqTl/GmTCC33ohFyouVuMqfKo2VSZub0T8tQBi1Dvta2vYA6zczMxGOPPRZvf/vbl3z9Na95TfzRH/3RggfNf+lLX4rXvOY1PX/e9evXx/r166tcKgmYnJlf8gI+IuKu/ZMxOTPvIr4gOq6WfmiLlnvTJrnQcnrMD4ah5fRomWFoGRbKdZZqGarT5hzQcnpyPRdol5bTo2WGoeXqaZE2aLk7zJhytdmxfQXVcSb3z+whZYO0bC9DupzLwzHXSE2OLesIFsux5TaZI6RKy1AGLZMa1z7D0TJN0Gf9tNwe+5sqaXl5WiMXOk6HucEoSm1ZF3RNqS3nwsyhKlpul5apipa7x/wok5bzp00itNyLRsiJlrvJnCqPlkmZmdM/LUMZtAz5Wt32Aqp07bXXxle/+tV4/PHH47777ou3vOUtsWbNmti7d29ERFxzzTXxoQ996MT7v//9748/+IM/iF/7tV+Lb37zm3HDDTfEn/3Zn8V73/vetn4JtGj6yNGerx9e4XXoMv1AmrQJDMv8gDJoGWB0ZilgDnAy+wHKoGVIgxaBOpkx1MG+Atpg9lAKexkojbkGo9MRMCpzBADoEtc+kC59UjL7G5qhNWBQ5gYspgugSWYOlEHLwLDMD0iTNqE3jQCpM6eAJpk5AEAu1ra9gCo98cQTsXfv3njqqafizDPPjCuuuCLuv//+OPPMMyMi4sCBA7F69eoT7//a1742Pve5z8VHPvKR+KVf+qXYuXNnfPGLX4xXv/rVbf0SaNHWDet6vr5lhdehy/QDadImMCzzA8qgZYDRmaWAOcDJ7Acog5YhDVoE6mTGUAf7CmiD2UMp7GWgNOYajE5HwKjMEQCgS1z7QLr0Scnsb2iG1oBBmRuwmC6AJpk5UAYtA8MyPyBN2oTeNAKkzpwCmmTmAAC5WL3yu+TjtttuiyeffDLm5ubiiSeeiNtuuy1e/vKXn3j9zjvvjFtvvXXBj3nrW98a3/rWt2Jubi4eeeSReOMb39jwqknFxOax2L1zYsnXdu+ciInNYw2vCPKhH0iTNoFhmR9QBi0DjM4sBcwBTmY/QBm0DGnQIlAnM4Y62FdAG8weSmEvA6Ux12B0OgJGZY4AAF3i2gfSpU9KZn9DM7QGDMrcgMV0ATTJzIEyaBkYlvkBadIm9KYRIHXmFNAkMwcAyEVRD5qHUYxvGoub9uxadCG/e+dE3LxnV4xvchEPy9EPpEmbwLDMDyiDlgFGZ5YC5gAnsx+gDFqGNGgRqJMZQx3sK6ANZg+lsJeB0phrMDodAaMyRwCALnHtA+nSJyWzv6EZWgMGZW7AYroAmmTmQBm0DAzL/IA0aRN60wiQOnMKaJKZAwDkYm3bC4CUbP//s3f3QX7d9WHvP5KllSXkXT+sPbGJZBsjQwJWr0wyaWtbKZlh2kzobYlLp54wpdCHaYGkUyYTSDK9hDxg+06SyRRaMmmDKX/EzOSa0CRz20KSCXZo0kltZgw3xMhgEGAyZG20q41krWzv/UNdIWmffg/n4fv9nNdrxn9Yu5jvOb/v+3POb3e158q98f57jsTC8kqcfO5sXHH57pjfP+MGHkagHyiTNoFJmR+Qg5YBpmeWAuYAF7IfIActQxm0CLTJjKEN9hXQB7OHLOxlIBtzDaanI2Ba5ggAMCTufaBc+iQz+xu6oTVgXOYGrKcLoEtmDuSgZWBS5geUSZuwNY0ApTOngC6ZOQBADTxoHi4xt89NO0xKP1AmbQKTMj8gBy0DTM8sBcwBLmQ/QA5ahjJoEWiTGUMb7CugD2YPWdjLQDbmGkxPR8C0zBEAYEjc+0C59Elm9jd0Q2vAuMwNWE8XQJfMHMhBy8CkzA8okzZhaxoBSmdOAV0ycwCA0u3sewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ+NB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd29X3AjJYXV2NiIilpaWeVwLDccUVV8SOHTsa++/pGPqhZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIocmWdQz9cE2GHLQMOWgZctAy5KBlyKGvlpeXlyMiYvFrX4oXn3+hsf//pix/8+sREbH0F1+OPXv29Lya9UpfX0TEyb/4SkREPPbYY+df75J84QtfiIhy9+Da+VteXh7p2ui6DDloGXLQMuSgZcjBz29C/VyTIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP9Ju14x+pasUzsa1/7Whw4cKDvZcCgLC4uxuzsbGP/PR1DP7QMOWgZctAy5KBlyKHplr/0pS/FLbfc0th/DxiN6zLkoGXIQcuQg5YhhyZb1jH0wzUZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuTg5zehfq7JkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF+k3bsQfMNePHFF+Ppp5+OK664Inbs2NH3coq3tLQUBw4ciK9+9auNXnyGaMjnsune2up4yK/RpZyLc5yHi7XV8urqahw8eDDVec66dzIe1xCPqZbrctMyvtZrsh5b1uOKaObY2mj5iSeeiO/+7u9Oec5HlXnfjco56PYcdH1d9vo6BxHOQUTz56Dplk+cOBFXXXVVHD9+PObm5hr77/Yp277LdjwR+Y5pkuMZ6vvlNdn2wDiGeuxZj9vXsUeT7fV3PGVzXR5dtte+Dc7R9ko6R0Nt+UIlvR7TcBxl6fo4mmyuyY6zvJ5dcs4mk+G8lXJNznAu2+C8bM65uVgpLfct275wPGVr43hKaTnbaxXhmGqR5ZhKabkLWV6zEjiXzSr1Z7E3atlr3xznshnZzmMJ1+Waz2nNa4+w/r41uf4SWm5K7a/rZhxXffo4tkwtdyHz/tvM0I651uP19x3HU/v6I+o/BuvfmL9XcbFa94l1d6vEdZf685tdKfE1aZLjq9uox5fxvXKW1zbDcWQ4hog6jqOmlms4n5ey5m5Yc10tN6HG17w0zuH0Mv8s9kbsmc05Nxsb8nkpseUaX48a1xxR57qteWMlttykGl/3jTiOcpR6DF22XOo5yML5bU8N57aP63IN56Utjn2Yxx7R/vH3dY+d5XV1HGXJchwR4x+LlqfjOMoy1OOYtONdkyyOi+3cuTO+8zu/s+9lVGd2drbqSEviXE6v7Y69Rt/mXJzjPLRjreWlpaWIyHmeMx5TRM7jckyTq+3+OuNrvSbrsWU9roiyjm3nzp3x0pe+NCLKWldfnAPnIKLOczDqdbnGY2uac+AcRJR7Dnbu3BkREXNzc0WubxqlnvNJZTueiHzH1Ofx1PZ+eU22PTCOoR77UI97VNm/ju14yuZ4mlPbdTnba98G52h7Gc9RbS1fKMvr4TjKUuNxtNFxjeehb87ZZJy3b5u2ZedyY87L5pybdtR8fx2Rb184nrKVfDyuy+s5pjpkPKZp1HBd9po1x7lsVknnc7uWS1pr7ZzLZjiPG5vmulzzOa157RHW37cS11/CPXaJ56UJjqs+NR9bCS13oebXaFJDO+ahHe+lhvL3HWtff0T9x2D97cry9yqsu1vWXZaa76+zviZrHF/duj6+klrO8tpmOI4MxxCR5zhG0UXLNZ5Pa+6GNTenpOvyVko9fzVxDqdX8jn09x275dxszHmZXpMt1/h61LjmiDrXbc3tKvUeu6ZzuBXHUY4Mx7CVUVrOfg765vy2Z0jndpzr8pDOy6Uc+zCPPaKe4x/3HruW49qO4yhLluOI6O9YtFw3x1GWto9jZ2v/ZQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA25EHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3zoHk6t2fPnnjPe94Te/bs6Xsp1XMuy+c1+jbn4hznoRsZz3PGY4rIeVyOaTgyn5esx5b1uCLKPbZS19Ul58A5iMh9DjIf26icA+cgovxzUPr6JpHtmLIdT0S+Y8p2PF0Y8jkb6rEP9bgnle18OZ6yOZ7hcq625xxtzzkqS5bXw3GUJctxTMt5GJ9zNhnnrTnO5cacl805N2wk275wPGXLdjwXynhsjqkOGY8pO69Zc5zLZtV0Pmtaa+mcy2Y4j82r+ZzWvPYI6+9b7etvS9bz4rjqk/nYshjiazS0Yx7a8U6q9vNU+/oj6j8G6+9WbetdY93dsm6akv01cXx1y358W8ly7BmOI8MxROQ5jlLUeD6tuRvWPDzO3/Scw+kN7RwO7XjH4dxszHkpS42vR41rjqhz3dY8TFnOoeMoR4ZjmJZz0C7ntz3O7caGfF4c+zCPPSLv8Wc5LsdRlizHEVHPsdSyzu04jrI4jvHsWF1dXW31/wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAi+zsewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ+NB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI550DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DEPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZB8w16+OGH4+/+3b8bN9xwQ+zYsSM+/vGPj/3fWF1djV/8xV+MW2+9Nfbs2RMvfelL4xd+4ReaXywAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQm119LyCTv/qrv4q/9tf+Wrz1rW+NH/7hH57ov/Gv//W/jk984hPxi7/4i3HbbbfFs88+G88++2zDKwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6tGN1dXW170VktGPHjvit3/qt+Pt//++f/7MzZ87ET//0T8eDDz4YJ06ciFe/+tVx//33x9/6W38rIiI+//nPx+HDh+Nzn/tcvOIVr+hn4QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDrdva9gCF5xzveEX/8x38cH/3oR+Pxxx+PN77xjfF3/s7fiWPHjkVExO/8zu/Ey172svjd3/3duPnmm+Omm26Kf/bP/lk8++yzPa8cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJIHzXfk+PHj8cADD8Rv/uZvxl133RW33HJL/PiP/3jceeed8cADD0RExJe+9KX4yle+Er/5m78ZH/nIR+LDH/5wPProo/EP/sE/6Hn1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJN29b2AofjsZz8bL7zwQtx6660X/fmZM2fimmuuiYiIF198Mc6cORMf+chHzn/er//6r8drXvOaeOKJJ+IVr3hF5+sGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmudB8x1ZXl6Oyy67LB599NG47LLLLvrY/v37IyLi+uuvj127dl30MPrv+q7vioiI48ePe9A8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJOFB8x05cuRIvPDCC/HNb34z7rrrrg0/54477ojnn38+vvjFL8Ytt9wSERFf+MIXIiLixhtv7GytAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQLt2rK6urva9iCyWl5fjySefjIhzD5b/5V/+5Xjta18bV199dRw8eDDe9KY3xac//en4pV/6pThy5Ej85V/+Zfz+7/9+HD58OH7oh34oXnzxxfje7/3e2L9/f/zKr/xKvPjii/H2t789Zmdn4xOf+ETPRwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0xYPmG/SHf/iH8drXvnbdn7/5zW+OD3/4w3H27Nn4+Z//+fjIRz4SX//612N+fj7++l//6/He9743brvttoiIePrpp+NHf/RH4xOf+ES85CUviR/8wR+MX/qlX4qrr76668MBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWuJB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd29n3AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGxoPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmQfMNWF1djaWlpVhdXe17KcCEdAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6qdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF+OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6uFB8w04efJkzM3NxcmTJ/teCjAhHUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG+ukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZaifjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGenjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGMeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMQ+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjYrr4XAJktnlqJheWVWHrubMzu3R3zL5mJuX0zfS8LiqUZoEtmDpRDj1AGLQJDZgZCGbRILexVoGnmCpRPp5CbxqmJ/QrUwryiJvYr0AezB7qnO2AaZgi1s4cBALrl/gs2pw+YjoaAppgnUA+9Qg5ahvroFriUuQDDoHVKZn8CQ2YGAm0yYwCAEnnQPLTk6ROn410PPR6PHFs4/2dHD83HfXcfjhuu3NvjyqBMmgG6ZOZAOfQIZdAiMGRmIJRBi9TCXgWaZq5A+XQKuWmcmtivQC3MK2pivwJ9MHuge7oDpmGGUDt7GACgW+6/YHP6gOloCGiKeQL10CvkoGWoj26BS5kLMAxap2T2JzBkZiDQJjMGACjVzr4XABktnlpZ9wYgIuLhYwvx7ocej8VTKz2tDMqkGaBLZg6UQ49QBi0CQ2YGQhm0SC3sVaBp5gqUT6eQm8apif0K1MK8oib2K9AHswe6pztgGmYItbOHAQC65f4LNqcPmI6GgKaYJ1APvUIOWob66Ba4lLkAw6B1SmZ/AkNmBgJtMmMAgJJ50Dy0YGF5Zd0bgDUPH1uIhWVvAuBCmgG6ZOZAOfQIZdAiMGRmIJRBi9TCXgWaZq5A+XQKuWmcmtivQC3MK2pivwJ9MHuge7oDpmGGUDt7GACgW+6/YHP6gOloCGiKeQL10CvkoGWoj26BS5kLMAxap2T2JzBkZiDQJjMGACiZB81DC5aeO7vlx09u83EYGs0AXTJzoBx6hDJoERgyMxDKoEVqYa8CTTNXoHw6hdw0Tk3sV6AW5hU1sV+BPpg90D3dAdMwQ6idPQwA0C33X7A5fcB0NAQ0xTyBeugVctAy1Ee3wKXMBRgGrVMy+xMYMjMQaJMZAwCUzIPmoQWzl+/e8uNXbPNxGBrNAF0yc6AceoQyaBEYMjMQyqBFamGvAk0zV6B8OoXcNE5N7FegFuYVNbFfgT6YPdA93QHTMEOonT0MANAt91+wOX3AdDQENMU8gXroFXLQMtRHt8ClzAUYBq1TMvsTGDIzEGiTGQMAlMyD5qEF8/tn4uih+Q0/dvTQfMzvn+l4RWVbPLUSX/zmcnzm+Lfii3+5HIunVvpeEh3TTA5aphZDnTkapURD7bELmmccWiyXlqF9XcxALcPm1vp4YXU17nI/QgemncnunYGmmSuTcY9Nl3TaHi1TAo1PT8vdsV9pi45pmnnVDy1Pxn6lNFoehhpmj71INjV0dyENQllqmyFczEy1h8lBywDUJPv9l+sy08jeR020XCcNbc2+htGZJ+Uwu9iOXuugZbaj5TpomQvptl5api1DnwvaYiiG3nrTzI5mlbo/vc5AE7abJaXOQCCHmmaMey8AGJ4dq6urq30vonZLS0sxNzcXi4uLMTs72/dyKMTTJ07Hux96PB4+tnD+z44emo/77z4c11+5t8eVleXpE6fjXQ89Ho9ccp7uu/tw3NDhedJx/zRTNy1Tm6HNnFIaHZWWh2VoPXahlOa1XBctlkfL0J02Z6CWYXMX9rFv5rL4d/cciQ9/+qn4oyefOf857kcupuXpNDWT3TszLS1zKXNlPO6x6YNOm6dlSqLxyZXQ8tA6tl9pWgkdRwyv5SEwr7ql5enYr5RCy8NS8uwpZS8yHS2vV3J3F9IgF9JyOWqZIVyslJlaQsv2MDXTMtAkLdOVrPdfrss0IWsfNdFy3TS0sVL29dDouG7mSf9KmV1aLp9ey6ZlRqXlsmmZjei2PlqmbUOdC6W01TUtD9dQW29aKbMjW8ul7c9SXmfyy9YyFxt1lpQ2AxmflilZDTOmlHsvLUMOWoZ6eNB8Aww9NrN4aiUWllfi5HNn44rLd8f8/pmY2zfT97KKsXhqJd7x4GcuehOy5uih+Xj/PUc6O186LoNm6qRlajWUmVNSo6PS8vAMpcculNS8luujxXJoGbrXxgzUMmxuoz72zVwWb73z5vibL7smLt99WcztdT9yKS1PrumZ7N6ZaWiZjZgro3GPTZ902hwtUyKNj6+UlofYsf1KU0rpOGKYLQ+BedUNLTfDfqVvWh6mEmdPSXuR6Wh5YyV2dyENciktl6X0GcLFSpqppbRsD1MjLQNN0zJdynb/5bpMk7L1URMt56Chi5W0r4dGx/UzT/pT0uzSch30WiYtMy4tl0nLbEW39dAyXRnaXCipra5pediG1nrTSpodGVsuZX+W9DqTX8aWOWfcWVLKDGQyWqZ0Jc+Yku69tAw5aBnqsavvBUBmc/vKuekv0cLyyoZvQiIiHj62EAvLK87fwGimTlqmVkOZORqlBkPpsQuaZxpaLIeWoXttzEAtw+Y26uPUygvxgT94Mj7wB0/G77/z++OW6/b3tDoyanomu3cGmmaujMY9Nn3SaXO0TIk0Pj4t98d+pSk6pm3mVTe03Az7lb5peZhKnD32ItmV2N2FNAhlK32GcDEzdT17mBppGYCaZbv/cl2mSdn6qImWc9DQxexrmJx50h+zi3HptUxaZlxaLpOW2Ypu66FlujK0uaAthmporTfN7GhXKfvT6ww0YdxZUsoMBHIqeca49wKA4drZ9wKA4Vp67uyWHz+5zceBMmgZyqZRGBbNQw5ahhy0DJvTB12z5wByMM8hBy1DDlqG+ukYctAy5KBlSmEvQr80CNAcMxVy0DIAlMN1GXLQMhnZ10CNzC7IQcuQg5YhBy1DO7QFTMLsGAavM9AEswRgNOYlAAyXB80DvZm9fPeWH79im48DZdAylE2jMCyahxy0DDloGTanD7pmzwHkYJ5DDlqGHLQM9dMx5KBlyEHLlMJehH5pEKA5ZirkoGUAKIfrMuSgZTKyr4EamV2Qg5YhBy1DDlqGdmgLmITZMQxeZ6AJZgnAaMxLABguD5oHejO/fyaOHprf8GNHD83H/P6ZjlcETELLUDaNwrBoHnLQMuSgZdicPuiaPQeQg3kOOWgZctAy1E/HkIOWIQctUwp7EfqlQYDmmKmQg5YBoByuy5CDlsnIvgZqZHZBDlqGHLQMOWgZ2qEtYBJmxzB4nYEmmCUAozEvAWC4PGge6M3cvpm47+7D696MHD00H/fffTjm9nkjAjXQMpRNozAsmocctAw5aBk2pw+6Zs8B5GCeQw5ahhy0DPXTMeSgZchBy5TCXoR+aRCgOWYq5KBlACiH6zLkoGUysq+BGpldkIOWIQctQw5ahnZoC5iE2TEMXmegCWYJwGjMSwAYrh2rq6urfS+idktLSzE3NxeLi4sxOzvb93KgOounVmJheSVOPnc2rrh8d8zvn+n8TYiOYXpahrKV0OiotAzTK6F5LcP0tAw5aBk2V0IfNdHy9Ow5SqBlmF4J81zLMD0tQw59t6xjmF7fHUdoGZqgZchBy5SihL3IdLRcNw2yRsswvRJmqpZheloGmqJlmJ7rMuSgZTIqYV8PjY5heiXMLi3D9LQMOWgZctAytKOEtrqmZZheCbNDy+0r4XUmPy3nZ5YMg5ZheiXMSy1DDlqGeuzqewEAc/t8oQYy0DKUTaMwLJqHHLQMOWgZNqcPumbPAeRgnkMOWoYctAz10zHkoGXIQcuUwl6EfmkQoDlmKuSgZQAoh+sy5KBlMrKvgRqZXZCDliEHLUMOWoZ2aAuYhNkxDF5noAlmCcBozEsAGJ6dfS8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYGgG/6D5m266KXbs2LHun7e//e19Lw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIalffC+jbn/7pn8YLL7xw/t8/97nPxete97p44xvf2OOqIGLx1EosLK/E0nNnY3bv7ph/yUzM7Zvpe1lQNV0BrGc2MhT2OuSgZWBa5gjkpG0uZU8ANTPDoB56hfx0Dv3SILDGPICLaQKGS/8wGe0AtTCvoB56BQDa5n4DuqU5KIsmoRx6hPrpGIgwC2AIdA6YA5CLpofN6w/QD/MXhkn7AEDJBv+g+Wuvvfaif7/vvvvilltuie///u/vaUUQ8fSJ0/Guhx6PR44tnP+zo4fm4767D8cNV+696HO94YDRjNNVyTQP6+licllmI2xn0r1uvkBZNmv5fW+4LVZeeDEWT2sV2NrTJ07Hu/6fx+ORJ93/QiZfe/ZU/OTHHo9Hnnzm/J9pe9hK+nqH95XAuJqeYeYQTG67fkq65wDa0WfnruGwcYN3HZqPn/t7r46r9u3WBAzIJNdk11Iyy/B+VKMwmQz9b8d8yK2v13cI7QA5mFcbc39A3zbag3+18oJeAYBWlfb+wH052bXVnHbIrq09Xtp1EIZssx5/9u+9OhZPr8T+y13fYFS+Xw70aZpZ4L0t1GGzv4N17xtui++8el+PKwO6ku3e3z0IQ5elaS1Pxu9QB9piTmwty/UXGI+fGwMASrdjdXV1te9FlGJlZSVuuOGGeOc73xk/9VM/tennnTlzJs6cOXP+35eWluLAgQOxuLgYs7OzXSyVxBZPrcQ7HvzMRW8i1hw9NB/vv+fI+Zt/X2yYnI6HZZyuSqb59bSMLiZX0mzUMm2adK+bL+PTMm3aquU7X35N/B8Hr4oP/MGTEaHVaWmZrBZPrcQ7fuMzFz1kfs1dh+bjA5V8bWBUWmYovv6tU/ETDz0en77gIfNravq632a0PL6Svt7hfSVrtMyomp5h5lCztDws2/VT0j0H49Eyo+qzc9fwrel4GLZq8I6XXxOvP3xDfP+t12qiYlpmVJNck11Lu6Pl7mV4P6rR8mi5Dhn63475MJ3SW+7r9R1CO+RSesu0x7zaWK33B1rOY6M9eO8P3xb/7+Pf2PDnkYfca0Zahhy0TI1Ke39Qwn25lmlTW82V0E5ptJxLm79ou6TrIBfT8bBs93OcR/737/cY+vWtRlrunu+X0wYtM6ppZoH3tu3TMk3Y7nfz3X/34XjpVR423yYt07ds9/593YNomVJkaVrLk/E71OGc2lsukTmxtSzX39JomdL5ubHRaBly0DLUa2ffCyjJxz/+8Thx4kT8k3/yT7b8vHvvvTfm5ubO/3PgwIFuFsggLCyvbPgmIiLi4WMLsbC8EhHn3nBc+sZg7XPe/dDjsXhqpfW11kzHwzJqVyXT/Ma0PGy6mE5Js1HLtGmSvW6+TEbLtGmrlv/oyWfiyIErz/+7VqejZbL65skzG/5Sx4iIR44txDdPntnwY7XSMkOweGolvvLMqQ0fMh9Rz9f9tqLl8ZXy9Q7vK7mQlhlVkzPMHGqelodjlH5KuedgfFpmVH117hq+PR0Pw1YNfvrJZ+K6K/ZoonJaZlTjXpNdS7ul5e7V/n5Uo2XSch1q73875sP0Sm65z9c3ezvkU3LLtMu8Wq/m+wMt57DZHrzuij2b/jzyUHvNSsuQg5apUUnvD0q5L9cybWqjuVLaKY2W82hzj5d0HWQ9HQ/Ldj/Hufb7PYZ+fauRlrvl++W0RcuMatJZ4L1tN7RME7b73XxfeeaUZlumZfqW6d6/z3sQLVOKDE1reXJ+hzqcU3vLpTEntpfh+lsiLVM6Pzc2Gi1DDlqGennQ/AV+/dd/PX7wB38wbrjhhi0/7yd/8idjcXHx/D9f/epXO1ohQ7D03NktP37yf3/cFxumo+NhGbWrkml+Y1oeNl1Mp6TZqGXaNMleN18mo2XatF3LZ55/8aJ/1+rktExWJ05vPUcWt/l4bbTMECwsr2zbdg1f99uKlsdXytc7vK/kQlpmVE3OMHOoeVoejlH6KeWeg/FpmVH11blr+PZ0PAyjfF9IE3XTMqMa95rsWtotLXev9vejGi2TlutQe//bMR+mV3LLfb6+2dshn5Jbpl3m1Xo13x9oOYfN9uClf2/hUkPsNSstQw5apkYlvT8o5b5cy7SpjeZKaac0Ws6jzT1e0nWQ9XQ8LOP8fo8hX99qpOVu+X45bdEyo5p0Fnhv2w0t04TtOj9x+qxmW6Zl+pbp3r/PexAtU4oMTWt5cn6HOpxTe8ulMSe2l+H6WyItUzo/NzYaLUMOWoZ67ep7AaX4yle+Er/3e78XH/vYx7b93D179sSePXs6WBVDNHv57i0/fsX//rgvNkxHx8Myalcl0/zGtDxsuphOSbNRy7Rpkr1uvkxGy7Rpu5b37Nq57s+0Ohktk9VLZi7b8uP7tvl4bbTMECw9d3bDe4AL1fB1v61oeXylfL3D+0oupGVG1eQMM4eap+XhGKWfUu45GJ+WGVVfnbuGb0/HwzDq94U0US8tM6pxr8mupd3Scvdqfz+q0TJpuQ61978d82F6Jbfc5+ubvR3yKbll2mVerVfz/YGWc9hsD2b/mUW+TcuQg5apUUnvD0q5L9cybWqjuVLaKY2W82hzj5d0HWQ9HQ/LuL/fY6jXtxppuVu+X05btMyoJp0F3tt2Q8s0YZR7d822S8v0LdO9f5/3IFqmFBma1vLk/A51OKf2lktjTmwvw/W3RFqmdH5ubDRahhy0DPXa+m+zDsgDDzwQ1113XfzQD/1Q30th4Ob3z8TRQ/MbfuzoofmY3z8TEb7YAOMYtauSaR7W08V0MsxGGMUke918gfJs1fIdL78mPvPVE+v+XKvAhV4ysyvuePk1G37sjpdfEy+Z2dXxioBpzV6+Oz7z1RObtn2X97aDVMrXO7yvBCbR5Awzh2Byo/RTyj0H0J6+OncNh3NG/b6QJiC/ca/JrqVkV/v7UY3C5GrvfzvmQ259vr7Z2wHyMK/Wc39A3zbbg1v9zOJQewUAmlXS+wP35QxBG81ph+za3OMlXQdh6Mb9/R6ub7Ax3y8H+jbpLPDeFuoxv38m7trm3l2zkFume3/3IJCjaS1Pzu9QB9pgTmwvw/UXGJ+fGwMAauBB8xHx4osvxgMPPBBvfvObY9cuDxSiX3P7ZuK+uw+vezNx9NB83H/34Zjbd+6NhC82wOhG7apkmof1dDGdDLMRRjHJXjdfoDybtXzny6+Jt9xxc3zoj5666M+1Clzqyn2740d/4NC6X+54x8uviR/9gUNx5T7faIfazO+fiSe+sRRvuePmdW3f+fJr4t433Oa97QCV8vUO7yuBSTQ5w8whmNwo/ZRyzwG0p6/OXcPhnM0avOOC7wtpAoZh3GuyaynZ1f5+VKMwudr73475kFufr2/2doA8zKv13B/Qt8324If+6Kn40R84pFcAoDUlvT9wX84QtNGcdsiuzT1e0nUQhm6Un+Nc4/oGm/P9cqBvk84C722hHnP7ZuLeN9wWd27wO7XecsfN8cQ3ljQLyWW693cPAjma1vLk/A51oA3mxPYyXH+B8fm5MQCgBjtWV1dX+15E3z7xiU/E3/7bfzueeOKJuPXWW8f+3y8tLcXc3FwsLi7G7OxsCytkiBZPrcTC8kqcfO5sXHH57vO/rPxCT584He9+6PF4+NjC+T9be8Nx/ZV7u15y1XQ8DKN0VTLNb0/Lw6OL6ZU4G7VMG8bd6+bL9LRMGy5t+fLdO+Nnfvv/i09+/pvnP0erzdIymXzjxOn4wy/8ZVx3xZ448/yLsWfXzvjmyTPx2luvje9IPjO0TFZPnzgd7/kvn4tXXD8bRw5cGWeefzGu3Ls7brxmX7z0qn19L69xWh5dCV/v8L6SzWiZ7TQ1w8yhdmk5t1H7KeGeg+lome300blr+Hh0nNviqZX4i6Xn4mvfOh0REZ/56on40B89Fd9z41WaSEbLbGeca7JraX+03J2a349qtHxaLlvN/W/HfGhWaS33/fpmbofcSmuZ9plXF+v7+tEULddrsz34f999OPbOXKbXgdEy5KBlalLK+4MS78u1TBuabq7Edkqj5bq1vcdLuQ6yNR0Pw4U97p25LB47fiJ+7nf/LE6tvBARrm8ZaLl9fd8buq4Og5bZziSzoO/5NURaZhpf/9ap+Mozp+LE6bOxZ9fO+MxXT8QT31iKn/17r9Zsx7RMX7Lc+5dyD6Jl+lZ701qejt+hDherteWSmBOjqf36WzotUyo/NzYeLUMOWoZ6eNB8Aww9+uSLDc3QMbXQ/Na0PEy6yEfLlMJ8mY6W6YpW26VlshnqzNAymQ2pay3XZ0j7k9FpmS6ZQ+3Rcn76GQYtUyozaHQ6HgZN5KdlmmZu9EPLjEqjZdMyfTIfmlNiy15fGF+JLUPXMlw/tFy3DHuQZmgZctAyTKa0eyItU4vS2imNlutnj6PjYdJ+PlruhnZom5Zpi/nVLS0zLc2WQcswvRLmmZZhelruVgnnG9oypJbbZE7QNy0zJJlnrpYhBy1DPXb1vQDg2zf4S8+djdm9u2P+JaPf4M/ty/NmAEo2TadN0jxdKmXfb0cXwLhGnW/mC9RhklZruc+BoWqzUdd3auJ6NRpdX8y+KYv9CfStyTnkGsPQdHEd1xWw2RzwXgIutlkTrqUwDJO07loKZSuxUfcV43G+aEuJ8yGzrlv2+gIwiY2uH+5HGUVT+8Q9DABQui7uj90TUbpS3ydqpzyl7pVa2eMwTFnad02ga020Y98Cbdvq7zgB5XOvAGSaA+5BGIJMzW5Gy/1YjYjY0fcqYDhqmufmMkBztpv/Zi4A0BQPmoeePX3idLzrocfjkWML5//s6KH5uO/uw3HDlXt7XBmwRqcMkX0PZGW+AeYAlE2jcI4WmIR9A0BbXGOgeboCzAGYjoZgGLQOdMGsGY/zBTloGYBauYYxCvsEABgK9z2gA0ZnrwCwxjWBGtm3QNvMGaibhgFzAOqiWZpmT0E/tAcwTOY/ANClnX0vAIZs8dTKupv/iIiHjy3Eux96PBZPrfS0MmCNThki+x7IynwDzAEom0bhHC0wCfsGgLa4xkDzdAWYAzAdDcEwaB3oglkzHucLctAyALVyDWMU9gkAMBTue0AHjM5eAWCNawI1sm+BtpkzUDcNA+YA1EWzNM2egn5oD2CYzH8AoGseNA89WlheWXfzv+bhYwuxsOwNAPRNpwyRfQ9kZb4B5gCUTaNwjhaYhH0DQFtcY6B5ugLMAZiOhmAYtA50wawZj/MFOWgZgFq5hjEK+wQAGAr3PaADRmevALDGNYEa2bdA28wZqJuGAXMA6qJZmmZPQT+0BzBM5j8A0DUPmoceLT13dsuPn9zm40D7dMoQ2fdAVuYbYA5A2TQK52iBSdg3ALTFNQaapyvAHIDpaAiGQetAF8ya8ThfkIOWAaiVaxijsE8AgKFw3wM6YHT2CgBrXBOokX0LtM2cgbppGDAHoC6apWn2FPRDewDDZP4DAF3zoHno0ezlu7f8+BXbfBxon04ZIvseyMp8A8wBKJtG4RwtMAn7BoC2uMZA83QFmAMwHQ3BMGgd6IJZMx7nC3LQMgC1cg1jFPYJADAU7ntAB4zOXgFgjWsCNbJvgbaZM1A3DQPmANRFszTNnoJ+aA9gmMx/AKBrHjQPPZrfPxNHD81v+LGjh+Zjfv9MxysCLqVThsi+B7Iy3wBzAMqmUThHC0zCvgGgLa4x0DxdAeYATEdDMAxaB7pg1ozH+YIctAxArVzDGIV9AgAMhfse0AGjs1cAWOOaQI3sW6Bt5gzUTcOAOQB10SxNs6egH9oDGCbzHwDomgfNQ4/m9s3EfXcfXvcm4Oih+bj/7sMxt88bAOibThki+x7IynwDzAEom0bhHC0wCfsGgLa4xkDzdAWYAzAdDcEwaB3oglkzHucLctAyALVyDWMU9gkAMBTue0AHjM5eAWCNawI1sm+BtpkzUDcNA+YA1EWzNM2egn5oD2CYzH8AoGs7VldXV/teRO2WlpZibm4uFhcXY3Z2tu/lUKHFUyuxsLwSJ587G1dcvjvm98+4+e+YjtmOTuug5WbZ9/RFy7TNfOuGlimZOTA6LdMHjTZPy3XSApcapWX7BsrnukytXGMupmWaoKv+aZm+mQPT0/GwaSgPLbMVrddDy9TMrPk234+CHLQMObjHho3Vdg3Tcj9q2yeUT8uQg5bJaIj3PVrmUkPsIIM+WrZXoFmuydTMNeHbtFwP+5ataJkmmDP90zLT0HA5tExfzIFmaZm2abYbQ2rZniKzklvWHoyu5JZhXEOe/1qGHLQM9djV9wKAiLl9w7nhh1rplCGy74GszDfAHICyaRTO0QKTsG8AaItrDDRPV4A5ANPREAyD1oEumDXjcb4gBy0DUCvXMEZhnwAAQ+G+B3TA6OwVANa4JlAj+xZomzkDddMwYA5AXTRL0+wp6If2AIbJ/AcAurKz7wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADI0HzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICOedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMc8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYx40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCxXX0vAEqzeGolFpZXYum5szG7d3fMv2Qm5vbN9L0sqIJ+oEzaBCZlfkAOWgaYnlkKmANcyH6AHLQMZdAi0CYzhjbYV0AfzB6ysJeBbMw1mJ6OgGmZI2RgHwMA1M89HZnZ39ANrQHjMjdgPV0AXTJzIActA5MyP6BM2oStaQQonTkFdMnMAQBK50HzcIGnT5yOdz30eDxybOH8nx09NB/33X04brhyb48rg/LpB8qkTWBS5gfkoGWA6ZmlgDnAhewHyEHLUAYtAm0yY2iDfQX0wewhC3sZyMZcg+npCJiWOUIG9jEAQP3c05GZ/Q3d0BowLnMD1tMF0CUzB3LQMjAp8wPKpE3YmkaA0plTQJfMHACgBjv7XgCUYvHUyrob+IiIh48txLsfejwWT630tDIon36gTNoEJmV+QA5aBpieWQqYA1zIfoActAxl0CLQJjOGNthXQB/MHrKwl4FszDWYno6AaZkjZGAfAwDUzz0dmdnf0A2tAeMyN2A9XQBdMnMgBy0DkzI/oEzahK1pBCidOQV0ycwBAGqxq+8FQCkWllfW3cCvefjYQiwsr8TcvpmOVwV10A+USZvApMwPyEHLANMzSwFzgAvZD5CDlqEMWgTaZMbQBvsK6IPZQxb2MpCNuQbT0xEwLXOEDOxjyOn48eOxsLBx2yWYn5+PgwcP9r0MgDTc05GZ/Q3d0BowLnMD1tMF0CUzB3LQMjAp8wPKpE3YmkaA0plTQJfMHACgFh40T9UWT63EwvJKLD13Nmb37o75l8xMfKO99NzZLT9+cpuPQxaTdKUfKNMQ2mzyXgA4Z/HUSpx5/oX4Dz9ye1y++7J47Pi34kN/9FScWnnh/OdkmB/QplKuT0O4FwDyMkuBtow7X8wBLnTpftg3c1m89c6b48iBK+PM8y/GyvMvxOIpPxQGfRl1xpvtUIbNWly7vp55/oX4zPFv+f4PVKKUr+Wscb3nUk3sUfsK2E4b10Ozhyy63sul3Z8C+Vw41y79ftHluy+LF1dXe1wd1MH9ATAt32sig6avh6530L/jx4/HK1/5XXH69Km+l7KpvXv3xZ//+ec9bB5gChfed+3ZtTPe8QMvX/f3sNf4fh5N6Ote3/eryaCG98paA8bl+9Ww3vKZs/GOH3j5RS1c+DuzXE+hXTXcdzfJPTz0o+lZo2XIo+t7EfMD2jNNz9qE9fxsA9Am79OBJvi5OACArXnQPNV6+sTpeNdDj8cjxxbO/9nRQ/Nx392H44Yr947935u9fPeWH79im49DBpN2pR8oU/Y2m74XADbu6o6XXxP/7p4j8WMPfub8DwLUPj+gTSVdn7LfCwB5maVAWyaZL+YAF7pwP+ybuSz+3T1H4oFPPxUf+IMnz/+5r09BP8aZ8WY7lGGjFl1foU4lfS1njes9F2pqj9pXwFbauh6aPWTR5V4u8f4UyGdtrm329ay7Ds3H/eYObMn9ATAt32sigyavh653UIaFhYU4ffpUfN9b3xOz19/U93LWWfrGl+N/fui9sbCw4EHzABMa9e9hr/H9PKbV572+71dTu1reK2sNGJfvV8N6c3tn4jPHv3VRCxe+V3M9hfbUct/dJPfw0L02Zo2WIYc+7kXMD2jHtD1rEy7mZxuANnmfDjTBz8UBAGxvZ98LgEksnlpZd7MfEfHwsYV490OPx+KplbH/m/P7Z+LoofkNP3b00HzM75+ZaK1Qi2m60g+UKXObbdwLwNBt1tWnn3wmHvj0U/HWO2+OiPrnB7SptOtT5nsBIC+zFGjLpPPFHOBCF+6Ht955czzw6afi008+c9Hn+PoUdG/cGW+2Qxk2atH1FepT2tdy1rjes6bJPWpfAZtp83po9pBFV3u51PtTIJ+1ubbZ17MeMXdgW+4PgGn5XhMZNHU9dL2D8sxef1NcffAVxf0ze/1NfZ8agKqN+vew1/h+HtPq+17f96upWd/9jENrwLh8vxoutnhqJf7txz+3roW192r/9vXf7XoKLanpvrtJ7uGhW23NGi1D/fq6FzE/oHlN9KxN+DY/2wC0yft0oAl9f3/BzAEAauFB81RpYXll3c3+moePLcTC8vg3/HP7ZuK+uw+vu5E/emg+7r/7cMztcxNPbtN0pR8oU+Y227gXgKHbqqtPP/lMHDlwZYr5AW0q7fqU+V4AyMssBdoy6XwxB7jQhfvhyIEr1/3iiTW+PgXdGnfGm+1Qho1adH2F+pT2tZw1rvesaXKP2lfAZtq8Hpo9ZNHVXi71/hTIZ22u/c2XXePrWTAh9wfAtHyviQyauh663gEAdGOUv4e9xvfzaELf9/q+X03N+u5nHFoDxuX71XCxheWVeOTJzd+r3X7wStdTaElN991Ncg8P3Wpr1mgZ6tfXvYj5Ac1romdtwrf52QagTd6nA03o+/sLZg4AUItdfS8AJrH03NktP35ym49v5oYr98b77zkSC8srcfK5s3HF5btjfv+MG3gGYdqu9ANlytpmW/cCMGTbdTW3d3e8/54j1c8PaFOJ16es9wJAXmYp0JZp5os5wIXW9sMXvrm85ef5+hR0Z5IZb7ZDGS5t8eyLq1t+vusrlKfEr+Wscb0novk9al8BG2n7emj2kEUXe7nk+1Mgnxuu3Bt/sXh6y88xd2Br7g+AafleExk0cT10vQMA6MYofw/742/7m76fR2NKuNf3/WpqVUI/49AaMC7fr4Zv2+66f3rlhY5WAsNT2313k9zDQ3fanDVahrr1eS9ifkCzmupZm3COn20A2uR9OtCEEr6/YOYAADXwoHmqNHv57i0/fsU2H9/K3D437QxTE13pB8qUsc027wVgqLbr6qqEswSaVur1KeO9AJCXWQq0Zdr5Yg5wobl9M3H1NvvB16egO5POeLMdynBhi1/85vKWn+v6CuUp9Ws5a1zvaWOP2lfApbq4Hpo9ZNH2Xi79/hTIZ26v7xfBtNwfANPyvSYymPZ66HoHANCNUf4e9i3X7e9oNQxBKff6vl9NjUrpZxxaA8bl+9VwTo3Xfchi6P25h4dutD1rtAz16vtexPyA5jTZszbBzzYA7fI+HWhC3+/p15g5AEDpdva9AJjE/P6ZOHpofsOPHT00H/P73YTDuHQF1MTMgubpCqanI4DpmaVAW8wXmmZPQTn0CHnoGeqjW0pnjwJdMGugHHoEumbuQPl0CsOieYbK3gcA6Ib7Lrpmz8Hk9AMMgVkH52gB+qM/oAtmDbAZ8wHy0DM0S1NAm8wYoAlmCQDAaDxonirN7ZuJ++4+vO6m/+ih+bj/7sMxt88NP4xLV0BNzCxonq5gejoCmJ5ZCrTFfKFp9hSUQ4+Qh56hPrqldPYo0AWzBsqhR6Br5g6UT6cwLJpnqOx9AIBuuO+ia/YcTE4/wBCYdXCOFqA/+gO6YNYAmzEfIA89Q7M0BbTJjAGaYJYAAIxmx+rq6mrfi6jd0tJSzM3NxeLiYszOzva9nEFZPLUSC8srcfK5s3HF5btjfv+Mm30mouNv0xU10/LwmFk5ablfuqIpQ25ZR2Qy5Jbpl1naLC3Dt9U8X7Rcppr3FP3Qcnv0SJe03C490xUtN0e39GXUju1RKFuWa7JZw9CV1LIeYXIltVwTc4fSaHk9nVIjLU9O85Sky5btfWjPqC0/9thj8ZrXvCZe99MPxNUHX9HhCkfz7PEn4pO/8JZ49NFH4/bbb+97OdA599g0xX1Xv4bYsj1HRl21rB9ozxCvyaUy65hGppa1wJD13bL+oBl9t1w6s4ZaaLl75gNt0HI/9EzTht6ypshi6C2XyoxhXFpmI2ZJfbQMOWgZ6rGr7wXANOb2ucGHpukKqImZBc3TFUxPRwDTM0uBtpgvNM2egnLoEfLQM9RHt5TOHgW6YNZAOfQIdM3cgfLpFIZF8wyVvQ8A0A33XXTNnoPJ6QcYArMOztEC9Ed/QBfMGmAz5gPkoWdolqaANpkxQBPMEgCAre3sewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ+NB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI550DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DEPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZB8xHx9a9/Pd70pjfFNddcE3v37o3bbrst/tf/+l99LwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIalffC+jbt771rbjjjjvita99bfzX//pf49prr41jx47FVVdd1ffSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKQG/6D5+++/Pw4cOBAPPPDA+T+7+eabe1wRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkN3OvhfQt9/+7d+O7/me74k3vvGNcd1118WRI0fiP/7H/9j3sgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDEdvW9gL596Utfig9+8IPxzne+M37qp34q/vRP/zR+7Md+LGZmZuLNb37zhv+bM2fOxJkzZ87/+9LSUlfLBRqiY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQr519L6BvL774Ytx+++3xvve9L44cORL/4l/8i/jn//yfx6/+6q9u+r+59957Y25u7vw/Bw4c6HDFQBN0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnqp2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoX46hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnqtWN1dXW170X06cYbb4zXve518Z/+0386/2cf/OAH4+d//ufj61//+ob/mzNnzsSZM2fO//vS0lIcOHAgFhcXY3Z2tvU1A9PTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWon44hBy1DDlqGHLQMOWgZctAy5KBlyGHSlh977LF4zWteE6/76Qfi6oOv6GKpY3n2+BPxyV94Szz66KNx++23970caJ3rMuSgZchBy1A/HUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM9drV9wL6dscdd8QTTzxx0Z994QtfiBtvvHHT/82ePXtiz549bS8NaJGOIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP9dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1E/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUO9dva9gL79m3/zb+JP/uRP4n3ve188+eST8Ru/8Rvxa7/2a/H2t7+976UBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASQ3+QfPf+73fG7/1W78VDz74YLz61a+On/u5n4tf+ZVfiR/5kR/pe2kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAUrv6XkAJXv/618frX//6vpcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMTOvhcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDQeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMQ+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGMeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMQ+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2r8kHzP/uzPxunTp3qexkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE9nV9wIm8d73vjf+5b/8l7Fv376+lwIAAAAAAAAAAAAAAAAAAAAAAL05fvx4LCws9L2MTc3Pz8fBgwf7XgYAAAAAAAAAAAAAAABAkap80Pzq6mrfSwAAAAAAAAAAAAAAAAAAAAAAgF4dP348XvnK74rTp0/1vZRN7d27L/78zz/vYfMAAAAAAAAAAAAAAAAAG6jyQfMRETt27Oh7CQAAAAAAAAAAAAAAAAAAAAAA0JuFhYU4ffpUfN9b3xOz19/U93LWWfrGl+N/fui9sbCw4EHzAAAAAAAAAAAAAAAAABuo9kHzt95667YPm3/22Wc7Wg0AAAAAAAAAAAAAAAAAAAAAAPRj9vqb4uqDr+h7GQAAAAAAAAAAAAAAAACMqdoHzb/3ve+Nubm5vpcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMLZqHzT/j/7RP4rrrruu72UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjG1n3wuYxI4dO/peAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDEqnzQ/OrqqofNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANXa1fcCJvHmN7853vWud237eR/60Ic6WA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAeKp80Px//s//OW688cY4cuRIrK6u9r0cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLFU+aD5f/Wv/lU8+OCD8dRTT8Vb3vKWeNOb3hRXX31138sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGMnOvhcwiX//7/99fOMb34if+ImfiN/5nd+JAwcOxD/8h/8w/vt//++xurra9/IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtlTlg+YjIvbs2RP33HNPfPKTn4w/+7M/i1e96lXxtre9LW666aZYXl7ue3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAm6r2QfMX2rlzZ+zYsSNWV1fjhRde6Hs5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFuq9kHzZ86ciQcffDBe97rXxa233hqf/exn4wMf+EAcP3489u/f3/fyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADa1q+8FTOJtb3tbfPSjH40DBw7EW9/61njwwQdjfn6+72UBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjKTKB83/6q/+ahw8eDBe9rKXxac+9an41Kc+teHnfexjH+t4ZQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbq/JB8//4H//j2LFjR9/LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhIlQ+a//CHP9z3EgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmtrPvBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMjQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI550DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LHBP2j+Z37mZ2LHjh0X/fPKV76y72UBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAie3qewEleNWrXhW/93u/d/7fd+1yWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID2eKJ6nHuw/Hd8x3f0vQwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgIDxoPiKOHTsWN9xwQ1x++eXxN/7G34h77703Dh48uOnnnzlzJs6cOXP+35eWlrpYJtAgHUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG+ukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZaifjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGeu3sewF9+77v+7748Ic/HP/tv/23+OAHPxhPPfVU3HXXXXHy5MlN/zf33ntvzM3Nnf/nwIEDHa4YaIKOIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP9dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1E/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUO9dqyurq72vYiSnDhxIm688cb45V/+5fin//Sfbvg5Z86ciTNnzpz/96WlpThw4EAsLi7G7OxsV0sFpqBjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1A/HUMOWoYctAw5aBly0DLkoGXIQcuQw6QtP/bYY/Ga17wmXvfTD8TVB1/RxVLH8uzxJ+KTv/CWePTRR+P222/vezm0wB68mOsy5KBlyEHLUD8dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz12tX3Akpz5ZVXxq233hpPPvnkpp+zZ8+e2LNnT4erApqmY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQr519L6A0y8vL8cUvfjGuv/76vpcCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJDX4B83/+I//eHzqU5+KL3/5y/E//sf/iDe84Q1x2WWXxT333NP30gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICkdvW9gL597Wtfi3vuuSeeeeaZuPbaa+POO++MP/mTP4lrr72276UBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASQ3+QfMf/ehH+14CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDA7+14AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNB40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBjHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DEPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgI7t6nsB0LTFUyuxsLwSS8+djdm9u2P+JTMxt2+m72VBaroDmIz5SQnsQ2iGlgCaZ7ZCf/QH5dElQ2GvA00wS6A7eiMD+xhokxkDzdMVwHjMTeiO3oAmmSkMgX0OAOCeiMnZO9A+nQG0z6xlWvYQ1Ee3QJPMFKiPboGNmA2Qj64BymIu0yX7DQCgOR40TypPnzgd73ro8Xjk2ML5Pzt6aD7uu/tw3HDl3h5XBnnpDmAy5iclsA+hGVoCaJ7ZCv3RH5RHlwyFvQ40wSyB7uiNDOxjoE1mDDRPVwDjMTehO3oDmmSmMAT2OQCAeyImZ+9A+3QG0D6zlmnZQ1Af3QJNMlOgProFNmI2QD66BiiLuUyX7DcAgGbt7HsB0JTFUyvr3ixERDx8bCHe/dDjsXhqpaeVQV66A5iM+UkJ7ENohpYAmme2Qn/0B+XRJUNhrwNNMEugO3ojA/sYaJMZA83TFcB4zE3ojt6AJpkpDIF9DgDgnojJ2TvQPp0BtM+sZVr2ENRHt0CTzBSoj26BjZgNkI+uAcpiLtMl+w0AoHkeNE8aC8sr694srHn42EIsLHvDAE3THcBkzE9KYB9CM7QE0DyzFfqjPyiPLhkKex1oglkC3dEbGdjHQJvMGGiergDGY25Cd/QGNMlMYQjscwAA90RMzt6B9ukMoH1mLdOyh6A+ugWaZKZAfXQLbMRsgHx0DVAWc5ku2W8AAM3zoHnSWHru7JYfP7nNx4Hx6Q5gMuYnJbAPoRlaAmie2Qr90R+UR5cMhb0ONMEsge7ojQzsY6BNZgw0T1cA4zE3oTt6A5pkpjAE9jkAgHsiJmfvQPt0BtA+s5Zp2UNQH90CTTJToD66BTZiNkA+ugYoi7lMl+w3AIDmedA8acxevnvLj1+xzceB8ekOYDLmJyWwD6EZWgJontkK/dEflEeXDIW9DjTBLIHu6I0M7GOgTWYMNE9XAOMxN6E7egOaZKYwBPY5AIB7IiZn70D7dAbQPrOWadlDUB/dAk0yU6A+ugU2YjZAProGKIu5TJfsNwCA5nnQPGnM75+Jo4fmN/zY0UPzMb9/puMVQX66A5iM+UkJ7ENohpYAmme2Qn/0B+XRJUNhrwNNMEugO3ojA/sYaJMZA83TFcB4zE3ojt6AJpkpDIF9DgDgnojJ2TvQPp0BtM+sZVr2ENRHt0CTzBSoj26BjZgNkI+uAcpiLtMl+w0AoHkeNE8ac/tm4r67D69703D00Hzcf/fhmNvnDQM0TXcAkzE/KYF9CM3QEkDzzFboj/6gPLpkKOx1oAlmCXRHb2RgHwNtMmOgeboCGI+5Cd3RG9AkM4UhsM8BANwTMTl7B9qnM4D2mbVMyx6C+ugWaJKZAvXRLbARswHy0TVAWcxlumS/AQA0b1ffC4Am3XDl3nj/PUdiYXklTj53Nq64fHfM75/xZgFapDuAyZiflMA+hGZoCaB5Ziv0R39QHl0yFPY60ASzBLqjNzKwj4E2mTHQPF0BjMfchO7oDWiSmcIQ2OcAAO6JmJy9A+3TGUD7zFqmZQ9BfXQLNMlMgfroFtiI2QD56BqgLOYyXbLfAACa5UHzpDO3zxsE6JruACZjflIC+xCaoSWA5pmt0B/9QXl0yVDY60ATzBLojt7IwD4G2mTGQPN0BTAecxO6ozegSWYKQ2CfAwC4J2Jy9g60T2cA7TNrmZY9BPXRLdAkMwXqo1tgI2YD5KNrgLKYy3TJfgMAaM7OvhcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDQeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMQ+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA65kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDHPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGMeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMQ+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjYrr4XAAAAAAAAAAAAAAAAAAAAAAAAJTp+/HgsLCz0vYxNff7zn+97CQAAAAAAAAAAAAAAAABMwYPmAQAAAAAAAAAAAAAAAAAAAADgEsePH49XvvK74vTpU30vZVtnz6z0vQQAAAAAAAAAAAAAAAAAJuBB8wAAAAAAAAAAAAAAAAAAAAAAcImFhYU4ffpUfN9b3xOz19/U93I29I3P/nF87rd/LZ5//vm+lwIAAAAAAAAAAAAAAADABDxoHgAAAAAAAAAAAAAAAAAAAAAANjF7/U1x9cFX9L2MDS1948t9LwEAAAAAAAAAAAAAAACAKXjQPI1YPLUSC8srsfTc2ZjduzvmXzITc/tm+l4W0CLdA+MwM2B0eoH66Rhy0jbUS78A/TKHibAPIAstQ900DN3RG+SmcaifjgFok+sMQ2Tfw+j0Au3SGADk4/oOzdASsB1zAvLRNVnYy8C4zA3onw5hWDQP9dEtkIV5BrloGpqjJwCAHDxonqk9feJ0vOuhx+ORYwvn/+zoofm47+7DccOVe3tc2bd5AwPTW+to+czZmNs7E//245+LR54st3ugHDXcK5TGvctwddmLfQbtGLVjDUJd3NOOxmyjRPrNx6yBuvQ1h82KsvR9PbYfoBl9tzwu7cPF+m5YkwxJW73pCMowTuO6hTI1ea3WOTB05uB6fX8NhvxK7M6+p2ZdN6UXaFdTjZV4vQWAoSrxHtq9AjXaqKW7Ds3HvW+4Lb7z6n09rgwoRYnXXLbmnoTt6Hp8uirTpHvZ6wnDtdl74J/5P18VOyLiGvMAWlf6vaj7BGiWv2cF9Wn7Wq11oCvuQ2AypfZQ+tcToCbT9FTqjAAAGCoPmmcqi6dW1r05iIh4+NhCvPuhx+P99xzp/YbfFwRgehd29I4feHl85vi34tNPPnPR55TUPVCOGu4VSuPeZbi67MU+g3aM2rEGoS7uaUdjtlEi/eZj1kBd+prDZkVZ+r4e2w/QjL5bHpf24WJ9N6xJhqSt3nQEZRincd1CmZq8VuscGDpzcL2+vwZDfiV2Z99Ts66b0gu0q6nGSrzeAsBQlXgP7V6BGm3W0iPHFuLdH3s87r/7cLz0Kg+bhyEr8ZrL1tyTsB1dj09XZZp0L3s9Ybi2eg/8f/2Xz8WRg1fF4189YR5Ai0q/F3WfAM3y96ygPm1fq7UOdMV9CEym1B5K/3oC1GSankqdEQAAQ7az7wVQt4XllXVvDtY8fGwhFpZXOl7RxbZ7A7N4qt/1QQ0u7ejIgSvXPWR+TQndA2Up/V6hNO5dhq2rXuwzaM8oHWsQ6uOedntmG/8/e/8epGdW34e+P91aUk9LLZg2mHFmzIQRsdlEgzCJY2ZGwY5TDht7G0fFPmdMisvYqfJJ2MShXGHY8Q1vXAwncYUA9kkqhMGusnGSMwecs+OqUxwTSoPscsxcjkziiwQCEc+YoeVRt3pa0quR+vyhtKav7/W5rLWez6eKKqbflvS8z7u+37XW877dT6rktyy6BvLTRg/rivS0OR8bD1CdnNbWsg+bmY+hOXXkTY4gHcNmXG4hXVXN1XIOdJ0e3FpO11HJT6q5M+7JVRuZkheoVxUZS3W+BYCuSm0Nba1Arvpl6QtnzsfXzi8bv9Bxqc259GdNwjDkejRyla5xxrLXE7qtX2+cPHM+jt5+SB9AzVJei1onQPX8nBXkp865WtaBJlmHwOhSzkPK1xMgN+PmKeWOAADost1tHwB5W7x8te/jFwc8PomF5V7ML/Vi8fLVOLh/T8zdMhWz01PrvmeYDczGPwOstzFHV56/3vf7n12+cfNM2QIiqlkrDDPnl8LapduaWltvNc6mp3bFA/feGUdvPxR/+sxSvPiWqaKzBnUZNsejdn2X5kJIUZvXv+pUZbdYx5KqUvObE10D3dZGD/frii9+7dm4sHzV/qphbc7HF5avxjte//K4/6/fEfv27IrHzz0bn/jC2VjuXTN3wIhS/2zIWtaNsNmkGZ5kbyeTlGLYHNQxZ8oRpGNQxp9d7sUT556N/VO74u7bD8VjX3s2lnvX1n2P3EK7qpqrXXcCuq6r+5RBe0OfUaBOTeeuzWsh0ITzz/Xi7tsPxTte//K48vz1dev6uuYyeYF6VZGxceZbP+sBAPVp8/MuW+nqNTGq1cb6cVCWLly6avxCx7lulabt5gxrEoaRS65TubYmV+kaZyxvfD3X/k6tK89fj6cXL0dEeE2hUIN6Y/X36J44PR/nn7txU5wU5iIoScpr0fmlXjz2tWfjXd931821wdrPi1j3weiGzfygfZd5GZpT53uwrrEATapqHaKbBkvlWj6TSzkPgzJ9/rlexDeXjD8Ywrh5SrkjAAC6zI3mmcjBfXv6Pn5gwOPjeurCpXjvI6fWbTKOHZ6Lh44fidsO7b/5tZQ/YAC52Jijvbt39v3+hUtX43/71BOb8gh006RrhWHn/FJYu3RbU2vrjeNsempXfOT+o/HwybPxsc+dufn1krMGdRkmx6N2fdfmQkhRW9e/6lR1t1jHkqoS85sTXQO00cPbdcXq9Y+f/swfxqNnzt/8uv1V/dp8P3nj633PXbfGR+4/Gu/+1BOx3Ltm7oARpP7ZkLWsG2GzSTI86d5OJinBKDmoY86UI0jHoIwvXLoaP/arX4yIzXvQteQW2lPFXO26E0A39ynD7A19RoE6NZm7tq+FQBNWIuKJc8+u+/mJtev6OuYyeYF6VZExP+sBAGlp8/MuW+niNTGq1db6cVCW9u7eafxCx7lulZ5+c8bSFWsSBssh1yldW7PWT9c4Y3nt6+l3akH3DLMHjrjRDysR8a5PPZHEXAQlSXktunTl6pZrg9XPizw3YL8FbDZs5vvtu8zL0Kw634N1jQVoUhXrkAjdNEhK1/KZXMp5GJTpi5evxv/6r3/P+IMhjJunlDsCAKDL+t8tGAaYm5mKY4fntnzs2OG5mJuZqvzfXFjubbqgFBFx4vR8PPjIqVhY7t38WsofMIBcbMzRE1+/EPfcdeuW33vPXbfGE1+/sGUegW6aZK0wypxfCmuXbmtqbb1xnD1w753x8MmzcXLNLz+OKDtrUJdhcjxK13dxLoQUtXH9q051dIt1LKkqLb850TVARDs9vF1XrF7/eNT1j8a1+n7yhtf75Jnz8fDJs/HAvXdGhLkDRpH6Z0PWsm6EzcbNcBV7O5kkd6PmoI45U44gHf0yvvrZyVUb96BryS20Z9K52nUngBu6tk8Zdm/oMwrUqancpXAtBOq2sNyLn/+tL236+Ym16/o65jJ5gXpVkTE/6wEAaWnz8y5b6do1MarV5vpxbmYq7hvwPrfxC93mulVaBs0Zh/b3fz10OhHp5zq1a2vW+ukaZyyvfT39Ti3onmE/6/3AvXfGz//Wl5KZi6AkKa9FD+2f2nJtsPp5kdkB+y1gs2Ez32/fZV6GZtX5HqxrLECTqliHROimflK7ls/kUs7DsNf1jD8YbNw8pdwRAABd5kbzTGR2eioeOn5k0ybh2OG5+NDxIzE7Xf2b5PNLvU0XlFadOD0f80svbOpT/oAB5GJjjj7xhbPxznvu3HSz+XvuujXeec+d8YkvnI2IzXkEummStcIoc34prF26ram19cZxdvT2Q5s+9Lqq1KxBXYbJ8Shd38W5EFLUxvWvOtXRLdaxpKq0/OZE1wAR7fTwdl3h+kd7Uns/+eSZ83H09kPmDhhRalnu193WjbDZuBmuYm8nk+Ru1BzUMWfKEaRju4xv/OzkqtU96FpyC+2adK523Qnghq7tU4bdG/qMAnVqKncpXAuBus0v9eLRbT4/cPLM+Xj9X761lrlMXqBeVWTMz3oAQFra/LzLVrp2TYxqtbl+nJ2eig/+yF+Ne7f5HUF/8vSi8Qsd57pVWgbNGb1r161JGCj1XKd2bc1aP13jjOW1r6efKYXuGfaz3q//y7du+56xfoDJpLwW7V27vu3a4OSZ89G7dr3hI4L8DZv5fvsu8zI0q873YF1jAZpUxTpEN/WX2rV8JpdyHkb5HQ7GH/Q3bp5S7ggAgC7b3fYBpOahhx6K973vffGP/tE/ig9/+MNtH04Wbju0Pz56/9GYX+rFxctX48C+PTE3M1Xbm/eLl6/2ffzimsdXNzAPPnIqTqy5EJXCBwwgFxtztNy7Fu/+1BPxMz/4qvjf/+fvjK+dX469u3fGE1+/EO/+1BOx3Lt2889eHJBXoBvGXSuMMueXwtqFJtbWG8fZlef7f7C1xKxBnQbleJSu7+JcCKlq+vpXneroFutYUlZSfnOia4BVTffwdl0xiP1VvVJ7PzkizB0whtSyvF13WzfC1sbJcBV7O5kkd+PkoOo5U44gLRszPrV7Z/z2l/5802cnV639TIbcQhommatddwK4oWv7lFH2hj6jQF2ayl0K10KgboPG+d49O2sbv/IC9Zo0Y37WAwDS09bnXbbStWtiVKvt9eNfevF0fOj4kfja+eW4cOnqzd8R9O/+y7n4hR9+tfELuG6VkEFzxnNXnrcmYSgp57rttdFG1vppG3Usr309/U4t6Ka1vXHhUi+uXL0ev/uV8zc/633s8Fzs3b2z79+hH2Ayqa5Fl6483/fx5wY8DmxtmMz323eZl6F5db0H+4qXzLjGAjRq0nWIbuovtWv5TC71PKzN9PnnbuR6q/tfRRh/MMg4eUq9IwAAusqN5tf4gz/4g/jX//pfx5EjR9o+lOzMTjf3hv3BfXv6Pn5gw+OpfsAAcrJdjuaXevEPfv3xbf/cxjwC3TXOWmHUOb8U1i40sbZeO86uPL/5F52vVWrWoE6Dcjxs13d1LoRUNXn9q051dYt1LCkrJb850TXAWk338FZdcX1lpe+fsb+qX0rvJ9/x4ul42aH9jRwLlCalLPfrbutG2NqoGa5qbyeT5GzcHFQ9Z8oRpGVtxr/8zFJ87HNntv3evzx3S3zmH7xebiEx487VrjsBvKBL+5RR94Y+o0BdmshdKtdCoE6Dxvmh/fWOZXmBek2aMT/rAQDpaevzLlvp0jUxqpXC+vHbXjQdM3t33xy/P/Kab4u5e+80foGbXLdKwzBzhjUJw0o11ymsjTaSq7SNOpZXX8+nFy73/T7XcaFca3tjYbkXLz24L77/O16y7nfo9qMfYHIprkVTXIdCKYbJfL/fbd+PbEI96noP1jUWoGmTrEN0U3/2UGVKPQ83M/3MUvyv//r3tv0+4w8GGydPqXcEAEAXudH8/7C0tBRvfetb49/8m38TH/jAB9o+HPqYm5mKY4fn4sTp+U2PHTs8F3MzmzcYKX7AAHKzXY5GzSPAsMaZ80th7UITVsfZwnKvs1mDNg3T9V2eC4H61Nkt1rHAKl0DtG1jV7j+0S2D5qGXHNjbwlEBo5p0TWndCJOrcm8nk+Qqpfdq5AjSNKgnXja7T3ahIK47AazXlX1KSntDqDt3xjtdYJwDg/hZDwDIW93zdFeuiVGtVNaPxi9A+oadM3Q6OUtlbbSRXJVl9bVMcawBzfI7dIFVqa5DoUvMy5CvUeZR11iAFOmm0dlDlSuHPBh/UJ1R85RDRwAAdMnOtg8gFf/wH/7DeNOb3hTf//3fP/B7r1y5EouLi+v+R3Nmp6fioeNH4tjhuXVfP3Z4Lj50/IgNB0OR42rII22T5bLpmO6Q5XbJGlWR5erJJ22Q5fLplm6QZdqma6ohy1CdNntJlptnHqIOstw8WaYOsjwaOSRFTedYDqAeJc3JeoIuKynLw5J5StTFLMOocuh/WaYqOYz3kslyM4xz6ibL3aBLyifLUAZZ7ibzdHlKyLJxCWVkGZqQ8pwhx1Ql5XHeBV3KsrFGybqU5TroB1Ihy82Sfeoiy5ORTVIhy/3JKrmQZaiO39lHm6w9yiDLaZAnJiXLUAZZhnztbvsAUvCbv/mb8fjjj8cf/MEfDPX9H/zgB+P9739/zUdFP7cd2h8fvf9ozC/14uLlq3Fg356Ym5myAWFoclwdeaRNslw+HdMNstw+WaMKslwP+aRpstwNuqV8skwKdM3kZBmq1VYvyXI7zENUTZbbIctUTZZHJ4ekpo0cywFUr7Q5WU/QVaVleVgyT2m6mmUYVer9L8tUKfXxXjJZbo5xTp1kuTt0SdlkGcogy91lni5LKVk2Lum6UrIMTUh1zpBjqpTqOO+CrmXZWKNUXctyHfQDKZDl5sk+dZDlyckmKZDlwWSVHMgyVMvv7KNN1h75k+V0yBOTkGUogyxDvnasrKystH0Qbfr6178er3vd6+Kzn/1sHDlyJCIi3vCGN8RrXvOa+PCHP7zln7ly5UpcuXLl5n8vLi7G7bffHgsLC3Hw4MEmDhuYkBxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZ8ifHUAZZhjLIMpRBlqEMsgxlkGUogyxDGcbN8uOPPx7f9V3fFX/7nz4cL77jrzRxqCP5i3N/Ep/9xXfGY489Fq997WvbPpzspP76RkR89ff/P/H7n3h/3PuTvxzf9p1H2z6cTZoeg+ZlKIMsQxlkGfInx1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy1AGWYYyyDLka3fbB9C2xx57LJ555pl1P4R27dq1OHHiRHzsYx+LK1euxK5du9b9mb1798bevXubPlSgQnIMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlyJ8cQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy5A/OYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZYhX52/0fzf+lt/K/7wD/9w3dfe+c53xnd8x3fEe9/73k03mSdNC8u9mF/qxeLlq3Fw/56Yu2UqZqen2j4sKJK8AaXRazAcWYF6yBbQVfoPyifnwFZ0A8YAsB39APmQV0pnjANV0CWQH7kFSqPXoBmyBt2mA2A0MgMAdJV1EP0YH0Bu9BZ0k+zTFmMPGIXOAPQAdIe8Q/nkHFhLJ1AaYxoogS4DAKhf5280f+DAgXj1q1+97mu33HJL3HrrrZu+TpqeunAp3vvIqXj09PzNrx07PBcPHT8Stx3a3+KRQXnkDSiNXoPhyArUQ7aArtJ/UD45B7aiGzAGgO3oB8iHvFI6Yxyogi6B/MgtUBq9Bs2QNeg2HQCjkRkAoKusg+jH+AByo7egm2Sfthh7wCh0BqAHoDvkHcon58BaOoHSGNNACXQZAEAzdrZ9ADCJheXepo1DRMSJ0/Px4COnYmG519KRQXnkDSiNXoPhyArUQ7aArtJ/UD45B7aiGzAGgO3oB8iHvFI6Yxyogi6B/MgtUBq9Bs2QNeg2HQCjkRkAoKusg+jH+AByo7egm2Sfthh7wCh0BqAHoDvkHcon58BaOoHSGNNACXQZAEBzdrd9ACn6/Oc/3/YhMKT5pd6mjcOqE6fnY36pF7PTUw0fFZRJ3oDS6DUYjqxAPWQL6Cr9B+WTc2ArugFjANiOfoB8yCulM8aBKugSyI/cAqXRa9AMWYNu0wEwGpmB9PzRH/1R24ewrbm5ubjjjjvaPgyASlgH0Y/xAeRGb0E3yT5tMfaAUegMQA9Ad8g7lE/OgbV0AqUxpoES6DIAgOa40TxZW7x8te/jFwc8DgxP3oDS6DUYjqxAPWQL6Cr9B+WTc2ArugFjANiOfoB8yCulM8aBKugSyI/cAqXRa9AMWYNu0wEwGpmBdFxaOB8RO+Lv/b2/1/ahbGv//un44z/+IzebB4pgHUQ/xgeQG70F3ST7tMXYA0ahMwA9AN0h71A+OQfW0gmUxpgGSqDLAACa40bzZO3gvj19Hz8w4HFgePIGlEavwXBkBeohW0BX6T8on5wDW9ENGAPAdvQD5ENeKZ0xDlRBl0B+5BYojV6DZsgadJsOgNHIDKTj6vLFiFiJ1/zoe+Nb7vyOtg9nk8Wnvxq//4n3x/z8vBvNA0WwDqIf4wPIjd6CbpJ92mLsAaPQGYAegO6QdyifnANr6QRKY0wDJdBlAADN2dn2AcAk5mam4tjhuS0fO3Z4LuZmpho+IiiXvAGl0WswHFmBesgW0FX6D8on58BWdAPGALAd/QD5kFdKZ4wDVdAlkB+5BUqj16AZsgbdpgNgNDID6Zl5yR3x4jv+SnL/O/iyl7d9agAqZR1EP8YHkBu9Bd0k+7TF2ANGoTMAPQDdIe9QPjkH1tIJlMaYBkqgywAAmuNG82RtdnoqHjp+ZNMG4tjhufjQ8SMxO23zAFWRN6A0eg2GIytQD9kCukr/QfnkHNiKbsAYALajHyAf8krpjHGgCroE8iO3QGn0GjRD1qDbdACMRmYAgK6yDqIf4wPIjd6CbpJ92mLsAaPQGYAegO6QdyifnANr6QRKY0wDJdBlAADN2d32AcCkbju0Pz56/9GYX+rFxctX48C+PTE3M2XjADWQN6A0eg2GIytQD9kCukr/QfnkHNiKbsAYALajHyAf8krpjHGgCroE8iO3QGn0GjRD1qDbdACMRmYAgK6yDqIf4wPIjd6CbpJ92mLsAaPQGYAegO6QdyifnANr6QRKY0wDJdBlAADNcKP5Aiws92J+qReLl6/Gwf17Yu6W7i2cZ6e795xpnqzdIG9AafTaeua79ZyPF8gKdetq3mQL+utqN3SB/qNKuiJNck7X6aat6YbmpDoGjQGoXqp5H5V+oEtyz628UrpxxnjuuQaGN2zezZdQn7rmXbmFsnVxza7XoBlNZ62LfUZ/xkS7zLekLrWOkBkAcpDa/EkZrIPal3K2jQ8gN3preynPNyVxntsh+93WZu6MPahOF+ZQnUGXdCHT49AD5EKGJyfvpEzGqyHnoE/W0gkMI6fMGNNACXQZAED93Gg+c09duBTvfeRUPHp6/ubXjh2ei4eOH4nbDu1v8cigLLIGQBeY79ZzPqA58gZsRTcAw9AVQIp0E20zBqE75B3yI7dQHrmG7pB3aJ8cAuPQHUAp9BkbGRNAPzoCAEZn/oQyyTYATTDfNMN5hubJHZRBlqEsMg15k2Eom4wDVdEnMBqZAQAAoEQ72z6ArlhY7sWXn1mKJ849G1/+5lIsLPcq+Ts3XqyIiDhxej4efORUJf8G0GzW6ugKYD05g63ltrasO8u5nQ/I1cJyL742/1y89//5/5M3yJjrXlCGHPfLugK2lmOeS6KbqMIkOTYGIR2uY0MZqsyy3EJaqsi3XENz2r7mJe/Qvn45fO8jp+Ibi5dbOjIgZeZwoBT6rHlt70MHyWVMpH4eoVTDdoSMAsALUlljm5+hGqtZ+tNvXPTzy5Ax8yK5SGUtWYrtsu88Q/PGyZ35G9KT0hyqI2By31i87HoXZGzQvPyNxcvmSsjIxvXtNxYvJ7P2BsaXwt41pb085GDczKSQd2A9uQQAgPV2t30AXfDUhUubLiwcOzwXDx0/Ercd2j/23zu/1Nt0sWLVidPzMb/Ui9npqbH/fuCGprJWV1cAL5Az2F5Oa8smspzT+YBcrWb5Ha9/eTx65vyW3yNvkD7XvaAMue6XdQVslmueS6KbmNSkOTYGIQ2uY0MZqs6y3EI6qsq3XEMzUrjmJe/Qvn45fPT0fHz5maW4dn3FtXBgHXM4UAp91qwU9qGD5DAmcjiPUKphOuK53jUZBYA1UlhjW0NDNdZm6d++/XV+fhkyZV4kJymsJUvRL/uXetecZ2jYqP1m/oY0pbJW0REwuacuXIqvzj/nehdkbNC8/OVnluJHP/77N79mroR0bbW+/Y0f/+4k1t7A+FLZu6ayl4dcjJOZVPIOvEAuAQBgs51tH0DpFpZ7mzYiETcuKDz4yKlYWO6N/XcvXr7a/9++dDW+/MxSPHHu2fjyN5cm+regywZl7eKAxwdZWO7F6W9cjD96ejHeec+d8a7vuyump3ZFRDVdAdxQ55zM+BaWe9Yriah7vqtKU1ke9XwYyzCatVm+8vz1vt9bVf/IKVSvzetea7tBvmEydWW5iWzmso+BprR5/ct8/ALdxCQmyfFqDs8/1z9/xiDUr8o5ud8ca86BetWxvpZbSEOV+R6U62eXe53eI0MV2v7Ml/02pGPQvHvh0lWfBQU2WbjUvxMWLqUxh3uvDRgk1WuLJfZX2/vQYbU1JoZ9zXM5j1CqYX7/wKQZLXEOAKDb2t53LSz34md/60tx9+2H4t++/XXxK299bXziHX8tjtx+KH7ut75kroUhbdyPNvXzy6OwlobBXFsiN22sJXOaTyq7rjzgvV+f34Lqjfo7Pyb9ucgcOg1y1NRapV+WrfFhcqs5ujDgM485rIvN/XTZoHn5+ZUV7xNBBrZb3446T5sTIQ2rWXz8a38RXzv/XNx9+6Gb94iJaGfv2vZnWCA349xLwrUqSMu4ubSmBgCgdLvbPoDSzS/1Nm1EVp04PR/zS72YnZ4a6+8+uG9P38cvX70Wf/f/8bs3//vY4bl46PiRuO3Q/rH+PeiqQVk7MODxfp66cGnTBYt77ro1PnL/0Xj3p56I5d61ibsCuKHOOZnxbNWB1ivtqXO+q1JTWR7lfBjLMLq1Wd67e2ff762if+QU6tHmda/VbpBvmFwdWW4qm7nsY6ApbV3/Mh+vp5uYxLg5XpvDf/v21/X9N4xBqF9Vc/KgOdacA/WqY30tt5CGKvM9KNcLl67G//apJzq7R4YqtPmZL/ttSMugeXffnl0+CwpsMj3V/8fm1v7yp7Z4rw0YRorXFkvtr1x+9qiNMTHKa57LeYRSDeqI6aldE2W01DkAgG5re991/rle/F//+h3x8Mmz8bHPnbn59XvuujXeec+dcf45a2gYxsb9aBM/vzwKa2kYjmtL5KbptWRO80mV15X/9//5O/v+Wz6/BdUbpd+q+LnIVal2GuSqibXKoCxb48PkVnP0jte/vO/3pb4uNvfTdYPm5V07dsTbfvWLN//b+0SQpu3Wt6O8L2VOhDQMc4+YiOb3rm1/hgVyM+jnAzdmxrUqSM84ubSmBgCgC/pfdWZii5ev9n384oDH+5mbmYpjh+e2fOzeu26N3/3K+XVfO3F6Ph585FQsLPfG/jehi/pl7djhuZibGe9C38Jyb9OFh4iIk2fOx8Mnz8YD995582uTdAVwQ51zMqPbrgOtV9pT13xXtaayPOz5MJZhPGuz/MTXL8Q9d9265fdV0T9yCvVp67rXajfIN1Sj6iw3mc1c9jHQlDauf5mPN9NNTGKcHG/MYd37bGCwKubkYeZYcw7Uq4719cy+3XHvNvP0vXfdGjP7+t/8DqhGlfnuNx/fc9et8cTXL3R6jwxVaOszX/bbkJ5B6+mVlZWI8FlQYL2dO3dsO4ffc9etsWvnjoaPaD3vtQHDSu09gZL7K5efPWp6TIz6mudyHqFUgzpi54B1cL+MljwHANBtbe+7nr++Eg+fPBsnz6z/PUGrv3vk2vWVWv99KMXG/WhK7/NaS8PwXFsiN02uJXOaT6q+rrxr546k3iuBLhil36r4uchVKXYa5KzutcowWbbGh8mt5iil612jMvfD4PtJ/N5XvE8EOdhufTvsPG1OhDSMco+YiGb3rm1/hgVysrDci8fPjbZXdq0K0jNqLq2pAQDoCjear9nBfXv6Pn5gwOP9zE5PxUPHj2y60Hff4bl4xz13xie+cHbTnzlxej7ml2xoYBTbZe3Y4bn40PEjMTs93gX1+aXepgsPq06eOR9Hbz90878n6QrghjrnZEbXrwOtV9pR13xXtaayPOz5MJZhPGuz/IkvnI133nPnpjfkq+ofOYX6tHHda203yDdUo+osN5nNXPYx0JQ2rn+ZjzfTTUxinBxvzGHd+2xgsCrm5GHmWHMO1KuO9fVzV56Pd2wxT99z163xjnvujOeuPD/y3wmMrsp8bzcf33PXrfHONZ/h7OoeGarQ1me+7LchPYPW07t23LhJns+CAmvt3rljyzl8dc3e9o3mvdcGDCu19wRK7q9cfvao6TEx6muey3mEUg3qiN0D1sH9MlryHABAt7W977p+fWXTTeZXnTxz3g1EYEgb96Mpvc9rLQ3Dc22J3DS5lsxpPqn6uvKunTuSeq8EumCUfqvi5yLXSq3TIGd1r1WGybI1PkxuNUfbXe+6L4N1sbkfxrufhPeJID3brW9X5+n7/B5ryMIo94iJaHbv2vZnWCAn80u9+D/+z/+27c8P/sIPv3pTZlyrgvSMmktragAAumJ32wdQurmZqTh2eC5ObLHBOHZ4LuZmJrsQd9uh/fHR+4/G/FIvLl6+Ggf27YlrKyvx5l8+Gcu9a1v+mYuXr070b0IXbZW1uZmpiS6mLw7I4pXnr0dENV0B1D8nM5pBHWi90o465ruqNZnlYc6HsQzjWZvl5d61ePennogH7r0zHrjnzoiIuOPF0/GSA3sr6R85hfq0cd1r7Vws31CNqrPcdDZz2MdAU9q4/mU+3ppuYlzj5HhjDjfusw/s2xO33jJlDEKDqpiTh51jzTlQnzrW1wuXrq6bp688fz327t4ZT3z9Qrz7U0/Eb/z4d1dx6MAAVed7dT7+swuX4qvnl9fleu1nOLu6R4ZJtfWZL/ttSM+g9fQ/f8vdPgsKbHLrLVPxwd/+ozh6x4s2dce/+y/n4p+/5e5Wj897bcAoUnpPoOT+yulnj5ocE6O+5jmdRyhVv45YWO6NndGS5wAAaHPftdx7fsDjW//+IGC9jfvRte/z/sM33BX79uyK2f3tXFOxlobhubZEjppaS+Y0n1R9XfnWW26cz1TeK4GuGLbfqvi5yI1S6jTIXZ1rlWGyfOfcLdb4MKG1c+3Gz1Mf2r8nXvGSmXjpwX1tH2Zf5n64Ycv7SVy/Hm/+ld/d9v0g7xNBWrbbAy/3rt38GYWly8/7PdaQuGHvERPRzt41pZ8dgJQtXr666XcArP35wcVLvYi4Zd2f8X40pGfUXFpTAwDQFW40X7PZ6al46PiRePCRU+s2JMcOz8WHjh+p5GLc7PT6i3pffmap75t/B/btmfjfhC7amLVJHRyQxb27d1baFdB1TczJDG9QB1qvtKfq+a5qTWd50PkwlmE8G7O83LsWH/vcmZtZftmh/ZX9W3IK9Wnjutda8g3VqDrLbWQz9X0MNKWN61/m4+3pJsYxTo63yuHqPjsi4nfe8zfjFS+Zqe+ggU2qmJNHmWPNOVCPOtbXB/ftWTdPb9Tl9TM0qY58z05PxfxSL/7Brz++7ffIOIynrc982W9Degatpw/t3+OzoMAms9NT8f4ffnU8+Mipdf2RyufHvdcGjCqV9wRK7q/cfvaoqTEx6mue23mEUm3XEZNktOQ5AAAi2tt3ze7v/2/O7jfHwjC2Wusu967Fqa9fiLf+9Tsq/dnlUVlLw/BcWyJXTawlc5pP6rqunMp7JdAlw+Suqp+LXCulToMS1DWHDpNla3yY3MYcrX4ecjVHqd9kPsLcD2uNej8J7xNBWvqtb3/hh18dLz24L156cPs/b06ENAxzj5iIdveurofDYKtZ3u5nj3/kNd+26WuuVUF6Rs2lNTUAAF3hRvMNuO3Q/vjo/UdjfqkXFy9fjQP79sTcTH0X5uZmpuLY4bl1m59Vxw7PxdyMCxOQgn5Zve/wXNz1LTPx0fuPupgIFWp6TmZ71itMIqUsG8swvqayLKdQrzbnZfmG6lSZZdmEdnlPCvI3ao7lENI06Zws25CGqtfXsg3pqGP/LONQnzbej5JpSM+gz12/4iUzWfySRKB5KX3mdCNrDiBXpfdXynNHW8Z5zZ1HSNu4GS19DgCAtphjoTqp7kflHEaTapahbTnNJ64rQ/f4uUjopmGzbJ6HyeWeI3M/bE8+ID+TzMsyD2kY9LOKd7x4On7nPX8zqzU3dNG482rue2wo0Si5tKYGAKArdrZ9AF0xOz0Vr3jJTLzmjhfFK14yU+sFgtnpqXjo+JE4dnhu3dePHZ6LDx0/4uIEJKJfVv/vx4/Et8/dIq9QgybnZLZnvcKkUsmysQyTaSLLcgr1a2telm+oVlVZlk1on/ekIH+j5FgOIV2TzMmyDemocn0t25CWqvfPMg71avr9KJmG9Az63LWbzAP9pPKZ042sOYBcdaG/Up072jLua+48QtrGyWgX5gAAaIM5FqqV4n5UzmF0KWYZ2pbTfOK6MnSTn4uE7hkly+Z5mFzOOTL3w/bkA/I07rws85CGQT+rePilB7Jbc0MXTTKv5rzHhlINm0tragAAumJ32wdAPW47tD8+ev/RmF/qxcXLV+PAvj0xNzNlMwOJkVWgy3QgpTCWIX1yCuWSb0iTbEK3yDy0Tw6hTLINZZJtKJuMQ1lkGtIjl0CJdBuQK/3VPV5zYJU+AIB6mGOhfHIOQBVymk9yOlagHXoCyiDLwLD0BWxPPqBbZB7SIItQBlmGbpJ9AAC6wI3mCzY7bQMDOZBVoMt0IKUwliF9cgrlkm9Ik2xCt8g8tE8OoUyyDWWSbSibjENZZBrSI5dAiXQbkCv91T1ec2CVPgCAephjoXxyDkAVcppPcjpWoB16Asogy8Cw9AVsTz6gW2Qe0iCLUAZZhm6SfQAASrez7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6Bo3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRsd9sHUIKVlZWIiFhcXGz5SKA7Dhw4EDt27Kjs75NjaIcsQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlKIMsQxmqzLIcQzvMyVAGWYYyyDKUQZahDLIMZZBlKENbWV5aWoqIiIX//pW4/vy1yv79qiw982cREbH451+NvXv3tnw0m138869FRMTjjz9+81ym5E//9E8jIt3XNyKf13hpaWmoudG8DGWQZSiDLEMZfH4T8mdOhjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLUAZZhjLIMuRv3BzvWFlNLGP77//9v8ftt9/e9mFApywsLMTBgwcr+/vkGNohy1AGWYYyyDKUQZahDFVn+Stf+Uq84hWvqOzvA4ZjXoYyyDKUQZahDLIMZagyy3IM7TAnQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGcrg85uQP3MylEGWoQyyDGWQZSiDLEMZZBnKIMtQBlmGMsgylEGWIX/j5tiN5itw/fr1eOqpp+LAgQOxY8eOtg8neYuLi3H77bfH17/+9Uonny7q8rmsOm915bjLr9FGzsUNzsN6dWV5ZWUl7rjjjqLOc6ljp8Tn1cXnlMu8XLUSX+tVpT63Up9XRDXPrY4s/8mf/Em86lWvKvKcD6vkcTcs56DZc9D0vOz1dQ4inIOI6s9B1Vm+cOFCvOhFL4pz587F7OxsZX9vm0obd6U9n4jyntM4z6er++VVpY2BUXT1uZf6vF3HHk5pr7/nkzbz8vBKe+3r4BwNltI56mqW10rp9ZiE55GWpp9HlZmrMselvJ5Ncs7GU8J5S2VOLuFc1sF52Z5zs14qWW5baePC80lbHc8nlSyX9lpFeE65KOU5pZLlJpTymqXAuaxWqp/F3irLXvvqOJfVKO08pjAv53xOcz72CMfftiqPP4UsVyX313U7nld+2nhuJWW5CSWPv+107Tnn+nz9vONocj/+iPyfg+Pfmp+rWC/XceK4m5Xicaf6+c2mpPiaVMnzy9uwz6/EvXIpr20Jz6OE5xCRx/PIKcs5nM+NHHMzHHNeWa5Cjq95apzDyZX8WeytGDPbc2621uXzkmKWc3w9cjzmiDyP2zFvLcUsVynH130rnkc6Un0OTWY51XNQCue3Pjmc2zbm5RzOS108924+94j6n39ba+xSXlfPIy2lPI+I0Z+LLE/G80hLV5/HuDnePc7Bsd7OnTvjL/2lv9T2YWTn4MGDWYc0Jc7l5OrOsdfoBc7FDc5DPVazvLi4GBFlnucSn1NEmc/LcxpfbuvrEl/rVaU+t1KfV0Raz23nzp3xbd/2bRGR1nG1xTlwDiLyPAfDzss5PreqOQfOQUS652Dnzp0RETE7O5vk8U0i1XM+rtKeT0R5z6nN55PbfnlVaWNgFF197l193sMq/Tq255M2z6c6uc3Lpb32dXCOBivxHOWW5bVKeT08j7Tk+DzqyHGO56Ftztl4nLcXTJpl53Jrzsv2nJt65Ly+jihvXHg+aUv5+ZiXN/Oc8lDic5pEDvOy16w6zmW1Ujqfg7Kc0rHmzrmshvO4tUnm5ZzPac7HHuH425bi8aewxk7xvFTB88pPzs8thSw3IefXaFxde85de74bdeXnHXM//oj8n4Pjr1cpP1fhuJvluNOS8/q61NdkleeXt6afX0pZLuW1LeF5lPAcIsp5HsNoIss5nk/H3AzHXJ2U5uV+Uj1/OXEOJ5fyOfTzjs1ybrbmvEyuyizn+HrkeMwReR63Y65XqmvsnM5hP55HOkp4Dv0Mk+XSz0HbnN/6dOncjjIvd+m8bOS5d/O5R+Tz/EddY+fyvAbxPNJSyvOIaO+5yHLePI+01P08dtb2NwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwJTeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYG83TuL1798bP/dzPxd69e9s+lOw5l+nzGr3AubjBeWhGiee5xOcUUebz8py6o+TzUupzK/V5RaT73FI9riY5B85BRNnnoOTnNiznwDmISP8cpH584yjtOZX2fCLKe06lPZ8mdPmcdfW5d/V5j6u08+X5pM3z6S7najDnaDDnKC2lvB6eR1pKeR6Tch5G55yNx3mrjnO5Nedle84NWyltXHg+aSvt+axV4nPznPJQ4nMqndesOs5ltXI6nzkda+qcy2o4j9XL+ZzmfOwRjr9tuR9/XUo9L55Xfkp+bqXo4mvUtefctec7rtzPU+7HH5H/c3D8zcrteFc57mY5bqpS+mvi+eWt9OfXTynPvYTnUcJziCjneaQix/PpmJvhmLvH+Zucczi5rp3Drj3fUTg3W3Ne0pLj65HjMUfkedyOuZtKOYeeRzpKeA6Tcg7q5fzWx7ndWpfPi+fezeceUe7zL+V5eR5pKeV5ROTzXHI5zkE8j7R4HqPZsbKyslLrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAOjvbPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArnGjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMVOnHiRPzQD/1Q3HbbbbFjx474zGc+M9Kf//mf//nYsWPHpv/dcsst9RwwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Ao3mq/Qc889F3fffXf88i//8lh//qd+6qfi6aefXve/V73qVfGWt7yl4iMFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2uRG8xV64xvfGB/4wAfiR37kR7Z8/MqVK/FTP/VT8W3f9m1xyy23xHd/93fH5z//+ZuPz8zMxLd+67fe/N83vvGN+G//7b/Fj/3YjzX0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAmuNF8g971rnfF7/3e78Vv/uZvxqlTp+Itb3lL/J2/83fi9OnTW37/xz/+8XjlK18Z9913X8NHCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTJjeYbcu7cuXj44YfjP/yH/xD33XdfvOIVr4if+qmfinvvvTcefvjhTd9/+fLl+PVf//X4sR/7sRaOFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjT7rYPoCv+8A//MK5duxavfOUr1339ypUrceutt276/k9/+tNx8eLFePvb397UIQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANcaP5hiwtLcWuXbvisccei127dq17bGZmZtP3f/zjH48f/MEfjJe+9KVNHSIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQEDeab8jRo0fj2rVr8cwzz8R9993X93vPnj0b//k//+f4j//xPzZ0dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECT3Gi+QktLS3HmzJmb/3327Nl48skn48UvfnG88pWvjLe+9a3xtre9LX7pl34pjh49Gt/85jfjd37nd+LIkSPxpje96eaf+8QnPhEve9nL4o1vfGMbTwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACo2Y6VlZWVtg+iFJ///Ofje7/3ezd9/e1vf3t88pOfjKtXr8YHPvCB+LVf+7X4sz/7s5ibm4u/8Tf+Rrz//e+Pv/pX/2pERFy/fj2+/du/Pd72trfFL/7iLzb9FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAGuNE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMN2tn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3jRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOj+QqsrKzE4uJirKystH0owJjkGMogy1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy5A/OYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZYhf3IMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlKIMsQz7caL4CFy9ejNnZ2bh48WLbhwKMSY6hDLIMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZahDLIM+ZNjKIMsQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGfInx1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy1AGWYYyyDLkw43mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYbvbPgCAheVezC/1YvHy1Ti4f0/M3TIVs9NTbR8WMCJZhrTJKHSLzEMZZBnKIMuwPfmgacYcQBn0OZRBlqEMsgz5k2MogyxDGWSZVBiL0C4ZBKiOToUyyDLkRWYBIH3ma0pkXAM50l1QBlmGMsgylEGWoR6yBYxDd3SD1xmogi4BGI6+BIDucaN5oFVPXbgU733kVDx6ev7m144dnouHjh+J2w7tb/HIgFHIMqRNRqFbZB7KIMtQBlmG7ckHTTPmAMqgz6EMsgxlkGXInxxDGWQZyiDLpMJYhHbJIEB1dCqUQZYhLzILAOkzX1Mi4xrIke6CMsgylEGWoQyyDPWQLWAcuqMbvM5AFXQJwHD0JQB00862DwDoroXl3qZNSETEidPz8eAjp2JhudfSkQGjkGVIm4xCt8g8lEGWoQyyDNuTD5pmzAGUQZ9DGWQZyiDLkD85hjLIMpRBlkmFsQjtkkGA6uhUKIMsQ15kFgDSZ76mRMY1kCPdBWWQZSiDLEMZZBnqIVvAOHRHN3idgSroEoDh6EsA6K7dbR8AMJmF5V7ML/Vi8fLVOLh/T8zdMhWz01NtH9ZQ5pd6mzYhq06cno/5pV42zwWakmLmZZm2pZiLlMgojC/HfpF5uijHrA4iy1CfJjtDlmF7VeajxLUA1Wurk41PoG2l9ZA1Nk0qLT8pkWUYLIcOkmWalEMmciTHlKxLvSHL5KhLGR2WLJOKtseifiib13ewtjMIkKJx5w+dSlWsYdoly9CuUTtQZgFgvRT3E+ZrqpTKGDeuoVmpZD93uqt7ZKdMskwXdKG/ZJmSdCGz25FlqIff1wSMY36pF4997dl41/fdFUdvPxRXnr8e+/bsisfPPRuf+MJZ83JNmu5O6y/IT4prLF0ClKrqztWXANBdbjQPGXvqwqV47yOn1i3mjx2ei4eOH4nbDu1v8ciGs3j5at/HLw54HLom1czLMm1KNRcpkVEYT679IvN0Ta5ZHUSWoR5Nd4Ysw/aqykepawGq10YnG59A20rsIWtsmlJiflIiy9BfLh0kyzQll0zkSI4pVdd6Q5bJTdcyOixZJhVtjkX9UDav73DMBwDrTTJ/6FSqYA3TPlmG9ozTgTILAC9IdT9hvqYqKY1x4xqak1L2c6e7ukV2yiXLlK4r/SXLlKIrmd2OLEM9/L4mYBxLV67GR+4/Gg+fPBsf+9yZm1+/565b4yP3H43nrpiXq9ZGd1p/QV5SXWPpEqBEdXSuvgSA7trZ9gEA41lY7m3aGEREnDg9Hw8+cioWlnstHdnwDu7b0/fxAwMehy5JOfOyTFtSzkVKZBRGl3O/yDxdknNWB5FlqF4bnSHLsL0q8lHyWoDqNd3JxifQtlJ7yBqbJpSan5TIMmwvpw6SZZqQUyZyJMeUqIu9IcvkpIsZHZYsk4q2xqJ+KJvXd3jmA4AXTDp/6FQmZQ2TBlmGdozbgTILADekvJ8wX1OF1Ma4cQ3NSC37udNd3SE7ZZNlStal/pJlStClzG5HlqEefl8TMI5D+6fi4ZNn4+SZ8+u+fvLM+Xj45NmY3T/V0pGVqa3utP6CfKS8xtIlQGnq6lx9CQDd5UbzkKn5pd6mjcGqE6fnY34p/Te95mam4tjhuS0fO3Z4LuZmXOyHVSlnXpZpS8q5SImMwuhy7heZp0tyzuogsgzVa6MzZBm2V0U+Sl4LUL2mO9n4BNpWag9ZY9OEUvOTElmG7eXUQbJME3LKRI7kmBJ1sTdkmZx0MaPDkmVS0dZY1A9l8/oOz3wA8IJJ5w+dyqSsYdIgy9COcTtQZgHghpT3E+ZrqpDaGDeuoRmpZT93uqs7ZKdsskzJutRfskwJupTZ7cgy1MPvawLG0bt2fdNN5ledPHM+eteuN3xEZWurO62/IB8pr7F0CVCaujpXXwJAd7nRPGRq8fLVvo9fHPB4Cmanp+Kh40c2bUaOHZ6LDx0/ErPTNiKwKuXMyzJtSTkXKZFRGF3O/SLzdEnOWR1ElqF6bXSGLMP2qshHyWsBqtd0JxufQNtK7SFrbJpQan5SIsuwvZw6SJZpQk6ZyJEcU6Iu9oYsk5MuZnRYskwq2hqL+qFsXt/hmQ8AXjDp/KFTmZQ1TBpkGdoxbgfKLADckPJ+wnxNFVIb48Y1NCO17OdOd3WH7JRNlilZl/pLlilBlzK7HVmGevh9TcA4lq483/fx5wY8zmja6k7rL8hHymssXQKUpq7O1ZcA0F272z4AYDwH9+3p+/iBAY+n4rZD++Oj9x+N+aVeXLx8NQ7s2xNzM1M2IbBB6pmXZdqQei5SIqMwmtz7RebpityzOogsQ7Xa6gxZhu1Nmo/S1wJUr8lONj6BtpXcQ9bY1K3k/KRElmFruXWQLFO33DKRIzmmNF3tDVkmF13N6LBkmVS0MRb1Q9m8vqMxHwDcUMX8oVOZhDVMOmQZmjdJB8osAKS/nzBfM6kUx7hxDfVLMfu5013dIDvlk2VK1bX+kmVy17XMbkeWoR5+XxMwKlluVpvn2/oL8pB6L+sSoCR1dq6+BIBucqN5yNTczFQcOzwXJ07Pb3rs2OG5mJvJZyE/O23jAYPkkHlZpmk55CIlMgrDK6FfZJ4uKCGrg8gyVKfNzpBl2N4k+ejCWoDqNdXJxifQttJ7yBqbOpWen5TIMmyWYwfJMnXKMRM5kmNK0uXekGVy0OWMDkuWSUXTY1E/lM3rOzrzAUB184dOZVzWMGmRZWjWpB0oswB0XQ77CfM1k0h1jBvXUK9Us5873VU+2ekGWaZEXewvWSZnXczsdmQZ6uH3NQGjkOVmtX2+rb8gfW33xDB0CVCKujtXXwJA9+xs+wCA8cxOT8VDx4/EscNz675+7PBcfOj4EQt7KIzMw2ZyAdRFv0AeZBUYhc6A8sg1KTM+gbbpIRif/ABt0kGwnkwAo9IbkDYZBbajH8rm9QVgHOYP2mYMAl2mAwFgMuZSSmeMQzfJPoxHdoBc6S/Ii8wCpdBnUAZZbpbzDQyiJwCao3MBgKrtWFlZWWn7IHK3uLgYs7OzsbCwEAcPHmz7cOiYheVezC/14uLlq3Fg356Ym5myMRiDHJMLme9PlrtJLsojy6RCv0xGlmmKrNZLlilNVztDlilZl3Ity/np0vhkeLJMk/RQfWS5fPLTDbJMqnTQ8OS4G2SifLJM1fRGO2SZYclo2mSZNumH6qSYZa8vjC7FLEPTSpg/ZDlvJYxBqiHLdFGJHSjLUAZZJhclzqVVkuX8GePIcTfJfnlkuRmyQ91kmbror2bJMpOS2TTIMkwuhT6TZZicLDcrhfMNdelSluukJ2ibLNMlJXeuLEMZZBnysbvtAwAmMztdzmYAGEzmYTO5AOqiXyAPsgqMQmdAeeSalBmfQNv0EIxPfoA26SBYTyaAUekNSJuMAtvRD2Xz+gIwDvMHbTMGgS7TgQAwGXMppTPGoZtkH8YjO0Cu9BfkRWaBUugzKIMsN8v5BgbREwDN0bkAQFV2tn0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3jRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCw3W0fABCxsNyL+aVeLF6+Ggf374m5W6Zidnqq7cMC1pBTusi4B0ql3wA9AGmTUbhBFhiHcQNAXcwxUD25AvQATEaGoBtkHWiCrhmN8wVlkGUAcmUOYxjGCcBguhKAUpjTGJaxAsAqcwI5Mm6BuukZyJsMA3oA8iKzVM2YgnbIHkA36X8AoCluNA8te+rCpXjvI6fi0dPzN7927PBcPHT8SNx2aH+LRwasklO6yLgHSqXfAD0AaZNRuEEWGIdxA0BdzDFQPbkC9ABMRoagG2QdaIKuGY3zBWWQZQByZQ5jGMYJwGC6EoBSmNMYlrECwCpzAjkyboG66RnImwwDegDyIrNUzZiCdsgeQDfpfwCgSTvbPgDosoXl3qbFf0TEidPz8eAjp2JhudfSkQGr5JQuMu6BUuk3QA9A2mQUbpAFxmHcAFAXcwxUT64APQCTkSHoBlkHmqBrRuN8QRlkGYBcmcMYhnECMJiuBKAU5jSGZawAsMqcQI6MW6BuegbyJsOAHoC8yCxVM6agHbIH0E36HwBomhvNQ4vml3qbFv+rTpyej/klGwBom5zSRcY9UCr9BugBSJuMwg2ywDiMGwDqYo6B6skVoAdgMjIE3SDrQBN0zWicLyiDLAOQK3MYwzBOAAbTlQCUwpzGsIwVAFaZE8iRcQvUTc9A3mQY0AOQF5mlasYUtEP2ALpJ/wMATXOjeWjR4uWrfR+/OOBxoH5yShcZ90Cp9BugByBtMgo3yALjMG4AqIs5BqonV4AegMnIEHSDrANN0DWjcb6gDLIMQK7MYQzDOAEYTFcCUApzGsMyVgBYZU4gR8YtUDc9A3mTYUAPQF5klqoZU9AO2QPoJv0PADStqBvNnzhxIn7oh34obrvtttixY0d85jOf6fv9Tz/9dPzoj/5ovPKVr4ydO3fGT/7kTzZynLDq4L49fR8/MOBxoH5yShcZ90Cp9BugByBtMgo3yALjMG4AqIs5BqonV4AegMnIEHSDrANN0DWjcb6gDLIMQK7MYQzDOAEYTFcCUApzGsMyVgBYZU4gR8YtUDc9A3mTYUAPQF5klqoZU9AO2QPoJv0PADStqBvNP/fcc3H33XfHL//yLw/1/VeuXIlv+ZZviZ/+6Z+Ou+++u+ajg83mZqbi2OG5LR87dngu5mamGj4iYCM5pYuMe6BU+g3QA5A2GYUbZIFxGDcA1MUcA9WTK0APwGRkCLpB1oEm6JrROF9QBlkGIFfmMIZhnAAMpisBKIU5jWEZKwCsMieQI+MWqJuegbzJMKAHIC8yS9WMKWiH7AF0k/4HAJpW1I3m3/jGN8YHPvCB+JEf+ZGhvv/lL395/Mt/+S/jbW97W8zOztZ8dLDZ7PRUPHT8yKZNwLHDc/Gh40didtoGANomp3SRcQ+USr8BegDSJqNwgywwDuMGgLqYY6B6cgXoAZiMDEE3yDrQBF0zGucLyiDLAOTKHMYwjBOAwXQlAKUwpzEsYwWAVeYEcmTcAnXTM5A3GQb0AORFZqmaMQXtkD2AbtL/AEDTdqysrKy0fRB12LFjR3z605+ON7/5zUN9/xve8IZ4zWteEx/+8IcHfu+VK1fiypUrN/97cXExbr/99lhYWIiDBw+OecR02cJyL+aXenHx8tU4sG9PzM1MWfzXTI4ZlZymSZbrZdzTFFmmafqtHrJMTvTA9mSZFMjo5GS5DLLAOFk2biA95mVK0fU5RpapQ9dz1QZZJjV6YHRyzFoylC9ZZhSyni5ZpiRd7hrvR0EZZBnKYI0Nw0l9DpPlNKQ+TkifLNMFXehKWYYyyDKDdGFOK0EKWTZWYDIp5Biq0uU5QZbz1eVxy2ayTB30TPNkmSrJcHtkmVTogcnIMk2T2Xp0OcvGFCXJKcuyB9vLKcswqi71vyxDGWQZ8rW77QPI0Qc/+MF4//vf3/ZhUJDZ6c0L/tVNweLlq3Fw/56Yu6XcTUEb5LibJsnVVjmlfbJcL+O+G1JYc8gyTdg01mem4hUvmWn7sIoiyzShqnnLOmd7skwK6sxoCuvfJshyGcxXwys12+Nk2bi5odQxQZ7My4wq1Q7r+hwjy2xl0rx2PVdtkGVGVfe8rAdGJ8fdMiiDMpQvWWYUa3O+ePlqxI7NX6cdstyeVK8f5azL6wrvR+VF/tmOLPcnO+TCGht9NZzU5zBZTkPd40ReyyfLdMEwXZl738kylEGWGaSK9X/uc14OUshy6tcUeIFMpimFHNO8UvPY5TlBlvM17rgtNcddJ8uMapgu6PL82BZZpg4rETd/5oJmyDKp0QPjkWWaNmj9bT8/nlKyPM7rb09HSXLKsuyVxfxbrZyyTLdZe/Uny1AGWYZ87VhZWVlp+yDqsGPHjvj0pz8db37zm4f6/je84Q3xmte8Jj784Q8P/N4rV67ElStXbv734uJi3H777bGwsBAHDx4c84jhBU9duBTvfeRUPHp6/ubXjh2ei4eOH4nbDu1v8cjKIcfdI1dlkmWYTCrdKMvULZWxXjpZpm6y3AxZpmRd6hFZpktKzrYsj6fkMUGeZJlR6LB0yTIbyWueZJlRyHma5Lg7ZLBssswo9EG6ZLkdMkHVZDkf8k8/srw92SEnstxt+qocslw+ee0GWYYy+k6WoQyyTN1KmPNyIMsMSybTJcfdI49lkuVukeNyyTKj0AXpkmWqIuftkmVSoAcmJ8ukRKbHV0KWvf5QRpbJj/6tniyTA9kfTJahDLIM+drZ9gHkaO/evXHw4MF1/4OqLCz3Nm0iIiJOnJ6PBx85FQvLvZaOrCxy3C1yVS5ZhvGl1I2yTJ1SGuulk2XqJMvNkWVK1bUekWW6ovRsy/LoSh8T5EmWGZYOS5sss5a85kuWGZacp0uOu0EGyyfLDEsfpE2WmycT1EGW8yD/DCLLW5MdciPL3aWvyiLLZZPX7pBluq6UvpNlKIMsU6dS5rwcyDLDkMm0yXG3yGO5ZLk75LhsssywdEHaZJkqyHn7ZJm26YFqyDKpkOnJ5J5lrz/ckHuWyY/+rYcskzrZH44sQxlkGfLlRvOQmPml3qZNxKoTp+djfslGAkYlVwCb6Ua6wliHMsgyMCk9AmWSbTYyJoCc6TDIh7xC+eQc2iWDwCp9AOvJBHSX/MN4ZAfIhb6CfMgr0BX6DoCuMOdBWmQS0iGPkD85BiJ0AXSBnAN6AMoi093m9Qdoh/6FbpJ9ACAHu9s+gCotLS3FmTNnbv732bNn48knn4wXv/jFcccdd8T73ve++LM/+7P4tV/7tZvf8+STT978s9/85jfjySefjKmpqXjVq17V9OFDREQsXr7a9/GLAx4HNpMrgM10I11hrEMZZBmYlB6BMsk2GxkTQM50GORDXqF8cg7tkkFglT6A9WQCukv+YTyyA+RCX0E+5BXoCn0HQFeY8yAtMgnpkEfInxwDEboAukDOAT0AZZHpbvP6A7RD/0I3yT4AkIOibjT/xS9+Mb73e7/35n+/5z3viYiIt7/97fHJT34ynn766Th37ty6P3P06NGb//+xxx6L3/iN34hv//Zvj69+9auNHDNsdHDfnr6PHxjwOLCZXAFsphvpCmMdyiDLwKT0CJRJttnImABypsMgH/IK5ZNzaJcMAqv0AawnE9Bd8g/jkR0gF/oK8iGvQFfoOwC6wpwHaZFJSIc8Qv7kGIjQBdAFcg7oASiLTHeb1x+gHfoXukn2AYAc7Gz7AKr0hje8IVZWVjb975Of/GRERHzyk5+Mz3/+8+v+zFbf7ybztGluZiqOHZ7b8rFjh+dibmaq4SOC/MkVwGa6ka4w1qEMsgxMSo9AmWSbjYwJIGc6DPIhr1A+OYd2ySCwSh/AejIB3SX/MB7ZAXKhryAf8gp0hb4DoCvMeZAWmYR0yCPkT46BCF0AXSDngB6Assh0t3n9Adqhf6GbZB8AyEFRN5qHiIiF5V58+ZmleOLcs/Hlby7FwnKv7UMayez0VDx0/MimzcSxw3PxoeNHYnbaRoL0pJ47uQJS1WZ/6kZWpT6PT8pYpymlZ6ltsgzdVGW36hEYTS5rG9lmo5LHRC65hEl1eayX3GHQtLq7RF7hBaXO3XLeLaWO45zJICXRMZPRB2yly7mSCeiuSfLf5d6EpudOeQPGtbGvpqd2xbu+7674jR//7vhHf+twzD/X0ykUKce5096crsoxr0xG3wGkz/xcDXMe/chZ82QS0tFUHnUtkzKGtmdeJVVy2yxdQOl0ipyTH7mtnh6gBLrhBTLdbSW9/nIN5KSk/t2OXqZJuYy3LmQfAMjfjpWVlZW2DyJ3i4uLMTs7GwsLC3Hw4MG2D6fTnrpwKd77yKl49PT8za8dOzwXDx0/Ercd2t/ikY1uYbkX80u9uHj5ahzYtyfmZqZsImokx+PLKXdyVT5ZJiep9GeK3SjLzUllHDYhxbFeui5luUtZapssN69LWSYtdXVrV3tElhlFjmubrmRblodX2pjIMZdsT5a3Z6zfUFqHlUqW09Vkl8hr/mR5Ml2Yu+U8fZPmuAvjOGcy2B2lzsk6pjr6IA9NZFmubpAJ6lTqvFyKUfOvN7tLltdrYu6UN+ogy92zsNyL88/1YiUifv63vhSPnjl/8zGdki9Z3lruc6e9efd0Ocu555XJlNZ3Xc4ylESWzc91KG3Oy0HqWZazdslkHlLPMdWoM4+6Ng05Z9kYGo55tRtyybLctkcX5CGXLKdCp6wn5+mQ5e3Jbb30QLVkuTm6YWsyXY1cs5z76y/XVC3XLJOf3Pt3O6n0six3QyrjbRSlZr8usgxlkGXIhxvNV0DppWFhuRfv+tQT6zYLq44dnouP3n/UQpxtyfF45I7UyDK50J/9yXIzjEPq1pUsyxKl60qWSYturZ4sMyz5S5ssd5NclkeWt2askxtZTpMuYVSyPD55IxWT5Ng4hnSUOCfrGLqo7izLFTSjxHm5q/Rmt8lys+SNushyN+mU8sjyZsY5OepqluWV0nQ1y1CarmfZ/EwpUs6ynMFwUs4x6dO16cg1y8YQrJdDluUWBsshy6nQKaRMlrcmt+RGlpuhG6ibLDdPrqmDLMP4UuplWS5fSuON+sgylEGWIR872z4AqMr8Um/LzUJExInT8zG/1Gv4iKB8cgcwHv1JCoxDqIYsAVRPt0J75A/SI5d0hbEOVEGXQHPkjRIYx0CddAxUT64ARqM3oTnyBlRJp9AFxjnkQ14BID3mZ6ifnAHUT9cyKWMI8iO3QJV0CuRHboGt6AYoj1wDpEUv0yTjDQCgem40TzEWL1/t+/jFAY8Do5M7gPHoT1JgHEI1ZAmgeroV2iN/kB65pCuMdaAKugSaI2+UwDgG6qRjoHpyBTAavQnNkTegSjqFLjDOIR/yCgDpMT9D/eQMoH66lkkZQ5AfuQWqpFMgP3ILbEU3QHnkGiAtepkmGW8AANVzo3mKcXDfnr6PHxjwODA6uQMYj/4kBcYhVEOWAKqnW6E98gfpkUu6wlgHqqBLoDnyRgmMY6BOOgaqJ1cAo9Gb0Bx5A6qkU+gC4xzyIa8AkB7zM9RPzgDqp2uZlDEE+ZFboEo6BfIjt8BWdAOUR64B0qKXaZLxBgBQvd1tHwBUYWG5F9dXVuLfvv11sWPHjnj83LPxiS+cjeXetYiIOHZ4LuZmplo+SijDwnIv5pd6sXj5aszs3R0f/Lt/Nf6P//O/3czbKrkDcrG21w7u3xNzt0zF7HS9/TU3MxXHDs/FidPzmx7TnzRl1HHYRlYgB5N2umwBXdWv/6yXoT1V5s86B6pR2ryoG9huDJQ21oHRVTFH6BJohs9pUYqt5o3pqV3xwL13xuv/8q2xcKkXX/7mkn0LMJaZfbvjN378u+PCpauxb8+udfOluRLGU/eez7VLoDTWI9AM18qg2+rYR3i/i5KtZmbhUi8+9fe/O05++fy6eTPCOKebUr4uZV4CgPqNuhYwP0P95Ky/lPcwQH2qzr6uZVh+FhHK0URurVWhO/xMGOSn6rWAeR/KsF03TE/tip/5wVfF9ZWVeOLcs3IOGalr/2/upzTGNE3xfgp12thlM/t2x9/+zpfEZ//omU3fa7wBAIzHjebJ3lMXLsV7HzkVj67ZmN5z163xkfuPxrs/9US87ttfFB86fsSFEajAVnm77/BcfOIdfy0e+OQfrPtFSHIH5GCrXjt2eC4eOn4kbju0v7Z/d3Z6Kh46fiQefOTUuovr+pMmjTIO28oK5GCSTpctoKsG9Z/1MrSnqvxZ50B1SpoXdQODxkApYx0YXVVzREnzJqTK57QoycZ5Y3pqV3zk/qPx8Mmz8bHPnbn5ffYtwKj6zZf/7r+ci1/44VebK2EMde75XLsESmM9As1wrQy6ra59hPe7KNVWmbl3zby53LtmnNNJqV+XMi8BQL3GWQuYn6F+cra91PcwQD3qyL6uZRh+FhHKUnf3W6tCt/iZMMhPlWsB8z6UY6tumJ7aFZ94x1+LX/7cmXjf/+sPb36vnEMe6tj/m/spjTFNk7wnR12267IPvPnVERHrbjZvvAEAjG/HysrKStsHkbvFxcWYnZ2NhYWFOHjwYNuH0ykLy71416eeWLdxWHXf4bn4wA+/Og5N77FZYCA5Hqxf3o4dnov/44dfHc8u9+LAvj0xNzMld7RClhnFoF776P1Ha++yheVezC/14uLlq/pzDVlu1qBxmEJWyFPXsjxqp8sWuehalqnfKP1nvVwdWWZUk+TPOqc+stxtuc+LuuEFXc3ysGMg97FOd3Q1y3WoY47QJQxLlkfjc1qkqIocr84b11dW4hf+3/81Hj1zftP3dG3fAk0raU4eNF/+87fcHS89uK+FI4P6NZXlqvd8rl3CeiXNy11lPUKELDfBtTKaIMvpamIf4f2ucsjy4HnzZ3/wVbFzxw7jnKTVkeWcrkuZlyiFeRnKUEqWJ10LmJ/JXQ5ZlrP1ctrD0Iwccszk6s6+rm1fqln2s4gwmlSzvJU6cmutSilyynIq/EwYKZLl/iZdC5j3aYosN2ttN7xoeip++jNfikfPyDmTk+X2VLX/N/cTUVaWjWnaksL7KSVluesGddk/e8vdsXT5ee/fFUqWoQyyDPnY3fYBwCTml3pbbhwiIh49PR/PX19pdbOwullevHw1Du7fE3O32LyQr355O/E/8vaaO1400b8hM0CTnrl4pW+vzS/1au+g2Wk9R/sGjcNBa4AqsmINQAlG7fQmsjUqWQSaMEr/Nble1oGw3iT5m2SdI4vkoo2xmvt1pBT3QDRr2DGQ+1gflzmQLqtjjqijS+QU0v+c1iRkvNtW540vP7O05S8Uikhr32K8QtoGzZdLl5+Pu/61gQABAABJREFUl3bk52v0FXWpes/n2iXQlrrmSusR2F6VuSv5WhmwtbUdsn9qV+37iK6+d0592rxWM2je3LljR7ziJTONHAukJKfrUuYlquB9A4D1Jl0L5Dw/mxPIRao5aytDOe1hgOEM0yd1Zz/VrqV9fhZxPWtoSlJHbnNZq8oyVK/unwmTW6jepGuBtud9vQD1WNsNN+b1dtf3sk7KchmfVe3/2577oWrG9GRy6cAUdeX9FJoxqMuWLj+f5c+H6BgAIEVuNE/WFi9f7fv4xQGP1+mpC5fivY+cWre5OXZ4Lh46fiRuO7S/teOCcdWdN5kBmvTUhUtx7i+W+35Pm+sISIk1ANQjtf2sLAJNSa3/InQgVG3cnMsiuTBWx5PiGoBmGQPb0yt0XQ79IKdwQw55HYeMsyqHMW68Qvpy6JIm6Cty8uxyr+/jXckt0Kw650rrEdha1bmTNeiWjR3yK299bd/v1wGkpu1rNeZN2Jps0CVtz0UAKerqWsCcAJNpM0Nd7S0o1bB9Ivu0xdh7gTU0DJZDZ8gy1KuOHpBbSFOb875egGa0vb6XdVLWxfHZdidA1Yzp8XWxAyFVJXaZjgEAUrWz7QOASRzct6fv4wcGPF6XheXepg1ARMSJ0/Px4COnYmHAL6SDFNWZN5kBmrTaOYO0tY6A1FgDQD1S2s/KItCklPovQgdCHcbJuSySC2N1fKmtAWieMbA1vQLp94OcwgtSz+s4ZJy1Uh/jxivkIfUuaYK+IicLy73oPX+97/d0IbdAs+qeK61HYLM6cidr0B1bdcje3f1/NF8HkJIUrtWYN2FrskFXpDAXAaSoi2sBcwJMpu0MdbG3oFSj9Ins0xZj74a253/IReqdIctQv6p7QG4hXW3N+3oBmtPm+l7WSVlXx2fqe34YlTE9nq52IKSqtC7TMQBAytxonqzNzUzFscNzWz527PBczM1MNXxEN8wv9TZtAFadOD0f80s2AeSnzrzJDNCk1c554usX4p67bt3ye9pcR0BqrAGgHintZ2URaFJK/RehA6EO4+RcFsmFsTq+1NYANM8Y2JpegfT7QU7hBanndRwyzlqpj3HjFfKQepc0QV+Rk/mlXvzuV85v+znC+zqSW6BZdc+V1iOwWR25kzXojq06xM8jkZMUrtWYN2FrskFXpDAXAaSoi2sBcwJMpu0MdbG3oFSj9Ins0xZj74a253/IReqdIctQv6p7QG4hXW3N+3oBmtPm+l7WSVlXx2fqe34YlTE9nq52IKSqtC7TMQBAytxonqzNTk/FQ8ePbNpAHDs8Fx86fiRmp0ffPCws9+LLzyzFE+eejS9/cykWlkdfsC9evtr38YsDHocUDZO3cfMjM1CvKua2kqx2zie+cDbeec+dm365030TrCOgNAvLvTj/XC9+7n/5n+K+Ctfcq6wB6LI69rPbGbQWkEWgSU323zCG7UD7KhjeODnPYT2iB4i4MVanp3bFu77vrvi3b39d/MpbXxufeMdfi3d9310xPbUribGaqtTWADQvxTGQQrfnMAdCE37hh19dyzXoKsgpvCDF+XwQ18cZxbBjvK11pPEKeahrvkxhDzssfUU/qY3lxctXt/0c4T133Rrv/1/+pyTXuUA6xum1uufKHPfvdFsT64M6cidrkI66e2SrDtluH6EDGFed4ziFazXmTdiabDCO1K6xDiOFuQggRTmtBaqaf8wJ0F/qn3fMqbegK5r4fX+yT1vGHXs5Xjvpp+35H3LR1nw1bOfIMtRvkh7YKstLV+QWUtXWvL9xPt/4u4d6z1/Lfv8BqZg055NcG7B2J2VVjc/crp+5Rk1pjOnB7NMhfSV12cJyL648f23T7xVeS8cAAG3a3fYBwKRuO7Q/Pnr/0Zhf6sXFy1fjwL49MTczNdbG4akLl+K9j5yKR0/P3/zascNz8dDxI3Hbof1D/z0H9+3p+/iBAY9DqvrlbZL8yAzUp6q5rSSrnbPcuxbv/tQT8cC9d8YD99wZV56/Hnt374y7vmUmXtbRcwNrre2P6ald8cC9d8b/7W++Ivbu2RmH9k+NveZeyxqArqtyP7udYdYCsgg0rYn+G9agDjy4f499FYxh1Jynvh7RA6ya3b8nPnL/0Xj45Nn42OfO3Pz6PXfdGh+5/2gc3G/t3E9KawDakdIYSKXbU58DoW6rWXzsa8/GA/feGe94/csjIuIvvWh/fOvBfUnMEXIK66U0nw/i+jjjGDTG21xHGq+Qj6rny1T2sMPSV2wnxbF8cN+ebT9H+MTXL7RyTEA+xu21JubKnPbvdFtT64O6cidr0L4memSrDlm7j/iZN70qLl+9pgMYW93jOJVrNeZN2JpsMIoUr7EOI5W5CCBFOawFqpx/zAmwvVw+75hDb0FXNPn7/mSftow69nK9dtJPCvM/5KLp+WqUzpFlaMY4PbBdln/hh18d01O7Yrl3bcs/J7fQrjb2qWvn8+mpXVv+7qHc9x+QknFzPum1AWt3UlbF+Mz1+plr1JTGmN6efTrko4Qu26pzVn+v8Ls/9cTNztExAECbdrZ9AFCF2empeMVLZuI1d7woXvGSmbE2DgvLvU0L+IiIE6fn48FHTsXCcm/ov2tuZiqOHZ7b8rFjh+dibiafjQ1stFXeJs2PzEA9qpzbSrK2c5Z71+JjnzsTP/arX4x/8OuPx6/+7lfj0LSLdbCxP1az8qMf//34l//f05VdrLcGgGr2s9sZdi0gi0Ab6uy/UQzqwFv27ravgjGNkvOU1yOur7DWLXt3x8Mnz8bJM+fXff3kmfPxyZNn45a9u1s6snyksgagPSmMgZS6PeU5EOq2Notr36/5sV/9Yvzif/qjtg/vJjmFzVKYzwdxfZxJbDfG215HGq+Ql6rmy7a7Zxz6iq2kOpZXx+vGzxH+2K9+MU59/ULceovxCmxtkl5raq7MYf9OtzW5Pqgzd7IG7WmqR7brkOXetTj19Qvxstl9OoCxNTGOU7pWY96ErckGw0j1GuswUpqLAFKU8lqg6vnHnABby+3zjin3FnRFG7/vT/Zpy7BjL+drJ/2kMv9DLpqar0btHFmG5ozSA/2y/LO/9aX4mR981ZZ/Tm4hDU3vU9fO5w/ce+eWv3so9/0HpGbUnFdxbcDanZRNOj5zv37mGjWlMaY3s0+H/OTcZdt1zskz5+Phk2fjgXvvjAgdAwC0z43m4X+YX+ptWsCvOnF6PuaXhr/AOTs9FQ8dP7Lpguuxw3PxoeNHstrcwDAmzY/MQD2qnNtKonNgsKb6Qx6hXsNmWRaBLhvUgUuXn7evggakvB5xfYW1li4/v+kHvVZ94cz5WLr8fMNHBIwjpW5PeQ6EuqWUxX7kFPLk+jh1aHvuMl6hm9runnHoK7aS6lg2XoFxTdJrugduaHJ9IHdQJj/zQAmaGMfGMEAZUr3GOgxzEUC+qp5/zAmwNZ93BEbl9/3BZjlfO+lHXiFNo3aOLEOaBmX5tXccklvgprXz+dHbD237u4dy3n9A7qq4NmDtTsomHZ+lXj8DymGfDjSpX+ecPHM+jt5+SMcAAEnY3fYBwCQWlnsxv9SLxctX4+D+PTF3y9TYC+zFy1f7Pn5xwOMb3XZof3z0/qMxv9SLi5evxoF9e2JuZvzjg6aMk6sq8iMzUL2q57YUjbsW0DmwvYXlXlx5/lr8yltfG/v27IrHzz0bn/jC2VjuXbv5PVX2hzxSoir3qpMYZS0gi0BqmuzSfh34xLln+/7ZEvZVkIqm1iOj9ksXrq8wvI3jYXpqVzxw751x9PZDceX569F7/losLPeso6Elw3Z8at1uT05XbZfF1fn1yvPX4olzz7Z6fW2VnMJgqVwXX+X6OBtVMUZTWEcar5C2OubDFLpnHPqKjZoey6Pk0XgFxrG21za+X7Rvz664vrLS98/rHmh+fXDL1K74mR98VVy4dDVmpnbF9NTuODS9R+4gY02+12Tupi5Vz4fb7YeNYYB8rXb7+ed68Yl3/LUtf9YzIt33C1aZiwAm09Zns+q4hmdOoGmpfbZxKz7vCIxq0verI/QJ5Vm6cjXe9X13rcvC2usoqV876UdeyUEO6+4qjbNflmWYXNVdMyjLl3rX5BYy0dRaZHU+/9Nnlvp+X877D2jbJHmu6n0ta3dSNur4XJupvbt3xru+764tP3cUYf4CRmefDlQh1c/Fze7fEx+9/6iOAQBa50bzZOupC5fivY+cikdPz9/82rHDc/HQ8SNx26H9I/99B/ft6fv4gQGPb2V22oUF8jJurqrKj8xAteqY21Iy6VpA58BmW+XqnrtujY/cfzTe/aknbn4QoOr+kEdKUvVedRKjrgVkEUhFG126XQeWvq+C1NS9HhmnX/QAa60dD9NTu+Ij9x+Nh0+ejY997szNr7e1/oeuG6XjU+x2e3K6aKsspjy/yilsL6Xr4qtcH2etqsZoKutI4xXSVNd8mEr3jENfsVaTY3mcPBqvwKhWe22761n3HZ6LDw1YB+geui6V9cHsdGX/DNCwpt9rMndThyrnw0H7YWMYID/D/qxnRNrvF6wyFwGMp83PZtV1Dc+cQFNS/GzjVnzeERhVFe9XR+gTyjK7fyqeOPfsuiysvY6Sw7WTfuSVlOWy7q7SuPtlWYbx1dE1w2RZbiF9Ta9FZqen4sUDeiH3/Qe0ZdI8V/m+ljUAKRt2fI7yuaMI8xcwGvt0oAopfy7uRfoGAEjEzrYPAMaxsNzbtNiPiDhxej4efORULCz3Nn3/l59ZiifOPRtf/ubSpscjIuZmpuLY4bkt/71jh+dibsYCnrL1y9XP/daX4huLl7fNkfxAmkrO5qhrgdwMs3aBSW0cZ99YvBw/+1tf2pSrk2fOx8Mnz8YD994ZEfn3B9RplPmpia4veS0ApKmKbkttra9LIT3jds24/aIHWGvteHjg3jvj4ZNn4+SZ8+u+p5TrU7lzfa1bRn2Pa2bf7vjb3/mSLf8u3Q7N2WqdVeX8ai6AZgy712o6k/ZyrKryemPb48rcBunaqmump3bFkdsPxVfnn4vHv/YXY+e27e6BqjQ1lpt+r9H8DN212mvbXc96tCPvF+lBJlHq+qBucgcvqOK9JpmibVXNh6XNd23TDeTCWC3bdt2+8Wc9I7xfAFCyqtf6o64fvF9NznLaK8sa47An7DbvV9dDrvK1sNyLn/nMl25mYXpqV7zr++6KB+65M3ZExKf+/t+ImX272z1IKFQO6+46+t0aHppV1zWyhUu9+NTf/+541/fdFdNTu9Z9jyxDPaqel9tai1gLQH/jZL2KPMsmvGCUzx1FdCMjrv/CCybNQ13rcHM5pKGpObPt9xd0DgCQC594IkvzS71Ni/1VJ07Px/xSL2anbyy6n7pwadPm4NjhuXjo+JG47dD+m1+bnZ6Kh44fiQcfORUnNnzvh44fufn3Qam2y9X01K74v/z1O+Kn/v2T8eiaD5SvzZH8QJpKzuYoa4HcDLt2gUlsNc7uOzwXb3/9y+N3v3w+lnvX1n3/yTPn44F77iyiP6BOw85PTXV9yWsBID1VdVtqa31dCmmZpGvG7Rc9wFprx8PR2w/Fxz53Zsvvy/36VO5cX+uecd7j+sCbXx0REZ/9o2fWfV23Q3O2WmdVNb+aC6A5g/Za55/rxXO9a41n0l6OVVVeb2xzXJnbIG0bu2Z6ald85P6j8fDJs+vWt+Pk1pxGKZoay02+12h+hm5b7bWvzj/X2feL9CCTKnF9UDe5g/Umfa9JpkhBVfNhSfNd23QDuTBWy9ev21d/1jPC+wUApatyrT/O+sH71eQsp72yrDEqe0K8X109ucrb/FIvHj1z47Wr8vObwGCpr7vr6ndreGhW3dfI7r3r1vjI/Ufj3Z96IpZ712QZalLHvNzWWsRaALY3btaryLNswguG/dxRRDcy4vovvKCKPNS1DjeXQ/uanDPbfn9B5wAAuXCjebK0ePlq38cv/o/HF5Z7mzYhETc2BQ8+cio+ev/RdYvz2w7tj4/efzTml3px8fLVOLBvT8zNTFnA0wnb5eqBe++Mh0+ejZNrbsARsTlH8gNpKjWbw64FcjPq2gXGsd04e/T0fFxfWYkH7r1zyx8km92/xxiEAYaZn5ru+lLXAkBaquy2FNf6uhTSMGnXTNIveoC1VsfDnz6z1Pf7cr0+lTvX17ppnPe4fvozX4p/9pa748E3Pq/boUUb11lXr6/0/f5h5ldzATRr0F7r2vWV1jJpL0dE9dcb2xhX5jZI38auGfYzl8Myp1GKJsZyU+81mp+BiBu99ucLl/p+T6nvF+lBqlLS+qBucgdbG/e9JpkiJVXMh6XMd23TDeTCWO2GQd1+YN+e+J33/E3vFwAUrqq1/iTrB+9Xk6vc9sqyxrDsCVnV5ferqyZX+Vs771f9+U2gv5TX3XX3uzU8NKfua2RfOHM+duzYEb/1D++JnTt2yDLUoK55uc21iLUAbDZJ1qvKs2zCDYMyNbt/T3zmH7y+Exlx/RdeUFUe6lyHm8uhPU3PmSm8v6BzAIAcuNE8WTq4b0/fxw/8j8fnl3qbNiGrTpyej/ml3qYF+uy0RTvdtF2ujt5+aMubzUZszpH8QJpKzOawa4HcjLN2gVH1G2cnz5yPB+65c8vHXlRgl0DVhpmf2uj6EtcCQFqq7LZU1/q6FNo3addM2i96gLVmp6fixQPGQ67Xp3Ln+lo3jfse19Ll5+MVL5mp89CAIaxdZ335maW+3zvM/GougGYN2mtdu77Saibt5ajjemPT48rcBunb2DWjfOZyWOY0SlH3WG7qvUbzM7Bqdn833y/Sg1SplPVB3eQOtjfOe00yRWomnQ9Lme/aphvIhbHaDYO6/dZbpnz2DaADqlrrT7p+8H41OcpxryxrDMOekLW6+n511eQqf2vn/To+vwlsL+V1dxP9bg0PzWjiGtmjp+dj544d3nuBmtQ1L7e9FrEWgPUmyXqVeZZNGJypF01353NHrv/CC6rKQ93rcHM5tKPpObPtPf0qnQMApG5n2wcA45ibmYpjh+e2fOzY4bmYm7mxCF+8fLXv33NxwOPQJdvl6srz1/v+OTkC2jDsWiA31i40YdA422ruzzlX0KRh5iddD5Soym4rda0PTG7SrtEvVM2YSpM9Vzd5jwvKUcX8ai6AZg3K7XLv+b5/XiapWwl7N3MbpG9j19iPQnuamvvNz8CqEvYc49CD5KSUnModDMfPHdNVpcx3bdMN5MJY7QbdDkBEdfOB9QNdZD1FqXQ6a+m6ashV/tZmwec3oVkpz0X6HcrhGhnkr678pbwWgS6aJOvyDNWSqRfYB8ALqsqDjoEyNT1n6hIAgOG40TxZmp2eioeOH9m06D92eC4+dPxIzE7fWPAf3Len799zYMDj0CXb5erQfjkC0jPsWiA31i40YdA42zj3554raNIw85OuB0pUZbeVutYHJjdp1+gXqmZMpcmeq5u8xwXlqGJ+NRdAswbmdn//3MokdSth72Zug/Rt7Jq9u/t/PF9uoT5Nzf3mZ2BVCXuOcehBclJKTuUOhuPnjumqUua7tukGcmGsdoNuByCiuvnA+oEusp6iVDqdtXRdNeQqf2uz4POb0KyU5yL9DuVwjQzyV1f+Ul6LQBdNknV5hmrJ1AvsA+AFVeVBx0CZmp4zdQkAwHB2t30AMK7bDu2Pj95/NOaXenHx8tU4sG9PzM1MrVvsz81MxbHDc3Hi9PymP3/s8FzMzdgYwFpb5Wpm3245ApI0zFogN9YuNGHQOHvFS2bid97zN4vJFTRt0Pyk64ESVd1tJa71gclV0TX6haoZU+mx5+ou73FBOSadX80F0Lx+uV1Y7skkrct972Zugzys7ZrrKytx3+G5eFRuoRVNzP3mZ2Ct3Pcc49CD5KaEnModDM/PHdNVJcx3bdMN5MJY7Q7dDkBENfOB9QNdZT1FiXQ6G+m6yclVGVazcGH5qs9vQsNSnYv0O5TFNTLIW535S3UtAl00adblGaolUzfYB8ALqsyDjoHytDFn6hIAgMF2rKysrLR9ELlbXFyM2dnZWFhYiIMHD7Z9OGzw1IVL8eAjp9ZtRo4dnosPHT8SLzu0v8UjIyVy3J8ckQtZpgQ6V5abYJzRBFnengySE1lmWLotbbJMKbreNbIMw0m9K2S5WamPB/Ily2mTfYYly82QSerUlRzLEaUrMctySxeVmOV+5JxSdS3LjE8Ppk2WyyR33SPL9ZIpmiLLedENbCe1LBurMJ7UsgyMR5bHY/1AamQZxpdKp8sxJUklV20oMctdfj3prhKzXAV9QG5kuX56gSbI8tbkj9zI8nhkndTIMhG6qQSyXB15oE2ynD4dwTBkGcogy5APN5qvgNJL38JyL+aXenHx8tU4sG9PzM1Mxez0VNuHRULkeDA5IgeyTCm63rmy3IyujzPqJ8v9ySC5kGVGodvSJcuUpMtdI8swvJS7Qpabl/J4IF+ynD7ZZxiy3ByZpC5dyrEcUbJSsyy3dE2pWe5HzilRF7PM+PRgumS5XHLXLbJcP5miCbKcH93AVlLMsrEKo0sxy8DoZHl81g+kRJZhMil0uhxTmhRy1YZSs9zV15PuKjXLVdAH5ESWm6EXqJssb0/+yIksj0/WSYkss0o35U2WqyUPtEWW86AjGESWoQyyDPnY3fYBQBNmp208YFJyBNAcnUsTjDNolwwCJdJtQBN0DTAMXcFaxgN0k+xDWmQSJidHkB+5hfLJOdB1ehCaJ3dQLZkCtqIbyIWxCgCMyvoBoBw6HaonV2XxegKr9AGwkV6A9sgfdIOsAynSTfACeQD60REAAGlxo3kAAAAAAAAAAAAAAAAAAAAAAACKde7cuZifn2/7MLY1NzcXd9xxR9uHAQAAAAAAAAAAAAAAQAvcaB4AAAAAAAAAAAAAAAAAAAAAAIAinTt3Lr7jO74zLl1abvtQtrV//3T88R//kZvNAwAAAAAAAAAAAAAAdJAbzQMAAAAAAAAAAAAAAAAAAAAAAFCk+fn5uHRpOb77gZ+Lgy97eduHs8ni01+N3//E+2N+ft6N5gEAAAAAAAAAAAAAADrIjeYBAAAAAAAAAAAAAAAAAAAAAAAo2sGXvTxefMdfafswAAAAAAAAAAAAAAAAYJ2dbR8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNe40TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DA3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGra77QOAcS0s92J+qReLl6/Gwf17Yu6WqZidnmr7sKCT5BGok46BZsgapEs+gTroFqAJugZIjV7qFq83lEGWoX1yCHIADKYnoFtkHqCb9D9dYrzTBcY5UAVdQtOMOQDIm7kcgGGZM+gC45ymGGvAdvQDdJPsQ5pkE/IgqwDdo/tpk/EH1ZEnAIA8udE8WXrqwqV47yOn4tHT8ze/duzwXDx0/Ejcdmh/i0cG3SOPQJ10DDRD1iBd8gnUQbcATdA1QGr0Urd4vaEMsgztk0OQA2AwPQHdIvMA3aT/6RLjnS4wzoEq6BKaZswBQN7M5QAMy5xBFxjnNMVYA7ajH6CbZB/SJJuQB1kF6B7dT5uMP6iOPAEA5Gtn2wcAo1pY7m3agEREnDg9Hw8+cioWlnstHRl0jzwCddIx0AxZg3TJJ1AH3QI0QdcAqdFL3eL1hjLIMrRPDkEOgMH0BHSLzAN0k/6nS4x3usA4B6qgS2iaMQcAeTOXAzAscwZdYJzTFGMN2I5+gG6SfUiTbEIeZBWge3Q/bTL+oDryBACQNzeaJzvzS71NG5BVJ07Px/ySTQg0RR6BOukYaIasQbrkE6iDbgGaoGuA1OilbvF6QxlkGdonhyAHwGB6ArpF5gG6Sf/TJcY7XWCcA1XQJTTNmAOAvJnLARiWOYMuMM5pirEGbEc/QDfJPqRJNiEPsgrQPbqfNhl/UB15AgDImxvNk53Fy1f7Pn5xwONAdeQRqJOOgWbIGqRLPoE66BagCboGSI1e6havN5RBlqF9cghyAAymJ6BbZB6gm/Q/XWK80wXGOVAFXULTjDkAyJu5HIBhmTPoAuOcphhrwHb0A3ST7EOaZBPyIKsA3aP7aZPxB9WRJwCAvLnRPNk5uG9P38cPDHgcqI48AnXSMdAMWYN0ySdQB90CNEHXAKnRS93i9YYyyDK0Tw5BDoDB9AR0i8wDdJP+p0uMd7rAOAeqoEtomjEHAHkzlwMwLHMGXWCc0xRjDdiOfoBukn1Ik2xCHmQVoHt0P20y/qA68gQAkDc3mic7czNTcezw3JaPHTs8F3MzUw0fEXSXPAJ10jHQDFmDdMknUAfdAjRB1wCp0Uvd4vWGMsgytE8OQQ6AwfQEdIvMA3ST/qdLjHe6wDgHqqBLaJoxBwB5M5cDMCxzBl1gnNMUYw3Yjn6AbpJ9SJNsQh5kFaB7dD9tMv6gOvIEAJA3N5onO7PTU/HQ8SObNiLHDs/Fh44fidlpmxBoijwCddIx0AxZg3TJJ1AH3QI0QdcAqdFL3eL1hjLIMrRPDkEOgMH0BHSLzAN0k/6nS4x3usA4B6qgS2iaMQcAeTOXAzAscwZdYJzTFGMN2I5+gG6SfUiTbEIeZBWge3Q/bTL+oDryBACQtx0rKysrbR9EVU6cOBH/7J/9s3jsscfi6aefjk9/+tPx5je/ue+f+fznPx/vec974r/+1/8at99+e/z0T/90vOMd7xjp311cXIzZ2dlYWFiIgwcPjv8EGMnCci/ml3px8fLVOLBvT8zNTNmAMDY5now8kgpZLpOO6R5ZboesUTVZro580iZZLpdu6RZZpi26plqyDJNLoZdkuTkpvN6US5abI8vUSZaHI4ekrKkcywHUq4Q5WU9AGVkelsxTsi5lGUaVU//LMpPKabyXTJbrZZzTFFkumy7pjlSybMzBZFLJMu16/PHH47u+67vib//Th+PFd/yVtg9nk7849yfx2V98Zzz22GPx2te+tu3DSVLOWTaXwwtyzjI0IYc5Q46ZVA7jvAu6kGVjjS7oQpbroB9IjSw3Q/apmyyPRzZJjSxvTVbJjSzD5FLoflnurhTGH9WR5XbJE1WRZSiDLEM+drd9AFV67rnn4u67744HHngg/u7f/bsDv//s2bPxpje9KX7iJ34ifv3Xfz1+53d+J378x388Xvayl8UP/MAPNHDETGJ22qYDUiGPQJ10DDRD1iBd8gnUQbcATdA1QGr0Urd4vaEMsgztk0OQA2AwPQHdIvMA3aT/6RLjnS4wzoEq6BKaZswBQN7M5QAMy5xBFxjnNMVYA7ajH6CbZB/SJJuQB1kF6B7dT5uMP6iOPAEA5KmoG82/8Y1vjDe+8Y1Df/+/+lf/Ku688874pV/6pYiI+M7v/M74whe+EP/iX/wLN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAalPUjeZH9Xu/93vx/d///eu+9gM/8APxkz/5k33/3JUrV+LKlSs3/3txcbGOwwNqJMdQBlmGMsgylEGWoQyyDGWQZSiDLEMZZBnKIMtQBlmG/MkxlEGWoQyyDGWQZSiDLEMZZBnKIMtQBlmGMsgylEGWoQyyDPmTYyiDLEMZZBnKIMtQBlmGMsgylEGWoQyyDGWQZSiDLEMZZBnytbPtA2jTn//5n8dLX/rSdV976UtfGouLi3Hp0qVt/9wHP/jBmJ2dvfm/22+/ve5DBSomx1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy1AGWYb8yTGUQZahDLIMZZBlKIMsQxlkGcogy1AGWYYyyDKUQZahDLIM+ZNjKIMsQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGfK1Y2VlZaXtg9jOqVOn4nWve130er2R/+yOHTvi05/+dLz5zW/e9nte+cpXxjvf+c543/ved/Nrv/3bvx1vetObYnl5Ofbv37/ln7ty5UpcuXLl5n8vLi7G7bffHgsLC3Hw4MGRjxVonhxDGWQZyiDLUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZ8ifHUAZZhjLIMpRBlqEMsgxlkGUogyxDGWQZyiDLbOXxxx+P7/qu74q//U8fjhff8VfaPpxN/uLcn8Rnf/Gd8dhjj8VrX/vatg8nCbIMZZBlyJ8cQxlkGcogy1AGWYYyyDKUQZahDLIMZZBlKIMsQxlkGcogy5Cv3W0fQD8rKytx7dq12v7+b/3Wb41vfOMb6772jW98Iw4ePLjtTeYjIvbu3Rt79+6t7bhytLDci/mlXixevhoH9++JuVumYnZ6qu3Dgm3J8eTknhTIcj50Bv3I8nryQq5k+QVyTM5keXuyTU5keT35JVeyTCm63sOyfEPXxwH5k+UbZJncdT3LMkwJcsmxvEF/uWR5OzION+ScZTmGF+ScZUhVG/OMLNM266tqyHI3yEv5ZLldMkZVcsmyMQ/95ZJloD9ZroZ1A22T5fTpCQaR4/zINVvJMcvGMmyWY5abpDfIRclZlkO6pOQsD0vmKUHXsiy3lKprWUaflUqWu0umyyLL7ZInqiLLUAZZhnwlfaP5un3P93xP/PZv//a6r332s5+N7/me72npiPL01IVL8d5HTsWjp+dvfu3Y4bl46PiRuO3Q/haPDKiL3AOj0BkwPHmB/MkxlEm2IV/yC9AuPUyEcQClkGXImwxDc+QNyibjkD85BqBO5hm6yLiH4ckL1EvG6BpjHgAYlnUDMIiegPLINaUwloFR6Q1onxxCt8g85EdugVLoMyiLTEN15AkAoBw72z6AKi0tLcWTTz4ZTz75ZEREnD17Np588sk4d+5cRES8733vi7e97W03v/8nfuIn4itf+Ur8k3/yT+KP//iP41d+5Vfi3//7fx//+B//4zYOP0sLy71Nm4OIiBOn5+PBR07FwnKvpSMD6iL3wCh0BgxPXiB/cgxlkm3Il/wCtEsPE2EcQClkGfImw9AceYOyyTjkT44BqJN5hi4y7mF48gL1kjG6xpgHAIZl3QAMoiegPHJNKYxlYFR6A9onh9AtMg/5kVugFPoMyiLTUB15AgAoS6s3ml9cXOz7v4sXL470933xi1+Mo0ePxtGjRyMi4j3veU8cPXo0fvZnfzYiIp5++umbN52PiLjzzjvjP/2n/xSf/exn4+67745f+qVfio9//OPxAz/wA9U9ycLNL/U2bQ5WnTg9H/NLNghQGrnn/8/enQdZVtcH//90M8zGTDfBVgQcBHFEXEaBbG4DVmkRofypISaVnxaIhRUTySKVUozE7ZEHSAnBWEn0qciiGBMNLj815YOSsnChNAET3EAI6qhIaYvTzTjM9DDTvz+omdDT2723zz3nfD/n9aqiyunbM/M9557353tvd48H+mFmQO/0AuXTMeSkbSiXfgGaZQ4T4TqALLQMZdMw1EdvkJvGoXw6BmCY7DN0keseeqcXGC6N0TWueQCgV143AMsxJyAfXZOFaxnol7kBzdMhdIvmoTy6BbIwzyAXTUN19AQAkMuqJv/yww8/PEZGRhZ9fHZ2dsnHD3b66afH7Ozsoo9fe+21C/6er3/96z3/Hcw1vWvPko8/sMzjQHl0D/TDzIDe6QXKp2PISdtQLv0CNMscJsJ1AFloGcqmYaiP3iA3jUP5dAzAMNln6CLXPfROLzBcGqNrXPMAQK+8bgCWY05APromC9cy0C9zA5qnQ+gWzUN5dAtkYZ5BLpqG6ugJACCXRm80/2//9m993Uie9hlbe+iSj29c5nGgPLoH+mFmQO/0AuXTMeSkbSiXfgGaZQ4T4TqALLQMZdMw1EdvkJvGoXw6BmCY7DN0keseeqcXGC6N0TWueQCgV143AMsxJyAfXZOFaxnol7kBzdMhdIvmoTy6BbIwzyAXTUN19AQAkMtok3/56aefHqeddtqy/9FeExtWx9bNEws+tnXzRExsWF3zioBh0z3QDzMDeqcXKJ+OISdtQ7n0C9Asc5gI1wFkoWUom4ahPnqD3DQO5dMxAMNkn6GLXPfQO73AcGmMrnHNAwC98roBWI45Afnomixcy0C/zA1ong6hWzQP5dEtkIV5BrloGqqjJwCAXBq90fzo6GgccsghS/63atWqJpfIMsbXr47Lzt4y703C1s0TcfnZW2J8vTcIkI3ugX6YGdA7vUD5dAw5aRvKpV+AZpnDRLgOIAstQ9k0DPXRG+SmcSifjgEYJvsMXeS6h97pBYZLY3SNax4A6JXXDcByzAnIR9dk4VoG+mVuQPN0CN2ieSiPboEszDPIRdNQHT0BAOQyMjs7O9vUX/7JT35y0cduueWW+Ju/+ZvYt29f7Nq1q8ZV9W96ejrGx8djamoqxsbGml5OI6Z2zsTkjpl4YNee2Lj20JjYsNqbA4qi4/7pnjbScnuZGfSj6y3rhSy63LKOyaTLLR9M25Ss6y3rlyy63jLlMofn6mrLrgOy0bKWyaFrLWuYjNrasd6gP21teTEah4WV1LKOYXEltQxt1YZ9RsvUrQ3XfUZazkkv3aPlemmMYWlry6556E9bW6Zet912W5x66qnxwjdfE0cce2LTy5nn/m13xucuOS9uvfXWOOWUU5peTitpeTBeN9A2Wm4fc4J+6bj9dE0vSmjZtQzLK6HlOpkblCpTyzqkyzK13CvNk1H2lnVLV2RvGfOsK7TcHZrOTcv10hPDomXIQctQjlVN/uUveclL5n3szjvvjIsuuig+9alPxSte8Yp4xzve0cDK6Nf4em8IoGt0D/TDzIDe6QXKp2PISdtQLv0CNMscJsJ1AFloGcqmYaiP3iA3jUP5dAzAMNln6CLXPfROLzBcGqNrXPMAQK+8bgCWY05APromC9cy0C9zA5qnQ+gWzUN5dAtkYZ5BLpqG6ugJACCH0aYXsN+9994br3nNa+LpT396PPTQQ/Gf//mfcd1118XjH//4ppcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUKnGbzQ/NTUVb3zjG+OJT3xifOtb34qbbropPvWpT8XTnva0ppcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBSrmvzL/+qv/iouv/zyeOxjHxsf/vCH4yUveUmTywEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoRaM3mr/oooti3bp18cQnPjGuu+66uO666xb8vI997GM1rwwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgeBq90fw555wTIyMjTS4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHaN3mj+2muvbfKvBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjEaNMLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgaN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGq2qukFAAAAAAAAAAAAAAAAAAAAAAAAQJd95zvfaXoJS5qYmIhjjz226WUAAAAAAAAAAAAAAACk40bzAAAAAAAAAAAAAAAAAAAAAAAA0IAHp34eESPxyle+sumlLGnduvVxxx3fcbN5AAAAAAAAAAAAAACAirnRPAAAAAAAAAAAAAAAAAAAAAAAADRgz84HImI2nvn/vjEeffyTm17OgqZ/8v346tVvj8nJSTeaBwAAAAAAAAAAAAAAqJgbzQMAAAAAAAAAAAAAAAAAAAAAAECDNjzm2Dji2BObXgYAAAAAAAAAAAAAAAA1G216AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd40bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVzo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmrnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDN3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGZuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMzeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiZG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MyN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVzo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmrnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDN3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGZuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMzeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiZG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MyN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVzo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmq1qegEAAAAAAAAAAAAAAAAAAAAAAABN2rZtW0xOTja9jEVNTEzEscce2/QyAAAAAAAAAAAAAAAAgIq50TwAAAAAAAAAAAAAAAAAAAAAANBZ27Ztiyc/+aR48MGdTS9lUevWrY877viOm80DAAAAAAAAAAAAAABAMm40DwAAAAAAAAAAAAAAAAAAAAAAdNbk5GQ8+ODO+I1XvzXGjjqu6eXMM/2T78dXr357TE5OutE8AAAAAAAAAAAAAAAAJONG8wAAAAAAAAAAAAAAAAAAAAAAQOeNHXVcHHHsiU0vAwAAAAAAAAAAAAAAAOiQ0aYXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA1bjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDM3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAapbyRvN/+7d/G8cdd1ysXbs2fuM3fiO+9rWvLfq5e/bsiXe84x1xwgknxNq1a+MZz3hGfPazn61xtQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDXpLvR/D//8z/HhRdeGG9961vjtttui2c84xlxxhlnxE9/+tMFP//iiy+O973vffGe97wnvv3tb8drX/vaeNnLXhZf//rXa145AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0BXpbjR/5ZVXxmte85o477zz4ilPeUq8973vjfXr18fVV1+94Od/8IMfjL/4i7+IM888M57whCfEH/7hH8aZZ54ZV1xxRc0rBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoi1Y3mZ2Zm4tZbb40XvOAFBz42OjoaL3jBC+KWW25Z8Pfs3r071q5dO+dj69atiy996UtDXSsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQXauaXkCVJicnY+/evXHkkUfO+fiRRx4Zd9xxx4K/54wzzogrr7wytm7dGieccELcdNNN8bGPfSz27t276N+ze/fu2L1794FfT09PV3MAQG10DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnKp2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoXw6hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnKNdr0Apr27ne/OzZv3hxPfvKTY/Xq1XHBBRfEeeedF6Oji5+aSy+9NMbHxw/8t2nTphpXDFRBx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfDqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahXCOzs7OzTS+iKjMzM7F+/fr4l3/5l3jpS1964OPnnntubN++PT75yU8u+nt37doVP//5z+Poo4+Oiy66KD796U/Ht771rQU/d/fu3bF79+4Dv56eno5NmzbF1NRUjI2NVXY8wPDoGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyGHQlm+77bY49dRT44VvviaOOPbEOpbal/u33Rmfu+S8uPXWW+OUU05pejnFafvz+/2v/t/46tVvj+f+2d/GMSed3PRyFlT3NWhfhhy0DOXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQrlVNL6BKq1evjlNPPTVuuummAzea37dvX9x0001xwQUXLPl7165dG8ccc0zs2bMnbrjhhvjd3/3dRT93zZo1sWbNmiqXDtRMx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfDqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahXKluNB8RceGFF8a5554bv/qrvxq//uu/HldddVX88pe/jPPOOy8iIs4555w45phj4tJLL42IiK9+9avx4x//OJ75zGfGj3/843jb294W+/btize84Q1NHgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQWLobzf/e7/1e/OxnP4u3vOUtcd9998Uzn/nM+OxnPxtHHnlkRERs27YtRkdHD3z+rl274uKLL4577rknNmzYEGeeeWZ88IMfjMMPP7yhIwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyS3ej+YiICy64IC644IIFH/vCF74w59ennXZafPvb365hVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPG216AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd40bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVb1fQCAAAAAAAAAAAAAAAAAAAAAAAAKNe2bdticnKy6WUs6Dvf+U7TSwAAAAAAAAAAAAAAAIBFudF8TaZ2zsTkjpmY3rUnxtYdGhOHrY7x9aubXhbQMmYFDJ/OIActQw5ahhy0DDloGfLQM5RPx5CDliEHLUNe+oayaBY4mLkA9MPMAKBf9o5qOI/QbhqF4dEX0GXbtm2LJz/5pHjwwZ1NL2VJe3bPNL0EhsheDDloGbpJ+1A2DQNLMSNg5XQEuWkcyqJZyEnb0B16h/bRJQAAzOVG8zW4d/uD8cYbbo8v3jV54GNbN0/EZWdviaMPXze0v9cbICjD/lZ/sXMm9uzdF1/+75/H1V/6Xuyc2VvLrIAuaWpPZnFerzCINrbsWob+1d2yTmE42rAv6xtWbhgtaxOa4XtSUL5BO9YhtEtVe7K2oVnDen2tbWjeMN8/axyq1+T3ozQN7TO1cybum94VP/rFgzEyMhK3bftFXP2l78WvPv5X/CwosKA2/GzLcrzmAEqVdX6VsHc0pZ/n3HmEdltpo1n3AFgJ/38BAA+bnJyMBx/cGb/x6rfG2FHHNb2ceX7yjVvim//f/4mHHnqo6aUwJG1/P+q1NPSm7S1D00raT3xdGbrDv4uEbluuZfs8rFyWjuz9sLCfbH8wvvDdn8VjNq6J3Q/ti1/s3BNf+979cfqTHh1HFdQ4dEUV+7I9EdrhkS0etnpV3LrtF/G/Pv3t2DmzNyLKfM0NXdTvvprlPTZkMkiXXlMDAJCdG80P2dTOmXlvRCIibr5rMi664fZ4z++fPJQ3Gb4wAWVYqNXnPPFR8Te/f3L8yYe/PvRZAV3S1J7M4rxeYRBtbNm1DP2ru2WdwnC0YV/WN6zcMFrWJjTD96SgfIN2rENol6r2ZG1Ds4b1+lrb0Lxhvn/WOFSvye9HaRra597tD8Yb/+X2+OLdC//ctZ8FBQ7Whp9tWY7XHECpss6vEvaOpvTznDuP0G4rbTTrHgAr4f8vAGC+saOOiyOOPbHpZcwz/ZPvN70Ehqjt70e9lobetL1laFpJ+4mvK0N3+HeR0G3LtWyfh5XL0pG9HxY2tXMmfnD/zvj07ffGl+/++YGPP+eJj4rjJw6L9asPKaJx6Ioq9mV7IrTDcj/ztXNmb3GvuaGL+t1Xs7zHhkwG6dJragAAumC06QVkN7ljZt4bkf1uvmsyJnfMVP53LvcGaGpn9X8n0L/FWv3y3T+Pa778vXj1c4+PiOHNCuiaJvZkFuf1CoNqW8uuZRhMnS3rFIan6X1Z31CNqlvWJjTH96SgfIN0rENonyr2ZG1D84bx+lrb0A7Dev+scRiOpr4fpWlonwNd3r34z137WVDgYE3/bMtyvOYASpV5frV972hKv8+58wjttpJGM+8BMCj/fwEA0B5tfj/qtTT0rs0tQ9NK2k98XRm6xb+LhO7qpWX7PKxcho7s/bC47Tv3xHv+7a45N5mPePh7zu/5t7ti+849Da0MWMhK92V7IrRDrz/zFVHOa27ookH21QzvsSGbfrv0mhoAgK5wo/khm9619DfhHljm8UH4wgSUYalWv3z3z+PkTYcf+PUwZgV0TRN7MovzeoVBta1l1zIMps6WdQrD0/S+rG+oRtUtaxOa43tSUL5BOtYhtE8Ve7K2oXnDeH2tbWiHYb1/1jgMR1Pfj9I0tE+vP3ftZ0GBR2r6Z1uW4zUHUKrM86vte0dT+n3OnUdot5U0mnkPgEH5/wsAgPZo8/tRr6Whd21uGZpW0n7i68rQLf5dJHRXLy3b52HlMnRk74fF/XLmoXk3md/vy3f/PH4581DNKwKWstJ92Z4I7dDPz3xFlPGaG7pokH01w3tsyKbfLr2mBgCgK9xofsjG1h665OMbl3l8EL4wAWVYrtXdD+078L+HMSuga5rYk1mc1ysMqm0tu5ZhMHW2rFMYnqb3ZX1DNapuWZvQHN+TgvIN0rEOoX2q2JO1Dc0bxutrbUM7DOv9s8ZhOJr6fpSmoX16/blrPwsKPFLTP9uyHK85gFJlnl9t3zua0u9z7jxCu62k0cx7AAzK/18AALRHm9+Pei0NvWtzy9C0kvYTX1eGbvHvIqG7emnZPg8rl6Ejez8s7pcze5d8fOcyjwP1Wum+bE+EdujnZ74iynjNDV00yL6a4T02ZNNvl15TAwDQFW40P2QTG1bH1s0TCz62dfNETGxYXfnf6QsTUIblWl2z6uERPaxZAV3TxJ7M4rxeYVBta9m1DIOps2WdwvA0vS/rG6pRdcvahOb4nhSUb5COdQjtU8WerG1o3jBeX2sb2mFY7581DsPR1PejNA3t08vPXftZUOBgTf9sy3K85gBKlXl+tX3vaEq/z7nzCO22kkYz7wEwKP9/AQDQHm1+P+q1NPSuzS1D00raT3xdGbrFv4uE7uqlZfs8rFyGjuz9sLjD1y19/Y8v8zhQr5Xuy/ZEaIdef+YropzX3NBFg+yrGd5jQzb9duk1NQAAXeFG80M2vn51XHb2lnlvSLZunojLz94S4+ur/yKBL0xAGZZq9TlPfFR8/YfbhzoroGua2JNZnNcrDKptLbuWYTB1tqxTGJ6m92V9QzWqblmb0Bzfk4LyDdKxDqF9qtiTtQ3NG8bra21DOwzr/bPGYTia+n6UpqF9lvu5658+sNvPggLzNP2zLcvxmgMoVeb51fa9oyn9PufOI7TbShrNvAfAoPz/BQBAe7T5/ajX0tC7NrcMTStpP/F1ZegW/y4SuquXlu3zsHIZOrL3w+Ies3FNPG+RPp63eSIes3FNzSsClrLSfdmeCO3Qy898RZT1mhu6aJB9NcN7bMim3y69pgYAoCtGZmdnZ5teROmmp6djfHw8pqamYmxsbMHPmdo5E5M7ZuKBXXti49pDD/ywy7Dcu/3BuOiG2+PmuyYPfGz/G6CjDl83tL8XStVLx8OwUKvP2zwRb/9/nhoREY86bLizArJp457M4rxeYTGltexahoW1qWWdwuDa1PJC9A29qbtlbcJw9Pp1bN+TgnYbxr6sQ6hfHa+xtQ3D18TXvrQN1VrJz3wN4/2zxmEwbf1+lKahP3X8LPZiP3f9v17ytPiV9Yf6WVCoQFP/rmLY2vQzpwfzmoNhyNoy7ZJ9frVh72hby4M85204j9C0trX8SIM2mn0PgIUs17L/vwAoQ6/78m233RannnpqvPDN18QRx55Y4wp7c/+2O+Nzl5wXt956a5xyyilNL2eetp+/73/1/8ZXr357PPfP/jaOOenkppczT9vXF9H8NdjW7y/3wmtp+B8ltwxNa8t+0kvHvq4M7Vf117D9u0hoRtPfj+q1Zfs8LK0L75Xt/XTBoPuyPqBdhr0vax7qMcjPfG3dPBHveMnTYvrBmThsTXmvuSGjQVtebl8t/T02lKbq19heU0Mzmv6eFFANLUM5VjW9gK4YX1/vFwWOPnxdvOf3T/aFCWg5rUL96t6TWZwZyEq0qWXXMgyurpZ1CsPV5L6sb6hOlS1rE5rle1JQvn471iG000r3ZG1DO1T9+lrb0B7DeP+scRieJr4fpWloH10Cg2rTz5wezGwDSpV9frV572jKIM+58wjtNmij2fcAGIQuAKBd2vp+1GsG6E9bW4amlbSf+LoydI9/Fwnd1GvL9nlYudI7svfD4vQB5VnJvqx5aIelWzys6eUBPRp0Xy39PTZk1E+XXlMDANAFbjSfmC9MQBm0CnSZGUgWrmVoP51CXvqGdtImdIvmoXk6hJy0DTlpG3LTOOSiaWgfXQIZmW1Aqcyv7vGcA/uZBzCfLgCAXnjNAEAVStpPSlor0AxzAnLQMtAr8wIWpw/oFs1DO2gRctAydJP2AQDIbrTpBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0jRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1c6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJq50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzdxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBmbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDM3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1c6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJq50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzdxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBmbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDM3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1c6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJqtanoBrNzUzpmY3DET07v2xNi6Q2PisNUxvn5108uCdLQGQBfY7+ZyPqA+egMWYjYAvTArgDYym2iaaxC6Q+9QHt1CPrqG7tA7NE+HwCDMDiAL84yDuSaApZgR0DwdAkA72JMBqIP9ph7OM9RPd5CDliEXTUPZNAy5aRyoinkC/dEMAAAA2bjRfOHu3f5gvPGG2+OLd00e+NjWzRNx2dlb4ujD1zW4MshFawB0gf1uLucD6qM3YCFmA9ALswJoI7OJprkGoTv0DuXRLeSja+gOvUPzdAgMwuwAsjDPOJhrAliKGQHN0yEAtIM9GYA62G/q4TxD/XQHOWgZctE0lE3DkJvGgaqYJ9AfzQAAAJDRaNMLYHBTO2fmfbEiIuLmuybjohtuj6mdMw2tDHLRGgBdYL+by/mA+ugNWIjZAPTCrADayGyiaa5B6A69Q3l0C/noGrpD79A8HQKDMDuALMwzDuaaAJZiRkDzdAgA7WBPBqAO9pt6OM9QP91BDlqGXDQNZdMw5KZxoCrmCfRHMwAAAGTlRvMFm9wxM++LFfvdfNdkTO7wBQuogtYA6AL73VzOB9RHb8BCzAagF2YF0EZmE01zDUJ36B3Ko1vIR9fQHXqH5ukQGITZAWRhnnEw1wSwFDMCmqdDAGgHezIAdbDf1MN5hvrpDnLQMuSiaSibhiE3jQNVMU+gP5oBAAAgKzeaL9j0rj1LPv7AMo8DvdEaAF1gv5vL+YD66A1YiNkA9MKsANrIbKJprkHoDr1DeXQL+egaukPv0DwdAoMwO4AszDMO5poAlmJGQPN0CADtYE8GoA72m3o4z1A/3UEOWoZcNA1l0zDkpnGgKuYJ9EczAAAAZOVG8wUbW3voko9vXOZxoDdaA6AL7HdzOR9QH70BCzEbgF6YFUAbmU00zTUI3aF3KI9uIR9dQ3foHZqnQ2AQZgeQhXnGwVwTwFLMCGieDgGgHezJANTBflMP5xnqpzvIQcuQi6ahbBqG3DQOVMU8gf5oBgAAgKzcaL5gExtWx9bNEws+tnXzRExsWF3ziiAnrQHQBfa7uZwPqI/egIWYDUAvzAqgjcwmmuYahO7QO5RHt5CPrqE79A7N0yEwCLMDyMI842CuCWApZgQ0T4cA0A72ZADqYL+ph/MM9dMd5KBlyEXTUDYNQ24aB6pinkB/NAMAAEBWbjRfsPH1q+Oys7fM+6LF1s0TcfnZW2J8vS9YQBW0BkAX2O/mcj6gPnoDFmI2AL0wK4A2MptommsQukPvUB7dQj66hu7QOzRPh8AgzA4gC/OMg7kmgKWYEdA8HQJAO9iTAaiD/aYezjPUT3eQg5YhF01D2TQMuWkcqIp5Av3RDAAAAFmtanoBrMzRh6+L9/z+yTG5YyYe2LUnNq49NCY2rPbFCqiY1gDoAvvdXM4H1EdvwELMBqAXZgXQRmYTTXMNQnfoHcqjW8hH19Adeofm6RAYhNkBZGGecTDXBLAUMwKap0MAaAd7MgB1sN/Uw3mG+ukOctAy5KJpKJuGITeNA1UxT6A/mgEAACAjN5pPYHy9L1BAHbQGQBfY7+ZyPqA+egMWYjYAvTArgDYym2iaaxC6Q+9QHt1CPrqG7tA7NE+HwCDMDiAL84yDuSaApZgR0DwdAkA72JMBqIP9ph7OM9RPd5CDliEXTUPZNAy5aRyoinkC/dEMAAAA2Yw2vQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArnGjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM1WNb2ADGZnZyMiYnp6uuGVQHds3LgxRkZGKvvzdAzN0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5FBlyzqGZtiTIQctQw5ahhy0DDloGXLQMuSgZcihqZZ37NgRERFTP7on9j20t7K/vyoP3PeDiIi47bbbDqy1Tb773e9GRHvP346f/jgiIqbv+36sWbOm4dXM1/b1RfzPNbhjx46e9kb7MuSgZcjBz29C+ezJkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF8g3Y8Mru/WAb2ox/9KDZt2tT0MqBTpqamYmxsrLI/T8fQDC1DDlqGHLQMOWgZcqi65XvuuSdOOOGEyv48oDf2ZchBy5CDliEHLUMOVbasY2iGPRly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5ODnN6F89mTIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUL5BO3aj+Qrs27cv7r333ti4cWOMjIw0vZzWm56ejk2bNsUPf/jDSjefLuryuay6t2F13OXn6GDOxcOch7mG1fLs7Gwce+yxqc5z1msn43F18ZhK2ZerlvG53i/rsWU9rohqjm0YLd95553xlKc8JeU571Xm665XzkG956Dufdnz6xxEOAcR1Z+Dqlvevn17/Mqv/Eps27YtxsfHK/tzm5Ttust2PBH5jmmQ4+nq++X9sl0D/ejqsWc9bl/H7k2259/xtJt9uXfZnvthcI6W16Zz1NWWH6lNz8dKOI52qfs4qmyuyo6zPJ91cs4Gk+G8tWVPznAuh8F5WZxzM1dbWm5atuvC8bTbMI6nLS1ne64iHFMpshxTW1quQ5bnrA2cy2q19WexF2rZc18d57Ia2c5jG/blks9pyWuPsP6mVbn+NrRcldKf18U4rvI0cWyZWq5D5utvMV075lKP17937E/p648o/xisf2H+XcVcpV4n1l2vNq67rT+/WZc2PidVcnxl6/X4Mr5XzvLcZjiODMcQUcZxlNRyCefzYNZcD2suq+UqlPict41zuHKZfxZ7Ia6ZxTk3C+vyeWljyyU+HyWuOaLMdVvzwtrYcpVKfN4X4jjao63HUGfLbT0HWTi/w1PCuW1iXy7hvAyLY+/msUcM//ibeo2d5Xl1HO2S5Tgi+j8WLa+M42iXrh7HoB2vGmRxzDU6OhqPe9zjml5GccbGxoqOtE2cy5Ubdseeo//hXDzMeRiO/S1PT09HRM7znPGYInIel2MaXGmvrzM+1/tlPbasxxXRrmMbHR2NY445JiLata6mOAfOQUSZ56DXfbnEY6uac+AcRLT3HIyOjkZExPj4eCvXtxJtPeeDynY8EfmOqcnjKe398n7ZroF+dPXYu3rcvcr+dWzH026Opzql7cvZnvthcI6Wl/EcldbyI2V5PhxHu5R4HMPouMTz0DTnbDDO2/9YacvO5cKcl8U5N8NR8uvriHzXheNptzYfj315PsdUhozHtBIl7Mues+o4l9Vq0/lcruU2rbV0zmU1nMeFrWRfLvmclrz2COtvWhvX34bX2G08L1VwXOUp+dja0HIdSn6OBtW1Y+7a8R6sK//esfT1R5R/DNY/XFn+XYV118u626Xk19dZn5P9HF/Z6j6+NrWc5bnNcBwZjiEiz3H0oo6WSzyf1lwPa65Om/blpbT1/JXEOVy5Np9D/96xXs7NwpyXlauy5RKfjxLXHFHmuq15uNr6Grukc7gUx9EeGY5hKb20nP0cNM35HZ4undt+9uUunZeDOfZuHntEOcff72vsUo5rOY6jXbIcR0Rzx6LlsjmOdhn2cYwO7U8GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYEFuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMzeap3Zr1qyJt771rbFmzZqml1I857L9PEf/w7l4mPNQj4znOeMxReQ8LsfUHZnPS9Zjy3pcEe09trauq07OgXMQkfscZD62XjkHzkFE+89B29c3iGzHlO14IvIdU7bjqUOXz1lXj72rxz2obOfL8bSb4+ku52p5ztHynKN2yfJ8OI52yXIcK+U89M85G4zzVh3ncmHOy+KcGxaS7bpwPO2W7XgeKeOxOaYyZDym7Dxn1XEuq1XS+SxprW3nXFbDeaxeyee05LVHWH/TSl//sGQ9L46rPJmPLYsuPkddO+auHe+gSj9Ppa8/ovxjsP56lbbe/ay7XtZNVbI/J46vbNmPbylZjj3DcWQ4hog8x9EWJZ5Pa66HNXeP87dyzuHKde0cdu14++HcLMx5aZcSn48S1xxR5rqtuZuynEPH0R4ZjmGlnIPhcn6Hx7ldWJfPi2Pv5rFH5D3+LMflONoly3FElHMspaxzOY6jXRxHf0ZmZ2dnh/o3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDHaNMLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgaN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJkbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM3caB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZm40X6Gbb745XvziF8fRRx8dIyMj8YlPfKLvP2N2djbe9a53xZOe9KRYs2ZNHHPMMXHJJZdUv1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgMauaXkAmv/zlL+MZz3hGvPrVr47f/u3fHujP+NM//dO48cYb413velc8/elPj/vvvz/uv//+ilcKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANGlkdnZ2tulFZDQyMhIf//jH46UvfemBj+3evTve/OY3x4c//OHYvn17PO1pT4vLL788Tj/99IiI+M53vhNbtmyJb37zm3HiiSc2s3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABg6EabXkCXXHDBBXHLLbfEP/3TP8Xtt98eL3/5y+O3fuu34q677oqIiE996lPxhCc8IT796U/H8ccfH8cdd1ycf/75cf/99ze8cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBKbjRfk23btsU111wTH/3oR+N5z3tenHDCCfHnf/7n8dznPjeuueaaiIi455574gc/+EF89KMfjQ984ANx7bXXxq233hq/8zu/0/DqAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCqtanoBXfGNb3wj9u7dG0960pPmfHz37t3xqEc9KiIi9u3bF7t3744PfOADBz7v/e9/f5x66qlx5513xoknnlj7ugEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDqudF8TXbs2BGHHHJI3HrrrXHIIYfMeWzDhg0REXHUUUfFqlWr5tyM/qSTToqIiG3btrnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACThRvM1Ofnkk2Pv3r3x05/+NJ73vOct+DnPec5z4qGHHor//u//jhNOOCEiIr773e9GRMTjH//42tYKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADNfI7OzsbNOLyGLHjh1x9913R8TDN5a/8sor4/nPf34cccQRceyxx8YrX/nK+PKXvxxXXHFFnHzyyfGzn/0sbrrpptiyZUucddZZsW/fvvi1X/u12LBhQ1x11VWxb9++eN3rXhdjY2Nx4403Nnx0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQFXcaL5CX/jCF+L5z3/+vI+fe+65ce2118aePXvine98Z3zgAx+IH//4xzExMRG/+Zu/GW9/+9vj6U9/ekRE3HvvvfHHf/zHceONN8Zhhx0WL3rRi+KKK66II444ou7DAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIbEjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAajba9AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAusaN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq5kbzFZidnY3p6emYnZ1teinAgHQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfDqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcrhRvMVeOCBB2J8fDweeOCBppcCDEjHkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF8OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZyqdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqEcbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDM3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1W9X0AgCmds7E5I6ZmN61J8bWHRoTh62O8fWrm14W0CctQ7tpFLpF85CDliEHLcPi9EHdXHMAOZjnkIOWIQctQ/l0DDloGXLQMm3hWoRmaRCgOmYq5KBlKItmITeNA9BW9iigRGYX5KBlyEHLkIOWYTi0BQzC7OgGzzNQBbMEoDfmJQB0jxvNA426d/uD8cYbbo8v3jV54GNbN0/EZWdviaMPX9fgyoB+aBnaTaPQLZqHHLQMOWgZFqcP6uaaA8jBPIcctAw5aBnKp2PIQcuQg5ZpC9ciNEuDANUxUyEHLUNZNAu5aRyAtrJHASUyuyAHLUMOWoYctAzDoS1gEGZHN3iegSqYJQC9MS8BoJtGm14A0F1TO2fmvQmJiLj5rsm46IbbY2rnTEMrA/qhZWg3jUK3aB5y0DLkoGVYnD6om2sOIAfzHHLQMuSgZSifjiEHLUMOWqYtXIvQLA0CVMdMhRy0DGXRLOSmcQDayh4FlMjsghy0DDloGXLQMgyHtoBBmB3d4HkGqmCWAPTGvASA7nKjeaAxkztm5r0J2e/muyZjcoc3IlACLUO7aRS6RfOQg5YhBy3D4vRB3VxzADmY55CDliEHLUP5dAw5aBly0DJt4VqEZmkQoDpmKuSgZSiLZiE3jQPQVvYooERmF+SgZchBy5CDlmE4tAUMwuzoBs8zUAWzBKA35iUAdJcbzQONmd61Z8nHH1jmcaAdtAztplHoFs1DDlqGHLQMi9MHdXPNAeRgnkMOWoYctAzl0zHkoGXIQcu0hWsRmqVBgOqYqZCDlqEsmoXcNA5AW9mjgBKZXZCDliEHLUMOWobh0BYwCLOjGzzPQBXMEoDemJcA0F1uNA80ZmztoUs+vnGZx4F20DK0m0ahWzQPOWgZctAyLE4f1M01B5CDeQ45aBly0DKUT8eQg5YhBy3TFq5FaJYGAapjpkIOWoayaBZy0zgAbWWPAkpkdkEOWoYctAw5aBmGQ1vAIMyObvA8A1UwSwB6Y14CQHe50TzQmIkNq2Pr5okFH9u6eSImNqyueUXAILQM7aZR6BbNQw5ahhy0DIvTB3VzzQHkYJ5DDlqGHLQM5dMx5KBlyEHLtIVrEZqlQYDqmKmQg5ahLJqF3DQOQFvZo4ASmV2Qg5YhBy1DDlqG4dAWMAizoxs8z0AVzBKA3piXANBdbjQPNGZ8/eq47Owt896MbN08EZefvSXG13sjAiXQMrSbRqFbNA85aBly0DIsTh/UzTUHkIN5DjloGXLQMpRPx5CDliEHLdMWrkVolgYBqmOmQg5ahrJoFnLTOABtZY8CSmR2QQ5ahhy0DDloGYZDW8AgzI5u8DwDVTBLAHpjXgJAd43Mzs7ONr2Iquzduzfe9ra3xfXXXx/33XdfHH300fGqV70qLr744hgZGVn0933hC1+ICy+8ML71rW/Fpk2b4uKLL45XvepVPf+909PTMT4+HlNTUzE2NlbBkUC3TO2cickdM/HArj2xce2hMbFhde1vQnQMK6dlaLc2NNorLcPKtaF5LcPKaRly0DIsrg19lETLK+eaow20DCvXhnmuZVg5LUMOTbesY1i5pjuO0DJUQcuQg5ZpizZci6yMlsumQfbTMqxcG2aqlmHltAxlaUOzi9EyrFwbGtcy5KBlqtaGPaprdAwr14bZpWVYOS1DDlqGHLQMw9GGtuqmZVi5NswOLQ9fG55n8tNyfmZJN2gZVq4N81LLkIOWoRyrml5AlS6//PL4+7//+7juuuviqU99avzHf/xHnHfeeTE+Ph5/8id/suDv+d73vhdnnXVWvPa1r40PfehDcdNNN8X5558fRx11VJxxxhk1HwF00/h6X6iBDLQM7aZR6BbNQw5ahhy0DIvTB3VzzQHkYJ5DDlqGHLQM5dMx5KBlyEHLtIVrEZqlQYDqmKmQg5ahLJqF3DQOQFvZo4ASmV2Qg5YhBy1DDlqG4dAWMAizoxs8z0AVzBKA3piXANA9qW40/5WvfCVe8pKXxFlnnRUREccdd1x8+MMfjq997WuL/p73vve9cfzxx8cVV1wREREnnXRSfOlLX4q//uu/dqN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYChGm15AlZ797GfHTTfdFN/97ncjIuK//uu/4ktf+lK86EUvWvT33HLLLfGCF7xgzsfOOOOMuOWWW4a6VgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKC7VjW9gCpddNFFMT09HU9+8pPjkEMOib1798Yll1wSr3jFKxb9Pffdd18ceeSRcz525JFHxvT0dDz44IOxbt26eb9n9+7dsXv37gO/np6eru4ggFroGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/l0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUa7TpBVTpIx/5SHzoQx+Kf/zHf4zbbrstrrvuunjXu94V1113XaV/z6WXXhrj4+MH/tu0aVOlfz4wfDqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOUamZ2dnW16EVXZtGlTXHTRRfG6173uwMfe+c53xvXXXx933HHHgr9n69atccopp8RVV1114GPXXHNN/Nmf/VlMTU0t+Ht2794du3fvPvDr6enp2LRpU0xNTcXY2Fg1BwMMlY4hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/l0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKUT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ7lWNb2AKu3cuTNGR0fnfOyQQw6Jffv2Lfp7nvWsZ8W//uu/zvnY5z73uXjWs5616O9Zs2ZNrFmzZmWLBRqlY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQrtHlP6UcL37xi+OSSy6Jz3zmM/H9738/Pv7xj8eVV14ZL3vZyw58zpve9KY455xzDvz6ta99bdxzzz3xhje8Ie644474u7/7u/jIRz4Sr3/965s4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKADVjW9gCq95z3vib/8y7+MP/qjP4qf/vSncfTRR8cf/MEfxFve8pYDn/OTn/wktm3bduDXxx9/fHzmM5+J17/+9fHud787Hve4x8U//MM/xBlnnNHEIQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdkOpG8xs3boyrrroqrrrqqkU/59prr533sdNPPz2+/vWvD29hAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI8w2vQCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALrGjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1c6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJq50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzdxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBmbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDM3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1c6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJq50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzdxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBmbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDM3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaraq6QUAKzO1cyYmd8zE9K49Mbbu0Jg4bHWMr1/d9LKAIdE8zKcLYFjMFyiDVoF+mBmQj65pM9cn0DRzCAanH6BJZhDMpQmgX+YGtJtGgcWYD7l5fgEYhP2DprkGgS4zA4H9zAMAFmJ/gG7SPgxGO0CpzC8oi2aBLMwzyEHL9XK+geWYEwD1MXMBgKq40TwU7N7tD8Ybb7g9vnjX5IGPbd08EZedvSWOPnxdgysDhkHzMJ8ugGExX6AMWgX6YWZAPrqmzVyfQNPMIRicfoAmmUEwlyaAfpkb0G4aBRZjPuTm+QVgEPYPmuYaBLrMDAT2Mw8AWIj9AbpJ+zAY7QClMr+gLJoFsjDPIAct18v5BpZjTgDUx8wFAKo02vQCgMFM7ZyZ98YgIuLmuybjohtuj6mdMw2tDBgGzcN8ugCGxXyBMmgV6IeZAfnomjZzfQJNM4dgcPoBmmQGwVyaAPplbkC7aRRYjPmQm+cXgEHYP2iaaxDoMjMQ2M88AGAh9gfoJu3DYLQDlMr8grJoFsjCPIMctFwv5xtYjjkBUB8zFwComhvNQ6Emd8zMe2Ow3813TcbkDm8OIBPNw3y6AIbFfIEyaBXoh5kB+eiaNnN9Ak0zh2Bw+gGaZAbBXJoA+mVuQLtpFFiM+ZCb5xeAQdg/aJprEOgyMxDYzzwAYCH2B+gm7cNgtAOUyvyCsmgWyMI8gxy0XC/nG1iOOQFQHzMXAKiaG81DoaZ37Vny8QeWeRwoi+ZhPl0Aw2K+QBm0CvTDzIB8dE2buT6BpplDMDj9AE0yg2AuTQD9Mjeg3TQKLMZ8yM3zC8Ag7B80zTUIdJkZCOxnHgCwEPsDdJP2YTDaAUplfkFZNAtkYZ5BDlqul/MNLMecAKiPmQsAVM2N5qFQY2sPXfLxjcs8DpRF8zCfLoBhMV+gDFoF+mFmQD66ps1cn0DTzCEYnH6AJplBMJcmgH6ZG9BuGgUWYz7k5vkFYBD2D5rmGgS6zAwE9jMPAFiI/QG6SfswGO0ApTK/oCyaBbIwzyAHLdfL+QaWY04A1MfMBQCq5kbzUKiJDatj6+aJBR/bunkiJjasrnlFwDBpHubTBTAs5guUQatAP8wMyEfXtJnrE2iaOQSD0w/QJDMI5tIE0C9zA9pNo8BizIfcPL8ADML+QdNcg0CXmYHAfuYBAAuxP0A3aR8Gox2gVOYXlEWzQBbmGeSg5Xo538ByzAmA+pi5AEDV3GgeCjW+fnVcdvaWeW8Qtm6eiMvP3hLj6705gEw0D/PpAhgW8wXKoFWgH2YG5KNr2sz1CTTNHILB6QdokhkEc2kC6Je5Ae2mUWAx5kNunl8ABmH/oGmuQaDLzEBgP/MAgIXYH6CbtA+D0Q5QKvMLyqJZIAvzDHLQcr2cb2A55gRAfcxcAKBqI7Ozs7NNL6J009PTMT4+HlNTUzE2Ntb0cuiYqZ0zMbljJh7YtSc2rj00Jjas9sZgADqmFJpfmpa7SRf5aJm2MF9WRsvURavDpWWy6erM0DKZdalrLZenS9cnvdMydTKHhkfL+emnG7RMW5lBvdNxN2giPy1TNXOjGVqmVxptNy3TJPOhOm1s2fML/Wtjy1C3DPuHlsuW4RqkGlqmizLOQC3DYNo2D7QMOWi5fG3bH6ifjrtJ+/louR7aYdi0zLCYX/XSMiul2XbQMqxcG+aZlmHltFyvNpxvGJYutTxM5gRN0zJdknnmahly0DKUY1XTCwBWZnx9njcDwPI0D/PpAhgW8wXKoFWgH2YG5KNr2sz1CTTNHILB6QdokhkEc2kC6Je5Ae2mUWAx5kNunl8ABmH/oGmuQaDLzEBgP/MAgIXYH6CbtA+D0Q5QKvMLyqJZIAvzDHLQcr2cb2A55gRAfcxcAKAqo00vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBr3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGZuNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMzeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiZG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MyN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVzo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmqW60fxxxx0XIyMj8/573etet+DnX3vttfM+d+3atTWvGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiaVU0voEr//u//Hnv37j3w629+85vxwhe+MF7+8pcv+nvGxsbizjvvPPDrkZGRoa4RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAINWN5h/96EfP+fVll10WJ5xwQpx22mmL/p6RkZF47GMfO+ylQd+mds7E5I6ZmN61J8bWHRoTh62O8fWrm14WFE1XAPOZjXSFax1y0DKwUuYI5KRtDuaaAEpmhkE59Ar56RyapUFgP/MA5tIEdJf+YTDaAUphXkE59Ap0hXkHzdEfAF1mH4T20COUT8dAhFkAXaBzwByAXDTdbZ5/gGaYv9BN2gcA2izVjeYfaWZmJq6//vq48MILY2RkZNHP27FjRzz+8Y+Pffv2xSmnnBL/+3//73jqU59a40phvnu3PxhvvOH2+OJdkwc+tnXzRFx29pY4+vB1Da4MyqUrgPnMRrrCtQ45aBlYKXMEctI2B3NNACUzw6AceoX8dA7N0iCwn3kAc2kCukv/MBjtAKUwr6AcegW6wryD5ugPgC6zD0J76BHKp2MgwiyALtA5YA5ALpruNs8/QDPMX+gm7QMAbTfa9AKG5ROf+ERs3749XvWqVy36OSeeeGJcffXV8clPfjKuv/762LdvXzz72c+OH/3oR0v+2bt3747p6ek5/0FVpnbOzHsTERFx812TcdENt8fUzpmGVpaLjrtFV3lpGQbXptmoZYapTdd6dlpmmLRcHy2TVdfmiJbpiuxta7l/2a8JyqRlemWGtZuWeSS9lkvL9Ern7aXjbtBgflqmV+ZBu2m5fppgGLRcBv2zHC0vTDuURsvdZV7louXc9NodWqbrssw7LVOiLP1VScuQg5bphX2w3XTcLXrMS8vdoePctEyvzIJ20zJV0HnztEzTzIFqaJm20PTKlN6y5x8eVnrLlMf8HQ4t03ba742WIQctQ7nS3mj+/e9/f7zoRS+Ko48+etHPedaznhXnnHNOPPOZz4zTTjstPvaxj8WjH/3oeN/73rfkn33ppZfG+Pj4gf82bdpU9fLpsMkdM/PeROx3812TMbnDG4kq6LhbdJWXlmFwbZqNWmaY2nStZ6dlhknL9dEyWXVtjmiZrsjetpb7l/2aoExapldmWLtpmUfSa7m0TK903l467gYN5qdlemUetJuW66cJhkHLZdA/y9HywrRDabTcXeZVLlrOTa/doWW6Lsu80zIlytJflbQMOWiZXtgH203H3aLHvLTcHTrOTcv0yixoNy1TBZ03T8s0zRyohpZpC02vTOkte/7hYaW3THnM3+HQMm2n/d5oGXLQMpQr5Y3mf/CDH8TnP//5OP/88/v6fYceemicfPLJcffddy/5eW9605tiamrqwH8//OEPV7JcmGN6154lH39gmcfpjY67RVd5aRkG16bZqGWGqU3XenZaZpi0XB8tk1XX5oiW6YrsbWu5f9mvCcqkZXplhrWblnkkvZZLy/RK5+2l427QYH5aplfmQbtpuX6aYBi0XAb9sxwtL0w7lEbL3WVe5aLl3PTaHVqm67LMOy1Toiz9VUnLkIOW6YV9sN103C16zEvL3aHj3LRMr8yCdtMyVdB587RM08yBamiZttD0ypTesucfHlZ6y5TH/B0OLdN22u+NliEHLUO5VjW9gGG45ppr4jGPeUycddZZff2+vXv3xje+8Y0488wzl/y8NWvWxJo1a1ayRFjU2NpDl3x84zKP0xsdd4uu8tIyDK5Ns1HLDFObrvXstMwwabk+Wiarrs0RLdMV2dvWcv+yXxOUScv0ygxrNy3zSHotl5bplc7bS8fdoMH8tEyvzIN203L9NMEwaLkM+mc5Wl6YdiiNlrvLvMpFy7nptTu0TNdlmXdapkRZ+quSliEHLdML+2C76bhb9JiXlrtDx7lpmV6ZBe2mZaqg8+ZpmaaZA9XQMm2h6ZUpvWXPPzys9JYpj/k7HFqm7bTfGy1DDlqGco02vYCq7du3L6655po499xzY9WqVXMeO+ecc+JNb3rTgV+/4x3viBtvvDHuueeeuO222+KVr3xl/OAHP4jzzz+/7mXDARMbVsfWzRMLPrZ180RMbFhd84qgfLoCmM9spCtc65CDloGVMkcgJ21zMNcEUDIzDMqhV8hP59AsDQL7mQcwlyagu/QPg9EOUArzCsqhV6ArzDtojv4A6DL7ILSHHqF8OgYizALoAp0D5gDkoulu8/wDNMP8hW7SPgBQgnQ3mv/85z8f27Zti1e/+tXzHtu2bVv85Cc/OfDrX/ziF/Ga17wmTjrppDjzzDNjeno6vvKVr8RTnvKUOpcMc4yvXx2Xnb1l3puJrZsn4vKzt8T4em8koF+6ApjPbKQrXOuQg5aBlTJHICdtczDXBFAyMwzKoVfIT+fQLA0C+5kHMJcmoLv0D4PRDlAK8wrKoVegK8w7aI7+AOgy+yC0hx6hfDoGIswC6AKdA+YA5KLpbvP8AzTD/IVu0j4AUIKR2dnZ2aYXUbrp6ekYHx+PqampGBsba3o5JDG1cyYmd8zEA7v2xMa1h8bEhtXeRAyRjrtBV/lpGfrXxtmoZYahjdd6dlpmGLRcPy2TTVfniJbJritta7l3XbkmKJOWWY4ZVgYtE6HXDLTMcnTefjrOTYPdoWWWYx6UQcv10QTDpOV20z+90vJc2qFUWu4e8yonLeek1+7RMl2Vbd5pmZJk669KWoYctMxS7INl0HE36DE/Leen427QMssxC8qgZVZC5+2hZZpiDlRLyzRN09UotWXPP8xVasuUx/wdLi3TVtrvj5YhBy1DOVY1vQBgYePrvXGAqukKYD6zka5wrUMOWgZWyhyBnLTNwVwTQMnMMCiHXiE/nUOzNAjsZx7AXJqA7tI/DEY7QCnMKyiHXoGuMO+gOfoDoMvsg9AeeoTy6RiIMAugC3QOmAOQi6a7zfMP0AzzF7pJ+wBAm402vQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArnGjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM3caB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/5+9f43S66wP+++fZGlkyfKMsScmtiuDwIqxY0RtQ1KQEbgrxEkgCYkLT3nCqkEJXQ2hDqEt4JKUUArY/eOUBviHxQJEaJ+6LXVwKSkFJywicFwOtlNBIEbmJOJDyGB7RmIkjSzN80IdeUZzug/7cF3X/nzW8gvPjKR97/v6/q69b83oBgAAAAAAGuaN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5o3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrau7QMAIianZ2Li4ExMHT4aoxvXx/gZIzG2aaTtwwLm0SldZN0DpTLfAHMA0qZROEELDMK6AaAu9hionq4AcwCGoyHoBq0DTTBr+uN8QRm0DECu7GH0wjoBWJ1ZCWXQMkDvzEwA5tgTyJF1C9TNnIG8aRgwByAvmqVq1hS0Q3sA3WT+AwBN8Ubz0LIHHj0Ub7h1b3xu38TJj+3cNh43Xrs9zj9rY4tHBszRKV1k3QOlMt8AcwDSplE4QQsMwroBoC72GKiergBzAIajIegGrQNNMGv643xBGbQMQK7sYfTCOgFYnVkJZdAyQO/MTADm2BPIkXUL1M2cgbxpGDAHIC+apWrWFLRDewDdZP4DAE1a2/YBQJdNTs8suviPiNizbyLeeOvemJyeaenIgDk6pYuse6BU5htgDkDaNAonaIFBWDcA1MUeA9XTFWAOwHA0BN2gdaAJZk1/nC8og5YByJU9jF5YJwCrMyuhDFoG6J2ZCcAcewI5sm6BupkzkDcNA+YA5EWzVM2agnZoD6CbzH8AoGneaB5aNHFwZtHF/5w9+yZi4qAbAGibTuki6x4olfkGmAOQNo3CCVpgENYNAHWxx0D1dAWYAzAcDUE3aB1oglnTH+cLyqBlAHJlD6MX1gnA6sxKKIOWAXpnZgIwx55AjqxboG7mDORNw4A5AHnRLFWzpqAd2gPoJvMfAGiaN5qHFk0dPrri5w+s8nmgfjqli6x7oFTmG2AOQNo0CidogUFYNwDUxR4D1dMVYA7AcDQE3aB1oAlmTX+cLyiDlgHIlT2MXlgnAKszK6EMWgbonZkJwBx7AjmyboG6mTOQNw0D5gDkRbNUzZqCdmgPoJvMfwCgad5oHlo0evr6FT9/5iqfB+qnU7rIugdKZb4B5gCkTaNwghYYhHUDQF3sMVA9XQHmAAxHQ9ANWgeaYNb0x/mCMmgZgFzZw+iFdQKwOrMSyqBlgN6ZmQDMsSeQI+sWqJs5A3nTMGAOQF40S9WsKWiH9gC6yfwHAJrmjeahReObR2LntvElP7dz23iMbx5p+IiAU+mULrLugVKZb4A5AGnTKJygBQZh3QBQF3sMVE9XgDkAw9EQdIPWgSaYNf1xvqAMWgYgV/YwemGdAKzOrIQyaBmgd2YmAHPsCeTIugXqZs5A3jQMmAOQF81SNWsK2qE9gG4y/wGApnmjeWjR2KaRuPHa7YtuAnZuG4+brt0eY5vcAEDbdEoXWfdAqcw3wByAtGkUTtACg7BuAKiLPQaqpyvAHIDhaAi6QetAE8ya/jhfUAYtA5Arexi9sE4AVmdWQhm0DNA7MxOAOfYEcmTdAnUzZyBvGgbMAciLZqmaNQXt0B5AN5n/AEDT1szOzs62fRC5m5qairGxsZicnIzR0dG2D4cMTU7PxMTBmThw+Gicefr6GN884uK/YTpmNTrNg5arZd3TFi1TN/OtGVomZeZA77RMGzRaPS3nSQucqpeWrRtIn32ZXNljFtIyVdBV+7RM28yB4em42zRUDi2zEq3nQ8vkzKx5nL+PgjJoGcrgGhuWltsepuV25LZOSJ+WKVEXZ6WWKZGWtQy5aqPlLs5MqJM9mZzZEx6n5XxYt6xEy1TBnGmflhmGhtOhZdpiDlRLy9RNs83oUsvWFCVLuWXtQe9Sbhn61eX5r2Uog5YhH+vaPgAgYmxTdy74IVc6pYuse6BU5htgDkDaNAonaIFBWDcA1MUeA9XTFWAOwHA0BN2gdaAJZk1/nC8og5YByJU9jF5YJwCrMyuhDFoG6J2ZCcAcewI5sm6BupkzkDcNA+YA5EWzVM2agnZoD6CbzH8AoClr2z4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK7xRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANW9f2AUDJJqdnYuLgTEwdPhqjG9fH+BkjMbZppO3DgmRpBmiSmQPp0COkQYtAl5mBkAYtkgtrFaiauQLp0ymUTePkxHoFcmFekRPrFWiD2QPN0x0wDDOE3FnDALTNXkTXWPMA1MUeA1TFPIF86BXKoGXIj26BU5kL0A1aJ2XWJ9BlZiBQJzMGAEiRN5qHmjzw6KF4w61743P7Jk5+bOe28bjx2u1x/lkbWzwySJNmgCaZOZAOPUIatAh0mRkIadAiubBWgaqZK5A+nULZNE5OrFcgF+YVObFegTaYPdA83QHDMEPInTUMQNvsRXSNNU+v9u/fHxMTE6t/YUvGx8fjwgsvbPswgHnsMUBVzBPIh16hDFqG/OgWOJW5AN2gdVJmfQJdZgYCdTJjAIBUrZmdnZ1t4w9+ylOeEl/60pfinHPOaeOPr9TU1FSMjY3F5ORkjI6Otn04JGByeiZec8s9C24A5uzcNh7vftnlMbZppIUjYzk6bpdmqIqW6YWZkz4td4cey6blfGiRlWiZ0nVlBmqZ1HWlxWFpuX3WKlXQMvOZK/nScnfotGxaRuP561LH1isl61LLXWBedVeOLVuvsFiOLefG7KEJWl5Id+RKy2kwQxhW2y1bw1CNtluGnKW0F2mZJqS05ktVSsv79++Ppz3tkjh0aLrtQ1nWxo2b4q/+6uvebJ5alNJyk+wxpEbH+TJPmE/LadMrvdJy2rRMr7ScDt0yDC2XyVzoHi13k9bLU1LL1iddVlLLDMYMLIOWSZUZ0x8tQxm0DPlY19Yf/J3vfCeOHTvW1h8PtZo4OLPkDUBExJ59EzFxcMZNAMyjGaBJZg6kQ4+QBi0CXWYGQhq0SC6sVaBq5gqkT6dQNo2TE+sVyIV5RU6sV6ANZg80T3fAMMwQcmcNA9A2exFdY83Tq4mJiTh0aDp+ctebY/S8J7d9OItMPfid+MKH3hITExPeaB4SYY8BqmKeQD70CmXQMuRHt8CpzAXoBq2TMusT6DIzEKiTGQMApKy1N5qHkk0dPrri5w+s8nnoGs0ATTJzIB16hDRoEegyMxDSoEVyYa0CVTNXIH06hbJpnJxYr0AuzCtyYr0CbTB7oHm6A4ZhhpA7axiAttmL6Bprnn6NnvfkOPvCi9s+DCAD9higKuYJ5EOvUAYtQ350C5zKXIBu0Dopsz6BLjMDgTqZMQBAylp9o/lPfepTMTY2tuLX/MIv/EJDRwPVGT19/YqfP3OVz0PXaAZokpkD6dAjpEGLQJeZgZAGLZILaxWomrkC6dMplE3j5MR6BXJhXpET6xVog9kDzdMdMAwzhNxZwwC0zV5E11jzANTFHgNUxTyBfOgVyqBlyI9ugVOZC9ANWidl1ifQZWYgUCczBgBI2do2//DrrrsuXvziFy/73y/90i+1eXgwsPHNI7Fz2/iSn9u5bTzGN480fESQNs0ATTJzIB16hDRoEegyMxDSoEVyYa0CVTNXIH06hbJpnJxYr0AuzCtyYr0CbTB7oHm6A4ZhhpA7axiAttmL6BprHoC62GOAqpgnkA+9Qhm0DPnRLXAqcwG6QeukzPoEuswMBOpkxgAAKWv1jeYfeuihOH78+LL/HTt2rM3Dg4GNbRqJG6/dvuhGYOe28bjp2u0xtslNAMynGaBJZg6kQ4+QBi0CXWYGQhq0SC6sVaBq5gqkT6dQNo2TE+sVyIV5RU6sV6ANZg80T3fAMMwQcmcNA9A2exFdY80DUBd7DFAV8wTyoVcog5YhP7oFTmUuQDdonZRZn0CXmYFAncwYACBla2ZnZ2fb+INPO+20ePDBB+Pcc89d9mu++tWvxmWXXdbgUQ1mamoqxsbGYnJyMkZHR9s+HBIyOT0TEwdn4sDho3Hm6etjfPOIG4BE6TgNmmFYWqYfZk66tNw9eiyTlvOjRZaiZbqi9BmoZXJReovD0nI6rFWGoWWWYq7kR8vdo9MyaZk5Gs9XFzu2XilRF1vuAvOqe3Ju2XqFx+Xccm7MHuqk5aXpjtxoOS1mCINKpWVrGIaTSsuQsxT2Ii3TpBTWfKlKafnuu++OK6+8Ml7wpt1x9oUXt304izy8/964/W2vjLvuuiuuuOKKtg+HApXSchvsMaRCx/kzT4jQci70ymq0nActsxotp0e3DELLZTMXukPL3ab1cpTYsvVJF5XYMoMxA/OmZVJnxvRGy1AGLUM+1rX1By/3/vYHDhyIW265JT7wgQ/EXXfdFceOHev593zyk58c3/3udxd9/NWvfnW8973vXfLXfPSjH43f+Z3fie985zuxbdu2uOmmm+Lnfu7nev4zYSVjm1z0Qz80AzTJzIF06BHSoEWgy8xASIMWyYW1ClTNXIH06RTKpnFyYr0CuTCvyIn1CrTB7IHm6Q4YhhlC7qxhANpmL6JrrHkA6mKPAapinkA+9Apl0DLkR7fAqcwF6AatkzLrE+gyMxCokxkDAKRobVt/8HXXXRcbN248+f979uyJ6667Ls4777x45zvfGX//7//9+N//+3/39Xt+6UtfigcffPDkf7fffntERLzkJS9Z8uv//M//PF72spfFr/7qr8Y999wTL37xi+PFL35xfPWrXx38gQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsYl1bf/Du3bvjoYceive+973xwQ9+MKampuKlL31pHDlyJG677ba49NJL+/49f+RHfmTB/994443x1Kc+NZ73vOct+fX//t//+/iZn/mZ+Bf/4l9ERMRb3/rWuP322+M973lPvO997+v/QQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0YG1bf/DP//zPx8UXXxx79+6Nd73rXfHAAw/Eu9/97sp+/5mZmfiP//E/xq5du2LNmjVLfs2dd94ZP/VTP7XgY9dcc03ceeedlR0HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKnWtfUHf/KTn4zrr78+fv3Xfz22bdtW+e9/2223xaOPPhqveMUrlv2ahx56KJ74xCcu+NgTn/jEeOihh1b8vY8cORJHjhw5+f9TU1NDHSvQPB1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz50zGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUP+dAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5CvtW39wZ///OfjwIEDceWVV8ZP/uRPxnve856YmJio7Pf/4Ac/GD/7sz8b559/fmW/55x3vOMdMTY2dvK/LVu2VP5nAPXSMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkD8dQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5E/HUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+VozOzs72+YB/PCHP4z/8l/+S3zoQx+KL37xi3Hs2LH4vd/7vdi1a1eceeaZA/2e3/3ud+MpT3lK/NEf/VH84i/+4rJfd+GFF8brXve6eO1rX3vyY29+85vjtttui//zf/7Psr/uyJEjceTIkZP/PzU1FVu2bInJyckYHR0d6JiBZukYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXIn46hDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMpbZ89913x5VXXhkveNPuOPvCi9s+nEUe3n9v3P62V8Zdd90VV1xxRduHQwFKbRm6RMdQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz5Wtf2AZxxxhmxa9eu2LVrV9x7773xwQ9+MG688cZ44xvfGC94wQvi4x//eN+/5+7du+Pcc8+NF77whSt+3bOf/ez40z/90wVvNH/77bfHs5/97BV/3YYNG2LDhg19HxeQDh1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz50zGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUP+dAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5CvtW0fwHwXX3xx/Nt/+2/jr//6r+OWW24Z6Pc4fvx47N69O6677rpYt27dgs/9o3/0j+KGG244+f+/+Zu/Gf/rf/2vuPnmm+Ov/uqv4nd/93fjy1/+crzmNa8Z6nEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArCSpN5qfc9ppp8WLX/zi+PjHP973r/2TP/mT2L9/f+zatWvR5/bv3x8PPvjgyf9/znOeE//pP/2neP/73x/PeMYz4r/9t/8Wt912W1x22WVDHT8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASta1fQBV++mf/umYnZ1d8nOf/exnF33sJS95SbzkJS+p+agAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHlfcG83DsCanZ2Li4ExMHT4aoxvXx/gZIzG2aaTtw4Is6AfSpE1gUOYHlEHLAMMzSwFzgPmsByiDliENWgTqZMZQB+sKaIPZQymsZaA05hoMT0fAsMwRSmAdA9ArewakS58ADMteAvTL3IDFdAE0ycyBMmgZGJT5AWnSJqxMI0DqzCmgSWYOAJA6bzQP8zzw6KF4w61743P7Jk5+bOe28bjx2u1x/lkbWzwySJ9+IE3aBAZlfkAZtAwwPLMUMAeYz3qAMmgZ0qBFoE5mDHWwroA2mD2UwloGSmOuwfB0BAzLHKEE1jEAvbJnQLr0CcCw7CVAv8wNWEwXQJPMHCiDloFBmR+QJm3CyjQCpM6cAppk5gAAOVjb9gFAKianZxZdwEdE7Nk3EW+8dW9MTs+0dGSQPv1AmrQJDMr8gDJoGWB4ZilgDjCf9QBl0DKkQYtAncwY6mBdAW0weyiFtQyUxlyD4ekIGJY5QgmsYwB6Zc+AdOkTgGHZS4B+mRuwmC6AJpk5UAYtA4MyPyBN2oSVaQRInTkFNMnMAQBy4Y3m4f+aODiz6AJ+zp59EzFx0EU8LEc/kCZtAoMyP6AMWgYYnlkKmAPMZz1AGbQMadAiUCczhjpYV0AbzB5KYS0DpTHXYHg6AoZljlAC6xiAXtkzIF36BGBY9hKgX+YGLKYLoElmDpRBy8CgzA9IkzZhZRoBUmdOAU0ycwCAXKxr+wAgFVOHj674+QOrfB66TD+QJm0CgzI/oAxaBhieWQqYA8xnPUAZtAxp0CJQJzOGOlhXQBvMHkphLQOlMddgeDoChmWOUALrGIBe2TMgXfpM2/79+2NiYul/ELZtX//619s+BCAR9hKgX+YGLKYLoElmDpRBy8CgzA9IkzZhZRoBUmdOAU0ycwCAXHijefi/Rk9fv+Lnz1zl89Bl+oE0aRMYlPkBZdAywPDMUsAcYD7rAcqgZUiDFoE6mTHUwboC2mD2UAprGSiNuQbD0xEwLHOEEljHAPTKngHp0me69u/fH0972iVx6NB024eyoqNHZto+BKBl9hKgX+YGLKYLoElmDpRBy8CgzA9IkzZhZRoBUmdOAU0ycwCAXHijefi/xjePxM5t47Fn38Siz+3cNh7jm0daOCrIg34gTdoEBmV+QBm0DDA8sxQwB5jPeoAyaBnSoEWgTmYMdbCugDaYPZTCWgZKY67B8HQEDMscoQTWMQC9smdAuvSZromJiTh0aDp+ctebY/S8J7d9OIs8+JU746sff3889thjbR8K0DJ7CdAvcwMW0wXQJDMHyqBlYFDmB6RJm7AyjQCpM6eAJpk5AEAu1rZ9AJCKsU0jceO122PntvEFH9+5bTxuunZ7jG1yEQ/L0Q+kSZvAoMwPKIOWAYZnlgLmAPNZD1AGLUMatAjUyYyhDtYV0Aazh1JYy0BpzDUYno6AYZkjlMA6BqBX9gxIlz7TN3rek+PsCy9O7r8zxs9r+9QAibCXAP0yN2AxXQBNMnOgDFoGBmV+QJq0CSvTCJA6cwpokpkDAORizezs7GzbB5G7qampGBsbi8nJyRgdHW37cBjS5PRMTByciQOHj8aZp6+P8c0jLuA7QMfV0A9t0/LStElutJwO84NhaDkdWmYYWoYTcp+lWobhpTAHtJyOFNYD+dJyOrTMMLRcHS3SJi2Xz4wpXxsdW1dQPXvy6swectBLy9YypM++3B9zjVTl1LKOYHk5tdwmc4TUuV+GMtiXSYU9Yzhapk76bE6vLd99991x5ZVXxgvetDvOvvDiBo+wN9/5wqfiCx96S1z12vfGBZdc3vbhLPLw/nvj9re9Mu6666644oor2j4cCmRfXsxeQm503D5zgyqU1rIu6KrSWs6FmUPVtNwOLVM1LXeH+VE2LedLm8yn5cU0Qo603C3mVLm0TIrMnP5pGcqgZcjHurYPAFIztslFOwxKP5AmbQKDMj+gDFoGGJ5ZCpgDzGc9QBm0DGnQIlAnM4Y6WFdAG8weSmEtA6Ux12B4OgKGZY5QAusYgF7ZMyBd+gRgWPYSoF/mBiymC6BJZg6UQcvAoMwPSJM2YWUaAVJnTgFNMnMAgNStbfsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALrGG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRsXdsHAE2YnJ6JiYMzMXX4aIxuXB/jZ4zE2KaRtg8LsqIjgOaYuTTBOoN2aRAokdkGNMGsAXphVjCf9QDdpH1IiyZheDqC/OgWyqdzoOvMQWie7qBamgKWYjaQC2sVoB3mLwCQAtckUD1dlcXzCcwxD4BTmQvQHv1BN2gdSJHZBI/TA7ASMwIAIC3eaJ5KpHyh/8Cjh+INt+6Nz+2bOPmxndvG48Zrt8f5Z21s8cggH6d2tGnktPidF10aV1x4VkzPHEuueyA9KV8rpMa1C030Yp1BvVbrWIOQJ9e0KzPbSJl+y2HWQJ6ansNmRZra2o+tB6hWLtfW2oel2Y+hOVX3piNISy+N6xbSVsVerXOg68zB5eXyOir5Sbk7654ctdWUXqBewzaW8n4L8z3w6KH4V//9q/G080bj8i1nxYOTh+P7m9bHhWdviguesKntwwOoVErX0K4VAChZSnsuK3NNQq903Ttdpa3ftez5BObmxiPTM3H02PG445s/iA99/tsxPXPMPICGpHot6joB6uHnrCA/de3VWgea5joE+pN6D6m+ngA5GqSn1GcEAEAXeaN5hpbyhf7k9MyiY4uI2LNvIt54695498su98IArOLUjjaNnBa//7LLY/cd344b/ugrJ78ule6B9KR8rZAa1y400Yt1BvVarWMNQp5c067MbCNl+i2HWQN5anoOmxVpavMf6LceoDq5XFtrH5ZmP4bmVN2bjiAtvTSuW0hbFXu1zoGuMweXl8vrqOQn5e6se3LUVlN6gXoN21jK+y3MNzk9E//qv381/uFPXBi77/h2vOcz95383FUXnRM3/vL2+Dtne7N5oAwpXUO7VgCgZCntuazMNQm90nXvdJW2ftey5xNYam7suOic+P2XXR7X33KPeQANSPVa1HUC1MPPWUF+6tqrtQ40zXUI9Cf1HlJ9PQFyNEhPqc8IAICuWtv2AZC31S70J6dnWjqyEyYOziw6tjl79k3ExMF2jw9ycGpHu67aGrvv+Hbccd8PFnxdKt0DaUn9WiE1rl26ralerDOoTy8daxDy45p2dWYbqdJvWcwayE8bc9isSE+b+7H1ANXJ6dpa+7CY/RiaU0dvOoJ09Nq4biFdVe3VOge6zhxcWk6vo5KfVLuz7slVG03pBepVRWOp7rdwqomDM/G080aX/Fn/z9/3g7jhY1+xrwBFSO0a2rUCAKVKbc9lZa5J6IWu+6OrdA2ylj2f0G3LzY077vtB7L7j27Hrqq0RYR5AnVK+FnWdANXzc1aQnzr3aq0DTXIdAv1LuYeUX0+A3AzaU8ozAgCgy7zRPENJ/UJ/6vDRFT9/YJXPA4s7unzLWYt+8HxOCt0DaUn9WiE1rl26ralerDOoTy8daxDy45p2dWYbqdJvWcwayE8bc9isSE+b+7H1ANXJ6dpa+7CY/RiaU0dvOoJ09Nq4biFdVe3VOge6zhxcWk6vo5KfVLuz7slVG03pBepVRWOp7rdwqqnDR1f8Wf/P2VeAQqR2De1aAYBSpbbnsjLXJPRC1/3RVboGWcueT+i2lebGHff9IC7fctbJ/zcPoB4pX4u6ToDq+TkryE+de7XWgSa5DoH+pdxDyq8nQG4G7SnlGQEA0GXeaJ6hpH6hP3r6+hU/f+YqnwcWd3TkseMrfn3b3QNpSf1aITWuXbqtqV6sM6hPLx1rEPLjmnZ1Zhup0m9ZzBrITxtz2KxIT5v7sfUA1cnp2lr7sJj9GJpTR286gnT02rhuIV1V7dU6B7rOHFxaTq+jkp9Uu7PuyVUbTekF6lVFY6nut3Cq0dPX+1l/oBNSu4Z2rQBAqVLbc1mZaxJ6oev+6Cpdg6xlzyd022pzY/5r6+YB1CPla1HXCVA9P2cF+alzr9Y60CTXIdC/lHtI+fUEyM2gPaU8IwAAuswbzTOU1C/0xzePxM5t40t+bue28RjfPNLwEUF+Tu1ow7qVt462uwfSkvq1Qmpcu3RbU71YZ1CfXjrWIOTHNe3qzDZSpd+ymDWQnzbmsFmRnjb3Y+sBqpPTtbX2YTH7MTSnjt50BOnotXHdQrqq2qt1DnSdObi0nF5HJT+pdmfdk6s2mtIL1KuKxlLdb+FU45tH4qyN9hWgfKldQ7tWAKBUqe25rMw1Cb3QdX90la5B1rLnE7pttbkx9+/omgdQn5SvRV0nQPX8nBXkp869WutAk1yHQP9S7iHl1xMgN4P2lPKMAADoMm80z1BSv9Af2zQSN167fdEx7tw2Hjdduz3GNrkRgdWc2tE933s0dlx0zpJfm0L3QFpSv1ZIjWuXbmuqF+sM6tNLxxqE/LimXZ3ZRqr0WxazBvLTxhw2K9LT5n5sPUB1crq21j4sZj+G5tTRm44gHb02rltIV1V7tc6BrjMHl5bT66jkJ9XurHty1UZTeoF6VdFYqvstnGps00g86ZxNcZWf9QcKl9o1tGsFAEqV2p7LylyT0Atd90dX6RpkLXs+odtWmhs7Ljon7vneo+YB1Czla1HXCVA9P2cF+alzr9Y60CTXIdC/lHtI+fUEyM2gPaU8IwAAumzN7OzsbNsHkbupqakYGxuLycnJGB0dbftwGvfAo4fijbfujT37Jk5+bO5C/7yzNrZ4ZI+bnJ6JiYMzceDw0Tjz9PUn39wP5nS9417MdfTDI0djdONI/Kv//tWku6ebtJymHK4VUtP1a5cut9xkL11fZ9Svqy332rEGyUVXWz6Va9remG3p6nLL+i1Pl2dNl1smX23N4ZRnRRdbbns/Tnk9kC8tn5DytbX26UWXWm67YU1SlxQ7rqs3HVGyFFteTj+N65auyaXlKvdqnVOiXFomDebgYm2/BjNHy+VKsbtU1n2JtFy/ppvSSzdpuTlVNZbifkv7Umz5rx+ejhs+9pX4nH0FepZiy6wsxWto1wrt67Xlu+++O6688sp4wZt2x9kXXtzgEfbmO1/4VHzhQ2+Jq1773rjgksvbPpxFHt5/b9z+tlfGXXfdFVdccUXbh0OB7MtpSXHPZWUpXJPoOG267l8KXbUh9ZYHXctdfT7prtRbbtJSc+O528bjLb/w4xERcc4Z5gHpKqXl1K9FXSdQt1Ja7pWfs6JUJbdc916tdVJScsu4DukSLVcr1R5Sfz2B4Wm5OcP0lOqMIB1ahjJoGfLhjeYrYOi50Cd/Ou6f7kmRltNlZtCPrresF0rR5ZZ1TEm63PKptE3Out6yfilF11smX+bwQl1t2TqgNFrWMmXoWssapkSpdqw36E+qLS9H47C0nFrWMSwvp5YhVSnsM1qmaSms+xJpuUx66R4tN0tj1CXVlq156E+qLbMys45TeaP5ZnijeepmX06PPZd+6Th9uqYXObRsLcPqcmi5SeYGuSqpZR3SZSW13CvNU6LSW9YtXVF6y5hnXaHl7tB02bTcLD1RFy1DGbQM+VjX9gFQhrFNbgiga3QP9MPMgN7pBfKnYyiTtiFf+gVolzlMhHUApdAy5E3D0By9Qdk0DvnTMQB1ss/QRdY99E4vUC+N0TXWPNAFZh0ANMOeC+XRNaWwloF+mRvQPh1Ct2ge8qNboBTmGZRF01AdPQEAlGFt2wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DXr2j4AqNrk9ExMHJyJqcNHY3Tj+hg/YyTGNo20fVhQNN0BDMb8JAXWIVRDSwDVM1uhPfqD9OiSrrDWgSqYJdAcvVEC6xiokxkD1dMVQH/MTWiO3oAqmSl0gXUO+dArQH3MWIB0mdEA9TNrGZY1BPnRLVAlMwXyo1tgKWYDlEfXAGkxl2mS9QYAUB1vNE9RHnj0ULzh1r3xuX0TJz+2c9t43Hjt9jj/rI0tHhmUS3cAgzE/SYF1CNXQEkD1zFZoj/4gPbqkK6x1oApmCTRHb5TAOgbqZMZA9XQF0B9zE5qjN6BKZgpdYJ1DPvQKUB8zFiBdZjRA/cxahmUNQX50C1TJTIH86BZYitkA5dE1QFrMZZpkvQEAVGtt2wcAVZmcnll0sxARsWffRLzx1r0xOT3T0pFBuXQHMBjzkxRYh1ANLQFUz2yF9ugP0qNLusJaB6pglkBz9EYJrGOgTmYMVE9XAP0xN6E5egOqZKbQBdY55EOvAPUxYwHSZUYD1M+sZVjWEORHt0CVzBTIj26BpZgNUB5dA6TFXKZJ1hsAQPW80TzFmDg4s+hmYc6efRMxcdANA1RNdwCDMT9JgXUI1dASQPXMVmiP/iA9uqQrrHWgCmYJNEdvlMA6BupkxkD1dAXQH3MTmqM3oEpmCl1gnUM+9ApQHzMWIF1mNED9zFqGZQ1BfnQLVMlMgfzoFliK2QDl0TVAWsxlmmS9AQBUzxvNU4ypw0dX/PyBVT4P9E93AIMxP0mBdQjV0BJA9cxWaI/+ID26pCusdaAKZgk0R2+UwDoG6mTGQPV0BdAfcxOaozegSmYKXWCdQz70ClAfMxYgXWY0QP3MWoZlDUF+dAtUyUyB/OgWWIrZAOXRNUBazGWaZL0BAFRvXdsHAMOYnJ6JiYMzMXX4aGwcOW3Frz3z9PUNHRXkbX5XoxvXx/gZIzG2aWTJrx1dpSvdAXXrZ2alxPwkBautw5F1a+Obf3swm66gLau1dPrIaTE5PaMjgD64Xob2dKG/XF9LIF11r6kudAkR1ax1Mx7KMWjP9k1ozmq9nbHBtyWSlqX2FvsGUDXf0wz16mfv9joR0LQU5457Hliozk71BulJcW/ulZnCMHJZ+9Y55EOv7ctltkPXVNGmGQvQjEFmthkN5CbHe0ezlmH5t34gLb3sRWY/MCw/rwF5q/NaIMf7YuAE/14B1KuNPdL9P3SH6/A8mMs0aZD1ZpYAAKzMK6Rk64FHD8Ubbt0bn9s3ERERr/n7F8VVF50Tn7/vB4u+due28Rjf7EYAVnNqVxEn+rnx2u1x/lkbF339+OaR2LltPPbM+/r5v053QJ36nVkpMT9JwUrrcMdF58T//OpD8Z7P3JdNV9CW1Vr6xN4HY+/3HtURQB9OX7/W63zQktLvV3N+LYE0NbGmSu8S5gy71s14KMcwPds3oTmrvTb+5e8+EmdsWGcfJgnL7S3v+OWn2zeAyvieZqhfr/d8XicCmpbq3PFaGTyu7k71BmlJdW/ulZnCoHJa+9Y55EOv7cpptkOXVNWmGQtQv0FnthkN5CTXe0ezlmH5t34gHb3uRWY/MAw/rwH5q+taINf7YuAE/14B1KetPdL9P3SD6/B8mMs0qd/1ZpYAAKxubdsHAIOYnJ5ZdLH/oc9/O16xY2tcddE5C75257bxuOna7TG2yQ0qrGSpriIi9uybiDfeujcmp2cW/ZqxTSNx47XbY+e28QUf1x1Qt0FmVkrMT1Kw3DrccdE58codW+NDn/92ROTTFbSll5Z0BNC7yemZePPH/zJesWNr7Djldb6rLjon3v5LT3e9DDUq+X4199cSSE9Ta6rkLmG+Yda6GQ/lGLZn+yY0Z7XXxt/6ia/Zh0nCSnvL7378L+Ptv/R0+wYwNN/TDM3o5Z7P60RA01KeO14rgxOa6FRvkI6U9+ZemSkMIre1b51DPvTantxmO3RFlW2asQD1GmZmm9FALnK+dzRrGZZ/6wfS0M9eZPYDg/LzGlCGOq4Fcr4vBk7w7xVAPdrcI93/Q/lch+fFXKZJ/aw3swQAoDfr2j4AGMTEwZlFF/vTM8fi+lvuiV1XbY3ffuGlcfjosTjz9PUxvnnEzSn0YKmu5uzZNxETB2eWbOn8szbGu192eUwcnIkDh4/qDmjEoDMrJeYnKZi/Dh+ZnonJQ0fjnu89Gtffck9Mzxw7+XW5dAVtmWvpwcnD8a2JH8aGdWsXtaQjgN5MHJyJP/n69+PPv/mD2HXV1ti1Y2sceez4ydk6c+x424cIxSv1frWE1xJIS5NrqtQu4VSDrnUzHspRRc/2TWjO+WdtjLf+4mVx398eXPD6zdxr4/ZhUrDS3nL7178fN/zcJfYNYGi+pxmas9o9n9eJgKalPne8VgbNdao3SEPqe3OvzBT6lePat84hH3ptR46zHbqg6jbNWID6DDuzzWggB7nfO5q1DMu/9QPt63cvMvuBQfh5DShH1dcCud8XAyf49wqgem3vke7/oWxtzxj6Zy7TpF7Xm1kCANAbbzRPlqYOH13y49Mzx+I9n7kvfupp58bfvfAJDR8V5G25ruYcWOHzY5u8EAQ0a5iZlRLzkxTMrcN79j8Sv/qHX17263LpCtoytmkkvjXxw3j1/+/uZb9GRwCrm7vWn3ud71Q/9bRzmz4k6KQS71dLeS2BdDS9pkrsEpYyyFo346EcVfVs34TmPDw94++XSNpqe8vUoaPxlB/ZbN8AhuJ7mqFZK93zeZ0IaFoOc8drZXRdk53qDdqXw97cKzOFfuS69q1zyIdem5frbIfS1dGmGQtQjypmthkNpK6Ee0ezlmH5t36gXYPsRWY/0C8/rwFlqfJaoIT7YuAE/14BVCuFPdL9P5QrhRlD/8xlmtTLejNLAAB6s7btA6ja/fffHy9/+cvjnHPOiY0bN8bTn/70+PKXl39x+LOf/WysWbNm0X8PPfRQg0dNv0ZPX7/i589c5fPAYroCcmJmQfV0BcPTEcDwzFKgLuYLVbOmIB16hHLoGfKjW1JnjQJNMGsgHXoEmmbuQPp0Ct2iebrK2gcoj9kOadImQD7MbKALzDo4QQvQHv0BTTBrgOWYD1AOPUO1NAXUyYwBqmCWAAD0pqg3mn/kkUdix44dsX79+vjkJz8ZX/va1+Lmm2+OJzzhCav+2nvvvTcefPDBk/+de+65DRwxgxrfPBI7t40v+bmd28ZjfPNIw0cE+dMVkBMzC6qnKxiejgCGZ5YCdTFfqJo1BenQI5RDz5Af3ZI6axRoglkD6dAj0DRzB9KnU+gWzdNV1j5Aecx2SJM2AfJhZgNdYNbBCVqA9ugPaIJZAyzHfIBy6BmqpSmgTmYMUAWzBACgN0W90fxNN90UW7Zsid27d8dP/MRPxNatW+Onf/qn46lPfeqqv/bcc8+NH/3RHz3539q1RZ2a4oxtGokbr92+6KJ/57bxuOna7TG2yQU/9EtXQE7MLKiermB4OgIYnlkK1MV8oWrWFKRDj1AOPUN+dEvqrFGgCWYNpEOPQNPMHUifTqFbNE9XWfsA5THbIU3aBMiHmQ10gVkHJ2gB2qM/oAlmDbAc8wHKoWeolqaAOpkxQBXMEgCA3qyZnZ2dbfsgqnLppZfGNddcE3/9138df/ZnfxYXXHBBvPrVr45XvepVy/6az372s3H11VfHk570pDhy5Ehcdtll8bu/+7uxY8eOZX/NkSNH4siRIyf/f2pqKrZs2RKTk5MxOjpa6WNiZZPTMzFxcCYOHD4aZ56+PsY3j7jYpyc6Xp6uyImWMbPKoOW06IpBaflxOiJnWiYVZulwtAzLy2m+aDkPOa0p2qHl5uiROmm5WXqmLlquj25pyqAdW6OQllL3ZLOGrkm5ZT1C71JuOSfmDm3T8up0Sg60XB3N06Y2W7b2oTr2ZVJhtg9Hy9RFm80atOW77747rrzyynjBm3bH2Rde3MSh9uU7X/hUfOFDb4mrXvveuOCSy9s+nEUe3n9v3P62V8Zdd90VV1xxRduHQwHa2pfNbKiO6+t0mXX0o+SWtUCXpNay/mAwqbWcOrOGVGm5feYDVdByGvTMsLS8kKbIlZbzYMawGi3TC7MkfVqGMmgZ8rWu7QOo0re+9a34gz/4g3jd614X//Jf/sv40pe+FNdff32MjIzEddddt+SvOe+88+J973tfPPOZz4wjR47EBz7wgXj+858fX/jCF5b9IYd3vOMd8Za3vKXOh0KPxjaduMCfu/D/1sQPY3TjTIyf4cKflel4eXNdLWeut6nDR2N043q90Sots9rM6oW51j4tp2W5rrTCarT8uH72J22RGi3TlNXmXxXX+l2mZVKQ6nVOTvNFy3nIaU2lINXZUCctL1TnGtAjddJy/RbNh80j8dRzN7d9WBRGy9VYbj+3D9OEQTv2dzeQllL35PmzZuH3NZsllCnllge5PnUNQFel3HJOUrwvNte6Rcurq6tTrVElLVenqb3ZDGApbbac4nXpfJohJ022rA1WkvpsT51rbOrSb5tm/XC0DGVoq2XXU9Wzr3WXPTldTcw67Zcjt5b7WXv2fboktZZT6c9+RW5Sazl1vcwac4A2aLkd/l0CqqblNPj5TIal5YVSuV+vgmv9bulCyyWs6ZJmDPXoQstdV8UsM0vSp2Uog5YhX2tmZ2dn2z6IqoyMjMQzn/nM+PM///OTH7v++uvjS1/6Utx55509/z7Pe97z4sILL4z/8B/+w5KfP3LkSBw5cuTk/09NTcWWLVticnIyRkdHB38ADOSBRw/FG27dG5/bN3HyYzu3jceN126P88/a2OKRkTIdD0ZvpEbLDMtcS4OW06cVeqHl/mmLFGmZJph/9dMybdN5NbRMabo6G7T8uK6uAcqg5XqZDzRFy8PTK22ru2NrHJpR+p5sltAVJbWsW7qspJZ5nLnWPVpuh9aompbzYgawHC0vTTPkpqmWtQH1si+TArN+eIO2fPfdd8eVV14ZL3jT7jj7woubONS+fOcLn4ovfOgtcdVr3xsXXHJ524ezyMP7743b3/bKuOuuu+KKK65o+3AogH25DPa1btNxd2m/LDm1bO3B8nJquSlmBjnScrXMAdqi5ebpnTpoOS06Z1BaLpOZ0D2lt2xN0xWlt9x1Zll3aBnKoGXI19q2D6BK5513Xlx66aULPnbJJZfE/v37+/p9fuInfiLuu+++ZT+/YcOGGB0dXfAf7Zicnll04xARsWffRLzx1r0xOT3T0pGROh33T2+kSMsMw1xLh5bTphV6peX+aItUaZm6mX/N0DJt0nl1tExJujwbtHxCl9cAZdByfcwHmqTl4eiVFNTZsTUOzSl5TzZL6JJSWtYtXVdKyzzOXOsmLTdPa9RBy/kwA1iJlhfTDDlqomVtQP3sy7TNrK+GlqEMWs6ffQ0dd5P2y5NLy9YerCyXlptiZpArLVfHHKBNWm6W3qmLltOhc4ah5fKYCd1UcsvWNF1ScstdZ5Z1i5ahDFqGfBX1RvM7duyIe++9d8HHvvGNb8STnvSkvn6fv/iLv4jzzjuvykOjJhMHZxbdOMzZs28iJg66eYCq6A0ojbkGvdEK1ENbQFeZf1A+nQNLMRuwBoDlmA+QD71SOmscqIJZAvnRLVAacw2aoTXoNjMA+qMZWJo2AMpn1gNQEvsadJP2aYu1B/TDzADMAegOvUP5dA7MZyZQGmsaKIFZBgDQnHVtH0CVfuu3fiue85znxNvf/vZ46UtfGl/84hfj/e9/f7z//e8/+TU33HBD3H///fGRj3wkIiLe9a53xdatW+PHf/zH4/Dhw/GBD3wgPvOZz8SnP/3pth5GZSanZ2Li4ExMHT4aoxvXx/gZIzG2aaTtw6rU1OGjK37+wCqfhxTk0qregDq0OQPNNaqUy34+CK1QitQ61RZUJ7W+WZn51x3a7C6dd5PmWY3ZUL/UO7QGYDCpt10F84EuyrVtvVK6qtZ4ro0DS+u3afsl1K/qvVa3QAqqnG3mGjRDayd4HaR7POcnmAHQ3zzQDF3h9WSgCq65y2LWA1AS+1pacrpuzOlYWUz7NGGpOXHwiLUHufHvSQK9qmNemAOUwj306vROSTS/NJ3TNC2mzUygV7m0bE1DtXJpvzRmGQBAc4p6o/lnPetZ8bGPfSxuuOGG+Nf/+l/H1q1b413velf8yq/8ysmvefDBB2P//v0n/39mZib+2T/7Z3H//ffHpk2bYvv27fEnf/IncfXVV7fxECrzwKOH4g237o3P7Zs4+bGd28bjxmu3x/lnbWzxyKozOT0TG9efFv/vr1wRp68/Le7e/0h86PPfjumZYye/5szT17d4hLC6nFodXaanTSOnxa6rtsbp60+Le/Y/4gUUoGe9zsC6XqRdbq7NcR1Br3Laz1eyXGtaoQQpdtpPW/7CEpaXYt+5aGu2uLboBm1221znc68bXr7lrDjy2PGTr+OPbtR5aTRPL1K5Bij1/iqHDttYA6U+33RHDm1XYaX5sGnktHjCppH45vcPapli5Nj23J762PHZ+NArnrXk92hFeF2H/FXxvVE5Ng4sr5+m7ZfQjDr22kFet/K6E1ClqmdbKn8nUyLzn/lKb62X9e51kO4p7TkfZq6XPgNgNf3Og5KbcY3InEH2Sa9LAacq7Zq7bSnMzJKvgwDoHvtas1a6lsnpujGnY2VpdbafwjU77VtuTvzrX7wsNo2ctuh7MOf0s/asNahf23v+oPuV+QDNq2te+Pf8KEHb+2nbem3Ta1SUItfmm9hHdU6Tcm2xS8yE9uVwD5VTy9Z0f3JYf7Qnp/ZTUGVPZhkAQHOKeqP5iIgXvehF8aIXvWjZz3/4wx9e8P+vf/3r4/Wvf33NR9WsyemZRTczERF79k3EG2/dG+9+2eXZ3/wudcO246Jz4vdfdnlcf8s9MT1zLHZuG4/xzXk/TsqWW6vjm0di57bx2DPveDeNnBa//7LLY/cd3473fOa+kx/3Agqwml5nYJ0v0i411+b/Ga4j6EVu+/lyVmpNK+Qu1U57bctfWMLyUu07B23OFtcW5dMm45tH4gWXnBv/n5+4cNHrhldddE78w2duafHoqJrm6VUK1wCl3l/l0mHTa6DU55vuyKXtKiw3HzaNnBYfesWz4rdv+2p87j4tU4Yc2+7le7QivK5DGYb93qgcGweW10/T9ktoRl17bb+vW3ndCahSHbMthb+TKZH5z6lKbq2X9e51kO4p7Tkfdq6XPANgNYPMg1KbcY3InEH3Sa9LAfOVds3dtlRmZqnXQQB0k32tOStdy5wxclo2142ucctQV/upXLPTrpXmxL/671+N33nRpXHDH31l0a/rZ+1Za1C/FPb8QfYr8wGaV+e88O/5kbsU9tM29dOm16goQa7NN7WP6pym5Npi15gJ7crhHiq3lq3p3uWw/mhPbu23reqezDIAgOasbfsAqN7EwZlFNzNz9uybiImDMw0fUbWWu2G7474fxO47vh27rtoaO7eNx03XbnfjRtJya3Vs00jceO322Llt/OTHdl21NXbf8e24474fLPjauRdQJqfTegxAOnqZgau9SDvsjFlqrkWE6wj6ktt+vpTVWosIrZC1VDvtZR+qey+E3KXad+rani2uw8unTcY2jcTv/sKPL/m64efv+0H8y499xXVMQTRPr9q+Bmj7GqhOuXTY5Boo+fmmO3JpuwrLzYffedGl8d7P3LfgTeYjtEzecmu7l+/RivC6DuUY9nujcmscWFmvTdsvoTl17bX9vG7ldSeganXMtrb/TqZE5j9LKbW1Xte710G6p6TnvIq5XuoMgF4MMg9KbMY1IvMNuk96XQqYr6Rr7ralNDNLvA4CoLvsa81Y7Vrm+weOZHPd6Bq3DHW0n9I1O+1abU5cceFZQ609aw2akcKe3+9+ZT5AO+qcF/49P3KXwn7aln7b9BoVJcix+Sb3UZ3TlBxb7CIzoT253EPl1rI13Ztc1h/tya39NtXRk1kGANCcdW0fANWbOnx0xc8fWOXzqVvphu2O+34Qv/PCS+NVV21140Dycmz1/LM2xrtfdnlMHJyJA4ePxunrT4v3fOa+Jb927gUULQJL6XUGrvYi7bAz5tS5dubp62N884jZRc9y3M9P1ctfiDz13M1aIVspd7raPtRLnzqky1LuO2UpzBbX4WXTJhERh48eX/QGbHNcx5RF8/SjzWuAFK6B6pJTh02tgZKfb7ojp7arsNR8OD47Gzf80VeW/Hotk6vc2l7te7Te9HOXxC/93Qu8rkNRhvneqNwaB1bWa9P2S2hOnXttr69bed0JqFpds833ZVTL/Gc5JbbW63r3Okj3lPScVzXXS5wB0ItB50FpzbhGZL5h9kmvSwFzSrrmbltqM7O06yAAus2+Vr/VrmUePZTPdaNr3HJU3X5q1+y0Z7U5cWjm2FBrz1qDZqSy5/ezX5kP0I6654V/z4+cpbKftmGQNr1GRe5ybL7pfVTnNCHHFrvKTGhHLvdQObZsTa8ul/VHe3Jsvy119WSWAQA0wxvNF2j09PUrfv7MVT6futVu2A4fPebGgSzk2urYpsdvzu/Z/8iKX+sFFGA5vczApl6knT/XoF+57ufz9dqaVshV6p2u1Ja/sISVpd53qlKZLa4tyqVNItKZNdRP8/SrrWuAkudSbh02sQZKfr7pjtzarsKp88HfRVOi3NpebU+deex4XHr+WENHA80Z9HujcmscWFmvTdsvoTl177W9vG7ldSeganXONt+XUR3zn5WU1lqv693rIN1T0nNe5VwvbQZAL4aZByU14xqR+YbdJ70uBUSUdc3dthRnZknXQXTP17/+9bYPYVlHjhyJDRs2tH0Yy0r9+CIixsfH48ILL2z7MMiMfa1eq13LnDFy2oqfT+m60TVuWapsP8VrdtrRy5wYZu1Za9CMlPb8XmeG+QDtaGJe+Pf8yFVK+2nTBm3Ta1TkLMfm29hHdU7dcmyxy8yE5uVyD5Vry9b0ynJZf7Qn1/bbUGdPZhkAQP280XyBxjePxM5t47Fn38Siz+3cNh7jm/O+yHbDRilKaFWPwKCqmIFmDCmwn0P6cu5Un7CynPtuk9lC3bRJhFnTJZonFyXPJR0uVvLzTXdoW8uUKbe2dQj9dZBb48DKem3afgnNSWGv1TxQtRRmG6sz/+mSXte7+dU9JT3n5joMp6R5MAyzhPma6MKag/LZY6tjZkI1Dk3+ICLWxMtf/vK2D2V5a9ZEzM62fRTLS/34ImLjxk3xV3/1dW82DwlZ7VrmjJF12Vw3usZlOa7ZmVP3nLDWoBk57vnmA7Sj7XmhfVLWdh9t0iZdlGPzWqVEObYITcpl9mu5TLmsP9qj/d7pCQAgb95ovkBjm0bixmu3xxtv3bvgpmbntvG46drtMbYp7xsaN2yUooRW9QgMqtcZaMaQOvs5pC/nTvUJK8u57zaZLdRNm0SYNV2ieXJR8lzS4WIlP990h7a1TJlya1uH0F8HuTUOrKzXpu2X0JwU9lrNA1VLYbaxOvOfLul1vZtf3VPSc26uw3BKmgfDMEuYr4kurDkonz22OmYmVOPo9IGImI2/+/99Q/zI1qe1fTiLPPiVO+OrH3+/4xvC1IPfiS986C0xMTHhjeYhIatdy5y1aX02142ucVmOa3bm1D0nrDVoRo57vvkA7Wh7XmiflLXdR5u0SRfl2LxWKVGOLUKTcpn9Wi5TLuuP9mi/d3oCAMjbmtnZ2dm2DyJ3U1NTMTY2FpOTkzE6Otr24Zw0OT0TEwdn4sDho3Hm6etjfPNIMTczDzx6aNkbtvPO2tjikZGrNjvOvVU9kpJU92SWt9oMNGO6KceW7eewWGot59qpPmlbai0vJde+22S2dE8bLWsTs6Z6Ke/LmicHqcylulrW4UKpPN+Uq6l9uetta5m6tXWNnVPbOiR1TXTcbwc5NQ6pyP11L/slnNCVe2XNU7qU9+WStT3bWF1u81/LDKOf9W5+1SvFlkt5znOb6+QtxZarUMo8GIZZ0i29tFx3F9YcDC+HfdkeWw0zs2y9tnz33XfHlVdeGS940+44+8KLGzzC3nznC5+KL3zoLXHVa98bF1xyeduHs4jjG07qxxcR8fD+e+P2t70y7rrrrrjiiisa//Nz2JehLb1cy6Rw3dhrxykcK+lxzZ6OFPbkOueEtUZXlN5yHcwHUpRCy01oc15onyYM03Ju+2lVtEmKmtiXc2teq+Qohe/5gpylMvu13E2prD+qU8c1tvZ7oyeq1JXXsaF0WoZ8rGv7AKjP2KZyb2DOP2tjvPtll7thowi5t6pHYBirzUAzhlzYzyF9uXaqT1hdrn23yWyhCdrErOkWzZOD0ueSDhcq/fmmO7retpYpVU5t6xD67yCnxoHV9dK0/RKa1fZeq3mgDm3PNlZn/tMl/ax386t7SnnOzXUYXinzYBhmCaequwtrDrrBHlsNMxMAyFkv1zI5XTfmdKw0xzU789U5J6w1aE5ue775AO1pc15on9Tltp9WRZt0VW7Na5VS5dYiNCmn2a/l8uS0/miP9nujJwCAfHmjebLlhg3SoUegTmYMNENrkC59AnUwW4AmmDVAasylbvF8Qxm0DO3TIegAWJ05Ad2ieYBuMv/pEuudLrDOgSqYJTTNmgPonZkJAOTMtQxdYJ3TFGsNWI75AN2kfUiTNiEPWgXoHrOfNll/UB09AQDkaW3bBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYevaPgCGNzk9ExMHZ2Lq8NEY3bg+xs8YibFNI20fFhRHawB0gf1uIecDmqM3YClmA9ALswJIkdlE26xB6A69Q350C+XRNXSH3qF9OgQGYXYApTDPOJU1AazEjID26RDyo1sAAAblWrIZzjM0T3dQBi1DWTQNedMwlE3jQFXME+iPZgAAACiNN5rP3AOPHoo33Lo3Prdv4uTHdm4bjxuv3R7nn7WxxSODsmgNgC6w3y3kfEBz9AYsxWwAemFWACkym2ibNQjdoXfIj26hPLqG7tA7tE+HwCDMDqAU5hmnsiaAlZgR0D4dQn50CwDAoFxLNsN5hubpDsqgZSiLpiFvGoayaRyoinkC/dEMAAAAJVrb9gEwuMnpmUUvVkRE7Nk3EW+8dW9MTs+0dGRQFq0B0AX2u4WcD2iO3oClmA1AL8wKIEVmE22zBqE79A750S2UR9fQHXqH9ukQGITZAZTCPONU1gSwEjMC2qdDyI9uAQAYlGvJZjjP0DzdQRm0DGXRNORNw1A2jQNVMU+gP5oBAACgVN5oPmMTB2cWvVgxZ8++iZg46AULqILWAOgC+91Czgc0R2/AUswGoBdmBZAis4m2WYPQHXqH/OgWyqNr6A69Q/t0CAzC7ABKYZ5xKmsCWIkZAe3TIeRHtwAADMq1ZDOcZ2ie7qAMWoayaBrypmEom8aBqpgn0B/NAAAAUCpvNJ+xqcNHV/z8gVU+D/RGawB0gf1uIecDmqM3YClmA9ALswJIkdlE26xB6A69Q350C+XRNXSH3qF9OgQGYXYApTDPOJU1AazEjID26RDyo1sAAAblWrIZzjM0T3dQBi1DWTQNedMwlE3jQFXME+iPZgAAACjVurYPoCsmp2di4uBMTB0+GqMb18f4GSMxtmlkqN9z9PT1K37+zFU+D/SmydbqmBXAQjqDpeV2bVl3y7mdD8jV5PRMbFx/2opfozdIn9e9oAw53i+bFbC0HHsuidlEFYbp2BqEdHgdG8pQZcu6hbRU0beuoTltv+ald2jfah2escGPxgCL2cOBUphnzWv7PnQ1uayJ1M8jlKrXGaFRqM/mVV6rSmWvBh6XyjW2/RkAHmdfJBepXEuWYrn2nWdo3iDd2b8hPSntoWYEDM/fQUHeevmZiG9+/6C9EjJx6vWtfRrKkMK9a0r38pCDQZtJoXdgIV0CAMBCxf1rWvfff3+84Q1viE9+8pMxPT0dF110UezevTue+cxnLvtrPvvZz8brXve6+Mu//MvYsmVL/PZv/3a84hWvqOyYHnj0ULzh1r3xuX0TJz+2c9t43Hjt9jj/rI0D/77jm0di57bx2DPv953/+49vdrMDVWiqtbpmBfA4ncHycrq2bKLlnM4H5Gqu5WdsOSt2XHRO3HHfDxZ9jd4gfV73gjLker9sVsBiufZcErOJYQ3bsTUIafA6NpSh6pZ1C+moqm9dQzNSeM1L79C+lTrccdE58eXvPhJnbFjntXBggfHNI/HcbeMLriPmPNceDmTEPUmzUrgPXU0OayKH8wil6mVGaBTq88Cjh+LL333Ez0pBZlK4xrY/A8Dj7IvkJIVryVKs1L7zDM3rtzv7N6QplT3UjIDh+TsoyN9K+/Jzt43Hl7/7SNzwR185+TF7JaRrqevbd/zy05f92QX7NOQhlXvXVO7lIReDNJNK78DjdAkAAIutbfsAqvTII4/Ejh07Yv369fHJT34yvva1r8XNN98cT3jCE5b9Nd/+9rfjhS98YVx99dXxF3/xF/Ha1742fu3Xfi0+9alPVXJMk9Mzi25EIiL27JuIN966NyanZwb+vcc2jcSN126PndvGF3x857bxuOna7TG2yYt8UIUmWqtzVgAn6AxWlsu1ZVMt53I+IFfzW/7Q578dr9yxNXZcdM6Cr9EbpM/rXlCGnO+XzQpYKOeeS2I2MYwqOrYGoX1ex4Yy1NGybiENVfata6hfKq956R3at1yHOy46J165Y2u89RNf81o4sKTfuPqiRd+btuOic+I3rr6opSMC6J97kuakch+6mtTXRC7nEUq12oyICI1CTeb2wLd+4mt+Vgoy0/Y1tmtoAHicfZHctH0tWYrV2o8I5xka1s98s39DulK4VjEjYHj+DgrKsNK+/BtXXxRv/cTXFnzcXglpWu769q2f+Fr8xtUXef0KMpXSvWsK9/KQk36bSal34ARdAgDA0ta1fQBVuummm2LLli2xe/fukx/bunXrir/mfe97X2zdujVuvvnmiIi45JJL4vOf/3z8u3/37+Kaa64Z+pgmDs4suhGZs2ffREwcnBnqxbjzz9oY737Z5TFxcCYOHD4aZ56+PsY3j3iBDypWd2t1zwpAZ9CLHK4tm2w5h/MBuZrf8vTMsbj+lnti11VbY9eOrXHksePxlPEz4ryx0/UGifO6F5Qh9/tlswIel3vPJTGbGFRVHVuD0C6vY0MZ6mpZt9C+qvvWNdQrpde89A7tO/+sjfHWX7ws7vvbg3HkseOxYd3auOd7j8b1t9wT0zPHvBYOLDJxcCZ2ffhLC743bW527Prwl+J/vOYqMwPIhnuSZqR0H7qalNdETucRSrXSjPjm9w9qFGoyfw889WelNqxbGxf9yOY476yNLR8lsJw2r7FdQwPA4+yL5Cjl12tz0Uv7Tz13s/MMDet1vtm/IW1tX6uYETA8fwcF5VhqX163dk387O9/LqZnji36enslpGe569vpmWOx68Nfik9e/9x47Pis168gM6ndu7Z9Lw+56aeZ1HoHdAkAAMsp6o3mP/7xj8c111wTL3nJS+LP/uzP4oILLohXv/rV8apXvWrZX3PnnXfGT/3UTy342DXXXBOvfe1rl/01R44ciSNHjpz8/6mpqWW/durw0RWP+cAqn+/F2CYv6kG/+ul4Tp2tNTEroESp7clQgjauLVNu2bU29G6YlqdnjsV7PnPfyf+/7dXP0R60JLV92V4Mg0mt5bqZFZSq39exS+i5JGYTc9ral61BqFbK19h6h96l0rJuYXCDfM/XqeroW9fQn1T25EHoHR5Xxb48iIenZ+JX//DLy37ea+HQn7ZabsrU4aOLvjdtPjODUpTeMo9zT1K/Nu9DU/t5x2Gkdj8PTUppX15uRmgUVjdoy/P7Wup+9LZXPyeeFGdUc5DAqnK6xrY/w/JSusYGBpfz94pAr1J9vbYqde/JvbZf+nmGutV1r2z/hmbl9LpXhBkByxn0XtnfQUFaqtiX79n/yJJvMj/HXgn1q+o17OmZY/HI9Ez83QufUOnxAb0Z5nXsFO9dvR5OVw3acq/NpNg7lMj3iUAZfP8mlEHLkK+1bR9Alb71rW/FH/zBH8S2bdviU5/6VPz6r/96XH/99fGHf/iHy/6ahx56KJ74xCcu+NgTn/jEmJqaikOHDi35a97xjnfE2NjYyf+2bNmy7O8/evr6FY/5zFU+D9Sjn46bYFbAYOzJUAYtQxm0DGXQMpRBy1CGfl/H1jOkyb4MZdAylEHLkL8qvudL39A+ezKUoa3vxTYXoFqp/VxF1cwMuqL0lqFJbe4dJbVsD6bLcmhZo7C6QVvWF6Qlh315jvkBy8upZWB5vlcE8lf3nqx9aEZdLWsYmpXbvbIZAUtzrwxl8POOUAb7MpRhmH1Z25AOfycFZXCNDWXI7e+kgKVpGfJV1BvNHz9+PK644op4+9vfHpdffnn843/8j+NVr3pVvO9976v0z7nhhhticnLy5H/f+973lv3a8c0jsXPb+JKf27ltPMY3j1R6bEBv+um4CWYFDMaeDGXQMpRBy1AGLUMZtAxl6Pd1bD1DmuzLUAYtQxm0DPmr4nu+9A3tsydDGdr6XmxzAaqV2s9VVM3MoCtKbxma1ObeUVLL9mC6LIeWNQqrG7RlfUFactiX55gfsLycWgaW53tFIH9178nah2bU1bKGoVm53SubEbA098pQBj/vCGWwL0MZhtmXtQ3p8HdSUAbX2FCG3P5OClialiFfRb3R/HnnnReXXnrpgo9dcsklsX///mV/zY/+6I/G3/zN3yz42N/8zd/E6OhobNy4cclfs2HDhhgdHV3w33LGNo3EjdduX3RDsnPbeNx07fYY2+RmBNrQT8dNMCtgMPZkKIOWoQxahjJoGcqgZShDv69j6xnSZF+GMmgZyqBlyF8V3/Olb2ifPRnK0Nb3YpsLUK3Ufq6iamYGXVF6y9CkNveOklq2B9NlObSsUVjdoC3rC9KSw748x/yA5eXUMrA83ysC+at7T9Y+NKOuljUMzcrtXtmMgKW5V4Yy+HlHKIN9GcowzL6sbUiHv5OCMrjGhjLk9ndSwNK0DPla1/YBVGnHjh1x7733LvjYN77xjXjSk5607K959rOfHf/zf/7PBR+7/fbb49nPfnZlx3X+WRvj3S+7PCYOzsSBw0fjzNPXx/jmETciwAJmBdRPZ1AGLUMZtAxl0DKUQctQDj1D/nQMZdAylEHLUC59Q140C5zKXAD6YWYA0C97RzWcR0ibRqE++gIGZX4AwOPsi9BN2oe8aRhYiRkBw9MRlE3jkBfNQpm0Dd2hd0iPLgEAYLGi3mj+t37rt+I5z3lOvP3tb4+XvvSl8cUvfjHe//73x/vf//6TX3PDDTfE/fffHx/5yEciIuKf/JN/Eu95z3vi9a9/fezatSs+85nPxH/9r/81/viP/7jSYxvb5OYDWJ1ZAfXTGZRBy1AGLUMZtAxl0DKUQ8+QPx1DGbQMZdAylEvfkBfNAqcyF4B+mBkA9MveUQ3nEdKmUaiPvoBBmR8A8Dj7InST9iFvGgZWYkbA8HQEZdM45EWzUCZtQ3foHdKjSwAAWGht2wdQpWc961nxsY99LG655Za47LLL4q1vfWu8613vil/5lV85+TUPPvhg7N+//+T/b926Nf74j/84br/99njGM54RN998c3zgAx+Ia665po2HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTAurYPoGovetGL4kUvetGyn//whz+86GPPf/7z45577qnxqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeV9wbzbdhdnY2IiKmpqZaPhLojjPPPDPWrFlT2e+nY2iHlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxVtqxjaIc9GcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMrTV8sGDByMiYvKvvxXHHztW2Z9flYPfvz8iIqYe+k5s2LCh5aNZzPENJ/Xji4g48NB3I+JEK73sjfZlKIPv34T82ZOhDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWob8DdqxN5qvwIEDByIiYsuWLS0fCXTH5ORkjI6OVvb76RjaoWUog5ahDFqGMmgZylB1yz/4wQ8iQsvQNPsylEHLUAYtQxm0DGWosmUdQzvsyVAGLUMZtAxl0DKUQctQBi1DGbQMZdAylKHtlr/4h2+t7M+uw97//P+0fQgrcnzDSf34IiKe97zn9fR1bbcMVMP3b0L+7MlQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUP+Bu14zezs7GwNx9Mpx48fjwceeCDOPPPMWLNmTduHk7ypqanYsmVLfO9736t08+miLp/Lqnurq+MuP0enci5OcB4Wqqvl2dnZuPDCC4s6z6WunRIfVxcfUy77ctVKfK7nlPrYSn1cEdU8tjpavvfee+PSSy8t8pz3quR11yvnoNlz0PS+7Pl1DiKcg4jqz0HVLT/66KPxhCc8Ifbv3x9jY2OV/b5tKm3dlfZ4Isp7TIM8nq7eL88pbQ30o6uPvdTH7XXs3pT2/Hs8abMv9660574OztHqUjpHXW15vpSej2F4HGlp+nFU2VyVHZfyfDbJORtMCectlT25hHNZB+dlec7NQqm03LbS1oXHk7Y6Hk8qLZf2XEV4TLko5TGl0nITSnnOUuBcVivV78VeqmXPfXWcy2qUdh5T2JdzPqc5H3uE429blcefQstVyf15XY7HlZ82HltJLTeh5PW3nK495lwfr5937E/uxx+R/2Nw/EvzcxUL5bpOHHezUjzuVL9/sykpPidV8vjy1uvjK/FeuZTntoTHUcJjiMjjceTUcg7n81SOuRmOOa+Wq5Djc54a53B4JX8v9lKsmeU5N0vr8nlJseUcn48cjzkiz+N2zEtLseUq5fi8L8XjSEeqj6HJllM9B6VwfuuTw7ltY1/O4bzUxWPv5mOPqP/xt3WNXcrz6nGkpZTHEdH/Y9HycDyOtHT1cQza8bpBDo6F1q5dG3/n7/ydtg8jO6Ojo1lHmhLncnh1d+w5epxzcYLzUI+5lqempiKizPNc4mOKKPNxeUyDy+36usTnek6pj63UxxWR1mNbu3ZtXHDBBRGR1nG1xTlwDiLyPAe97ss5PraqOQfOQUS652Dt2rURETE2Npbk8Q0j1XM+qNIeT0R5j6nNx5Pb/fKc0tZAP7r62Lv6uHtV+uvYHk/aPJ7q5LYvl/bc18E5Wl2J5yi3lucr5fnwONKS4+Ooo+Mcz0PbnLPBOG+PG7Zl53JpzsvynJt65Hx9HVHeuvB40pby47EvL+Yx5aHExzSMHPZlz1l1nMtqpXQ+V2s5pWPNnXNZDedxacPsyzmf05yPPcLxty3F40/hGjvF81IFjys/OT+2FFpuQs7P0aC69pi79nhP1ZWfd8z9+CPyfwyOv16l/FyF426W405LztfXpT4nczy+vDX9+FJquZTntoTHUcJjiCjncfSiiZZzPJ+OuRmOuTop7csrSfX85cQ5HF7K59DPOzbLuVma8zK8KlvO8fnI8Zgj8jxux1yvVK+xczqHK/E40lHCY1hJLy2Xfg7a5vzWp0vntp99uUvn5VQeezcfe0Q+j7/fa+xcHtdqPI60lPI4Itp7LFrOm8eRlrofx9rafmcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAluSN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5o3madyGDRvizW9+c2zYsKHtQ8mec5k+z9HjnIsTnIdmlHieS3xMEWU+Lo+pO0o+L6U+tlIfV0S6jy3V42qSc+AcRJR9Dkp+bL1yDpyDiPTPQerHN4jSHlNpjyeivMdU2uNpQpfPWVcfe1cf96BKO18eT9o8nu5yrlbnHK3OOUpLKc+Hx5GWUh7HsJyH/jlng3HequNcLs15WZ5zw1JKWxceT9pKezzzlfjYPKY8lPiYSuc5q45zWa2czmdOx5o657IazmP1cj6nOR97hONvW+7HX5dSz4vHlZ+SH1spuvgcde0xd+3xDir385T78Ufk/xgcf7NyO945jrtZjpuqlP6ceHx5K/3xraSUx17C4yjhMUSU8zhSkeP5dMzNcMzd4/wNzzkcXtfOYdcebz+cm6U5L2nJ8fnI8Zgj8jxux9xNpZxDjyMdJTyGYTkH9XJ+6+PcLq3L58Vj7+Zjjyj38ZfyuDyOtJTyOCLyeSy5HOdqPI60eBz9WTM7Oztb658AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwAJr2z4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK7xRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN80bzFdqzZ0/8/M//fJx//vmxZs2auO222/r+PWZnZ+Od73xn/NiP/Vhs2LAhLrjggnjb295W/cECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArVnX9gGU5Ic//GE84xnPiF27dsUv//IvD/R7/OZv/mZ8+tOfjne+853x9Kc/PR5++OF4+OGHKz5SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoE1rZmdnZ9s+iBKtWbMmPvaxj8WLX/zikx87cuRIvOlNb4pbbrklHn300bjsssvipptuiuc///kREfH1r389tm/fHl/96lfj4osvbufAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNqtbfsAuuQ1r3lN3HnnnfGf//N/jr1798ZLXvKS+Jmf+ZnYt29fRET8j//xP+IpT3lKfOITn4itW7fGk5/85Pi1X/u1ePjhh1s+cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBK3mi+Ifv374/du3fHRz/60Xjuc58bT33qU+Of//N/HldddVXs3r07IiK+9a1vxXe/+9346Ec/Gh/5yEfiwx/+cNx1113xD/7BP2j56AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAqrWv7ALriK1/5Shw7dix+7Md+bMHHjxw5Euecc05ERBw/fjyOHDkSH/nIR05+3Qc/+MG48sor4957742LL7648eMGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqueN5hty8ODBOO200+Kuu+6K0047bcHnNm/eHBER5513Xqxbt27Bm9FfcsklERGxf/9+bzQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhfBG8w25/PLL49ixY/H9738/nvvc5y75NTt27IjHHnssvvnNb8ZTn/rUiIj4xje+ERERT3rSkxo7VgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBea2ZnZ2fbPohSHDx4MO67776IOPHG8r/3e78XV199dZx99tlx4YUXxstf/vK444474uabb47LL788/vZv/zb+9E//NLZv3x4vfOEL4/jx4/GsZz0rNm/eHO9617vi+PHj8Ru/8RsxOjoan/70p1t+dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBVvNF8hT772c/G1Vdfvejj1113XXz4wx+Oo0ePxr/5N/8mPvKRj8T9998f4+Pj8ff+3t+Lt7zlLfH0pz89IiIeeOCB+Kf/9J/Gpz/96TjjjDPiZ3/2Z+Pmm2+Os88+u+mHAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANTEG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANGxt2wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DXeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5ovgKzs7MxNTUVs7OzbR8KMCAdQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+dMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1D/nQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQD280X4EDBw7E2NhYHDhwoO1DAQakYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX86hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyJ+OoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8uGN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5o3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuaN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAatq7tA6A+k9MzMXFwJqYOH43Rjetj/IyRGNs00vZhAafQKtBlZiClsJYhfTqFcukb0qRN6BbNQ/t0CGXSNpRJ21A2jUNZNA3p0SVQIrMNyJX51T2ec2COeQCL6QKoglkC5dM5AF1j7wNWY05AGbQM9Mq8gOXpA7pF85AGLUIZtAzdpH0AAErnjeYL9cCjh+INt+6Nz+2bOPmxndvG48Zrt8f5Z21s8cja4eaOVOXUqo6AquU0A5tm5uYl17VsndElKXaqQahGin13mdnGHG1SJ7MmPZonRV2bFTpcWdfWA+XQ9nC0T6q62rYm6Yo6G9cRNG/YpnUL1UvtelrnQBVSm239MAeheSl1l/P8YjAlPucpNQU5KXEezGc2MIg2urBWoTyl77GlMH8ZRtudW78ANK3tvQ/64VqpHXXNCc8nNCvlPd88gLSkMC/MBVKVQh910x88ruTmtU5OSm6Rhcymsmm5P3qgFNqvhxkBAJCWNbOzs7NtH0TupqamYmxsLCYnJ2N0dLTtw4nJ6Zl4zS33LLiZmbNz23i8+2WXd+oi3M0dvWij45xa1RG5SG1PZnk5zcCmmbl5tZzrWrbOaEIqLafYqQbJSSotLyXFvrvMbEtbky1rkzp1fdakuC9rnhSlPiuqblmHK0t9PZCvuvdlbQ9H+/Sq6WvsrratSeqU0r1ynY3riNKl1PKcYZvWLV3UtXtlnVOqFPflkqU22/phDqZNy2VKqbuc51dOUmq5xOc8paYoW0otV6HEeTCf2cByVmq5jS6sVRhMyvty6XtsKczfNKTc8kra7tz6JTW5tgw8brWO2977oB9dvlZqc0+ua050+fmku0psuQrmAbkp/V45hXlhLtCEQVpOoY+66Y/c1Lkvl9y81klNat/zRTvMpvxpuTp6oE1VXmNrvx5mBL0o/XVs6AotQz7Wtn0AVG/i4MySNzMREXv2TcTEwZmGj6g9k9Mzi25CIk6chzfeujcmp7tzLkhPLq3qCKhDLjOwaWZufnJcy9YZXZNapxqE6qTWd5eZbcynTepi1qRJ86Smi7NCh8vr4nqgHNoenPZJWRfb1iRdUlfjOoJ2DNO0bqEeKV1P6xyoSkqzrR/mIDQvte5ynV8MrrTnPLWmICelzYP5zAYG1XQX1iqUqeQ9thTmL8Nqs3PrF4A2uMYlF66V2lPHnPB8QvNS3fPNA0hP2/PCXCBlbfdRN/3BQqU2r3VyU2qLLGQ2lU/LvdMDJdF+9cwIAIA0eaP5Ak0dPrri5w+s8vmSuLkjZbm0qiOgDrnMwKaZufnJcS1bZ3RNap1qEKqTWt9dZrYxnzapi1mTJs2Tmi7OCh0ur4vrgXJoe3DaJ2VdbFuTdEldjesI2jFM07qFeqR0Pa1zoCopzbZ+mIPQvNS6y3V+MbjSnvPUmoKclDYP5jMbGFTTXVirUKaS99hSmL8Mq83OrV8A2uAal1y4VmpPHXPC8wnNS3XPNw8gPW3PC3OBlLXdR930BwuV2rzWyU2pLbKQ2VQ+LfdOD5RE+9UzIwAA0uSN5gs0evr6FT9/5iqfL4mbO1KWS6s6AuqQywxsmpmbnxzXsnVG16TWqQahOqn13WVmG/Npk7qYNWnSPKnp4qzQ4fK6uB4oh7YHp31S1sW2NUmX1NW4jqAdwzStW6hHStfTOgeqktJs64c5CM1Lrbtc5xeDK+05T60pyElp82A+s4FBNd2FtQplKnmPLYX5y7Da7Nz6BaANrnHJhWul9tQxJzyf0LxU93zzANLT9rwwF0hZ233UTX+wUKnNa53clNoiC5lN5dNy7/RASbRfPTMCACBN3mi+QOObR2LntvElP7dz23iMbx5p+Ija4+aOlOXSqo6AOuQyA5tm5uYnx7VsndE1qXWqQahOan13mdnGfNqkLmZNmjRParo4K3S4vC6uB8qh7cFpn5R1sW1N0iV1Na4jaMcwTesW6pHS9bTOgaqkNNv6YQ5C81LrLtf5xeBKe85TawpyUto8mM9sYFBNd2GtQplK3mNLYf4yrDY7t34BaINrXHLhWqk9dcwJzyc0L9U93zyA9LQ9L8wFUtZ2H3XTHyxUavNaJzeltshCZlP5tNw7PVAS7VfPjAAASJM3mi/Q2KaRuPHa7YtuanZuG4+brt0eY5u6c0Pj5o6U5dKqjoA65DIDm2bm5ifHtWyd0TWpdapBqE5qfXeZ2cZ82qQuZk2aNE9qujgrdLi8Lq4HyqHtwWmflHWxbU3SJXU1riNoxzBN6xbqkdL1tM6BqqQ02/phDkLzUusu1/nF4Ep7zlNrCnJS2jyYz2xgUE13Ya1CmUreY0th/jKsNju3fgFog2tccuFaqT11zAnPJzQv1T3fPID0tD0vzAVS1nYfddMfLFRq81onN6W2yEJmU/m03Ds9UBLtV8+MAABI05rZ2dnZtg8id1NTUzE2NhaTk5MxOjra9uGcNDk9ExMHZ+LA4aNx5unrY3zzSCdvZh549FC88da9sWffxMmPzd3cnXfWxhaPjJS02XEOreqIXKS6J7O8HGZg08zcPFvObS1bZzQhtZZT6lSD5CS1lpeSUt9dZralrY2WtUkduj5rUt6XNU9KUp8VdbWsw6Wlvh7IV1P7srYHo3161dY1dtfa1iR1SvFeuY7GdUTpUmx5zqBN65Yu6tq9ss4pVcr7cslSmW39MAfTpuUypdhdjvMrJym2XNJznmJTlCnFlqtQ0jyYz2xgOb203GQX1ioMJod9udQ9thTmbxpyaHklbXVu/ZKa3FsGeu/YNS456PK1Ugp7ctVzosvPJ91VYstVMA/ITQotN6HNeWEu0IRhWk5xP62K/shNE/tyic1rndSk9j1ftMNsyp+Wq6MH2lTHNbb2q2VG0IuuvI4NpdMy5MMbzVfA0GvH3A3b1OGjMbpxfYyfsfwNm5s7VqPj1a3UUT89Qp20XKYuzpiuX7touRnz19noxvVxxoZ1cfDwY51qjXppeWX9zPou7oWkQ8vlqmO2dP06NmVapi1mTbW0DL1bblakcH+l5ebMPd+Th2Zi04Z1cdqaNXHa2jVxjvtqKqDl5gw6u7t83UjvtNybKq6hNEldmn5D2zbvJXREyUrYk5eaExGhWzqlhJZ75XUnStallhle1+5TUrg37JWWy9VUdzmt95JpuV6T0zPx/QNH4tFDR2PzyGmxaWRdnLVpvbVO5bScHz/rwVJSaXn+mtu8YV2MnLY2Jg/NxBkbyr8ngyqk0jLNqGuf7tprYinKueW2rx+tX1KSc8vACTpmWG1fGy13PF27Viq15bnn84dHjsbYxpGYOXY8Dh55LIm1BnUoteUq+Dd0yYmWm/E3U4fjkR/OxNThx2J047p4wqaReOLo6W0fFgXR8vLsy+REy0vrpdWuvsZCmrTMHLNpcClcp2m5Wjn1kML6ozpablevPeU0I2iHlqEMWoZ8rGv7AGAQDzx6KN5w69743L6Jkx/buW08brx2e5x/1sZFXz+2yY0HDGu5jvrtEaAfXZ0xrl1owvx19sCjh+Kff/T/dK41aFOvs76reyFQr7pmi+tYYD6zBmjTUrPC/VW3rPR820cgH8PMbteNUI2qrqE0Sc5SuZfQEaRrpTnx1HM3t3hkQB287gTwuC7dp6RybwhNdGe90wUrX9e3eGBAEvysB6my5gB6V+fM7NJrYlQrhb3c+gUAUpHCtdGpXCuVZe75THGtAc3yb+gC82kf2mVfhrz12qrXWIAUmU2DcZ1Wplx6sP6gOv30lMuMAADoirVtHwD0a3J6ZtENSETEnn0T8cZb98bk9ExLRwbdo0egTmYMNENrkC59AnUwW4AmmDVAasylbvF8Qxm0DO3TIegAWJ05Ad2ieYBuMv/pEuudLrDOgSqYJTTNmgPonZlJiqxLAIDHuTaiKdYasBzzAbpJ+5AmbUIetArQPWY/bbL+oDp6AgDImzeaJzsTB2cW3YDM2bNvIiYOugmBpugRqJMZA83QGqRLn0AdzBagCWYNkBpzqVs831AGLUP7dAg6AFZnTkC3aB6gm8x/usR6pwusc6AKZglNs+YAemdmkiLrEgDgca6NaIq1BizHfIBu0j6kSZuQB60CdI/ZT5usP6iOngAA8uaN5snO1OGjK37+wCqfB6qjR6BOZgw0Q2uQLn3+/9m73yA97/q+91/L0kqrP7sesoXK1GCDBfKho8QObWpCRZO4MA2H5oEy5pBQJ1ZJ46mZxk8o9nTSmDEJthsmJdC47aRgsMGZJCIlHBhUpxksm/okxEBNCjkRhhxT25CzHLwrWdKubO954Eq2tH+0931f93X9ft/r9ZrhgXVr60u7v/fnum81cAHjYFuANtgaoDR2qV/8vCEHLUP3dAg6AM7NTkC/aB6gn+w/feK80wfOOdAEW0LbnDmA9bOZlMi5BAB4nvdGtMVZA1ZjH6CftA9l0ibUQasA/WP76ZLzB83REwBA3TxonupMbdm05us7zvE60Bw9AuNkY6AdWoNy6RMYB9sCtMHWAKWxS/3i5w05aBm6p0PQAXBudgL6RfMA/WT/6RPnnT5wzoEm2BLa5swBrJ/NpETOJQDA87w3oi3OGrAa+wD9pH0okzahDloF6B/bT5ecP2iOngAA6uZB81RnZvtE7N01s+Jre3fNxMz2iZavCPpLj8A42Rhoh9agXPoExsG2AG2wNUBp7FK/+HlDDlqG7ukQdACcm52AftE8QD/Zf/rEeacPnHOgCbaEtjlzAOtnMymRcwkA8DzvjWiLswasxj5AP2kfyqRNqINWAfrH9tMl5w+aoycAgLp50DzVmd46Ebfu27Psg8jeXTNx2749Mb3VhxBoix6BcbIx0A6tQbn0CYyDbQHaYGuA0tilfvHzhhy0DN3TIegAODc7Af2ieYB+sv/0ifNOHzjnQBNsCW1z5gDWz2ZSIucSAOB53hvRFmcNWI19gH7SPpRJm1AHrQL0j+2nS84fNEdPAAB1O29paWmp64uo3fz8fExPT8fc3FxMTU11fTm9MXdsMWaPLsaREydjx5ZNMbN9wgcQhqbj0eiRUmg5JxvTP1ruhtZompabo0+6pOW8bEu/aJmu2JpmaRlGV8Iuabk9Jfy8yUvL7dEy46Tl9dEhJWurYx3AeGW4J9sJyNHyemmezPrUMgyqpv3XMqOq6bxnpuXxcs5pi5ZzsyX9UUrLzhyMppSWaYfNzKvmlp1LeF7NLQPP0TGj8t6oDH1o2VmjD/rQ8jjYB0qj5XZon3HT8nC0SWm0vDKtUhstw+hK2H4t91cJ54/maLlbeqIpWoYctAz12Nj1BcCwprf60AGl0CMwTjYG2qE1KJc+gXGwLUAbbA1QGrvUL37ekIOWoXs6BB0A52YnoF80D9BP9p8+cd7pA+ccaIItoW3OHMD62UxK5FwCADzPeyPa4qwBq7EP0E/ahzJpE+qgVYD+sf10yfmD5ugJAKBOG7q+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC+8aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LJ0D5o/cuRI3HDDDfHyl788Jicn43Wve1188YtfXPNrFhYW4l/9q38VL3/5y2Pz5s1x8cUXx4c//OGWrhgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADom41dX0DT3vGOd8Sf//mfx1133RUXXnhh3H333XHVVVfF1772tXjpS1+64tdcffXV8d3vfjf+03/6T3HppZfGE088Ec8++2zLVw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0RaoHzR8/fjwOHDgQn/rUp2Lv3r0REXHzzTfHpz/96bjjjjvive9977Kv+dznPhf33XdffPOb34wXvehFERFx8cUXt3nZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM+ketD8008/Hc8880xs2bLljF+fnJyMBx54YMWv+cM//MN47WtfG7fffnvcddddsW3btvjH//gfxy233BKTk5Mrfs3CwkIsLCyc/uf5+fnm/hBDmDu2GLNHF2P+xMmYmtwUM9smYnrrRKfXBKUbpmOtQXlKuydDBl3c70pu2f0f1m/UlvUGZSjtvmwbYDiltTxutoKs+tZyNraJU7pq2RmEZpV8X9Y7rF8pLesWhldKx2fTNQym1JbXQ+/wPH/vBTnUfF8ehO0gu760jD3Lzn/fEXIo6b5sI2B4TbWsQ+iW99iQQxP3ZW1D90r6vAwMp5SO3ddhND4rQw5ahhxGeY+taSiH+zLk0OTffWkculPK32M3xZ7QV8O2rBkoS7b7MvSVliEHLUO9Uj1ofseOHXHllVfGLbfcEpdddlm85CUviXvuuScefPDBuPTSS1f8mm9+85vxwAMPxJYtW+IP/uAPYnZ2Nv75P//n8b3vfS8+8pGPrPg173vf++I973nPOP8o6/b4k8fj3QcejvsPz57+tb27ZuLWfXviwgsmO7wyKNugHWsNylTSPRky6Op+V2rL7v8wmFFa1huUo6T7sm2A4ZXU8rjZCjLrU8vZ2CZeqIuWnUFoXqn3Zb3DYEpoWbcwmhI6PpuuYXAltrweeocz+XsvyKHW+/IgbAd90IeWsWd94L/vCDmUcl+2ETCaJlrWIXTPe2zIYdT7srahDKV8XgaGV0LH7uswOp+VIQctQw7DvsfWNJTFfRlyaOrvvjQO3Srh77GbYk/os2Fa1gyUJ9N9GfpMy5CDlqFe5y0tLS11fRFNeuSRR2L//v1x6NChOP/88+OKK66IV73qVfHQQw/F17/+9WW//41vfGPcf//98Z3vfCemp6cjIuKTn/xk/PRP/3Q89dRTMTm5/EP/wsJCLCwsnP7n+fn5uOiii2Jubi6mpqbG94c7y9yxxXjnPV8+4y8rTtm7ayY++LbLY3rrRGvXAzUZpGOtQblKuSdDBl3e70ps2f0fBjdsy3qDspRyX7YNMJpSWh43W0F2fWk5G9vE2dpu2RmE8Sjxvqx3GFzXLesWRtd1x2fTNQyntJbXQ++wnL/3ghxqvC8PwnbQF9lbxp71hf++I+RQwn3ZRsDoRm1Zh1AG77Ehh1Huy9qGcpTweRkYTdcdu69DM3xWhhy0DDkM8x5b01Ae92XIoYm/+9I4dK/rv8duij2h7wZtWTNQpiz3Zeg7LUMOWoZ6bez6Apr2yle+Mu6777546qmnYn5+Pnbu3Blvfetb4xWveMWKv3/nzp3x0pe+9PRD5iMiLrvsslhaWor/+T//Z+zatWvZ12zevDk2b948tj/Des0eXVzxLysiIg4dno3Zo4v+wgJWMUjHWoNylXJPhgy6vN+V2LL7Pwxu2Jb1BmUp5b5sG2A0pbQ8braC7PrScja2ibO13bIzCONR4n1Z7zC4rlvWLYyu647PpmsYTmktr4feYTl/7wU51HhfHoTtoC+yt4w96wv/fUfIoYT7so2A0Y3asg6hDN5jQw6j3Je1DeUo4fMyMJquO3Zfh2b4rAw5aBlyGOY9tqahPO7LkEMTf/elcehe13+P3RR7Qt8N2rJmoExZ7svQd1qGHLQM9drQ9QWMy7Zt22Lnzp3x/e9/Pw4ePBg/9VM/teLv+9Ef/dF4/PHH4+jRo6d/7S//8i9jw4YN8bf+1t9q63KHMn/i5JqvHznH68D6aA2APnC/O5PvB7RHb8BKbAOwHrYCKJFtomvOIPSH3qE+uoV8dA39oXfong6BYdgOIAt7xtmcCWAtNgK6p0Ooj24hJ20DQB7u69A+3UEOWoZcNA110zDkpnGgKfYEBqMZAAAAskr3oPmDBw/G5z73ufjWt74V9957b/zYj/1Y7N69O6699tqIiLjpppvimmuuOf37f+ZnfiZ+4Ad+IK699tr42te+FocOHYp3vetdsX///picnOzqj7EuU1s2rfn6jnO8DqyP1gDoA/e7M/l+QHv0BqzENgDrYSuAEtkmuuYMQn/oHeqjW8hH19Afeofu6RAYhu0AsrBnnM2ZANZiI6B7OoT66BZy0jYA5OG+Du3THeSgZchF01A3DUNuGgeaYk9gMJoBAAAgq3QPmp+bm4vrr78+du/eHddcc028/vWvj4MHD8amTc99eH/iiSfi0UcfPf37t2/fHvfee288+eST8drXvjZ+9md/Nt7ylrfEb/7mb3b1R1i3me0TsXfXzIqv7d01EzPbJ1q+IshJawD0gfvdmXw/oD16A1ZiG4D1sBVAiWwTXXMGoT/0DvXRLeSja+gPvUP3dAgMw3YAWdgzzuZMAGuxEdA9HUJ9dAs5aRsA8nBfh/bpDnLQMuSiaaibhiE3jQNNsScwGM0AAACQVboHzV999dXxyCOPxMLCQjzxxBPxoQ99KKanp0+/fuedd8bnP//5M75m9+7dce+998axY8fi29/+drz//e+PycnJlq98cNNbJ+LWfXuW/aXF3l0zcdu+PTG91V9YQBO0BkAfuN+dyfcD2qM3YCW2AVgPWwGUyDbRNWcQ+kPvUB/dQj66hv7QO3RPh8AwbAeQhT3jbM4EsBYbAd3TIdRHt5CTtgEgD/d1aJ/uIActQy6ahrppGHLTONAUewKD0QwAAABZnbe0tLTU9UXUbn5+Pqanp2Nubi6mpqZa//fPHVuM2aOLceTEydixZVPMbJ/wlxUwoPV0rDUoX9f3ZMighPtdSS2X8P2AWg3ast6gTF3fl20DNKPrlsfNVtAX2VvOxjaxmrZadgZhvEq6L+sdhtdVy7qF5pRyT9Y1jKaUltdD77A6f+8FOdR0Xx6E7aBvsraMPesb/31HyKHL+7KNgOYM27IOoSzeY0MOw9yXtQ3l8ffYUD//d9iQg8/KkIOWIYdB3mNrGsrlvgw5jPJ3XxqHctT+/x9lT+A5621ZM1C22u/LwHO0DDloGeqxsesLYHTTW/0FBbRBawD0gfvdmXw/oD16A1ZiG4D1sBVAiWwTXXMGoT/0DvXRLeSja+gPvUP3dAgMw3YAWdgzzuZMAGuxEdA9HUJ9dAs5aRsA8nBfh/bpDnLQMuSiaaibhiE3jQNNsScwGM0AAACQzYauLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgbzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DIPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWrax6wsAmDu2GLNHF2P+xMmYmtwUM9smYnrrRNeXBQxIy1A2jUK/aB5y0DLkoGVYnT5omzMHkIM9hxy0DDloGeqnY8hBy5CDlimFswjd0iBAc2wq5KBlqItmITeNQw5aBoAyuCdDDlqGHLQMOWgZxkNbwDBsRz/4OQNNsCUA62MvAaB/PGge6NTjTx6Pdx94OO4/PHv61/bumolb9+2JCy+Y7PDKgEFoGcqmUegXzUMOWoYctAyr0wdtc+YAcrDnkIOWIQctQ/10DDloGXLQMqVwFqFbGgRojk2FHLQMddEs5KZxyEHLAFAG92TIQcuQg5YhBy3DeGgLGIbt6Ac/Z6AJtgRgfewlAPTThq4vAOivuWOLyz6EREQcOjwbNx54OOaOLXZ0ZcAgtAxl0yj0i+YhBy1DDlqG1emDtjlzADnYc8hBy5CDlqF+OoYctAw5aJlSOIvQLQ0CNMemQg5ahrpoFnLTOOSgZQAog3sy5KBlyEHLkIOWYTy0BQzDdvSDnzPQBFsCsD72EgD6y4Pmgc7MHl1c9iHklEOHZ2P2qA8iUAMtQ9k0Cv2iechBy5CDlmF1+qBtzhxADvYcctAy5KBlqJ+OIQctQw5aphTOInRLgwDNsamQg5ahLpqF3DQOOWgZAMrgngw5aBly0DLkoGUYD20Bw7Ad/eDnDDTBlgCsj70EgP7yoHmgM/MnTq75+pFzvA6UQctQNo1Cv2gectAy5KBlWJ0+aJszB5CDPYcctAw5aBnqp2PIQcuQg5YphbMI3dIgQHNsKuSgZaiLZiE3jUMOWgaAMrgnQw5ahhy0DDloGcZDW8AwbEc/+DkDTbAlAOtjLwGgvzxoHujM1JZNa76+4xyvA2XQMpRNo9AvmocctAw5aBlWpw/a5swB5GDPIQctQw5ahvrpGHLQMuSgZUrhLEK3NAjQHJsKOWgZ6qJZyE3jkIOWAaAM7smQg5YhBy1DDlqG8dAWMAzb0Q9+zkATbAnA+thLAOgvD5oHOjOzfSL27ppZ8bW9u2ZiZvtEy1cEDEPLUDaNQr9oHnLQMuSgZVidPmibMweQgz2HHLQMOWgZ6qdjyEHLkIOWKYWzCN3SIEBzbCrkoGWoi2YhN41DDloGgDK4J0MOWoYctAw5aBnGQ1vAMGxHP/g5A02wJQDrYy8BoL88aB7ozPTWibh1355lH0b27pqJ2/btiemtPohADbQMZdMo9IvmIQctQw5ahtXpg7Y5cwA52HPIQcuQg5ahfjqGHLQMOWiZUjiL0C0NAjTHpkIOWoa6aBZy0zjkoGUAKIN7MuSgZchBy5CDlmE8tAUMw3b0g58z0ARbArA+9hIA+uu8paWlpa4vonbz8/MxPT0dc3NzMTU11fXlQHXmji3G7NHFOHLiZOzYsilmtk+0/iFExzA6LUPZSmh0vbQMoyuheS3D6LQMOWgZVldCHzXR8uicOUqgZRhdCXuuZRidliGHrlvWMYyu644jtAxN0DLkoGVKUcJZZDRarpsGOUXLMLoSNlXLMDotQ11KaHY1WobRldC4lmF0WgaaoGMYnXsy5KBlyEHLkIOWYTxKaKttWobRlbAdWh6/En7O5Kfl/GxJP2gZRlfCXmoZctAy1GNj1xcAML3VX9RABlqGsmkU+kXzkIOWIQctw1UzOtMAAQAASURBVOr0QducOYAc7DnkoGXIQctQPx1DDlqGHLRMKZxF6JYGAZpjUyEHLUNdNAu5aRxy0DIAlME9GXLQMuSgZchByzAe2gKGYTv6wc8ZaIItAVgfewkA/bOh6wto2pEjR+KGG26Il7/85TE5ORmve93r4otf/OK6vvYLX/hCbNy4MX7oh35ovBcJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9Fq6B82/4x3viHvvvTfuuuuu+OpXvxpvfOMb46qrrorHHntsza978skn45prromf+ImfaOlKAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgL5K9aD548ePx4EDB+L222+PvXv3xqWXXho333xzXHrppXHHHXes+bXXXXdd/MzP/ExceeWVLV0tAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Fcbu76AJj399NPxzDPPxJYtW8749cnJyXjggQdW/bqPfOQj8c1vfjPuvvvueO9733vOf8/CwkIsLCyc/uf5+fnhLxpWMXdsMWaPLsb8iZMxNbkpZrZNxPTWia4vKw0d95Ou8tEyjK6EbdQybSjhrGenZdqg5fHTMtn1ZUe0TN9kbVvLw8t6JqiTlhmUDSuTllmJXuujZQal8/LouF80mJeWGZQ9KJOWu6MJmqTluuif1Wh5bdqhFlrGXuWg5X7Qa35ahufUvndapma199ckLdMGzY2flqF+Ou4n98h8tNw/Os5JywzKFpRJyzRJ593RMqWwA6PRMqXR9HCytOznT99laZn62N9maZlaaH9tWoYctAz1SvWg+R07dsSVV14Zt9xyS1x22WXxkpe8JO6555548MEH49JLL13xaw4fPhw33nhj3H///bFx4/q+He973/viPe95T5OXDmd4/Mnj8e4DD8f9h2dP/9reXTNx6749ceEFkx1eWR467h9d5aRlGE0p26hlxq2Us56dlhk3LbdDy2TWpx3RMn2SuW0tDyfzmaBOWmYQNqxcWuZseq2TlhmEzsuk4/7QYG5aZhD2oFxa7oYmaJqW66F/1qLl1WmHmmi53+xVHlrOT6/9oGXIsXdaplYZ+muSlhk3zbVDy1A/HfePe2ROWu4XHeelZQZhC8qlZZqi825pmRLYgdFpmZJoengZWvbzhxwtUx/72zwtUwPtn5uWIQctQ73OW1paWur6Ipr0yCOPxP79++PQoUNx/vnnxxVXXBGvetWr4qGHHoqvf/3rZ/zeZ555Jv7e3/t78U//6T+N6667LiIibr755vjP//k/x1e+8pVV/x0LCwuxsLBw+p/n5+fjoosuirm5uZiamhrLn4v+mDu2GO+858tnfIg4Ze+umfjg2y6P6a0THVxZLjruF13lpWUYXknbqGXGqaSznp2WGSctt0fLZNW3HdEyfZG9bS0PLvuZoE5aZr1sWNm0zAvptV5aZr10Xi4d94MG89My62UPyqbl9mmCcdByHfTPuWh5ZdqhNlruL3uVi5Zz02t/aJm+y7J3WqZGWfprkpYZJ821R8tQPx33i3tkXlruDx3npmXWyxaUTcs0Qefd0zJdswPN0DKl0PRoam/Zzx+eU3vL1Mf+joeWKZ3210fLkIOWoV4bu76Apr3yla+M++67L5566qmYn5+PnTt3xlvf+tZ4xStesez3HjlyJP7sz/4svvzlL8c73/nOiIh49tlnY2lpKTZu3Bj/5b/8l/jxH//xZV+3efPm2Lx589j/LPTT7NHFFT9EREQcOjwbs0cXfZBogI77RVd5aRmGV9I2aplxKumsZ6dlxknL7dEyWfVtR7RMX2RvW8uDy34mqJOWWS8bVjYt80J6rZeWWS+dl0vH/aDB/LTMetmDsmm5fZpgHLRcB/1zLlpemXaojZb7y17louXc9NofWqbvsuydlqlRlv6apGXGSXPt0TLUT8f94h6Zl5b7Q8e5aZn1sgVl0zJN0Hn3tEzX7EAztEwpND2a2lv284fn1N4y9bG/46FlSqf99dEy5KBlqFe6B82fsm3btti2bVt8//vfj4MHD8btt9++7PdMTU3FV7/61TN+7bd+67fij//4j+P3f//345JLLmnrcuG0+RMn13z9yDleB5bTFcBytpG+cNYhBy0Do7IjkJO2OZszAdTMhkE99Ar56Ry6pUHgFHsAZ9IE9Jf+YTjaAWphr6AeegX6wt5Bd/QH7dIcAKzMPRLqp2MgwhZAH+gcsAOQi6b7zc8foBv2F/pJ+wBADdI9aP7gwYOxtLQUr371q+Mb3/hGvOtd74rdu3fHtddeGxERN910Uzz22GPxsY99LDZs2BB/+2//7TO+/sUvfnFs2bJl2a9DW6a2bFrz9R3neB1YTlcAy9lG+sJZhxy0DIzKjkBO2uZszgRQMxsG9dAr5Kdz6JYGgVPsAZxJE9Bf+ofhaAeohb2CeugV6At7B93RH7RLcwCwMvdIqJ+OgQhbAH2gc8AOQC6a7jc/f4Bu2F/oJ+0DADXY0PUFNG1ubi6uv/762L17d1xzzTXx+te/Pg4ePBibNj335uuJJ56IRx99tOOrhNXNbJ+IvbtmVnxt766ZmNk+0fIVQf10BbCcbaQvnHXIQcvAqOwI5KRtzuZMADWzYVAPvUJ+OoduaRA4xR7AmTQB/aV/GI52gFrYK6iHXoG+sHfQHf1BuzQHACtzj4T66RiIsAXQBzoH7ADkoul+8/MH6Ib9hX7SPgBQg3QPmr/66qvjkUceiYWFhXjiiSfiQx/6UExPT59+/c4774zPf/7zq379zTffHF/5ylfGf6GwiumtE3Hrvj3LPkzs3TUTt+3bE9NbfZCAQekKYDnbSF8465CDloFR2RHISduczZkAambDoB56hfx0Dt3SIHCKPYAzaQL6S/8wHO0AtbBXUA+9An1h76A7+oN2aQ4AVuYeCfXTMRBhC6APdA7YAchF0/3m5w/QDfsL/aR9AKAG5y0tLS11fRG1m5+fj+np6Zibm4upqamuL4ck5o4txuzRxThy4mTs2LIpZrZP+BAxRjruB13lp2UYXInbqGXGocSznp2WGQctt0/LZNPXHdEy2fWlbS2vX1/OBHXSMudiw+qgZSL0moGWORedl0/HuWmwP7TMudiDOmi5PZpgnLRcNv2zXlo+k3aolZb7x17lpOWc9No/Wqavsu2dlqlJtv6apGXGQXPt0zLUT8f94B6Zn5bz03E/aJlzsQV10DKj0Hk5tExX7ECztEzXNN2MWlv284cz1doy9bG/46VlSqX9wWgZctAy1GNj1xcArGx6qw8O0DRdASxnG+kLZx1y0DIwKjsCOWmbszkTQM1sGNRDr5CfzqFbGgROsQdwJk1Af+kfhqMdoBb2CuqhV6Av7B10R3/QLs0BwMrcI6F+OgYibAH0gc4BOwC5aLrf/PwBumF/oZ+0DwCUbEPXFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNx40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAyD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAyD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0bGPXFwCMZu7YYsweXYz5EydjanJTzGybiOmtE11fFjAmmofldAGMi32BOmgVGITNgHx0TcmcT6BrdgiGpx+gSzYIzqQJYFB2A8qmUWA19iE3P18AhuH+QdecQaDPbCBwij2A4WgHgIzc32A42gFqZb+gLpoFsrBnkIOW2+X7DZyLnQBoj80FAJriQfNQscefPB7vPvBw3H949vSv7d01E7fu2xMXXjDZ4ZUB46B5WE4XwLjYF6iDVoFB2AzIR9eUzPkEumaHYHj6Abpkg+BMmgAGZTegbBoFVmMfcvPzBWAY7h90zRkE+swGAqfYAxiOdgDIyP0NhqMdoFb2C+qiWSALewY5aLldvt/AudgJgPbYXACgSRu6vgBowtyxxXjkr4/Glx/9fjzy/x6NuWOLXV/S2M0dW1z2wSAi4tDh2bjxwMO9+B7QjT72VgLNw3JNdWHXYH361Ir7Lm3qU1tN0yrUre39sxnQvnF3rmtK5nyuzmcgnIF22CFqVMo+6AfOrZReM7JBZXDGy6EJamZLumE3GIVux0+j0K6ads0+5Jb951tTa0DzbMD4ZL9/9FVNzTiDtKmmNugHGwjNq3Xr7UE7aj0frE47AGT03fkT8VezT8Xb/u7L4sM//3finT9+aWydON/9jbGr/f2y94bQrto3oyT2i1r1dQc0Sx/1tffs7BkvpPN6abldffl+2wSyafNM92UngPa5Py9ncwGApm3s+gLW8vDDD8drX/vaWFz0JofVPf7k8WVvkvfumolb9+2JCy+Y7PDKxmv26OKyDwanHDo8G7NHF2N660TLV0V2fe2tBJqH5Zrowq7B+vStFfdd2tK3tpqmVahXF/tnM6BdbXSua0rmfK7MZyCcgfbYIWpT0j7oB9ZWUq8Z2aDuOeNl0QS1siXdsRsMS7ft0Ci0p7Zdsw+5Zf751tYa0CwbMF6Z7x99VVszziBtqa0N+sEGQrNq3np7MH41nw9Wpx0Asnn8yePx7t//73H/N753+td+9NIfiN982+XxL+75svsbY5Ph/bL3htCeDJtREvtFjfq8A5qlb/rce3b2jFN0Xjctt6sP32+bQDZtn+k+7ATQPvfnldlcAKBpG7q+gLUsLS3FM8880/VlULC5Y4vLPjhEPPfm+MYDD8fcscWOrmz85k+cXPP1I+d4HQbV595KoHlYbtQu7BqsTx9bcd+lDX1sq2lahTp1tX82A9rTVue6pmTO53I+A+EMtMsOUZPS9kE/sLrSes3IBnXLGS+PJqiRLemW3WAYum2PRqEdNe6afcgt68+3xtaA5tiA8ct6/+irGptxBmlDjW3QDzYQmlP71tuD8ar9fLA67QCQyen3LC94yHxExBe+8b34yBe+Fftff0lEuL/RvCzvl703hHZk2YyS2C9q0/cd0Cx90vfes7NnROg8Ay23K/v32yaQTRdnOvtOAO1zf16dzQUAmlb0g+bhXGaPLi774HDKocOzMXs074eHqS2b1nx9xzleh0H1ubcSaB6WG7ULuwbr08dW3HdpQx/bappWoU5d7Z/NgPa01bmuKZnzuZzPQDgD7bJD1KS0fdAPrK60XjOyQd1yxsujCWpkS7plNxiGbtujUWhHjbtmH3LL+vOtsTWgOTZg/LLeP/qqxmacQdpQYxv0gw2E5tS+9fZgvGo/H6xOOwBkstZ7li9843tx+UUXRIT7G83L8n7Ze0NoR5bNKIn9ojZ93wHN0id97z07e0aEzjPQcruyf79tAtl0caaz7wTQPvfn1dlcAKBpHjRP1eZPnFzz9SPneL1mM9snYu+umRVf27trJma2T7R8RWTX595KoHlYbtQu7BqsTx9bcd+lDX1sq2lahTp1tX82A9rTVue6pmTO53I+A+EMtMsOUZPS9kE/sLrSes3IBnXLGS+PJqiRLemW3WAYum2PRqEdNe6afcgt68+3xtaA5tiA8ct6/+irGptxBmlDjW3QDzYQmlP71tuD8ar9fLA67QCQybnesyw8/az7G2OR5f2y94bQjiybURL7RW36vgOapU/63nt29owInWeg5XZl/37bBLLp4kxn3wmgfe7Pq7O5AEDTOn3Q/Pz8/Jr/OXLkSJeXRwWmtmxa8/Ud53i9ZtNbJ+LWfXuWfUDYu2smbtu3J6a3+nBAs/rcWwk0D8uN2oVdg/XpYyvuu7Shj201TatQp672z2ZAe9rqXNeUzPlczmcgnIF22SFqUto+6AdWV1qvGdmgbjnj5dEENbIl3bIbDEO37dEotKPGXbMPuWX9+dbYGtAcGzB+We8ffVVjM84gbaixDfrBBkJzat96ezBetZ8PVqcdADI513uWCyY3ub8xFlneL3tvCO3IshklsV/Upu87oFn6pO+9Z2fPiNB5BlpuV/bvt00gmy7OdPadANrn/rw6mwsANG1jl//yCy64IM4777xVX19aWlrzdZjZPhF7d83EocOzy17bu2smZrbnfoN84QWT8cG3XR6zRxfjyImTsWPLppjZPuGDAWPR995KoHlYbpQu7BqsT19bcd9l3PraVtO0CvXpcv9sBrSjzc51TcmczzP5DIQz0D47RC1K3Af9wMpK7DUjG9QdZ7xMmqA2tqR7doNB6bZdGoXxq3XX7ENuGX++tbYGNMMGtCPj/aOvam3GGWTcam2DfrCB0IwMW28PxifD+WB12gEgi7Xes/z9XTPxyhdvj5dMbengysgu0/tl7w1h/DJtRknsFzWxA5qlP/Senz1D5zlouV2Zv982gWy6OtOZdwJon/vz2mwuANCk85aWlpa6+pffd9996/p9b3jDG8Z8JaOZn5+P6enpmJubi6mpqa4vp3cef/J43Hjg4TM+QOzdNRO37dsTOy+Y7PDKqImO10dvlE7LDMqulUnL5dEKw9DyuWmLGmiZcbB/7dMybdP5eGiZ2tmG5/S5ZWeATPrc8jjYB7qi5cHpldI03bEzDt3Idk+2JfRVzS3rFp5Xc8s8z66h5XZojXHTctlsAOul5edohtqNq2VtQLvcl+mCrW9eppadD/osU8vQVzruD+9Zciu5ZWcP1q/klttiM8hAy6OxA5RCy+Ond9qg5W7pnKZoOQebQLaWnWn6KlvLfWfL+kvLkIOWoR6dPmj+2WefjX/zb/5N/OEf/mEsLi7GT/zET8Sv/MqvxORkXW/4jF735o4txuzRxThy4mTs2LIpZrZPxPTWia4vi4roeP30Rsm0zDDsWnm0XCatMCgtr4+2KJ2WGRf71y4t0wWdN0/LZGAbtOwMkEXfWx4H+0AXtDwcvVKScXTsjEP7Mt6TbQl9VHvLuoXn1N4yz7Nr/abl9miNcdJy+WwA66Hl52mGmo2zZW1Ae9yX6Yqtb1a2lp0P+ipby9BHOu4X71nyKr1lZw/Wp/SW22IzqJ2WR2cHKIGW26F3xk3L3dM5TdByHjah3zK27EzTRxlb7jtb1k9ahhy0DPXY2OW//Fd/9Vfj5ptvjquuuiomJyfjAx/4QPz1X/91fPjDH+7yshjCqTfv8ydOxtTkppjZ1u6b9+mtPixAW071dqr7b84+FVOTi613D9Sl6/cKa/E+gtKU2otWYP0G6VhbUI9S79G1sn+0Sb/d0DlwyrId3j4Rr3zx9q4vi5adfQ4umdnmPgEVGud7a+8fYfyaalivZNfEGff3UZDbehp3v4SyrdaxboFM7Fp3fCbsF609x7mnr4bZAL3QZ23cNzVGjUZpw5kH+iDD1vn7A9bS1vnI0BIAMJgm7//e09KVF567+RMnI85b/usAp/jfyYVydPV3Ud63Qje6aF7vMJoa/v+NdA680GqbUMOewUrc51amaWhOGz3ZMgCA8ev0QfMf+9jH4rd+67fiF3/xFyMi4o/+6I/izW9+c/z2b/92bNiwoctLYwCPP3k83n3g4bj/8OzpX9u7ayZu3bcnLrxgssMrA8ZF98AgbAasn16gfjqGnLQN9dIvQLfsMBHOAWShZaibhqE9eoPcNA710zEA4+Q+Qx8597B+eoHx0hh948wDfWDroBlaAoD+cf8nC2cZGJTdgO7pEPpF81Af3QJZ2DPIRdPQHD0BAOTR6dPcH3300fjJn/zJ0/981VVXxXnnnRePP/54h1fFIOaOLS77cBARcejwbNx44OGYO7bY0ZUB46J7YBA2A9ZPL1A/HUNO2oZ66RegW3aYCOcAstAy1E3D0B69QW4ah/rpGIBxcp+hj5x7WD+9wHhpjL5x5oE+sHXQDC0BQP+4/5OFswwMym5A93QI/aJ5qI9ugSzsGeSiaWiOngAAcun0QfNPP/10bNmy5Yxf27RpU5w8ebKjK2JQs0cXl304OOXQ4dmYPeoDAmSje2AQNgPWTy9QPx1DTtqGeukXoFt2mAjnALLQMtRNw9AevUFuGof66RiAcXKfoY+ce1g/vcB4aYy+ceaBPrB10AwtAUD/uP+ThbMMDMpuQPd0CP2ieaiPboEs7Bnkomlojp4AAHLZ2OW/fGlpKX7+538+Nm/efPrXTpw4Edddd11s27bt9K998pOf7OLyWIf5EyfXfP3IOV4H6qN7YBA2A9ZPL1A/HUNO2oZ66RegW3aYCOcAstAy1E3D0B69QW4ah/rpGIBxcp+hj5x7WD+9wHhpjL5x5oE+sHXQDC0BQP+4/5OFswwMym5A93QI/aJ5qI9ugSzsGeSiaWiOngAAcun0QfM/93M/t+zX3v72t3dwJQxrasumNV/fcY7XgfroHhiEzYD10wvUT8eQk7ahXvoF6JYdJsI5gCy0DHXTMLRHb5CbxqF+OgZgnNxn6CPnHtZPLzBeGqNvnHmgD2wdNENLANA/7v9k4SwDg7Ib0D0dQr9oHuqjWyALewa5aBqaoycAgFw2dPkv/8hHPrKu/1Cume0TsXfXzIqv7d01EzPbJ1q+ImDcdA8MwmbA+ukF6qdjyEnbUC/9AnTLDhPhHEAWWoa6aRjaozfITeNQPx0DME7uM/SRcw/rpxcYL43RN8480Ae2DpqhJQDoH/d/snCWgUHZDeieDqFfNA/10S2QhT2DXDQNzdETAEAunT5onvpNb52IW/ftWfYhYe+umbht356Y3uoDAmSje2AQNgPWTy9QPx1DTtqGeukXoFt2mAjnALLQMtRNw9AevUFuGof66RiAcXKfoY+ce1g/vcB4aYy+ceaBPrB10AwtAUD/uP+ThbMMDMpuQPd0CP2ieaiPboEs7Bnkomlojp4AAHI5b2lpaanri2jSkSNH4pd/+ZfjD/7gD+Kv//qv4/LLL48PfOAD8Xf+zt9Z8fd/8pOfjDvuuCO+8pWvxMLCQrzmNa+Jm2++Od70pjet+985Pz8f09PTMTc3F1NTU039Uaoyd2wxZo8uxpETJ2PHlk0xs33ChwOqouPB6Z4SablcNoNB9L1lvZBFn1vWMZn0ueWzaZua9b1l/ZJF31umXnb4TH1t2TkgGy1rmRz61rKGyajUjvUGgym15dVoHFZWU8s6htXV1DKUqoT7jJZpWwnnPiMt56SX/tFyuzTGuJTasjMPgym1ZdZm6zibloejJUqjZaifjsvn/s961NCyswznVkPLbbIb1CpTyzqkzzK1vF6aJ6PsLeuWvsjeMvasL7TcH5rOTcvt0hPjomXIQctQj41dX0DT3vGOd8Sf//mfx1133RUXXnhh3H333XHVVVfF1772tXjpS1+67PcfOnQo/uE//Ifxa7/2a3HBBRfERz7ykXjLW94Sf/InfxKXX355B3+COk1v9YEA+kb3wCBsBqyfXqB+OoactA310i9At+wwEc4BZKFlqJuGoT16g9w0DvXTMQDj5D5DHzn3sH56gfHSGH3jzAN9YOugGVoCgP5x/ycLZxkYlN2A7ukQ+kXzUB/dAlnYM8hF09AcPQEA5JDqQfPHjx+PAwcOxKc+9anYu3dvRETcfPPN8elPfzruuOOOeO9737vsa/7tv/23Z/zzr/3ar8WnPvWp+PSnP+1B8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBYbOj6Apr09NNPxzPPPBNbtmw549cnJyfjgQceWNf/G88++2wcOXIkXvSiF43jEgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiY9cX0KQdO3bElVdeGbfccktcdtll8ZKXvCTuueeeePDBB+PSSy9d1/8bv/7rvx5Hjx6Nq6++etXfs7CwEAsLC6f/eX5+fuRrB9qlY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhxGafnRRx+N2dnZcVxWI2ZmZuJlL3tZ15fBmDh/z3NPhhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnqlepB8xERd911V+zfvz9e+tKXxvnnnx9XXHFFvO1tb4uHHnronF/7iU98It7znvfEpz71qXjxi1+86u973/veF+95z3uavGygZTqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIYdiWH3300di9+7I4fvzYGK6qGZOTW+Mv/uLrHjafkPN3JvdkyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqFe5y0tLS11fRHj8NRTT8X8/Hzs3Lkz3vrWt8bRo0fjM5/5zKq//3d+53di//798Xu/93vx5je/ec3/txcWFmJhYeH0P8/Pz8dFF10Uc3NzMTU11difARgfHUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG+ukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuQwbMtf+tKX4od/+IfjR/b/SkztvLiFKx3M/BN/FX/y4ffEQw89FFdccUXXl0PDnL8zuSdDDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXa2PUFjMu2bdti27Zt8f3vfz8OHjwYt99++6q/95577on9+/fH7/zO75zzIfMREZs3b47Nmzc3eblAy3QMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGeqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQw6gtT+28OF70slc3eEWwfs7fc9yTIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoZ6pXvQ/MGDB2NpaSle/epXxze+8Y1417veFbt3745rr702IiJuuummeOyxx+JjH/tYRER84hOfiJ/7uZ+LD3zgA/EjP/Ij8Z3vfCciIiYnJ2N6erqzPwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQ14auL6Bpc3Nzcf3118fu3bvjmmuuide//vVx8ODB2LRpU0REPPHEE/Hoo4+e/v3/8T/+x3j66afj+uuvj507d57+zy/90i919UcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAktvY9QU07eqrr46rr7561dfvvPPOM/7585///HgvCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAsG7q+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC+8aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyzZ2fQGQ2dyxxZg9uhjzJ07G1OSmmNk2EdNbJ7q+LCiWZoA22Rwohx6hDFoE+swGQhm0SC2cVaBpdgXKp1PITePUxHkFamGvqInzCnTB9kD7dAeMwoZQO2cYgK65F9E3zjysTh8AUAb3ZKiHXiEHLUN9dAuczS5AP2idkjmfQJ/ZQGCcbAwAUCIPmocxefzJ4/HuAw/H/YdnT//a3l0zceu+PXHhBZMdXhmUSTNAm2wOlEOPUAYtAn1mA6EMWqQWzirQNLsC5dMp5KZxauK8ArWwV9TEeQW6YHugfboDRmFDqJ0zDEDX3IvoG2ceVqcPACiDezLUQ6+Qg5ahProFzmYXoB+0TsmcT6DPbCAwTjYGACjVhq4vADKaO7a47ANARMShw7Nx44GHY+7YYkdXBmXSDNAmmwPl0COUQYtAn9lAKIMWqYWzCjTNrkD5dAq5aZyaOK9ALewVNXFegS7YHmif7oBR2BBq5wwD0DX3IvrGmYfV6QMAyuCeDPXQK+SgZaiPboGz2QXoB61TMucT6DMbCIyTjQEASuZB8zAGs0cXl30AOOXQ4dmYPepDALyQZoA22Rwohx6hDFoE+swGQhm0SC2cVaBpdgXKp1PITePUxHkFamGvqInzCnTB9kD7dAeMwoZQO2cYgK65F9E3zjysTh8AUAb3ZKiHXiEHLUN9dAuczS5AP2idkjmfQJ/ZQGCcbAwAUDIPmocxmD9xcs3Xj5zjdegbzQBtsjlQDj1CGbQI9JkNhDJokVo4q0DT7AqUT6eQm8apifMK1MJeURPnFeiC7YH26Q4YhQ2hds4wAF1zL6JvnHlYnT4AoAzuyVAPvUIOWob66BY4m12AftA6JXM+gT6zgcA42RgAoGQeNA9jMLVl05qv7zjH69A3mgHaZHOgHHqEMmgR6DMbCGXQIrVwVoGm2RUon04hN41TE+cVqIW9oibOK9AF2wPt0x0wChtC7ZxhALrmXkTfOPOwOn0AQBnck6EeeoUctAz10S1wNrsA/aB1SuZ8An1mA4FxsjEAQMk8aB7GYGb7ROzdNbPia3t3zcTM9omWrwjKphmgTTYHyqFHKIMWgT6zgVAGLVILZxVoml2B8ukUctM4NXFegVrYK2rivAJdsD3QPt0Bo7Ah1M4ZBqBr7kX0jTMPq9MHAJTBPRnqoVfIQctQH90CZ7ML0A9ap2TOJ9BnNhAYJxsDAJTMg+ZhDKa3TsSt+/Ys+yCwd9dM3LZvT0xv9SEAXkgzQJtsDpRDj1AGLQJ9ZgOhDFqkFs4q0DS7AuXTKeSmcWrivAK1sFfUxHkFumB7oH26A0ZhQ6idMwxA19yL6BtnHlanDwAog3sy1EOvkIOWoT66Bc5mF6AftE7JnE+gz2wgME42BgAo2cauLwCyuvCCyfjg2y6P2aOLceTEydixZVPMbJ/wAQBWoRmgTTYHyqFHKIMWgT6zgVAGLVILZxVoml2B8ukUctM4NXFegVrYK2rivAJdsD3QPt0Bo7Ah1M4ZBqBr7kX0jTMPq9MHAJTBPRnqoVfIQctQH90CZ7ML0A9ap2TOJ9BnNhAYJxsDAJTKg+bhLHPHFmP26GLMnzgZU5ObYmbb8G/cp7d600+/jNqPZmA8mry3ZWJz4Nza2g89wnitt2UtAn12rg30uQraUfL7ETvASpYiIs7r+iqAYZW07SXfA2HcSmpxLTqFOvn7ccah63uX8wr91PX2DMNesZJSz7LzCgxrlF2zPfCcNt8f6A5y8t95IIM2zrEzDJBDqX/Huh7uRWS3Up+vfPH2ri8LGtH0/cc9AQCa4X/vD5ar+e9O1qJXKNOgm6NlKNNaLesWONsLd+HUfnxz9qlUnz+gdk383YD3AJRs1POZ9e/PgDx8TgfatGxztvu/+wQAyuJB8/ACjz95PN594OG4//Ds6V/bu2smbt23Jy68YLLDK4Py6QfKpE1gWPYDctAywOhsKWAHeCHnAXLQMpRBi8A42RjGwbkCumB7yMJZBrKxazA6HQGjsiNk4BwDsF7uGVAufZKZ8w0AZXKPhuV0AbTJ5kAOWgaGZT+gTNqEtWkEKJ2dAtpkcwCAGmzo+gKgFHPHFpe9gY+IOHR4Nm488HDMHVvs6MqgfPqBMmkTGJb9gBy0DDA6WwrYAV7IeYActAxl0CIwTjaGcXCugC7YHrJwloFs7BqMTkfAqOwIGTjHAKyXewaUS59k5nwDQJnco2E5XQBtsjmQg5aBYdkPKJM2YW0aAUpnp4A22RwAoBYeNA//y+zRxWVv4E85dHg2Zo96Ew+r0Q+USZvAsOwH5KBlgNHZUsAO8ELOA+SgZSiDFoFxsjGMg3MFdMH2kIWzDGRj12B0OgJGZUfIwDkGYL3cM6Bc+iQz5xsAyuQeDcvpAmiTzYEctAwMy35AmbQJa9MIUDo7BbTJ5gAAtdjY9QVAKeZPnFzz9SPneB36TD9QJm0Cw7IfkIOWAUZnSwE7wAs5D5CDlqEMWgTGycYwDs4V0AXbQxbOMpCNXYPR6QgYlR0hA+cYgPVyz4By6ZPMnG/I4dFHH43Z2ZX/x7FLMDMzEy972cu6vgyoins0LKcLoE02B3LQMjAs+wFl0iasTSNA6ewU0CabAwDUwoPm4X+Z2rJpzdd3nON16DP9QJm0CQzLfkAOWgYYnS0F7AAv5DxADlqGMmgRGCcbwzg4V0AXbA9ZOMtANnYNRqcjYFR2hAycYwDWyz0DyqVPMnO+oX6PPvpo7N59WRw/fqzrS1nV5OTW+Iu/+LqHzcMA3KNhOV0AbbI5kIOWgWHZDyiTNmFtGgFKZ6eANtkcAKAWHjQP/8vM9onYu2smDh2eXfba3l0zMbN9ooOrgjroB8qkTWBY9gNy0DLA6GwpYAd4IecBctAylEGLwDjZGMbBuQK6YHvIwlkGsrFrMDodAaOyI2TgHAOwXu4ZUC59kpnzDfWbnZ2N48ePxY/s/5WY2nlx15ezzPwTfxV/8uH3xOzsrAfNwwDco2E5XQBtsjmQg5aBYdkPKJM2YW0aAUpnp4A22RwAoBYbur4AKMX01om4dd+e2Ltr5oxf37trJm7btyemt3oTD6vRD5RJm8Cw7AfkoGWA0dlSwA7wQs4D5KBlKIMWgXGyMYyDcwV0wfaQhbMMZGPXYHQ6AkZlR8jAOQZgvdwzoFz6JDPnG/KY2nlxvOhlry7uP1M7L+76WwNVco+G5XQBtMnmQA5aBoZlP6BM2oS1aQQonZ0C2mRzAIBabOz6AqAkF14wGR982+Uxe3Qxjpw4GTu2bIqZ7RPewMM66AfKpE1gWPYDctAywOhsKWAHeCHnAXLQMpRBi8A42RjGwbkCumB7yMJZBrKxazA6HQGjsiNk4BwDsF7uGVAufZKZ8w0AZXKPhuV0AbTJ5kAOWgaGZT+gTNqEtWkEKJ2dAtpkcwCAGnjQPJxleqs37TAs/UCZtAkMy35ADloGGJ0tBewAL+Q8QA5ahjJoERgnG8M4OFdAF2wPWTjLQDZ2DUanI2BUdoQMnGMA1ss9A8qlTzJzvgGgTO7RsJwugDbZHMhBy8Cw7AeUSZuwNo0ApbNTQJtsDgBQug1dXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA33jQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDLPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGUeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMg+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDLPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGUeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQsnQPmj9y5EjccMMN8fKXvzwmJyfjda97XXzxi19c82s+//nPxxVXXBGbN2+OSy+9NO688852LhYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADopXQPmn/HO94R9957b9x1113x1a9+Nd74xjfGVVddFY899tiKv/9b3/pWvPnNb44f+7Efi6985Stxww03xDve8Y44ePBgy1cOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9EWqB80fP348Dhw4ELfffnvs3bs3Lr300rj55pvj0ksvjTvuuGPFr/n3//7fxyWXXBLvf//747LLLot3vvOd8dM//dPxG7/xGy1fPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAXG7u+gCY9/fTT8cwzz8SWLVvO+PXJycl44IEHVvyaBx98MK666qozfu1Nb3pT3HDDDav+exYWFmJhYeH0P8/Pzw9/0UAndAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6qdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF+OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6rWh6wto0o4dO+LKK6+MW265JR5//PF45pln4u67744HH3wwnnjiiRW/5jvf+U685CUvOePXXvKSl8T8/HwcP358xa953/veF9PT06f/c9FFFzX+ZwHGS8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoX46hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnqp2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoV7nLS0tLXV9EU165JFHYv/+/XHo0KE4//zz44orrohXvepV8dBDD8XXv/71Zb//Va96VVx77bVx0003nf61z372s/HmN785jh07FpOTk8u+ZmFhIRYWFk7/8/z8fFx00UUxNzcXU1NT4/mDsW5zxxZj9uhizJ84GVOTm2Jm20RMb53o+rIojI6bpTu6omVqZz+fo+VuOYc0pe8ta4ks+t4yZbGtw9Myo9JfGbTMC+myXloejLNOqbRcF1vCarTcPL3RtnF07BxD+/p0T7YxZNZVy7qCZvXpvtxXdrMftFwGvTEqLfNCNqVeWl4/55ySaflMeqVWWqYGNvbctLwyZ4faDNvyl770pfjhH/7h+If/6iPxope9uo1LHcj/9+j/Hff+6rVx9913x2WXXdb15Szz9a9/Pd7+9rf7/g2plu/fQw89FFdcccXY/33uyYyD9zTty9ayM0Rf1dyybuF5NbdcCptCCbQ8GN1SKi13yzbQFC2XQ9eMQsvQvC52Wcv95X1ALlqGHLQM9drY9QU07ZWvfGXcd9998dRTT8X8/Hzs3Lkz3vrWt8YrXvGKFX//3/ybfzO++93vnvFr3/3ud2NqamrFh8xHRGzevDk2b97c+LUzusefPB7vPvBw3H949vSv7d01E7fu2xMXXrDyz5N+0nFzdEeXtEzN7OfztNwd55Am9bllLZFJn1umLLZ1NFpmFPorh5Y5RZd10/L6OeuUTMv1sCWsRcvN0htdaLpj5xi60Zd7so0huy5a1hU0ry/35b6ym/2h5e7pjSZomVNsSt20vD7OOaXT8vP0Ss20TOls7PpoeTlnhxplbfn43Pci4rx4+9vf3vWlrOnkwmLXl7Ai37+6ZO2Y7nhP041MLTtD9FmtLesWzlRry6WwKZRCy+unW0qm5e7YBpqk5TLomlFpGZrV1S5ruZ+8D8hHy5CDlqFe6R40f8q2bdti27Zt8f3vfz8OHjwYt99++4q/78orr4zPfvazZ/zavffeG1deeWUbl0mD5o4tLvuwEBFx6PBs3Hjg4fjg2y6P6a0THV0d5KQ7gOHYT0rgHEIztATQPNsK3dEflEeX9IWzDjTBlkB79EYGzjEwTjYGmqcrgMHYTWiP3oAm2RT6wDmHeugVYHxsLMNydqAsJ48diYil+KGfeXf8jUt2d305yzzx1Qfjz//wP8bTTz/d9aWsyPcP+st7GkblDEF9dAs0yaZAfXQLrMQ2QD66BiiLXaZNzhsAQPPSPWj+4MGDsbS0FK9+9avjG9/4RrzrXe+K3bt3x7XXXhsRETfddFM89thj8bGPfSwiIq677rr40Ic+FP/yX/7L2L9/f/zxH/9x/O7v/m585jOf6fKPwRBmjy4u+7BwyqHDszF7dNEHBmiY7gCGYz8pgXMIzdASQPNsK3RHf1AeXdIXzjrQBFsC7dEbGTjHwDjZGGiergAGYzehPXoDmmRT6APnHOqhV4DxsbEMy9mBMm1/8cviRS97ddeXscz8E3/V9SWsi+8f9I/3NIzKGYL66BZokk2B+ugWWIltgHx0DVAWu0ybnDcAgOZt6PoCmjY3NxfXX3997N69O6655pp4/etfHwcPHoxNmzZFRMQTTzwRjz766Onff8kll8RnPvOZuPfee+MHf/AH4/3vf3/89m//drzpTW/q6o/AkOZPnFzz9SPneB0YnO4AhmM/KYFzCM3QEkDzbCt0R39QHl3SF8460ARbAu3RGxk4x8A42Rhonq4ABmM3oT16A5pkU+gD5xzqoVeA8bGxDMvZAQAy8J6GUTlDUB/dAk2yKVAf3QIrsQ2Qj64BymKXaZPzBgDQvI1dX0DTrr766rj66qtXff3OO+9c9mv/4B/8g/jyl788xquiDVNbNq35+o5zvA4MTncAw7GflMA5hGZoCaB5thW6oz8ojy7pC2cdaIItgfbojQycY2CcbAw0T1cAg7Gb0B69AU2yKfSBcw710CvA+NhYhuXsAAAZeE/DqJwhqI9ugSbZFKiPboGV2AbIR9cAZbHLtMl5AwBo3oauLwCaMrN9Ivbumlnxtb27ZmJm+0TLVwT56Q5gOPaTEjiH0AwtATTPtkJ39Afl0SV94awDTbAl0B69kYFzDIyTjYHm6QpgMHYT2qM3oEk2hT5wzqEeegUYHxvLsJwdACAD72kYlTME9dEt0CSbAvXRLbAS2wD56BqgLHaZNjlvAADN86B50pjeOhG37tuz7EPD3l0zcdu+PTG91QcGaJruAIZjPymBcwjN0BJA82wrdEd/UB5d0hfOOtAEWwLt0RsZOMfAONkYaJ6uAAZjN6E9egOaZFPoA+cc6qFXgPGxsQzL2QEAMvCehlE5Q1Af3QJNsilQH90CK7ENkI+uAcpil2mT8wYA0LyNXV8ANOnCCybjg2+7PGaPLsaREydjx5ZNMbN9wocFGCPdAQzHflIC5xCaoSWA5tlW6I7+oDy6pC+cdaAJtgTaozcycI6BcbIx0DxdAQzGbkJ79AY0yabQB8451EOvAONjYxmWswMAZOA9DaNyhqA+ugWaZFOgProFVmIbIB9dA5TFLtMm5w0AoFkeNE8601t9QIC26Q5gOPaTEjiH0AwtATTPtkJ39Afl0SV94awDTbAl0B69kYFzDIyTjYHm6QpgMHYT2qM3oEk2hT5wzqEeegUYHxvLsJwdACAD72kYlTME9dEt0CSbAvXRLbAS2wD56BqgLHaZNjlvAADN2dD1BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0jQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRsY9cXAETMHVuM2aOLMX/iZExNboqZbRMxvXWi68sCXkCn9JFzD2Rl3wA7AGXTKDxHCwzDuQFgXNxjoHm6AuwAjEZD0A9aB9pgawbj+wU5aBmAWrmHsR7OCcC52UrIQcugAwBgcN4/UCPnFhg3OwN10zBgB6AumqVpzhR0Q3sA/WT/AYC2eNA8dOzxJ4/Huw88HPcfnj39a3t3zcSt+/bEhRdMdnhlwCk6pY+ceyAr+wbYASibRuE5WmAYzg0A4+IeA83TFWAHYDQagn7QOtAGWzMY3y/IQcsA1Mo9jPVwTgDOzVZCDloGHQAAg/P+gRo5t8C42Rmom4YBOwB10SxNc6agG9oD6Cf7DwC0aUPXFwB9Nndscdmb/4iIQ4dn48YDD8fcscWOrgw4Raf0kXMPZGXfADsAZdMoPEcLDMO5AWBc3GOgeboC7ACMRkPQD1oH2mBrBuP7BTloGYBauYexHs4JwLnZSshBy6ADAGBw3j9QI+cWGDc7A3XTMGAHoC6apWnOFHRDewD9ZP8BgLZ50Dx0aPbo4rI3/6ccOjwbs0d9AICu6ZQ+cu6BrOwbYAegbBqF52iBYTg3AIyLeww0T1eAHYDRaAj6QetAG2zNYHy/IActA1Ar9zDWwzkBODdbCTloGXQAAAzO+wdq5NwC42ZnoG4aBuwA1EWzNM2Zgm5oD6Cf7D8A0LaNXV8AjGLu2GLMHl2M+RMnY2pyU8xsm4jprRNdX9a6zZ84uebrR87xOoxD7V01Taf0UU3n3mZB8zJ3VdO+UbfMHdXODkDZTjW6deL82P/6S+Lyiy6IhaefjS2bzo8vPfr9eGpBo/SD+9V4ZX2v5tx0J+uZghrpcTzcY+hC9p51RUbZu22aHWifM5qLhiiVrWmW1hmFHlkvWzMY36/V2R1q0teWdQr9ovmc+noPG4Sz75wA+Yxj220ljK6E911a7pcSzlyJdAAAz/FeYf28f8gtawvOLTXI2l9f2BlqYWtWpmGwD3aATPrQs2Zp2mpn6tT/nuvC08/Elx/9ftqmoCv2vB/3bWD8atsS+w8AtM2D5qnW408ej3cfeDjuPzx7+tf27pqJW/ftiQsvmOzwytZvasumNV/fcY7XoWkZumqaTumjWs69zYLmZe+qln2jbtk7qp0dgLJNbdkUWyfOj9982+XxkS98Kz70x984/dqPXvoD8dNX/K0Orw7a4341Ppnfqzk33ch8pqA2ehwf9xja1oeedUU2fei2aXagXc5oPhqiRLameVpnWHpkELZmML5fK7M71KaPLesU+kXzefXxHjYIZ/85zgmQybi23VbCaEp536Xl/ijlzJVIBwDgvcKgvH/IK3MLzi2ly9xfX9gZamBrVqdh+s4+2AHy6EvPmqVpK52p1f73XDM2BV3p+5735b4NjFeNW9L3/QcA2reh6wuAYcwdW1z2Zj8i4tDh2bjxwMMxd2yxoysbzMz2idi7a2bF1/bumomZ7RMtXxF9lqWrpumUPqrh3NssaF4fuqph36hbHzqqnR2Ass1sn4hf/t//t/jIF74VX/jG98547Qvf+F7860/9uS2lF9yvxiP7ezXnpn3ZzxTURI/j5R5Dm/rSs67IpC/dNs0OtMcZzUlDlMbWjIfWGYYeGZStGYzv13J2hxr1rWWdQr9oPre+3cMG4ew/zzkBshjntttKGF5J77u03A8lnbkS6QCAvvNeYXDeP+SUvQXnlpJl768v7AylszVr0zB9Zh+eYwfIoE89a5amrXSm9r/+khX/91wzNgVd6fOe9+m+DYxPrVvS5/0HALrhQfNUafbo4rI3+6ccOjwbs0fLfMN/tumtE3Hrvj3LPgTs3TUTt+3bE9NbfQCgPVm6appO6aMazr3Ngub1oasa9o269aGj2tkBKNv01om44mUXLPs/SjzFltIX7lfjkf29mnPTvuxnCmqix/Fyj6FNfelZV2TSl26bZgfa44zmpCFKY2vGQ+sMQ48MytYMxvdrObtDjfrWsk6hXzSfW9/uYYNw9p/nnABZjHPbbSUMr6T3XVruh5LOXIl0AEDfea8wOO8fcsregnNLybL31xd2htLZmrVpmD6zD8+xA2TQp541S9NWOlOXX+R/zxXGrc973qf7NjA+tW5Jn/cfAOjGxq4vAIYxf+Lkmq8fOcfrJbnwgsn44Nsuj9mji3HkxMnYsWVTzGyf8Oaf1mXqqmk6pY9KP/c2C5rXl65K3zfq1peOamcHoGzHFp9Z83VbSl+4XzWvD+/VnJt29eFMQS30OH7uMbSlTz3riiz61G3T7EA7nNG8NERJbM34aJ1B6ZFh2JrB+H6dye5Qqz61rFPoF83n16d72CCc/TM5J0AG4952WwnDKe19l5bzK+3MlUgHAPSZ9wrD8f4hnz604NxSqj701xd2hpLZmnPTMH1lH55nB6hd33rWLE07+0ydfHZpzd+frSnoSl/3vG/3bWA8at6Svu4/ANAND5qnSlNbNq35+o5zvF6a6a3e8NO9bF01Taf0Ucnn3mZB8/rUVcn7Rt361FHt7ACUy5bC89yvmtWXfXFu2tOXMwU10GM73GNoQ9961hUZ9K3bptmB8XNGc9MQpbA146V1BqFHhmVrBuP79Ty7Q8360rJOoV803w99uYcNwtlfzjkBatfGtttKGFyJ77u0nFuJZ65EOgCgr7xXGJ73D7n0pQXnlhL1pb++sDOUytasj4bpI/twJjtAzfrYs2Zp2gvP1CN/fXTN35uxKehKH/e8j/dtoHm1b0kf9x8A6MaGri8AhjGzfSL27ppZ8bW9u2ZiZrs30zAoXQE1sVnQPF3B6HQEMDpbCoyLfaFpzhSUQ4+Qh56hPrqldM4o0AZbA+XQI9A2uwPl0yn0i+bpK2cfIB/bDmXSJm1z5gCAtXivAM/RAnRHf0AbbA2wGvsAeegZmqUpYJxsDNAEWwIAsD4eNE+VprdOxK379ix7079310zctm9PTG/1hh8GpSugJjYLmqcrGJ2OAEZnS4FxsS80zZmCcugR8tAz1Ee3lM4ZBdpga6AcegTaZnegfDqFftE8feXsA+Rj26FM2qRtzhwAsBbvFeA5WoDu6A9og60BVmMfIA89Q7M0BYyTjQGaYEsAANZnY9cXAMO68ILJ+ODbLo/Zo4tx5MTJ2LFlU8xsn/BmH0agK6AmNguapysYnY4ARmdLgXGxLzTNmYJy6BHy0DPUR7eUzhkF2mBroBx6BNpmd6B8OoV+0Tx95ewD5GPboUzapG3OHACwFu8V4DlagO7oD2iDrQFWYx8gDz1DszQFjJONAZpgSwAAzs2D5qna9FZv8KFpugJqYrOgebqC0ekIYHS2FBgX+0LTnCkohx4hDz1DfXRL6ZxRoA22BsqhR6BtdgfKp1PoF83TV84+QD62HcqkTdrmzAEAa/FeAZ6jBeiO/oA22BpgNfYB8tAzNEtTwDjZGKAJtgQAYG0bur4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgL7xoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDLPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGUeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMg+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjZxq4voC/mji3G7NHFmD9xMqYmN8XMtomY3jrR9WUBhbEVMH46gxy0DDloGXLQMuSgZchDz1A/HUMOWoYctAx56RvqolngbHYBGITNAGBQ7h3N8H2EsmkUxkdfwLDsBzRDSwBQL/dxqJuGgbXYCBidjiA3jUNdNAs5aRv6Q+9QHl0CAMCZPGi+BY8/eTzefeDhuP/w7Olf27trJm7dtycuvGCywysDSmIrYPx0BjloGXLQMuSgZchBy5CHnqF+OoYctAw5aBny0jfURbPA2ewCMAibAcCg3Dua4fsIZdMojI++gGHZD2iGlgCgXu7jUDcNA2uxETA6HUFuGoe6aBZy0jb0h96hPLoEAIDlNnR9AdnNHVtc9kEkIuLQ4dm48cDDMXdssaMrA0piK2D8dAY5aBly0DLkoGXIQcuQh56hfjqGHLQMOWgZ8tI31EWzwNnsAjAImwHAoNw7muH7CGXTKIyPvoBh2Q9ohpYAoF7u41A3DQNrsREwOh1BbhqHumgWctI29IfeoTy6BACAlXnQ/JjNHl1c9kHklEOHZ2P2qA8jgK2ANugMctAy5KBlyEHLkIOWIQ89Q/10DDloGXLQMuSlb6iLZoGz2QVgEDYDgEG5dzTD9xHKplEYH30Bw7If0AwtAUC93MehbhoG1mIjYHQ6gtw0DnXRLOSkbegPvUN5dAkAACvzoPkxmz9xcs3Xj5zjdaAfbAWMn84gBy1DDlqGHLQMOWgZ8tAz1E/HkIOWIQctQ176hrpoFjibXQAGYTMAGJR7RzN8H6FsGoXx0RcwLPsBzdASANTLfRzqpmFgLTYCRqcjyE3jUBfNQk7ahv7QO5RHlwAAsDIPmh+zqS2b1nx9xzleB/rBVsD46Qxy0DLkoGXIQcuQg5YhDz1D/XQMOWgZctAy5KVvqItmgbPZBWAQNgOAQbl3NMP3EcqmURgffQHDsh/QDC0BQL3cx6FuGgbWYiNgdDqC3DQOddEs5KRt6A+9Q3l0CQAAK/Og+TGb2T4Re3fNrPja3l0zMbN9ouUrAkpkK2D8dAY5aBly0DLkoGXIQcuQh56hfjqGHLQMOWgZ8tI31EWzwNnsAjAImwHAoNw7muH7CGXTKIyPvoBh2Q9ohpYAoF7u41A3DQNrsREwOh1BbhqHumgWctI29IfeoTy6BACAlaV60PwzzzwTv/zLvxyXXHJJTE5Oxitf+cq45ZZbYmlpac2v+/jHPx4/+IM/GFu3bo2dO3fG/v3743vf+14j1zS9dSJu3bdn2QeSvbtm4rZ9e2J6qw8jgK2ANugMctAy5KBlyEHLkIOWIQ89Q/10DDloGXLQMuSlb6iLZoGz2QVgEDYDgEG5dzTD9xHKplEYH30Bw7If0AwtAUC93MehbhoG1mIjYHQ6gtw0DnXRLOSkbegPvUN5dAkAACvb2PUFNOm2226LO+64Iz760Y/Ga17zmvizP/uzuPbaa2N6ejr+xb/4Fyt+zRe+8IW45ppr4jd+4zfiLW95Szz22GNx3XXXxS/8wi/EJz/5yUau68ILJuODb7s8Zo8uxpETJ2PHlk0xs33CBxHgDLYCxk9nkIOWIQctQw5ahhy0DHnoGeqnY8hBy5CDliEvfUNdNAuczS4Ag7AZAAzKvaMZvo9QNo3C+OgLGJb9gGZoCQDq5T4OddMwsBYbAaPTEeSmcaiLZiEnbUN/6B3Ko0sAAFgu1YPm/9t/+2/xUz/1U/HmN785IiIuvvjiuOeee+JP//RPV/2aBx98MC6++OLTD6K/5JJL4hd/8Rfjtttua/Taprf68AGcm62A8dMZ5KBlyEHLkIOWIQctQx56hvrpGHLQMuSgZchL31AXzQJnswvAIGwGAINy72iG7yOUTaMwPvoChmU/oBlaAoB6uY9D3TQMrMVGwOh0BLlpHOqiWchJ29Afeofy6BIAAM60oesLaNLrXve6+K//9b/GX/7lX0ZExH//7/89HnjggfhH/+gfrfo1V155ZXz729+Oz372s7G0tBTf/e534/d///fjJ3/yJ9u6bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBnNnZ9AU268cYbY35+Pnbv3h3nn39+PPPMM/Grv/qr8bM/+7Orfs2P/uiPxsc//vF461vfGidOnIinn3463vKWt8S/+3f/btWvWVhYiIWFhdP/PD8/3+ifAxg/HUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG+ukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZaifjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGem3o+gKa9Lu/+7vx8Y9/PD7xiU/El770pfjoRz8av/7rvx4f/ehHV/2ar33ta/FLv/RL8a//9b+Ohx56KD73uc/FX/3VX8V111236te8733vi+np6dP/ueiii8bxxwHGSMeQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoX46hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnqp2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoV7nLS0tLXV9EU256KKL4sYbb4zrr7/+9K+9973vjbvvvjv+4i/+YsWv+Sf/5J/EiRMn4vd+7/dO/9oDDzwQf//v//14/PHHY+fOncu+ZmFhIRYWFk7/89zcXLzsZS+Lb3/72zE1NdXgnwhYzY4dO+K8884b+ut1DGXQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkMErLOoYyuCdDDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5dtfyVr3wl3vCGN8Tf/blfjh1/8+VD//vH5Tv/4/+K//F//nbs+T/eFX/j5a/u+nKWcX2jKf36jnzn/4k//egtcd9998UP/dAPretr/N9vQv28v4YctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM9Ru2441juJbOHDt2LDZs2HDGr51//vnx7LPPrvk1Gzee+W04//zzIyJiaWlpxa/ZvHlzbN68+fQ/z8/PR8RzD7oH2jE3NzfSmwwdQxm0DDloGXLQMuSgZcih6ZZnZ2cjQsvQNvdlyEHLkIOWIQctQw6jtKxjKIN7MuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLk0HXLf/rRW4b+d7fh4d/5N11fwppc32hKv743vOEN6/69/u83oX5d35OBZmgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGeo3bMfnLa32NPUK/fzP/3z80R/9UfyH//Af4jWveU18+ctfjn/2z/5Z7N+/P2677baIiLjpppvisccei4997GMREXHnnXfGL/zCL8Rv/uZvxpve9KZ44okn4oYbbogNGzb8/+zdfZSfZ13g/0/SZPLQZCalQ7HFFgtNS6uNFkQWUnKoq4dVWFc2cs6vP7qALKzK08KuB+h6ABG3tB5YWPEgsiut7FE8uhEU1AUfTi0U8CjUX0GxpBRIl5aHKc1MppNk0mR+f/RMmmRmvo/3w3Vd9+t1DufQmaS97/t7vT/X/Z2Z5I6//du/Hei/e+LEibjvvvti+/btsW7dutrOrxRzc3Nx4YUXxr333jvW5kO3r2XVvdXVcZdfozO5Fo9wHU5XV8tLS0tx0UUXFXWdS107JZ5XF88pl325aiW+1stKPbdSzyuimnOro+W77rorrrjiiiKv+aBKXneDcg2avQZN78teX9cgwjWIqP4aVN3ywYMH45xzzokDBw7E1NRUZf/eNpW27ko7n4jyzmmU8+nq++Vlpa2BYXT13Es9b1/HHkxpr7/zSZt9eXClvfZ1cI36S+kadbXlU6X0eozDeaSl6fOosrkqOy7l9WySazaaEq5bKntyCdeyDq7L2lyb06XScttKWxfOJ211nE8qLZf2WkU4p1yUck6ptNyEUl6zFLiW1Ur1Z7FXa9lrXx3XshqlXccU9uWcr2nOxx7h+NtW5fGn0HJVcn9d1+K88tPGuZXUchNKXn9r6do553q+/rzjcHI//oj8z8Hxr86fqzhdruvEcTcrxeNO9ec3m5Lia1Il55e3Qc+vxPfKpby2JZxHCecQkcd55NRyDtfzTI65GY45r5arkONrnhrXcHwl/yz2aqyZtbk2q+vydUmx5RxfjxyPOSLP43bMq0ux5Srl+LqvxnmkI9VzaLLlVK9BKVzf+uRwbdvYl3O4LnVx7t0894j6z7+te+xSXlfnkZZSziNi+HPR8nicR1q6eh6jdrxhlINL1Xve855405veFK94xSvi29/+dlxwwQXxcz/3c/HmN7/55K+5//7748CBAyf/+SUveUkcOnQofuM3fiP+83/+z7Fjx4740R/90ZMPph/E+vXr43u/93srPZcumJyczDrSlLiW46u7Y6/Ro1yLR7gO9VhueW5uLiLKvM4lnlNEmeflnEaX2/11ia/1slLPrdTzikjr3NavXx+Pf/zjIyKt42qLa+AaROR5DQbdl3M8t6q5Bq5BRLrXYP369RERMTU1leTxjSPVaz6q0s4norxzavN8cnu/vKy0NTCMrp57V897UKV/Hdv5pM35VCe3fbm0174OrlF/JV6j3Fo+VSmvh/NIS47nUUfHOV6Htrlmo3HdHjVuy67l6lyXtbk29cj5/jqivHXhfNKW8vnYl1dyTnko8ZzGkcO+7DWrjmtZrZSuZ7+WUzrW3LmW1XAdVzfOvpzzNc352CMcf9tSPP4U7rFTvC5VcF75yfncUmi5CTm/RqPq2jl37XzP1JU/75j78Ufkfw6Ov16l/LkKx90sx52WnO+vS31Nljm/vDV9fim1XMprW8J5lHAOEeWcxyCaaDnH6+mYm+GYq5PSvtxLqtcvJ67h+FK+hv68Y7Ncm9W5LuOrsuUcX48cjzkiz+N2zPVK9R47p2vYi/NIRwnn0MsgLZd+Ddrm+tanS9d2mH25S9flTM69m+cekc/5D3uPnct59eM80lLKeUS0dy5azpvzSEvd51HUg+a3b98e7373u+Pd7373mr/mlltuWfGxV7/61fHqV7+6vgMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOMX6tg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGs8aJ7Gbdq0Kd7ylrfEpk2b2j6U7LmW6fMaPcq1eITr0IwSr3OJ5xRR5nk5p+4o+bqUem6lnldEuueW6nE1yTVwDSLKvgYln9ugXAPXICL9a5D68Y2itHMq7Xwiyjun0s6nCV2+Zl09966e96hKu17OJ23Op7tcq/5co/5co7SU8no4j7SUch7jch2G55qNxnWrjmu5Otdlba4NqyltXTiftJV2Pqcq8dycUx5KPKfSec2q41pWK6frmdOxps61rIbrWL2cr2nOxx7h+NuW+/HXpdTr4rzyU/K5laKLr1HXzrlr5zuq3K9T7scfkf85OP5m5Xa8yxx3sxw3VSn9NXF+eSv9/Hop5dxLOI8SziGinPNIRY7X0zE3wzF3j+s3PtdwfF27hl0732G4NqtzXdKS4+uR4zFH5HncjrmbSrmGziMdJZzDuFyDerm+9XFtV9fl6+Lcu3nuEeWefynn5TzSUsp5RORzLrkcZz/OIy3OYzjrlpaWlmr9LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwmvVtHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA13jQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoPkK3XbbbfGv//W/jgsuuCDWrVsXH/nIR4b+dywtLcU73vGOuPTSS2PTpk3x+Mc/Pv7rf/2v1R8sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0JoNbR9ASR566KH4wR/8wXjpS18a//bf/tuR/h3/8T/+x/jEJz4R73jHO+LKK6+M7373u/Hd73634iMFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2rRuaWlpqe2DKNG6deviwx/+cPz0T//0yY8dPXo0fumXfik+9KEPxcGDB+MHfuAH4qabbopnP/vZERHxpS99KXbt2hVf/OIX47LLLmvnwAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDarW/7ALrkVa96VXzmM5+J3//9348777wzXvCCF8S/+lf/Kvbv3x8RER/96EfjiU98YnzsYx+Liy++OL7v+74vXvayl8V3v/vdlo8cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJIHzTfkwIEDcfPNN8cf/uEfxrOe9ax40pOeFL/4i78YV199ddx8880REXHPPffE17/+9fjDP/zD+OAHPxi33HJLfO5zn4uf+ZmfafnoAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCptaPsAuuILX/hCHD9+PC699NLTPn706NE499xzIyLixIkTcfTo0fjgBz948tf99m//djz1qU+Nu+66Ky677LLGjxsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACongfNN2R+fj7OOuus+NznPhdnnXXWaZ/btm1bREScf/75sWHDhtMeRn/55ZdHRMSBAwc8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK4UHzDbnqqqvi+PHj8e1vfzue9axnrfprdu/eHQ8//HB85StfiSc96UkREfHlL385IiKe8IQnNHasAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQL3WLS0tLbV9EKWYn5+Pu+++OyIeebD8f/tv/y2uueaaeMxjHhMXXXRRXHfddXH77bfHO9/5zrjqqqviO9/5TvzVX/1V7Nq1K5773OfGiRMn4mlPe1ps27Yt3v3ud8eJEyfila98ZUxOTsYnPvGJls8OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqIoHzVfo1ltvjWuuuWbFx1/84hfHLbfcEseOHYtf/dVfjQ9+8IPxjW98I6anp+Nf/It/EW9961vjyiuvjIiI++67L1796lfHJz7xiTj77LPjJ37iJ+Kd73xnPOYxj2n6dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICaeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPWt30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3jQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOg+QosLS3F3NxcLC0ttX0owIh0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5E/HUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+dMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DPjxovgKHDh2KqampOHToUNuHAoxIx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQ/50DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkD8dQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5MOD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDinvQ/De+8Y247rrr4txzz40tW7bElVdeGX//93+/5q+/9dZbY926dSv+981vfrPBowYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6ZEPbB1ClBx98MHbv3h3XXHNN/Pmf/3k89rGPjf3798c555zT9/feddddMTk5efKfzzvvvDoPFTjF7MJizMwvxtyRYzG5ZWNMnz0RU1sn2j4sYEhahrRpFLpF81AGLUMZtAxr0wdNs+YAymCeQxm0DGXQMuRPx1AGLUMZtEwqrEVolwYBqmOmQhm0DHnRLJRN41AGLVMi6xoAaIv7ECiDlqEMWoZ6aAsYhdnRDV5noApmCcBgzEsA6J6iHjR/0003xYUXXhg333zzyY9dfPHFA/3e8847L3bs2FHTkQFrue/g4XjDvjvjk/tnTn5sz87puHHvrrhgx5YWjwwYhpYhbRqFbtE8lEHLUAYtw9r0QdOsOYAymOdQBi1DGbQM+dMxlEHLUAYtkwprEdqlQYDqmKlQBi1DXjQLZdM4lEHLlMi6BgDa4j4EyqBlKIOWoR7aAkZhdnSD1xmoglkCMBjzEgC6aX3bB1ClP/mTP4kf/uEfjhe84AVx3nnnxVVXXRX/43/8j4F+7w/90A/F+eefHz/+4z8et99+e89fe/To0Zibmzvtf8DwZhcWV7wJiYi4bf9MvHHfnTG7sFjbf1vHUB0tQ9rabHRQWobq2JehDFqGMmgZ1pbDe9UUaLk61hxt0jJUxz02lEHLUIa2WtYxVMeeDGXQMpRBy6TC99TypeUyaBAtQ3XcY0MZtAx5SfE9jZahOvZlKIOWKVGK96Gl0jGUQctQHffXUAYtQxm0DPXo0tfetAzVsS93Q5f2CJqn5e4wS8qmZaiOe2xgXFqGfBX1oPl77rknfvM3fzN27twZH//4x+MXfuEX4jWveU38zu/8zpq/5/zzz4/3ve99sW/fvti3b19ceOGF8exnPzs+//nPr/l73v72t8fU1NTJ/1144YV1nA4Ub2Z+ccWbkGW37Z+Jmfn63ojoGKqjZUhbm40OSstQHfsylEHLUAYtw9pyeK+aAi1Xx5qjTVqG6rjHhjJoGcrQVss6hurYk6EMWoYyaJlU+J5avrRcBg2iZaiOe2wog5YhLym+p9EyVMe+DGXQMiVK8T60VDqGMmgZquP+GsqgZSiDlqEeXfram5ahOvblbujSHkHztNwdZknZtAzVcY8NjEvLkK+iHjR/4sSJeMpTnhI33HBDXHXVVfEf/sN/iJe//OXxvve9b83fc9lll8XP/dzPxVOf+tR45jOfGR/4wAfimc98ZrzrXe9a8/dcf/31MTs7e/J/9957bx2nA8WbO3Ks5+cP9fn8OHQM1dEypK3NRgelZaiOfRnKoGUog5ZhbTm8V02BlqtjzdEmLUN13GNDGbQMZWirZR1DdezJUAYtQxm0TCp8Ty1fWi6DBtEyVMc9NpRBy5CXFN/TaBmqY1+GMmiZEqV4H1oqHUMZtAzVcX8NZdAylEHLUI8ufe1Ny1Ad+3I3dGmPoHla7g6zpGxahuq4xwbGpWXI14a2D6BK559/flxxxRWnfezyyy+Pffv2DfXv+ZEf+ZH41Kc+tebnN23aFJs2bRrpGIFHTW7e2PPz2/t8fhw6hupoGdLWZqOD0jJUx74MZdAylEHLsLYc3qumQMvVseZok5ahOu6xoQxahjK01bKOoTr2ZCiDlqEMWiYVvqeWLy2XQYNoGarjHhvKoGXIS4rvabQM1bEvQxm0TIlSvA8tlY6hDFqG6ri/hjJoGcqgZahHl772pmWojn25G7q0R9A8LXeHWVI2LUN13GMD49Iy5Gt92wdQpd27d8ddd9112se+/OUvxxOe8ISh/j3/8A//EOeff36VhwasYnrbROzZOb3q5/bsnI7pbRMNHxEwCi1D2jQK3aJ5KIOWoQxahrXpg6ZZcwBlMM+hDFqGMmgZ8qdjKIOWoQxaJhXWIrRLgwDVMVOhDFqGvGgWyqZxKIOWKZF1DQC0xX0IlEHLUAYtQz20BYzC7OgGrzNQBbMEYDDmJQB0V1EPmn/d614Xn/3sZ+OGG26Iu+++O37v934v3v/+98crX/nKk7/m+uuvjxe96EUn//nd7353/PEf/3Hcfffd8cUvfjFe+9rXxl//9V+f9nuAekxtnYgb9+5a8WZkz87puGnvrpja6o0I5EDLkDaNQrdoHsqgZSiDlmFt+qBp1hxAGcxzKIOWoQxahvzpGMqgZSiDlkmFtQjt0iBAdcxUKIOWIS+ahbJpHMqgZUpkXQMAbXEfAmXQMpRBy1APbQGjMDu6wesMVMEsARiMeQkA3bVuaWlpqe2DqNLHPvaxuP7662P//v1x8cUXx3/6T/8pXv7yl5/8/Ete8pL42te+FrfeemtERPzar/1avP/9749vfOMbsXXr1ti1a1e8+c1vjmuuuWbg/+bc3FxMTU3F7OxsTE5OVn1KULzZhcWYmV+MQ0eOxfbNG2N620Tjb0J0DOPTMqQthUYHpWUYXwrNaxnGp2Uog5ZhbSn0kRMtj8+aIwVahvGlMM+1DOPTMpSh7ZZ1DONru+MILUMVtAxl0DKpSGEtMh4t502DLNMyjC+FmaplGJ+WIS8pNLsWLcP4UmhcyzA+LVOiFNZ11+gYyqBlGF8K9yFahvFpGcqgZahHCm01TcswvhRmh5brl8LrTPm0XD6zpBu0DONLYV5qGcqgZcjHhrYPoGrPe97z4nnPe96an7/llltO++fXv/718frXv77mowJ6mdrqCzVQAi1D2jQK3aJ5KIOWoQxahrXpg6ZZcwBlMM+hDFqGMmgZ8qdjKIOWoQxaJhXWIrRLgwDVMVOhDFqGvGgWyqZxKIOWKZF1DQC0xX0IlEHLUAYtQz20BYzC7OgGrzNQBbMEYDDmJQB0z/q2DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgazxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhG9o+AGjC7MJizMwvxtyRYzG5ZWNMnz0RU1sn2j4syIqOAJpj5tIE6wzapUGgRGYb0ASzBhiEWcGprAfoJu1DWjQJ49MR5Ee3UD6dA11nDkLzdAfV0hSwGrOBXFirAO0wf8mZ9QtQDjMdoDdzElhmHgBnMhegPfqDbtA6kCKzCR6lB6AXMwIAIC0eNE/x7jt4ON6w78745P6Zkx/bs3M6bty7Ky7YsaXFI4N86AigOWYuTbDOoF0aBEpktgFNMGuAQZgVnMp6gG7SPqRFkzA+HUF+dAvl0znQdeYgNE93UC1NAasxG8iFtQrQDvOXnFm/AOUw0wF6MyeBZeYBcCZzAdqjP+gGrQMpMpvgUXoAejEjAADSs77tA4A6zS4srngTEhFx2/6ZeOO+O2N2YbGlI4N86AigOWYuTbDOoF0aBEpktgFNMGuAQZgVnMp6gG7SPqRFkzA+HUF+dAvl0znQdeYgNE93UC1NAasxG8iFtQrQDvOXnFm/AOUw0wF6MyeBZeYBcCZzAdqjP+gGrQMpMpvgUXoAejEjAADS5EHzFG1mfnHFm5Blt+2fiZl5b0SgHx0BNMfMpQnWGbRLg0CJzDagCWYNMAizglNZD9BN2oe0aBLGpyPIj26hfDoHus4chObpDqqlKWA1ZgO5sFYB2mH+kjPrF6AcZjpAb+YksMw8AM5kLkB79AfdoHUgRWYTPEoPQC9mBABAmjxonqLNHTnW8/OH+nwe0BFAk8xcmmCdQbs0CJTIbAOaYNYAgzArOJX1AN2kfUiLJmF8OoL86BbKp3Og68xBaJ7uoFqaAlZjNpALaxWgHeYvObN+AcphpgP0Zk4Cy8wD4EzmArRHf9ANWgdSZDbBo/QA9GJGAACkyYPmKdrk5o09P7+9z+cBHQE0ycylCdYZtEuDQInMNqAJZg0wCLOCU1kP0E3ah7RoEsanI8iPbqF8Oge6zhyE5ukOqqUpYDVmA7mwVgHaYf6SM+sXoBxmOkBv5iSwzDwAzmQuQHv0B92gdSBFZhM8Sg9AL2YEAECaPGieok1vm4g9O6dX/dyendMxvW2i4SNa3ezCYnzl2/Nxx4EH4yvfmY/ZhcW2DwlOyqWjuumULrLum2fm0gTrzHyjXRpMgzkA1ap6tmkUHqGF07mPGox1Q9eZFZzKeqiWPYZc5NS+ruiCnJpsgznAIHS0Ng2RKt1WS+ukSOflMWuG43phDpZBy3nRHVRLU3mzhzGIUdaJ2UAurFWqYk+F4aQ6f7XMIFJdv1XRAYOyVihB6TMdYFwlz0n3MjCckudBXcwZSlf6XNAwKSu9v1SYA7RN68PRLFWzplZnNlG3nNrTA9CLGTGcnOY/AJC3dUtLS0ttH0Tu5ubmYmpqKmZnZ2NycrLtw+EM9x08HG/cd2fctn/m5Mf27JyOm/buivN3bGnxyB5x38HD8YZ9d8Ynzzi+G/fuigsSOL6u0HFvqXdUN53mQ8vVse7b0/WZG6HlJnR5nZlvzdHy2rrcYArMgeFomUFVNds0Wg8t50cLq+v6fVS/lq0beETqs8K+3KzU10Mu7DEraTltObSvqzRouRk5NNkGc6AaXelYRytpqCwltqzbamg9LyW23IvOy2HWnM73oxiUOZg2LZdJd93TtXvspmkqTznuYVpu3jjrxGxgLam1bK0yrhz31Cqk1jL5SW3+alnLw0ht/Valqx2UoOmWrRVKkspMtydDGUpsOZU5WSX3MvRTYstVKHEe1MWcSYOW61fqXNBwWrS8ulL7S4U5UD0tj0brg9Fsc7rSsjXVm9mUv1RbzrE9PdCmVFvmUWbEYHKc/1XSMpRBy5APD5qvgKGXvtmFxZiZX4xDR47F9s0bY3rbRExtnWj7sGJ2YTFe9aE7Trv5X7Zn53S859qrkjjOLtBxf6l2VDed5kXL1bDu29fVmbtMy83o4joz35ql5d662GAKzIHhaZlhjDvbNFofLedFC711+T6qV8vWDZwu5VlhX25eyushB/aY1Wk5fSm3r6t0aLk5KTfZBnOgOl3qWEeP0lB5Sm1Zt+PRen5KbbkXnefPrFnJ96MYhjmYLi2XS3fd0sV77KZpKi+57mFablYV68RsYDUptmytMqpc99QqpNgy+Ull/mpZy6NIZf1WpcsdlKDJlq0VSpTCTLcnQxlKbTmFOVkV9zIMotSWq1DSPKiLOZMOLTejtLmg4fRoeW2l9ZcKc6AeWh6d1nvTbLO60LI1NRizKW8ptpxze3qgLSm2zEpmRG85z/+qaBnKoGXIx4a2DwCaMLU1zTceM/OLq978R0Tctn8mZuYXkzxuuinVjuqmU7rIum9fV2cuzeriOjPfSEkXG0yBOQD1Gne2aRQeoYXe3EetzrqB05kVnMp6GI89hlyl3L6u6KKUm2yDOcAodPQoDZEL3Y5H6+RA5/kza4bjenEmczBPWs6b7qBamsqLPYxBVLFOzAZyYa0yKnsqjCeV+atlRpHK+q2KDhiUtUKJSpvpAFUraU66l4HxlDQP6mLO0DWlzQUNk5PS+kuFOUBqtN6bZqmaNTUYs4mq5dyeHoBezIjecp7/AECe1rd9ANBlc0eO9fz8oT6fB+qnU7rIugdKZb4B5gCkTaPwCC0wCusGgLrYY6B6ugLMARiPhqAbtA40wawZjusFZdAyALmyhzEI6wSgP7MSyqBl0AGDs1YAgJy5lwHqZs5A3jQMmAOQF81SNWsK2qE9gG4y/wGApnnQPLRocvPGnp/f3ufzQP10ShdZ90CpzDfAHIC0aRQeoQVGYd0AUBd7DFRPV4A5AOPREHSD1oEmmDXDcb2gDFoGIFf2MAZhnQD0Z1ZCGbQMOmBw1goAkDP3MkDdzBnIm4YBcwDyolmqZk1BO7QH0E3mPwDQNA+ahxZNb5uIPTunV/3cnp3TMb1touEjAs6kU7rIugdKZb4B5gCkTaPwCC0wCusGgLrYY6B6ugLMARiPhqAbtA40wawZjusFZdAyALmyhzEI6wSgP7MSyqBl0AGDs1YAgJy5lwHqZs5A3jQMmAOQF81SNWsK2qE9gG4y/wGApnnQPLRoautE3Lh314o3AXt2TsdNe3fF1FZvAKBtOqWLrHugVOYbYA5A2jQKj9ACo7BuAKiLPQaqpyvAHIDxaAi6QetAE8ya4bheUAYtA5ArexiDsE4A+jMroQxaBh0wOGsFAMiZexmgbuYM5E3DgDkAedEsVbOmoB3aA+gm8x8AaNq6paWlpbYPIndzc3MxNTUVs7OzMTk52fbhkKHZhcWYmV+MQ0eOxfbNG2N624Sb/4bpmH50mgctV8u6py1apm7mWzO0TMrMgcFpmTZotHpazpMWONMgLVs3kD77Mrmyx5xOy1RBV+3TMm0zB8an427TUDm0TC9az4eWyZlZ8yjfj4IyaBnK4B4bVpfbHqblduS2TkiflilRF2ellimRlrVMNzsoQRstWytQLXsylEHL+XAvQy9apgrmTPu0zDg0nA4t0xZzoFpapm6abUaXWramKFnKLWsPBpdyyzCsLs9/LUMZtAz52ND2AQARU1u7c8MPudIpXWTdA6Uy3wBzANKmUXiEFhiFdQNAXewxUD1dAeYAjEdD0A1aB5pg1gzH9YIyaBmAXNnDGIR1AtCfWQll0DLogMFZKwBAztzLAHUzZyBvGgbMAciLZqmaNQXt0B5AN5n/AEBT1rd9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABd40HzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaVtyD5r/xjW/EddddF+eee25s2bIlrrzyyvj7v//7nr/n1ltvjac85SmxadOmuOSSS+KWW25p5mABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATirqQfMPPvhg7N69OzZu3Bh//ud/Hv/0T/8U73znO+Occ85Z8/d89atfjec+97lxzTXXxD/8wz/Ea1/72njZy14WH//4xxs8cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBLNrR9AFW66aab4sILL4ybb7755Mcuvvjinr/nfe97X1x88cXxzne+MyIiLr/88vjUpz4V73rXu+I5z3lOrccLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdFNRD5r/kz/5k3jOc54TL3jBC+Jv/uZv4vGPf3y84hWviJe//OVr/p7PfOYz8WM/9mOnfew5z3lOvPa1r13z9xw9ejSOHj168p/n5ubGPnagWTqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnyp2Mog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWob86RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliFf69s+gCrdc8898Zu/+Zuxc+fO+PjHPx6/8Au/EK95zWvid37nd9b8Pd/85jfjcY973Gkfe9zjHhdzc3Nx+PDhVX/P29/+9piamjr5vwsvvLDS8wDqp2Mog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliF/OoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZcifjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfK1bmlpaantg6jKxMRE/PAP/3B8+tOfPvmx17zmNfF3f/d38ZnPfGbV33PppZfGz/7sz8b1119/8mN/9md/Fs997nNjYWEhtmzZsuL3HD16NI4ePXryn+fm5uLCCy+M2dnZmJycrPCMgLroGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyJ+OoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8qdjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGfG1o+wCqdP7558cVV1xx2scuv/zy2Ldv35q/53u+53viW9/61mkf+9a3vhWTk5OrPmQ+ImLTpk2xadOm8Q8YaI2OoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqG/OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhfzqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXI1/q2D6BKu3fvjrvuuuu0j335y1+OJzzhCWv+nmc84xnxV3/1V6d97C/+4i/iGc94Ri3HCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDUg+Zf97rXxWc/+9m44YYb4u67747f+73fi/e///3xyle+8uSvuf766+NFL3rRyX/++Z//+bjnnnvi9a9/ffzzP/9zvPe9740/+IM/iNe97nVtnAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQAUU9aP5pT3tafPjDH44PfehD8QM/8APxtre9Ld797nfHC1/4wpO/5v77748DBw6c/OeLL744/vRP/zT+4i/+In7wB38w3vnOd8b//J//M57znOe0cQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAB2xo+wCq9rznPS+e97znrfn5W265ZcXHnv3sZ8cdd9xR41FRh9mFxZiZX4y5I8dicsvGmD57Iqa2Tqz5caA+35o7Eg8+tBhzRx6OyS0b4pytE/G4yc1tHxZQiJL39pLPjXzMLizGAw8txsMnluLE0lIsHH04prZOWI8wpDpnuv0CqEMOsyWHY4RSVdWfjqE6eqqG65i+Kl8jrzeUYZSW9Q/V6tWU3ijBIOvYWgf68TPN0JwUukrhGAAGZWZVx7Wkn5LWSEnnAmtJfZ2nfnxQhRLWeQnnQF7aWnPWOpCjXGZXLsdJNfycNORFZ7TJ+gMYjJ8Dh/yk1GRKxwKMxp8/hvz481eQt7paNQOgPLouh9eSNll/1XEtaXINWG8AANUp7kHzdMN9Bw/HG/bdGZ/cP3PyY3t2Tsev/vQPxK987J/iL7/07dM+fuPeXXHBji1tHCoU78ADD8X1H/5C3H73Ayc/dvUl58YNz78yLjr37BaPDCjBWnt+CXt7yedGPu47eDje/MdfjP/nRy6Km2//6mn7ufUIg6tzptsvgDrkMFtyOEYoVVX96Riqo6dquI7pq/I18npDGUZpWf9QrV5NrYuI1+uNzA2yb9hbgH78TDM0J4V9OYVjABiUmVUd15J+SlojJZ0LrCX1dZ768UEVSljnJZwDeWlrzVnrQI5ymV25HCfV8HPSkBed0SbrD2Awfg4c8pNSkykdCzAaf/4Y8rNagz9++XnxpuddEb/0kS9qExJX1z5qf4by6LocXkvaZP1Vx7WkyTVgvQEAVGt92wcAw5pdWFzxpiAi4rb9M/FfPvyFePL5kys+/sZ9d8bswmKThwmd8K25IyseMh8R8am7H4j/8uEvxLfmjrR0ZEAJeu35ue/tJZ8b+Vheh08+f3LFQ+YjrEcYVJ0z3X4B1CGH2ZLDMUKpqupPx1AdPVXDdUxfla+R1xvKMErL+odq9Wvq1i9/R29kbZB9w94C9ONnmqE5KezLKRwDwKDMrOq4lvRT0hop6VxgLamv89SPD6pQwjov4RzIS1trzloHcpTL7MrlOKmGn5OGvOiMNll/AIPxc+CQn5SaTOlYgNH488eQn7UavOz8ybj+w1/QJiSurn3U/gzl0XU5vJa0yfqrjmtJk2vAegMAqJ4HzZOdmfnFFW8Kln3q7gfiqgt3rPj4bftnYmbeGwao2oMPLa54KO2yT939QDz4kO6A0fXa83Pf20s+N/KxvA6vunDHmvu59Qj91TnT7RdAHXKYLTkcI5Sqqv50DNXRUzVcx/RV+Rp5vaEMo7Ssf6hWv6bO275pzc/pjRwMsm/YW4B+/EwzNCeFfTmFYwAYlJlVHdeSfkpaIyWdC6wl9XWe+vFBFUpY5yWcA3lpa81Z60COcplduRwn1fBz0pAXndEm6w9gMH4OHPKTUpMpHQswGn/+GPKzVoP+LlzIQ137qP0ZyqPrcngtaZP1Vx3XkibXgPUGAFC9DW0fAAxr7sixnp8/+vCJVT9+qM/vA4Y3d+ThsT4P0Eu/PT/nvb3kcyMfy+twrfvnZdYj9FbnTLdfAHXIYbbkcIxQqqr60zFUR0/VcB3TV+Vr5PWGMozSsv6hWqP+jFaE3sjDIPvGUp9/h7UO+JlmaE4K7/lSOAaAQZlZ1XEt6aekNVLSucBaUl/nqR8fVKGEdV7COZCXttactQ7kKJfZlctxUg0/Jw150Rltsv4ABuPnwCE/Kd3npHQswGj8+WPIz1oN+rtwIQ917aP2ZyiPrsvhtaRN1l91XEuaXAPWGwBA9TxonuxMbt7Y8/ObNqxf9ePb+/w+YHiTm3tvI/0+D9BLvz0/57295HMjH8vrcK3752XWI/RW50y3XwB1yGG25HCMUKqq+tMxVEdP1XAd01fla+T1hjKM0rL+oVqj/oxWhN7IQxX7hrUO+JlmaE4K7/lSOAaAQZlZ1XEt6aekNVLSucBaUl/nqR8fVKGEdV7COZCXttactQ7kKJfZlctxUg0/Jw150Rltsv4ABuPnwCE/Kd3npHQswGj8+WPIz1oN+rtwIQ917aP2ZyiPrsvhtaRN1l91XEuaXAPWGwBA9Xp/FwUSNL1tIvbsnF71c1dfcm7cce/BFR/fs3M6prdN1Hxk0D3nnD0RV19y7qqfu/qSc+Ocs3UHjK7Xnp/73l7yuZGP5XV4x70HY/ca+7n1CP3VOdPtF0AdcpgtORwjlKqq/nQM1dFTNVzH9FX5Gnm9oQyjtKx/qFa/pr596Oian9MbORhk37C3AP34mWZoTgr7cgrHADAoM6s6riX9lLRGSjoXWEvq6zz144MqlLDOSzgH8tLWmrPWgRzlMrtyOU6q4eekIS86o03WH8Bg/Bw45CelJlM6FmA0/vwx5GetBu+49+Caf7e9NiEdde2j9mcoj67L4bWkTdZfdVxLmlwD1hsAQPU8aJ7sTG2diBv37lrx5mDPzum44flXxl33z634+E17d8XUVm8YoGqPm9wcNzz/yhXfkL/6knPjhudfGY+b3NzSkQEl6LXn5763l3xu5GN5Hd51/1z87O6LVzxs3nqEwdQ50+0XQB1ymC05HCOUqqr+dAzV0VM1XMf0Vfkaeb2hDKO0rH+oVr+mnn3pY/VG1gbZN+wtQD9+phmak8K+nMIxAAzKzKqOa0k/Ja2Rks4F1pL6Ok/9+KAKJazzEs6BvLS15qx1IEe5zK5cjpNq+DlpyIvOaJP1BzAYPwcO+UmpyZSOBRiNP38M+Vmrwbvun4sbnn+lNiFxde2j9mcoj67L4bWkTdZfdVxLmlwD1hsAQPXWLS0tLbV9ELmbm5uLqampmJ2djcnJybYPpzNmFxZjZn4xDh05Fts3b4zpbY/8QN9aH4dedDyeb80diQcfWoy5Iw/H5OYNcc7ZEx4yTyu0XKaS9/aSz20cWm7W7MJiPPDQYhw/sRTHTyzFwuLxmNpiPTK+rrVc50y3X9CmrrXcJTnMlhyOMRdaZlhV9afjamm52/RUjRSuo5Z7q/I1SuH1plxabs4oLeufQWl5ML2a0httq6LjQdaxtQ71KmFP9jPN0FzLKXSVwjFAXUrYlzmdmVWdnK6lltuR0xrpp6RzyZmW65X6Ok/9+BicltdWwjov4RwYTCott7XmrHVKkUrLNCOX2ZXLcaYk55b9nDQ8KoeWdUabclh/OXQM9Jd7y34OHB6RU8spNZnSsUBEXi2nwp8/JkVa7s2fvyIXWl5dXa2aAdRFy+3RdTlSeC213F0prL9SpHAttdyuJtdACuuN+mgZyqBlyMeGtg8ARjW1dfU3Amt9HKjP4yY3e7A8UJuS9/aSz418WIdQjTpb0ilQhxxmSw7HCKWqqj8dQ3X0VA3XMX1VvkZebyjDKC3rH6rVqym9UYJB1rG1DvTjZ5qhOSl0lcIxAAzKzKqOa0k/Ja2Rks4F1pL6Ok/9+KAKJazzEs6BvLS15qx1IEe5zK5cjpNq+DlpyIvOaJP1BzAYPwcO+UmpyZSOBRiNP38M+fHnryBvdbVqBkB5dF0OryVtsv6q41rS5Bqw3gAAqrO+7QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6BoPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwzxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LANbR8AMJ7ZhcWYmV+MuSPHYnLLxpg+eyKmtk60fVhATTQPK+kCqIv5AnnQKjAMMwPKo2tSZn0CbTOHYHT6AdpkBsHpNAEMy9yAtGkUWIv5UDavLwCjsH/QNmsQ6DIzEFhmHsBotEPprHEAGJx9E8iV+QV50SxQCvMMyqDlZrneQD/mBEBzzFwAoCoeNA8Zu+/g4XjDvjvjk/tnTn5sz87puHHvrrhgx5YWjwyog+ZhJV0AdTFfIA9aBYZhZkB5dE3KrE+gbeYQjE4/QJvMIDidJoBhmRuQNo0CazEfyub1BWAU9g/aZg0CXWYGAsvMAxiNdiidNQ4Ag7NvArkyvyAvmgVKYZ5BGbTcLNcb6MecAGiOmQsAVGl92wcAVZhdWIyvfHs+7jjwYHzlO/Mxu7DY9iHVbnZhccUbg4iI2/bPxBv33dmJa0A7uthbCjQPK1XVhbkGg+lSK/ZdmtSltqqmVchb0/PPzIDm1d25rkmZ9bk274GwBpphDpGjVOaDfqC/VHotkRmUBms8HZogZ2ZJO8wNxqHb+mkUmpXTXDMfylb665tTa0D1zID6lL5/dFVOzViDNCmnNugGMxCql+usNw+akev6YG3aoXTfmjsSX5t5KK79kYviAy95WrzqRy+JrRNnWeMA1CL3+2X3htCs3GdGSswvctXVOaBZuqirvZfOPONUOs+XlpvVlettJlCaJtd0V+YE0Dz780pmLgBQtQ1tHwCM676Dh1fcJO/ZOR037t0VF+zY0uKR1WtmfnHFG4Nlt+2fiZn5xZjaOtHwUVG6rvaWAs3DSlV0Ya7BYLrWin2XpnStrappFfLVxvwzM6BZTXSua1Jmfa7OeyCsgeaYQ+QmpfmgH+gtpV5LZAa1zxpPiybIlVnSHnODUem2GRqF5uQ218yHspX8+ubWGlAtM6BeJe8fXZVbM9YgTcmtDbrBDIRq5TzrzYP65bw+WJt2KNl9Bw/HG/73/xefvPuBkx/bfcm58evXXhWv+dAd1jgAlSrhftm9ITSnhJmREvOLHHV5DmiWruly76Uzz1im87xpuVlduN5mAqVpek13YU4AzbM/r87MBQCqtr7tA4BxzC4srnjjEPHIzfEb990ZswuLLR3Z+GYXFuMr356POw48GF/5zvyKc5k7cqzn7z/U5/MwrBJ669dVyjQPK43bRQlzrQo5z0aaUUorw6x1+y5NKKWtpp3a8tGHj8erfvSS2Dpx1qq/VquQprbm39yRY7F14qx41Y9eEr/94h+O977wKfGBlzzt5BwxM6A6TXW+fN++VtsPHdV1l7X99Q7vK1fyHghrYHBVzDBziJykNh+G6aftew5oWmq9NqHpzu3h7eriGk/d8aWlVb+eu0wTpMgsqcege7K9lFHk2G2u70c1CuMbpP8c55r5ULYUXt869s4cWwOqU9cMyPVevw4p7B9UJ8d9s9ca3DpxVpxYWtIrY8uxDbrBz2hDdcaZ9Sm8P3BfXi/3AmmpsjntUKqTc+uUh8xHRNx+9wNx8+1fjZdefXFEVLPGU9gHAWhXKffLKdwb2lfpglJmRp2GnQUpzC8YRtfnwPzRY2v+nVoRmqUsXe+9lxLu/d2DEKHzZTk3reXx+TvUH2UmUJo21nTpc6JKOe+/0KTS9mc/NwYApGxD2wcA45iZX1zxxmHZbftnYmZ+Maa2TjR8VOO77+DhFW+K9uycjhv37ooLdmyJiIjJzRt7/ju29/k8DCv33gbpKmWah5XG7SL3uVaF3GcjzSihlWHXun2XJpTQVtNWa3n3JefGr197VbzmQ3fEwuLx0369ViFNbc2/qS0b49evvSpuvv2r8Rt/fffJjy/PkcktZgZUpanOJzdvjK0TZ63Z9s885XvH/m+QpxS+3uF95UreA2ENDKaqGWYOkZPU5sOg/aRwzwFNS63XurXRuT28XV1b46m77+DheNtH//G0v5j4zO8LaYIUmSXVG2ZPtpcyity6zfn9qEZhPIP2n9tcizAfStf261vX3plja0B16pgBOd/r16Ht/YNq5bhvrrUGl39m8VfO+Pp1l3tldDm2QTf4GW2ozqizPpX3B+7L6+VeIB1VN6cdStVrbt1+9wPx0t2PPGh+3DWeyj4IQLtKuV9u+97QvkpXlDIz6jLKLGh7fsGwuj4HprZMxB0HHlz179R6zYfu0CxF6Xrvaynl3t89CBE6j8i/aS2Px9+hfjozgdK0saZLnxNVyX3/hSaVtD/7uTEAIHXr2z4AGMfckWM9P3+oz+dTNLuwuOJNRMQjb4beuO/OmF1YjIiI6W0TsWfn9Kr/jj07p2N6Wx5vmshHzr0N2lXKNA8rjdtFznOtCiXMRpqReyujrHX7Lk3Iva2mrdXy7Xc/EDff/tV46dUXn/ZxrUK62pp/Z2/aEDff/tW4/ZS/1DHikTlyy+1fjbM3bajlvwtd1FTn09sm4k3Pu2LNtt/8x1/03raDUvl6h/eVK3kPhDXQX5UzzBwiJ6nNh0H6SeWeA5qWWq91aqtze3i7urTGU3eywVW+5rP8fSFNkCqzpFrD7sn2UkaRU7e5vx/VKIxumP5zmmvLzIeytfn61rl35tgaUJ2qZ0Du9/p1cH9Qlhz3zbXW4Euvvjhuvv2rK75+3eVeGV2ObdANfkYbqjPKrE/p/YH78nq5F0hDHc1ph1L1m1tHHz4x9hpPaR8EoF2l3C+X+v1ySE0pM6MOo84C723JTZfnwOzCYrzpI19c9Xs6N9/+1XjT867QLEXpcu9rKene3z0IETovoWktj87fob5S12cC5WljTZc+J6pQwv4LTSplf/ZzYwBADjxonqxNbt7Y8/Pb+3w+RTPziyveRCy7bf9MzMw/8kZiautE3Lh314o3CHt2TsdNe3fF1FZvDqhWzr0N2lXKNA8rjdtFznOtCiXMRpqReyujrHX7Lk3Iva2m9Wr59rsfiKsu3HHyn7UKaWtr/s0feXjFH4hZ9qm7H4j5Iw/X8t+FLmqq86mtE/GUi3as2bb3tt2Uytc7vK9cyXsgrIH+qpxh5hA5SW0+DNJPKvcc0LTUeq1TW53bw9vVpTWeun7fF3rmE8/VBMkyS6o17J5sL2UUOXWb+/tRjcLohuk/p7m2zHwoW5uvb517Z46tAdWpegbkfq9fB/cHZclx31xrDT7zief6mUUqk2MbdIOf0YbqjDLrU3p/4L68Xu4F0lBHc9qhVP3m1o4tG8de4yntgwC0q5T75VK/Xw6pKWVm1GHUWeC9Lbnp8hyYmV+MT9699p/BespFOzRLUbrc+1pKuvd3D0KEzktoWsuj83eor9T1mUB52ljTpc+JKpSw/0KTStmf/dwYAJCDDW0fAIxjettE7Nk5HbetcuO9Z+d0TG/L7wZ57sixnp8/dMrnL9ixJd5z7VUxM78Yh44ci+2bN8b0tglvDKhFzr0N01XKNA8rjdNFznOtCqXMRuqXeyujrnX7LnXLva2m9Wt5asvG+MgrnqlVyEBb88/9LzSnyc4XFo/3/Ly2uyelee995em8B8Ia6K/qGWYOkYsU50O/flK654AmpdhrXdrs3B7eni6t8dT1a3DzxrPi/B1bGjoaGI5ZUq1R9mR7KcPKqdsS3o9qFEYzTP85zbVTmQ9la+v1rXPvzLU1oBpVz4AS7vXr4P6gHLnum6utwdnDvf+ysK72ymhybYNu8DPaUI1RZn1q7w/cl9fHvUAa6mpOO5So19x61s7peNJ52+Jxk5vH+m+ktg8C0J6S7pdL/H45pKakmVG1cWaB97bkpMtzoF/nh/t8zwdy0+Xe11Lavb97ELreeSlNa3k0/g71lbo+EyhPW2u65DlRhVL2X2hKKfuznxsDAHKwvu0DgHFMbZ2IG/fuij07p0/7+J6d03HT3l1Z3iRPbt7Y8/Pbz/j81NaJeNJ52+KHLjonnnTetizPmTzk3NuwXaVM87DSqF3kPNeqUNJspF65tzLOWrfvUqfc22pav5bP2TqhVchEW/PP/S80p8nOtc2ZUlsT3lc+ynsgrIH+6phh5hA5SHU+9OontXsOaEqqvdah7c7t4e3o0hpPXb8Gp7bYa0mXWVKtUfdkeynDyKnbtu9Tq6JRGN4w/ec0185kPpStjde3zr0z59aA8VU9A0q516+D+4My5LxvrliDW3ofa5d7ZXg5t0H53J9ANUaZ9Sn25768Hu4F0lD31xC1Q0l6za1f27tr7IfMR6S5DwLQjtLul0v7fjmkprSZUaVxZ4H3tuSiy3PAnk/XdLn3tZQ4B9yDdFvXOy+paS0Pz9+hvlLXZwLlaXNNlzonqlDS/gtNKGV/9nNjAEAONrR9ADCuC3Zsifdce1XMzC/GoSPHYvvmjTG9bSLbm+TpbROxZ+d03LZ/ZsXn9uycjulteZ4XZci1N10Ba8l1rlXBbGQYObdirZOynNtqmpahLG3MP3MEmtVU59rmTNZE2rwHwhrozQyjy3KbD3qly3LrdVQ6766urPHUaZDcmSXVMQ9oSi7dagK6a9j+c5lrULe6906tQbdVOQPc69MFpeybeqVqpbRBecw7qM6ws15/3eJeoH2ag+HUPbc0CcCp3C+Px75K15gZqzML6JKuzgGd00Vd7X0t5gAl6nLnmu42r//qujwTKJM1nR7zF4ZXwizTPgCQg3VLS0tLbR9E7ubm5mJqaipmZ2djcnKy7cOhAPcdPBxv3HfnaW8m9uycjpv27orzd2xp8cjKpePy6aobtAzDSXU2apmqpbrWS6dlqqbldmiZknR5jmiZknWpbS0PpktrgjxpmV7MsHxoGb2WQcv0ovM86LhcGuwWLdOLeZAPLTdDE9RNy+nSP8PQ8qO0Q8603C3mVbm0XB69dpOW6aIS552WyUWJ/VVJy1RNc+3QMmvRZD50DGXQctnsq92hZXoxC/KhZUal87RomTaYA9XTMm3SdHVybNnrDyvl2DL5MX/rp2VSpP3haRnKoGXIhwfNV8DQYy2zC4sxM78Yc0eOxeSWjTF99kRMbZ0Y6vceOnIstm/eGNPbBv+9DE/HaRinmWH+/boql5YZRt0zJxcpzkYtd08TPaa41kun5fzksDdquXlapjRrzZEcZuA4tEwuRm2xK/cIWh5c3Wui9H2DemmZ1Zw6V7Zt2hATZ62P2cOLcfamcve13Gm5e1bb/yOiE/ehJdMyy9a6x+/K+82cdbHjLr0n1WB3dLHlLqhyXpkHeci55dz2V01Qp5xbzs0os0f/DErLp5tdWIwHHlqM4yeW4viJpVhYfDimtk4kv+eDltPizzwwqlRazu29b+r02j2ptAxNq3LepbAXaZkmjbvm3W+sTcv5S2FPWOuYNNccLY8uxYaqpsk86BjKoOU8+Dtt6UfLeWjzXt4syIOW05PTe3Cdp0PLZUt5LpgD1dJyt6XQuqarkWvLvV7/FNYnNC3XlqmeZ1nlTcukyp89HY6WoQxahnxsaPsAoFT3HTwcb9h3Z3xy/8zJj+3ZOR037t0VF+zY0vf3T231hoFuGbeZQegKWNbEzMmF2UjbmurRWofectkbtQyMa7U5kssMhNKN06J7BM5U55qwbwBVM1cgfb06fdJ521o8MqAK/fZi7zdJSdfuHX3NB/JV9bwyD6hTjvurJiB/o84e/cNoprZOxEOLx7Pb84F0+DMP5C7H976p0yvQFVXNO3sRXVPFmne/QalS3RM0Ry5SbahqmgSAR/k7baEMbd/LmwUwvLa7HZbOoX6pzwVzAKqRSuua7ra1Xv9U1idAGzzLCqiLP3sKAKRsfdsH8MQnPjEeeOCBtg8DKjW7sLjiDUBExG37Z+KN++6M2YXFlo4M0qQZoElmDqRDj5AGLQJdZgZCGrRILqxVoGrmCqRPp1A2jZMT6xXIhXlFTqxXoA1mDzRPd8A4zBByZw0D0DZ7EV1jzcPa9AHj0RAAdI/9H8qgZciPboEzmQvQDVonZdYn0GVmIFAnMwYASFnrD5r/2te+FsePH2/7MKBSM/OLK94ALLtt/0zMzHsTAKfSDNAkMwfSoUdIgxaBLjMDIQ1aJBfWKlA1cwXSp1Mom8bJifUK5MK8IifWK9AGsweapztgHGYIubOGAWibvYiuseZhbfqA8WgIALrH/g9l0DLkR7fAmcwF6AatkzLrE+gyMxCokxkDAKSs9QfNQ4nmjhzr+flDfT4PXaMZoElmDqRDj5AGLQJdZgZCGrRILqxVoGrmCqRPp1A2jZMT6xXIhXlFTqxXoA1mDzRPd8A4zBByZw0D0DZ7EV1jzcPa9AHj0RAAdI/9H8qgZciPboEzmQvQDVonZdYn0GVmIFAnMwYASNmGtg8gIuLjH/94TE1N9fw1P/VTP9XQ0cD4Jjdv7Pn57X0+D12jGaBJZg6kQ4+QBi0CXWYGQhq0SC6sVaBq5gqkT6dQNo2TE+sVyIV5RU6sV6ANZg80T3fAOMwQcmcNA9A2exFdY83D2vQB49EQAHSP/R/KoGXIj26BM5kL0A1aJ2XWJ9BlZiBQJzMGAEjZ+rYPICLixS9+cfz0T//0mv97/vOf3/YhwlCmt03Enp3Tq35uz87pmN420fARQdo0AzTJzIF06BHSoEWgy8xASIMWyYW1ClTNXIH06RTKpnFyYr0CuTCvyIn1CrTB7IHm6Q4YhxlC7qxhANpmL6JrrHlYmz5gPBoCgO6x/0MZtAz50S1wJnMBukHrpMz6BLrMDATqZMYAAClL4kHz3/zmN+PEiRNr/u/48eNtHyIMZWrrRNy4d9eKNwJ7dk7HTXt3xdRWbwLgVJoBmmTmQDr0CGnQItBlZiCkQYvkwloFqmauQPp0CmXTODmxXoFcmFfkxHoF2mD2QPN0B4zDDCF31jAAbbMX0TXWPKxNHzAeDQFA99j/oQxahvzoFjiTuQDdoHVSZn0CXWYGAnUyYwCAlK1bWlpaavMA1q9fH9/85jfjvPPOa/MwxjI3NxdTU1MxOzsbk5OTbR8OCZldWIyZ+cU4dORYbN+8Maa3TXgDkCgdp0EzjEvLDMPMSZeWu0ePZdJyfrTIarRMV5Q+A7VMLkpvcVxaToe1yji0zGrMlfxouXt0WiYts0zj+epix9YrJepiy11gXnVPzi1br/ConFvOjdlDnbS8Ot2RGy2nxQxhVKm0bA3DeFJpGXKWwl6kZZqUwpovlZbzpw8itDwODZEKHUMZtJwH+z/9aDkPWqYfLadHt4xCy2UzF7pDy92m9XKU2LL1SReV2DKjMQPzpmVSZ8YMRstQBi1DPja0fQCUYflmd+7IsZjcsjGmz3azGxExtdV1oFx1dK8ZKFeK9wpmDqlKsZe66ZHS5NqxFqG3XNtmMGZg2fSbDy2SC2t1OOYwEdZBP+YKuehyyzqlBF1uuB+NU7U6e7NeoX321MGYV6RstY6fdN62tg8L6Bh7ZbncL6ZLd/Wx7umCqmaIXmhLV/ZBjdE11jw56cpeRPVynXXWPKlJqSV9wHjqaiilOQEAp7JHuYeGYaU6N7RMl6Ta4bB0C4MppflBmAuUokvdjkLrpMz6PJ15BmXp17QZCIOzRw7PjAEAUtT6g+Zf+MIXxm/91m/F//k//ycWFxfjX/7LfxlvectbYsuWLW0fGgO67+DheMO+O+OT+2dOfmzPzum4ce+uuGCH1xFKpHtgGGYGDE4vkD8dQ5m0DfnSL0C7zGEirAMohZYhbxqG5ugNyqZxyJ+OAaiTfYYusu5hcHqBemmMrrHmgS4w66AaWgL6MScASJU9ChiWuQHt0yF0i+YhP7oFSmGeQVk0DdXREwBAOda3fQCXXnpp/PIv/3Js27YtHv/4x8d//+//PV75yle2fVgMaHZhccWbg4iI2/bPxBv33RmzC4stHRlQF90DwzAzYHB6gfzpGMqkbciXfgHaZQ4TYR1AKbQMedMwNEdvUDaNQ/50DECd7DN0kXUPg9ML1EtjdI01D3SBWQfV0BLQjzkBQKrsUcCwzA1onw6hWzQP+dEtUArzDMqiaaiOngAAytL6g+b/1//6X/He9743Pv7xj8dHPvKR+OhHPxq/+7u/GydOnGj70BjAzPziijcHy27bPxMz894gQGl0DwzDzIDB6QXyp2Mok7YhX/oFaJc5TIR1AKXQMuRNw9AcvUHZNA750zEAdbLP0EXWPQxOL1AvjdE11jzQBWYdVENLQD/mBACpskcBwzI3oH06hG7RPORHt0ApzDMoi6ahOnoCAChL6w+a//rXvx4/+ZM/efKff+zHfizWrVsX991339D/rl/+5V+OdevWnfa/Jz/5yWv++ltuuWXFr9+8efNI59FVc0eO9fz8oT6fB/Kje2AYZgYMTi+QPx1DmbQN+dIvQLvMYSKsAyiFliFvGobm6A3KpnHIn44BqJN9hi6y7mFweoF6aYyuseaBLjDroBpaAvoxJwBIlT0KGJa5Ae3TIXSL5iE/ugVKYZ5BWTQN1dETAEBZNrR9AA8//PCKh7tv3Lgxjh0b7cby+7//++Mv//IvT/7zhg29T3FycjLuuuuuk/+8bt26kf67XTW5eWPPz2/v8/lxzS4sxsz8YswdORaTWzbG9NkTMbV1otb/JpSuX1dtdw/kpe6Z4V6AkqSyx+oKRpdKx0C1tN0O9yRUQb+sxnyhatbU2sxhIppdB3qE+jQ90/UM1WqiYd2SuqbWqPdBULZ+jZ+9aUN85dvz9kNIwFp7v70aqIv3xUR4T5g6ndbDuidVKTavF5qQ4tpvisboGmu+O7o82yHlWadNmjbOmku5JWiCmd2fOQFAqobdo+z70J5U+nNvC+2rs8NUZg3wqFT2XvMBBpdKt2vRM1Sr5KZSn2fQBVXOGE1DdXLrqeT7FQCAKrT+oPmlpaV4yUteEps2bTr5sSNHjsTP//zPx9lnn33yY3/0R3800L9vw4YN8T3f8z0D//fXrVs31K/ndNPbJmLPzum4bf/Mis/t2Tkd09vqu/m+7+DheMO+O+OTp/y39+ycjhv37ooLdmyp7b8LJRukqza7B/JT58xwL0BpUthjdQXjmd42Ec/aOX1aQ8ue5V4ZspXCHt017kmoin45k/lC1ayp3sxhIppbB3qEejU50/UM1au7Yd2SuibXqPdBULZejT9r53T8/dcfjOv/6AsnP2Y/hHb02vvt1UAdvC9mmX0mXTqtj3VPilJtXi/ULdW13xSN0TXWfDd0fbZDqrNOmzRt3DWXakvQBDN7MOYEAKkaZo+y70N7UurPvS20r64OU5o1wKNS2HvNBxhOCt2uRc9QrdKbSnmeQRdUPWM0DdXJqafS71cAAKqwvu0DePGLXxznnXdeTE1NnfzfddddFxdccMFpHxvU/v3744ILLognPvGJ8cIXvjAOHDjQ89fPz8/HE57whLjwwgvj3/ybfxP/+I//OO4pdcrU1om4ce+u2LNz+rSP79k5HTft3RVTW+t5gzC7sLjiZj8i4rb9M/HGfXfG7MJiLf9dKNmgXbXVPZCnumaGewFK1PYeqyuoxiuvuSR2X3LuaR/bfcm58cprLmnpiIBxtb1Hd417EqqkX05lvlA1a6o/c5iIZtaBHqF+Tc10PUM96mxYt6Su6TXqfRCUrVfjr7zmknjbx/7ptI/bD6F5/fb+iLBXA5XyvphTeU+YJp3Wy7onNSk3rxfqlPLab4rG6BprvnxmO6Q567RJ06pYcym2BE0wswdnTgCQqkH3KPs+tCe1/tzbQvvq6DC1WQM8qu2913yA4bXd7Vr0DNXqQlOpzjPogjpmjKahOrn01IX7FQCAKmxo+wBuvvnmyv5dT3/60+OWW26Jyy67LO6///5461vfGs961rPii1/8Ymzfvn3Fr7/sssviAx/4QOzatStmZ2fjHe94Rzzzmc+Mf/zHf4zv/d7vXfO/c/To0Th69OjJf56bm6vsHHJ0wY4t8Z5rr4qZ+cU4dORYbN+8Maa3TdT65mBmfnHFzf6y2/bPxMz84lgPrp2ZX4y5I8dicsvGmD673nOhHTpeaZiu1uo+IuIr357XD43R8mDa3tvquFeo816A5mn5UW3cWy/r19X9c0ciIrTFmrT8SEcvveXv4qVXXxwv3X1xHH34RGzasD7uuPdgvPSWv4uPvurq1v4CE+9zGZSWV9fmHt01qd7r5zZLtfwo/bJs3PnSxhzQcrpmFxbj/tkjSe5ZqTGHtRxR/zoYdcbndo9Hu7RcX8untrhl4iz7K7Xqcst1NZzq13KW2e/LM2zHdazRfuvK+yDoL+c9ebXGN6xfFz/x65+MhcXjK359VfuhPY0UjdJy3Wt5kL3/Sedts1fDKXLel1Pw7UNHk35fTPPaek+Yc8sp3B/odDy+FlKdnFtuU07fa9JLN7Txftl+9wiNUaUc9mVrvmz9Zvs3Dh6OmYcWfb+gjxxaprfUZl3fP4c9eyTumXnI9/Mq1uWWq7rXH7cl36+mCk23nON75TZbS23PJU1d3pOhJLm1PMgeleO+D+NKpeUU+2vy3tb7ZcaVSstVq7rDumeNlhlXqS0PKuW/P7fuexHzoyxdajnFrwdX2bM2u61LLffSlZ9tSHGeUQ0tp62u+/Dlpr996GjMHj4WWyfOirM3bYitE2eNe8i0RMvtyWGPbPs9/TLvH/rTMpRBy5Cv1h80X6Wf+ImfOPn/d+3aFU9/+tPjCU94QvzBH/xB/Pt//+9X/PpnPOMZ8YxnPOPkPz/zmc+Myy+/PH7rt34r3va2t63533n7298eb33rW6s9+MxNbW32RnfuyLGenz/U5/Nrue/g4XjDvjtPezOxZ+d03Lh3V1ywY8tI/07SpOOVhu3qzO71Qxu03F8qbVZ9r1DXvQDt0PLpmr63Xtavq3u+81Dc8KdfsrezJi0/0tHC4vH4jb++e9XPt7E/pXIvQD60vLa29uiuSfFeP8dZquXT6ZeI8eZLW3NAy2laXg/X/shFPX+dr089qutzWMuPqHMdjDLjc7zHo11afkTVLZ/Z4ntf+JSev97+yri63nId+3GKX8tZZr8v07AdV71GB11XXX8fBP3kvief2fgdBx5c9SHzy8bdD+1ppGrYlptYy4Pu/fZqeFTu+3Kb7jt4OA58d6Hnr/H1rG5qY5/JteWU7g8Yj/urauTacpty/F6TXsrXxvtl+92jNEZVctmXrfly9ZvtX3tgIV7xu5/3/YI+cmmZ3lKadX3/HPbMQ/GK3/18RPh+XpW63HKV9/qjtuT71VSl6ZZze6+cQmsp7bmkqct7MpQkx5b77VH99v2DhxerPiRoXSotp3rf3cS9bQr38OQvlZbrUGWHdc4aLVOFklseVKp/f26d9yLmR3m61nJqXw+uqmdt0rWW19Kln21IbZ5RDS2nrc778IcWj8evfOyf7OWF0HK7Ut8jU/j+gvcPg9EylEHLkK/1bR9AnXbs2BGXXnpp3H336g94O9PGjRvjqquu6vvrr7/++pidnT35v3vvvbeKw2UIk5s39vz89j6fX83swuKKG/iIiNv2z8Qb990Zswt+SLAkOl5pnK70Q1u03FvJbdZxL0B7tJyGfl1t2rC+iPlBfbSc3v5U8r0A9dEybTNLq6FlWGnU+dLmHNByek5dD5s29P42q69PsUzL9Rt2xud6j0e7tFy91Vq0v1I3LVcvta/lLLPfl2vYjqtco9YVVKe0PbnO/dDsIWXDtNzUWk71/hRSVtq+3JTludaPuUNTcmzZ/QGslGPLbfK9JlLVxvtl+x1Uz75M2wb5s54Rvl/Qj5ap2qBtRuizSl1uue17fd+vpkpNt9x2P8PQGrno8p4MJSmx5X77/tFjJ+ynFCeVlnO6766Se3iqkkrLqatr1miZqmi5PW3di5gfZdJyu6roWZtEaHmZn20gd1pOm/fpDErL9NL29xfMnMFpGcqgZcjXhrYPoE7z8/Pxla98Jf7dv/t3A/3648ePxxe+8IX4yZ/8yZ6/btOmTbFp06YqDpERTW+biD07p+O2M264IyL27JyO6W0TQ/87Z+YXV9zAL7tt/0zMzC/G1Nbh/72kSccrjdOVfmiLlnsruc067gVoj5bT0Kur3ZecG3fcezAi8p8f1EfL6e1PJd8LUB8t0zaztBpahpVGnS9tzgEtp+fU9XDHvQdj9yXnxu13P7Di1/n6FKfScv2GnfG53uPRLi1Xb7UW7a/UTcvVS+1rOcvs9+UatuMq16h1BdUpbU+ucz80e0jZMC03tZZTvT+FlJW2Lzdlea794IU7fD2LJOTYsvsDWCnHltvke02kqo33y/Y7qJ59mbYN+mc9I3y/oBctU7Vh2ozQZ1W63HLb9/q+X02Vmm657X6GoTVy0eU9GUpSYsvT2ybiWTunV91Pd19ybnz6ngficZOb7acUJZWWc7rvrpJ7eKqSSsupq2vWaJmqaLk9bd2LmB9l0nK7quhZm0RoeZmfbSB3Wk6b9+kMSsv00vb3F8ycwWkZyqBlyNf6tg+gSr/4i78Yf/M3fxNf+9rX4tOf/nQ8//nPj7POOiuuvfbaiIh40YteFNdff/3JX/8rv/Ir8YlPfCLuueee+PznPx/XXXddfP3rX4+XvexlbZ0CA5raOhE37t0Ve3ZOn/bxPTun46a9u0a62Z47cqzn5w/1+Tzkbpyu9ANpKrnNOu4FoOvW6mr3JefGz+6+OD7wqa+e/FjO8wPqlNr+VPK9AFAusxSoy6jzxRzgVKeuhw986qvxs7svjt2XnHvar/H1KWjesDPebIc0rNai/RXyk9rXcpbZ71lW5Rq1roC11Lkfmj2Uoqm1nOr9KVCe5bm21teznmXuQF/uD4Bx+V4TJahqP7TfAZRnmD/rGeH7BdCUYduM0Cfjafte3/eryVnb/QxDawAwnqmtE/HLP/X9K74/dOp7Nfsp1COn++4quYeHZtU1a7QM+WvrXsT8gOpV0bM24VF+tgGok/fpQBXa/v6CmQMA5GJD2wdQpf/7f/9vXHvttfHAAw/EYx/72Lj66qvjs5/9bDz2sY+NiIgDBw7E+vXrT/76Bx98MF7+8pfHN7/5zTjnnHPiqU99anz605+OK664oq1TYAgX7NgS77n2qpiZX4xDR47F9s0bY3rbxMg3+5ObN/b8/PY+n4cSjNqVfiBNpbdZ9b0A8GhX988eiXtmHopNG9bHHfcejNd86I5YWDx+8tflPj+gTintT6XfCwDlMkuBuowyX8wBTnXqelhYPB6v+dAd8dKrL46X7r44jj58Ip44fXacP7XZ16egBcPMeLMd0rBai6fur2967hVx5Nhx3/+BDKT0tZxl9ntOVdUata6AXuraD80eStHkWk7x/hQoz/JcW+37RZs2rI9LHrstzt+xpeWjhLS5PwDG5XtNlKDK/dB+B1CeU2f7gwuLMXv42Kp/1jPC9wugSWfed23eeFZ87Av3r9pmhD4ZX5v3+r5fTe5yea+sNQAY37qIuOqic0772Y1Tv45iP4X65HLfXSX38NC8OmaNlqEMbdyLmB9Qj3F71iaczs82AHXyPh2ogp+LAwDor6gHzf/+7/9+z8/feuutp/3zu971rnjXu95V4xFRt6mt1d3gT2+biD07p+O2/TMrPrdn53RMbyv3B5XgVKN0pR9IUxfarPJeAHjEclM3/NmXip4fUKdU9qcu3AsA5TJLgboMO1/MAU515npYWDwev/HXd0fEI+vhPddelcT+BV016Iw32yENa7W4sHg87rz3YLz86ovtq5CRVL6Ws8x+z5mqWKPWFdBPHfuh2UMpml7Lqd2fAuU5da6d+v2iiEe/ZwT05v4AGJfvNVGCqvdD+x1AeZZn++zCYrz6Q3f4fgEk4tT7rtmFxbjz3oOr/kXs+qQqbd3r+341JcjhvbLWgDYcOHAgZmZWzp0mTU9Px0UXXdTqMVCOc8+eiDvvPXjaz28ss59C/XK4766Se3hoR9WzRstQjqbvRcwPqM84PWsTVvKzDUCdvE8HquDn4gAAelvf9gFAKqa2TsSNe3fFnp3Tp318z87puGnvrk794BIMSz+QJm0CozI/oAxaBhifWQqYA5zKeoAyaBnSoEWgTmYMdbCugDaYPZTCWgZKY67B+HQEjMscoQTWMQCDsmdAuvRJyaxvaIbWgKYdOHAgnvzky+OpT31qq/978pMvjwMHDrR9OSiE/RRokpkDZdAyMCrzA9KkTehNI0DqzCmgSWYOAJCLdUtLS0ttH0Tu5ubmYmpqKmZnZ2NycrLtw2FMswuLMTO/GIeOHIvtmzfG9LYJN/AdoONq6Ie2aXl12iQ3Wk6H+cE4tJwOLTMOLcMjcp+lWobxpTAHtJyOFNYD+dJyOrTMOLRcHS3SJi2Xz4wpXxsdW1dQPXtyf2YPORikZWsZ0mdfHo65RqpyallHsLacWm6TOULqvF+GMtiXSYU9Yzxapk76bI6Wm2d9Uwctr6Q1cqPjfH3+85+Ppz71qfH0l74lJs//vlaOYe7+r8XffuCt8bnPfS6e8pSntHIMPKK0lu2ndFVpLefCzKFqWm6HlqmalrvD/CiblvOlTU6l5ZU0Qo603C3mVLm0TIrMnOFpGcqgZcjHhrYPAFIztdVNO4xKP5AmbQKjMj+gDFoGGJ9ZCpgDnMp6gDJoGdKgRaBOZgx1sK6ANpg9lMJaBkpjrsH4dASMyxyhBNYxAIOyZ0C69EnJrG9ohtaApk2e/33xmIsua/swoFL2U6BJZg6UQcvAqMwPSJM2oTeNAKkzp4AmmTkAQOrWt30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3jQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGbWj7AAAAAAAAAAAAAAAAAAAAAAAAAAAAgHIcOHAgZmZmWj2G6enpuOiii1o9hhSuw5e+9KVW//unSuFYUlgXAAAAAAAAAAAAcCoPmgcAAAAAAAAAAAAAAAAAAAAAAAAAACpx4MCBePKTL4/DhxdaPY4tW7bGP//zl1p7qHgq12HZsaOLrf23D88+EBHr4rrrrmvtGJa1vS4AAAAAAAAAAADgTB40DwAAAAAAAAAAAAAAAAAAAAAAAAAAVGJmZiYOH16Ip7/0LTF5/ve1cgxz938t/vYDb42ZmZnWHiiewnWIiLj/C5+JL/7J++Phhx9u7RiOLRyKiKX4of/3DfHYi5/c2nGksC4AAAAAAAAAAADgTB40DwAAAAAAAAAAAAAAAAAAAAAAAAAAVGry/O+Lx1x0WduH0bq2r8Pc/V9r7b99pm3nXWRNAAAAAAAAAAAAwBnWt30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF3jQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAADg/2fv/qM8K+vDjn922Z1ll2UGcZRf3dXVLIjCGkCbIrqVc5pDWmlLS+kJCcf8aNImxqA2BqSmjdRGoAXFaILHkwQ0p5pTz1ZP0jZRNEfRQIxCc0iswBIkW0FMJ8rMbpadWWH6R84uzM7v79zvvff5PK/XOfyxM7Prc+/3eX+e73dFLwAAAAAAAAAAAAAAAAAAAAAAAAC0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFq2oesFNOld73pXXH/99XO+dtZZZ8UDDzyw6O/5xCc+Ef/+3//7ePTRR2Pnzp1x0003xT/6R/9o2EsFAAAAAAAAAAAAAAAAAAAAAAAAAACgZV//+tc7/c8fHx+P7du3d7oGAAAAAAAAAAAA+iPVg+YjIl7xilfEZz/72aO/3rBh8Uu8++6748orr4wbbrghLr300vjYxz4Wl112Wdx3331xzjnntLFcAAAAAAAAAAAAAAAAAAAAAAAAAAAAhuypyb+OiHVx1VVXdbqOzZu3xAMPfN3D5gEAAAAAAAAAAIiIhA+a37BhQ5x66qkr+tn3v//98UM/9EPxi7/4ixER8e53vzvuvPPO+OAHPxgf+tCHhrlMAAAAAAAAAAAAAAAAAAAAAAAAAAAAWnL44P6ImI3v/5Fr4wU7XtbJGqa+9Wh8+beuj4mJCQ+aBwAAAAAAAAAAICISPmh+7969cfrpp8fxxx8fF154Ydxwww2L/ktz99xzT/zbf/tv53ztkksuiU996lNL/mdMT0/H9PT00V9PTU2ted1Au3QMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfDoms60v3B4nbz+r62W0QsuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoVzru15Ak37gB34g7rjjjviDP/iDuO222+Ib3/hGvO51r4v9+/cv+PNPPPFEnHLKKXO+dsopp8QTTzyx5H/ODTfcEGNjY0f/2bZtW2PXALRDx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfDqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahXOtmZ2dnu17EsDz55JPxohe9KN773vfGv/pX/2re90dGRuIjH/lIXHnllUe/9uu//utx/fXXx7e//e1F/9zp6emYnp4++uupqanYtm1bTE5OxujoaLMXAQyFjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1D+XQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMpRvLR3fd999ccEFF8QPvvP2OHn7WcNe6oK+s+/BuPNXfiLuvffeOP/88ztZQx/uQ0TEo1/+dHz5t66P17711+KMs8+rdg19WUfbe9OZDDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnKtaHrBQzTSSedFGeeeWY8/PDDC37/1FNPnfdA+W9/+9tx6qmnLvnnbtq0KTZt2tTYOoH26Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylE/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP5dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylGt91wsYpgMHDsRf/MVfxGmnnbbg9y+88ML43Oc+N+drd955Z1x44YVtLA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoVKoHzb/97W+PL3zhC/Hoo4/G3XffHf/sn/2zOO644+LKK6+MiIg3vvGNcd111x39+be85S3xB3/wB3HLLbfEAw88EO9617viq1/9arz5zW/u6hIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACACmzoegFN+uY3vxlXXnll/PVf/3W84AUviNe+9rXxx3/8x/GCF7wgIiL27dsX69evP/rzr3nNa+JjH/tY/NIv/VL8u3/372Lnzp3xqU99Ks4555yuLgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoQKoHzf/O7/zOkt///Oc/P+9rV1xxRVxxxRVDWhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAfOu7XgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAbTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlG7peAGs3eXAmJg7MxNShwzG6eWOMnzASY1tGul4WpKM1AGrgvJvL/YD26A1YiNkArIRZAfSR2UTX7EGoh96hPLqFfHQN9dA7dE+HwCDMDiAL84xj2RPAUswI6J4OoTy6hZy0DUAbnDdAVuYb5KBlyEXTUDYNQ24aB5pinsDqaAYAAIBsPGi+cI8/+VRcu+f++OLeiaNf271zPG68fFecftLmDlcGuWgNgBo47+ZyP6A9egMWYjYAK2FWAH1kNtE1exDqoXcoj24hH11DPfQO3dMhMAizA8jCPONY9gSwFDMCuqdDKI9uISdtA9AG5w2QlfkGOWgZctE0lE3DkJvGgaaYJ7A6mgEAACCj9V0vgMFNHpyZ95cVERF37Z2Id+y5PyYPznS0MshFawDUwHk3l/sB7dEbsBCzAVgJswLoI7OJrtmDUA+9Q3l0C/noGuqhd+ieDoFBmB1AFuYZx7IngKWYEdA9HUJ5dAs5aRuANjhvgKzMN8hBy5CLpqFsGobcNA40xTyB1dEMAAAAWXnQfMEmDszM+8uKI+7aOxETB/yFBTRBawDUwHk3l/sB7dEbsBCzAVgJswLoI7OJrtmDUA+9Q3l0C/noGuqhd+ieDoFBmB1AFuYZx7IngKWYEdA9HUJ5dAs5aRuANjhvgKzMN8hBy5CLpqFsGobcNA40xTyB1dEMAAAAWXnQfMGmDh1e8vv7l/k+sDJaA6AGzru53A9oj96AhZgNwEqYFUAfmU10zR6EeugdyqNbyEfXUA+9Q/d0CAzC7ACyMM84lj0BLMWMgO7pEMqjW8hJ2wC0wXkDZGW+QQ5ahlw0DWXTMOSmcaAp5gmsjmYAAADIyoPmCzZ6/MYlv3/iMt8HVkZrANTAeTeX+wHt0RuwELMBWAmzAugjs4mu2YNQD71DeXQL+ega6qF36J4OgUGYHUAW5hnHsieApZgR0D0dQnl0CzlpG4A2OG+ArMw3yEHLkIumoWwahtw0DjTFPIHV0QwAAABZedB8wca3jsTuneMLfm/3zvEY3zrS8oogJ60BUAPn3VzuB7RHb8BCzAZgJcwKoI/MJrpmD0I99A7l0S3ko2uoh96hezoEBmF2AFmYZxzLngCWYkZA93QI5dEt5KRtANrgvAGyMt8gBy1DLpqGsmkYctM40BTzBFZHMwAAAGTlQfMFG9syEjdevmveX1rs3jkeN12+K8a2+AsLaILWAKiB824u9wPaozdgIWYDsBJmBdBHZhNdswehHnqH8ugW8tE11EPv0D0dAoMwO4AszDOOZU8ASzEjoHs6hPLoFnLSNgBtcN4AWZlvkIOWIRdNQ9k0DLlpHGiKeQKroxkAAACy2tD1AmoxeXAmJg7MxNShwzG6eWOMnzDSyF8onH7S5vjAlefFxIGZ2H/ocJx4/MYY39rMnw08q63WhjUrgGfpDBZX0nvLNlou6X5AqY60fGD6cLz7snNi5nvPxN9Mf09vUBh/7wU5lPp52ayA+UrtOROzibVaa8f2IPSDv8eGHJpuWbfQH031rWtoRx/+zkvv0L3ndjj51OHYMnJcrF+/Lp46/HRMHpzRI7Cg00/aHP/lilfGd/9mJqYOfS9GN2+I520ZiVNGj+96aQCr4jNJu/rwOXQ5JeyJEu4jZLWSGaFRGJ7JgzNx6PDT8UuXvjyemZ2Ng9NPx9jm/p3VwFx9eI/tfIZmPLelsc0b479c8co4cOh7vf38DCzMuUhJ+vBeEmAYVjvfnN/QT315r2JGwNr576CgfEudy85KKMtCzfblvTcwuL6cx+YJrM4gzfSld+BZugQAgLk8aL4Fjz/5VFy75/744t6Jo1/bvXM8brx8V5x+0uY1//ljW3ywgTYMu7VhzwpAZ7ASJby3bLPlEu4HlMq5DDn4ey/IofRz2ayAZ5XecyZmE4NqqmN7ELrl77Ehh2G1rFvoXtN96xqGq09/56V36N7YlpH4m5mn412/97VezAWg//r0XgJgrXwmaUdJZ0ef90RJ9xGyWmpGaBSGZ6m++npuA8/q8j228xmasVRLL33h1g5XBqyGc5ES9fnvawHWYqXzzfkN/db1exUzAtbOfwcFeSx0LjsroSzLNetshjL17Tzu+rM8lGY1zfStd0CXAACwkPVdLyC7yYMz8z6IRETctXci3rHn/pg8ONPRyoA+MStg+HQGOWgZctAy5KBlyEHLkIeeoXw6hhy0DDloGfLSN5RFs8CxzAVgNcwMAFbL2dEM9xH6TaMwPPoCBmV+QDO0BDloGQDK4/wGlmJGwNrpCHLTOJRFs5CTtqEeeof+0SUAACzMg+aHbOLAzLwPIkfctXciJg74MAKYFdAGnUEOWoYctAw5aBly0DLkoWcon44hBy1DDlqGvPQNZdEscCxzAVgNMwOA1XJ2NMN9hH7TKAyPvoBBmR/QDC1BDloGgPI4v4GlmBGwdjqC3DQOZdEs5KRtqIfeoX90CQAAC/Og+SGbOnR4ye/vX+b7QB3MChg+nUEOWoYctAw5aBly0DLkoWcon44hBy1DDlqGvPQNZdEscCxzAVgNMwOA1XJ2NMN9hH7TKAyPvoBBmR/QDC1BDloGgPI4v4GlmBGwdjqC3DQOZdEs5KRtqIfeoX90CQAAC/Og+SEbPX7jkt8/cZnvA3UwK2D4dAY5aBly0DLkoGXIQcuQh56hfDqGHLQMOWgZ8tI3lEWzwLHMBWA1zAwAVsvZ0Qz3EfpNozA8+gIGZX5AM7QEOWgZAMrj/AaWYkbA2ukIctM4lEWzkJO2oR56h/7RJQAALMyD5odsfOtI7N45vuD3du8cj/GtIy2vCOgjswKGT2eQg5YhBy1DDlqGHLQMeegZyqdjyEHLkIOWIS99Q1k0CxzLXABWw8wAYLWcHc1wH6HfNArDoy9gUOYHNENLkIOWAaA8zm9gKWYErJ2OIDeNQ1k0CzlpG+qhd+gfXQIAwMI8aH7IxraMxI2X75r3gWT3zvG46fJdMbbFhxHArIA26Axy0DLkoGXIQcuQg5YhDz1D+XQMOWgZctAy5KVvKItmgWOZC8BqmBkArJazoxnuI/SbRmF49AUMyvyAZmgJctAyAJTH+Q0sxYyAtdMR5KZxKItmISdtQz30Dv2jSwAAWNiGrhdQg9NP2hwfuPK8mDgwE/sPHY4Tj98Y41tHfBAB5jArYPh0BjloGXLQMuSgZchBy5CHnqF8OoYctAw5aBny0jeURbPAscwFYDXMDABWy9nRDPcR+k2jMDz6AgZlfkAztAQ5aBkAyuP8BpZiRsDa6Qhy0ziURbOQk7ahHnqH/tElAADM50HzLRnb4sMHsDyzAoZPZ5CDliEHLUMOWoYctAx56BnKp2PIQcuQg5YhL31DWTQLHMtcAFbDzABgtZwdzXAfod80CsOjL2BQ5gc0Q0uQg5YBoDzOb2ApZgSsnY4gN41DWTQLOWkb6qF36B9dAgDAXOu7XgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAbTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlG7peAMMzeXAmJg7MxNShwzG6eWOMnzASY1tGul4WcAytAjUzA8nCXob+0ynkpW/oJ21CXTQP3dMh5KRtyEnbkJvGIRdNQ//oEsjIbANKZX7Vx2sOHGEewHy6AJpglkB+OgegCc4TIBMzDXLQMrBS5gUsTh9QF81DP2gRctAy1En7AABk50HzST3+5FNx7Z7744t7J45+bffO8bjx8l1x+kmbO1wZ8FxaBWpmBpKFvQz9p1PIS9/QT9qEumgeuqdDyEnbkJO2ITeNQy6ahv7RJZCR2QaUyvyqj9ccOMI8gPl0ATTBLIH8dA5AE5wnQCZmGuSgZWClzAtYnD6gLpqHftAi5KBlqJP2AQCowfquF0DzJg/OzPswExFx196JeMee+2Py4ExHKwOeS6tAzcxAsrCXof90CnnpG/pJm1AXzUP3dAg5aRty0jbkpnHIRdPQP7oEMjLbgFKZX/XxmgNHmAcwny6AJpglkJ/OAWiC8wTIxEyDHLQMrJR5AYvTB9RF89APWoQctAx10j4AALXwoPmEJg7MzPswc8Rdeydi4oAPNNAHWgVqZgaShb0M/adTyEvf0E/ahLpoHrqnQ8hJ25CTtiE3jUMumob+0SWQkdkGlMr8qo/XHDjCPID5dAE0wSyB/HQOQBOcJ0AmZhrkoGVgpcwLWJw+oC6ah37QIuSgZaiT9gEAqIUHzSc0dejwkt/fv8z3gXZoFaiZGUgW9jL0n04hL31DP2kT6qJ56J4OISdtQ07ahtw0DrloGvpHl0BGZhtQKvOrPl5z4AjzAObTBdAEswTy0zkATXCeAJmYaZCDloGVMi9gcfqAumge+kGLkIOWoU7aBwCgFh40n9Do8RuX/P6Jy3wfaIdWgZqZgWRhL0P/6RTy0jf0kzahLpqH7ukQctI25KRtyE3jkIumoX90CWRktgGlMr/q4zUHjjAPYD5dAE0wSyA/nQPQBOcJkImZBjloGVgp8wIWpw+oi+ahH7QIOWgZ6qR9AABq4UHzCY1vHYndO8cX/N7uneMxvnWk5RUBC9EqUDMzkCzsZeg/nUJe+oZ+0ibURfPQPR1CTtqGnLQNuWkcctE09I8ugYzMNqBU5ld9vObAEeYBzKcLoAlmCeSncwCa4DwBMjHTIActAytlXsDi9AF10Tz0gxYhBy1DnbQPAEAtPGg+obEtI3Hj5bvmfajZvXM8brp8V4xt8YEG+kCrQM3MQLKwl6H/dAp56Rv6SZtQF81D93QIOWkbctI25KZxyEXT0D+6BDIy24BSmV/18ZoDR5gHMJ8ugCaYJZCfzgFogvMEyMRMgxy0DKyUeQGL0wfURfPQD1qEHLQMddI+AAC12ND1AhiO00/aHB+48ryYODAT+w8djhOP3xjjW0d8mIGe0SpQMzOQLOxl6D+dQl76hn7SJtRF89A9HUJO2oactA25aRxy0TT0jy6BjMw2oFTmV3285sAR5gHMpwugCWYJ5KdzAJrgPAEyMdMgBy0DK2VewOL0AXXRPPSDFiEHLUOdtA8AQA08aD6xsS0+wEAJtArUzAwkC3sZ+k+nkJe+oZ+0CXXRPHRPh5CTtiEnbUNuGodcNA39o0sgI7MNKJX5VR+vOXCEeQDz6QJoglkC+ekcgCY4T4BMzDTIQcvASpkXsDh9QF00D/2gRchBy1An7QMAkN36rhcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUBsPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRsQ9cLyGB2djYiIqampjpeCdTjxBNPjHXr1jX25+kYuqFlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZcihyZZ1DN1wJkMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLr69zcPHDgQERGT33wknvne043856/W/if+MiIi7rvvvqPradtDDz0UEd3eh4iIA3/1WERETD3xaGzatKnaNfRlHUf25oEDB1bUkzMZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMpRv0I7XzR4ploF985vfjG3btnW9DKjK5ORkjI6ONvbn6Ri6oWXIQcuQg5YhBy1DDk23/Mgjj8RLX/rSxv48YGWcy5CDliEHLUMOWoYcmmxZx9ANZzLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyMG/vwnlcyZDDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvIN2rEHzTfgmWeeiccffzxOPPHEWLduXdfL6b2pqanYtm1b/N//+38bPXxqVPO9bLq3YXVc82t0LPfib7kPcw2r5dnZ2di+fXuq+5x172S8rhqvqZRzuWkZX+sjsl5b1uuKaObahtHygw8+GC9/+ctT3vOVyrzvVso9aPcetH0ue33dgwj3IKL5e9B0y08++WQ873nPi3379sXY2Fhjf26Xsu27bNcTke+aBrmeWj8vH5FtD6xGrdee9br9PfbKZHv9XU+/OZdXLttrPwzu0fL6dI9qbfm5+vR6rIXr6Je2r6PJ5prsOMvr2Sb3bDAZ7ltfzuQM93IY3JfFuTdz9aXlrmXbF66n34ZxPX1pOdtrFeGaSpHlmvrSchuyvGZ94F42q6//LvZCLXvtm+NeNiPbfezDuVzyPS157RHW37Um19+HlptS+uu6GNdVni6uLVPLbci8/xZT2zWXer3+946rU/r6I8q/ButfmP9dxVyl7hPrblcf193Xf3+zLX18TZrk+sq20uvL+Fk5y2ub4ToyXENEGddRUssl3M9jWXM7rLmslptQ4mveN+7h2mX+d7EXYs8szr1ZWM33pY8tl/h6lLjmiDLXbc0L62PLTSrxdV+I6+iPvl5Dmy339R5k4f4OTwn3totzuYT7Miyuvc5rjxj+9Xf1HjvL6+o6+iXLdUSs/lq0vDauo19qvY5BO94wyOKYa/369fF3/s7f6XoZxRkdHS060j5xL9du2B17jZ7lXvwt92E4jrQ8NTUVETnvc8Zrish5Xa5pcKW9v874Wh+R9dqyXldEv65t/fr1ccYZZ0REv9bVFffAPYgo8x6s9Fwu8dqa5h64BxH9vQfr16+PiIixsbFerm8t+nrPB5XteiLyXVOX11Pa5+Ujsu2B1aj12mu97pXK/vfYrqffXE9zSjuXs732w+AeLS/jPSqt5efK8nq4jn4p8TqG0XGJ96Fr7tlg3LdnrbVl93Jh7svi3JvhKPn9dUS+feF6+q3P1+Ncns81lSHjNa1FCeey16w57mWz+nQ/l2u5T2stnXvZDPdxYWs5l0u+pyWvPcL6u9bH9ffhPXYf70sTXFd5Sr62PrTchpJfo0HVds21Xe+xavnfO5a+/ojyr8H6hyvL/67Cuttl3f1S8vvrrK/JEa6vbG1fX59azvLaZriODNcQkec6VqKNlku8n9bcDmtuTp/O5aX09f6VxD1cuz7fQ/97x3a5NwtzX9auyZZLfD1KXHNEmeu25uHq63vsku7hUlxHf2S4hqWspOXs96Br7u/w1HRvV3Mu13RfjuXa67z2iHKuf7XvsUu5ruW4jn7Jch0R3V2LlsvmOvpl2Nexfmh/MgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL8qB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZ50Dyt27RpU/zyL/9ybNq0qeulFM+97D+v0bPci7/lPrQj433OeE0ROa/LNdUj833Jem1Zryuiv9fW13W1yT1wDyJy34PM17ZS7oF7ENH/e9D39Q0i2zVlu56IfNeU7XraUPM9q/Xaa73uQWW7X66n31xPvdyr5blHy3OP+iXL6+E6+iXLdayV+7B67tlg3LfmuJcLc18W596wkGz7wvX0W7brea6M1+aaypDxmrLzmjXHvWxWSfezpLX2nXvZDPexeSXf05LXHmH9XSt9/cOS9b64rvJkvrYsanyNarvm2q53UKXfp9LXH1H+NVh/u0pb7xHW3S7rpinZXxPXV7bs17eULNee4ToyXENEnuvoixLvpzW3w5rr4/6tnXu4drXdw9qudzXcm4W5L/1S4utR4pojyly3Ndcpyz10Hf2R4RrWyj0YLvd3eNzbhdV8X1x7ndcekff6s1yX6+iXLNcRUc61lLLO5biOfnEdq7NudnZ2dqj/CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMsb7rBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUxoPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAyD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJkHzTforrvuin/8j/9xnH766bFu3br41Kc+teo/Y3Z2Nm6++eY488wzY9OmTXHGGWfEr/zKrzS/WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAzG7peQCZ/8zd/E6985SvjJ3/yJ+Of//N/PtCf8Za3vCU+85nPxM033xznnntufOc734nvfOc7Da8UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6NK62dnZ2a4XkdG6devik5/8ZFx22WVHvzY9PR3vfOc74+Mf/3g8+eSTcc4558RNN90Ur3/96yMi4utf/3rs2rUr/vzP/zzOOuusbhYOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN36rhdQkze/+c1xzz33xO/8zu/E/fffH1dccUX80A/9UOzduzciIn7v934vXvKSl8T/+B//I3bs2BEvfvGL46d+6qfiO9/5TscrBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrkQfMt2bdvX9x+++3xiU98Il73utfFS1/60nj7298er33ta+P222+PiIhHHnkk/vIv/zI+8YlPxEc/+tG444474t57741/8S/+RcerBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJq0oesF1OLP/uzP4umnn44zzzxzztenp6fj+c9/fkREPPPMMzE9PR0f/ehHj/7cb/7mb8YFF1wQDz74YJx11lmtrxsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABongfNt+TAgQNx3HHHxb333hvHHXfcnO9t3bo1IiJOO+202LBhw5yH0Z999tkREbFv3z4PmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAkPGi+Jeedd148/fTT8Vd/9Vfxute9bsGfueiii+J73/te/MVf/EW89KUvjYiIhx56KCIiXvSiF7W2VgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGC41s3Ozs52vYgsDhw4EA8//HBE/O2D5d/73vfGxRdfHCeffHJs3749rrrqqvijP/qjuOWWW+K8886L//f//l987nOfi127dsUb3vCGeOaZZ+LVr351bN26NW699dZ45pln4ud+7udidHQ0PvOZz3R8dQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBTPGi+QZ///Ofj4osvnvf1H/uxH4s77rgjDh8+HP/pP/2n+OhHPxqPPfZYjI+Px9/7e38vrr/++jj33HMjIuLxxx+Pn//5n4/PfOYzccIJJ8Q//If/MG655ZY4+eST274cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYEg8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZeu7XgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAbTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlHjTfgNnZ2ZiamorZ2dmulwIMSMeQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoXw6hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnKp2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWoRweNN+A/fv3x9jYWOzfv7/rpQAD0jHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlKJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoby6Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlKIcHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMs2dL0AgMmDMzFxYCamDh2O0c0bY/yEkRjbMtL1soBV0jL0m0ahLpqHHLQMOWgZFqcP2mbPAeRgnkMOWoYctAzl0zHkoGXIQcv0hb0I3dIgQHPMVMhBy1AWzUJuGocctExG9jVQIrMLAPrDuQw5aBmGQ1vAIMyOOnidgSaYJQArY14CQH08aB7o1ONPPhXX7rk/vrh34ujXdu8cjxsv3xWnn7S5w5UBq6Fl6DeNQl00DzloGXLQMixOH7TNngPIwTyHHLQMOWgZyqdjyEHLkIOW6Qt7EbqlQYDmmKmQg5ahLJqF3DQOOWiZjOxroERmFwD0h3MZctAyDIe2gEGYHXXwOgNNMEsAVsa8BIA6re96AUC9Jg/OzPsQEhFx196JeMee+2Py4ExHKwNWQ8vQbxqFumgectAy5KBlWJw+aJs9B5CDeQ45aBly0DKUT8eQg5YhBy3TF/YidEuDAM0xUyEHLUNZNAu5aRxy0DIZ2ddAicwuAOgP5zLkoGUYDm0BgzA76uB1BppglgCsjHkJAPXyoHmgMxMHZuZ9CDnirr0TMXHABxEogZah3zQKddE85KBlyEHLsDh90DZ7DiAH8xxy0DLkoGUon44hBy1DDlqmL+xF6JYGAZpjpkIOWoayaBZy0zjkoGUysq+BEpldANAfzmXIQcswHNoCBmF21MHrDDTBLAFYGfMSAOrlQfNAZ6YOHV7y+/uX+T7QD1qGftMo1EXzkIOWIQctw+L0QdvsOYAczHPIQcuQg5ahfDqGHLQMOWiZvrAXoVsaBGiOmQo5aBnKolnITeOQg5bJyL4GSmR2AUB/OJchBy3DcGgLGITZUQevM9AEswRgZcxLAKiXB80DnRk9fuOS3z9xme8D/aBl6DeNQl00DzloGXLQMixOH7TNngPIwTyHHLQMOWgZyqdjyEHLkIOW6Qt7EbqlQYDmmKmQg5ahLJqF3DQOOWiZjOxroERmFwD0h3MZctAyDIe2gEGYHXXwOgNNMEsAVsa8BIB6edA80JnxrSOxe+f4gt/bvXM8xreOtLwiYBBahn7TKNRF85CDliEHLcPi9EHb7DmAHMxzyEHLkIOWoXw6hhy0DDlomb6wF6FbGgRojpkKOWgZyqJZyE3jkIOWyci+BkpkdgFAfziXIQctw3BoCxiE2VEHrzPQBLMEYGXMSwColwfNA50Z2zISN16+a96Hkd07x+Omy3fF2BYfRKAEWoZ+0yjURfOQg5YhBy3D4vRB2+w5gBzMc8hBy5CDlqF8OoYctAw5aJm+sBehWxoEaI6ZCjloGcqiWchN45CDlsnIvgZKZHYBQH84lyEHLcNwaAsYhNlRB68z0ASzBGBlzEsAqNe62dnZ2a4XUbqpqakYGxuLycnJGB0d7Xo5UJzJgzMxcWAm9h86HCcevzHGt460/iFEx7B2WoZ+60OjK6VlWLs+NK9lWDstQw5ahsX1oY+SaHnt7Dn6QMuwdn2Y51qGtdMy5NB1yzqGteu64wgtQxO0DDlomb7ow15kbbRcNg1yhJZh7fowU7UMa6dlKEsfml2MlmHt+tC4lmHttExGfdjXtdExrF0fZpeWIQctw9o5lyEHLcNw9KGttmkZ1q4Ps0PLw9eH15n8tJyfWVIHLcPa9WFeahly0DKUY0PXCwAY2+IvaiADLUO/aRTqonnIQcuQg5ZhcfqgbfYcQA7mOeSgZchBy1A+HUMOWoYctExf2IvQLQ0CNMdMhRy0DGXRLOSmcchBy2RkXwMlMrsAoD+cy5CDlmE4tAUMwuyog9cZaIJZArAy5iUA1Gd91wsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqI0HzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAyD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAyD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0LN2D5h977LG46qqr4vnPf35s3rw5zj333PjqV7+66M9//vOfj3Xr1s3754knnmhx1QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBNNnS9gCZ997vfjYsuuiguvvji+P3f//14wQteEHv37o3nPe95y/7eBx98MEZHR4/++oUvfOEwlwoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABULNWD5m+66abYtm1b3H777Ue/tmPHjhX93he+8IVx0kknDWllAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM9K9aD53/3d341LLrkkrrjiivjCF74QZ5xxRrzpTW+Kn/7pn172937/939/TE9PxznnnBPvete74qKLLlr0Z6enp2N6evror6emphpZP9AeHUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG8ukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZSifjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGcq3vegFNeuSRR+K2226LnTt3xqc//en42Z/92bj66qvjIx/5yKK/57TTTosPfehDsWfPntizZ09s27YtXv/618d999236O+54YYbYmxs7Og/27ZtG8blAEOkY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQrnWzs7OzXS+iKSMjI/GqV70q7r777qNfu/rqq+MrX/lK3HPPPSv+c/7+3//7sX379vjt3/7tBb8/PT0d09PTR389NTUV27Zti8nJyRgdHR38AoDW6Bhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylE/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP5dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylGtD1wto0mmnnRYvf/nL53zt7LPPjj179qzqz/m7f/fvxpe+9KVFv79p06bYtGnTQGsE+kHHkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqF8OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZyqdjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqFc67teQJMuuuiiePDBB+d87aGHHooXvehFq/pz/vRP/zROO+20JpcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcNSGrhfQpLe97W3xmte8Jt7znvfEv/yX/zL+5E/+JD784Q/Hhz/84aM/c91118Vjjz0WH/3oRyMi4tZbb40dO3bEK17xijh06FD8xm/8RvzhH/5hfOYzn+nqMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDkUj1o/tWvfnV88pOfjOuuuy7+43/8j7Fjx4649dZb40d/9EeP/sy3vvWt2Ldv39Ffz8zMxC/8wi/EY489Flu2bIldu3bFZz/72bj44ou7uAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgAqkeNB8Rcemll8all1666PfvuOOOOb++5ppr4pprrhnyqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACetb7rBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUxoPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAyD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAyD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAyD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJkHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMs8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAyD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaNmGrhcAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9Me+fftiYmKi62UsaXx8PLZv3971MgAAAAAAAAAAANbEg+YBAAAAAAAAAAAAAAAAAAAAAAAAAACAiPjbh8y/7GVnx1NPHex6KUvavHlLPPDA1z1sHgAAAAAAAAAAKJoHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAARETExMRFPPXUwfuAnfzlGT3tx18tZ0NS3Ho0v/9b1MTEx4UHzAAAAAAAAAABA0TxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAJhj9LQXx8nbz+p6GQAAAAAAAAAAAKmt73oBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALVJ96D5xx57LK666qp4/vOfH5s3b45zzz03vvrVry75ez7/+c/H+eefH5s2bYrv+77vizvuuKOdxQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVSvWg+e9+97tx0UUXxcaNG+P3f//34//8n/8Tt9xySzzvec9b9Pd84xvfiDe84Q1x8cUXx5/+6Z/GW9/61vipn/qp+PSnP93iygEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICabOh6AU266aabYtu2bXH77bcf/dqOHTuW/D0f+tCHYseOHXHLLbdERMTZZ58dX/rSl+J973tfXHLJJUNdLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCnVA+a/93f/d245JJL4oorrogvfOELccYZZ8Sb3vSm+Omf/ulFf88999wT/+Af/IM5X7vkkkvirW9966K/Z3p6Oqanp4/+empqas1rB9qlY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQPh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOXTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQrvVdL6BJjzzySNx2222xc+fO+PSnPx0/+7M/G1dffXV85CMfWfT3PPHEE3HKKafM+dopp5wSU1NT8dRTTy34e2644YYYGxs7+s+2bdsavQ5g+HQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcqnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahfDqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcq1bnZ2drbrRTRlZGQkXvWqV8Xdd9999GtXX311fOUrX4l77rlnwd9z5plnxk/8xE/Eddddd/Rr/+t//a94wxveEAcPHozNmzfP+z3T09MxPT199NdTU1Oxbdu2mJycjNHR0QavCBgWHUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG8ukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZSifjiGHQVu+77774oILLogffOftcfL2s9pY6qp9Z9+Dceev/ETce++9cf7553e9HBgq5zLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylGtD1wto0mmnnRYvf/nL53zt7LPPjj179iz6e0499dT49re/Pedr3/72t2N0dHTBh8xHRGzatCk2bdq09gUDndEx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZSifjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG8ukYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZSjX+q4X0KSLLrooHnzwwTlfe+ihh+JFL3rRor/nwgsvjM997nNzvnbnnXfGhRdeOJQ1AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKR60Pzb3va2+OM//uN4z3veEw8//HB87GMfiw9/+MPxcz/3c0d/5rrrros3vvGNR3/9Mz/zM/HII4/ENddcEw888ED8+q//evy3//bf4m1ve1sXlwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUINWD5l/96lfHJz/5yfj4xz8e55xzTrz73e+OW2+9NX70R3/06M9861vfin379h399Y4dO+J//s//GXfeeWe88pWvjFtuuSV+4zd+Iy655JIuLgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACowIauF9C0Sy+9NC699NJFv3/HHXfM+9rrX//6+N//+38PcVUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAz0r3oHnIYvLgTEwcmImpQ4djdPPGGD9hJMa2jHS9LCiargDmMxuphb0OOWgZWCtzBHLSNseyJ4CSmWFQDr1CfjqHbmkQOMI8gLk0AfXSPwxGO0ApzCsoh16BWph30B39Qbs0B/2iSegPPQJADs50yE/ngDkAuWi6bl5/gG6Yv1An7QMAfeZB89BDjz/5VFy75/744t6Jo1/bvXM8brx8V5x+0uYOVwbl0hXAfGYjtbDXIQctA2tljkBO2uZY9gRQMjMMyqFXyE/n0C0NAkeYBzCXJqBe+ofBaAcohXkF5dArUAvzDrqjP2iX5qBfNAn9oUcAyMGZDvnpHDAHIBdN183rD9AN8xfqpH0AoO/Wd70AYK7JgzPzPkRERNy1dyLesef+mDw409HKoFy6ApjPbKQW9jrkoGVgrcwRyEnbHMueAEpmhkE59Ar56Ry6pUHgCPMA5tIE1Ev/MBjtAKUwr6AcegVqYd5Bd/QH7dIc9IsmoT/0CAA5ONMhP50D5gDkoum6ef0BumH+Qp20DwCUwIPmoWcmDszM+xBxxF17J2LigA8SsFq6ApjPbKQW9jrkoGVgrcwRyEnbHMueAEpmhkE59Ar56Ry6pUHgCPMA5tIE1Ev/MBjtAKUwr6AcegVqYd5Bd/QH7dIc9IsmoT/0CAA5ONMhP50D5gDkoum6ef0BumH+Qp20DwCUwIPmoWemDh1e8vv7l/k+MJ+uAOYzG6mFvQ45aBlYK3MEctI2x7IngJKZYVAOvUJ+OoduaRA4wjyAuTQB9dI/DEY7QCnMKyiHXoFamHfQHf1BuzQH/aJJ6A89AkAOznTIT+eAOQC5aLpuXn+Abpi/UCftAwAl8KB56JnR4zcu+f0Tl/k+MJ+uAOYzG6mFvQ45aBlYK3MEctI2x7IngJKZYVAOvUJ+OoduaRA4wjyAuTQB9dI/DEY7QCnMKyiHXoFamHfQHf1BuzQH/aJJ6A89AkAOznTIT+eAOQC5aLpuXn+Abpi/UCftAwAl8KB56JnxrSOxe+f4gt/bvXM8xreOtLwiKJ+uAOYzG6mFvQ45aBlYK3MEctI2x7IngJKZYVAOvUJ+OoduaRA4wjyAuTQB9dI/DEY7QCnMKyiHXoFamHfQHf1BuzQH/aJJ6A89AkAOznTIT+eAOQC5aLpuXn+Abpi/UCftAwAl8KB56JmxLSNx4+W75n2Y2L1zPG66fFeMbfFBAlZLVwDzmY3Uwl6HHLQMrJU5Ajlpm2PZE0DJzDAoh14hP51DtzQIHGEewFyagHrpHwajHaAU5hWUQ69ALcw76I7+oF2ag37RJPSHHinZ17/+9bjvvvt6+c++ffu6vj1AZZzpkJ/OAXMActF03bz+AN0wf6FO2gcASrBudnZ2tutFRER85StfiY9//OPx0EMPRUTEmWeeGT/yIz8Sr3rVqzpe2fKmpqZibGwsJicnY3R0tOvlkMTkwZmYODAT+w8djhOP3xjjW0d8iBgiHddBV/lpGVavj7NRywxDH/d6dlpmGLTcPi2TTa1zRMtkV0vbWl65WvYEZdIyyzHDyqBlIvSagZZZjs77T8e5abAeWmY55kEZtNweTTBMWu43/bNSWp5LO5RKy/Uxr3LSck56rY+WqVW2eadlSpKtvyZpmWHQXPu0zFI0WQYd10GP+a205fvuuy8uuOCC+MF33h4nbz+rxRWu3GN/dnd86YO/GBG9+L9XXtDmzVvigQe+Htu3b+96KSTjXGY5zvQyaJm10Hl/aJmumAPN0jJd03QzSm3Z6w9zldoy5TF/h0vL9JX2V0fLkIOWoRwbul5ARMQ111wTN998c2zdujVe8pKXRETEF77whXj/+98fb3/72+Omm27qeIXQvrEtPjhA03QFMJ/ZSC3sdchBy8BamSOQk7Y5lj0BlMwMg3LoFfLTOXRLg8AR5gHMpQmol/5hMNoBSmFeQTn0CtTCvIPu6A/apTnoF01Cf+iRkhw+uD8iZuP7f+TaeMGOl3W9nHmmvvVofPm3ro+JiQkPmgda50yH/HQOmAOQi6br5vUH6Ib5C3XSPgDQZ50/aP4jH/lIfOADH4hf/dVfjX/zb/5NbNy4MSIiDh8+HLfddltce+218YpXvCLe+MY3drxSAAAAAAAAAAAAAAAAAAAAAAAAAAAAoC+2vnB7nLz9rK6XAQAAAAAAAAAAMLDOHzT/a7/2a/Ge97wn3vzmN8/5+saNG+Pqq6+O733ve/HBD37Qg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANNZ3vYCvfe1r8U//6T9d9PuXXXZZfO1rX2txRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDtaHrBRx33HExMzOz6PcPHz4cxx13XIsrgvZNHpyJiQMzMXXocIxu3hjjJ4zE2JaRrpcFPIdOqZF9D2RlvgHmAPSbRuFvaYFB2DcADIszBpqnK8AcgLXRENRB60AbzJrVcb8gBy0DUCpnGCthnwAsz6yEHLQMOmDl7BUAjnAmAMB8zkcom4YBcwDKolmaZk9BN7QHUCfzHwBoS+cPmj///PPjv/7X/xrvfve7F/z+b//2b8f555/f8qqgGSt5Y//4k0/FtXvujy/unTj6td07x+PGy3fF6SdtbnvJ0Km+fhjWKTWqYd/3deZAjdrssYb5BoOq5Ww0B6Dfumq0lhlIOWo9r7S4NrXumy7Yq0DT+j5XnDHQfKe6gn7p4iw2BxhU3987tkVD0H9NzCut0xbna93MmtVxv5pj9tClWlvWHbAWZkg/1HqGNaGmPWyfACyvi1lZ01kEEe3see97KFWTfeiAlcq0V7yvAppS6zzJdCYAUJY+n73OR1hYn7t9Lg1De/o6F8wBaNawW9csa7HQ/jw483RcY09B68zz9vX1/TiQw0pnjPkPALSp8wfNv/3tb4/LLrsspqen4xd+4RfilFNOiYiIJ554Im655Za49dZb45Of/GTHq4TVW8kb+8mDM/N+JiLirr0T8Y4998cHrjzPX0xQjb5+GNYpNaph3/d15kCN2uyxhvkGg6rlbDQHoN+6arSWGUg5aj2vtLg2te6bLtirQNP6PlecMdB8p7qCfunq/0DfHGAQfX/v2BYNQf81Ma+0Tlucr3Uza1bH/WqO2UOXam1Zd8BamCH9UOsZ1oSa9rB9ArC8LmZlTWcRRLSz573voVRN9qEDVirTXvG+CmhKrfMk05kAQFn6fPY6H2Fhfe72uTQM7enrXDAHoFnDbl2zrMVi+/NNF39f3PuX353zs/YUDJd53r6+vh8HcljpjDH/AYC2re96AZdeemm8733vi/e///1x+umnx8knnxwnn3xynHHGGfGrv/qrcfPNN8ell17a9TJhVZZ7Yz95cCYiIiYOzMz7mef+7MSBmaGvFfpgpc10QafUKPu+7/PMgdq03WP2+QaDqulsNAeg37potKYZSDlqPK+0uHY17psu2KtA00qYK84YajeMTnUF/dHVWWwOMIgS3ju2RUPQb03NK63TBucrZs3quF/NMHvoWo0t6w5YCzOkP2o8w5pQ2x62TwCW1/asrO0sgrb2vPc9lKjpPnTASmXZK95XAU2peZ5kORMAKEvfz17nI8zX926fS8PQjj7PBXMAmtNG65plUEvtzw/84d74ydfumPd77CkYHvO8XX1+Pw6UbzUzxvwHANrW+YPmIyJ+/ud/Ph5++OG4+eab44d/+Ifjh3/4h+OWW26Jhx9+ON7ylrfEU0891fUSYVVW+sZ+6tDhJf+c/ct8H7Lo84dhnVKj7Pu+zzMHatN2j9nnGwyqprPRHIB+66LRmmYg5ajxvNLi2tW4b7pgrwJNK2GuOGOo3TA61RX0R1dnsTnAIEp479gWDUG/NTWvtE4bnK+YNavjfjXD7KFrNbasO2AtzJD+qPEMa0Jte9g+AVhe27OytrMI2trz3vdQoqb70AErlWWveF8FNKXmeZLlTACgLH0/e52PMF/fu30uDUM7+jwXzAFoThuta5ZBLbU//+jhv47ztp204PfsKRgO87xdfX4/DpRvNTPG/AcA2rah6wUcsW3btnjb294252vT09Px3ve+N/7zf/7P8cQTT3S0Mli9lb6xHz1+45I/d+Iy34cs+vxhWKfUKPu+7/PMgdq03WP2+QaDqulsNAeg37potKYZSDlqPK+0uHY17psu2KtA00qYK84YajeMTnUF/dHVWWwOMIgS3ju2RUPQb03NK63TBucrZs3quF/NMHvoWo0t6w5YCzOkP2o8w5pQ2x62TwCW1/asrO0sgrb2vPc9lKjpPnTASmXZK95XAU2peZ5kORMAKEvfz17nI8zX926fS8PQjj7PBXMAmtNG65plUMvtz+nvPbPg1+0pGA7zvF19fj8OlG81M8b8BwDatr7rBUxPT8d1110Xr3rVq+I1r3lNfOpTn4qIiNtvvz127NgR73vf++Y9gB76bqVv7Me3jsTuneML/szuneMxvnWk8bVBH/X5w7BOqVH2fd/nmQO1abvH7PMNBlXT2WgOQL910WhNM5By1HheaXHtatw3XbBXgaaVMFecMdRuGJ3qCvqjq7PYHGAQJbx3bIuGoN+amldapw3OV8ya1XG/mmH20LUaW9YdsBZmSH/UeIY1obY9bJ8ALK/tWVnbWQRt7XnveyhR033ogJXKsle8rwKaUvM8yXImAFCWvp+9zkeYr+/dPpeGoR19ngvmADSnjdY1y6CW25+bNsx/7Jg9BcNjnrerz+/HgfKtZsaY/wBA2zp/0Px/+A//IW677bZ48YtfHI8++mhcccUV8a//9b+O973vffHe9743Hn300bj22mu7Xiasykrf2I9tGYkbL98172d37xyPmy7fFWNbfACgDn3+MKxTapR93/d55kBt2u4x+3yDQdV0NpoD0G9dNFrTDKQcNZ5XWly7GvdNF+xVoGklzBVnDLUbRqe6gv7o6iw2BxhECe8d26Ih6Lem5pXWaYPzFbNmddyvZpg9dK3GlnUHrIUZ0h81nmFNqG233kOhAAEAAElEQVQP2ycAy2t7VtZ2FkFbe977HkrUdB86YKWy7BXvq4Cm1DxPspwJAJSl72ev8xHm63u3z6VhaEef54I5AM1po3XNMqil9ufrdo7HX+2fnvM1ewqGyzxvV5/fjwPlW82MMf8BgLatm52dne1yAS95yUvi1ltvjX/yT/5J/Pmf/3ns2rUrfvzHfzx+8zd/M9atW9fl0lZsamoqxsbGYnJyMkZHR7teDj3x+JNPxTv23B937Z04+rUjb+xPO2nznJ+dPDgTEwdmYv+hw3Hi8RtjfOuIN/8t03H3VtNMF3RaBi03K/O+7/vMqZ2W69JFj5nnW59ouSy1nY3mwMppmS603WgNM1DLZartvKqhxbVaScu17Zsu2KuslXOZY5UyV5wxc2m5LsPqVFfd0zIR3Z7F5sDa1dZxKe8d26KhPGpruQZNziutl6PUlp2vRJg1z+W/j2qH2cOwaXk+3VGiUt9jZ2SG9EtpZ1gfWq5xD5e2T+i/PrQMTWtzVvblLNIybWlzz9f4vkfLZRtGHzV2kEEXLWfYK315XwURzuTS1T5PMpwJTVlpy/fdd19ccMEF8YPvvD1O3n5WiytcuUe//On48m9dH69966/FGWef1/Vy5vnOvgfjzl/5ibj33nvj/PPP73o5JONc7r8Szl7nY/e03C8ldPtcGu4PLefV97lgDjRLy/Vqq3XNtiNby0vtzy0jx9lTpNXnls3z9vT9/TjL63PLsNoZU/P81zLkoGUoR+cPmh8ZGYlvfOMbccYZZ0RExObNm+NP/uRP4txzz+1yWati6LGYmt/Yl0bH/aAZ1krLrIaZ019aro8ec9JyebTIQrRMLbLPQC1TiuwtrpWW+8NeZS20zELMlfJouT46zUnLHKHxctXYsf1KRjW2XAPzqj4lt2y/wrNKbrk0Zg/DpOWF6Y7SaLlfzBAG1ZeW7WFYm760DCXrw1mkZdrUhz2flZbLpw8itLwWGqIvdFw+84QID5pvkwfNM0zO5TI4e1mOlvtHtwxCy7mZC/XQct20nkfGlu1PapSxZQZjBpZNy/SdGbMyWoYctAzl2ND1Ap5++ukYGXn2TdGGDRti69atHa4ImjO2xZt+WA3NAG0yc6A/9Aj9oEWgZmYg9IMWKYW9CjTNXIH+0ynkpnFKYr8CpTCvKIn9CnTB7IH26Q5YCzOE0tnDAHTNWURt7HlYnD5gbTQENMU8AYB2OXuhPLoFjmUuQB20Tp/Zn0DNzEBgmMwYAKCPOn/Q/OzsbPz4j/94bNq0KSIiDh06FD/zMz8TJ5xwwpyf++///b93sTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAxnX+oPkf+7Efm/Prq666qqOVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALSj8wfN33777V0vAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBV67teAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBtPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGUeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQsg1dLwBYm8mDMzFxYCamDh2O0c0bY/yEkRjbMtL1soAh0TzMpwtgWMwXKINWgdUwMyAfXdNn9ifQNXMIBqcfoEtmEMylCWC1zA3oN40CizEfcvP6AjAI5wddsweBmpmBwBHmAQxGO2Rnj0OdtA8AdXH2Q1k0C2RhnkEOWm6X+w0sx5wAaI+ZCwA0xYPmoWCPP/lUXLvn/vji3omjX9u9czxuvHxXnH7S5g5XBgyD5mE+XQDDYr5AGbQKrIaZAfnomj6zP4GumUMwOP0AXTKDYC5NAKtlbkC/aRRYjPmQm9cXgEE4P+iaPQjUzAwEjjAPYDDaITt7HOqkfQCoi7MfyqJZIAvzDHLQcrvcb2A55gRAe8xcAKBJ67teADCYyYMz8z4YRETctXci3rHn/pg8ONPRyoBh0DzMpwtgWMwXKINWgdUwMyAfXdNn9ifQNXMIBqcfoEtmEMylCWC1zA3oN40CizEfcvP6AjAI5wddsweBmpmBwBHmAQxGO2Rnj0OdtA8AdXH2Q1k0C2RhnkEOWm6X+w0sx5wAaI+ZCwA0zYPmoVATB2bmfTA44q69EzFxwIcDyETzMJ8ugGExX6AMWgVWw8yAfHRNn9mfQNfMIRicfoAumUEwlyaA1TI3oN80CizGfMjN6wvAIJwfdM0eBGpmBgJHmAcwGO2QnT0OddI+ANTF2Q9l0SyQhXkGOWi5Xe43sBxzAqA9Zi4A0DQPmodCTR06vOT39y/zfaAsmof5dAEMi/kCZdAqsBpmBuSja/rM/gS6Zg7B4PQDdMkMgrk0AayWuQH9plFgMeZDbl5fAAbh/KBr9iBQMzMQOMI8gMFoh+zscaiT9gGgLs5+KItmgSzMM8hBy+1yv4HlmBMA7TFzAYCmedA8FGr0+I1Lfv/EZb4PlEXzMJ8ugGExX6AMWgVWw8yAfHRNn9mfQNfMIRicfoAumUEwlyaA1TI3oN80CizGfMjN6wvAIJwfdM0eBGpmBgJHmAcwGO2QnT0OddI+ANTF2Q9l0SyQhXkGOWi5Xe43sBxzAqA9Zi4A0DQPmodCjW8did07xxf83u6d4zG+daTlFQHDpHmYTxfAsJgvUAatAqthZkA+uqbP7E+ga+YQDE4/QJfMIJhLE8BqmRvQbxoFFmM+5Ob1BWAQzg+6Zg8CNTMDgSPMAxiMdsjOHoc6aR8A6uLsh7JoFsjCPIMctNwu9xtYjjkB0B4zFwBoWqoHzb/rXe+KdevWzfnnZS972aI/f8cdd8z7+eOPP77FFcPgxraMxI2X75r3AWH3zvG46fJdMbbFhwPIRPMwny6AYTFfoAxaBVbDzIB8dE2f2Z9A18whGJx+gC6ZQTCXJoDVMjeg3zQKLMZ8yM3rC8AgnB90zR4EamYGAkeYBzAY7ZCdPQ510j4A1MXZD2XRLJCFeQY5aLld7jewHHMCoD1mLgDQtA1dL6Bpr3jFK+Kzn/3s0V9v2LD0JY6OjsaDDz549Nfr1q0b2tqgaaeftDk+cOV5MXFgJvYfOhwnHr8xxreO+GAASWke5tMFMCzmC5RBq8BqmBmQj67pM/sT6Jo5BIPTD9AlMwjm0gSwWuYG9JtGgcWYD7l5fQEYhPODrtmDQM3MQOAI8wAGox2ys8ehTtoHgLo4+6EsmgWyMM8gBy23y/0GlmNOALTHzAUAmpTuQfMbNmyIU089dcU/v27dulX9PPTN2BYfBqAmmof5dAEMi/kCZdAqsBpmBuSja/rM/gS6Zg7B4PQDdMkMgrk0AayWuQH9plFgMeZDbl5fAAbh/KBr9iBQMzMQOMI8gMFoh+zscaiT9gGgLs5+KItmgSzMM/4/e3ceZNdZH3j/p621WFLLqG1AIGFhCWOwFWQnYWzJIiQkDjAMEI/rHb0hLIbUpMISkiKDScKwOGDzvmwJzExmamIbisS8MCYkAWaGJQXeCBNs1cgQFnmViU1MG6vb7ZbUsqT3D0+3e7n39l3O+pzPp4oqrG7Z594+39/znHO7+5IGLRfL8w0sxpwAKI6ZCwBkZWnZB5C1AwcOxKZNm+KZz3xm/Pqv/3ocPHiw4+dPTEzEM57xjNi8eXO8/OUvj+9+97sFHSkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQVMvLPoAsPf/5z49rr702zjrrrHjggQfiPe95T1x00UXxne98J9atW7fg888666y4+uqrY8eOHTE2NhYf/OAH48ILL4zvfve78fSnP73tf+fo0aNx9OjRmX8eHx/P5fEA+dExpEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQctQfzqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGWoPx1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DLU19KyDyBLL37xi+PSSy+NHTt2xMUXXxxf+tKX4tChQ/GZz3ym5edfcMEF8epXvzqe97znxQte8IL43Oc+F6eddlr85//8nzv+d6688soYHh6e+d/mzZvzeDhAjnQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DLUn44hDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnqT8eQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAz1teTkyZMnyz6IPP3cz/1cvOhFL4orr7yyq8+/9NJLY/ny5XHddde1/ZyjR4/G0aNHZ/55fHw8Nm/eHGNjY7F+/fqBjxnIn44hDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWob60zGkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUP96RjS0G/Lt912W5x//vnxy394TTxpy1lFHGrP7vnW/4xvXf2e2P3W/xBPO3tn2YezwE8P/iC+8r7Xxa233hrnnXde2YdDzVmXIQ1ahjRoGdKgZUiDliENWoY0aBnSoGVIg5ahvpaXfQB5mpiYiDvvvDN+4zd+o6vPP378eNx+++3xkpe8pOPnrVy5MlauXJnFIQIl0TGkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy1B/OoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZag/HUMatAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMtTX0rIPIEtve9vb4hvf+Ebcc889ccstt8QrX/nKWLZsWezduzciIl796lfHO97xjpnPf+973xtf/vKX46677orbbrstXvWqV8W9994bb3jDG8p6CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEADLC/7ALL0ox/9KPbu3RsPPfRQnHbaabF79+74+7//+zjttNMiIuLgwYOxdOnSmc9/+OGH4zd/8zfjxz/+cZx66qlx/vnnxy233BLPec5zynoIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAMk9Ubzn/70pzt+/Otf//qcf/7IRz4SH/nIR3I8IgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICFlpZ9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABN443mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArmjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuaN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKtrzsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABIzfe+972yD6GtkZGR2LJlS9mHAQAAAAAAAAAAjeeN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAycnjsoYhYEq961avKPpS2Vq9eE9///ve82TwAAAAAAAAAAJTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAZOTY5CMRcTKe93+/PU7b+uyyD2eB8QfuiW9d/Z4YHR31RvMAAAAAAAAAAFAybzQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAkLG1p2+JJ205q+zDAAAAAAAAAAAAKmxp2QcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DTeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYN5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBg3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGDeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYMvLPgDo19jkVIxOTMX4kWOxfvWKGDllKIbXDJV9WNBIegTyZMZAMbQG1aVPIA9mC1AEswaoGnOpWXy9IQ1ahvLpEHQALM6cgGbRPEAzmf80ifOdJnCeA1kwSyiacw6ge2YmVeS8BKBb1gyawHkOQNmsRdBM2odq0ibUg1YBmsfsp0zOP8iOngAA6skbzVNL9x86HG+/fn/ceGB05s/2bB+Jqy7ZEZs2rC7xyKB59AjkyYyBYmgNqkufQB7MFqAIZg1QNeZSs/h6Qxq0DOXTIegAWJw5Ac2ieYBmMv9pEuc7TeA8B7JgllA05xxA98xMqsh5CUC3rBk0gfMcgLJZi6CZtA/VpE2oB60CNI/ZT5mcf5AdPQEA1NfSsg8AejU2ObXgAiQi4oYDo3H59ftjbHKqpCOD5tEjkCczBoqhNagufQJ5MFuAIpg1QNWYS83i6w1p0DKUT4egA2Bx5gQ0i+YBmsn8p0mc7zSB8xzIgllC0ZxzAN0zM6ki5yUA3bJm0ATOcwDKZi2CZtI+VJM2oR60CtA8Zj9lcv5BdvQEAFBv3mie2hmdmFpwATLthgOjMTrhIgSKokcgT2YMFENrUF36BPJgtgBFMGuAqjGXmsXXG9KgZSifDkEHwOLMCWgWzQM0k/lPkzjfaQLnOZAFs4SiOecAumdmUkXOSwC6Zc2gCZznAJTNWgTNpH2oJm1CPWgVoHnMfsrk/IPs6AkAoN6Wl30A0KvxI8c6fvyRFh8fm5yK0YmpGD9yLNavXhEjpwzF8JqhvA4RktSqo356BOhWk2eMvQtFmD7PHnq08038lFuDMnUz65u8FgL5yXO22McC08waoGzzZ8XYYfc/mmSxdWjssK831MGge0r7Rhhcltd2mqSuqvRajY6gmhabEw9PTsW+gw/rFhLhvhPAXE25TqnStSHk3Z3znSZwngOL8bMeVFE396LHJqeSvCYD6FXe63RT7omRrarsH52/ANXX7ZphplNnVdkbzacrgDT5HbrANO1D+azLUF+9tOoeC1BFZlPv7NPSVYcenH+QnV57qsOMAABoEm80T+2sX7Wi48fXzfv4/YcOx9uv3x83Hhid+bM920fiqkt2xKYNqxf8fRctsFC7jv7wpWd3/HunrLTMQBXUdW3rdc1PRa97F+jH7PPsz1/zsx0/d9WKZX7pOWSs21mf1VpY170AkI+89tmp72PNUuhNirPGHGA250O1tZoVf/mG53f8O6nea2yqxdahI8eOx/2HDscpQ8u0DBXQbl0dZE+Z+jUqFCWrazvXctTZYh2sGlpWyJt2WNuguhabE2OHj8XrP/HtiBisW2saqaj7udztfSfrMzRH3efaIJp0ndLU72kvSpM76lUR3TnfqaNe58hi5/nqoWVZHyIsynpYHUX/rAd0q5t70W++bl+S12TMZc2AxeW5TnfaK/ieVDqpwv5xkHtL1h8ohtaI6G7NaNLrdHRW17lRhb3RfLoCSFO/v0PX7/SCNC22Dx1avjTu/MmEliEnea/LZbAXoEm6vZ9ThXss2oTOmthIFWZTHVXxXj6Dq0MPY5NTsXpF55/pcP5B93qZ53WYEVlr4t4IAKgX7wBM7YysHYo920fihlkXFtP2bB+JkbVPbLjHJqcWXIRERNxwYDQuv35/fGzvzjkb9CZetMB88y9k165c3rajFx881LbHXds2xrfvfThOWblcP1CiOq9t3az5qd1863XvAv2Yf57tu+9Q7Nq2MW6+46EFn3vRtpH4p0OH483X7YvJqeO1mR9Qtk7rUy+zvpfr33bqvBcA8pHFbJkvj31slfb6Zin0rsqzpp/5Yg4w2+zzYc3Qsrhs99a48JkbY2j50jj1lKHa35+qu3az4pa7Hord2zbGTS3uf/Q7l6ie6Rl//OTJuGj7yILzIOLx169uueuh+E/fuDNecu5T4x2fu33mY2Y7FK/VPuuXzz493v2vnhvLly5p23Kn2e21FshOr9+j1epaq8wmXcsxW7/3Gzt1sGvbxvjC/gdi/32Hcj2vrG1QbYvNiX33HZr55367taaRiiLP5bxea1ys+Vvueij+7Bt3Wp+hIabn2q33PhyX7d4aOzdviHtGH43Np66JJ69fmfQcaNp1Sh6vf/O4FPYHRSmqO+c7ddPptaYjx060bH6xff1tBw/FU9avqtWMoN6yXA/rvt6Vreif9YBedHMvOtVrsqabPdtPGVoetx58OK74wj/G5NTxiPB6AbSS1zrdaa/w9uv3x7/6mU3x+/9t/5z/lj6ZNuh5Oehef5B7S16vpu7qcq2sNaYttmasXbU83vbZ/92Y1+lor86vV1ft3lrTXv8GyEMV992d5nun36Hrd3pBdQ06a9auWt72903s3rYxHhg7Eq//xLe1DDnIe10uYy9iL0DTdPs74ge9xzJoz9qEueY3tWr50njX33w3vvq9B2c+J/VG3P/tX9Xu5TO4rHvIYx8+vZb/zOYNbd8zw/kHvel2npe1Zpb5+oLrBwCgDpaWfQDQq+E1Q3HVJTviou0jc/5817aN8dsv3DbzQ5EREaMTUy1/6XjE4xcjoxNTM/+82EXL2OTU/H8FJOf+Q4fjTdfti1/68Dfilf/xlvilD30j7nxwom1HV3zhH+O9Lz8n9rTo8XW7tsYVX/hH/UCJ6r62Ta/582fMnu0j8YFLdsTk1PEFM+vN1+2L+w8dLumIB9fL3gX6Nf88u/qmu+N1u7bGrm0b53zerm0b4zW7zoi/+Na98ad7d8aaoWW1mR9QplZ76tnrUy+zfrG1sJtvlKvzXgDIx6CzpZWs97GLzdIimaXQn6rOmn7miznAbLPPhzVDy+JP9+6MfQcfjv/7v34r/vWffTOJ+1N1125WXH3T3fHaXVsXvL44yFyiWmbP+Ff8h5vjNReeERdta/361dU33R03HhiN09etnPNxsx2K1WqftWZoWfxfP78l/t31++PFf3pjvObCMxbcu15sdnutBbLT7bVdp2utspp0Lcdsg9xvbNfB7L1l3ueVtQ2qrdP3NE/Pidl67daaRiqKPJfzfK2xm+atz9AM03Pt1nsfnnm96PWf+Ha8/hPfjl/56A3Jv17UtOuUPF7/Jp39QVGK6s75Tp0s9lpTu+aH1wzFe19+Tsufn5j+ecjU1jKqK8v1MIX1rmxF/qwH9Kqb16wi0rwma7L5s/1XPnpDfGH//TM/6xnh9QJoJa91utNe4cYDo/Hsp66baTNCn8w1yHmZxV6/33tLXq+m7upyraw1ZltszXj06GONep2O1ur+enXV7q017fVvgKxVdd/dab63+x26fqcXVFcWs+bRo4/Fa9v8vs3X7toay5YsiQgtQx7yXJfL2IvYC9BE3dzPGfQey6A9axPmatXU26/fH//m57c06nsb3P/tX9Xu5TO4LHvIYx8+ey1v954Zzj/oXbfzvIw1s8zXF1w/AAB1sbzsA4B+nDK0LF5y7lPjtReeEUcfOxErly+Nffcdisuu/Yf42WecGh/buzOG1wzF+JFjHf89j8z6eDcXLW4YkLJ2F7KHDrfvaHLqeIwfnoorXn5O3PGTiTk9vuW6fTE5dVw/UKIU1rZNG1bHx/bujNGJqXjkyLFYt2pFjKx9/JjfdN2+tjffpvcCddPL3gX6Nf88m5w6Hm+5bl9ctntrXLZra6wZWh6TU4/NWc+PPnYiLtu9NT7+d3fUZn5AGRZ7cehje3f2POvbrYXdNJjCXgDIxyCzpZUs97HdzNIiZ5dZCv2r2qzpd76YA8w2+3y4bPfWuObmu+PmOx6a8zl1vz9Vd+1mxfT9j79+465YumRJJnOJ6pg/46e/3n/xhufHa3ed0fL1q4iIo4+dWPDvMtuhOK32WfPX19n3riMitjxpTZy+bmXHRr3WAtla7NpusWutt75oe8d/f15NupZjWhb3G6c7eGDsSNw1+mjLvWWe55W1Dapv/vc0P/3U1fHlf/znOXNitl66taaRiqLO5SJea9y0YXW8818+J+776WTb+07WZ0jf9Fx70y9ua+TrRU28Tsn69W/S2h8UocjunO/URTevNU2b3/zY4anYueXUuGzX1pb7+hTXMqopq/UwlfWubEX+rAf0Y/qc+6dDh+OehyZb3peKSPOarInazfbpfc70z3pGeL0AWsljnV5sr/Dg+NE5bUbok7n6OS+z2uv3e2/J69XUWZ2ulbXGfJ3WjH0HH+74d10TNkMKr1dX6d5aE1//BshKlffdneb79O/Q9Tu9oB6ymjVjh4/N+Znl+d8v8sFLf2bOv1vLkJ281uWy9iL2AjTVYvdzBrnHkkXP2oQntGvqpjseipMRjfreBvd/B1Ole/kMLqse8tqHz17L579nxtHHTsQzR06Jpw6vcv5BH7qZ50WvmWW/vuD6AQCoC280Ty2NTkzFOz53+4I/XzO0LHZs3jDzS11XDy3r+O9Zt2rFzP93o4+ma3chu3L50o5/75SVK+Lo8SfeiGPJkiULPkc/UI5U1rbhNQtfOLrzwYkkbr6NTU7F6MRUjB85FutXr4i1Kztvz2fvXaBf61ucR5NTx2de4P9vv3VBvHneL5i5+Y6HZt7IJ6I+8wOKNDY5FQ+MHYm9P78lXrdra9x28OG4+qa7F7zBSKsGZ2s161uthd1IZS8A5KPf2dJKP7Otnen7E2uGlsVlu7fGzs0b4uhjJ2LVimVx28GH46FHi93rm6U01fzr1ZFT+psZVZo1/X4jjznAbLPPh52bN8z5ZvnZ8rg/lVWXqes0KyanjsfSJUvizNPXFnhE9Kqfc73VjJ+cOh4/fXQqXv+Jb7f9e+1eAzPboRit9lnz19fZ964jIr72ey9YdCZkeY0KPK7Ttd2hyWPx2gvPiL0/v2Xm/s30vfEbDozGH7zk7I7/7ryadC3HtMXuBzz06NTM53Xagw6vGYq7Rh+N3/6L29r+t/I6r6xtUH3zv6f5z1/zs23vG0X01q01jVRkeS53un9U1A/1LluypON9J+szpG96rhX9elE/8niNqanXKVm+/k1xe90if+lHnq/pFt2d85066Oa1ptlmN7925YrMrt3z4vtEmiGr9bCuv+Sqaud5kT/rAf0aXjMUoxNTHV+zymMdq1qvTdBpts//Wc8IrxdAK1mv04vtFSIevyaZb7E+zdhm6fW8bLcezP/9WoudO/3eW/J6NXWWxbVyUTNaa7TSbs1o6ut0zFWn16s7WfDGBUsW/nkRdAXQv3723UXtsxeb76esXOF3ekFNZHmPbP7PLM82//cOaBmyk9e6XNb3y9gL0GSdWh3kHstiv6+gm561CU/o9fuOIvJ589gqfC+E+7+D832y6ciqh7z24fPX8vnX8J//7QudiwOoylymPIvN8yzXzG7Ot7J/Bsb1AwBQF95onlpqteFeM7Qs/nTvzrjm5rtnLvjf9IvbYve2jXHTHQ8t+Pw920diZO0TFwVu9NF07S5k9913KHZt2xg3t+lo1Yqlcfn1++PGWR/ftW1j/OnenfGW//MmtfqBcqS8tqVw8+3+Q4fj7dfvn3MT88pfOzcu2j7S8sbm/L0L9Gtk7VDs2T4SN7Q4z3Zt2xg//OdH5qzj044+dmLm/9d5fkAeWs30+XviiMfXp60jp7RtMOtZn/JeAKiWTvuLXmfb+JFjLe/zRTw+W1+582mZHHO3zFKaqNXeZs/2kbjqkh2xacPq0o5r0FnT770Ec4DZZp8Ps6+TW8ny/lRVu6yiLPclFK/fc72f17h2bdsY++471PLvme1QjFb7rCzW11Urlnb9fSLAYO4/dDj+6PO3d/x+kWVLl5SyP3Mtx7RO9wPWDC2LkxHxpuv2dbUHLeu8cp0D1Td/1nS6Ht29bWOsWrF0wZ+3Y00jFVmdy4vdPyrq+wqtz8D0XCvy9aJ+5PUakzlIFora6xa1P8j7NV3dwUKDvNZU9aZ8n0hzZLUe1vHn7Kp4nld9NsC0os/VKvbaBIvN9vn7Hq8XQP5G1g61/R0A09+T+pynrl/wsU59mrEsptvfrxXR+dzpd//g9WrqbNBr5SJntNbohfsXRNTn9erFVGU/rCuA/vW67y5y9uc53+3hoVhF3CNr9XsHtAzZ6dRfrz9nNVtZ3y9jLwCt9bsH7+b3FXTTszbhCb1+31FEto1U5d5vhPu/MFtWPeS1D7eW56dKc5nqympGdHu+lf0zMGYOAFAX/b2CAiVrteG+bPfWuObmu+f8Ysarb7o7Xrtra+zetnHO5+7ZPhIfuGRHDK954kJk+qKlFTf6aIJ2F7JX33R3vG7X1rhoXh97to/E+195brzrb74750W4iIib73gorrn57rhs91b9QIlSXtvqfvNtbHJqwU3OiIgrvvCP8cYXblvwdWu1d4F+Da8Ziqsu2bHgPNu1bWO8btfW+OMvfm9mHZ9t5fLHLx/rPj8ga+1m+uw98bR1q1a0bTCPWZ/yXgColixn2/pVK1re54t4fLa++2++G2OTU5kcdzfMUpqm3d7mhgOjcfn1+wvtb75BZ02/9xLMAWabfT5MXye3k9X9qSp3WUVFXnORrUHO9X5e43rzL26Pq2+6e8HfMduhOK32WYOur2OTU/Guv/luvHbX1tg17/tEdm/bGO9/5bnWAsjIzNrd4ftFIiKWLV1Syv7MtRzTOt0PuGz31nj3X3+n6z1oWeeV6xyovvmz5uqb7o7fv/jZC753ede2jfHaXVt7eq3DmkYqsjiXu7l/VNT3FVqfgem5VtTrRf3I8zUmc5AsFLXXLWJ/UMRrurqDhQZ5ranKTfk+kWbJaj2s28/ZVfU8r/JsgNmKPFer2msTLDbbZ+97vF4AxRheMxRXvPycBd+XNv2z2VffdPeCa5JOfZqxdKPb368V0fnc6Xf/4PVq6myQa+WiZ7TW6IX7F0TU4/XqxVRpP6wrgP71su8uevbnOd/t4aFYed8jm32Pd5qWIVvDa4bi/a88N5Ofs5qtrO+XsReA1vrZg3f7+wq66Vmb8IRevu8oIttGqnTvN8L9X5gtqx7y2odby/NRtblMdWUxI3o538r+GRgzBwCoi+VlHwD0Y3rDfcOsi4OdmzfEx//ujjmfNzl1PN5y3b64bPfW+KOXPieOHDse61atiJG1QwsuQqYvWi6/fv+cf68bfTRFq64iHu/o//tfB+ODl/5MTBx5LB45cmymo4cenYqvfu/Blv++m+94KN74C9vi139+i36gJCmvbe1mVkQ9br6NTkwtuMkZ8fjMvezaf4j//paL4rETJ+fM3Dp/vaieTRtWxxUvPyfu+MlEHH3sRKxcvjT23Xco3nLdvpicOh433/FQXLbriTfH3rVtY+y771AS8wOy1m6mR8SclmavT5s2rI6P7d0ZoxNTuc76lPcCQPVkNdtG1g7Fhc/cuOA+37QbD4zG6MRUYTPMLKVpOu1tbii4v1YGmTX93kswB5ht9vmw775DsWvbxgU/fBqR7f2pqndZRUVdc5GtQc71fl7jmpw6Hj/7jFPNdihRq33WvvsOxe5tG+OmPtfX0YnHX7++5c6H4rLdW+OyXVvn3AOfOn4il8cCTdTNvfE920di4ymP78OK3p+5lmNap/sBne5DttqDlnleuc6Baps/ayanjsehR6fieVtOjdfN25NOf19Gt/d0rGmkIotzuZv7R0V+X6H1GZpteq5944c/KeT1on7k/RqTOcigitrrFrE/KOo1Xd3BXIO+1lTVpnyfSLNktR7W7efsqnyeV3U2wHxFnatV7jV1nWb79M96Rni9AIp26poV8S93bFrwfWlvuW5fnLdlw0ybEYv3acbSjW5/v9a0TudOP/sHr1dTZ4NcKxc9o7VGr9y/oA6vVy+mavthXQH0p5d9dxmzP6/5bg8PxcrzHtnqoWVx28Enfs4jQsuQl6njJzL5OavZyvp+GXsBaK/XPXi3v6+gm561CU/otEbunvV9RxHZN1K1e78R7v/CbFn0kNc+3FqejyrOZapr0BnRy/lW9s/AmDkAQF14o3lqqdWG++hjrX8h+OTU8fj4390RL3r26fG8Lad2/Pe60UeTdbqQfe/Lz4knr18VT14/9+/cNfpox3/nqhXL4qkbVudxuECXUl3b6n7zbfzIsbYfm5w6Hg9PTi26b4FB/XRyKl7/iW+3/fj0/vqi7SPxnn/13IiI+M3dWyvfFxSt00yPeLylVuvT8Jpi1uNU9wJANWUx24bXDMXQ8qUdP+eRRWZv1sxSmmSxvU3R/bXS76wZ5F6COcBs0+fDQ49OxSt3Pi3e/TffnfMNbVnfn6pDl1VU1DUX2RnkXO/nNa7hNWG2QwXM32etX70i/s3Pbo4/+Kvb+3r9Z3qWTH+fyHwvevbp2T4AaLDF1u6ImNNtGfsz13JEdN4rruzjPmSZ55XrHKiuVrNm8ljrPem0Xu7pWNNIxaDncjf3j848fW2h31dofYZm27RhdbzknKfEBc/cGO/86+/k+npRP4p4jckcZFBF7HWL+LmDIl/T1R3MNehrTVVsyveJNE8W62Hdfs6u6ud5FWcDtFLEuVr1XlO22PfEjR+eilc+72leL4CCDa8Zihc867SWbb7/lefG1PET8aJnn97Vns6MpRu9/H6taYt9z3Wv64bXq6mrQa6Vy5jRWqNX7l9Q9derF1PF/bCuAHrXy767rNmf13y3h4fi5H2P7CnrV8XPn/EkLUPOxg4fy+znrKaV+f0y9gLQXi978F5/X8FitAmP67RG9vq9Db2q4r3fCPd/YbZBe8hzH24tz15V5zLVNciM6OV8q8LPwJg5AEAdeKN5amv+hnvVimUdP3/dqhVd/Xvd6KPJer2QXb9IV8Oru+sOyFeqa1udb74tNj+73bfAIBY7D8/YuCa+9nsvqE1XUJbFWnrmyCnxsb07S+0o1b0AkK5TF5lZZeyXzVKaIvXr1UHuJZgDzDb7fPh4zvenUu8Spg16rvcz4812qIZWLfa7Z7NuQnEW623Lk9bEUzesLuho2rPeE9F+rzg6MdXx77VbN5xXQCt5fU/zNLOHVAxyLnd7zVfn7ysE6md6ruX9elE/3CujLorY6+a9P9AblCvL15qqwExppizWwzpdDzvPoT70Wq7Os/2Usg8PGiurfZcZS7fyfi26G16vpq76ndllzWitAb2q8uvVi7EfBkhHt/vuFGe/PTwUJ897ZFqGYuS1Fyjz+2XMDxhcHr+vQJvwuLLWyBSv/4GF8pwx1vJsmcsUqdfzrQo/A2PmAABV543mqbXZG+6xyanYs30kbjgwuuDz9mwfiZG1NubQjV4uZEfWDukOKFVdb76Zn1TBYufh0zasrmVfULTFWnrq8CotAfTIfhnK04T+6novgerK+5xqQpcQkc25bsZDOvrt2boJxVmst9PXrSzhqKC9dmuLdQPIku9phnz1cs3nPhFQtCrOHffKYK48O9UbVE8V1+ZumSkMoi7nvvMc6kOv5avLbIemyaJNM5ZeeC0a+tfPzDajgbqp47WjWQuQlm7WIrMfGJR7ZFBvee4F6nhdDDzO7yuAfJWxRrr+h+awD68Hc5ki9XO+mSUAAJ0tLfsASMPY5FTc+eBE7Dv4cNz5k4kYm5wq/BiG1wzFVZfsiD3bR+b8+Z7tI/GBS3a4MICMjU1OxejEVLzll7bHdb/5/HjTL26LNUPLIkJ3wEJV2CtUiX0LnRTVi/MQsjG/pTVDy+JNv7gt/vINz4/f+aXtMfroVOPXPUiFPW1x7FPImn67pz+onhS6NIeJWPw8SOFchyao+kw3S6CzLBvWGynI8zyu+poJDKabxq2VkL0su7JWA01gP1Ie60zz6M15D73w2jm4Pw9Zyvucty4BVZDq+m7G0q9+z51UW4I8NHVGmxOQnip33dRZC9BkRc7+Kq+B0BRew4Jm8XNWUD9V2TObDZCeoruuyjwDsqHp7NlvNVcZPTnfAACyt7zsA6D+7j90ON5+/f648cDozJ/t2T4SV12yIzZtWF3IMUy/4fX4kWPxzn/5nBhatjTGDk/FKStXxMjaIRcLkKGxyal4ePJYvPPzt8eNdzw08+cXbR+Jv33z7lgSERtP0R3whCrsFTqZvY9Yv3pFjBQ0wzZtWB0f27szRiem4pEjx2LdKvsWiu+ll/OwrFagDqZbeujRqTgZEe/+6+/Ex//ujpmPd+pYW1APVd/T1tFi889+mazot3dZ9WefA9mp87rYag5ftH0k3v2vnuv1hAZpdx5c8fJz4tQ1K2bOgTqf69AEee+ts9o/miXQWpYN+z4tUjJ/3Vi/ekWcsnJ5TBx5LPYdfLivNcn9KEhbt42PTU7F4anj8dYXbY8/eOnZsWzJkli2dIl7ITCgLK752nX8/leeG1PHT8TYYa9rAGmwHymHa8Lmca/MeU+z9fr6Vre9eL2LVM1v5v+99Gfi0aOPxfjhbM5zaxJ11e/3SxR1zluXgDKlsr63m/VmLBH97QV6PXdSaQmK1LQZ3cuc8DODUA9Zr/95tN+0WQtA/rO/3e/JdQ0MxSrrNawsfiYM6F0vzWe5F3CPCvpXtdeN2s2GiIg7H5zQOdRQHtf/rdb+R6eOV2qeQS/sZxeq2h4lJV6Ta56iemo1y5xvAADZWnLy5MmTZR9E3Y2Pj8fw8HCMjY3F+vXryz6cQo1NTsWbrts35+Jg2p7tI/GxvTtz36y74CcLTe64F/cfOhzf+OFP4gv774+bZ33z3LSiuod2tFw9VdgrdGIfUU1NbbnKvWiFfjSx5V471hZ10MSW56vyGl1X5l/xmtqyfsuj83w0tWXqq9Mc3rVtY+zccmrsv+9Q42ZD01pe7Dz4lzs2xQuedVqjzgHSoOUnZLG3tn+kLE1pOcuG9UrVZN3xoOe4+1HQn7qsyd02br2kqerQcqeOd2/bGM/bcmp8/O/uiAjd0lx1aJnF2Y+Uo0rXhFouhtaqdd6nSMvV1usM0Etzaflxea+bGiNvebXcbxvOeeiPdbleUpl17h9kL6WWizg/UmmJ9KTUct31Miesa8ym4+rKev3Xftq6bfm2226L888/P375D6+JJ205q8Aj7N493/qf8a2r3xO73/of4mln7yz7cBao+vH99OAP4ivve13ceuutcd5555V9OPTIuuz35JKGFFou816UfStVkULL3Sqreb1ThFRbrsvrRjonK6m23DStZsKVv3ZufGn/A3HjHdWeZ2QjtZatcwvVZY/CYFJruaqK6sksay4tQxq0DPWxtOwDoN5GJ6ZaXhxERNxwYDRGJ6Zy/e+PTU4tuHCY/m9ffv3+GJvM978PTTLd2+nrVrb85rmIYroH6qXsvUIn9hFUTVV70Qp0r5eOtQX1UdU1uq7MP4qk33LoHJjWaQ7ffMdDsXPzBrOhARY7D05ft9I5ADWQ597a/hHyl1XDeiV1WZzj7kdB2rpp3HoJ1dap45v+zz3LaboF6sp+pDyuCZtFa49z3tNU/cwAvdBkRaybGqOOBmnDOQ80QQqzzv0DOinq/EihJSBf3c4J6xrUR5brv/YBqAO/Jxeqo6x7UfatUI4ymtc7DKYOrxvpHJit3Uw4fd3Klm8yH1GdeQatWOdaq8MeBeqiiJ7MMgCA4nijeQYyfuRYx48/ssjHB+WCH4oz3dvRx050/Ly8uwfqpey9Qif2EVRNVXvRCnSvl461BfVR1TW6rsw/iqTfcugcmLbYHJ5+vcFsSFs354FzAKovz721/SPkL6uG9UrqsjjH3Y+CtHXTuPUSqq3be5bTdAvUkf1IeVwTNovWHue8p6n6mQF6ocmKWDc1Rh0N0oZzHmiCFGad+wd0UtT5kUJLQL66nRPWNaiPLNd/7QNQB35PLlRHWfei7FuhHGU0r3cYTB1eN9I5MFu7meAeAHVlnWutDnsUqIsiejLLAACK443mGcj6VSs6fnzdIh8flAt+KM50byuXd1468u4eqJey9wqd2EdQNVXtRSvQvV461hbUR1XX6Loy/yiSfsuhc2DaYnN49usNZkO6uj0PnANQbXnure0fIX9ZNaxXUpfFOe5+FKStm8atl1BtvdyznKZboG7sR8rjmrBZtPY45z1N1c8M0AtNVsS6qTHqaJA2nPNAE6Qw69w/oJOizo8UWgLy1e2csK5BfWS5/msfgDrwe3KhOsq6F2XfCuUoo3m9w2Dq8LqRzoHZ2s0E9wCoK+tca3XYo0BdFNGTWQYAUBxvNM9ARtYOxZ7tIy0/tmf7SIysHcr1v++CH4oz3du++w7Frm0bW35OEd0D9VL2XqET+wiqpqq9aAW610vH2oL6qOoaXVfmH0XSbzl0DkzrNId3bdsY++47NPPPZkO6uj0PnANQbXnure0fIX9ZNaxXUpfFOe5+FKStm8atl1BtvdyznKZboG7sR8rjmrBZtPY45z1N1c8M0AtNVsS6qTHqaJA2nPNAE6Qw69w/oJOizo8UWgLy1e2csK5BfWS5/msfgDrwe3KhOsq6F2XfCuUoo3m9w2Dq8LqRzoHZ2s0E9wCoK+tca3XYo0BdFNGTWQYAUBxvNM9AhtcMxVWX7FhwkbBn+0h84JIdMbwm3wtuF/xQnOnerr7p7njdrq0LbqAX1T1QL2XvFTqxj6BqqtqLVqB7vXSsLaiPqq7RdWX+UST9lkPnwLR2c3jXto3xul1b4+qb7o4IsyF13ZwHzgGovjz31vaPkL+sGtYrqcviHHc/CtLWTePWS6i2dh3vnnfPcppugTqyHymPa8Jm0drjnPc0VT8zQC80WRHrpsaoo0HacM4DTZDCrHP/gE6KOj9SaAnIV7dzwroG9ZHl+q99AOrA78mF6ijrXpR9K5SjjOb1DoOpw+tGOgdmazcTrr7p7njzL26v9DyDVqxzrdVhjwJ1UURPZhkAQHGWnDx58mTZB1F34+PjMTw8HGNjY7F+/fqyD2fG2ORUjE5MxfiRY7F+9YoYOWUotwvg6f/WI0eOxbpVK2JkbX7/rfnuP3Q4Lr9+f9xwYHTmz6YvUJ66YXUhx0D9ldlxka0Oarq3b9/7cFy2e2vs3LwhIiKefurqeMr6VZU9bpqjqmsy7fcKZc9A+4hqqmPLWZ7LZe6t29EK/ahay1W8RtYWdVC1llspqu8qrtF1Zf4Vr4yWy77ea3Us+i2OzvNR5XW5Ss1TPdPnx6HDU3H02Im45a6H4uqb7o7JqeONnA15tVz1Dscmp+LH40fiRw8fjoiIffcdiqtvujt+9hmnNu4cIA1FrctVazuvvbX9I2Upa49dVttZNKxXqibrjrM4x8cmp+LBR47GocPHYu3QslgztDw2rFlRqf05VE3d7ntFRMc11XpJU9XpWnn+3njViqXx7r/5bnzlew/OfI5uaaoqr8spy/pegf1IuarwPQpaLobWnjjfxw5PxZqVy2PZkiWxbOmS2Fix1yrrqootV+21qzL1OwOqsE5QrCq2nIVe50FR66bGyEs3LfezTg7ahnMeelOHddmee6G6zzr3D7JXh5Y7md35KUPL49aDD8cVX/jHmJw6HhH5nR91b4n01L3lFHUzJ6xr1VGFfWO3HVfhWJsqq/Vf+2nrtuXbbrstzj///PjlP7wmnrTlrAKPsHv3fOt/xreufk/sfut/iKedvbPsw1mg6sf304M/iK+873Vx6623xnnnnVf24dCjKuyvy17z/Z5cUlCFlrPSaS+a17ywb6UqBmm57PW0X0Xff9Y7RShiXS6z+aq/bqRzspLX93xRrHYz4f+5ZEesHlpW6XlGNlJr2TrXXtX3KAwmjz12ndovWt49mWXNldJ9bGgyLUN9JPVG8+9+97vjPe95z5w/O+uss+L73/9+27/z2c9+Nt75znfGPffcE9u3b48PfOAD8ZKXvKSn/24Vh979hw7H26/fHzfO21BfdcmO2JTghtoFP4Mqq+M6tqo3qqyKazLtVWUGmmvVU7eWq3Iu500r9KpKLVe5U21RdVVquZUq901n5l+xim5Zm0ToPA9VXZc1Ty/MhnxarlOHzgFSUcS6XKe2s2A+UIYy9tgptK1XqiTPHyTr5xxPoXEoQ4r3vayXNFHdr5V1C4+r6rqcsrxmm7nWbFouTpNbcx8kf1Vr2dd8oSbPALpXtZaz0O880Ax1tljL7idDPVR9XbbnTpdZn62qt9xJu87f+/JzYvzwVJyy0vlBc9S55aazrpWvKvvGbjquyrEyOO2nyxvNF6fqx+eN5uut7P11VdZ86xV1V3bLRch7XpgDVEG/LVdlPa0LvZO3vNdlzS9O52Qhz+/5olhmQrOl2LJzmibKeo9dx/ZTY5Y1UxPuY0MTaBnqY2nZB5C15z73ufHAAw/M/O+mm25q+7m33HJL7N27N17/+tfHvn374hWveEW84hWviO985zsFHnH2xianFlzMRETccGA0Lr9+f4xNTpV0ZPkZXjMUZ56+Np635dQ48/S1Lhyohbq2qjcgC1WageYag6jSuZw3rVBXVe9UW9C/qvdNZ+ZfurTJNJ03g+bpldmQvbp16ByA7tSt7SyYDzRBKm3rldT1e46n0jjwuEGbtl5C9vJea3ULlCHP2WauQTGa2pr7IM3ja95aU2cAzTbIPNAMqXI/GciCPXfazHoiOnf+7//6O/GMjac4P4BasK6Vq077xjodK4vTPgDtVGnNt15BtRUxL8wB6qpK62ld6J0603x3dE7etFgvZgLt1LVl5zQMpq7tp8YsAwDIX3JvNL98+fJ4ylOeMvO/kZGRtp/7J3/yJ/Grv/qr8fu///tx9tlnxxVXXBHnnXdefPzjHy/wiLM3OjG14GJm2g0HRmN0wgUNVIFWgSYzA0mFcxmqT6eQLn1DNWkTmkXzUD4dQpq0DWnSNqRN45AWTUP16BJIkdkG1JX51Ty+5sA08wAW0gWQBbME0qdzALJQp/WkTscKAPTPmg90y7yA9vQBzaJ5qAYtQhq0DM2kfQAAmmJ52QeQtQMHDsSmTZti1apVccEFF8SVV14ZW7Zsafm53/zmN+P3fu/35vzZxRdfHJ///Oc7/jeOHj0aR48enfnn8fHxgY87S+NHjnX8+COLfByaoAodaxUGV4WW6Y8ZyGx1btm5DE+oass6hd5UteVW9A3tldmyNiE7dViXNQ+Ly7tlHUIxil6XtQ35KHuPrW0YXNkdd6Jx6F6VW56maVica2VIQx3W5ZSZbWRFyxTN/MpHlVv2NYfuVbnlLJgHNEUvLesCqqtO67JZAu3VqeVOdE7TpdIylK3M9aTXjq19UE3WZEhDlVq25kP/qtRyEcwLUpVFy/qA8hW5Lmse8uN7viANWoY05LnH1j4Up2n3sSFVWob6Wlr2AWTp+c9/flx77bXxP/7H/4j/9J/+U9x9991x0UUXxSOPPNLy83/84x/Hk5/85Dl/9uQnPzl+/OMfd/zvXHnllTE8PDzzv82bN2f2GLKwftWKjh9ft8jHoQmq0LFWYXBVaJn+mIHMVueWncvwhKq2rFPoTVVbbkXf0F6ZLWsTslOHdVnzsLi8W9YhFKPodVnbkI+y99jahsGV3XEnGofuVbnlaZqGxblWhjTUYV1OmdlGVrRM0cyvfFS5ZV9z6F6VW86CeUBT9NKyLqC66rQumyXQXp1a7kTnNF0qLUPZylxPeu3Y2gfVZE2GNFSpZWs+9K9KLRfBvCBVWbSsDyhfkeuy5iE/vucL0qBlSEOee2ztQ3Gadh8bUqVlqK+k3mj+xS9+cVx66aWxY8eOuPjii+NLX/pSHDp0KD7zmc9k+t95xzveEWNjYzP/u++++zL99w9qZO1Q7Nk+0vJje7aPxMjaoYKPCKqnCh1rFQZXhZbpjxnIbHVu2bkMT6hqyzqF3lS15Vb0De2V2bI2ITt1WJc1D4vLu2UdQjGKXpe1Dfkoe4+tbRhc2R13onHoXpVbnqZpWJxrZUhDHdbllJltZEXLFM38ykeVW/Y1h+5VueUsmAc0RS8t6wKqq07rslkC7dWp5U50TtOl0jKUrcz1pNeOrX1QTdZkSEOVWrbmQ/+q1HIRzAtSlUXL+oDyFbkuax7y43u+IA1ahjTkucfWPhSnafexIVVahvpK6o3m59uwYUM861nPijvuuKPlx5/ylKfEP//zP8/5s3/+53+OpzzlKR3/vStXroz169fP+V+VDK8Ziqsu2bHgombP9pH4wCU7YniNCxqoQsdahcFVoWX6YwYyW51bdi7DE6rask6hN1VtuRV9Q3tltqxNyE4d1mXNw+LyblmHUIyi12VtQz7K3mNrGwZXdsedaBy6V+WWp2kaFudaGdJQh3U5ZWYbWdEyRTO/8lHlln3NoXtVbjkL5gFN0UvLuoDqqtO6bJZAe3VquROd03SptAxlK3M96bVjax9UkzUZ0lCllq350L8qtVwE84JUZdGyPqB8Ra7Lmof8+J4vSIOWIQ157rG1D8Vp2n1sSJWWob6Wl30AeZqYmIg777wzfuM3fqPlxy+44IL42te+Fm9961tn/uwrX/lKXHDBBQUdYX42bVgdH9u7M0YnpuKRI8di3aoVMbJ2yMUMVIxWgSYzA0mFcxmqT6eQLn1DNWkTmkXzUD4dQpq0DWnSNqRN45AWTUP16BJIkdkG1JX51Ty+5sA08wAW0gWQBbME0qdzALJQp/WkTscKAPTPmg90y7yA9vQBzaJ5qAYtQhq0DM2kfQAAmiCpN5p/29veFi972cviGc94Rtx///3xrne9K5YtWxZ79+6NiIhXv/rV8bSnPS2uvPLKiIj4nd/5nXjBC14QH/rQh+KlL31pfPrTn45vf/vb8V/+y38p82FkZniNCxioA60CTWYGkgrnMlSfTiFd+oZq0iY0i+ahfDqENGkb0qRtSJvGIS2ahurRJZAisw2oK/OreXzNgWnmASykCyALZgmkT+cAZKFO60mdjhUA6J81H+iWeQHt6QOaRfNQDVqENGgZmkn7AACkLqk3mv/Rj34Ue/fujYceeihOO+202L17d/z93/99nHbaaRERcfDgwVi6dOnM51944YXxl3/5l/FHf/RH8Qd/8Aexffv2+PznPx/nnHNOWQ8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaICk3mj+05/+dMePf/3rX1/wZ5deemlceumlOR0RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEJJvdF8lY1NTsXoxFSMHzkW61eviJFThmJ4zVDZhwVUjFkB+dMZpEHLkAYtQxq0DGnQMqRDz1B/OoY0aBnSoGVIl76hXjQLzGcuAL0wMwDolbUjG55HqDaNQn70BfTL/IBsaAnSoGVoJu0DQLqs8zA4HUHaNA71ollIk7ahOfQO1aNLAACYyxvNF+D+Q4fj7dfvjxsPjM782Z7tI3HVJTti04bVJR4ZUCVmBeRPZ5AGLUMatAxp0DKkQcuQDj1D/ekY0qBlSIOWIV36hnrRLDCfuQD0wswAoFfWjmx4HqHaNAr50RfQL/MDsqElSIOWoZm0D0AnBw8ejNHR0cU/sSQjIyOxZcuWsg+jsqzzMDgdQdo0DvWiWUiTtqE59A7Vo0sAAFhoadkHkLqxyakFFyIRETccGI3Lr98fY5NTJR0ZUCVmBeRPZ5AGLUMatAxp0DKkQcuQDj1D/ekY0qBlSIOWIV36hnrRLDCfuQD0wswAoFfWjmx4HqHaNAr50RfQL/MDsqElSIOWoZm0D0AnBw8ejGc/++w4//zzK/u/Zz/77Dh48GDZT1UlWedhcDqCtGkc6kWzkCZtQ3PoHapHlwAA0Nrysg8gdaMTUwsuRKbdcGA0RiemYnjNUMFHBVSNWQH50xmkQcuQBi1DGrQMadAypEPPUH86hjRoGdKgZUiXvqFeNAvMZy4AvTAzAOiVtSMbnkeoNo1CfvQF9Mv8gGxoCdKgZWgm7QPQyejoaBw+PBnPv+xdsf6pZ5R9OAuMP3BPfOvq98To6Ghs2bKl7MOpHOs8DE5HkDaNQ71oFtKkbWgOvUP16BIAAFrzRvM5Gz9yrOPHH1nk40AzmBWQP51BGrQMadAypEHLkAYtQzr0DPWnY0iDliENWoZ06RvqRbPAfOYC0AszA4BeWTuy4XmEatMo5EdfQL/MD8iGliANWoZm0j4A3Vj/1DPiSVvOKvsw6JF1HganI0ibxqFeNAtp0jY0h96henQJAACtLS37AFK3ftWKjh9ft8jHgWYwKyB/OoM0aBnSoGVIg5YhDVqGdOgZ6k/HkAYtQxq0DOnSN9SLZoH5zAWgF2YGAL2ydmTD8wjVplHIj76AfpkfkA0tQRq0DM2kfQBIl3UeBqcjSJvGoV40C2nSNjSH3qF6dAkAAK15o/mcjawdij3bR1p+bM/2kRhZO1TwEQFVZFZA/nQGadAypEHLkAYtQxq0DOnQM9SfjiENWoY0aBnSpW+oF80C85kLQC/MDAB6Ze3IhucRqk2jkB99Af0yPyAbWoI0aBmaSfsAkC7rPAxOR5A2jUO9aBbSpG1oDr1D9egSAABa80bzORteMxRXXbJjwQXJnu0j8YFLdsTwGhcjgFkBRdAZpEHLkAYtQxq0DGnQMqRDz1B/OoY0aBnSoGVIl76hXjQLzGcuAL0wMwDolbUjG55HqDaNQn70BfTL/IBsaAnSoGVoJu0DQLqs8zA4HUHaNA71ollIk7ahOfQO1aNLAABobXnZB9AEmzasjo/t3RmjE1PxyJFjsW7VihhZO+RCBJjDrID86QzSoGVIg5YhDVqGNGgZ0qFnqD8dQxq0DGnQMqRL31AvmgXmMxeAXpgZAPTK2pENzyNUm0YhP/oC+mV+QDa0BGnQMjST9gEgXdZ5GJyOIG0ah3rRLKRJ29Aceofq0SUAACzkjeYLMrzGxQewOLMC8qczSIOWIQ1ahjRoGdKgZUiHnqH+dAxp0DKkQcuQLn1DvWgWmM9cAHphZgDQK2tHNjyPUG0ahfzoC+iX+QHZ0BKkQcvQTNoHgHRZ52FwOoK0aRzqRbOQJm1Dc+gdqkeXAAAw19KyDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgaZaXfQAMbmxyKkYnpmL8yLFYv3pFjJwyFMNrhso+LEiO1gBoAuvdXJ4PKI7egFbMBqAbZgVQRWYTZXMOQnPoHepHt5AeXUNz6B3Kp0OgH2YHkArzjPmcE0AnZgSUT4dQP7qFNGkbgCJYb4rheQaA/lhDIS2ahnrTMKRN40BWzBPojWYAAABIjTear7n7Dx2Ot1+/P248MDrzZ3u2j8RVl+yITRtWl3hkkBatAdAE1ru5PB9QHL0BrZgNQDfMCqCKzCbK5hyE5tA71I9uIT26hubQO5RPh0A/zA4gFeYZ8zkngE7MCCifDqF+dAtp0jYARbDeFMPzDAD9sYZCWjQN9aZhSJvGgayYJ9AbzQAAAJCipWUfAP0bm5xacLMiIuKGA6Nx+fX7Y2xyqqQjg7RoDYAmsN7N5fmA4ugNaMVsALphVgBVZDZRNucgNIfeoX50C+nRNTSH3qF8OgT6YXYAqTDPmM85AXRiRkD5dAj1o1tIk7YBKIL1phieZwDojzUU0qJpqDcNQ9o0DmTFPIHeaAYAAIBUeaP5GhudmFpws2LaDQdGY3TCDQvIgtYAaALr3VyeDyiO3oBWzAagG2YFUEVmE2VzDkJz6B3qR7eQHl1Dc+gdyqdDoB9mB5AK84z5nBNAJ2YElE+HUD+6hTRpG4AiWG+K4XkGgP5YQyEtmoZ60zCkTeNAVswT6I1mAAAASJU3mq+x8SPHOn78kUU+DnRHawA0gfVuLs8HFEdvQCtmA9ANswKoIrOJsjkHoTn0DvWjW0iPrqE59A7l0yHQD7MDSIV5xnzOCaATMwLKp0OoH91CmrQNQBGsN8XwPANAf6yhkBZNQ71pGNKmcSAr5gn0RjMAAACkyhvN19j6VSs6fnzdIh8HuqM1AJrAejeX5wOKozegFbMB6IZZAVSR2UTZnIPQHHqH+tEtpEfX0Bx6h/LpEOiH2QGkwjxjPucE0IkZAeXTIdSPbiFN2gagCNabYnieAaA/1lBIi6ah3jQMadM4kBXzBHqjGQAAAFLljeZrbGTtUOzZPtLyY3u2j8TI2qGCjwjSpDUAmsB6N5fnA4qjN6AVswHohlkBVJHZRNmcg9Aceof60S2kR9fQHHqH8ukQ6IfZAaTCPGM+5wTQiRkB5dMh1I9uIU3aBqAI1ptieJ4BoD/WUEiLpqHeNAxp0ziQFfMEeqMZAAAAUuWN5mtseM1QXHXJjgU3LfZsH4kPXLIjhte4YQFZ0BoATWC9m8vzAcXRG9CK2QB0w6wAqshsomzOQWgOvUP96BbSo2toDr1D+XQI9MPsAFJhnjGfcwLoxIyA8ukQ6ke3kCZtA1AE600xPM8A0B9rKKRF01BvGoa0aRzIinkCvdEMAAAAqVpe9gEwmE0bVsfH9u6M0YmpeOTIsVi3akWMrB1yswIypjUAmsB6N5fnA4qjN6AVswHohlkBVJHZRNmcg9Aceof60S2kR9fQHHqH8ukQ6IfZAaTCPGM+5wTQiRkB5dMh1I9uIU3aBqAI1ptieJ4BoD/WUEiLpqHeNAxp0ziQFfMEeqMZAAAAUuSN5hMwvMYNCiiC1gBoAuvdXJ4PKI7egFbMBqAbZgVQRWYTZXMOQnPoHepHt5AeXUNz6B3Kp0OgH2YHkArzjPmcE0AnZgSUT4dQP7qFNGkbgCJYb4rheQaA/lhDIS2ahnrTMKRN40BWzBPojWYAAABIzdKyDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgabzRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBlpd9ACk4efJkRESMj4+XfCTQHOvWrYslS5Zk9u/TMZRDy5AGLUMatAxp0DKkQcuQBi1DGrQMadAypEHLkIYsW9YxlMOaDGnQMqRBy5AGLUMatAxp0DKkQcuQBi1DGrQMadAypMH3b0L9lbUmT0xMRETE2I/uihOPHc/sv5+liQf/KSIixn98T6xcubLko1mo6sf3yI/vjYiI2267bebrXSU//OEPI6K65+D08zcxMdHV2mh/DWnQMqRBy5AGLUMatAxp0DKkQcuQBi1DGrQM9ddvx0tOThdL3370ox/F5s2byz4MaJSxsbFYv359Zv8+HUM5tAxp0DKkQcuQBi1DGrJu+a677oozzzwzs38f0B3rMqRBy5AGLUMatAxpyLJlHUM5rMmQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMafP8m1J81GdKgZUiDliENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlqL9+O/ZG8xk4ceJE3H///bFu3bpYsmRJ2YdTeePj47F58+a47777Ml18mqjJz2XWveXVcZO/RvN5Lh7neZgrr5ZPnjwZW7ZsSep5TvXcSfFxNfEx1WVdzlqKX+tpqT62VB9XRDaPLY+Wf/CDH8RznvOcJJ/zbqV83nXLc1Dsc1D0uuzr6zmI8BxEZP8cZN3yoUOH4tRTT42DBw/G8PBwZv/eMqV23qX2eCLSe0z9PJ6mXi9PS+0c6EVTH3uqj9t97O6k9vX3eKrNuty91L72efAcLa5Kz1FTW56tSl+PQXgc1VL048iyuSw7TuXrWSTPWX9SeN6qsian8FzmwfPSnudmrqq0XLbUzguPp9ryeDxVaTm1r1WEx1QXqTymqrRchFS+ZlXgucxWVb8Xu1XLvvbZ8VxmI7XnsQrrcp2f0zofe4TjL1uWx1+FlrNS969rOx5X/ZTx2FJquQgpn3/tNO0x1/Xx+nnH3tT9+CPq/xgcf2t+rmKuup4njrtYVTzuqn7/ZlGq+DXJksdXb90+vhSvlVP52qbwOFJ4DBH1eBx1arkOz+d8jrkYjrleLWehjl/zqvEcDi7l78VuxTnTnuemtSY/L1VsuY5fjzoec0Q9j9sxt1bFlrNUx697Kx5HdVT1MRTZclWfg1R4fvNTh+e2jHW5Ds9LXjz2Zj72iPwff1l77FS+rh5HtaTyOCJ6fyxaHozHUS1NfRz9dry8n4NjrqVLl8bTn/70sg+jdtavX1/rSKvEczm4vDv2NXqC5+Jxnod8TLc8Pj4eEWk+zyk+pog0H5fH1L+67a9T/FpPS/Wxpfq4Iqr12JYuXRpPe9rTIqJax1UWz4HnIKKez0G363IdH1vWPAeeg4jqPgdLly6NiIjh4eFKHt8gqvqc9yu1xxOR3mMq8/HU7Xp5WmrnQC+a+tib+ri7lfp9bI+n2jye7NRtXU7ta58Hz9HiUnyO6tbybKl8PTyOaqnj48ij4zo+D2XznPXH8/aEQVv2XLbmeWnPc5OPOu+vI9I7Lzyeaqvy47EuL+Qx1UOKj2kQdViXfc2y47nMVpWez8VartKx1p3nMhuex9YGWZfr/JzW+dgjHH/Zqnj8VdhjV/F5yYLHVT91fmxVaLkIdf4a9atpj7lpj3e+pvy8Y92PP6L+j8Hx5yuVn6tw3MVy3NVS5/11ql+TaR5fvRX9+KrUcipf2xQeRwqPISKdx9GNIlqu4/PpmIvhmLNTpXW5k6o+f3XiORxclZ9DP+9YLM9Na56XwWXZch2/HnU85oh6HrdjzldV99h1eg478TiqI4XH0Ek3Laf+HJTN85ufJj23vazLTXpe5vPYm/nYI+rz+HvdY9flcS3G46iWVB5HRHmPRcv15nFUS96PY2lu/2YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWvJG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF80bzFG7lypXxrne9K1auXFn2odSe57L6fI2e4Ll4nOehGCk+zyk+pog0H5fH1BwpPy+pPrZUH1dEdR9bVY+rSJ4Dz0FE2s9Byo+tW54Dz0FE9Z+Dqh9fP1J7TKk9noj0HlNqj6cITX7OmvrYm/q4+5Xa8+XxVJvH01yeq8V5jhbnOaqWVL4eHke1pPI4BuV56J3nrD+et+x4LlvzvLTnuaGV1M4Lj6faUns8s6X42DymekjxMaXO1yw7nsts1en5rNOxVp3nMhuex+zV+Tmt87FHOP6y1f3485Lq8+Jx1U/Kjy0VTfwaNe0xN+3x9qvuz1Pdjz+i/o/B8Rerbsc7zXEXy3GTldS/Jh5fvaX++DpJ5bGn8DhSeAwR6TyOqqjj8+mYi+GYm8fzNzjP4eCa9hw27fH2wnPTmuelWur49ajjMUfU87gdczOl8hx6HNWRwmMYlOcgX57f/HhuW2vy8+KxN/OxR6T7+FN5XB5HtaTyOCLq81jqcpyL8TiqxePozZKTJ0+ezPW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAcS8s+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICm8UbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXzRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXzRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF80bzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXzRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfNG8xm64YYb4mUve1ls2rQplixZEp///Od7/necPHkyPvjBD8aznvWsWLlyZTztaU+L973vfdkfLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCa5WUfQEoeffTR+Jmf+Zm47LLL4td+7df6+nf8zu/8Tnz5y1+OD37wg3HuuefGT3/60/jpT3+a8ZECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZVpy8uTJk2UfRIqWLFkSf/VXfxWveMUrZv7s6NGj8Yd/+Idx3XXXxaFDh+Kcc86JD3zgA/ELv/ALERHxve99L3bs2BHf+c534qyzzirnwAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDcLS37AJrkTW96U3zzm9+MT3/607F///649NJL41d/9VfjwIEDERHxt3/7t/HMZz4zvvCFL8TWrVvjjDPOiDe84Q3x05/+tOQjBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALLkjeYLcvDgwbjmmmvis5/9bFx00UVx5plnxtve9rbYvXt3XHPNNRERcdddd8W9994bn/3sZ+OTn/xkXHvttXHrrbfGv/7X/7rkowcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACytLzsA2iK22+/PY4fPx7Petaz5vz50aNHY+PGjRERceLEiTh69Gh88pOfnPm8P//zP4/zzz8/fvCDH8RZZ51V+HEDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2fNG8wWZmJiIZcuWxa233hrLli2b87G1a9dGRMRTn/rUWL58+Zw3oz/77LMjIuLgwYPeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS4Y3mC7Jz5844fvx4PPjgg3HRRRe1/Jxdu3bFY489FnfeeWeceeaZERHxwx/+MCIinvGMZxR2rAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEC+lpw8efJk2QeRiomJibjjjjsi4vE3lv/whz8cL3zhC+NJT3pSbNmyJV71qlfFzTffHB/60Idi586d8ZOf/CS+9rWvxY4dO+KlL31pnDhxIn7u534u1q5dGx/96EfjxIkT8cY3vjHWr18fX/7yl0t+dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBWvNF8hr7+9a/HC1/4wgV//prXvCauvfbaOHbsWPzxH/9xfPKTn4x/+qd/ipGRkfgX/+JfxHve854499xzIyLi/vvvjze/+c3x5S9/OU455ZR48YtfHB/60IfiSU96UtEPBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMiJN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKNjSsg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGm80TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwbzRfAZOnjwZ4+PjcfLkybIPBeiTjiENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahvrTMaRBy5AGLUMatAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQ/3pGNKgZUiDliENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWoT680XwGHnnkkRgeHo5HHnmk7EMB+qRjSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGVIg5ah/nQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQctQfzqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGWoD280DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwbzQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDBvNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMG80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwbzQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULDlZR8AwNjkVIxOTMX4kWOxfvWKGDllKIbXDJV9WECPtAzVplFoFs1DGrQMadAytKcPiuacA0iDeQ5p0DKkQctQfzqGNGgZ0qBlqsK5COXSIEB2zFRIg5ahXjQLadM4pEHLpMh5DdSR2QVp0DIAVId1GfKhLaAfZkcz+DoDWTBLALpjXgJA83ijeaBU9x86HG+/fn/ceGB05s/2bB+Jqy7ZEZs2rC7xyIBeaBmqTaPQLJqHNGgZ0qBlaE8fFM05B5AG8xzSoGVIg5ah/nQMadAypEHLVIVzEcqlQYDsmKmQBi1DvWgW0qZxSIOWSZHzGqgjswvSoGUAqA7rMuRDW0A/zI5m8HUGsmCWAHTHvASAZlpa9gEAzTU2ObXgIiQi4oYDo3H59ftjbHKqpCMDeqFlqDaNQrNoHtKgZUiDlqE9fVA05xxAGsxzSIOWIQ1ahvrTMaRBy5AGLVMVzkUolwYBsmOmQhq0DPWiWUibxiENWiZFzmugjswuSIOWAaA6rMuQD20B/TA7msHXGciCWQLQHfMSAJrLG80DpRmdmFpwETLthgOjMTrhQgTqQMtQbRqFZtE8pEHLkAYtQ3v6oGjOOYA0mOeQBi1DGrQM9adjSIOWIQ1apiqci1AuDQJkx0yFNGgZ6kWzkDaNQxq0TIqc10AdmV2QBi0DQHVYlyEf2gL6YXY0g68zkAWzBKA75iUANJc3mgdKM37kWMePP7LIx4Fq0DJUm0ahWTQPadAypEHL0J4+KJpzDiAN5jmkQcuQBi1D/ekY0qBlSIOWqQrnIpRLgwDZMVMhDVqGetEspE3jkAYtkyLnNVBHZhekQcsAUB3WZciHtoB+mB3N4OsMZMEsAeiOeQkAzeWN5oHSrF+1ouPH1y3ycaAatAzVplFoFs1DGrQMadAytKcPiuacA0iDeQ5p0DKkQctQfzqGNGgZ0qBlqsK5COXSIEB2zFRIg5ahXjQLadM4pEHLpMh5DdSR2QVp0DIAVId1GfKhLaAfZkcz+DoDWTBLALpjXgJAc3mjeaA0I2uHYs/2kZYf27N9JEbWDhV8REA/tAzVplFoFs1DGrQMadAytKcPiuacA0iDeQ5p0DKkQctQfzqGNGgZ0qBlqsK5COXSIEB2zFRIg5ahXjQLadM4pEHLpMh5DdSR2QVp0DIAVId1GfKhLaAfZkcz+DoDWTBLALpjXgJAcyX1RvPHjx+Pd77znbF169ZYvXp1nHnmmXHFFVfEyZMnO/69r3/963HeeefFypUrY9u2bXHttdcWc8DQcMNrhuKqS3YsuBjZs30kPnDJjhhe40IE6kDLUG0ahWbRPKRBy5AGLUN7+qBozjmANJjnkAYtQxq0DPWnY0iDliENWqYqnItQLg0CZMdMhTRoGepFs5A2jUMatEyKnNdAHZldkAYtA0B1WJchH9oC+mF2NIOvM5AFswSgO+YlADTXkpOLvQt7jbz//e+PD3/4w/GJT3winvvc58a3v/3teN3rXhfve9/74i1veUvLv3P33XfHOeecE7/1W78Vb3jDG+JrX/tavPWtb40vfvGLcfHFF3f13x0fH4/h4eEYGxuL9evXZ/mQoBHGJqdidGIqHjlyLNatWhEja4cKvwjRMQxOy1BtVWi0W1qGwVWheS3D4LQMadAytFeFPupEy4NzzlEFWobBVWGeaxkGp2VIQ9kt6xgGV3bHEVqGLGgZ0qBlqqIK5yKD0XK9aZBpWobBVWGmahkGp2Wolyo0246WYXBVaFzLMDgtk6IqnNdNo2MYXBVml5ZhcFoGsqJlGJx1GfJRhbaKpmUYXBVmh5bzV4WvM+nTcvrMkmbQMgyuCvNSy5AGLUN9LC/7ALJ0yy23xMtf/vJ46UtfGhERZ5xxRlx33XXxv/7X/2r7d/7sz/4stm7dGh/60IciIuLss8+Om266KT7ykY90/UbzwGCG17hRAynQMlSbRqFZNA9p0DKkQcvQnj4omnMOIA3mOaRBy5AGLUP96RjSoGVIg5apCucilEuDANkxUyENWoZ60SykTeOQBi2TIuc1UEdmF6RBywBQHdZlyIe2gH6YHc3g6wxkwSwB6I55CQDNs7TsA8jShRdeGF/72tfihz/8YURE/O///b/jpptuihe/+MVt/843v/nNeNGLXjTnzy6++OL45je/meuxAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM21vOwDyNLll18e4+Pj8exnPzuWLVsWx48fj/e9733x67/+623/zo9//ON48pOfPOfPnvzkJ8f4+HgcPnw4Vq9eveDvHD16NI4ePTrzz+Pj49k9CKAQOoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGepPx5AGLUMatAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DPWnY0iDliENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahvpaWvYBZOkzn/lM/MVf/EX85V/+Zdx2223xiU98Ij74wQ/GJz7xiUz/O1deeWUMDw/P/G/z5s2Z/vuB/OkY0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGWoPx1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DLUn44hDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnqa8nJkydPln0QWdm8eXNcfvnl8cY3vnHmz/74j/84PvWpT8X3v//9ln9nz549cd5558VHP/rRmT+75ppr4q1vfWuMjY21/DtHjx6No0ePzvzz+Ph4bN68OcbGxmL9+vXZPBggVzqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnqT8eQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAz1p2NIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWob6Wl72AWRpcnIyli5dOufPli1bFidOnGj7dy644IL40pe+NOfPvvKVr8QFF1zQ9u+sXLkyVq5cOdjBAqXSMaRBy5AGLUMatAxp0DKkQcuQBi1DGrQMadAypEHLUH86hjRoGdKgZUiDliENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlqD8dQxq0DGnQMqRBy5AGLUMatAxp0DKkQcuQBi1DGrQMadAy1NfSxT+lPl72spfF+973vvjiF78Y99xzT/zVX/1VfPjDH45XvvKVM5/zjne8I1796lfP/PNv/dZvxV133RX/7t/9u/j+978f//E//sf4zGc+E7/7u79bxkMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmB52QeQpY997GPxzne+M377t387Hnzwwdi0aVP823/7b+Pf//t/P/M5DzzwQBw8eHDmn7du3Rpf/OIX43d/93fjT/7kT+LpT396/Nf/+l/j4osvLuMhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2Q1BvNr1u3Lj760Y/GRz/60bafc+211y74s1/4hV+Iffv25XdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALMsLfsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrGG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMwbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULKk3mj/jjDNiyZIlC/73xje+seXnX3vttQs+d9WqVQUfNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA0y8s+gCz9wz/8Qxw/fnzmn7/zne/EL//yL8ell17a9u+sX78+fvCDH8z885IlS3I9RgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICk3mj+tNNOm/PPV111VZx55pnxghe8oO3fWbJkSTzlKU/J+9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZiT1RvOzTU1Nxac+9an4vd/7vViyZEnbz5uYmIhnPOMZceLEiTjvvPPi/e9/fzz3uc/t+O8+evRoHD16dOafx8fHMztuoBg6hjRoGdKgZUiDliENWoY0aBnSoGVIg5YhDVqGNGgZ6k/HkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQcuQBi1DGrQM9adjSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGVIg5YhDVqG+lpa9gHk5fOf/3wcOnQoXvva17b9nLPOOiuuvvrq+Ou//uv41Kc+FSdOnIgLL7wwfvSjH3X8d1955ZUxPDw887/NmzdnfPRA3nQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DLUn44hDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnqT8eQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAz1teTkyZMnyz6IPFx88cUxNDQUf/u3f9v13zl27FicffbZsXfv3rjiiivaft7Ro0fj6NGjM/88Pj4emzdvjrGxsVi/fv1Axw0UQ8eQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUP96RjSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDlqH+dAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy1Bfy8s+gDzce++98dWvfjU+97nP9fT3VqxYETt37ow77rij4+etXLkyVq5cOcghQmbGJqdidGIqxo8ci/WrV8TIKUMxvGao7MOqPB1TV5qfS8tE6CIFWqaqzJfeaJmyaDVbWiZ1TZkZWqZJUu5ay/WX8vlJ97RMmcyh7Gi5efSTJi1TF2ZQezpuJk2kR8vkzdwohpbpl0arRctUifnQvzq07OsLi6tDy1C0Oq4fWk5LHc9BsqFlSGMGahmyUfY80DJ1VXY7VaPl9DjHm0fHRGg/BVouh3bImpYhDVoma/Yc5dAyZK+MeaZlyJ6Wi2UvSEqa3HKezAmKpmWaLKWZq2VIg5ahvpJ8o/lrrrkmTj/99HjpS1/a0987fvx43H777fGSl7wkpyODbN1/6HC8/fr9ceOB0Zk/27N9JK66ZEds2rC6xCMD8qB5WEgXQF7MF6gHrQK9MDMgPbqmypyfQNnMIeiffoAymUEwlyaAXpkbUG0aBdoxH9Lm6wtAP6wflM05CDSZGQhMMw+gP9ohdc5xaCbtQ3+0AwAUwZ4DSIV5BmnQcrE838BizAmA4pi5AECWlpZ9AFk7ceJEXHPNNfGa17wmli9fPudjr371q+Md73jHzD+/973vjS9/+ctx1113xW233RavetWr4t577403vOENRR829GxscmrBhUFExA0HRuPy6/fH2ORUSUcG5EHzsJAugLyYL1APWgV6YWZAenRNlTk/gbKZQ9A//QBlMoNgLk0AvTI3oNo0CrRjPqTN1xeAflg/KJtzEGgyMxCYZh5Af7RD6pzj0Ezah/5oBwAogj0HkArzDNKg5WJ5voHFmBMAxTFzAYCsJfdG81/96lfj4MGDcdllly342MGDB+OBBx6Y+eeHH344fvM3fzPOPvvseMlLXhLj4+Nxyy23xHOe85wiDxn6MjoxteDCYNoNB0ZjdMLFAaRE87CQLoC8mC9QD1oFemFmQHp0TZU5P4GymUPQP/0AZTKDYC5NAL0yN6DaNAq0Yz6kzdcXgH5YPyibcxBoMjMQmGYeQH+0Q+qc49BM2of+aAcAKII9B5AK8wzSoOVieb6BxZgTAMUxcwGArC0v+wCy9iu/8itx8uTJlh/7+te/PuefP/KRj8RHPvKRAo4Ksjd+5FjHjz+yyMeBetE8LKQLIC/mC9SDVoFemBmQHl1TZc5PoGzmEPRPP0CZzCCYSxNAr8wNqDaNAu2YD2nz9QWgH9YPyuYcBJrMDASmmQfQH+2QOuc4NJP2oT/aAQCKYM8BpMI8gzRouVieb2Ax5gRAccxcACBryb3RPNTR2ORUjE5MxfiRY7F+9YoYOWUohtcMdfw761et6PjxdYt8HOhNP51mSfOUoezzfjG6APq12HwzX6AeBmm16vscaLo8GrW+U0fWq8503Zrzphqcn0DZ8phD1hiaosh1XFfA/DmwdmXnb+d0LUHTLLYun7Jyedz54IS1FBLXy77ZfTmotio36hq9N54vslbl+ZCyolr29QWgH4utH6tWLIt9Bx+2H6WtQfc69jBAE7SblWYg1Eue93jMA+qiaq9baKe6qnau1JVzHJoptfatCRQly3actwBAO6nt14H+pHDNYJ7RJCk0246Wi+X5hnLVYZ6bEwDZ8z3YAEBRvNE8lOz+Q4fj7dfvjxsPjM782Z7tI3HVJTti04bVbf/eyNqh2LN9JG6Y9fdm//2RtdW6gQR11m+nWdI8RavCeb8YXQD96Ga+mS9QD/22Wod9DjRZXo1a36kb69XidL2Q86Y6nJ9A2bKeQ9YYmqSodVxXQKs5cOWvnRsXbR+Z82fTXEvQRJ3W5Yu2j8S373043vG522f+zFoK6el13+y+HFRbVRt1jd4bzxd5qOp8SFmRLfv6AtCPTuvH7m0b4wu3PxAf/7s7IsJ+lIWy2OvYwwCp6zQrzUCoj7zv8ZgH1EEVX7fQTjVV8VypK+c4NFNK7VsTKFJW7ThvAYBOVq1YGru3bYyb7nhowcfqtl8H+pPKNUNK9x+gk1SabUfLxRpZO9T291Nc5PmGXNVlnpvLANnyPdgAQJGWln0A0GRjk1MLNv8RETccGI3Lr98fY5NTbf/u8JqhuOqSHbFn+8icP9+zfSQ+cMmOGF7j4gCyMEinWdI8RarKeb8YXQC96na+mS9QD/20Wpd9DjRVno1a36kT61V3dD2X86ZanJ9A2bKcQ9YYmqaIdVxXQLs5cMUX/jHe+MJtriXg/+i0Lr/xhdviii/845w/t5ZCWvrZN7svB9VWxUZdo/fG80VeqjgfUlZ0y76+APSj3fqxe9vGeO2urXH1TXfP/Jn9KLNltdexhwFSttisjAgzEGqgiHs89kRUXVVft9BO9VT1XKkr5zg0UyrtWxMoWhbtOG8BgE7GJqfiXX/z3Xjtrq2xa9vGOR/bvW1jvP+V59Zmvw70J6VrhlTuP0AnKTXbjpaL98YXbluwF9y1bWO88YXbSjoiSF+d5rm5DJAd34MNABRtedkHAE02OjG1YPM/7YYDozE6MdVxk79pw+r42N6dMToxFY8cORbrVq2IkbVDLgwgQ4N2miXNU5QqnfeL0QXQi17mm/kC9dBrq3Xa50AT5d2o9Z26sF51T9dPcN5Uj/MTKFtWc8gaQxPlvY7rCmg3Byanjsdl1/5D/Pe3XBSPnTjpWgKi9bq8fOmSePGf3hiTU8cXfL61FNLR777ZfTmotqo16hq9N54v8lS1+ZCyMlr29QWgH/PXj1UrlsUXbn8g3nLdvgX3Bu1HmZblXsceBkhVN7PyzNPXmoFQcUXd47Enosqq/LqFdqqlyudKXTnHoZlSaN+aQBkGbcd5CwB0MjoxFV/93oNxy50PxWW7t8Zlu7bG0cdOxMrlS2PffYdi6viJsg8RyFlq1wwp3H+ATlJrth0tF2d0Yiouu/YfWu4FL7v2H+Jv3/T/s3f30XbV9YH/P4nJDQnhXsBbEBjQjESKYiyg0yoQdXUsbXWmdjLMWkxdVanO9Gc7VJkHtLZLGUeF1TI6PlSXOkRdrXbVYXTszDiKuhSrDqOEFm0RQ0HDCGovD/cmXJIb4P7+YG5Mcp/Owz57fx9er7X4I/fkYe99vu/Pd5+TG86FrjuMQG7z3FwGaIbvwQYA2uaD5qFDM/sPrvj43lUej4iY2OTFAIxSE502SfO0IbV1vxpdAL3qd76ZL5CHflrN7T4HatNGo/Z3cmC/6o+uH2fdpMn6BLrWxByyx1CrUe7jugJWmgOzc4/GA7Nz8TNnnNDiEUHajt6Xb9nzwJIfMr/AXgplGOa+2ftykLaUGvUavT+uF6OW0nwoWVcte34BGMTh+8ctex6I93zxjmV/rvtRIpq/13EPA5So11lpBkLa2nyPxzwgVan/vYV20pH6WsmVNQ51yr19ewJdGaYd6xYAWMnCvcLs3KNLfk/FP/zpk9o+JKBlJb5myP39B1hJic0uR8vtmNl/cNl7wYiy1hSkJMd5bi4DDM/3YAMAbVvb9QFAzcaPWb/i48et8jgwejqlRtY9UCrzDTAHIG0ahcdpgUFYNwCMij0GmqcrwByA4WgI6qB1oA1mTX9cLyiDlgHIlT2MXlgnAKszK6EMWgYd0DtrBYAF9gRyZN0CACtxrwCYA5AXzdI0awq6oT2AOpn/AEDbfNA8dGhy81hs3zq55GPbt07G5Oaxlo8IOJpOqZF1D5TKfAPMAUibRuFxWmAQ1g0Ao2KPgebpCjAHYDgagjpoHWiDWdMf1wvKoGUAcmUPoxfWCcDqzEoog5ZBB/TOWgFggT2BHFm3AMBK3CsA5gDkRbM0zZqCbmgPoE7mPwDQNh80Dx2a2DQWV+/YtuhFwPatk3HNjm0xsckLAOiaTqmRdQ+UynwDzAFIm0bhcVpgENYNAKNij4Hm6QowB2A4GoI6aB1og1nTH9cLyqBlAHJlD6MX1gnA6sxKKIOWQQf0zloBYIE9gRxZtwDAStwrAOYA5EWzNM2agm5oD6BO5j8A0LY18/Pz810fRO5mZmZiYmIipqenY3x8vOvDIUPTs3MxtW8u9u4/GMcdsz4mNz9+4z+1by5m9h+M8Y3rY/LYMS8IRkjHdVhobZCulupUk+nRcrOs+zoMMxtHRcuMwuFrffOGdTH2hLUx/fBcHLvBfBsVLTMKTe1b7nN6p2W6MMpGU7z/bYOW82S/6l0tbffSsnXzuFrWBHmyL7OaVGeYPeZIWiZi+F511T0ts5pR78vmwPB0XLbVGtRQObTMSqZn5+LB2YPx0Nwj8dDco3H8xvVx0nEb9J4gLbcn1fePcua+4if8fVTa9E+vtHwk7ZAr99j1Ma96k9sepuVujHqd6LU+WqZEvczK0uadlslJr/3ldn/cBC1ztCY6KG3Py0EXLdc4M3OlyTzYk+tQao/2hJ/Qcj4GXbeldsyRtAxl0DLD+NHM/njgobmY2f9IjG9cFydsGouTx4/p+rCqpGW6Yg40S8uM2mqv872eb0auLQ/y/HvPk5Kl3LL2ymL/Ha2UW6Zu7r36o2Uog5YhH+u6PgAgYmLTkTf89zz4cFx5/a3xld1Th762fetkXL1jW5x6/MYuDhGyN2xXR3cKNbDuy+eeg1pY61CGJlt2nwNpG1Wj7gnIjf2qN9o+knVjTQB5S3mG2WPgSE30qitIWxv7sjkAy+ulQQ1BHR6aezR+7799O8nXytCFlN8/ypn7iv64Xt3QP02rpWXtALkwr3pXyx7GcEa5TvQKlGK1WWneQXf66c/9MQzfgT2vHmZmHjQJ6Si5R3sCORpk3ZbcMQDwE/Z8wByA/Kz0Ol/TdRv0+feeJ3RDe+Ww/0Kd3HsBAKlb2/UBAEeanp1b9CIiIuLG3VPx+utvjenZuY6ODPKlK4DFzEZqYa1DGbQMDMscgTJpm6NZE0DOzDDIh16hfDqHbmkQWGAewJE0AfXSPwxGO0AuzCvIh16BWph30B39Qbs0B2nRJKRDj5A/HQNAHez5gDkAZdF03Tz/AN0wf6FO2gcAcuCD5iExU/vmFr2IWHDj7qmY2ueFBPRLVwCLmY3UwlqHMmgZGJY5AmXSNkezJoCcmWGQD71C+XQO3dIgsMA8gCNpAuqlfxiMdoBcmFeQD70CtTDvoDv6g3ZpDtKiSUiHHiF/OgaAOtjzAXMAyqLpunn+Abph/kKdtA8A5MAHzUNiZvYfXPHxvas8DiymK4DFzEZqYa1DGbQMDMscgTJpm6NZE0DOzDDIh16hfDqHbmkQWGAewJE0AfXSPwxGO0AuzCvIh16BWph30B39Qbs0B2nRJKRDj5A/HQNAHez5gDkAZdF03Tz/AN0wf6FO2gcAcuCD5iEx48esX/Hx41Z5HFhMVwCLmY3UwlqHMmgZGJY5AmXSNkezJoCcmWGQD71C+XQO3dIgsMA8gCNpAuqlfxiMdoBcmFeQD70CtTDvoDv6g3ZpDtKiSUiHHiF/OgaAOtjzAXMAyqLpunn+Abph/kKdtA8A5MAHzUNiJjePxfatk0s+tn3rZExuHmv5iCB/ugJYzGykFtY6lEHLwLDMESiTtjmaNQHkzAyDfOgVyqdz6JYGgQXmARxJE1Av/cNgtAPkwryCfOgVqIV5B93RH7RLc5AWTUI69Aj50zEA1MGeD5gDUBZN183zD9AN8xfqpH0AIAc+aB4SM7FpLK7esW3Ri4ntWyfjmh3bYmKTFxLQL10BLGY2UgtrHcqgZWBY5giUSdsczZoAcmaGQT70CuXTOXRLg8AC8wCOpAmol/5hMNoBcmFeQT70CtTCvIPu6A/apTlIiyYhHXqE/OkYAOpgzwfMASiLpuvm+QfohvkLddI+AJCDNfPz8/NdH0TuZmZmYmJiIqanp2N8fLzrw6EQ07NzMbVvLvbuPxjHHbM+JjePeRExQjqug67Kp2XoX4qzUcuMQoprvXRaZhS03D4tU5pa54iWKV0tbWu5d7WsCfKkZVZjhuVBy0TotQRaZjU6T5+Oy6bBemiZ1ZgHedByezTBKGk5bfqnV1o+knbIlZbrY16VSctl0mt9tEytSpt3WiYnpfXXJC0zCpprn5ZZiSbzoOM66LF8Wi6fjuugZSiDlhmGPT8dWqYr5kCztEzXNN2MXFv2/MORcm2Z/Ji/o6VlUqX9/mgZyqBlyMe6rg8AWNrEJi8coGm6AljMbKQW1jqUQcvAsMwRKJO2OZo1AeTMDIN86BXKp3PolgaBBeYBHEkTUC/9w2C0A+TCvIJ86BWohXkH3dEftEtzkBZNQjr0CPnTMQDUwZ4PmANQFk3XzfMP0A3zF+qkfQAgZWu7PgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2vigeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICW+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICW+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICW+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICW+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAlvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWrev6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZu3Zsyempqa6PoxlTU5OxhlnnNH1YQAAAAAAAAAAdKqoD5p/ylOeEt///vcXff01r3lNvPe9713y13ziE5+I3//934/vfe97sXXr1rjmmmvil3/5l0d9qAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEnv27Imf/umz4+GHZ7s+lGVt3LgpvvOd23zYPAAAAAAAAABQtaI+aP4b3/hGPProo4d+/O1vfzte9KIXxSWXXLLkz//a174Wl156abz97W+Pl7zkJfGxj30sXvrSl8auXbvinHPOaeuwAQAAAAAAAAAAAAAAAAAAAAAAAAAAAKAxU1NT8fDDs/Gzl70pxk95SteHs8jMvd+Lm667KqampnzQPAAAAAAAAABQtU4/aP5d73pXTz/v8ssv7+nn/dRP/dQRP7766qvjqU99ajz/+c9f8uf/p//0n+IXf/EX49/+238bERFvectb4oYbboj3vOc98f73v7+nPxMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUjR+ylPixDPO6vowAAAAAAAAAABYRqcfNP+Od7xj1Z+zZs2anj9o/nBzc3Pxx3/8x3HFFVfEmjVrlvw5X//61+OKK6444msXX3xxfOpTn1rx9z5w4EAcOHDg0I9nZmb6Pj6gWzqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnyp2Mog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWob86RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliFfa7v8w++6665V/7vzzjsH+r0/9alPxYMPPhiveMUrlv05P/zhD+Pkk08+4msnn3xy/PCHP1zx9377298eExMTh/47/fTTBzpGoDs6hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8qdjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqG/OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhX2vm5+fnu/rDv/71r8d9990XL3nJSw597aMf/Wi86U1vioceeihe+tKXxrvf/e7YsGFD37/3xRdfHGNjY/Hnf/7ny/6csbGx+MhHPhKXXnrpoa/90R/9UVx11VXxox/9aNlfd+DAgThw4MChH8/MzMTpp58e09PTMT4+3vexUq7p2bmY2jcXM/sPxvjG9TF57FhMbBrr+rAIHadKM/RLywzDzEmHltFjGbScPy0SoWXqVdoM1DK5Kq3FYWk5XdYq/dAyvTBX0qdldFoGLbMcjedDx9YrZdByHcyr8pXUsvVKzUpqOTdmD03Scm90R+q0nDYzhF6l2rI1DP1JtWXIWRd7kZbpkvuv5mi5PPqok5aboyG6ouPymCd10nKe9MrRBm15165dcf7558eL3rgzTjzjrDYOtS/377k9bnjrK+Pmm2+O8847r+vDgZGzL6fPHkwvtFwXc6FcWuZwWs9XDS1bn9SghpYZjBmYFy2TGzNmaVqGMmgZ8rWuyz/8qquuihe+8IWHPmj+W9/6VvzGb/xGvOIVr4izzz47/uAP/iBOPfXUePOb39zX7/v9738/Pv/5z8d//a//dcWf96QnPWnRB8r/6Ec/iic96Ukr/roNGzbEhg0b+jom6nPPgw/HldffGl/ZPXXoa9u3TsbVO7bFqcdv7PDIiNBxijTDILTMoMyctGi5bnosh5bzpkUWaJkalTgDtUyOSmxxWFpOk7VKv7TMasyVPGi5bjoth5ZZisbzUnvH1iulqL3lGphXdSilZeuV2pXScm7MHpqm5dXpjhxoOV1mCP1IsWVrGPqXYsuQs672Ii3TFfdfzdJyWfRRLy03Q0N0ScdlMU/qpeX86JWlaBnKoOW02YPplZbrYS6UTcss0HreSm/Z+qQWpbfMYMzA/GiZnJgxy9MylEHLkK+1Xf7hf/VXfxU///M/f+jHf/qnfxo/+7M/Gx/84AfjiiuuiHe9613xZ3/2Z33/vjt37oyTTjopXvziF6/485773OfGF77whSO+dsMNN8Rzn/vcvv9MONz07NyiFwARETfunorXX39rTM/OdXRkkCbNAG0ycyAdeoQ0aBGomRkIadAiubBWgaaZK5A+nULZNE5OrFcgF+YVObFegS6YPdA+3QHDMEPInTUMQNfsRdTGmofl6QOGoyGgKeYJ5EOvANANezBwNHMB6qB1UmZ9AjUzA4FRMmMAgJR1+kHzDzzwQJx88smHfvzlL385fumXfunQj5/znOfE3Xff3dfv+dhjj8XOnTvj5S9/eaxbt+6Ix37913893vCGNxz68e/8zu/E//pf/yuuvfba+M53vhNvfvOb45vf/Gb89m//9oBnBI+b2je36AXAght3T8XUPi8C4HCaAdpk5kA69Ahp0CJQMzMQ0qBFcmGtAk0zVyB9OoWyaZycWK9ALswrcmK9Al0we6B9ugOGYYaQO2sYgK7Zi6iNNQ/L0wcMR0NAU8wTyIdeAaAb9mDgaOYC1EHrpMz6BGpmBgKjZMYAACnr9IPmTz755LjrrrsiImJubi527doVP/dzP3fo8b1798b69ev7+j0///nPx549e+Kyyy5b9NiePXvi3nvvPfTj5z3vefGxj30sPvCBD8SznvWs+C//5b/Epz71qTjnnHMGPCN43Mz+gys+vneVx6E2mgHaZOZAOvQIadAiUDMzENKgRXJhrQJNM1cgfTqFsmmcnFivQC7MK3JivQJdMHugfboDhmGGkDtrGICu2YuojTUPy9MHDEdDQFPME8iHXgGgG/Zg4GjmAtRB66TM+gRqZgYCo2TGAAApW9flH/7Lv/zL8frXvz6uueaa+NSnPhWbNm2Kiy666NDjt956azz1qU/t6/f8hV/4hZifn1/ysS996UuLvnbJJZfEJZdc0tefAasZP2b9io8ft8rjUBvNAG0ycyAdeoQ0aBGomRkIadAiubBWgaaZK5A+nULZNE5OrFcgF+YVObFegS6YPdA+3QHDMEPInTUMQNfsRdTGmofl6QOGoyGgKeYJ5EOvANANezBwNHMB6qB1UmZ9AjUzA4FRMmMAgJSt7fIPf8tb3hLr1q2L5z//+fHBD34wPvjBD8bY2Nihx6+77rr4hV/4hQ6PEAYzuXkstm+dXPKx7VsnY3Lz2JKPQa00A7TJzIF06BHSoEWgZmYgpEGL5MJaBZpmrkD6dApl0zg5sV6BXJhX5MR6Bbpg9kD7dAcMwwwhd9YwAF2zF1Ebax6Wpw8YjoaAppgnkA+9AkA37MHA0cwFqIPWSZn1CdTMDARGyYwBAFLW6QfNT05Oxo033hgPPPBAPPDAA/Grv/qrRzz+iU98It70pjd1dHQwuIlNY3H1jm2LXghs3zoZ1+zYFhObvAiAw2kGaJOZA+nQI6RBi0DNzEBIgxbJhbUKNM1cgfTpFMqmcXJivQK5MK/IifUKdMHsgfbpDhiGGULurGEAumYvojbWPCxPHzAcDQFNMU8gH3oFgG7Yg4GjmQtQB62TMusTqJkZCIySGQMApGzN/Pz8fNcHkbuZmZmYmJiI6enpGB8f7/pwSMj07FxM7ZuLvfsPxnHHrI/JzWNeACRKx2nQDMPSMv0wc9Kl5frosUxazo8WWYqWqUXpM1DL5KL0Foel5XRYqwxDyyzFXMmPluuj0zJpmQUaz1eNHVuvlKjGlmtgXtUn55atV/iJnFvOjdnDKGl5abojN1pOixnCoFJp2RqG4aTSMuQshb1Iy7QphTVfKi3nTx9EaHkYGiIVOs6feUKElnOhV1bTa8u7du2K888/P170xp1x4hlntXiEvbl/z+1xw1tfGTfffHOcd955XR8OtM6+nB57MIPQctnMhXpouW5aL0eJLVuf1KjElhmMGZg3LZM6M6Y3WoYyaBnysa7rA4CSTWxy0w/90AzQJjMH0qFHSIMWgZqZgZAGLZILaxVomrkC6dMplE3j5MR6BXJhXpET6xXogtkD7dMdMAwzhNxZwwB0zV5Ebax5WJ4+YDgaAppinkA+9AoA3bAHA0czF6AOWidl1idQMzMQGCUzBgBI0dquDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgNj5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBl67o+AEjN9OxcTO2bi5n9B2N84/qYPHYsJjaNdX1YkAX9QJq0CQzK/IAyaBlgeGYpYA5wOOsByqBlSIMWgVEyYxgF6wrogtlDKaxloDTmGgxPR8CwzBFKYB0D0Ct7BqRLn5TM+oZ2aA3ol7kBi+kCAOiX+wdgUOYHpEmbsDKNAKkzp4A2mTkAQOp80Dwc5p4HH44rr781vrJ76tDXtm+djKt3bItTj9/Y4ZFB+vQDadImMCjzA8qgZYDhmaWAOcDhrAcog5YhDVoERsmMYRSsK6ALZg+lsJaB0phrMDwdAcMyRyiBdQxAr+wZkC59UjLrG9qhNaBf5gYspgsAoF/uH4BBmR+QJm3CyjQCpM6cAtpk5gAAOVjb9QFAKqZn5xbdwEdE3Lh7Kl5//a0xPTvX0ZFB+vQDadImMCjzA8qgZYDhmaWAOcDhrAcog5YhDVoERsmMYRSsK6ALZg+lsJaB0phrMDwdAcMyRyiBdQxAr+wZkC59UjLrG9qhNaBf5gYspgsAoF/uH4BBmR+QJm3CyjQCpM6cAtpk5gAAufBB8/D/TO2bW3QDv+DG3VMxtc9NPCxHP5AmbQKDMj+gDFoGGJ5ZCpgDHM56gDJoGdKgRWCUzBhGwboCumD2UAprGSiNuQbD0xEwLHOEEljHAPTKngHp0icls76hHVoD+mVuwGK6AAD65f4BGJT5AWnSJqxMI0DqzCmgTWYOAJCLdV0fAKRiZv/BFR/fu8rjUDP9QJq0CQzK/IAyaBlgeGYpYA5wOOsByqBlSIMWgVEyYxgF6wrogtlDKaxloDTmGgxPR8CwzBFKYB0D0Ct7BqRLn5TM+oZ2aA3ol7kBi+kCynLbbbd1fQgrmpycjDPOOKPrwwCG5P4BGJT5AWnSJqxMI0DqzCmgTWYOAJALHzQP/8/4MetXfPy4VR6HmukH0qRNYFDmB5RBywDDM0sBc4DDWQ9QBi1DGrQIjJIZwyhYV0AXzB5KYS0DpTHXYHg6AoZljlAC6xiAXtkzIF36pGTWN7RDa0C/zA1YTBdQhoen74uINfGyl72s60NZ0caNm+I737nNh81D5tw/AIMyPyBN2oSVaQRInTkFtMnMAQBy4YPm4f+Z3DwW27dOxo27pxY9tn3rZExuHuvgqCAP+oE0aRMYlPkBZdAywPDMUsAc4HDWA5RBy5AGLQKjZMYwCtYV0AWzh1JYy0BpzDUYno6AYZkjlMA6BqBX9gxIlz4pmfUN7dAa0C9zAxbTBZTh4OzeiJiPn/nnV8ZPbfnprg9nSTP3fi9uuu6qmJqa8kHzkDn3D8CgzA9IkzZhZRoBUmdOAW0ycwCAXKzt+gAgFRObxuLqHdti+9bJI76+fetkXLNjW0xschMPy9EPpEmbwKDMDyiDlgGGZ5YC5gCHsx6gDFqGNGgRGCUzhlGwroAumD2UwloGSmOuwfB0BAzLHKEE1jEAvbJnQLr0Scmsb2iH1oB+mRuwmC6gLJtPOiNOPOOsJP8bP+UpXV8eoCHuH4BBmR+QJm3CyjQCpM6cAtpk5gAAuVgzPz8/3/VB5G5mZiYmJiZieno6xsfHuz4chjQ9OxdT++Zi7/6Dcdwx62Ny85gb+ArouBn6oWtaXpo2yY2W02F+MAwtp0PLDEPL8LjcZ6mWYXgpzAEtpyOF9UC+tJwOLTMMLTdHi3RJy+UzY8rXRcfWFTTPnrw6s4cc9NKytQzpsy/3x1wjVTm1rCNYXk4td8kcIXVeL0MZ7Mukwp4xHC0zSvpsj5bbZ30zClpeTGvkRsfdMzdoQmkt64Ja9dryrl274vzzz48XvXFnnHjGWS0eYW++d9Nn46brrooLX/veOO3sc7s+nCXdv+f2uOGtr4ybb745zjvvvK4Ph8KUti/nwv0DTdNyPcyPsmk5X9rkcFpeTCPkSMt1MafKpWVSZOb0T8tQBi1DPtZ1fQCQmolNbtphUPqBNGkTGJT5AWXQMsDwzFLAHOBw1gOUQcuQBi0Co2TGMArWFdAFs4dSWMtAacw1GJ6OgGGZI5TAOgagV/YMSJc+KZn1De3QGtAvcwMW0wUA0C/3D8CgzA9IkzZhZRoBUmdOAW0ycwCA1K3t+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAauOD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABa5oPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrmg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWuaD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABatq7rA4BBTc/OxdS+uZjZfzDGN66PyWPHYmLTWNeHBVXSIzBKZgy0Q2uQLn0Co2C2AG0wa4DUmEt18XxDGbQM3dMh6ABYnTkBddE8QJ3Mf2pivVMD6xxogllC26w5gN6ZmaTIugSgV/YMamCd0xZrDQA4nHsDSJM2IQ9aBaiP2U+XrD9ojp4AAPLkg+bJ0j0PPhxXXn9rfGX31KGvbd86GVfv2BanHr+xwyOD+ugRGCUzBtqhNUiXPoFRMFuANpg1QGrMpbp4vqEMWobu6RB0AKzOnIC6aB6gTuY/NbHeqYF1DjTBLKFt1hxA78xMUmRdAtArewY1sM5pi7UGABzOvQGkSZuQB60C1Mfsp0vWHzRHTwAA+Vrb9QFAv6Zn5xa9AImIuHH3VLz++ltjenauoyOD+ugRGCUzBtqhNUiXPoFRMFuANpg1QGrMpbp4vqEMWobu6RB0AKzOnIC6aB6gTuY/NbHeqYF1DjTBLKFt1hxA78xMUmRdAtArewY1sM5pi7UGABzOvQGkSZuQB60C1Mfsp0vWHzRHTwAAefNB82Rnat/cohcgC27cPRVT+7wIgbboERglMwbaoTVIlz6BUTBbgDaYNUBqzKW6eL6hDFqG7ukQdACszpyAumgeoE7mPzWx3qmBdQ40wSyhbdYcQO/MTFJkXQLQK3sGNbDOaYu1BgAczr0BpEmbkAetAtTH7KdL1h80R08AAHnzQfNkZ2b/wRUf37vK40Bz9AiMkhkD7dAapEufwCiYLUAbzBogNeZSXTzfUAYtQ/d0CDoAVmdOQF00D1An85+aWO/UwDoHmmCW0DZrDqB3ZiYpsi4B6JU9gxpY57TFWgMADufeANKkTciDVgHqY/bTJesPmqMnAIC8+aB5sjN+zPoVHz9ulceB5ugRGCUzBtqhNUiXPoFRMFuANpg1QGrMpbp4vqEMWobu6RB0AKzOnIC6aB6gTuY/NbHeqYF1DjTBLKFt1hxA78xMUmRdAtArewY1sM5pi7UGABzOvQGkSZuQB60C1Mfsp0vWHzRHTwAAefNB82RncvNYbN86ueRj27dOxuTmsZaPCOqlR2CUzBhoh9YgXfoERsFsAdpg1gCpMZfq4vmGMmgZuqdD0AGwOnMC6qJ5gDqZ/9TEeqcG1jnQBLOEtllzAL0zM0mRdQlAr+wZ1MA6py3WGgBwOPcGkCZtQh60ClAfs58uWX/QHD0BAOTNB82TnYlNY3H1jm2LXohs3zoZ1+zYFhObFr8ImZ6di7/98b64Zc8D8bd/ty+mZ+faOlwoxlIdDdIjQK9qnjHuXWjDwjr73n0Pxb//lXOqbA261Musr3kvBEZnlLPFfSywwKwBunb0rIgIr68qstw+dNHWyfj3v3JOR0cF9GvYe0r3jTC8Jl/baZJcpfR3NTqCNK00J972q8+M+x6a0y0UxPtOAEeq5XVKSq8NYdTdWe/UYKX7+rf96jOtc8C/9SBJK+1fb/rHz4j7Hpor9jUZQL9GvU/X8p4YzUrl/tH6BUhfr3uGmU7OUrk3OpquyjI9Oxf3PTQXb/rHz4iLEltrAEA3Ur0PhZr4f9tDvvpp1XssQIrMpv65TytXDj1Yf9CcfnvKYUYAANRkXdcHAIM49fiN8e5Lz42pfXOxd//BOO6Y9TG5eWzJF/T3PPhwXHn9rfGV3VOHvrZ962RcvWNbnHr8xjYPG7K1Wke99gjQrxpnjHsX2nD0Ots09oT4/Zc8Pd744rPj4blHq2gNutTPrK9xLwRGbxSzxX0scDSzBujKcrPimh3bvL6qyMI+9MOZ/fF/H3g4IiJuufvB+OV3fSWe/eQT7B2QiUHvKd03QnOaeG2nSXKXwt/V6AjSttScOGb92njTp/86Pn/bjw/9PN1CGbzvBPC42l6npPDaENrqznqnBqcevzHe/k+eGd+/bzYefPhgbFi3Nm65+8G46s//Oq76lXOK3MuA3vi3HqTs8DX34MNzceDgY/G1O++Lf/Tuv4jZuUeLfk0G0K9R7dO1vSdGs7q+f7R+AfKx2p5hplOCru+Njqarshz+fG4ae0JcduGW+P+e/9TYsH5tHL9xzPu4AFCxNRHxS888JV7+vKfEgUceiw3r1saP9x7o+rCgCv7f9pC/Xlr1HguQIrNpcO7TypNTD9YfNKfXnnKaEQAAtVgzPz8/3/VB5G5mZiYmJiZieno6xsfHuz4cDjM9Oxe//fFbjngRsmD71sl496XneiOAiNDxSnRETrRM7szcx2l5tKwz2qLlpWmQ3GiZXpht6dMyJTBrtAy9yGFWaLk9OawH8qXldGmffmh59DTJqNXQsY6oQWkt65ZaldbySnROyWpqmcGZg+nTcnl0Vyctj46maJOW82E2sJKUWrZWYXAptUx+zN90aLl/1i8p0jIMJqWZrmNKkVJXXSit5dqfT+rVa8u7du2K888/P170xp1x4hlntXiEvfneTZ+Nm667Ki587XvjtLPP7fpwlnT/ntvjhre+Mm6++eY477zzuj4cClPavpwa9wm0RcuL6Y8cabl/WidFWsZsKoOWm6EHuqbltJkR9ErLUAYtQz7WdX0AlGF6di6m9s3FzP6DMb5xfUweO5bEDf7UvrklX4RERNy4eyqm9s0lcZyQsqU62jT2hLjswi1x7unHx3d/vC9OPHYsme6BNKV6r5Aa9y5EjL4X6wxGb6WONQj5ck+7PLON1Om3DGYN5KvNOWxWpKuL/dh6gOblcG+tfVie/Rja02RvOoL0rNa4biF9w+7VOgdqZw6uLIf3UclP6t1Z9+Smy6b0AqM1TGOp77ewYGGtHv5v/Q888lgcs/4JsWvPA3HfQ9YqUJZU7qHdK5Cz+x6ai2edfny84nlPOeK+4bq/uMv6BQ5JZc9lZe5J6Ieue6Or9PWzlj2fAJCGFO9F3SfA6Ph3VpCfUezVWge64D4EepdDDym+nwC56renHGYEAECNivug+R/84Adx5ZVXxmc+85mYnZ2NM888M3bu3BnPfvazl/z5X/rSl+KFL3zhoq/fe++98aQnPWnUh1uEex58OK68/tYjbvi3b52Mq3dsi1OP39jhkUXM7D+44uN7V3kcWNzRprEnxLsuPTd2fvWueM8X7zj09VS6B9KT8r1Caty70EYv1hmM1modaxDy5J52ZWYbKdNvOcwayFPbc9isSFNX+7H1AM3K5d5a+7A0+zG0p+nedARp6aVx3ULamtirdQ7UzhxcXi7vo5KflLuz7slRV03pBUZr2MZS3m/hcDP7Dy77b/0vOPOJ8avnntbh0QE0K6V7aPcK5Gw+Im7Z88Ci+4Z3XXpuXP7xW6xfIKk9l5W5J6FXuu6drtLW71r2fAJA91K9F3WfAKPh31lBfka1V2sdaJv7EOhP6j2k+n4C5GiQnlKfEQAAtVrb9QE06YEHHogLLrgg1q9fH5/5zGfib/7mb+Laa6+NE044YdVfe/vtt8e999576L+TTjqphSPO3/Ts3KIXBxERN+6eitdff2tMz851dGSPGz9m/YqPH7fK48Diji67cEvs/Opd8dU77jvi66l0D6Ql9XuF1Lh3qVtbvVhnMDq9dKxByI972tWZbaRKv2UxayA/XcxhsyI9Xe7H1gM0J6d7a+3DYvZjaM8oetMRpKPXxnUL6Wpqr9Y5UDtzcGk5vY9KflLtzronV100pRcYrSYaS3W/haONH7N+2X/r/9U77os3f/qv7StAEVK7h3avQK6mZ+fizf/t20veN+z86l1x2YVbrF+oXGp7LitzT0IvdN0fXaVrkLXs+QSI2LNnT+zatSvZ//bs2dP1JWKEUr4XdZ8AzfPvrCA/o9yrtQ60yX0I9C/lHlJ+PwFyM2hPKc8IAICarev6AJp0zTXXxOmnnx47d+489LUtW7b09GtPOumkOP7440d0ZOWa2je36MXBght3T8XUvrmY2DQ28uOYnp2LqX1zMbP/YIxvXB+Tx47FxKaxmNw8Ftu3TsaNSxzj9q2TMbl59McGuTu6o3NPPz7e88U7lvy5bXYP5CGVe4WVLHcf0QX3LnVrq5dB11lKrUCqeul4pQYv2joZm48p6q0aKEIO97RdG+T+wr0FbdBvt5ru3GtmyM9qc/jemf0REY3OYrMiPautgx/vPTCy/dh6gOa0cW/d1P2j9mGxphvup1dNkqNh9qRR7Jk6gnT02rhuIV2rvmc5vT/unHrIfS5QhFF+X4Y5uDTfo1Cntr4HKtXurHty1VRT/cwAvcBo980mGkt1v6V8/bYxuXksnvf3n7jsv/X/in0FKERq99DD3Cv4N1SsZNTrY2rfXHzlqA+ZX/DVO+6L33rBme51oXL97rn2tW55/4JejOJeuuT2dZWuQday5xOo3Z49e+Knf/rsePjh2a4PZVkbN26K73zntjjjjDO6PhRGoOv3dVe6b3WfAM3r8t9Zlfw6FUZplHt1063rHDjc0TPhscfm/XtvstbFPpdyD12/nwAlGbQn/295AIA0FfXpZZ/+9Kfj4osvjksuuSS+/OUvx2mnnRavec1r4tWvfvWqv/ZnfuZn4sCBA3HOOefEm9/85rjggguW/bkHDhyIAwcOHPrxzMxMI8efo5n9B1d8fO8qjzfhngcfjiuvv/WIFyrbt07G1Tu2xanHb4yrd2yL119/6xEvRrZvnYxrdmzzAqNiOu7dxKaxIzo68MhjK/78NrqHBVpOXwr3CitZ7T6ibUfP3MOPqeR7Fy0/rq1eBllnqbVCmrTcW8dPPWnzkg1ecOYT4+XPe0r83ie/FVf9yjnaojNaXiz1e9oU9Ht/4d5i9LT8OP12ZxSd1/iaWcvkbrU5fOffPRRv+x+3NXoPkOKsqL3l1dbBnvtn49gN60ZyH5jieiBfWh7tvXWT94/aZyW1ttxkw/32qkmaNuqOh92TRrFn6ogS5bon99r47Nyj8ZoXnhmPzs/HVw/7H/ZfpFsKk2PLq75nOfVQvOZPdkWE+1zqkWPLrG7U35dhDi6ty+9R0HI32vweqFS78705zdJye5poqt8ZoJd6aHlpo943m2gs1f2WbrTV8iBtTGwai7F1a1f8fe0r8Dj7ct5Su4ce9F7Bv6EaXsktt7E+Vmtpw/q17nVpRckt566fPde+1r0u37/QcT6avpcuvf3a3hfMqeUHZudWfHyptVzb80m9cmqZdk1NTcXDD8/Gz172phg/5SldH84iM/d+L2667qqYmpryQfNRZstdvq+72n2r+wRGpcSWe9Vr8033V/rrVLpRS8uj3KubbF3nDKqWlmuz1Ez4zy9/9oq/ZlT3IbSj9Ja72udS7iG17xOjGaW3nKpBe/L/lmc5WoYyaBnyVdQHzd95553xvve9L6644or43d/93fjGN74Rl19+eYyNjcXLX/7yJX/NKaecEu9///vj2c9+dhw4cCA+9KEPxQte8IK46aab4rzzzlvy17z97W+Pq666apSnko3xY9av+Phxqzw+rOnZuUUvHCIibtw9Fa+//tZ496XnxqnHb4x3X3puTO2bi737D8Zxx6yPyc1j3rirnI77c+rxG+MPLnlW/O2P98XmY1beOkbdPRxOy+nr+l5hJb3cR3Rxv1DjvYuWH9dmL/2ss1RbIT1a7r3jw++vH3z4YGxYtzZuufvBuPzjt8Ts3KNx4BFt0R0tL5byPW1Ker2/cG/RDi0/Tr/dGGXntb1m1jK5W20Ob1i3diT3AKnNitpbXm0dRMRI7wNTWw/kS8uju7cexf2j9llOrS031fCgvWqSJo2y4yb2pFHtmTqiNLnuyb00Pj07F//u+lvj5u8/EJdduCUuu2BLHHjksdiwbm38eO+B2DT2hJaOFkYvx5Z7ec9ygftcapFjy6ysre/LMAcX6/J7FLTcvi6+ByrF7nxvTrO03K5hmhpkBuilHlperI19s6nGUtxv6UYbLQ/TxgmrrEn7CjzOvpy3FO+h+71X8G+omlFqy22tj9VaOn6jNUg7Sm25BL3uufa1dHT1/oWO89HkvXQt7df0vmAuLU/PzsXcI4+t+HOWW8s1PZ/UK5eW6c74KU+JE884q+vDYBUlttzV+7q93re6T2AUSmy5V/0031R/tbxOpX21tDzqvbqJ1nXOMGppuSbLzYTVjOI+hPaU3HLX+1yqPaT4fWIMr+SWUzZMT/7f8ixFy1AGLUO+1q7+U/Lx2GOPxXnnnRdve9vb4txzz41/8S/+Rbz61a+O97///cv+mrPOOiv+5b/8l3H++efH8573vLjuuuviec97XrzjHe9Y9te84Q1viOnp6UP/3X333aM4nSxMbh6L7Vsnl3xs+9bJmNw82hv3qX1zy76xd+PuqZjaNxcRERObxuKpJ22OnznjhHjqSZu9oEDHA9i3/5H45x+6KT73Nz+KC8584pI/p43u4XBaTl/X9wor6fU+ogu13bto+XFt99LrOku5FdKi5f46Xri/fs2f7Irf+Mg34z1fvCNm5x6NCG3RLS0vlvI9bWp6ub9wb9EOLT9Ov90Ydec1vWbWMrlbaQ5fcOYT45a7H4yI0dwDpDQram+5l3Uw6vvAlNYD+dLy6O6tR3X/qH2WUmvLTTU8TK+apCmj7LiJPWmUe6aOKEmue3IvjS/Mktm5R+M9X7wjfuMj3zz0d8Jv+K/f8vcgFCXHlnt9z3KB+1xqkGPLrKzN78swB4/U5fcoaLl9XX0PVGrd+d6cZmm5fYM2NcgM0Es9tLxYG/tmk42ltt/SjTZaHqYN+wr0xr6ct1RnXT/3Cv4NVTNKbbmt9ZFqS9Sn1JZL0OucsK+lpYv3L3Scjyb3/5rar+V9wVxanto3F1+7875l/3+XF62ylmt5PqlXLi0DKyux5a7ei+rnvtV9Ak0rseVe9dt8E/3V9DqVdtXScht79bCt65xh1NJyTZabCbfc/WBfn5XjdUBeSm45hX0uxR58b0uZSm45ZcP25P8tz9G0DGXQMuSrqA+aP+WUU+LpT3/6EV87++yzY8+ePX39Pv/gH/yDuOOOO5Z9fMOGDTE+Pn7Ef7Wa2DQWV+/YtuhFwvatk3HNjm0jf1NgZv/BFR/fu8rj1EvH/Vvo7bq/uCteecGWRW+gX9RS93A4Laev63uFlbiPSIeWH5dqL1qhV1rur2NtkSotL5bqHp0r868dWn6cfruh8+ZomdwtN4cvOPOJ8coLtsR1f3HXoa+VPBtqb3lhHVy0yjooeQ1QBi2P7t7a/SNtqrXlphrWKykYZcdNrHHvR0Fvct2Te2ncfklNcmy5n/csF+iW0uXYMitzP9KdLl8Tarl9Wnuc90KapeV8DDID9FIPLS/Wxr6pMZrWRsvDtGHNQ2/sy3krYdZ5/6AZpbbc1voooSXKUGrLJeh1TtjX0HE+mtz/tV+eXFqe2X9w2f/f5QVnPjGu+sfPcC9L1XJpGVhZiS139V6U+1a6VGLLveqieb0zKrW0nMPfG+mcYdTSck2WmwkL7x0e/f80S2meMbiSW7bPLS2HexT6V3LLKWujJ7OsLlqGMmgZ8rWu6wNo0gUXXBC33377EV/77ne/G09+8pP7+n3+8i//Mk455ZQmD61opx6/Md596bkxtW8u9u4/GMcdsz4mN4+18mJ7/Jj1Kz5+3CqPA71b6G127tG4/OO3xGUXbonLLtgSBx55LDasWxtn/tTmOOX4jR0fJZCiLu8VVuI+ghSl2ItWoD+9dqwtyEuKe3SuzD/apt/26Rw43MIcvnd6f9w59VBsWLc2brn7wbj847fE7Nyjh36e2VC2U4/fGP/hV86JO/5u36G/Vzp6HVgDkL5R3Vu7f4R2NNGwXildU2vc+1FQttUat19C+o7u+Jj1T4j//q17F71nuUC3QG7cj3TLa8J6aO0nrHtqNOgM0Au1amvf1Bi5GbYNax6oQe6zzvsHrKTN9ZF7S8Do9TIn7GuQl6b2f+3TlfFj1i/7/7u85e4Huz48AGAFXbwX5b4VutN283qH4aX+90Y6Bw633ExYeO/wM5dfFI88Np/kPIOl2OeWl/o9CuRk1D2ZZQAA7Snqg+Zf97rXxfOe97x429veFv/sn/2z+D//5//EBz7wgfjABz5w6Oe84Q1viB/84Afx0Y9+NCIi3vnOd8aWLVviGc94Ruzfvz8+9KEPxRe/+MX43Oc+19VpZGliUzcvsCc3j8X2rZNx4+6pRY9t3zoZk5u96IemHN7b7Nyj8Z4v3nHose1bJ+Pdl57b4dEBqevqXmEl7iNIVWq9aAX610vH2oL8pLZH58r8owv6bZfOgaMtzOC3/c/bzIaKHb9pfXzka9+zBiBzo7i3dv8I7Rm2Yb1SuibXuPejoGwrNW6/hDwc3vH07FzceveDS37IvG6BHLkf6Z7XhHXQ2pGse2ozzAzQCzVqc9/UGDlpog1rHqhBzrPO+wespO31kXNLQDtWmxP2NchPE/u/9unK4Wvv8P/fZcTja+/VF27p6MgAgF60/V6U+1boVpvN6x2akfLfG+kcONxKM+HZTz4hjt+0Ptl5Bkuxz60s5XsUyM0oezLLAADas7brA2jSc57znPjkJz8ZH//4x+Occ86Jt7zlLfHOd74zfu3Xfu3Qz7n33ntjz549h348NzcX//pf/+t45jOfGc9//vPjr/7qr+Lzn/98/PzP/3wXp0CfJjaNxdU7tsX2rZNHfH371sm4Zsc2bwJAg/QGlMZcg95oBUZDW0CtzD8on86BpZgNWAPAcswHyIdeKZ01DjTBLIH86BYojbkG7dAa1M0MgP5oBpamDYDymfWsxPoAcmNuQZ20T1esPQCgH+4doB56h/LpHDicmUBprGmgBGYZAEB71szPz893fRC5m5mZiYmJiZieno7x8fGuD6dK07NzMbVvLvbuPxjHHbM+JjePeeFAX3TcO72RMi0zCHMtPVpOk1bol5Z7oy1Sp2VGxfxrl5bpgs6bp2VKYDZo2RqgFLW3PArmA13Q8mD0SkpG0bE1Du0rcU82S6hR7i3rFh6Xe8v8hLlWNy23R2uMkpbTZwbQCy3/hGbI2Shb1ga0x75MV8z6ZpXWsvVBrUpruSbmFgt0XBftlyv1lq096E2vLe/atSvOP//8eNEbd8aJZ5zV4hH25ns3fTZuuu6quPC1743Tzj6368NZ0v17bo8b3vrKuPnmm+O8887r+nAWSf05Tv36dS31fTkH7h1IgZbboXdGTcvd0zlN0HI5zIS6ldiyNU2NSmy5dmZZnbQMZdAy5GNd1wcATZjY5MUCtEVvQGnMNeiNVmA0tAXUyvyD8ukcWIrZgDUALMd8gHzoldJZ40ATzBLIj26B0phr0A6tQd3MAOiPZmBp2gAon1nPSqwPIDfmFtRJ+3TF2gMA+uHeAeqhdyifzoHDmQmUxpoGSmCWAQCM3tquDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgNj5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlPmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGU+aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZT5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlPmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGU+aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZT5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlPmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGU+aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZT5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlPmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGXruj4AaNr07FxM7ZuLmf0HY3zj+pg8diwmNo11fVhQNN0BDMb8JAXWITRDSwDNM1uhO/qD9OiSWljrQBPMEmiP3iiBdQyMkhkDzdMVQH/MTWiP3oAmmSnUwDqHfOgVYHTMWAZl7cDo6Qxg9MxahmUNAV257bbbuj6EJaV6XDAq7gUgP7oFlmI2QHl0DZAWc5k2WW8AAM3xQfMtcRPbjnsefDiuvP7W+MruqUNf2751Mq7esS1OPX5jh0cGvclxVuiO3OTYGWUyP4ej5WZYh3StlJa1RO1KaZm0mK3t0zIL9Jc/PZdHl/WptWNrndLU2nLXzBKapuXl6Y3cTc/OxQ9n9sf/feDhWLNmTeza80Bc9xd3xbOffIJ1DAnKcU+2V0LzFrq6+fsPxGUXbolzTz8+vjf1UJx+wqY4eXxD8nMB6E6O9xJNcD8C7dFbeWrdO5rmOg7GTKEtXTZqnVO6kvZAvUK7SpofrM6MHZ3SW7J2qIXXrVCn0vdxfsKsLVObDVtDQBcenr4vItbEy172sq4PZUUHD8x1fQiMiPvln3AvQIlKb1y3lKb0ZttiNpAabQ9P1+RC79Qip7msy/zltN4AAHLgg+Zb4Ca2HdOzc4uuc0TEjbun4vXX3xrvvvRcLwBJWo6zQnfkJsfOKJP5ORwtN8M6pGultKwlaldKy6TFbG2fllmgv/zpuTy6rE+tHVvrlKbWlrtmltA0LS9Pb+Tungcfjiv/y63xlTt+soYvOPOJ8a5Lz43LP36LdQyJyXFPtldC8xa6uvn7D8S7Lj03dn71rnjPF+849HjqcwHoTo73Ek1wPwLt0Vt5at07muY6DsZMoS1dNmqdU7qS9kC9QrtKmh+szowdndJbsnaohdetUKfS93F+wqwtU5sNW0NAVw7O7o2I+fiZf35l/NSWn+76cBa591tfj29/+gPxyCOPdH0ojID75Z9wL0CJSm9ct5Sm9GbbYjaQGm0PT9fkQu/UIqe5rMv85bTeAABysbbrAyjdajex07NzHR1Zeab2zS26zgtu3D0VU/tca9KV66zQHTnJtTPKZH4OTsvNsQ7pUkkta4maldQyaTFb26VlDqe/vOm5TLqsS80dW+uUpOaWu2aW0CQtr0xv5OxQ33ccuYa/esd9sfOrd8VlF26xjiEhue7J9kpo3kJXl124JXZ+9a746h33HfF46nMB6Eau9xJNcD8C7dFbWWreO5rkOg7OTKENXTdqnVOyrvtqml6hPaXND1Znxo5GDS1ZO9Sg65Z1Bt3oun3aZdaWp+2GrSGga5tPOiNOPOOs5P47dvKUri8NI+J++UjuBShNDY3rlpLU0GxbzAZSou1m6Joc6J2a5DKXdVmGXNYbAEBOfND8iLmJbc/M/oMrPr53lcehS7nOCt2Rk1w7o0zm5+C03BzrkC6V1LKWqFlJLZMWs7VdWuZw+subnsuky7rU3LG1TklqbrlrZglN0vLK9EbOVur7q3fcF+eefnxEWMeQilz3ZHslNG+hq3NPP37Rh8wvSHkuAN3I9V6iCe5HoD16K0vNe0eTXMfBmSm0oetGrXNK1nVfTdMrtKe0+cHqzNjRqKEla4cadN2yzqAbXbdPu8za8rTdsDUEQG3cLx/JvQClqaFx3VKSGppti9lASrTdDF2TA71Tk1zmsi7LkMt6AwDIiQ+aHzE3se0ZP2b9io8ft8rj0KVcZ4XuyEmunVEm83NwWm6OdUiXSmpZS9SspJZJi9naLi1zOP3lTc9l0mVdau7YWqckNbfcNbOEJml5ZXojZ6v1feCRxyLCOoZU5Lon2yuheQtdLezVy0l1LgDdyPVeognuR6A9eitLzXtHk1zHwZkptKHrRq1zStZ1X03TK7SntPnB6szY0aihJWuHGnTdss6gG123T7vM2vK03bA1BEBt3C8fyb0Apamhcd1SkhqabYvZQEq03QxdkwO9U5Nc5rIuy5DLegMAyIkPmh8xN7Htmdw8Ftu3Ti752PatkzG5eazlI4Le5TordEdOcu2MMpmfg9Nyc6xDulRSy1qiZiW1TFrM1nZpmcPpL296LpMu61Jzx9Y6Jam55a6ZJTRJyyvTGzlbre8N69Zax5CQXPdkeyU0b6GrDetW/icwqc4FoBu53ks0wf0ItEdvZal572iS6zg4M4U2dN2odU7Juu6raXqF9pQ2P1idGTsaNbRk7VCDrlvWGXSj6/Zpl1lbnrYbtoYAqI375SO5F6A0NTSuW0pSQ7NtMRtIibaboWtyoHdqkstc1mUZcllvAAA58UHzI+Ymtj0Tm8bi6h3bFl3v7Vsn45od22Jik2tNunKdFbojJ7l2RpnMz8FpuTnWIV0qqWUtUbOSWiYtZmu7tMzh9Jc3PZdJl3WpuWNrnZLU3HLXzBKapOWV6Y2crdT3BWc+MX6894B1DAnJdU+2V0LzFrr68d4DccGZT1zy56Q8F4Bu5Hov0QT3I9AevZWl5r2jSa7j4MwU2tB1o9Y5Jeu6r6bpFdpT2vxgdWbsaNTQkrVDDbpuWWfQja7bp11mbXnabtgaAqA27peP5F6A0tTQuG4pSQ3NtsVsICXaboauyYHeqUkuc1mXZchlvQEA5GTN/Pz8fNcHkbuZmZmYmJiI6enpGB8fX/T4PQ8+HK+//ta4cffUoa8t3MSecvzGNg+1CtOzczG1by727j8Yxx2zPiY3j3mxwKpW67gNOc8K3ZEKezK5MT+XpuV2WYeMSm0ta4lS1dYyaTFbm6Nl+qW/NPXyPraey6XLctiXV2atkwstp80soVdaHp7e6Nqg3/O1VN8XbZ2Mt/zKOXHCpvXWMbSs5D3ZXklN2vpe7OnZuXhg9mD8/n/7dnwlw7kAqUvh31U0Led7iSa4H6lTiS3nQG/lSGXvyL3lVK5jrsyUcqTacgqNWufkpJ+WU+iraXqlFKnuywtKnB+szoztX8l/v9wPa4fc5dCyzmBlo7i/TqF92mXWdq/Jlrto2BqCx/Xa8q5du+L888+PF71xZ5x4xlktHmFvvnfTZ+Om666KC1/73jjt7HO7PpwlpX6MqR/f/Xtujxve+sq4+eab47zzzuv6cJKTw2vl1LgXIEVN/nvHEhvXLbmwL7fLbGBU+t2Xtd0cXdMkfycFw0thLrvHrkcK643RSf17sYHeaBny4YPmG9DL0HMTC2lL5ebFrIDh2JOhDFqGMmgZyqBlKIOWoQy9vo+tZ0ibfRnKoGUog5Yhf8N8z5e+IR32ZChD29+LbS7AaKTy7yqaZmZQm1JbhjalsHeU0HIK1xG6lnLLGoXe9duyviBNKe/LC8wPWJ2/X4YyaBnyN6r7a+1Du5puWcPQDR80357UjzH14/NB8yvzWhnK4N87Qhnsy1CGQfZlbUN6/J0UlME9NpQhh+/FBlanZcjHuq4PoBYTm9p/8bHwAmhm/8EY37g+Jo8t7wVQDedI+Rat481j8dSTNqdzPLqiMF3sySxv2JljZtUrtZZLWoslnQvpa7PlNte2jqhN1/uy5srkeW1f0y17DklVDWvT30m1q+ZzZ3QG6dhadA1ITxN7cq3rutbzJk2juL8ucY2XeE6UZbk1Oop1qgcYja7+PqqfpvUP7Ti6tS2Txy5qTY/A0UZ9L+H7oSF9OhuNkq9r198Xmap+n/McXs9DSdpsVGewWGr/vwDKYN7Waz4iYk3XR8FytJm+lF/XD7J+rDlq5XuxYXk5re1c3lfOWU7rgfJ1+e8itQBADUq4Xx50z7bXUxN/T9Qf84GuDLsvW7uLuSZ0Yal1V8r3fGmKmgyy3kt4jd0lM4ZR6LdL6zB/nkMAgJX5oPlC3fPgw3Hl9bfGV3ZPHfra9q2TcfWObXHq8Rs7PLLm1HCOlC+1dZza8QBlG3bmmFmkoqS1WNK5wOHaXNs6gnZprkye1/x5DkmVtTkaNV/Xms+dtFiLrgFlqnVd13re1KPENV7iOVEWf08EDKqfpvUP7eilNT0CbfP90JA+nY2G61qfXJ7zXI4Tmua9cOiWLhgF66o+nvM8eJ4YxiDrx5qDwemHUuW0tnM61ly5xuSuqTWsBQDIw6B7tr2eGljng3HdyJW1u5hrQhdKXnclnxsczXpvn2tOCqzD/HkOAQBWt7brA6B507Nzi26EIyJu3D0Vr7/+1pienevoyJpTwzlSvtTWcWrHA5Rt2JljZpGKktZiSecCh2tzbesI2qW5Mnle8+c5JFXW5mjUfF1rPnfSYi26BpSp1nVd63lTjxLXeInnRFn8PREwqH6a1j+0o5fW9Ai0zfdDQ/p0Nhqua31yec5zOU5omvfCoVu6YBSsq/p4zvPgeWIYg6wfaw4Gpx9KldPazulYc+Uak7um1rAWACAPg+7Z9npqYJ0PxnUjV9buYq4JXSh53ZV8bnA06719rjkpsA7z5zkEAOiND5ov0NS+uUU3wgtu3D0VU/vyvxmu4RwpX2rrOLXjAco27Mwxs0hFSWuxpHOBw7W5tnUE7dJcmTyv+fMckiprczRqvq41nztpsRZdA8pU67qu9bypR4lrvMRzoiz+nggYVD9N6x/a0UtregTa5vuhIX06Gw3XtT65POe5HCc0zXvh0C1dMArWVX0853nwPDGMQdaPNQeD0w+lymlt53SsuXKNyV1Ta1gLAJCHQfdsez01sM4H47qRK2t3MdeELpS87ko+Nzia9d4+15wUWIf58xwCAPRmXdcHQPNm9h9c8fG9qzyegxrOkfKlto5TOx6gbMPOHDOLVJS0Fks6Fzhcm2tbR9AuzZXJ85o/zyGpsjZHo+brWvO5kxZr0TWgTLWu61rPm3qUuMZLPCfK4u+JgEH107T+oR29tDa/yu+hR6Bpvh8a0qez0XBd65PLc57LcULTvBcO3dIFo2Bd1cdzngfPE8MYZP1YczA4/VCqnNZ2TseaK9eY3DW1hrUAAHkYdM+211MD63wwrhu5snYXc03oQsnrruRzg6NZ7+1zzUmBdZg/zyEAQG980HyBxo9Zv+Ljx63yeA5qOEfKl9o6Tu14gLINO3PMLFJR0los6VzgcG2ubR1BuzRXJs9r/jyHpMraHI2ar2vN505arEXXgDLVuq5rPW/qUeIaL/GcKIu/JwIG1U/T+od2NNGaHoGm+X5oSJ/ORsN1rU8uz3kuxwlN8144dEsXjIJ1VR/PeR48TwxjkPVjzcHg9EOpclrbOR1rrlxjctfUGtYCAORh0D3bXk8NrPPBuG7kytpdzDWhCyWvu5LPDY5mvbfPNScF1mH+PIcAAL1Z2/UB0LzJzWOxfevkko9t3zoZk5vHWj6i5tVwjpQvtXWc2vEAZRt25phZpKKktVjSucDh2lzbOoJ2aa5Mntf8eQ5JlbU5GjVf15rPnbRYi64BZap1Xdd63tSjxDVe4jlRFn9PBAyqn6b1D+3opTU9Am3z/dCQPp2Nhutan1ye81yOE5rmvXDoli4YBeuqPp7zPHieGMYg68eag8Hph1LltLZzOtZcucbkrqk1rAUAyMOge7a9nhpY54Nx3ciVtbuYa0IXSl53JZ8bHM16b59rTgqsw/x5DgEAeuOD5gs0sWksrt6xbdEN8fatk3HNjm0xsSn/m+EazpHypbaOUzseoGzDzhwzi1SUtBZLOhc4XJtrW0fQLs2VyfOaP88hqbI2R6Pm61rzuZMWa9E1oEy1rutaz5t6lLjGSzwnyuLviYBB9dO0/qEdvbSmR6Btvh8a0qez0XBd65PLc57LcULTvBcO3dIFo2Bd1cdzngfPE8MYZP1YczA4/VCqnNZ2TseaK9eY3DW1hrUAAHkYdM+211MD63wwrhu5snYXc03oQsnrruRzg6NZ7+1zzUmBdZg/zyEAQG/WzM/Pz3d9ELmbmZmJiYmJmJ6ejvHx8a4P55Dp2bmY2jcXe/cfjOOOWR+Tm8eKuxGu4RxpR5cdp7aOUzse6EeqezLLG3bmmFllyrHlktZiSedCt1Jruc21rSNKklrLS9FcmTyvzeqiZc8hqcp5baa8L+d8XYdV87kzmFG1bC26BrSrrX251nVd63nTvq7usUtc4yWeE3notWN/TwRpK+V9L/1Tu5ReK+sRBpfyvpwy3w9NarS8mM5Gw3UdrRRbzuU5z+U4qUObLXsvHEanl5Z1wShYV81K8R77aJ7zPHieupVDyysZZP1Yc5Qopb9fhhylsLZT/P7NWrnGDCOF++um1rAWqFmvLe/atSvOP//8eNEbd8aJZ5zV4hH25ns3fTZuuu6quPC1743Tzj6368NZUurHmPrx3b/n9rjhra+Mm2++Oc4777yuDyc5KezLbRh0z7bXk4thWrbOB+O6MQpt7MvW7mKuCU2r/Xu+Sj436lJ7y6lyzenXKO6xrcP8eQ7zU8v72FA6LUM+1nV9AIzOxKbyb35rOEfKl9o6Tu14gLINO3PMLFJR0los6VzgcG2ubR1BuzRXJs9r/jyHpMraHI2ar2vN505arEXXgDLVuq5rPW/qUeIaL/GcKIu/JwIG1U/T+od29NKaHoG2+X5oSJ/ORsN1rU8uz3kuxwlN8144dEsXjIJ1VR/PeR48TwxjkPVjzcHg9EOpclrbOR1rrlxjctfUGtYCAORh0D3bXk8NrPPBuG7kytpdzDWhCyWvu5LPDY5mvbfPNScF1mH+PIcAACtb2/UBNO0HP/hBvOxlL4snPvGJsXHjxnjmM58Z3/zmN1f8NV/60pfivPPOiw0bNsSZZ54ZH/7wh9s5WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBKRX3Q/AMPPBAXXHBBrF+/Pj7zmc/E3/zN38S1114bJ5xwwrK/5q677ooXv/jF8cIXvjD+8i//Ml772tfGq171qvjsZz/b4pEDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANVnX9QE06ZprronTTz89du7ceehrW7ZsWfHXvP/9748tW7bEtddeGxERZ599dvzFX/xFvOMd74iLL754pMcLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCq2267retDWNbk5GScccYZXR8GAAAAAAAAAJUr6oPmP/3pT8fFF18cl1xySXz5y1+O0047LV7zmtfEq1/96mV/zde//vX4h//wHx7xtYsvvjhe+9rXLvtrDhw4EAcOHDj045mZmaGPHWiXjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahvzpGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX86hjJoGcqgZXL18PR9EbEmXvayl3V9KMvauHFTfOc7t7XyYfNahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhX0V90Pydd94Z73vf++KKK66I3/3d341vfOMbcfnll8fY2Fi8/OUvX/LX/PCHP4yTTz75iK+dfPLJMTMzEw8//HBs3Lhx0a95+9vfHlddddVIzgFoh46hDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWob86RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliF/OoYyaBnKoGVydXB2b0TMx8/88yvjp7b8dNeHs8jMvd+Lm667Kqamplr5oHktQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQrzXz8/PzXR9EU8bGxuLZz352fO1rXzv0tcsvvzy+8Y1vxNe//vUlf83Tnva0eOUrXxlveMMbDn3tf/7P/xkvfvGLY3Z2dskPmj9w4EAcOHDg0I9nZmbi9NNPj+np6RgfH2/wjIBR0TGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5A/HUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRPx1AGLUMZBm15165dcf7558eL3rgzTjzjrDYOtS/fu+mzcdN1V8WFr31vnHb2uV0fzpJSP0bHN5z799weN7z1lXHzzTfHeeedN/I/z74MZdAylEHLUAYtQxm0DGXQMpRBy1AGLUO+1nV9AE065ZRT4ulPf/oRXzv77LPj+uuvX/bXPOlJT4of/ehHR3ztRz/6UYyPjy/5IfMRERs2bIgNGzYMf8BAZ3QMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz50zGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUO+1nZ9AE264IIL4vbbbz/ia9/97nfjyU9+8rK/5rnPfW584QtfOOJrN9xwQzz3uc8dyTECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFPVB86973evif//v/x1ve9vb4o477oiPfexj8YEPfCB+67d+69DPecMb3hC//uu/fujHv/mbvxl33nln/Lt/9+/iO9/5TvzRH/1R/Nmf/Vm87nWv6+IUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAoU9UHzz3nOc+KTn/xkfPzjH49zzjkn3vKWt8Q73/nO+LVf+7VDP+fee++NPXv2HPrxli1b4n/8j/8RN9xwQzzrWc+Ka6+9Nj70oQ/FxRdf3MUpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABVY1/UBNO0lL3lJvOQlL1n28Q9/+MOLvvaCF7wgbrnllhEeFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBPrO36AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqs67rA2B407NzMbVvLmb2H4zxjetj8tixmNg01vVhQXG0BkAN7HdHcj2gPXoDlmI2AL0wK4AUmU10zRqEeugd8qNbKI+uoR56h+7pEBiE2QGUwjzjaNYEsBIzArqnQ8iPbqFM2gagDfabdrjO0D7dAUB67M+QNw1D2TQONMU8gf5oBgAAgNL4oPnM3fPgw3Hl9bfGV3ZPHfra9q2TcfWObXHq8Rs7PDIoi9YAqIH97kiuB7RHb8BSzAagF2YFkCKzia5Zg1APvUN+dAvl0TXUQ+/QPR0CgzA7gFKYZxzNmgBWYkZA93QI+dEtlEnbALTBftMO1xnapzsASI/9GfKmYSibxoGmmCfQH80AAABQorVdHwCDm56dW/RmRUTEjbun4vXX3xrTs3MdHRmURWsA1MB+dyTXA9qjN2ApZgPQC7MCSJHZRNesQaiH3iE/uoXy6BrqoXfong6BQZgdQCnMM45mTQArMSOgezqE/OgWyqRtANpgv2mH6wzt0x0ApMf+DHnTMJRN40BTzBPoj2YAAAAolQ+az9jUvrlFb1YsuHH3VEzt84YFNEFrANTAfnck1wPaozdgKWYD0AuzAkiR2UTXrEGoh94hP7qF8uga6qF36J4OgUGYHUApzDOOZk0AKzEjoHs6hPzoFsqkbQDaYL9ph+sM7dMdAKTH/gx50zCUTeNAU8wT6I9mAAAAKJUPms/YzP6DKz6+d5XHgd5oDYAa2O+O5HpAe/QGLMVsAHphVgApMpvomjUI9dA75Ee3UB5dQz30Dt3TITAIswMohXnG0awJYCVmBHRPh5Af3UKZtA1AG+w37XCdoX26A4D02J8hbxqGsmkcaIp5Av3RDAAAAKXyQfMZGz9m/YqPH7fK40BvtAZADex3R3I9oD16A5ZiNgC9MCuAFJlNdM0ahHroHfKjWyiPrqEeeofu6RAYhNkBlMI842jWBLASMwK6p0PIj26hTNoGoA32m3a4ztA+3QFAeuzPkDcNQ9k0DjTFPIH+aAYAAIBS+aD5jE1uHovtWyeXfGz71smY3DzW8hFBmbQGQA3sd0dyPaA9egOWYjYAvTArgBSZTXTNGoR66B3yo1soj66hHnqH7ukQGITZAZTCPONo1gSwEjMCuqdDyI9uoUzaBqAN9pt2uM7QPt0BQHrsz5A3DUPZNA40xTyB/mgGAACAUvmg+YxNbBqLq3dsW/Smxfatk3HNjm0xsckbFtAErQFQA/vdkVwPaI/egKWYDUAvzAogRWYTXbMGoR56h/zoFsqja6iH3qF7OgQGYXYApTDPOJo1AazEjIDu6RDyo1sok7YBaIP9ph2uM7RPdwCQHvsz5E3DUDaNA00xT6A/mgEAAKBU67o+AIZz6vEb492XnhtT++Zi7/6Dcdwx62Ny85g3K6BhWgOgBva7I7ke0B69AUsxG4BemBVAiswmumYNQj30DvnRLZRH11APvUP3dAgMwuwASmGecTRrAliJGQHd0yHkR7dQJm0D0Ab7TTtcZ2if7gAgPfZnyJuGoWwaB5pinkB/NAMAAECJfNB8ASY2eYMC2qA1AGpgvzuS6wHt0RuwFLMB6IVZAaTIbKJr1iDUQ++QH91CeXQN9dA7dE+HwCDMDqAU5hlHsyaAlZgR0D0dQn50C2XSNgBtsN+0w3WG9ukOANJjf4a8aRjKpnGgKeYJ9EczAAAAlGZt1wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUBsfNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMh80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCydV0fQAnm5+cjImJmZqbjI4F6HHfccbFmzZrGfj8dQze0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZWiyZR1DN+zJUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGXz/JuTPngxl6Krlffv2RUTE9P+9Mx575NHG/vym7PvxDyIiYuaH34sNGzZ0fDRLS/0YHd9w9v7w+xHxeCu97I32ZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8jdoxz5ovgF79+6NiIjTTz+94yOBekxPT8f4+Hhjv5+OoRtahjJoGcqgZSiDlqEMTbd83333RYSWoW32ZSiDlqEMWoYyaBnK0GTLOoZu2JOhDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYy+P5NyJ89GcrQdcv/5yNvaezPHoVb//QPuj6EVaV+jI5vOM9//vN7+nldtww0Q8tQBi1DGbQMZdAylEHLUAYtQxm0DPkbtOM18/Pz8yM4nqo89thjcc8998Rxxx0Xa9as6fpwkjczMxOnn3563H333Y1uPjWq+Vo23duoOq75OTqaa/E41+FIo2p5fn4+zjjjjKKuc6lrp8TzqvGcctmXm1bic72g1HMr9bwimjm3UbR8++23x9Of/vQir3mvSl53vXIN2r0Gbe/Lnl/XIMI1iGj+GjTd8oMPPhgnnHBC7NmzJyYmJhr7fbtU2ror7XwiyjunQc6n1tfLC0pbA/2o9dxLPW/vY/emtOff+aTNvty70p77UXCNVpfSNaq15cOl9HwMw3mkpe3zaLK5Jjsu5flsk2s2mBKuWyp7cgnXchRcl+W5NkdKpeWulbYunE/aRnE+qbRc2nMV4ZxyUco5pdJyG0p5zlLgWjYr1e/FXqplz31zXMtmlHYdU9iXc76mOR97hOPvWpPHn0LLTcn9eV2O88pPF+dWUsttKHn9Lae2c871fP17x/7kfvwR+Z+D41+af1dxpFzXieNuV4rHner3b7YlxeekSc4vb72eX4mvlUt5bks4jxLOISKP88ip5Ryu59Ecczscc14tNyHH5zw1ruHwSv5e7KVYM8tzbZZW83VJseUcn48cjzkiz+N2zEtLseUm5fi8L8V5pCPVc2iz5VSvQSlc39HJ4dp2sS/ncF1GxbnXee4Roz//ru6xS3lenUdaSjmPiP7PRcvDcR5pqfU8Bu143SAHx5HWrl0bf+/v/b2uDyM74+PjWUeaEtdyeKPu2HP0E67F41yH0VhoeWZmJiLKvM4lnlNEmeflnAaX2/11ic/1glLPrdTzikjr3NauXRunnXZaRKR1XF1xDVyDiDyvQa/7co7n1jTXwDWISPcarF27NiIiJiYmkjy+YaR6zQdV2vlElHdOXZ5Pbq+XF5S2BvpR67nXet69Kv19bOeTNufTnNz25dKe+1FwjVZX4jXKreXDlfJ8OI+05Hgeo+g4x+vQNddsMK7bTwzbsmu5NNdlea7NaOR8fx1R3rpwPmlL+Xzsy4s5pzyUeE7DyGFf9pw1x7VsVkrXc7WWUzrW3LmWzXAdlzbMvpzzNc352CMcf9dSPP4U7rFTvC5NcF75yfncUmi5DTk/R4Oq7ZxrO9+j1fLvHXM//oj8z8Hxj1Yp/67CcbfLcacl5/vrUp+TBc4vb22fX0otl/LclnAeJZxDRDnn0Ys2Ws7xejrmdjjm5qS0L68k1euXE9dweClfQ//esV2uzdJcl+E12XKOz0eOxxyR53E75tFK9R47p2u4EueRjhLOYSW9tFz6Neia6zs6NV3bfvblmq7L0Zx7necekc/593uPnct5rcZ5pKWU84jo7ly0nDfnkZZRn8fakf3OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzJB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMwHzdO6DRs2xJve9KbYsGFD14eSPdcyfZ6jn3AtHuc6tKPE61ziOUWUeV7OqR4lX5dSz63U84pI99xSPa42uQauQUTZ16Dkc+uVa+AaRKR/DVI/vkGUdk6lnU9EeedU2vm0oeZrVuu513regyrtejmftDmferlWq3ONVucapaWU58N5pKWU8xiW69A/12wwrltzXMuluS7Lc21YSmnrwvmkrbTzOVyJ5+ac8lDiOZXOc9Yc17JZOV3PnI41da5lM1zH5uV8TXM+9gjH37Xcj39USr0uzis/JZ9bKWp8jmo759rOd1C5X6fcjz8i/3Nw/O3K7XgXOO52OW6aUvpz4vzyVvr5raSUcy/hPEo4h4hyziMVOV5Px9wOx1wf1294ruHwaruGtZ1vP1ybpbkuacnx+cjxmCPyPG7HXKdSrqHzSEcJ5zAs12C0XN/RcW2XVvN1ce51nntEuedfynk5j7SUch4R+ZxLLse5GueRFufRnzXz8/PzI/0TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjC2q4PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKA2PmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGU+aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZT5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlPmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGU+aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgZT5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBlPmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGU+aL5BN954Y/yjf/SP4tRTT401a9bEpz71qb5/j/n5+fjDP/zDeNrTnhYbNmyI0047Ld761rc2f7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAZ9Z1fQAleeihh+JZz3pWXHbZZfFP/sk/Gej3+J3f+Z343Oc+F3/4h38Yz3zmM+P++++P+++/v+EjBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALq0Zn5+fr7rgyjRmjVr4pOf/GS89KUvPfS1AwcOxBvf+Mb4+Mc/Hg8++GCcc845cc0118QLXvCCiIi47bbbYtu2bfHtb387zjrrrG4OHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi5tV0fQE1++7d/O77+9a/Hn/7pn8att94al1xySfziL/5i7N69OyIi/vzP/zz+/t//+/Hf//t/jy1btsRTnvKUeNWrXhX3339/x0cOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMkHzbdkz549sXPnzvjEJz4RF110UTz1qU+Nf/Nv/k1ceOGFsXPnzoiIuPPOO+P73/9+fOITn4iPfvSj8eEPfzhuvvnm+Kf/9J92fPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAk9Z1fQC1+Na3vhWPPvpoPO1pTzvi6wcOHIgnPvGJERHx2GOPxYEDB+KjH/3ooZ/3n//zf47zzz8/br/99jjrrLNaP24AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeT5oviX79u2LJzzhCXHzzTfHE57whCMe27x5c0REnHLKKbFu3bojPoz+7LPPjoiIPXv2+KB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIQPmm/JueeeG48++mj8+Mc/josuumjJn3PBBRfEI488En/7t38bT33qUyMi4rvf/W5ERDz5yU9u7VgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA0VozPz8/3/VBlGLfvn1xxx13RMTjHyz/H//jf4wXvvCFceKJJ8YZZ5wRL3vZy+KrX/1qXHvttXHuuefG3/3d38UXvvCF2LZtW7z4xS+Oxx57LJ7znOfE5s2b453vfGc89thj8Vu/9VsxPj4en/vc5zo+OwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKApPmi+QV/60pfihS984aKvv/zlL48Pf/jDcfDgwfgP/+E/xEc/+tH4wQ9+EJOTk/FzP/dzcdVVV8Uzn/nMiIi455574l/9q38Vn/vc5+LYY4+NX/qlX4prr702TjzxxLZPBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgRHzQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0LK1XR8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQG180DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAy3zQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDLfNB8A+bn52NmZibm5+e7PhRgQDqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnyp2Mog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWob86RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliEfPmi+AXv37o2JiYnYu3dv14cCDEjHUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1D/nQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQPx1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkwwfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTMB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtMwHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0zAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRsXdcHADA9OxdT++ZiZv/BGN+4PiaPHYuJTWNdHxbQJy1D2jQKddE8lEHLUAYtw/L0QdusOYAymOdQBi1DGbQM+dMxlEHLUAYtkwprEbqlQYDmmKlQBi1DXjQLZdM4lEHLlMi6BnJkdkEZtAxl0DIALM8+CQzC7KiD5xloglkC0BvzEgDq44PmgU7d8+DDceX1t8ZXdk8d+tr2rZNx9Y5tcerxGzs8MqAfWoa0aRTqonkog5ahDFqG5emDtllzAGUwz6EMWoYyaBnyp2Mog5ahDFomFdYidEuDAM0xU6EMWoa8aBbKpnEog5YpkXUN5MjsgjJoGcqgZQBYnn0SGITZUQfPM9AEswSgN+YlANRpbdcHANRrenZu0YuQiIgbd0/F66+/NaZn5zo6MqAfWoa0aRTqonkog5ahDFqG5emDtllzAGUwz6EMWoYyaBnyp2Mog5ahDFomFdYidEuDAM0xU6EMWoa8aBbKpnEog5YpkXUN5MjsgjJoGcqgZQBYnn0SGITZUQfPM9AEswSgN+YlANTLB80DnZnaN7foRciCG3dPxdQ+L0QgB1qGtGkU6qJ5KIOWoQxahuXpg7ZZcwBlMM+hDFqGMmgZ8qdjKIOWoQxaJhXWInRLgwDNMVOhDFqGvGgWyqZxKIOWKZF1DeTI7IIyaBnKoGUAWJ59EhiE2VEHzzPQBLMEoDfmJQDUywfNA52Z2X9wxcf3rvI4kAYtQ9o0CnXRPJRBy1AGLcPy9EHbrDmAMpjnUAYtQxm0DPnTMZRBy1AGLZMKaxG6pUGA5pipUAYtQ140C2XTOJRBy5TIugZyZHZBGbQMZdAyACzPPgkMwuyog+cZaIJZAtAb8xIA6uWD5oHOjB+zfsXHj1vlcSANWoa0aRTqonkog5ahDFqG5emDtllzAGUwz6EMWoYyaBnyp2Mog5ahDFomFdYidEuDAM0xU6EMWoa8aBbKpnEog5YpkXUN5MjsgjJoGcqgZQBYnn0SGITZUQfPM9AEswSgN+YlANTLB80DnZncPBbbt04u+dj2rZMxuXms5SMCBqFlSJtGoS6ahzJoGcqgZViePmibNQdQBvMcyqBlKIOWIX86hjJoGcqgZVJhLUK3NAjQHDMVyqBlyItmoWwahzJomRJZ10COzC4og5ahDFoGgOXZJ4FBmB118DwDTTBLAHpjXgJAvXzQPNCZiU1jcfWObYtejGzfOhnX7NgWE5u8EIEcaBnSplGoi+ahDFqGMmgZlqcP2mbNAZTBPIcyaBnKoGXIn46hDFqGMmiZVFiL0C0NAjTHTIUyaBnyolkom8ahDFqmRNY1kCOzC8qgZSiDlgFgefZJYBBmRx08z0ATzBKA3piXAFCvNfPz8/NdH0TuZmZmYmJiIqanp2N8fLzrw4HsTM/OxdS+udi7/2Acd8z6mNw81vqLEB3D8LQMaUuh0V5pGYaXQvNahuFpGcqgZVheCn3kRMvDs+ZIgZZheCnMcy3D8LQMZei6ZR3D8LruOELL0AQtQxm0TCpSWIsMR8t50yALtAzDS2GmahmGp2XISwrNLkfLMLwUGtcyDE/LlCiFdV0bHcPwUphdWobhaRnKoGWgKVqmRCnsk23TMgwvhdmh5dFL4XmmfFoun1lSBy3D8FKYl1qGMmgZ8rGu6wNo0qOPPhpvfvOb44//+I/jhz/8YZx66qnxile8In7v934v1qxZs+yv+9KXvhRXXHFF/PVf/3Wcfvrp8Xu/93vxile8or0Dh8pNbPJGDZRAy5A2jUJdNA9l0DKUQcuwPH3QNmsOoAzmOZRBy1AGLUP+dAxl0DKUQcukwlqEbmkQoDlmKpRBy5AXzULZNA5l0DIlsq6BHJldUAYtQxm0DADLs08CgzA76uB5BppglgD0xrwEgPoU9UHz11xzTbzvfe+Lj3zkI/GMZzwjvvnNb8YrX/nKmJiYiMsvv3zJX3PXXXfFi1/84vjN3/zN+JM/+ZP4whe+EK961avilFNOiYsvvrjlMwAAAAAAAAAAAAAAAAAAAAAAAAD+f/buPMrvuj70/yshmSyEmQAjm00w10REITWgbSEQtFVpi7dUOdxTqj8Xql20UrQ/C+mmaGX53SK2WOvlWpCe3uKpF7W4HYt6lM1rFaJBRQRBQpWlg8kMYZKZEPL7gzvDTGb5bp/1/Xk8zuEcM0v8ZOb9fL0/n88sHwAAAAAAAAAAAAAAgCZI6kHzt912W5x55plxxhlnRETEc57znLjuuuvi3//93+d8n4985COxZs2auPzyyyMi4thjj41bbrklrrjiCg+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHKR1IPmTz755Ljqqqvihz/8YTzvec+L73znO3HLLbfEBz7wgTnf5+tf/3q8/OUvn/ay008/Pc4///w532dsbCzGxsYm/zwyMtLzsQPF0jGkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy1B/OoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZag/HUMatAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMtTXwrIPIEsXXnhh/NZv/VY8//nPj8WLF8eGDRvi/PPPj9e+9rVzvs/DDz8chx9++LSXHX744TEyMhK7du2a9X0uueSSGBgYmPxv1apVmf47gPzpGNKgZUiDliENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlqD8dQxq0DGnQMqRBy5AGLUMatAxp0DKkQcuQBi1DGrQMadAy1J+OIQ1ahjRoGdKgZUiDliENWoY0aBnSoGVIg5YhDVqGNGgZ6mvBvn379pV9EFn5+Mc/Hu9617viv//3/x4vfOEL49vf/nacf/758YEPfCDe8IY3zPo+z3ve8+JNb3pTbN68efJln//85+OMM86I0dHRWLZs2Yz3GRsbi7Gxsck/j4yMxKpVq2J4eDj6+/uz/4cBmdMxpEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQctQfzqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGWoPx1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DLU16KyDyBL73rXu+LCCy+M3/qt34qIiOOPPz4eeOCBuOSSS+Z80PwRRxwRjzzyyLSXPfLII9Hf3z/rQ+YjIpYsWRJLlizJ9uCBQukY0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGWoPx1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DLUn44hDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnqa2HZB5Cl0dHRWLhw+j/pgAMOiKeeemrO9znppJPiy1/+8rSX3XjjjXHSSSflcowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAST1o/r/+1/8a73//++Nzn/tc/PjHP45PfepT8YEPfCBe/epXT77N5s2b4/Wvf/3kn3//938/7rvvvviTP/mT+MEPfhAf/vCH41/+5V/iHe94Rxn/BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKABFpV9AFm68sor4y/+4i/irW99azz66KNx1FFHxe/93u/FX/7lX06+zUMPPRTbtm2b/POaNWvic5/7XLzjHe+Iv/mbv4mf+7mfi49+9KNx+umnl/FPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABogqQfNH3TQQfHBD34wPvjBD875Nh/72MdmvOylL31pbNmyJb8DAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhiYdkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA0HjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQsqQfNP+c5z4kFCxbM+O9tb3vbrG//sY99bMbbLl26tOCjBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJpmUdkHkKVvfvObsXfv3sk/f/e7341XvOIVcfbZZ8/5Pv39/XH33XdP/nnBggW5HiMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAUg+af9aznjXtz5deemk897nPjdNOO23O91mwYEEcccQReR8aAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKSFZR9AXsbHx+Of/umf4txzz40FCxbM+XY7d+6Mo48+OlatWhVnnnlmfO973yvwKAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAmWlT2AeTl05/+dOzYsSPe+MY3zvk2xxxzTFx99dWxfv36GB4ejr/+67+Ok08+Ob73ve/Fz/3cz835fmNjYzE2Njb555GRkSwPHSiAjiENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahvrTMaRBy5AGLUMatAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQ/3pGNKgZUiDliENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWob4Wln0AefmHf/iH+LVf+7U46qij5nybk046KV7/+tfHi170ojjttNPik5/8ZDzrWc+K//E//se8f/cll1wSAwMDk/+tWrUq68MHcqZjSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGVIg5ah/nQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQctQfzqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGWorwX79u3bV/ZBZO2BBx6I//Jf/kt88pOfjDPPPLOj9z377LNj0aJFcd111835NmNjYzE2Njb555GRkVi1alUMDw9Hf39/18cNFEfHkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQcuQBi1D/ekY0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGVIg5ah/nQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQctQX4vKPoA8XHPNNXHYYYfFGWec0dH77d27N+6888749V//9XnfbsmSJbFkyZJeDhEomY4hDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWob60zGkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUP96RjSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDlqG+FpZ9AFl76qmn4pprrok3vOENsWjRommve/3rXx+bN2+e/PN73/ve+Ld/+7e477774o477ojXve518cADD8Sb3/zmog8bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJBFrd+kXr70pS/Ftm3b4txzz53xum3btsXChQsn/7x9+/Z4y1veEg8//HAcfPDBceKJJ8Ztt90WL3jBC4o8ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhknvQ/Ctf+crYt2/frK/76le/Ou3PV1xxRVxxxRUFHBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAMxaWfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATeNB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgi8o+ACBieHQ8hnaOx8juPdG/bHEMHtgXA8v7cn9foH1Vaa0qx0Ez1GW91eU4gepod26YL1AP3bSqb6i2PBvVP3VivbbHx2k6H49q8fkAypblHDLTaJoi1ryugLnmgPkA02kFms3XgyE9VWy0isdUZT5e5MXaKlbRH2+fXwC6Mdv+ERH2FFrK6tzDOQyQslYzzgyEevB9blDdNVrV42oyn5Ns+XhCM6XSfir/DuojizVn3QJ587VZAKi3lK4ZUvq3wFyasM6b8G+skkdGdsf2J8ZjZPeT0b9sURy8vC8O719a9mFB8uo06+p0rABV53uwAYCieNA8lOynO3bFBddvjZvvGZp82SuOPSze8xsvjN17npr3pH+29920bjAuPWt9HLVyWWH/BqiLbi+mq9JaVY6DZqjLeqvLcVaZG400xcRa3z46Hnv2PhW3/uixuPqW+2N0fO+sc8N8gWraf99aumhhvPuG78WX7np08m1atapvqLY8G31ox6746g//Mw47aEmMPflUbB/dE/9+/8/ipc97VhypfyrGftWen+7YFX/5r9+N5x/ZHxtWrYyHhnfHo8sXx+pDlsezD15e9uEVzrp5RhXud/h8AN3KaoZlOYfMNJqm3TXfS6+6gnrI89piru8Z+4tXvSD+7NPfNR8gnm7w4ZHd8R/bd8WCBQvijm3b4+pb7o8XH31w/NVvHhfv/ez3O/oaEVA/3dwDdq5NE1ThHni3qthoFY+pyny8ylXn/luxtopV9Me77M9vyu0AaTGvpptt/zh13WC87WVr49yPfTNGx/dGhHMGZsrq3GOuv+eys9bH8r4D9ArUWqtZ6Xu0oXztXB8Ucc+l7Ps60EpWazTra3LtVI/PSbby/ni6TwbVMbXHA/sWxe3btsf7Pvv9Wt+ftSdQtCzWXC9/h30ViGg9C/afM8v7Doir3/iS+Luv3Bs332vPBICqS+l367lupwnaWed1v57Xcm86/fxve+yJ2PypO+PWex+bfNkpaw+Ni199fKw+9MAiDhkaqU6zrk7HWqa6779Adzptv53vwTZzAYCsLNi3b9++sg+i7kZGRmJgYCCGh4ejv7+/7MOhRoZHx+MPr9sy7eR+ed8B8bfnbIhrbr1/2g3Z2W7y7/++U9/2ynM2uOnQAR2nr9uL6aq0VpXjqDotZ6Mu660ux1llVb3RqGWyNtta37j20HjTxjVx3nVbJh82PzE3zJdsaJmszdbyKWsPjTdOaXnCXK3qu3Napkh5Njo8Oh53Pfx4XPmVe6bdc9u49tB4+y+vi2OPOCjp/rVcL/ar9gyPjscff+I78Vu/sHrG/fRT1h4al75mffzcIWn9IsP5WrZunlGF+x0+H8zHvsx8svxlh1nNITNtdlpOV7trvtdf0qSratAy88nz2mKuOfCHv7w2tmzbPu0ad+r/t/kwk47T9dMdu+KC/7112i8lm/o13hNWr4wXrT44PvSVe6e9n1bqScvMppt7wM61y6XlYlThHni3qthoFY+pbL4eVV117r8Vayt7VWq57M9vyu2QPufYzWJeTTff/rFx7aGxYb97g1U+Z9BysbI695jr7/FQjebSMilpNSv/+9k/H3/2qTuT/B5tLVMX7T5YIO97LmXf15mLlpmQ1RrN+pq8qu1UTZEt+5xkK++Pp/tk9WFPTl87v6snol6z1J4wk5bzlcWa6+XvsK82h5aZT6tZMNuc8fNN5dAypEHLFC2l361Xpet2LZOXdtb5E+N7a309r+XedHo/55GR3fHOf/n2rNdvp6w9NC7/by+Kw/uX5nrMkLcqtlylWddKnY61TO6n56+KLUOn7bfzPdj/7ye+k/TM1TKkQctQHwvLPgBosqGd4zNO7s89Zc2MH7iMiLjpnqG48PqtMTw6Puf7Tn3boZ3j+Rw01NDw6PiMi/OImV3NpiqtVeU4aIa6rLe6HGdV9TIboU7mWuu33vtYXHPr/XHuKWsiYvrcMF+geuZq+Zb9Wp4wV6v6hmrLs9Edo3tmfCN8xNPnBFd+5Z7YMbqn678bsma/as/QzvF4/pH9s95Pv+Xex2Lzp+5s1LWtdfO0qtzv8PkAupHlDMtyDplpNE07a77XXnUF1Zf3tcVcc2DDqpWz/hDvxP+3+UBTTDZ479xf473l3sdiw6qVM95XK5CObu4BO9cmdVW5B96tKjZaxWOqMh+v8tS9/1asrWIV/fEu8/ObejtAOsyrmebbP26d5d6gcwYmZHXuMdffc+4pa+LKr9wz4/51k3sF6qfVrNz+hO/RhjK1e31QxD0X9+2ouizWaB7X5NqpHp+TbOX58XSfDKqj3d/VE1GvWWpPoGhZrLlu/w77KhDR3iyYbc74+SYAqI+Ufree63aaoNU63zG6p/bX81ruXjf3c7Y/MT7n9dst9z4W25/w8YY81GnW1elYy+J+OjRTN+238z3YZi4AkCUPmocSjeye+UW2dr+hZrb3nerxFq+HJunlBmZVWqvKcdAMdVlvdTnOqvLFHZqik18wNjE3zBeonk5/WWDE7K3qG6otz0afGH9yzntut977WDwx/mTXfzdkzX7VnpHde+a9n35zw65trZunVeV+h88H0I0sZ1iWc8hMo2naWfO99qorqL68ry3mmgNjTz417/uZDzRFu18XmqsZrUAaurkH7Fyb1FXlHni3qthoFY+pyny8ylP3/luxtopV9Me7zM9v6u0A6TCvZmq1f8x2b9A5AxHZnXvM9fd4qAaQglazcmT3k75HG0rU7vVBEfdc3Lej6rJYo3lck2unenxOspXnx9N9MqiOTn+/R11mqT2BomWx5rr9O+yrQER7s2C2OePnmwCgPlL63Xqu22mCVuv8ifEna389r+XudXM/Z2T3/HO+1euB7tRp1tXpWMvifjo0U3fnXq2/B3s+Zi4A0CkPmocS9S9dPONl7X5DzWzvO9VBLV4PTdLLDcyqtFaV46AZ6rLe6nKcVeWLOzRFJ79gbGJumC9QPd38ssDZWtU3VFuejT4xvnfe14+2eD0UyX7Vnv6li/2A6hTWzdOqcr/D5wPoRpYzLMs5ZKbRNO2s+V571RVUX97XFnPNgSWL5v92TvOBpmj360JzNaMVSEM394Cda5O6qtwD71YVG63iMVWZj1d56t5/K9ZWsYr+eJf5+U29HSAd5tVMrfaP2e4NOmcgIrtzj7n+Ht+zCKSg1azsX7rIvIMStXt9UMQ9F/ftqLos1mge1+TaqR6fk2zl+fF0nwyqo9Pf71GXWWpPoGhZrLlu/w77KhDR3iyYbc74+SYAqI+Ufree63aaoNU6b9V0Ha7ntdy9bu7n9C9dNO/7tHo90J06zbo6HWtZ3E+HZuru3Kv192DPx8wFADrlQfNQosEVfbFp3eC0l7X7DTWzve+ETesGY3BFXzYHCQno5QZmVVqrynHQDHVZb3U5zqryxR2aot1fMDZ1bpgvUD2d/rLAuVrVN1Rbno2uXDb/HBlo8Xookv2qPYMr+lq23aRrW+vmaVW53+HzAXQjyxmW5Rwy02iadtZ8r73qCqov72uLuebAlgd3xClrD531fcwHmqSdrwudsvbQ2PLgjhmv0wqko5t7wM61SV1V7oF3q4qNVvGYqszHqzx1778Va6tYRX+8y/z8pt4OkA7zaqb59o+Ns9wbdM7AhKzOPeb6ezxUA0hBq1l58IG+RxvK1O71QRH3XNy3o+qyWKN5XJNrp3p8TrKV58fTfTKojk5+ZAtReQABAABJREFUv0edZqk9gaJlsea6/Tvsq0BEe7Ngtjmz5cEdsdHPNwFALaT0u/Vct9MErdZ5Ct+voeXudXM/5+AD++b8/RSnrD00Dj7QxxvyUKdZV6djLYv76dBM3bTfzvdgm7kAQJY8aB5KNLC8Ly49a/20k/x2f2HwbO878TaXnbU+Bpa7OIAJvdzArEprVTkOmqEu660ux1lVvrhDU7TzC8b2nxvmC1TPfC3v/yCR+VrVN1Rbno0edtCSOHWOOXLqusE47KAlXf/dkDX7VXsGlvfF0Ycu9wC+/8u6eVpV7nf4fADdyHKGZTmHzDSapp0132uvuoLqy/vaYq45cPdDI3Hxq483H2i8Vl/jffTxsbj41cfH3Q+NTHudViAt3dwDdq5N6qpyD7xbVWy0isdUZT5e5al7/61YW8Uq+uNd5uc39XaAdJhXM821f5y6bjDe/svr4upb7p98mXMGpsrq3GOuv+fRx8fm/H7kpvYK1E+rWXl4/1Lfow0lavf6oIh7Lu7bUXVZrNE8rsm1Uz0+J9nK8+PpPhlURzu/qyeifrPUnkDRslhz3f4d9lUgor1ZMNucufqW++Ptv7xuxtfF7JkAUD0p/W491+00Qat1fthBS2p/Pa/l7nVzP+fw/qVx8auPn/F9PqesPTQufvXxcXj/0lyOFZquTrOuTsdaFvfToZm6ab+d78E2cwGALC3Yt2/fvrIPou5GRkZiYGAghoeHo7+/v+zDoYaGR8djaOd4PL57T/QvWxx9ByyMP/3UnXHTPUOTbzNx0n/kymVzvu9BSxdPfqMOndFx+n66Y1dceP3WtrqaTVVaq8pxVJWWs1WX9VaX46yiXmdjXrRM1mZb66euG4yLfuOFERFx6IGzzw3zpTdaJmtz7VsXv/r4GN/7VIzsar9VfbdPy5Qhr0arev5bBC3Xk/2qPf/xs9HY/Kk74+YGtN1Oy9ZNtea9zwezsS8zn6xnWJZzyEybTsvpa7Xms+hVV+XTMvMp4tpirjlgPrRPx+ma62u87zvzuDh4+WKtJEbLzKebe8DmQzm0XIwq3QPvVhUbreIxlcXXo6orhf5bsbayU8WWy/r8NqEd0uUcu1nMq9nNtn9ERK3OGbRcjqzOPWb7e54Y36vXBtIyKWo1K1P8Hm0tUxedXB8Ucc+lavfttMz+el2jeV2TV62dqimjZZ+TbPk5YOzJ6Zurx/eeeVyM7BqPA5fUd5baE56h5WJksea6+Tvsq82hZebT7ixI4WuzdadlSIOWKUNq5/5VuG7XMnmbb52n0rSWu9Pt5/+Rkd2x/YnxGNn9ZPQvXRQHH9jnIfMko8otV2HWtatOx1qGVPbfKqtyyzRXt+23mqkpz1wtQxq0DPXhQfMZMPTIQ8on/VWk42bQVfq0DJ2r4mzUMnmo4lpPnZbJg5aLp2VS09Q5omVS15S2tdy+pqwJ6knLtGKG1YOWidBrCrRMKzqvPh2nTYPNoWVaMQ/qQcvF0QR50nK16Z92aXk67VBXWm4e8ypNWk6TXptHyzRVavNOy9RJav1lScvkQXPF0zLz0WQ96LgZ9Jg+LadPx82gZVoxC+pBy5AGLVMW+322tEzZNJ2Nurbs8w/T1bVl6sf8zZeWqSrtd0bLkAYtQ30sKvsAgNkNLHfhAFnTFcBMZiNNYa1DGrQM9MocgTRpm/1ZE0CdmWFQH3qF9OkcyqVBYIJ5ANNpAppL/9Ad7QB1YV5BfegVaArzDsqjPyiW5qBaNAnVoUeoPx0DEWYBADSB/R7Soulm8/kHKIf5C82kfQCgyhaWfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATeNB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgST1o/jnPeU4sWLBgxn9ve9vb5nyfT3ziE/H85z8/li5dGscff3x8/vOfL/CIAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCZK6kHz3/zmN+Ohhx6a/O/GG2+MiIizzz571re/7bbb4pxzzonf+Z3fiS1btsRv/uZvxm/+5m/Gd7/73SIPGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYpB40/6xnPSuOOOKIyf8++9nPxnOf+9w47bTTZn37v/mbv4lf/dVfjXe9611x7LHHxvve97444YQT4kMf+lDBRw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0yaKyDyAv4+Pj8U//9E/xzne+MxYsWDDr23z961+Pd77zndNedvrpp8enP/3pef/usbGxGBsbm/zzyMhIz8cLFEvHkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQcuQBi1D/ekY0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGVIg5ah/nQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQctQXwvLPoC8fPrTn44dO3bEG9/4xjnf5uGHH47DDz982ssOP/zwePjhh+f9uy+55JIYGBiY/G/VqlVZHDJQIB1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAz1p2NIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWob60zGkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUN9Ldi3b9++sg8iD6effnr09fXFZz7zmTnfpq+vL6699to455xzJl/24Q9/OC666KJ45JFH5ny/sbGxGBsbm/zzyMhIrFq1KoaHh6O/vz+bfwCQKx1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUMatAz1p2NIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDliENWob60zGkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy5AGLUN9LSr7APLwwAMPxJe+9KX45Cc/Oe/bHXHEETMeKP/II4/EEUccMe/7LVmyJJYsWdLzcQLl0TGkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy1B/OoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZag/HUMatAxp0DKkIeWWt23bFkNDQ2UfxrwGBwdj9erVZR8GCUi5ZWgSLUMatAxp0DKkQcuQBi1DGrQM9VXqg+Zvuumm2LRp07xv8/a3vz2uvPLKjv7ea665Jg477LA444wz5n27k046Kb785S/H+eefP/myG2+8MU466aSO/v8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBJtm3bFs9//rGxa9do2Ycyr2XLlscPfnCXh80DAAAAAAAAlVTqg+Z/4zd+I7761a/Gi170ollf//a3vz2uvfbajh40/9RTT8U111wTb3jDG2LRoun/vNe//vXx7Gc/Oy655JKIiPijP/qjOO200+Lyyy+PM844Iz7+8Y/Ht771rbjqqqu6/jcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDqhoaGYteu0fjFc98d/Uc+p+zDmdXIQz+Ob1x9UQwNDXnQPAAAAAAAAFBJpT5o/s1vfnP86q/+atxyyy2xdu3aaa/7oz/6o7jmmmvic5/7XEd/55e+9KXYtm1bnHvuuTNet23btli4cOHkn08++eT453/+5/jzP//z+NM//dNYt25dfPrTn47jjjuuu38QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0SP+Rz4lDVh9T9mEAAAAAAAAA1FKpD5r/67/+6/jZz34WL3/5y+O2226Lo446KiIizj///PjoRz8an/3sZ+O0007r6O985StfGfv27Zv1dV/96ldnvOzss8+Os88+u+NjBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOjWwrIP4KMf/WiccMIJ8fKXvzwee+yxeOc73xlXXXVV3HDDDfGyl72s7MMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyNyisg9g4cKF8fGPfzzOOOOMOPbYY+OJJ56IG264IX7lV36l7EMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyEWpD5r/27/928n//dKXvjRuvvnmOP300+P73/9+fP/735983XnnnVfG4QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkotQHzV9xxRXT/nzkkUfG1q1bY+vWrZMvW7BggQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkp9UHz999/f5n/9wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAClWFjm//nXv/71+OxnPzvtZf/4j/8Ya9asicMOOyx+93d/N8bGxko6OgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB8lPqg+Ysuuii+973vTf75zjvvjN/5nd+Jl7/85XHhhRfGZz7zmbjkkktKPEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA7C0q8//8O9/5TvzVX/3V5J8//vGPxy/+4i/G//yf/zMiIlatWhXvfve74z3veU9JRwi9GR4dj6Gd4zGye0/0L1scgwf2xcDyvrIPCypLM0CRzByoDj1CNWgRaDIzEKpBi9SFtQpkzVyB6tMppE3j1In1CtSFeUWdWK9AGcweKJ7ugF6YIdSdNQxA2exFNI01D3PTB/RGQ0BWzBOoD71CGrQMAPVnP4dm0DpVZn0CTWYGAnkyYwCAKir1QfPbt2+Pww8/fPLPX/va1+LXfu3XJv/8kpe8JB588MEyDg169tMdu+KC67fGzfcMTb5s07rBuPSs9XHUymUlHhlUk2aAIpk5UB16hGrQItBkZiBUgxapC2sVyJq5AtWnU0ibxqkT6xWoC/OKOrFegTKYPVA83QG9MEOoO2sYgLLZi2gaax7mpg/ojYaArJgnUB96hTRoGQDqz34OzaB1qsz6BJrMDATyZMYAAFW1sMz/88MPPzzuv//+iIgYHx+PO+64I37pl35p8vWPP/54LF68uKzDg64Nj47PuACIiLjpnqG48PqtMTw6XtKRQTVpBiiSmQPVoUeoBi0CTWYGQjVokbqwVoGsmStQfTqFtGmcOrFegbowr6gT6xUog9kDxdMd0AszhLqzhgEom72IprHmYW76gN5oCMiKeQL1oVdIg5YBoP7s59AMWqfKrE+gycxAIE9mDABQZaU+aP7Xf/3X48ILL4ybb745Nm/eHMuXL49TTz118vVbt26N5z73uSUeIXRnaOf4jAuACTfdMxRDO10EwFSaAYpk5kB16BGqQYtAk5mBUA1apC6sVSBr5gpUn04hbRqnTqxXoC7MK+rEegXKYPZA8XQH9MIMoe6sYQDKZi+iaax5mJs+oDcaArJinkB96BXSoGUAqD/7OTSD1qky6xNoMjMQyJMZAwBU2aIy/8/f9773xWte85o47bTTYsWKFXHttddGX1/f5OuvvvrqeOUrX1niEUJ3Rnbvmff1j7d4PTSNZoAimTlQHXqEatAi0GRmIFSDFqkLaxXImrkC1adTSJvGqRPrFagL84o6sV6BMpg9UDzdAb0wQ6g7axiAstmLaBprHuamD+iNhoCsmCdQH3qFNGgZAOrPfg7NoHWqzPoEmswMBPJkxgAAVVbqg+YHBwfjpptuiuHh4VixYkUccMAB017/iU98IlasWFHS0UH3+pcunvf1B7V4PTSNZoAimTlQHXqEatAi0GRmIFSDFqkLaxXImrkC1adTSJvGqRPrFagL84o6sV6BMpg9UDzdAb0wQ6g7axiAstmLaBprHuamD+iNhoCsmCdQH3qFNGgZAOrPfg7NoHWqzPoEmswMBPJkxgAAVbaw7AOIiBgYGJjxkPmIiEMOOST6+vpKOCLozeCKvti0bnDW121aNxiDK6xrmEozQJHMHKgOPUI1aBFoMjMQqkGL1IW1CmTNXIHq0ymkTePUifUK1IV5RZ1Yr0AZzB4onu6AXpgh1J01DEDZ7EU0jTUPc9MH9EZDQFbME6gPvUIatAwA9Wc/h2bQOlVmfQJNZgYCeTJjAIAqq8SD5qFKhkfH40eP7owt27bHj/5zZwyPjnf8dwws74tLz1o/40Jg07rBuOys9TGw3EUAaeq2H81AvrLY21Ji5kD78p4feoRitGpZi0CTtTsDXVdBvupwPmIOEPH0Wr3srPVxyWuOj394w4vjw689Ia5+40viktccH/9fRdYq0L4qzPY67IGQtyq0OB+dQr25P04eytq7rFdotqqfN09lXjGfqq1l6xXoVTdzzeyB6Yo4P9AdpM3PPJCCPNexNQyQlqrdY22HvYimmOjzvqEn4s/PeEFc8prjY3nfAZOvt+aps6z2H3sCzM/3OwKd8vv+YKY63juZj16h2tqdOVoGgPrbfz9f3ndA/OEvr41/fvMvxh/9yroYemK89tcfkIpe7g04d6fKslqfqd0/A9Iz25yyRwN5GR4dj6Gd43Her6yL697yi/GHv7x28vs+zRgAoAoWlX0AUCU/3bErLrh+a9x8z9DkyzatG4xLz1ofR61c1tHfddTKZXHlORtiaOd4PL57Txy0dHEMruhzAUCyeu1HM5CPLPe2lJg50FpR80OPkK92W9Yi0GStZqDrKihGlc9HzAGm2hcRn9/6UNx87/T1cNrznlXeQQEdq9Jsr/IeCHmrUovz0SnUk/vj5KHsvct6hWYqe/Z0w7xiNlVdy9Yr0K1e5prZA08r8vxAd5AmP/NACopYx9YwQBqqeo+1HfYiUjdXn58/79QY2TUeBy6x5qmvrPcfewLMzvc7Ap3y+/5gpjrfO5mPXqGaOp05WgaA+pvYzx97Yjz2RcR7/vW78aGv3Dv5+hSuP6Dusrg34NydKut1faZ6/wxIR6s5ZY8GsjTbzDl13WB85u2nxIKIOPRAMwYAKN+Cffv27Sv7IOpuZGQkBgYGYnh4OPr7+8s+HLo0PDoef3jdlmkn8BM2rRuMK8/Z4AQ+YTrujX6oCi1Pp03qSsvlMz/IgpbLp2WyoGWaLpVZqmXoXpXmgJbLV6X1QH1puXxaJgta7p0WqQItp8uMaY4iO7auID/25LmZPdTJfC1by1Af9uX2mGtUXR1a1hG0VoeWy2SOUBeulyEN9mXKZs/IhpbJgz6Lp+XiWN/kScvP0Bp1pePymBtkKZWWdUHTpdJyXZg55CWVlu+444448cQT4xV/dk0csvqYsg9nVj/bdnfc+P43xe233x4nnHBC2YdDYlJpmbk5F2gGLdePNpmNlp+hEepMy81gTqVPy1SJmdM9LUMatAz1sajsA4AiDI+Ox9DO8RjZvSf6ly2OwQP7ZpyQD+0cn/UEPiLipnuGYmjnuJN4Gm2+jvQD1aTN+mrn3AV6ZW+HchUx67UMFC3F81izFKqn6FljDjCV9VAfKZ6X0L3918OiBQvi9ge2z/q2Wobi5L2v2gugWlzLkYKy15W9Deoni27Lnj2QlVTXsv0ZmivVudYpc5Be6Kg7uoNnZDFHNEXZ7IfVZDZQF9Zqs9gzoDp8Typ11un5g/0HiqE1uuGasNnMjXzoqt6mdrG874A495Q1sWHVyhh78qlYuviA2DG6x+cTGiqP+W4vBoDupHLd5VwA5ldW69qE+TW9kVTOQyALVe2h6XMKqqKqMyJrZg4AUBceNE9ttXtx8dMdu+KC67dOO0HftG4wLj1rfRy1ctnky0Z275n3/+/xFq+HlLXqaO++ffEPb3jx5DfU3rFte1x9y/0xOr43IvQDZUllb2vKDcUJ7Z67QC/2X2fL+w6Iv3jVC+KE1StjdHxvLFm0MP7wl9dO28+nqsv8gKrqdNZ3uxemci4A5CPr8+xUz2PNUuhNCrPGHGAq66Ee5poVl521Ppb3HdCoe41NNzw6Hg+P7I7/2L4rFixYMPn1qxOPPjj+9pwNcd51W9z7ghK1u692c06Z6jUqlKXXazvXcqRgeHQ8xp7cGx9+7Qmzfm9URL7ryt4G1bf/frl00cJ49w3fiy/d9ejk23TTrT2NVKS2lue67/Tiow+2P0NDpDbXutHE65SmfU973nTUuSK7s96pg17nyE+2j8YDj43Gjl17YuniA+LLP3g07n5oJC4687hk9zKqx35YPUX9rAd0a2LNbR8djz17n4pbf/TY5NesUr8mazp7BnQuj316tnOFU9cN+p5U2lbm+WM395bsP1AMrTGb+faMJn6djulSmRtVuremq/qb6GJ53wHxt+dsiGtuvT8+9JV7Jx86v3TRwvjPnWNx8IF97uNCg7Sa736nF3DXXXeVfQhzGhwcjNWrV5d9GJCZvPblMjgXoMlatVrmPRZtwvya3Ij7v72p03karVW5h/3n1MT9/Q2rVsbYk0/F+JN7Y3jUg5+hW+3M8yrPiKw1+dwIAKgXD5qnltq9uBgeHZ/xdhERN90zFBdevzWuPGfD5IVL/9LF8/5/HtTi9ZCq+Tp6979+N979X18Y7/vM9+Lmex+bfN3GtYdO+2FI/UA5UtjbmnRDMaKzcxfo1v7rbOoPyGz+5J2Tb7f/fj5VHeYHVFWns76XvTCFcwEgH1mfZ6d8HmuWQvdSmTXmAFNZD9U316z41gPb44GfjcbffeXeuPneZtxrbLqf7tgVF/zvrdM+31Pvdz21b1+ce8qa+NBX7p3xvlqGYrTaV/uXLe7qnDLla1QoQ6/Xdq7lSMFsHcz2tdS81pW9DapvtjlxytpD440b18RtP3psck500609jVSktJZb3XeyP0MzpDTXutHE65SmfU97EZreUaeK7M56py56mSP/8bPRuOCTW+PW/X4e8k0b18S7//W78ddn/3xyexnVZD+sliJ/1gO60eprVilfk2HPgE7lsU/Pda5w8z1DvieVtpR5/tjtvSX7DxRDa+xvvj3jwL4DGvd1OmZKYW5U6d5aE7/+naKJLs49ZU1cc+v9ceu9j8146PwE93GhGdr5HbqbP3Wn3+kFDbVr+LGIWBCve93ryj6UOS1btjx+8IO7PGyeJOS5L5fBuQBN1ep+Ttn3WLQJ82tqI2XPprqr0r18elf1HqbOKff3IVvtzPOqz4isNfXcCACoHw+ap3Y6ubgY2jk+4+2mvv3QzvHJtx1c0Reb1g3GTbO8/aZ1gzG4Ip0LFujEfB0dc2R/bP7k1mkPmY+IyV+ycu4pa2Lrgzv0AyWp+97WtBuKEZ2du0C39l9nU39AZqqp+/n+X0yr+vyAKutk1ve6F9b9XADIRx7n2Smfx5ql0J2UZo05wFTWQ/XNNSvOPWVNXPmVe2bc/0j5XmOTTe5D905fC/vf7zp345oZ76tlKE6rffXAJYvi//3Edzo+p0z5GhWKlsW1nWs56m6uDvY/t8xzXdnboNrmmhO33PtY7IuZ33PRabf2NFKRylpu976T/RnSl8pc61bTrlOa+D3tRWh6R50qqjvrnTrpdo4Mj47H5v0eMh/xzHn9htUHJ7eXUV32w2op8mc9oFPtfs0qxWsynmbPgPbltU/Pd65w672P+Z5U5lX2+WO395bsP1AMrTFVqz3jfWce16iv0zG7us+Nss+N9te0r3+naqKLDatWTn7P5ly/U8t9XGiGbn6Hrt/pBc2xZ/TxiNgXL/rtC+JZa55f9uHMMPLQj+MbV18UQ0NDHjRPEvLcl8vgXIAmaud+Ttn3WLQJ82tqI2XPpjqr2r18elf1HqbOKff3ITvtzvOqz4isNfXcCACon4VlHwB0qp2Liwkju/fM+3c9PuX1A8v74tKz1semdYPT3mbTusG47Kz1SV2wQCfm62jDqpUzvhA/4dZ7H4uT/8uh+oES1X1v62TPT0Un5y7Qrf3X2YZVK2d8wWzCrfc+FhtWrZz8c13mB1RZJ7O+172w7ucCQD7yOM9O+TzWLIXupDRrzAGmsh6qb65ZMd/9j1TvNTZZq1/mOfV+11RahmK12ld37n6yq3PKlK9RoWhZXNu5lqPu2jm3zHtd2dug2rq5Bu2kW3saqUhlLbfbvP0Z0pfKXOtW065Tmvg97UVoekedKqo765066XaODO0cn/fnITesWpncXkZ12Q+rpcif9YBOdXIv2j6WJnsGtC+vfbrVucL+9MlUZZ8/dntvyf4DxdAaU7XaM54Yf3Le93dN2Ax1nxtlnxvtr2lf/07VRBdT+ZlSaLZuf4eu3+kFzbLisNVxyOpjKvdf/5HPKftDA5nKc18ug3MBmqid+zll32PRJsyvqY2UPZvqrGr38uld1XuYOqfc34fstDvPqz4jstbUcyMAoH4WlX0A0KlOLi76ly6e920P2u/1R61cFleesyGGdo7H47v3xEFLF8fgij4n8DTafB2NPfnUvO+7dPEBceTKZVkfEtCBOu9tTbuhGNH5uQt0Y/911mo/H1i2OD791pNrNT+gyjqZ9VnshXU+FwDykcd5durnsWYpdC61WWMOMJX1UG1zzYpW9z9SvNfYZK32oYn1sPqQ5fHld56mZSjRfPvqlm3b533fuWZ36teoUKQsru1cy1F3rToYWLY4rjxnQ67ryt4G1dbuNehUnXZrTyMVKazldpu3P0MzpDDXutW065Qmfk97UZrcUaeK6s56p266mSPtnNentpdRbfbD6ij6Zz2gE53ci7aPpcueAe3Ja59uda7ge1KZT9nnj73cW7L/QDG0xoRWe8bo+N55X++asDnqPDfKPjfaX9O+/p2yo1YuiyfGnpz8s58phWbr5Xfo+p1eAJCtvPflMjgXoGnauZ9ThXss2oT5NbGRKsymuqravXx6V4ceJubUDx/dOe/bWX/QvnbneR1mRNaaeG4EANSPB81TO51cXAyu6ItN6wbjpnuGZrzdpnWDMbhi5sn5wHIn7TDVfB2tXDZ/jwMtXg8Uo657WxNvKHZz7gKd2n+dLVm0cN63P3h5Xzz3sBVFHBo0QiezPqu9sK7nAkA+8jjPbsJ5rFkKnUlx1pgDTGU9VNdcs6LV/Y8U7zU2Wat9aMmihbFp3WAcdtASLUMFzLWvdntOWfZ5I6Qki2u7spt07k6vWnVwcAFrrOyOgPm1cw06Vbfd2tNIRd3Xcrv3nezP0Bx1n2vdatp1ShO/p71ITe2oU0V1Z71TR53OkVbrfOWyxcntZVSf/bAayvhZD2hXu/eiU7wmYzp7BrSW1z7d6lzB96Qyn7LPH3u9t2T/gWJojYjWe8bAssWN+jod86vr3Cj73Gh/Tfv6d+oOO2jJ5OfTz5RCs/XyO3T9Ti8AyFYR+3IZnAvQJO3cz6nKPRZtwvya1khVZlMdVe1ePr2rSw8Dy/vikBZzyvqD9rU7z+syI7LWtHMjAKB+5v/uJ6igiYuL2ex/cTGwvC8uPWv9jLfftG4wLjtrvZN1aMN8HR196PK2ewToVCd7fiqcu1CE/dfZlgd3xMa1h876tqm2BmXqZNY3cS8E8pfHbHEeC+zPrAHKMtesePTxsTjV9VVjzLcPbVx7aDz6+Ji9A2qg23NK542QnSyu7TRJ3VXhazU6gmqbb06csvbQ2PLgjsk/6xbqz30ngKc17TqlCteGUFR31jtN0Opa/uhDlye3lwHt8bMeVFmr+1JbHtyR7DUZQKfy2qebdk+MbJV9/mj9AtRHqz3jsIOWmOnUXtnnRvtzrpSWqZ9Pv1MLms3v0AWA6rAvQ/21cz/HPRagisym7lXtXj69q1MP1h9kp92e6jQjAACaZMG+ffv2lX0QdTcyMhIDAwMxPDwc/f39ZR9OI/x0x6648PqtcdM9Q5Mvm7i4OHLlshlvPzw6HkM7x+Px3XvioKWLJ7/oABN03NpcHXXaI+RJy+lp6oxp+rmLlosxsc6eGNsT/cv64i//9buNa418aXl+7c76pu6FVIeW05TXbGn6eWyVaZkymDXZ0zK0b7ZZ8cT43kpcX2m5GLPtQ6euG4z3nXlcHLx8cWP2DvKj5WL0ck7Z5PNG2qfl1rK6ttMkeSmi46p8rUZHpKzue/Jcc+LiVx8f43ufipFduqUZ6t5yu9x3InVNaZlsNOk6pSrXhu3ScrqK6K5u6z1lWs7PXOf1l7z6+Pi5Q5aXeGSkSMv142c9mE0VWp5r/7roN14YERGHHpjuNRlkpQotU4w89+km3ROrqrq2XIXzR+uXKqlry1CEdvaMKsx0HdOLKpwb7a8KXZUh1ZaHR8fjsSfGY19EvOeG78XNFVprkIdUW86C36FLnaTS8h133BEnnnhivOLProlDVh9T9uHM6sff+GJ84+qL4pTz/y6efeyGsg9nhp9tuztufP+b4vbbb48TTjih7MOhQ6m0nAf7MnWi5ZnabbWp91ioJi0zwWzqTlXO07Scrbr0UJX1R3a0XJ5OeqrLjKA8WoY0aBnqw4PmM2DolcPFBVnScW/0SFVoOU1mTPNouRxaI2tazo4+KZOW02W2NIuWKYtZky0tQ++qMJe0XJwqfL5Jl5aLo2XypOX26JAqK6pjHUC+UtiTzQlIo+V2aZ6UNall6FSd5r+W6VWd1nvKtJwv65yiaDltZklzVKVlaw56U5WWKYaZma46t2xdwjPq3DIUoQ57ho7pVR3WeRM0oWVrjSZoQst5MB+omlRa9qD53nnQfL2l0nLR7MtUjZZnp1XqRsvQuyrMfi03VxXWH9nRcrn0RFa0DGnQMtTHorIPALo1sPyZi46JC5L7hp6I/mWLY/BAFySQl4neRnbvmdab5oC85D1j5ppr0DStWtMK5KOdtpxvA3koe7Y4t4D06RyYTdmzoexzIIpdAz7fUC/zfR1ay1Cu/TscHh2PHz260/UeyfK9UUA37JdQf53ct3JuANRB2V+TSZH5z2xSbc16pwmyWOepzgDIS4rN2DPJgvtSAPmo0sxM8TyI7sy2Lq0PoG7MrWJU6VwGIvJp3zqnHVmsPWsNmqPTmWE+AEB1dLovu0cF5SjyHFrnwFRmQnncP8mHNd0e6w+yk0dPZhkAQP6Se9D8T37yk7jgggviC1/4QoyOjsbatWvjmmuuiRe/+MWzvv1Xv/rVeNnLXjbj5Q899FAcccQReR8uGfjpjl1xwfVb4+Z7hiZftmndYFx61vo4auWyEo8M0qM3IDXmGrRHK5APbQFNZf5B+nQOzMZswBoA5mI+QH3oldRZ40AWzBKoH90CqTHXoBhag2YzA6AzmoHZaQMgfWY987E+gLoxt6CZtE9ZrD2gE2YGADSHfR/Sp3NgKjOB1FjTQArMMgCAYiws+wCytH379ti4cWMsXrw4vvCFL8T3v//9uPzyy+Pggw9u+b533313PPTQQ5P/HXbYYQUcMb0aHh2fceEQEXHTPUNx4fVbY3h0vKQjg/ToDUiNuQbt0QrkQ1tAU5l/kD6dA7MxG7AGgLmYD1AfeiV11jiQBbME6ke3QGrMNSiG1qDZzADojGZgdtoASJ9Zz3ysD6BuzC1oJu1TFmsP6ISZAQDNYd+H9OkcmMpMIDXWNJACswwAoDiLyj6ALF122WWxatWquOaaayZftmbNmrbe97DDDouVK1fmdGTkZWjn+IwLhwk33TMUD43sjoiIgeV9RR4WJKllb8O7476hJ6J/2eIYPLBPd0DltZprQzvHc59lw6PjMbRzPEZ27zE/KU2rdViFVqAOOp3p2gKaqpP553wZytNLf85zIB913xfNBtpdA3Vf60Dn8tgjzBLIh+/TIlUT+8bYk3tdtwA9a7VfPvr4mFkCPcr6ms+9SyA1zkegGO6VQbMVcR3h612kpFUzP9mxK4aeGLfOaZw63ZeyLwF0p51ZP/F2Zmzz9HouYH+G/OlsujpdwwDZybt9s5a5+FlESFce3TpXBYD66PVcwL4PaZo6G5b1HaBzSEBW1//2flJjTVMWX08hS+38DLP1BgCQjaQeNH/DDTfE6aefHmeffXZ87Wtfi2c/+9nx1re+Nd7ylre0fN8XvehFMTY2Fscdd1y85z3viY0bN875tmNjYzE2Njb555GRkUyOn86N7N4z7+vv+88n4uLP3RWXnrU+jlq5rKCjog503LmWvQ09EW/9X3dERMSmdYO6oxBaphet5trjLV7fq5/u2BUXXL912o3Qps5PLZennXVYdivUR5Nb7mama4uqanLLFKPd+ed8uTdaphe99uc8JztaZkIK+2KTZ4OWn9bOGkhhrZMuLecn6z3CLGE+Wu6N79OiCrLueOq+8eHXnjDv26Z83QJFS3lPbrVfbvvZaBy4ZJG9kiSU0XIe13xNvncJEWnvy03lfKSZtFw898rIg5brI+/rCF/vqjctz9SqmR8/Nhpv/V93WOdUShEt1+W+lH2JOrMvU7ZWs37HrvF4z2e+Z8a2kGrLvZwL2J+po7q1rLOZ6nINQ37q1jHZyLN9s7YcdWnZzyLC/OrS8v7y6ta5KnVV15aB6bTcvizOBez75EXL5dl/NvhZb3qh5WrI8vrf3t9MKbdsTVOGsr6eknLLTdfOzzD/zrXfmvyzr9/Vm5YhDVqG+lpY9gFk6b777ou///u/j3Xr1sUXv/jF+IM/+IM477zz4tprr53zfY488sj4yEc+Etdff31cf/31sWrVqnjpS18ad9xxx5zvc8kll8TAwMDkf6tWrcrjn0Mb+pcunvf1SxYtjJvuGYoLr98aw6PjBR0VdaDjzrXT2wTdURQt04tWc+2gFq/vxfDo+Iyb6hHNnZ9aLke767DMVqiXprbc7UzXFlXV1JYpTjvzz/ly77RMt7Loz3lOdrRMRDr3kZo8G7T8tFZr4MAli5JY66RLy/nJco9IZd8kP1ruje/Togqy7Hj/fWPq9z7NJuXrFihayntyq/0yIuyVJKPolvO65mvyvUuISHtfbirnI82k5eK5V0YetFwfeV5H+HpX/Wl5pnZ/Ntk6p0qKaLkO96XsS9SdfZmytZr1Y3ueMmPbkGrL3Z4L2J+pqzq1rLPZ1eEahnzVqWOyk1f7Zm156tKyn0WE+dWl5anynP3OVamrOrYMzKTl9mR1LmDfJy9aLsdss8HPetMLLZcv6+t/e38zpdyyNU3RyvyaXMotN107P8M8la/f1ZuWIQ1ahvpK6kHzTz31VJxwwglx8cUXx4YNG+J3f/d34y1veUt85CMfmfN9jjnmmPi93/u9OPHEE+Pkk0+Oq6++Ok4++eS44oor5nyfzZs3x/Dw8OR/Dz74YB7/HNowuKIvNq0bnPV1G9ceGlse3BERT180DO10wcAzdNy5dnuboDuKoGV6Md9c27RuMAZX9OX2/z20c3zGTfUJTZyfWi5Hu+uwzFaol6a23O1M1xZV1dSWKU4788/5cu+0TLey6M95Tna0TEQ695GaPBu0/LRWa6DvgIVJrHXSpeX8ZLlHpLJvkh8t98b3aVEFWXa8/76x5cEdsXHtobO+berXLVC0lPfkdvZLeyWpKLrlvK75mnzvEiLS3pebyvlIM2m5eO6VkQct10ee1xG+3lV/Wp6pk59Nts6piiJarsN9KfsSdWdfpmzzzfpT1w3Gbfc9NuvrzNjpUm2523MB+zN1VaeWdTa7OlzDkK86dUx28mrfrC1PXVr2s4gwv7q0PFWes9+5KnVVx5aBmbTcnqzOBez75EXL5ZhtNvhZb3qh5fJlff1v72+mlFu2pilamV+TS7nlpuv02XURvn5XZ1qGNGgZ6iupB80feeSR8YIXvGDay4499tjYtm1bR3/PL/zCL8S999475+uXLFkS/f390/6jHAPL++LSs9bPuIDYuPbQeNPGNXH1LfdPvuzx3XuKPjwqTMed66S3Cbojb1qmF3PNtU3rBuOys9bHwPL8vqAy0mI+Nm1+arkc7a7DMluhXpracrczXVtUVVNbpjjtzD/ny73TMt3Koj/nOdnRMhHp3Edq8mzQ8tNarYEdu+b/5s+6rHXSpeX8ZLlHpLJvkh8t98b3aVEFWXa8/75x9S33x5s2rpnxCwiacN0CRUt5T57YL09tsV/aK0lB0S3ndc3X5HuXEJH2vtxUzkeaScvFc6+MPGi5PvK8jvD1rvrT8kyd/myydU4VFNFyHe5L2ZeoO/syZZtv1r/nN1446+9omWDGPiPVlrs9F7A/U1d1allns6vDNQz5qlPHZCev9s3a8tSlZT+LCPOrS8tT5Tn7natSV3VsGZhJy+3J6lzAvk9etFyO2WaDn/WmF1ouX9bX//b+Zkq5ZWuaopX5NbmUW266uWbZqesG53x2XYSv39WVliENWob6WlT2AWRp48aNcffdd0972Q9/+MM4+uijO/p7vv3tb8eRRx6Z5aGRo6NWLosrz9kQDw3vjvuGnoglixbGlgd3xHnXbYnR8b2Tb3fQ0sUlHiWkYaK3oZ3j8fjuPbF08QHx2TsfmtHbBN0BVbf/XDto6eIYXNGX+xdT+lvMR/OTInSyDstqBeqgl5muLaCpWs0/58tQnqz6c54D2UlpXzQbmG8NzPZ1pqnqtNaBzmW1R6S0b0JV+T4tUrL/vjE6vjfOu25LnHvKmjh345oYWLY4Dl7e57oF6NhRK5fFX515XNz7nztj7MmnZt0v7ZXQuTyv+dy7BFLjfASK4V4ZNFte1xG+3kWqpjazfXQ8hnftmXXfjLDOaZaq35eyLwH0bq5Z/9gT4/N+76wZ2wzdnAvYnyF/Optb1a9hgHzk0b5ZSzv8LCKkJe/Z71wVAKoty3MB+z6kY7bZMPVnvf/ijBfE7j17dQ41ksf1v72f1FjTFMnX5MjLbLNs0cIF8Wt/e/OcX8ez3gAAOpfUg+bf8Y53xMknnxwXX3xx/Lf/9t/i3//93+Oqq66Kq666avJtNm/eHD/5yU/iH//xHyMi4oMf/GCsWbMmXvjCF8bu3bvjox/9aHzlK1+Jf/u3fyvrn0EHhkfHY2jneIzs3hOHHNgXH//3bXHTPUMz3m7TusEYXOHGCLRjalf9yxbH4IHTbywOLH/mz8Oj47H1wR2zXqjrDihCq5nVjqlzrSiDK/pi07pB5y2Uar51eOq6wdi7b1/86D93TnZVRitQB61aWnTAghgeHZ+zH20BTTXf/HO+DOXJsr+qnudkcS8Bpsp7TaW2L1Z1NlCcudZAFmvdjId62//r0EM7x+O+oSc66jm1fROqaqLHiz9/15z3xlcsTerbEknAbOeKs+0bo+N740NfuTc2rRuMK8/Z4HwS6Mj+39N87W0/dm4KGerkmq+b+0TuXQK9qOL96ZXLFzsfgSny6rTVvTK9QTmK2pvzuI7w9S56UcXz0qkmmhkeHY+3X7fFOof/q8r3pexL5av6bIem6rTNuWa9GUtEe+cC+38t2tqB9nVzPuU8eH5VvoaBpiri2jHr9s1a2tXNzyK287t+gGy1sxcVMfudqwJAdWV9LpDF7yUAyjfXbBgd3xvfeXBH/D+/dHQc3r+0pKOD+ivj+47yuv53zU9qUljTvrexHnxNjjztP8uGR8fjxUcf3NF6M0sAAOaX1G90fclLXhKf+tSnYvPmzfHe97431qxZEx/84Afjta997eTbPPTQQ7Ft27bJP4+Pj8cf//Efx09+8pNYvnx5rF+/Pr70pS/Fy172sjL+CXTgpzt2xQXXb42b/+8FwvK+A+LqN74k9kVMvizi6YuFy85a70IA2rB/VxFPN3TpWevjqJXLZrz9wPK+uPSs9XHh9VunXazrDihCpzOrSsxPqmCudXjK2kPjDSc/J37z726N0fG9tekKyjJXSxv/b0u/9jc3x4uPPlhHAB0YHd8bb33Z2ti7b1/ceu9jky8/1fky5C7169U630ugmopYU6l3CRN6XetmPKSjl57tm1CcVvfG//xTd8ZFZx5nH6YS5tpbLjtrvX0DyIzvaYb8tXvN5z4RULSqzh33yuAZeXeqN6iWqu7N7TJT6Fad1r51DvWh13LVabZDk2TVphlLu3wtGrrX7cw2o4E6qeu1o1lLr/yuH6iOdvcisx8Ami2vc4G6XhcDT/P7CiA/Ze2Rrv+hGZyH14e5TJE6XW9mCQBAawv27du3r+yDqLuRkZEYGBiI4eHh6O/vL/twGmF4dDz+8Lot0072I57+YZi/eNUL4sVHHxxPjD0ZBy1dHIMr+lyc0pKO5+4q4umL6SvP2TBnS8Oj4zG0czwe371Hd5RKy83Ry8yqEvNzdlou1sQ6HN61J3bv2Ru33fdYXH3L/TE6vnfyberUFdXRtJaHR8fj0cfHYtvPRiMiYsuDO6a1pCPqqmktU76Jc/3bH9ge556yJjasWhljTz4VSxYtjEcfH4tfP+4Is7QLWqZTKV6vpnAvQcvVUvSaSrHLptLy/LpZ6ynMeOpHy/nIqmf7Ju3Scu8eGdkdP3p0Z+zYtSeWLFo47d64fZgitOq4nb0lIuwbULK678m+pxmeVlTL813zuU8Evav7vly0Oswd98qaScvPKLJTvZE1LXeuDntzu8yUdBTRcl3XvnVOnTR9X9Zr8eo626uu6S3TuzzaNGM716SWfS2alOXdchYz24yG+TVpT66qFK4dzdry1b1lv+sHnlZWy93sRWY/zK3u+/KEO+64I0488cR4xZ9dE4esPqbsw5nVj7/xxfjG1RfFKef/XTz72A1lH84MP9t2d9z4/jfF7bffHieccELZh0OHUmk5L1meC6RwXUx1ablYfl8BeWlqy1XYI13/k6WmtlxVVZgxdK4Kc1nLzdHOejNL6kvLkAYtQ30sKvsAoBtDO8dnPdkfHd8bmz95Z3z5nafFi1YfXMKRQX3N1VVExE33DMXQzvE5L6QHlrtBDxSrl5lVJeYnVTCxDn/06M54zd/fNuvb1KkrKMvA8r4Y2jkev3Ptt2Z9vY4A2jP1XP9DX7l3xut/4TmHmKVQgBSvV1O5l0B1FL2mUuwSZtPNWjfjIR1Z9WzfhOLs3P1k/PZHvzHr6+zDVEE7e8tzD1thnQI98T3NUKz5rvncJwKKVoe5414ZTVdkp3qD8tVhb26XmUIn6rr2rXOoD70Wr66zHVKXR5tmLPPxtWjoXhYz24wGqi6Fa0ezll75XT9Qrm72IrMfAJoty3OBFK6Lgaf5fQWQrSrska7/IV1VmDF0zlymSO2sN7MEAKA9C8s+AOjGyO49877+8RavB2bSFVAnZhZkT1fQOx0B9M4sBfJivpA1awqqQ4+QDj1D/eiWqrNGgSKYNVAdegSKZu5A9ekUmkXzNJW1D5Aesx2qSZsUzZqD7ukHaAKzDp6mBSiP/gCAMjkXgXToGbKlKSBPZgyQBbMEAKA9i8o+AOhG/9LF877+oBavB2bSFVAnZhZkT1fQOx0B9M4sBfJivpA1awqqQ4+QDj1D/eiWqrNGgSKYNVAdegSKZu5A9ekUmkXzNJW1D5Aesx2qSZsUzZqD7ukHaAKzDp6mBSiP/gDyddddd5V9CHMaHByM1atXl30YNJxzEUiHniFbmgLyZMYAWTBLAADa40Hz1NLgir7YtG4wbrpnaMbrNq0bjMEVfSUcFdSbroA6MbMge7qC3ukIoHdmKZAX84WsWVNQHXqEdOgZ6ke3VJ01ChTBrIHq0CNQNHMHqk+n0Cyap6msfYD0mO1QTdqkaNYcdE8/QBOYdfA0LUB59AeQj13Dj0XEgnjd615X9qHMadmy5fGDH9zlYfOUyrkIpEPPkC1NAXkyY4AsmCUAAO3xoHlqaWB5X1x61vq48Pqt0076N60bjMvOWh8Dy53wQ6d0BdSJmQXZ0xX0TkcAvTNLgbyYL2TNmoLq0COkQ89QP7ql6qxRoAhmDVSHHoGimTtQfTqFZtE8TWXtA6THbIdq0iZFs+age/oBmsCsg6dpAcqjP4B87Bl9PCL2xYt++4J41prnl304M4w89OP4xtUXxdDQkAfNUyrnIpAOPUO2NAXkyYwBsmCWAAC0x4Pmqa2jVi6LK8/ZEEM7x+Px3XvioKWLY3BFn5N96IGugDoxsyB7uoLe6Qigd2YpkBfzhaxZU1AdeoR06BnqR7dUnTUKFMGsgerQI1A0cweqT6fQLJqnqax9gPSY7VBN2qRo1hx0Tz9AE5h18DQtQHn0B5CfFYetjkNWH1P2YUClOReBdOgZsqUpIE9mDJAFswQAoDUPmqfWBpY7wYes6QqoEzMLsqcr6J2OAHpnlgJ5MV/ImjUF1aFHSIeeoX50S9VZo0ARzBqoDj0CRTN3oPp0Cs2ieZrK2gdIj9kO1aRNimbNQff0AzSBWQdP0wKUR38AQJmci0A69AzZ0hSQJzMGyIJZAgAwv4VlHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA03jQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGCLyj4A8jM8Oh5DO8djZPee6F+2OAYP7IuB5X1lHxawH60CTWYGkgprGapPp5AufUM1aROaRfNQPh1CmrQNadI2pE3jkBZNQ/XoEkiR2QbUlfnVPD7nwATzAGbSBZAFswTSp3MAslCn/aROxwqUw5yANGgZAHpnP4Vm0TxUgxYhDVqGZtI+AACp86D5RP10x6644PqtcfM9Q5Mv27RuMC49a30ctXJZiUcGTKVVoMnMQFJhLUP16RTSpW+oJm1Cs2geyqdDSJO2IU3ahrRpHNKiaageXQIpMtuAujK/msfnHJhgHsBMugCyYJZA+nQOQBbqtJ/U6ViBcpgTkAYtA0Dv7KfQLJqHatAipEHL0EzaBwCgCRaWfQBkb3h0fMbFTETETfcMxYXXb43h0fGSjgyYSqtAk5mBpMJahurTKaRL31BN2oRm0TyUT4eQJm1DmrQNadM4pEXTUD26BFJktgF1ZX41j885MME8gJl0AWTBLIH06RyALNRpP6nTsQLlMCcgDVoGgN7ZT6FZNA/VoEVIg5ahmbQPAEBTeNB8goZ2js+4mJlw0z1DMbTTBQ1UgVaBJjMDSYW1DNWnU0iXvqGatAnNonkonw4hTdqGNGkb0qZxSIumoXp0CaTIbAPqyvxqHp9zYIJ5ADPpAsiCWQLp0zkAWajTflKnYwXKYU5AGrQMAL2zn0KzaB6qQYuQBi1DM2kfAICm8KD5BI3s3jPv6x9v8XqgGFoFmswMJBXWMlSfTiFd+oZq0iY0i+ahfDqENGkb0qRtSJvGIS2ahurRJZAisw2oK/OreXzOgQnmAcykCyALZgmkT+cAZKFO+0mdjhUohzkBadAyAPTOfgrNonmoBi1CGrQMzaR9AACawoPmE9S/dPG8rz+oxeuBYmgVaDIzkFRYy1B9OoV06RuqSZvQLJqH8ukQ0qRtSJO2IW0ah7RoGqpHl0CKzDagrsyv5vE5ByaYBzCTLoAsmCWQPp0DkIU67Sd1OlagHOYEpEHLANA7+yk0i+ahGrQIadAyNJP2AQBoCg+aT9Dgir7YtG5w1tdtWjcYgyv6Cj4iYDZaBZrMDCQV1jJUn04hXfqGatImNIvmoXw6hDRpG9KkbUibxiEtmobq0SWQIrMNqCvzq3l8zoEJ5gHMpAsgC2YJpE/nAGShTvtJnY4VKIc5AWnQMgD0zn4KzaJ5qAYtQhq0DM2kfQAAmsKD5hM0sLwvLj1r/YyLmk3rBuOys9bHwPLsL2iGR8fjR4/ujC3btseP/nNnDI+OZ/7/Aakpo9Us6R7oxP4zIyJqPQNhQh77uT0WsuUaGdJVdN/ahvZU8Z6XfiE/VWye6jGH81WXDq0D6ExV29Yy9KbstjUM+Zqr8VPXDcbFrz6+MufmQHvm27cvfvXx8dgT4/ZUKFiW59POjYGqKPteAfmwz9AE890Hee+Zx5V0VOTJnpUd+wR1V/V5oDHKUGYX1jyko+p7bJnMOlJRdudaAloxJ+qh7P2kE3U61lTpmqprd05Yy1BtVdzzzQ0A6qaK+2kn7L3QmSo0r1uoRov0zjxDy2nRNO3Sfmt6AgBIw6KyD4B8HLVyWVx5zoYY2jkej+/eEwctXRyDK/pyuZj56Y5dccH1W+Pme4YmX7Zp3WBcetb6OGrlssz//yAlRbaaJd0DnZhrZlx21vpazkDYX5b7uT0W8uEaGdJVVN/ahs5U6Z6XfiF/VWqe6jGHi1H1Dq0D6E7V2tYyZKOstjUMxThq5bK45DXHxwOPjcaOXXtiyaKFseXBHXHRZ74XF515nN6gZmbbt5cuXhjvvuF78aW7Hp18O3sqFCeL82nnxkDVVO0+IL2xz9AkE/Pr4ZHd8R/bd0VExJYHd8Sv/+3N8eKjD7buE2TP6p19glRUdR5ojDKV0YU1D+mp6h5bJrOO1PjeMaCqzIl6qdN5Y52ONTW6pi5azQlrGeqhSnu+uQFAXVVpP+2EvRe6U2bzuoVn1HX/5WnmGRO0nAZN0yntz01PAADpWLBv3759ZR9E3Y2MjMTAwEAMDw9Hf39/2YdTqOHR8fjD67ZMuziYsGndYFx5zgYXUdRCkzvulO6pMi1Xj5lBN5rasl5ITRNb1jEpamLL+9M2KWhqy/olNU1tmfoyh2fXtJatA1Kl5WdomTprSssaJmVV61hv0J2qtTwXjcP86tCyjqG1OrQMVVWlfUbLFKVK6z5FWk6LXppLy8XQGHmrWsvWPHSnai0zP7OOuWi5M1qiqrRcHeYE3dJxdemaTlS5ZWsZ2lfllotkblB3qbR8xx13xIknnhiv+LNr4pDVx5R9OLP68Te+GN+4+qI45fy/i2cfu6Hsw5mh6sf3s213x43vf1PcfvvtccIJJ5R9OJWTSsvtsPeSslRb1i1Nk2rLmGdNo+X0aboZtFwMPZE3LUMatAz1sbDsA6DehnaOz3pxEBFx0z1DMbRzvOAjAvKme6ATZga0Ty9QfzqGNGkb6ku/AOUyh4mwDiAVWoZ60zAUR2+QNo1D/ekYgDzZZ2gi6x7apxfIl8ZoGmseaAKzDrKhJaAVcwLSo2tSYS0DnTI3AKBY9l6oH90CqTDPIC2ahuzoCQAgLR40T09Gdu+Z9/WPt3g9UD+6BzphZkD79AL1p2NIk7ahvvQLUC5zmAjrAFKhZag3DUNx9AZp0zjUn44ByJN9hiay7qF9eoF8aYymseaBJjDrIBtaAloxJyA9uiYV1jLQKXMDAIpl74X60S2QCvMM0qJpyI6eAADS4kHz9KR/6eJ5X39Qi9cD9aN7oBNmBrRPL1B/OoY0aRvqS78A5TKHibAOIBVahnrTMBRHb5A2jUP96RiAPNlnaCLrHtqnF8iXxmgaax5oArMOsqEloBVzAtKja1JhLQOdMjcAoFj2Xqgf3QKpMM8gLZqG7OgJACAtHjRPTwZX9MWmdYOzvm7TusEYXNFX8BEBedM90AkzA9qnF6g/HUOatA31pV+AcpnDRFgHkAotQ71pGIqjN0ibxqH+dAxAnuwzNJF1D+3TC+RLYzSNNQ80gVkH2dAS0Io5AenRNamwloFOmRsAUCx7L9SPboFUmGeQFk1DdvQEAJAWD5qnJwPL++LSs9bPuEjYtG4wLjtrfQwsd4EAqdE90AkzA9qnF6g/HUOatA31pV+AcpnDRFgHkAotQ71pGIqjN0ibxqH+dAxAnuwzNJF1D+3TC+RLYzSNNQ80gVkH2dAS0Io5AenRNamwloFOmRs0ybZt2+KOO+6o5H933XVX2R8eoCD2Xqgf3QKpMM8gLZqG7OgJACAti8o+AOrvqJXL4spzNsTQzvF4fPeeOGjp4hhc0efiABKme6ATZga0Ty9QfzqGNGkb6ku/AOUyh4mwDiAVWoZ60zAUR2+QNo1D/ekYgDzZZ2gi6x7apxfIl8ZoGmseaAKzDrKhJaAVcwLSo2tSYS0DnTI3aIJt27bF859/bOzaNVr2ocxrz9h42YcAFMDeC/WjWyAV5hmkRdOQHT0BAKTDg+bJxMByFwTQNLoHOmFmQPv0AvWnY0iTtqG+9AtQLnOYCOsAUqFlqDcNQ3H0BmnTONSfjgHIk32GJrLuoX16gXxpjKax5oEmMOsgG1oCWjEnID26JhXWMtApc4PUDQ0Nxa5do/GL5747+o98TtmHM8NDd349vnvDVfHkk0+WfShAQey9UD+6BVJhnkFaNA3Z0RMAQBo8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqq/8jnxCGrjyn7MGYYeejHZR8CAAAAAAAAQO0tLPsAsvaTn/wkXve618Whhx4ay5Yti+OPPz6+9a1vzfs+X/3qV+OEE06IJUuWxNq1a+NjH/tYMQcLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANFJSD5rfvn17bNy4MRYvXhxf+MIX4vvf/35cfvnlcfDBB8/5Pvfff3+cccYZ8bKXvSy+/e1vx/nnnx9vfvOb44tf/GKBRw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0yaKyDyBLl112WaxatSquueaayZetWbNm3vf5yEc+EmvWrInLL788IiKOPfbYuOWWW+KKK66I008/PdfjBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJopqQfN33DDDXH66afH2WefHV/72tfi2c9+drz1rW+Nt7zlLXO+z9e//vV4+ctfPu1lp59+epx//vlzvs/Y2FiMjY1N/nlkZKTnYweKpWNIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZUiDlqH+dAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMqRBy1B/OoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGdKgZaivhWUfQJbuu++++Pu///tYt25dfPGLX4w/+IM/iPPOOy+uvfbaOd/n4YcfjsMPP3zayw4//PAYGRmJXbt2zfo+l1xySQwMDEz+t2rVqkz/HUD+dAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DGnQMtSfjiENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGepPx5AGLUMatAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DPW1YN++ffvKPois9PX1xYtf/OK47bbbJl923nnnxTe/+c34+te/Puv7PO95z4s3velNsXnz5smXff7zn48zzjgjRkdHY9myZTPeZ2xsLMbGxib/PDIyEqtWrYrh4eHo7+/P8F8E5EXHkAYtQxq0DGnQMqRBy5AGLUMatAxp0DKkQcuQBi1D/ekY0qBlSIOWIQ1ahjRoGdKgZUiDliENWoY0aBnSoGVIg5ah/nQMadAypEHLkIZuW77jjjvixBNPjFf82TVxyOpjijjUjvz4G1+Mb1x9UZxy/t/Fs4/dUPbhzKrqx1j14/vZtrvjxve/KW6//fY44YQTyj6c0tmXIQ1ahjRoGdKgZUiDliENWoY0aBnqa1HZB5ClI488Ml7wghdMe9mxxx4b119//Zzvc8QRR8Qjjzwy7WWPPPJI9Pf3z/qQ+YiIJUuWxJIlS3o/YKA0OoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahjRoGepPx5AGLUMatAxp0DKkQcuQBi1DGrQMadAypEHLkAYtQxq0DPWnY0iDliENWoY0aBnSoGVIg5YhDVqGNGgZ0qBlSIOWIQ1ahvpaWPYBZGnjxo1x9913T3vZD3/4wzj66KPnfJ+TTjopvvzlL0972Y033hgnnXRSLscIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkNSD5t/xjnfE//k//ycuvvjiuPfee+Of//mf46qrroq3ve1tk2+zefPmeP3rXz/559///d+P++67L/7kT/4kfvCDH8SHP/zh+Jd/+Zd4xzveUcY/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiApB40/5KXvCQ+9alPxXXXXRfHHXdcvO9974sPfvCD8drXvnbybR566KHYtm3b5J/XrFkTn/vc5+LGG2+Mn//5n4/LL788PvrRj8bpp59exj8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIBFZR9A1l71qlfFq171qjlf/7GPfWzGy1760pfGli1bcjwqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGcsLPsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrGg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuZB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF86B5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJ50DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo2KKyDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBquuuuu8o+hDkNDg7G6tWryz4MAAAAAAAA6JoHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDNruHHImJBvO51ryv7UOa0bNny+MEP7vKweQAAAAAAAGrLg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYZs/o4xGxL1702xfEs9Y8v+zDmWHkoR/HN66+KIaGhjxoHgAAAAAAgNryoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmteKw1XHI6mPKPgwAAAAAAABI0sKyDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgaTxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgHjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo2KKyD4DeDY+Ox9DO8RjZvSf6ly2OwQP7YmB5X9mHBcnRGgBNYL+bzscDiqM3YDZmA9AOswKoIrOJslmD0Bx6h/rRLaRH19Aceofy6RDohtkBpMI8Y3/WBDAfMwLKp0OoH91CmrQNQBHsN8XwcYbi6Q7SoGUAqA77MqRN40BWzBPojGYAAABIjQfN19xPd+yKC67fGjffMzT5sk3rBuPSs9bHUSuXlXhkkBatAdAE9rvpfDygOHoDZmM2AO0wK4AqMpsomzUIzaF3qB/dQnp0Dc2hdyifDoFumB1AKswz9mdNAPMxI6B8OoT60S2kSdsAFMF+UwwfZyie7iANWob/n73/D/LzrA97749kafXTu8be2LWJDCoWhQTkiiQnndpW4Uwy1EMpYA/pQ9rBYJiGKZDJ8DABtzSBloCZQEkKTHt6eGyHmQCHHmOe5CSnZ/LEZWQTSsbGPnZ+NJU4InJBsVkH7Wq10q5s7/OHurJWu/v9ef+4rut+vWY8E2tX5P7e3+v9ue7vLa1vgHTYl6FsGgeqYp7AcDQDAABAiTa3fQBdMbuwFN95aj4eOfbD+M4P5mN2YamS/82Lb1ZERBw6PBMfvPexSv5/AM22VsesAFbTGawvt2vLulvO7XxArmYXluIvZ07FB/73/1tvkDH3vaAMOX5eNitgfTn2XBKziSqM07E1COlwHxvKUGXLuoW0VNG3rqE5bd/z0ju0r1eHH7j3sXhy7kxLRwakzB4OlMI8a17bn0P7yWVNpH4eoVSDzgiNQn2enDvjZ6UgM6lcY9ufoRorLf23J0/akyFj9kVykcq1ZCk2at95huaN0p39G9KT0h5qRgDQdf325SfnztgrISMXX98+OXcmmWtvYHQpfHZN6bM85GDUZlLoHVhNlwAAsNqWtg+gC75/4vSaGwsH903Hnbfuj2su2zHy/+7M/NKamxUrDh2eiZn5pZjaOTHy/z5wTlOt1TUrgOfpDDaW07VlEy3ndD4gVystv+3vvjgeOPL0ut+jN0if+15Qhlw/L5sVsFauPZfEbGJc43ZsDUIa3MeGMlTdsm4hHVX1rWtoRgr3vPQO7evV4QOHZ+I7T83Hs88tuxcOrGIPB0phnjUrhc+h/eSwJnI4j1CqQWbEqaVnNQo1+f6J0/HdmVN+Vgoyk8I1tmtoqMaFLf1/bvtJezJkyr5ITlK4lixFr/ZPLz3rPEPDhp1v9m9IUyrXKmYEAPTfl7/z1Hz8/Oe/df7X7JWQrvWub7/4zp9O4tobGF0qn11T+SwPuRilmVR6B56nSwAAWGtz2wdQutmFpTUfRCLO3VD44L2PxezC0sj/23Nnzvb8+sk+XwcG00Rrdc4K4BydQW+5XFs21XIu5wNydWHLi8881/N79Qbpct8LypDz52WzAlbLueeSmE2Mo4qOrUFon/vYUIY6WtYtpKHKvnUN9UvlnpfeoX39Ojxx+qx74cAas6d7z4TZ0/ZwIA8+kzQnlc+h/aS+JnI5j1CqfjNi9vRZjUJNVvbAE30+b7a9VwNrtX2N7RoaqnFxS35+GfJkXyQ3bV9LlqJv+33+7Nd5huoNM9/s35CuFK5VzAgAOGeQn4m4kL0S0rTR9a2/KwJ5S+mzawqf5SEnwzaTUu/AOboEAID1edB8zWbml9Z8EFlx6PBMzMyP/mFkcvvWnl+/tM/XgcE00VqdswI4R2fQWy7Xlk21nMv5gFxd2PK2Lb1vTegN0uW+F5Qh58/LZgWslnPPJTGbGEcVHVuD0D73saEMdbSsW0hDlX3rGuqXyj0vvUP7+nW4bctm98KBNXZObOnz9UsaOhKA8fhM0pxUPof2k/qayOU8Qqn6zYidE5doFGqysgf6WSnIT9vX2K6hoRoXt2RPhjzZF8lN29eSpejXfr8/+3WeoXrDzDf7N6QrhWsVMwIAzhnkZyIuZq+E9Gx0fevPpSBvKX12TeGzPORk2GZS6h04R5cAALA+D5qv2dyZsz2/frLP13uZ3j0RB/dNr/u1g/umY3r3xMj/28DzmmitzlkBnKMz6C2Xa8umWs7lfECuLmz5kSdOxA3XXbHu9+kN0ua+F5Qh58/LZgWslnPPJTGbGEcVHVuD0D73saEMdbSsW0hDlX3rGuqXyj0vvUP7enV4w3VXxCNPnIgI98KB1TZv3rTh30274bor4pLNmxo+IoDR+EzSnFQ+h/aT+prI5TxCqfrNiM19roM1CqNb2QP9rBTkp+1rbNfQUI2LW7InQ57si+Sm7WvJUvRr/5LNm5xnaNgw883+DelK4VrFjACAcwb9mYiL2SshLRtd3/pzKchbSp9dU/gsDzkZtpmUegfO0SUAAKzPg+ZrNrl9a8+vX9rn671M7ZyIO2/dv+amxcF90/GJW/fH1E43+aAKTbRW56wAztEZ9JbLtWVTLedyPiBXF7Z814NH4+037F3zl+L0Bulz3wvKkPPnZbMCVsu555KYTYyjio6tQWif+9hQhjpa1i2kocq+dQ31S+Wel96hfSsd3nRRhzdcd0W8/Ya9cdeDRyPCvXBgtS2bN637d9NWZocHzQO58JmkOal8Du0n9TWRy3mEUvWbEVv6XAdrFEa3sgdu9LNSNyWyVwNrtX2N7RoaqnFxS35+GfJkXyQ3bV9LlqJf+5ds3uQ8Q8OGmW/2b0hXCtcqZgQAnLPRvnzTvulVPxNxMXslpGWj69uVP5e6+Oee3L+CPKT02TWFz/KQk2GbSal34BxdAgDA+ra0fQClm949EQf3TcehwzNrvnZw33RM7x7vRtw1l+2Iz7zlQMzML8XJM2fj0u1bY3r3hBt8ULG6W6t7VgA6g0HkcG3ZZMs5nA/I1YUtLyw9G7/4pUfi9hv3xu037I2IiGsv3xlXXrpNb5A4972gDLl/XjYr4Hm591wSs4lRVdWxNQjtch8bylBXy7qF9lXdt66hXind89I7tO+ay3bEJ998fXznqfk4cfpsbNuyOR554kT84pceiYWlZ90LB9a4YtdEfPz3/zwOXPuCuP2GvbH4zHPnZ8f/9sfH4pNvvr7tQwQYmM8kzUjpc2g/Ka+JnM4jlKrXjJhdWNIo1OTCPfDCn5VafOa5uGzH1njJlbvjqsntbR8msIE2r7FdQ0M1Lm7pwp9ffverr4vtWy+JqR3pfH4G1mdfJEcp36/NRb/2r9h17nw6z9CsQeeb/RvS1va1ihkBAM9bb1/evX1LfOi+x2Nh6dk132+vhPRsdH27sPTs+Z9RmD/zjPtXkJnUPru2/VkecjNMM6n1DugSAAA2srntAyjd1M6JuPPW/XFw3/SqXz+4bzo+cev+Sm7GTe2ciJdcuTv+9rUviJdcudsNPqhJna01MSug63QGg0n92rLpllM/H5Cri1teWHo2Pnv/kfitP/pu/NjVk7Hvqkv1Bhlw3wvKUMLnZbMCzimh55KYTYyiyo6tQWiP+9hQhjpb1i20q46+dQ31Se2el96hfVdNbo8XT++KL//xsXjHbz0Un73/yPmHzLsXDlxsaudEfOQNr4jHnjgR7/ith+Kf/fa34x2/9VA89sSJ+FdveIWZAWTHZ5L6pfY5tJ9U10Ru5xFKtdGM0CjU58K+Vn5W6h2/9VB8+Y+Pxd7pXR4yDxlo6xrb/gzVWK+lhaVn47EnTsTe6V3xqhel9fkZWJ99kVyler82F4O27zxD8wbpzv4N6WtzDzUjAGC1i/flqya3x0fe8Ap7JWSi1/Xtv3rDK+Kqye3uX0GGUvzs6n44DGfQZlLsHbpOlwAAsL4tbR9AF1xz2Y74zFsOxMz8Upw8czYu3b41pndP+CACrGJWQP10BmXQMpRBy1AGLUMZtAzl0DPkT8dQBi1DGbQM5dI35EWzwMXMBWAYZgYAw7J3VMN5hLRpFOqjL2BU5gdUQ0tQBi1DN2kf8qZhoBczAgB6s1dCXjQLZdI2dIfeIT26BACAtTxoviFTO334APozK6B+OoMyaBnKoGUog5ahDFqGcugZ8qdjKIOWoQxahnLpG/KiWeBi5gIwDDMDgGHZO6rhPELaNAr10RcwKvMDqqElKIOWoZu0D3nTMNCLGQEAvdkrIS+ahTJpG7pD75AeXQIAwGqb2z4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK7xoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDtrR9ACVYXl6OiIi5ubmWjwS649JLL41NmzZV9r+nY2iHlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxVtqxjaIc9GcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIO/vwn5sydDGbQMZWir5fn5+YiImP3v/08898yzlf3/r8r8U9+LiIi5v/pubNu2reWjWV/qx+j4xnPyr/4yIs61MsjeaF+GMmgZyqBlKIOWoQxahjJoGcqgZcjfqB170HwFTp48GRERe/bsaflIoDtmZ2djcnKysv89HUM7tAxl0DKUQctQBi1DGapu+emnn44ILUPT7MtQBi1DGbQMZdAylKHKlnUM7bAnQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZfD3NyF/9mQog5ahDG23/Me/9a8r+/9dh8e+/OttH0JfqR+j4xvP3/t7f2+g72u7ZaAaWoYyaBnKoGUog5ahDFqGMmgZ8jdqx5uWl5eXazieTnnuuefi+9//flx66aWxadOmtg8neXNzc7Fnz5544oknKt18uqjL57Lq3urquMvv0cWci3Och9Xqanl5eTmuvfbaos5zqWunxNfVxdeUy75ctRLf6xWlvrZSX1dENa+tjpb/4i/+In7sx36syHM+qJLX3aCcg2bPQdP7svfXOYhwDiKqPwdVt3zixIl4wQteEMeOHYupqanK/nfbVNq6K+31RJT3mkZ5PV39vLyitDUwjK6+9lJft/vYgynt/fd60mZfHlxp730dnKP+UjpHXW35Qim9H+PwOtLS9OuosrkqOy7l/WySczaaEs5bKntyCeeyDs7Lxpyb1VJpuW2lrQuvJ211vJ5UWi7tvYrwmnJRymtKpeUmlPKepcC5rFaqfxd7vZa999VxLqtR2nlMYV/O+ZzmfOwRjr9tVR5/Ci1XJff3dSNeV37aeG0ltdyEktffRrr2mnN9vX7ecTi5H39E/q/B8a/Pz1Wslus6cdzNSvG4U/37m01J8T2pkteXt0FfX4mflUt5b0t4HSW8hog8XkdOLedwPi/mmJvhmPNquQo5vuepcQ7HV/LfxV6PNbMx52Z9XT4vKbac4/uR4zFH5Hncjnl9KbZcpRzf9/V4HelI9TU02XKq56AUzm99cji3bezLOZyXunjt3XztEfW//rausUt5X72OtJTyOiKGfy1aHo/XkZauvo5RO94yysGx2ubNm+NHf/RH2z6M7ExOTmYdaUqcy/HV3bH36HnOxTnOQz1WWp6bm4uIMs9zia8poszX5TWNLrfr6xLf6xWlvrZSX1dEWq9t8+bN8cIXvjAi0jqutjgHzkFEnudg0H05x9dWNefAOYhI9xxs3rw5IiKmpqaSPL5xpHrOR1Xa64ko7zW1+Xpy+7y8orQ1MIyuvvauvu5BlX4f2+tJm9dTndz25dLe+zo4R/2VeI5ya/lCpbwfXkdacnwddXSc43lom3M2GufteeO27Fyuz3nZmHNTj5yvryPKWxdeT9pSfj325bW8pjyU+JrGkcO+7D2rjnNZrZTOZ7+WUzrW3DmX1XAe1zfOvpzzOc352CMcf9tSPP4UrrFTPC9V8Lryk/NrS6HlJuT8Ho2qa6+5a6/3Yl35ecfcjz8i/9fg+OtVys9VOO5mOe605Hx9Xep7ssLry1vTry+llkt5b0t4HSW8hohyXscgmmg5x/PpmJvhmKuT0r7cS6rnLyfO4fhSPod+3rFZzs36nJfxVdlyju9HjscckedxO+Z6pXqNndM57MXrSEcJr6GXQVou/Ry0zfmtT5fO7TD7cpfOy8W89m6+9oh8Xv+w19i5vK5+vI60lPI6Itp7LVrOm9eRlrpfx+ba/pcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWJcHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmady2bdviV3/1V2Pbtm1tH0r2nMv0eY+e51yc4zw0o8TzXOJriijzdXlN3VHyeSn1tZX6uiLSfW2pHleTnAPnIKLsc1DyaxuUc+AcRKR/DlI/vlGU9ppKez0R5b2m0l5PE7p8zrr62rv6ukdV2vnyetLm9XSXc9Wfc9Sfc5SWUt4PryMtpbyOcTkPw3PORuO8Vce5XJ/zsjHnhvWUti68nrSV9nouVOJr85ryUOJrKp33rDrOZbVyOp85HWvqnMtqOI/Vy/mc5nzsEY6/bbkff11KPS9eV35Kfm2l6OJ71LXX3LXXO6rcz1Puxx+R/2tw/M3K7XhXOO5mOW6qUvp74vXlrfTX10spr72E11HCa4go53WkIsfz6Zib4Zi7x/kbn3M4vq6dw6693mE4N+tzXtKS4/uR4zFH5HncjrmbSjmHXkc6SngN43IO6uX81se5XV+Xz4vX3s3XHlHu6y/ldXkdaSnldUTk81pyOc5+vI60eB3D2bS8vLxc6/8HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbZ3PYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSNB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+ar9ChQ4fi9a9/fVxzzTWxadOm+NrXvjbU7//whz8cmzZtWvPPrl276jlgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBUeNF+hU6dOxfXXXx+f+9znRvr973//++P48eOr/vmxH/uxePOb31zxkQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABt8qD5Ct18883x0Y9+NN70pjet+/XFxcV4//vfHy984Qtj165d8dM//dPx9a9//fzXd+/eHX/jb/yN8/88+eST8Wd/9mfxjne8o6FXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTBg+Yb9J73vCe++c1vxpe//OV47LHH4s1vfnP8/b//9+Pw4cPrfv/nP//5eOlLXxo33XRTw0cKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1MmD5hty7NixuPvuu+M//sf/GDfddFO85CUvife///1x4403xt13373m+8+cORO//du/He94xztaOFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgTlvaPoCuePzxx+PZZ5+Nl770pat+fXFxMa644oo133/ffffFyZMn47bbbmvqEAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGeNB8Q+bn5+OSSy6Jhx9+OC655JJVX9u9e/ea7//85z8f/+Af/IO46qqrmjpEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCEeNN+QAwcOxLPPPhtPPfVU3HTTTT2/9+jRo/Gf//N/jt/5nd9p6OgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJnnQfIXm5+fjyJEj5//96NGj8eijj8bll18eL33pS+Mf/+N/HG9961vjU5/6VBw4cCB+8IMfxB/+4R/G/v3743Wve93533fXXXfF1VdfHTfffHMbLwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACo2abl5eXltg+iFF//+tfjNa95zZpfv+222+Kee+6Js2fPxkc/+tH4whe+EN/73vdieno6/s7f+TvxkY98JF75yldGRMRzzz0XL3rRi+Ktb31r/Nqv/VrTLwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABogAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRsc9sHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA1HjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmq/A8vJyzM3NxfLyctuHAoxIx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQ/50DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkD8dQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5MOD5itw8uTJmJqaipMnT7Z9KMCIdAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRPx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPnTMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQz48aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABq2pe0DAMYzu7AUM/NLMXfmbEzu2BrTuyZiaudE24cF1ETzsJYugLqYL5AHrQLDMDOgPLomZdYn0DZzCEanH6BNZhCspglgWOYGpE2jwEbMh7J5fwEYhf2DtlmDQJeZgcAK8wBGox1KZ41DN2kfRqMdIFfmF+RFswBASlybNMv5BvoxJwCaY+YCAFXxoHnI2PdPnI4P3PtYPHB45vyvHdw3HXfeuj+uuWxHi0cG1EHzsJYugLqYL5AHrQLDMDOgPLomZdYn0DZzCEanH6BNZhCspglgWOYGpE2jwEbMh7J5fwEYhf2DtlmDQJeZgcAK8wBGox1KZ41DN2kfRqMdIFfmF+RFswBASlybNMv5BvoxJwCaY+YCAFXa3PYBAKOZXVha88EgIuLQ4Zn44L2PxezCUktHBtRB87CWLoC6mC+QB60CwzAzoDy6JmXWJ9A2cwhGpx+gTWYQrKYJYFjmBqRNo8BGzIeyeX8BGIX9g7ZZg0CXmYHACvMARqMdSmeNQzdpH0ajHSBX5hfkRbMAQEpcmzTL+Qb6MScAmmPmAgBV86B5yNTM/NKaDwYrDh2eiZl5Hw6gJJqHtXQB1MV8gTxoFRiGmQHl0TUpsz6BtplDMDr9AG0yg2A1TQDDMjcgbRoFNmI+lM37C8Ao7B+0zRoEuswMBFaYBzAa7VA6axy6SfswGu0AuTK/IC+aBQBS4tqkWc430I85AdAcMxcAqJoHzUOm5s6c7fn1k32+DuRF87CWLoC6mC+QB60CwzAzoDy6JmXWJ9A2cwhGpx+gTWYQrKYJYFjmBqRNo8BGzIeyeX8BGIX9g7ZZg0CXmYHACvMARqMdSmeNQzdpH0ajHSBX5hfkRbMAQEpcmzTL+Qb6MScAmmPmAgBV86B5yNTk9q09v35pn68DedE8rKULoC7mC+RBq8AwzAwoj65JmfUJtM0cgtHpB2iTGQSraQIYlrkBadMosBHzoWzeXwBGYf+gbdYg0GVmILDCPIDRaIfSWePQTdqH0WgHyJX5BXnRLACQEtcmzXK+gX7MCYDmmLkAQNU8aB4yNb17Ig7um173awf3Tcf07omGjwiok+ZhLV0AdTFfIA9aBYZhZkB5dE3KrE+gbeYQjE4/QJvMIFhNE8CwzA1Im0aBjZgPZfP+AjAK+wdtswaBLjMDgRXmAYxGO5TOGodu0j6MRjtArswvyItmAYCUuDZplvMN9GNOADTHzAUAquZB85CpqZ0Tceet+9d8QDi4bzo+cev+mNrpwwGURPOwli6AupgvkAetAsMwM6A8uiZl1ifQNnMIRqcfoE1mEKymCWBY5gakTaPARsyHsnl/ARiF/YO2WYNAl5mBwArzAEajHUpnjUM3aR9Gox0gV+YX5EWzAEBKXJs0y/kG+jEnAJpj5gIAVdu0vLy83PZB5G5ubi6mpqZidnY2Jicn2z4cOmZ2YSlm5pfi5Jmzcen2rTG9e8IHgxHomFxovjctd5MuyqNlUmG+jEfLNEWr9dIypenqzNAyJetS11rOT5fWJ4PTMk0yh+qj5fLppxu0TKrMoMHpuBs0UT4tUzVzox1aZlAaTZuWaZP5UJ0UW/b+wvBSbBmaVsL+oeW8lbAGqYaW6aISZ6CWYTSpzQMtk4vU2kmNlvNnjaPjbtJ+ebTcDO1QNy1TF/OrWVpmXJpNg5ahDFqG8aVwbdKlllM431CXLrVcJ3OCtmmZLil55moZyqBlyMeWtg8AGM/UznI+DAD9aR7W0gVQF/MF8qBVYBhmBpRH16TM+gTaZg7B6PQDtMkMgtU0AQzL3IC0aRTYiPlQNu8vAKOwf9A2axDoMjMQWGEewGi0Q+mscegm7cNotAPkyvyCvGgWAEiJa5NmOd9AP+YEQHPMXACgKpvbPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArvGgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCwoh40f+jQoXj9618f11xzTWzatCm+9rWv9fz+Bx98MG644Ya44oorYseOHfGyl70sPv3pTzdzsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBnbWn7AKp06tSpuP766+P222+PW265pe/379q1K97znvfE/v37Y9euXfHggw/GL/zCL8SuXbvin/7Tf9rAEQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABdVNSD5m+++ea4+eabB/7+AwcOxIEDB87/+4tf/OL46le/Gg888IAHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1KepB8+N65JFH4o/+6I/iox/9aM/vW1xcjMXFxfP/Pjc3V/ehARXTMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkD8dQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5E/HUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+drc9gGk4Ed/9Edj27Zt8ZM/+ZPx7ne/O975znf2/P6Pf/zjMTU1df6fPXv2NHSkQFV0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5E/HUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+dMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DvjYtLy8vt30Qddi0aVPcd9998cY3vrHv9x49ejTm5+fjv/yX/xIf/OAH47Of/Wy85S1v2fD7FxcXY3Fx8fy/z83NxZ49e2J2djYmJyerOHygZjqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnyp2Mog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWob86RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliFfW9o+gBTs3bs3IiJe+cpXxpNPPhkf/vCHez5oftu2bbFt27amDg+ogY6hDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWob86RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliF/OoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZcjX5rYPIDXPPfdcLC4utn0YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMG2tH0AVZqfn48jR46c//ejR4/Go48+Gpdffnlce+21cccdd8T3vve9+MIXvhAREZ/73Ofi2muvjZe97GUREXHo0KH45Cc/Gb/4i7/YyvEDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3VDUg+YfeuiheM1rXnP+39/3vvdFRMRtt90W99xzTxw/fjyOHTt2/uvPPfdc3HHHHXH06NHYsmVLvOQlL4lPfOIT8Qu/8AuNHzsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQHUU9aP7Vr351LC8vb/j1e+65Z9W/v/e97433vve9NR8VAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGqb2z4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgK7Z0vYBAMwuLMXM/FLMnTkbkzu2xvSuiZjaOdH2YQFD0jKkTaPQLZqHMmgZyqBl2Jg+aJo1B1AG8xzKoGUog5YhfzqGMmgZyqBlUmEtQrs0CFAdMxXKoGXIi2ahbBqHMmiZElnXQI7MLiiDlqEMWoYyaBkA0mFf7gbvM1AFswRgMOYlAHSPB80Drfr+idPxgXsfiwcOz5z/tYP7puPOW/fHNZftaPHIgGFoGdKmUegWzUMZtAxl0DJsTB80zZoDKIN5DmXQMpRBy5A/HUMZtAxl0DKpsBahXRoEqI6ZCmXQMuRFs1A2jUMZtEyJrGsgR2YXlEHLUAYtQxm0DADpsC93g/cZqIJZAjAY8xIAumlz2wcAdNfswtKaDyEREYcOz8QH730sZheWWjoyYBhahrRpFLpF81AGLUMZtAwb0wdNs+YAymCeQxm0DGXQMuRPx1AGLUMZtEwqrEVolwYBqmOmQhm0DHnRLJRN41AGLVMi6xrIkdkFZdAylEHLUAYtA0A67Mvd4H0GqmCWAAzGvASA7vKgeaA1M/NLaz6ErDh0eCZm5n0QgRxoGdKmUegWzUMZtAxl0DJsTB80zZoDKIN5DmXQMpRBy5A/HUMZtAxl0DKpsBahXRoEqI6ZCmXQMuRFs1A2jUMZtEyJrGsgR2YXlEHLUAYtQxm0DADpsC93g/cZqIJZAjAY8xIAusuD5oHWzJ052/PrJ/t8HUiDliFtGoVu0TyUQctQBi3DxvRB06w5gDKY51AGLUMZtAz50zGUQctQBi2TCmsR2qVBgOqYqVAGLUNeNAtl0ziUQcuUyLoGcmR2QRm0DGXQMpRBywCQDvtyN3ifgSqYJQCDMS8BoLs8aB5ozeT2rT2/fmmfrwNp0DKkTaPQLZqHMmgZyqBl2Jg+aJo1B1AG8xzKoGUog5YhfzqGMmgZyqBlUmEtQrs0CFAdMxXKoGXIi2ahbBqHMmiZElnXQI7MLiiDlqEMWoYyaBkA0mFf7gbvM1AFswRgMOYlAHSXB80DrZnePREH902v+7WD+6ZjevdEw0cEjELLkDaNQrdoHsqgZSiDlmFj+qBp1hxAGcxzKIOWoQxahvzpGMqgZSiDlkmFtQjt0iBAdcxUKIOWIS+ahbJpHMqgZUpkXQM5MrugDFqGMmgZyqBlAEiHfbkbvM9AFcwSgMGYlwDQXR40D7RmaudE3Hnr/jUfRg7um45P3Lo/pnb6IAI50DKkTaPQLZqHMmgZyqBl2Jg+aJo1B1AG8xzKoGUog5YhfzqGMmgZyqBlUmEtQrs0CFAdMxXKoGXIi2ahbBqHMmiZElnXQI7MLiiDlqEMWoYyaBkA0mFf7gbvM1AFswRgMOYlAHTXpuXl5eW2DyJ3c3NzMTU1FbOzszE5Odn24UB2ZheWYmZ+KU6eORuXbt8a07snGv8QomMYn5YhbSk0Oigtw/hSaF7LMD4tQxm0DBtLoY+caHl81hwp0DKML4V5rmUYn5ahDG23rGMYX9sdR2gZqqBlKIOWSUUKa5HxaDlvGmSFlmF8KcxULcP4tAx5SaHZjWgZxpdC41qG8WmZEqWwrrtGxzC+FGaXlmF8WoYyaBnKoGWgKlqG8dmXuyGF95nyabl8Zkk3aBnGl8K81DKUQcuQjy1tHwDA1E43aqAEWoa0aRS6RfNQBi1DGbQMG9MHTbPmAMpgnkMZtAxl0DLkT8dQBi1DGbRMKqxFaJcGAapjpkIZtAx50SyUTeNQBi1TIusayJHZBWXQMpRBy1AGLQNAOuzL3eB9BqpglgAMxrwEgO7Z3PYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSNB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3zoHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhnnQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDPGgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEeNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMA+aBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYB80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kHzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3b0vYBVOnQoUPx67/+6/Hwww/H8ePH47777os3vvGNG37/V7/61fh3/+7fxaOPPhqLi4vx4z/+4/HhD384Xvva1zZ30BARswtLMTO/FHNnzsbkjq0xvWsiImLNr03tnGj5SCFv67U2aFfj/F7IlXXfDd5nuuLCtb5725aYuGRznDi9FLu3W/eQk6r2LfsfpK3ORvVPTqzXwTlXz3MuznEegJylOsNSPS5o07hd6ArSV3en5gD01q8RDUE3zC4sxYmFs3Fq6Zk4tfRsXLZja1x56Ta902n2wOo5p8Nxvtrj3FOlLq2nLr1WIG/m1WCcJwbhz3gA+htklpl30J5B+9MpVNOBlrrB+5wP7xWko9QeS31dlG3UdWu9AxHuB0MXPDl3Jn54ainmzjwTkzu2xAt2TsRVk9vbPiwAYAN+fppeRnn/rRloh/bK4v2EbnLtBQCkrKgHzZ86dSquv/76uP322+OWW27p+/2HDh2Kn/3Zn42Pfexjcdlll8Xdd98dr3/96+Nb3/pWHDhwoIEjhojvnzgdH7j3sXjg8ExEROycuCTuettPxefuPxIPHJk5/30H903Hnbfuj2su29HWoULWLm4tYvCuxvm9kCvrvhu8z3TFemv9huuuiLffsDfe8r9+K37yRS+w7iEDVe1b9j9IW52N6p+cWK+Dc66e51yc4zwAOUt1hqV6XNCmcbvQFaSv7k7NAeitXyMagm44fuJ0/OVfL8Rn7j8c3zjy9Plfv2nfdHxC73SUPbB6zulwnK/2OPdUqUvrqUuvFcibeTUY54lB+DMegP4GmWXmHbRn0P50CtV0oKVu8D7nw3sF6Si1x1JfF2Ubdd1a70CE+8HQBceePhV33Pf4qp+5uPG6K+Jjb3plXHvFrhaPDABYj5+fppdR3n9rBtqhvbJ4P6GbXHsBAKnb3PYBVOnmm2+Oj370o/GmN71poO//jd/4jfjlX/7l+Kmf+qnYt29ffOxjH4t9+/bF7/7u79Z8pHDO7MLSmov/22/cG5+5//Cqh8xHRBw6PBMfvPexmF1YavowIXvrtRYxWFfj/F7IlXXfDd5numKjtf6NI0/H3d84GrffuNe6hwxUtW/Z/yBtdTaqf3JivQ7OuXqec3GO8wDkLNUZlupxQZvG7UJXkL66OzUHoLd+jTw5d0ZD0AGzC0vx9f/2gzUPmY+IeEDvdJTryOo5p8Nxvtrj3FOlLq2nLr1WIG/m1WCcJwbhz3gA+htklpl30J5B+9MpVNOBlrrB+5wP7xWko9QeS31dlG3UdWu9AxHuB0MXPDl3Zs1D5iMiHjzydPzz+x6PJ+fOtHRkAMB6/Pw0vYzy+cxnOmiH9sri/YRucu0FAORgS9sHkJLnnnsuTp48GZdffnnP71tcXIzFxcXz/z43N1f3oVGomfmlNRf/B/ZcFp+9/8i633/o8EzMzC/F1M6JJg6vaDrulvVaW9Gvq3F+L/XTcj2s+25I6X3WMnXqtda/ceTpuP2GvRFhvlVBy9Spqn0rpf0vVVqmTXU22rX+tZy3rq3XcZR+roZpufRzMSjngRTZlxlUqjMs1eNqmpa50Lhd6Ko9WmZQdXdqDoxOx93Qr5EfntJQ7rTMIGbml+LKS7et+Q+erdB7+7TcPNeR1XNO/XlULpx7+tHy+rr0WimDa+zuMq8Gk8t50nK7/BkPVdEyJRtklkVEEfNOy+Ro0OuNLl2XaJmNVNFBl1pqW5ste5/z4b1Kmz25W0rtsdTXNQwt52fUdWu9l03LDKpL94NzpGWq8MNTSxv+zMWDR56OH55aiqsmtzd8VN2iZSiDlmmKn5+uV+4tj3I/xz0gSpRDy9ori/ezHjm0TLe59hqMlqEMWoZ8bW77AFLyyU9+Mubn5+Pnfu7nen7fxz/+8Ziamjr/z549exo6Qkozd+bsml9bfOa5nr/n5Dq/h+HpuFvWa+1Cvboa5/dSPy3Xw7rvhpTeZy1Tp35r/cLrb/NtPFqmTlXtWyntf6nSMm2qs9Gu9a/lvHVtvY6j9HM1TMuln4tBOQ+kyL7MoFKdYakeV9O0zIXG7UJX7dEyg6q7U3NgdDruhn6NzJ15pufXNZQ+LTOIuTNn/Z3qxGm5ea4jq+ec+vOoXDj39KPl9XXptVIG19jdZV4NJpfzpOV2+TMeqqJlSjbILCtl3mmZHA3aXymdDkLLbKSKDrrUUtvabNn7nA/vVdrsyd1Sao+lvq5haDk/o65b671sWmZQXbofnCMtU4V+P2PV7+uMT8tQBi3TFD8/Xa/cWx7l85nPdJQoh5a1VxbvZz1yaJluc+01GC1DGbQM+fKg+f/hi1/8YnzkIx+Jr3zlK3HllVf2/N477rgjZmdnz//zxBNPNHSUlGZy+9Y1v7ZtS+8sL13n9zA8HXfLeq1dqFdX4/xe6qflelj33ZDS+6xl6tRvrV94/W2+jUfL1KmqfSul/S9VWqZNdTbatf61nLeurddxlH6uhmm59HMxKOeBFNmXGVSqMyzV42qalrnQuF3oqj1aZlB1d2oOjE7H3dCvkcntW3p+XUPp0zKDmNy+1d+pTpyWm+c6snrOqT+PyoVzTz9aXl+XXitlcI3dXebVYHI5T1pulz/joSpapmSDzLJS5p2WydGg/ZXS6SC0zEaq6KBLLbWtzZa9z/nwXqXNntwtpfZY6usahpbzM+q6td7LpmUG1aX7wTnSMlXo9zNW/b7O+LQMZdAyTfHz0/XKveVRPp/5TEeJcmhZe2XxftYjh5bpNtdeg9EylEHLkC8Pmo+IL3/5y/HOd74zvvKVr8TP/MzP9P3+bdu2xeTk5Kp/YBTTuyfi4L7pVb/2yBMn4obrrlj3+w/um47p3RNNHFrxdNwt67W2ol9X4/xe6qflelj33ZDS+6xl6tRrrd9w3RXxyBMnIsJ8q4KWqVNV+1ZK+1+qtEyb6my0a/1rOW9dW6/jKP1cDdNy6ediUM4DKbIvM6hUZ1iqx9U0LXOhcbvQVXu0zKDq7tQcGJ2Ou6FfIy/YpaHcaZlBTO+eiKdOLvo71QnTcvNcR1bPOfXnUblw7ulHy+vr0mulDK6xu8u8Gkwu50nL7fJnPFRFy5RskFlWyrzTMjkatL9SOh2EltlIFR10qaW2tdmy9zkf3qu02ZO7pdQeS31dw9ByfkZdt9Z72bTMoLp0PzhHWqYKL9g1ETdu8DMXN153Rbxgl4brpmUog5Zpip+frlfuLY/y+cxnOkqUQ8vaK4v3sx45tEy3ufYajJahDFqGfHX+QfNf+tKX4u1vf3t86Utfite97nVtHw4dM7VzIu68df+qDwF3PXg03vs/74ubLvpgcHDfdHzi1v0xtbO8DwVQt/Vaixisq3F+L+TKuu8G7zNdsdFav+G6K+LtN+yNux48at1DBqrat+x/kLY6G9U/ObFeB+dcPc+5OMd5AHKW6gxL9bigTeN2oStIX92dmgPQW79GrprcriHogKmdE/Hql/5IvPd/3rfmYfM36Z2Och1ZPed0OM5Xe5x7qtSl9dSl1wrkzbwajPPEIPwZD0B/g8wy8w7aM2h/OoVqOtBSN3if8+G9gnSU2mOpr4uyjbpurXcgwv1g6IKrJrfHx970yjUPm7/xuiviY296ZVw1ub2lIwMA1uPnp+lllM9nPtNBO7RXFu8ndJNrLwAgB5uWl5eX2z6IqszPz8eRI0ciIuLAgQPxb/7Nv4nXvOY1cfnll8e1114bd9xxR3zve9+LL3zhCxER8cUvfjFuu+22+M3f/M245ZZbzv/v7NixI6ampgb+/zs3NxdTU1MxOzsbk5OT1b4oOmF2YSlm5pfi5Jmzcen2rTG9+9yF/8W/5gNBfXTcDeu1NmhX4/xemqPlaln33ZDi+6xl6nDhWt+1bUtMXLI5Zk8vxa5taaz7EmmZOlS1b6W4/6VKy7Shzka72r+W89TV9TqKrpyrQVruyrnox3kgZfZl+kl1hqV6XG3RMhHjd6Gr9mmZfuru1BwYn47L1q8RDZVDy/Qyu7AUJxbOxqmlZ2Jh6dmY2rE1rrx0m94TpOXm2AOr55w+z59Hpc25Z1BaXq1Lr5WyuMbuHvNqMLmdJy23w5/xUDUtU6JBZllp807L5GTQ/krrdBBa5mJVdNDFltrWRsve53x4r/JgT+6GUnss9XWNQsv5GHXdWu/doGX66eL94BxpmXE8OXcmfnhqKebOPBOT27fEC3ZNeMh8S7QMZdAydfPz083IteVR3n9rhpKl3LL2yuL9rFfKLdNtrr2Go2Uog5YhH1vaPoAqPfTQQ/Ga17zm/L+/733vi4iI2267Le655544fvx4HDt27PzX/8N/+A/xzDPPxLvf/e5497vfff7XV74fmjK1c/0L/q58CICmbNRa3b8XcmXdd4P3ma5Yf63vauVYgNFVtW/Z/yBtdTaqf3JivQ7OuXqec3GO8wDkLNUZlupxQZvG7UJXkL66OzUHoLd+jWgIukHrsJYuquecDsf5ao9zT5W6tJ669FqBvJlXg3GeGIQ/4wHob5BZZt5BewbtT6dQTQda6gbvcz68V5COUnss9XVRtlHXrfUORLgfDF1w1eR2D5YHgIz4+Wl6GeX9t2agHdori/cTusm1FwCQsqIeNP/qV786lpeXN/z6xQ+P//rXv17vAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsY3PbBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGedA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMM8aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYR40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwD5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgHzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zIPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmQfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfOgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGFfWg+UOHDsXrX//6uOaaa2LTpk3xta99ref3Hz9+PH7+538+XvrSl8bmzZvjl37plxo5TgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDbtrR9AFU6depUXH/99XH77bfHLbfc0vf7FxcX40d+5EfiQx/6UHz6059u4AjJwezCUszML8XcmbMxuWNrTO+aiKmdE20fFmRBP5AmbQKjMj+gDFoGGJ9ZCpgDXMh6gDJoGdKgRaBOZgx1sK6ANpg9lMJaBkpjrsH4dASMyxyhBNYxAIOyZ0C69EnJrG9ohtaAYZkbsJYugCaZOVAGLQNAWezt0JtGgNSZU0CTzBwAIHVFPWj+5ptvjptvvnng73/xi18cv/mbvxkREXfddVddh0VGvn/idHzg3sfigcMz53/t4L7puPPW/XHNZTtaPDJIn34gTdoERmV+QBm0DDA+sxQwB7iQ9QBl0DKkQYtAncwY6mBdAW0weyiFtQyUxlyD8ekIGJc5QgmsYwAGZc+AdOmTklnf0AytAcMyN2AtXQBNMnOgDFoGgLLY26E3jQCpM6eAJpk5AEAONrd9ADlaXFyMubm5Vf+Qv9mFpTUX8BERhw7PxAfvfSxmF5ZaOjLqoONq6Ye2aLk3bZILLafH/GAUWk6PlhmFlmG1XGeplqE6bc4BLacn132Bdmk5PVpmFFqunhZpg5a7w4wpV5sdW1dQHXvy4MweUjZMy9YypMu+PBpzjdTk2LKOYK0cW26TOUKqfF6GMtiXSY09YzRapgn6rJ+W22N9UyUtb0xr5ELH6TA3GEepLeuCrim15VyYOVRFy+3SMlXRMpRBy/mztxOh5V40Qk603E3mVHm0TMrMnMFpGcqgZciXB82P4OMf/3hMTU2d/2fPnj1tHxIVmJlfWnMBv+LQ4ZmYmXcRXxIdV0s/tEXLvWmTXGg5PeYHo9ByerTMKLQMq+U6S7UM1WlzDmg5PbnuC7RLy+nRMqPQcvW0SBu03B1mTLna7Ni6gurYkwdn9pCyYVq2liFd9uXRmGukJseWdQRr5dhym8wRUuXzMpTBvkxq7Bmj0TJN0Gf9tNwe65sqaXljWiMXOk6HucE4Sm1ZF3RNqS3nwsyhKlpul5apipahDFrOn72dCC33ohFyouVuMqfKo2VSZuYMTstQBi1DvjxofgR33HFHzM7Onv/niSeeaPuQqMDcmbM9v36yz9fXM7uwFN95aj4eOfbD+M4P5mN2wQeBVOi4WlX1oxmGpeXe6tjbSmLmpEPL6Wl6fuixDFpOz7Ata5EILdNdG83AXD9XaZlcpXg90uYc0HJ6ct0XaJeW05Niyynugaym5eql2GIvOi2DlrvD/fFytdlxKnuX9UoJ7MmDS2X2jMK8Kt8wLae+lq1Xusy+PJoq5prZQ5VybLmN6wPdkbocW26Tn3kgVal+XraGYTj2ZVKT+j3WQbSxF2mZJvTr8+lTS66/xqTl9tS1//h80k1a3pi/70gudJwO/70/xlFqyyXcO+lFr1ys1JZzMerM0TIX03K7BmlZtwxCy1AGLeevynsDrgHy1YWWR12fpd8/oyxdaJm1fE4vj5ZJWb+Z88OFJTPmf9AylEHLkK8tbR9AjrZt2xbbtm1r+zCo2OT2rT2/fmmfr1/s+ydOxwfufSweODxz/tcO7puOO2/dH9dctmOkY6Q6Oq5WFf1ohlFoubeq97aSmDlp0XJ6mpwfeiyHltMzTMtaZIWW6aJeMzDXz1VaJkepXo+0OQe0nJ5c9wXapeX0pNZyqnsgq2m5eqm12ItOy6Hl7nB/vFxtdpzC3mW9Ugp78uBSmD2jMK+6YZiWU17L1itdZ18ezbhzzeyhajm23PT1ge7IQY4tt8nPPJCqFD8vW8MwPPsyqUn5Husg2tqLtEwT+vV58szZ+Ln/5Zuuv8ag5fbUsf/4fNJdWt6Yv+9ILnScDv+9P8ZRasu53zvpRa+sp9SWczHKzNEy69Fyu/q1vGPiknjPlx7RLX1pGcqg5fxVdW/AtXveSm95nPVZ8v0zylN6y6zP5/TyaJmU9Zs5s6fPxnu/9IgZE1qGUmgZ8rW57QOAVEzvnoiD+6bX/drBfdMxvXti4P+t2YWlNTdaIyIOHZ6JD977WMwuLI11rJCacfvRDNSjyr2tJGYO9NfU/NAj1GvQlrUIdFm/Gbh7+xafq6ABKV+PuL/ChXZv3xI3XnfFul+78borYvf2LQ0fETCKlGZ7ynsg1C2lFnvRKeTJ/XHq0PbeZb1CN7U9e0ZhXrGeVNey9QqMapy5ZvbAOU1eH+gOyuRnHihBE+vYGgYoQ6r3WAdhL6J0vfq84bor4pEnTkSENU+eqt5/7AmwPn/fERiW/94frJXzvZNe9AppGnbmaBnS1K/lbx87oVsAyEgV9wZcu5OycddnqffPgHL4nA40aZC/92nGAAApKOpB8/Pz8/Hoo4/Go48+GhERR48ejUcffTSOHTsWERF33HFHvPWtb131e1a+f35+Pn7wgx/Eo48+Gn/2Z3/W9KGTgKmdE3HnrfvXXMgf3Dcdn7h1f0ztHPwG58z80pqbDCsOHZ6JmXkfAijLuP1oBupR5d5WEjMH+mtqfugR6jVoy1oEuqzfDDy1+IzPVdCAlK9H3F/hQqcWn4m33bA3brjoYfM3XHdFvO2GvXFq8ZmWjgwYRkqzPeU9EOqWUou96BTy5P44dWh777JeoZvanj2jMK9YT6pr2XoFRjXOXDN74Jwmrw90B2XyMw+UoIl1bA0DlCHVe6yDsBdRuo36vOG6K+LtN+yNux48ev7XrHlyU/X+Y0+A9fn7jsCw/Pf+YK2c7530oldI07AzR8uQpl4t/6s3vCL+9f+x/vMJdAsAaari3oBrd1I27vos9f4ZUA6f04EmDfr3Ps0YAKBtW9o+gCo99NBD8ZrXvOb8v7/vfe+LiIjbbrst7rnnnjh+/Pj5h86vOHDgwPn/++GHH44vfvGL8aIXvSi++93vNnLMpOWay3bEZ95yIGbml+LkmbNx6fatMb17Yuibm3Nnzvb8+sk+X4ccjdOPZqA+Ve1tJTFzYDBNzA89Qv0GaVmLQJf1m4Fzp8/G3/yR3T5XQc1Svx5xf4UVs6fPxi9+6ZG4/ca9cfsNe2Pxmedi25bN8cgTJ+IXv/RIfPGdP932IQIDSmW2p74HQt1SabEXnUK+3B+nDm3uXdYrdFcO180XMq/YSIpr2XoFxjHqXDN74HlNXR/oDsrlZx4oQd3r2BoGKEeK91gHYS+iCy7s8+lT5xpd+fvlC0vPrvpea57cVLn/2BNgY/6+IzAs/70/WCvXeye96BXSNczM0TKka6OWv/v0qTX3di+kWwBI07j3Bly7k7Iq1meJ98+AsvicDjRpZeZ878Tp+O7TC6v+u8IXzhwzBgBoU1EPmn/1q18dy8vLG379nnvuWfNrvb6fbpraOf4NzcntW3t+/dI+X4dcjdqPZqBeVextJTFzYHB1zw89QjP6taxFoMsGnYE+V0G9crgeMQeIOLdWF5aejc/ef2Tdr6ewVoHBpTDbc9gDoW4ptNiLTiFv7o9Th7b2LusVui316+YLmVf0ktpatl6BcY0y18weWK2J6wPdQdn8zAMlqHMdW8MAZUntHusg7EV0xfk+n5qPn/tfvrnh91nz5Kiq/ceeAL35+47AsPz3/mCtHO+d9KJXSNugM0fLkLb1Wt49v9Tz9+gWANI1zr0B1+6krKr1Wdr9M6A8PqcDTZraOREz80vxz3772xt+jxkDALRpc9sHACWa3j0RB/dNr/u1g/umY3q3G6hwIc0ATTJzIB16hDRoEegyMxDSoEVyYa0CVTNXIH06hbJpnJxYr0AuzCtyYr0CbTB7oHm6A8ZhhpA7axiAttmL6BprHjamDxiPhoCqmCeQD71CGbQM+dEtAHSTawBSZn0CXWYGAnUyYwCAlHnQPNRgaudE3Hnr/jUfBA7um45P3Lo/pnb6EAAX0gzQJDMH0qFHSIMWgS4zAyENWiQX1ipQNXMF0qdTKJvGyYn1CuTCvCIn1ivQBrMHmqc7YBxmCLmzhgFom72IrrHmYWP6gPFoCKiKeQL50CuUQcuQH90CQDe5BiBl1ifQZWYgUCczBgBI2abl5eXltg8id3NzczE1NRWzs7MxOTnZ9uGQkNmFpZiZX4qTZ87Gpdu3xvTuCR8AEqXjNGiGcWmZYZg56dJy9+ixTFrOjxZZj5bpitJnoJbJRektjkvL6bBWGYeWWY+5kh8td49Oy6RlVmg8X13s2HqlRF1suQvMq+7JuWXrFZ6Xc8u5MXuok5bXpztyo+W0mCGMKpWWrWEYTyotQ85S2Iu0TJNSWPOl0nL+9EGElsehIVKh4/yZJ0RoORd6pR8t50HL9KPl9OiWUWgZyqDlbnMNUI4SW7Y+6aISW2Y0ZmDetEzqzJjBaBnKoGXIx5a2DwBKNrXTRT8MQzNAk8wcSIceIQ1aBLrMDIQ0aJFcWKtA1cwVSJ9OoWwaJyfWK5AL84qcWK9AG8weaJ7ugHGYIeTOGgagbfYiusaah43pA8ajIaAq5gnkQ69QBi1DfnQLAN3kGoCUWZ9Al5mBQJ3MGAAgRZvbPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArtnS5v/zW265ZaDv++pXv1rzkQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0p9UHzU9NTbX5/x4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgFa0+aP5f/st/GS9+8Ytj8+bNbR4GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKNafcL7vn37YmZm5vy//6N/9I/iySefbPGIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrX6oPml5eXV/377//+78epU6daOhoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZrT6oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALmr1QfObNm2KTZs2rfk1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJJtafP/+fLycrztbW+Lbdu2RUTEmTNn4l3velfs2rVr1fd99atfbePwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrR6oPmb7vttlX//k/+yT9p6UgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmtPqg+bvvvvuNv/fAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRic9sHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA1HjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DAPmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomAfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRsS9sHAOOYXViKmfmlmDtzNiZ3bI3pXRMxtXOi7cOCrOkKyImZBdXTFYxPRwDjM0uBupgvVM2agnToEcqhZ8iPbkmdNQo0wayBdOgRaJq5A+nTKXSL5ukqax+gPGY7pEmbNM2ag9HpB+gCsw7O0QK0R39AE8waACif/R6qpSmgTmYMUAWzBACgNw+aJ1vfP3E6PnDvY/HA4Znzv3Zw33Tceev+uOayHS0eGeRLV0BOzCyonq5gfDoCGJ9ZCtTFfKFq1hSkQ49QDj1DfnRL6qxRoAlmDaRDj0DTzB1In06hWzRPV1n7AOUx2yFN2qRp1hyMTj9AF5h1cI4WoD36A5pg1gBA+ez3UC1NAXUyY4AqmCUAAP1tbvsAYBSzC0trLvYjIg4dnokP3vtYzC4stXRkkC9dATkxs6B6uoLx6QhgfGYpUBfzhapZU5AOPUI59Az50S2ps0aBJpg1kA49Ak0zdyB9OoVu0TxdZe0DlMdshzRpk6ZZczA6/QBdYNbBOVqA9ugPaIJZAwDls99DtTQF1MmMAapglgAADGZL2wcAo5iZXzp/sb9z4pK4/ca9cWDPZbH4zHOxfeslcWLhbEztnGj5KCEvF3Z1sUOHZ2Jmfimmdk7E7MJSzMwvxdyZszG5Y2tM75rQG9C4QWfWIMw1OKdXVw/95Q/jxMJZrUAfo+xP9iGgqzaaf1Ve6wPtSu06x3yhatbUaFKbDTSvjjWgRyjD7MJSHJ89E2/5n66Nt9+wN7597Idx14NHY2Hp2YjQM6Tkwv18x8Qlcf2ey+Lhv/zh+V5X6JYU+LMboAkXz5qL/17z8bkzERFmCTRgnPtErgGAUaR8f9pcg3Pq7lRrkJam92YzgFSkfF16Ic3A+rTBenKZ7dA1o7Zp1tNLr/VhP4DR6ac+9jVIR5OzTvu0ZZC1Z9+H9qTWn/0KyjTMrDEHACBPfj4TqpXa5/UquNanNDmv6RJnDDCacWaZWQIAMJiiHjR/6NCh+PVf//V4+OGH4/jx43HffffFG9/4xp6/5+tf/3q8733viz/90z+NPXv2xIc+9KF429ve1sjxMrq5M2cj4tzN/n/7lgNx9zeOxmfvP3L+6zftm45P3Lo/rrlsR1uHCNlZ6WojpxbPxvdPnI4P3PvYqg/cB/dNx516AxrWb2ad7PP1FeYaPG+jrlauuT/0tcfjgSNPn/91rcBaw+5P9iGgq3rNv/nFaq71gXaleJ1T1b0EWGFNDS/F2UCz6loDeoT8rTcfbrjuivi3bzkQv/ilR84/vFrP0L5Be12hW9rmz26AJlw4azb6e81mCTRj1PtErgGAUaV6f9pcg+fV2anWID1N7s1mAClJ9br0QpqB9WmDjeQw26GLRmnTrKeXfuvDfgCj00897GuQlqZmnfZpy6Brz74P7UmpP/sVlGvQWWMOQPWOHTsWMzPrP/QtBYuLi7Ft27a2D6On6enpuPbaa9s+DEien8+EaqX0eb0KrvUpTe5rurQZA4xm3FlmlgAADKaoB82fOnUqrr/++rj99tvjlltu6fv9R48ejde97nXxrne9K377t387/vAP/zDe+c53xtVXXx2vfe1rGzhiRjW5fWtERNx+4964+xtH4xsXPPAyIuKBwzPxwXsfi8+85UBM7Zxo4xAhOytdbWRqx8SaD+oREYf0BrSg38y6tM/XIyJmF5bMNbjARl1tdM2tFVhrmP3JPgR0Vb/596/f8Iqev3+Qa32gXale51RxLwEuZE0NJ9XZQHPqXAN6hLxtNB9W7knffuPe8z8Aqmdo1zC9rtAtbfNnN0ATLpw1/o4FtGuU+0SuAYBxpHh/2lyD1erqVGuQpqb2ZjOA1KR4XXohzcD6tEEvqc926Kph2zTr6WWQ9WE/gNHpp3r2NUhPE7NO+7RlmLVn34f2pNKf/QrKNsisMQegeseOHYuXvezlcfr0QtuHsrFNmyKWl9s+ip527NgZ//W//rmHzUMffj4TqpXK5/UquNanNCWs6ZJmDDCaKmaZWQIAMJiiHjR/8803x8033zzw9//7f//vY+/evfGpT30qIiJe/vKXx4MPPhif/vSnPWg+cdO7J+Lgvuk4sOeyNf+B4hWHDs/EzPxS8jdCIBUrXR266MN4RMTBfdOx9Oxzaz6or9Ab0LR+M2t6d/95NDO/ZK7BBTbqyjU3DG6Y/ck+BHRVv/m39OxzY1/rA+1K9TqninsJcCFrajipzgaaU+ca0CPkrdd8+MaRp+P2G/ZGhJ4hBYP2ukK3pMCf3QBNuHDW+DsW0K5R7hO5BgDGkeL9aXMNVqurU61Bmpram80AUpPidemFNAPr0wa9pD7boauGbdOsp5dB1of9AEann+rZ1yA9Tcw67dOWYdaefR/ak0p/9iso2yCzxhyA6s3MzMTp0wvx07f/akxe/eK2D2eN449/M/7kd/5D/O2f/0D8yN6XtX0465o7/t341l0fiZmZGQ+ahz78fCZUK5XP61VwrU9pSljTJc0YYDRVzDKzBABgMJvbPoA2ffOb34yf+ZmfWfVrr33ta+Ob3/xmS0fEoKZ2TsSdt+7v+30nz5xt4GigDCtdHdw3verXD+6bjk/cuj/mF5/p+fv1BjSp38wa5A9C5vrMLXONrtmoq360As8bZn+yDwFd1W/+nVp8ZuxrfaBdqV7nVHEvAS5kTQ0n1dlAc+pcA3qEvPWbD4vPPKdnSMQgva7QLanwZzdAEy6cNRfuh+sxS6Beo9wncg0AjCPF+9PmGqxWV6dagzQ1tTebAaQmxevSC2kG1qcNekl9tkNXDdumWU8vg6wP+wGMTj/Vs69BepqYddqnLcOsPfs+tCeV/uxXULZBZo05APWZvPrFcfm1fyu5f3ZNXx0REbuvvLb1Y9non8mrX9zumwcZ8fOZUK1UPq9XwbU+pSlhTZc0Y4DRVDHLzBIAgMFsafsA2vRXf/VXcdVVV636tauuuirm5ubi9OnTsWPHjnV/3+LiYiwuLp7/97m5uVqPk/Vdc9mOONXnwdeXbt/a0NGQGx2v75rLdsRn3nIgZuaX4uSZs3Hp9q0xvXsipnZOxMLSsz1/r95og5a7rdfMGsRkn7llrjVHy+lYr6vnlpd7/h6tsELL5wy6P9mHSJWWqdsg82/ca320TLtSvs7Jbb5oOX25rak2pTwb6qblc+peA3qkblquT7/58Dend8Vn3nJAz1RCy+MZpNev/bO/ax+mVqN07M9uID0l7skrs+b47Jme32eWUJJUWx72PpFrALou1ZZzktr9aXOtm7TcWx2dao06aLkaTezNZgC9tNVyatelF9IMOWqiZW3QT8qzPReusanDMG2a9dUoteVB14f9gFK00bJ+qmVfo9Q9OXd1zzrtlyeXlodde/Z9uialllPoz35FrlJqOXX9Zo05QJu0DGXQcvv8fCZV0PLzUvi8XgXX+t1UcsulrOlSZgz1KrnlrqtqlpkledAylEHLkK/NbR9Ajj7+8Y/H1NTU+X/27NnT9iF11pWXbouD+6bX/drBfdMxvdvFP+vT8camdk7ES67cHX/72hfES67cff5D9PTuCb2RHC2z0cwahLmWDi2n5eKuXHMzKC0/b5D9yT5EqrRM3Qadf+Nc66Nl2pX6dU5O80XLechpTbUp9dlQJy2f08Qa0CN10nJ9+s2Hq6e265nKaHk8g/RqH6Zuo3bsz24gLaXuyVM7J+Lqqe1mCZ2RcsvD3CdyDUDXpdxyTlK6P22udZOW+6u6U61RBy1Xp+692QyglzZbTum69EKaIUdNtKwNBpHqbM+Fa2zqMmibZn01Sm15mPVhP6AEbbWsn+rY1yh1Ty5BnbNO++XJpeVR1p59ny5JreW2+7NfkavUWk5dr1ljDtAmLUMZtJwGP5/JuLS8Wtuf16vgWr+bSm65pDVdwoyhXiW33HVVzjKzJH1ahjJoGfK1aXl5ebntg6jDpk2b4r777os3vvGNG37PwYMH41WvelX8xm/8xvlfu/vuu+OXfumXYnZ2dsPft7i4GIuLi+f/fW5uLvbs2ROzs7MxOTlZxeEzhO+fOB0fvPexOHR45vyvHdw3HZ+4dX9cfdmOFo+MlOl4NHojNVpmXOZaGrScPq0wCC0PT1ukSMs0wfyrn5Zpm86roWVK09XZoOXndXUNUAYt18t8oClaHp9eaVvdHVvj0IzS92SzhK4oqWXd0mUltczzzLXu0XI7tEbVtJwXM4CNaHl9miE3TbWsDaiXfZkUmPXjK7ll64MuKbnlLjG3uk3H3aX9suTUsrUHG8up5aaYGeRIy9UyB2hLqS1/+9vfjp/4iZ+In/0Xd8fl1/6ttg9nje9+6/+Kb931kbjxlz4XL3z5gbYPZ11/fewv4g9+7e3x8MMPx6te9aq2D4c+Sm05V/Z1RqXlMpkJ3VN6y9Y0XVF6y11nlnWHlqEMWoZ8dfpB8x/4wAfi93//9+Pxxx8//2s///M/H3/9138d/+k//aeB/3/Nzc3F1NSUodei2YWlmJlfipNnzsal27fG9O6JmNo50fZhkREdD05vpEzLjMJcS4+W06QVhqXlwWiL1GmZuph/zdIybdB59bRMCcwGLVsDlKLrLdfBfKANWh6NXklJHR1b49C8Evdks4Quyr1l3cI5ubfM88y1btNyc7RGnbScPjOAQWj5eZohZ3W2rA1ojn2Ztpj11SqtZeuDriqt5S4xt1ih427RfrlSb9nag8Gk3nJTzAxyp+XxmQOkoJSWPWh+fB40n7dSWs6ZfZ0qaLkcZkK3ldiyNU0Xldhy15ll3aRlKIOWIR9b2j6AKs3Pz8eRI0fO//vRo0fj0UcfjcsvvzyuvfbauOOOO+J73/tefOELX4iIiHe9613x2c9+Nn75l385br/99rj//vvjK1/5Svze7/1eWy+BEU3t9GEBmqI3oDTmGgxGK1APbQFdZf5B+XQOrMdswBoANmI+QD70SumscaAKZgnkR7dAacw1aIbWoNvMABiOZmB92gAon1lPL9YHkBtzC7pJ+7TF2gOGYWYA5gAAlMO+DlzITKA01jRQArMMAKB+m9s+gCo99NBDceDAgThw4EBERLzvfe+LAwcOxK/8yq9ERMTx48fj2LFj579/79698Xu/93vxB3/wB3H99dfHpz71qfj85z8fr33ta1s5fgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAbtrR9AFV69atfHcvLyxt+/Z577ln39zzyyCM1HhUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAakU9aJ5umV1Yipn5pZg7czYmd2yN6V0TMbVzou3Dgk7SI1AnMwaaoTVIlz6BOpgtQBPMGiA15lK3eL+hDFqG9ukQdAD0Z05At2geoJvMf7rEeqcLrHOgCmYJTbPmAAZnZpIi6xKAQdkz6ALrnKZYa8BGzAfoJu0DwOjsowDdY/bTJusPqqMnAIA8edA8Wfr+idPxgXsfiwcOz5z/tYP7puPOW/fHNZftaPHIoHv0CNTJjIFmaA3SpU+gDmYL0ASzBkiNudQt3m8og5ahfToEHQD9mRPQLZoH6Cbzny6x3ukC6xyogllC06w5gMGZmaTIugRgUPYMusA6pynWGrAR8wG6SfsAMDr7KED3mP20yfqD6ugJACBfm9s+ABjW7MLSmg8gERGHDs/EB+99LGYXllo6MugePQJ1MmOgGVqDdOkTqIPZAjTBrAFSYy51i/cbyqBlaJ8OQQdAf+YEdIvmAbrJ/KdLrHe6wDoHqmCW0DRrDmBwZiYpsi4BGJQ9gy6wzmmKtQZsxHyAbtI+AIzOPgrQPWY/bbL+oDp6AgDImwfNk52Z+aU1H0BWHDo8EzPzPoRAU/QI1MmMgWZoDdKlT6AOZgvQBLMGSI251C3ebyiDlqF9OgQdAP2ZE9AtmgfoJvOfLrHe6QLrHKiCWULTrDmAwZmZpMi6BGBQ9gy6wDqnKdYasBHzAbpJ+wAwOvsoQPeY/bTJ+oPq6AkAIG8eNE925s6c7fn1k32+DlRHj0CdzBhohtYgXfoE6mC2AE0wa4DUmEvd4v2GMmgZ2qdD0AHQnzkB3aJ5gG4y/+kS650usM6BKpglNM2aAxicmUmKrEsABmXPoAusc5pirQEbMR+gm7QPAKOzjwJ0j9lPm6w/qI6eAADy5kHzZGdy+9aeX7+0z9eB6ugRqJMZA83QGqRLn0AdzBagCWYNkBpzqVu831AGLUP7dAg6APozJ6BbNA/QTeY/XWK90wXWOVAFs4SmWXMAgzMzSZF1CcCg7Bl0gXVOU6w1YCPmA3ST9gFgdPZRgO4x+2mT9QfV0RMAQN48aJ7sTO+eiIP7ptf92sF907F7+5b4zlPz8cixH8Z3fjAfswtLDR8hdEe/Hqd3TzR8REBJujBjZheWXLfQut3bt8RNhbcGTahjpndhLwSal9Nscb0M7Rm3v5xmDeTCvjgecykfVax17zeUYZyW7ZtQjUE61Bsl6LWOXVsC/fg7zdC8Nq9BXRsAOfLZfXzmP4MqoTfrnS7IZZ2XMFOgn5zXeS6zhHK0veZy7hXonrZn5rDM2G6oY11aO1A/ndGG3K5lYBTWOVXy98AhPylcZ5sPUI5hZor2AWB0de+jKXxOAKql6/z5DEWbrL/qmcvd1UZP1hsAQHW2tH0AMKypnRNx563744P3PhaHDs+c//WD+6bjo298RfyL+x6P/9+fP3X+13/25VfGh//hj8eZs8/F3JmzMblja0zvmoipnT78wzBmF5ZiZn5pTUcffeMr4p/f93g8eOTp899743VXxEff+AqdAWPpted/4tb92c+Y7584HR+497F4YJ3XtnPiknVnLlRpdmEp/mruTBw/cSb+5T/4sfjXv/un8cAF+3kprUETNprpd966P665bMe6v2ej6+sLlb4XAu2oc7YMMtsGNcpsBapRRX+5zBrIhX1xeOvNCp+v0lfVWt9oH7pp33T8qze8otJjBuoz6jXl90+cjl/5//5JvOzqyTiw57I4Pnsmntq5Na69fGe88AU7mzp8KEK/DheWno1fHnDv9lmOVPW7Bk3pz2p0BGnq93eaj/5gPv564Wxs33pJ/OF/fSr+4vhcfOQNr3BPB0bU9r1S952A3NQ9N7vyOSWlz4akq6nrlLq7s97pgl7X9R970yuTWOdtf/aBJqS8zv2sBynqtX/96j/88Xj61NL576tayr0CrKfufdrPTjGKqtflqGunK/d0oQpmNG0ZdM8w08nZyjq/eM7ecN0V8c9ec10sLD0bUy386Ieu8tPvv9/29Kml+NV/+OPx4d/503W/x/sLzWvjOnuj+e7PeSB/w84U7QPA6IbZR4e9x+J+PJQnxa7d/x2ez1DlyqEH669aKc5lmjNsT+POCOsNAKBam5aXl5fbPojczc3NxdTUVMzOzsbk5GTbh9MZKx8uTp45G5du3xq7t29Z85D5nROXxL99y4G4+xtH4xsXPTTThwgupOPeNvow/rE3vTI+/n/+eez9kd1xYM9lsfjMc7Fty+Z45IkT8RfH5+KTb77ejTYapeUyXbznT+9O7w8dhjW7sBTv+dIjq+ZqxLlrl7ve9lPxufuPxANHunsDVMv1+/6J0/GB//2x8+ts58Ql8aHXvTxe+aNT8d9/eDqmtm+Nl1y5O66a3N7ykZKzrrS80UyPODe/P/OWA2v2rWH/sKvEvZB8dKXlLqp6tlT5B/mjzFZ60zKDqrq/lGdNjrTcTfbF4fX7D4S0/flKy+urY63PLizFX82dif/+w9MREfHIEyfirgePxk++6AWd2Tuoj5abM8w15ezCUvy//+P/Hf+v/+naNX9P5Mbrrog7b9kfP3q5h83zPC0PZr0OI2Lgvbvrn+Wo1zgdD3MN2vaf1eiI0pWwJ188J7Zt2Ry/8jt/Evf/1x+c/54brrsi3n7D3vjf/viYv1tJkepuOaV7pe47UbIS9mXOqXtudvFzStufDYeh5WY1dZ3SZHc5rfeSable3/vhQvzl0wtx4vTZVT8P+ZE3vKLVvSylzz5UQ8trpbzO/awHG0ml5ZU1d+L0UiyefS7+6P95Ou568GgsLD1by7Vhyr3CKFJpmWbUsU/72ak05NxyFety1LXTxXu6pC3lls1oUtBrz0hlpqfcMembXViK3/+Tv4orL9226r9buPL3b5qetal01YZcWx70v9+2c+KSuP3GvfF3/+YVsW3r5rhsx4T7uBQph5bbuM7uN9/9OQ+pyaHlVIw6U46fOB1f/28/WHUd+tTJxXj1S38kri78uo/mlNLyt7/97fiJn/iJ+Nl/cXdcfu3favtw1vjut/6v+NZdH4kbf+lz8cKXH2j7cNb118f+Iv7g194eDz/8cLzqVa9q+3AYUiktV63fNfQof/fK/XjqpOXmpdh1l+//ViGF+ydark5uPaSw/nKX0lzWcrsG6WncGZHSeqM+WoYyaBnysaXtA4BRTe1c/aHjO0/Nr3rIfETE7TfuXfMfD4+IOHR4Jj5472M+RMAAZheW1nyYjzjX0R33PR7X77ksPnv/kXV/78z8ksaAsV2855dgZn5p3Zuct9+4Nz5z/2HXLtTq/N5+5Pk1uLD0bPzz+/4kbrjuijhw7Qvis/cfiT9839+Lq9zTgb42mukR5+b3xdfEva6vN5r1Je6FQPuqnC2jzLZehp2tQHWq7i/lWQO5sC8Op9es+MD/mBUvuXJ3S0dHL3Wt9Y/+3p/bOyBzw1xTzswvxcuunlz374k8eOTpuOO+x+Oz2oehrdfhd56aH2jv9lmOlA1zDdrmn9XoCPJw4ZyYXViK93zx2/HARdekK9eoB659gXs6MILU7pW67wSkrs652dXPKf4eHxtp4jql6e6sd0o3u7AUH/zq4+u2u/hMu3tZap99oA6prnM/60EOVtbbh3/3Txu5Nky1V4BBVL1P+9kpqlDFuhxl7XT1ni6MyowmBRvtGWY6pZiZX4o7vvr4ul9retbqKk+D/vfbFpaejc/efyQ+e/8RD7CAljV9nT3ofDcTIE+j3iP75XXmQoQHXQHAoHpdQ49yj8X9eChPal27/zs+90/KkWMP1t/4UpvLtKdfT1XMCOsNAKB6m9s+AKjK3Jmza37twJ7L1vzHw1esfIgAeuv1YfyBwzNxYM9lG/7ek+t0CcD61y0Rrl1oRq+9/RtHnj6/t9vHYTAbzfQVF7c0yB92AeSm6tk27GwFqpNyf66j6KqUu0yRWZGvOta69QDdM3fmbM8/a3lA+1CZQfdu+zEpy+Xzlo4gPzPzS2seMr9i5e9lpDJjICcp7d32ZyAHdc5NcxBWa+I6RXdQrZSbSumzD9Ql1XWe8myACzW5VlPtFaANfnaKVIyydlzrwnDMaFJmplOKlGatrvLkv98G+Wl69pvvUDb3yAAgPaPstSndIwKqkVrXPgfA8/TQTanNZdJVxYyw3gAAqrel7QOAqkxu37rm1xafea7n7/EhAvrr92G8V2eXrtMlAOtft0S4dqEZg+7t9nEYzEYzfcXFLfnDLqBEVc+2YWcrUJ2U+3MdRVel3GWKzIp81bHWrQfonsntW+P47Jme36N9qMage7f9mJTl8nlLR5CfQf5eRiozBnKS0t5tfwZyUOfcNAdhtSauU3QH1Uq5qZQ++0BdUl3nKc8GuFCTazXVXgHa4GenSMUoa8e1LgzHjCZlZjqlSGnW6ipP/vttkJ+mZ7/5DmVzj4xSHDt2LGZm1n+IW9v+/M//vO1DADIzyl6b0j0ioBqpde1zADxPD92U2lwmXVXMCOsNAKB6HjRPMaZ3T8TBfdNx6PDzfzi6bcvmnr/Hhwjor9+H8ct2rP/1g/umY3r3RB2HBJC99a5bIly70Ix+e/u2LZvt4zCEjWZ6xPrXxP6wCyhR1bNt2NkKVCfl/lxH0VUpd5kisyJfdax16wG6Z3r3RDw5p31owqB7t/2YlOXyeUtHkJ9B/s5lKjMGcpLS3m1/BnJQ59w0B2G1Jq5TdAfVSrmplD77QF1SXecpzwa4UJNrNdVeAdrgZ6dIxShrx7UuDMeMJmVmOqVIadbqKk/++22Qn6Znv/kOZXOPjBIcO3YsXvayl8fp0wttH0pPZxeX2j4E/v/s3X2Qn3V96P1PQrJ5IOyCWc0RGpBKpPgQDGjRArHO6OFUZY49HNuhdeDQ0Y4zUquMU/GpSH1Ax4Kc2/rQB4Xb49RqS61tj8eH4dwMaimeBnqjVSkUNQpaXCC7CSG7gez9B3cSNvv0e7gevt/v9XrNOCPZJPu9rt/3/bl+v19294JMDHKtTek9IqAaqXXtdQAcpoduSm0uk64qZoT9BgBQPTeapxhj60fi/RdsjctvuOPQi4bbf7QrzjllY3z97gfm/X4vIqA3y70YP2nj+nkf375lPD5wwdYYW68xgIUs9LwlIuL+3dNx7pbx+Jo3QKnRUtf2s0/ZGPfvnnYdhz4sNtMXe07sH7uAElU92/qdrUB1Uu7P8yi6KuUuU2RW5KuOvW4/QPeMrR+Jkzau93Ui0IBer92ux6Qsl9dbOoL8LNXtOadsjJM2rk9mxkBOUrp2uz4DOahzbpqDMFcTz1N0B9VKuamUXvtAXVLd5ynPBniiJvdqqr0CtMH3TpGKQfaO57rQHzOalJnplCKlWaurPPn5bZCfpme/+Q5l8x4ZJZiYmIhHHtkbZ/3WFTH61Ke1vZx5fvKtW+Lbf/sn8eijj7a9FCATg1xrU3qPCKhGal17HQCH6aGbUpvLpKuKGWG/AQBUb8Xs7Oxs24vI3dTUVIyNjcXk5GSMjo62vZzOm9w7ExN7ZmL3vv0xum51jBy1Mt72+W8t+CLiqceua3GlpETHS7tv1yOLvhh/6rHr5nR3zNrVMb5hxIt0WqFlcrPQ/Hx45rElZ24XaLl+C13bz90yHu/+z8+O49avdh2nEl1ruZ/nxMs9v4aUdK1lBlfHbPN+Q3W0TL9S7a/rz6O03G2pdpmi1GeFlpdW9V5PfT+QLy2n7ccP7o23fv5bc34wlPZZiJaH18u12/WYOlXRcQ6vt3RE6Uq8Ji/2dRlX/epz4ueetL7FlUF9mmo5lWu36zOlKvG63HV1zU1zMG1abkfdz1N01z1arlfqTaXy2ofhaXlxKe7z1GcD7Umt5ab3aoq9wiBSa5n8+N6pNGj5cf3uHc91SU0OLZvRpCqVmZ5Dx6QvlVmbSldtyL1lP78NHpdTy03O/i7Pd/KUU8up8B4ZKeq15dtuuy3OPPPMeOnbr4snnXhqgyvszQ9u/XLc+skr45w3fiROOG1b28uZJ/X1RUQ8uPPO+Op7L4kdO3bEGWec0fZy6JPr8mAGvdam8h4R5dFye1Lq2uuA/Gm5OnrorhTmspbTV9WMSGG/UR8tQxm0DPlwo/kKGHrp8yKC5eh4eToiB1qmFF2fuVpuRtf3GfXT8tI0SC60TD/MtnRpmZJ0edZoGXqX8qzQcvNS3g/kS8vp0z690HJzNEldutSxjihZqS3rlq4pteWl6JwSdbFlBmcOpkvL5dJdt2i5fpqiCVrOj9nAQlJs2V6F/qXYMvkxf9un5cHZv6REyzCcFGa6jilNCl21odSWu/p40l2ltlwF84CcaLkZ5gJ1c6P5ZqS+vgg3ms+d6/LgXGtJiZY5yGzKm5arpQfaouU8mBEsR8tQBi1DPla1vQBowth6LzxgWDoCaI6ZSxPsM2iXBoESmW1AE8waoBdmBU9kP0A3aR/SokkYno4gP7qF8ukc6DpzEJqnO6iWpoCFmA3kwl4FaIf5S87sX4BymOlQPV2VxeMJHGQeAEcyFwCgXq61QIrMJjhMD8BSzAgAgLS40TyVmNw7ExN7ZmJq3/4YXbc6xo/2xB9Kp3ugH2YG9E4vkD8dQ5m0DfnSL0C7zGEi7AMohZYhbxqG5ugNyqZxyJ+OAaiT6wxdZN9D7/QC9dIYXWPPA11g1kE1tAQsx5yA8uiaUtjLQL/MDWifDgEgba7VQCnMMyiLpqE6egIAKIMbzTO0+3Y9Em+54Y742l0Th35t+5bxeP8FW+P4Y9e1uDKgLroH+mFmQO/0AvnTMZRJ25Av/QK0yxwmwj6AUmgZ8qZhaI7eoGwah/zpGIA6uc7QRfY99E4vUC+N0TX2PNAFZh1UQ0vAcswJKI+uKYW9DPTL3ID26RAA0uZaDZTCPIOyaBqqoycAgHKsbHsB5G1y78y8FwcRETffNRGX33BHTO6daWllQF10D/TDzIDe6QXyp2Mok7YhX/oFaJc5TIR9AKXQMuRNw9AcvUHZNA750zEAdXKdoYvse+idXqBeGqNr7HmgC8w6qIaWgOWYE1AeXVMKexnol7kB7dMhAKTNtRoohXkGZdE0VEdPAABlcaN5hjKxZ2bei4ODbr5rIib2eIEApdE90A8zA3qnF8ifjqFM2oZ86RegXeYwEfYBlELLkDcNQ3P0BmXTOORPxwDUyXWGLrLvoXd6gXppjK6x54EuMOugGloClmNOQHl0TSnsZaBf5ga0T4cAkDbXaqAU5hmURdNQHT0BAJTFjeYZytS+/Ut+fPcyHwfyo3ugH2YG9E4vkD8dQ5m0DfnSL0C7zGEi7AMohZYhbxqG5ugNyqZxyJ+OAaiT6wxdZN9D7/QC9dIYXWPPA11g1kE1tAQsx5yA8uiaUtjLQL/MDWifDgEgba7VQCnMMyiLpqE6egIAKIsbzTOU0bWrl/z4Mct8HMiP7oF+mBnQO71A/nQMZdI25Eu/AO0yh4mwD6AUWoa8aRiaozcom8YhfzoGoE6uM3SRfQ+90wvUS2N0jT0PdIFZB9XQErAccwLKo2tKYS8D/TI3oH06BIC0uVYDpTDPoCyahuroCQCgLEXeaP4jH/lIPO1pT4u1a9fGWWedFd/85jcX/b379++PP/iDP4inP/3psXbt2jj99NPjS1/6UoOrzdv4hpHYvmV8wY9t3zIe4xtGGl4RUDfdA/0wM6B3eoH86RjKpG3Il34B2mUOE2EfQCm0DHnTMDRHb1A2jUP+dAxAnVxn6CL7HnqnF6iXxugaex7oArMOqqElYDnmBJRH15TCXgb6ZW5A+3QIAGlzrQZKYZ5BWTQN1dETAEBZirvR/Gc/+9m47LLL4oorrojbbrstTj/99DjvvPPi/vvvX/D3v+Md74g//uM/jg9/+MPxne98J173utfFr/7qr8btt9/e8MrzNLZ+JN5/wdZ5LxK2bxmPD1ywNcbWe4EApdE90A8zA3qnF8ifjqFM2oZ86RegXeYwEfYBlELLkDcNQ3P0BmXTOORPxwDUyXWGLrLvoXd6gXppjK6x54EuMOugGloClmNOQHl0TSnsZaBf5ga0T4cAkDbXaqAU5hmURdNQHT0BAJRlxezs7Gzbi6jSWWedFc9//vPjj/7ojyIi4sCBA7F58+b4nd/5nbj88svn/f7jjz8+3v72t8frX//6Q792wQUXxLp16+LTn/50T59zamoqxsbGYnJyMkZHR6s5kMxM7p2JiT0zsXvf/jhm7eoY3zDixQFZ0XH/dE+KtJwuM4N+dL1lvVCKLresY0rS5ZaPpG1y1vWW9Usput4y+TKH5+pqy/YBpdGylilD11rWMCVKtWO9QX9SbXkxGoeF5dSyjmFxObUMqUrhOqNlmpbCvi+Rlsukl+7RcrM0Rl1Sbdmeh/6k2jJLM+s4kpYHoyVSo+X0mBP0S8fp0zW9yKFlexmWl0PLTTI3yFVJLeuQLuu15dtuuy3OPPPMeOnbr4snnXhqgyvszQ9u/XLc+skr45w3fiROOG1b28uZJ/X1RUQ8uPPO+Op7L4kdO3bEGWec0fZy6FNJ1+WFuFbTFaW3jHnWFVruDk2XTcvN0hN10TKUQcuQj1VtL6BKMzMzsWPHjnjrW9966NdWrlwZL3nJS+KWW25Z8M9MT0/H2rVr5/zaunXr4utf/3qtay3N2HovCKBrdA/0w8yA3ukF8qdjKJO2IV/6BWiXOUyEfQCl0DLkTcPQHL1B2TQO+dMxAHVynaGL7HvonV6gXhqja+x5oAvMOqiGloDlmBNQHl1TCnsZ6Je5Ae3TIQCkzbUaKIV5BmXRNFRHTwAAZSjqRvMTExPx2GOPxaZNm+b8+qZNm+J73/vegn/mvPPOi2uuuSa2b98eT3/60+PGG2+Mv/7rv47HHnts0c8zPT0d09PTh/57amqqmgMAGqNjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhfzqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXIn46hDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnytbLtBbTtv//3/x5btmyJX/iFX4iRkZG49NJL45JLLomVKxc/NVdddVWMjY0d+t/mzZsbXDFQBR1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz50zGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUP+dAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5CvFbOzs7NtL6IqMzMzsX79+virv/qreOUrX3no1y+++OLYtWtXfOELX1j0z+7bty8eeOCBOP744+Pyyy+Pv//7v49/+Zd/WfD3Tk9Px/T09KH/npqais2bN8fk5GSMjo5WdjxAfXQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz50zGUQctQBi1DGbQMZRi05dtuuy3OPPPMeOnbr4snnXhqE0vtyw9u/XLc+skr45w3fiROOG1b28uZJ/X1RUQ8uPPO+Op7L4kdO3bEGWec0fZyWIbrMpRBy1AGLUMZtAxl0DKUQcuQr1VtL6BKIyMjceaZZ8aNN9546EbzBw4ciBtvvDEuvfTSJf/s2rVr44QTToj9+/fHDTfcEL/2a7+26O9ds2ZNrFmzpsqlAw3TMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkD8dQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5E/HUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+SrqRvMREZdddllcfPHF8bznPS9+8Rd/Ma699tp4+OGH45JLLomIiIsuuihOOOGEuOqqqyIi4tZbb4177703nvvc58a9994b73rXu+LAgQPxe7/3e20eBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCw4m40/+u//uvxs5/9LH7/938/fvrTn8Zzn/vc+NKXvhSbNm2KiIidO3fGypUrD/3+ffv2xTve8Y645557YsOGDfGyl70s/sf/+B9x7LHHtnQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOmKu9F8RMSll14al1566YIfu+mmm+b894te9KL4zne+08CqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5X5I3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJry3e9+t+0lLGp6ejrWrFnT9jIWNT4+HieeeGLbywAAAAAAgFa40TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAB6ZfCAiVsSrX/3qtpeyuBUrImZn217FotatWx/f+9533WweAAAAAIBOcqN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAHs37s7Imbjub/xlnjyyb/Q9nLm+cm3bolv/+2fJLu+qZ/8IG795JUxMTHhRvMAAAAAAHSSG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGHDU06MJ514atvLmGfqJz+IiHTXBwAAAAAAXbey7QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdI0bzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpW5I3mP/KRj8TTnva0WLt2bZx11lnxzW9+c8nff+2118app54a69ati82bN8eb3vSm2LdvX0OrBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALqmuBvNf/azn43LLrssrrjiirjtttvi9NNPj/POOy/uv//+BX//n//5n8fll18eV1xxRXz3u9+NT3ziE/HZz3423va2tzW8cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKArirvR/DXXXBOvfe1r45JLLolnPvOZ8fGPfzzWr18fn/zkJxf8/f/wD/8QZ599dvzGb/xGPO1pT4v/+B//Y1x44YXxzW9+s+GVAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF1R1I3mZ2ZmYseOHfGSl7zk0K+tXLkyXvKSl8Qtt9yy4J/5pV/6pdixY8ehG8vfc8898cUvfjFe9rKXNbJmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHtWtb2AKk1MTMRjjz0WmzZtmvPrmzZtiu9973sL/pnf+I3fiImJiTjnnHNidnY2Hn300Xjd614Xb3vb2xb9PNPT0zE9PX3ov6emppZd2+TemZjYMxNT+/bH6LrVMX70SIytH+nxyAbTxueEXAzScV2e2OqGNati5KiVseuRmdiwVrewnFyuySzO40FEGS2nth5oQ+ot6xR6k3rLKX5+SFEKLWsThjfo+9j+TQrS0tR1WYdQr7aeY2sbqpXC6+W6/k7oiiq/5quuFjUOy0vlmtwLTcPi2vpa7INdTj4yE+vXrIqVK1bEqpUrYqM+YSApfV9FnVK/pqe+PtLXlZZJT8nzq41jy6Hlfs9LyXsEFpNDywcN06i+Kd2w72P7eQGQhpyuywf9+9S+eOjhmZja92iMrlsVx60fiU2ja9teFrQqp39f7kXKa4M6ldYytC2n97C9rwxpqfu1su+LhGak+L5XLy3rHebq6mvlEo4BnijF6zLQvzauy66JUL0qWt6wZlU8PP1oTD6iTWiLn9kHZWiiZR1D/bz3BWXQMuSrqBvND+Kmm26K973vffHRj340zjrrrLj77rvjd3/3d+Pd7353vPOd71zwz1x11VVx5ZVX9vw57tv1SLzlhjvia3dNHPq17VvG4/0XbI3jj1039DGk8jkhJ/12XJeFWj37lI1xydknx4V/ems876TjdAtLyOGazOI8HhyUe8uprQfaknLLOoXepdxyip8fUtV2y9qEagzyPrZ/k4L0NHFd1iHUr43n2NqG6rX9ermuvxO6pKqv+aqrRY1Db1K4Jqf8eSEXbXwt9lJfd33VF78bV/7nZ+sT+pTK91XUKfVreurrIw9daJn0lDy/2jq21Fvu97yUvEdgKam3fNAwjeqbLqjifWw/LwDal8t1+aCdDzwcb/38t+Ibdz9w6NfOOWVjvO9XnxMnbjy6xZVBu3L59+VepLw2qFtJLUPbcnoP2/vKkJ46Xyv7vkhoTmrve/XSst5hvi6+Vi7hGOBIqV2XgcE0fV12TYR6VNHyOadsjP929snxhs/cHntnHtMmtMDP7IMy1N2yjqEZ3vuCMmgZ8rVidnZ2tu1FVGVmZibWr18ff/VXfxWvfOUrD/36xRdfHLt27YovfOEL8/7MueeeGy94wQvigx/84KFf+/SnPx2//du/HXv27ImVK1fO+zPT09MxPT196L+npqZi8+bNMTk5GaOjo3N+7+Tembj0M7fPeWFx0PYt4/HhC7fF2PqRQQ53UW18TshNPx3XZalWzz5lY2w78bj4o/99t25hCalfk1mcx4Mnyrnl1NYDbUq1ZZ1Cf1JteSFtf35IWZstaxOq0+/72P5NCtJU93VZh9CMpp9jaxvq0fZ7X9qG4VXxNV91tahx6F3b1+ReaBqW1/TXYvfyddd3/GiXPqFPKXxfRZ1Sv6anvj7yUXrLpKfk+dXmsaXccr/npeQ9AstJueWDhmlU33RFVe9j+3kB0K4crssH/fvUvrjsc/885ybzB51zysa4+teeG5tG17awMmhfDv++3IuU1wZNKKVlaFtO72F7XxnSVNdrZd8XCc1K6X2vXlqOCL3DArr2WrmEY4CFDHpdvu222+LMM8+Ml779unjSiac2sdS+/ODWL8etn7wyznnjR+KE07a1vZx5Ul9fRPprTH19D+68M7763ktix44dccYZZ9T++Zq8LrsmQn3q+JqvCG1C0/zMPihDnS3rGJqT0r9JAYPTMuRrVdsLqNLIyEiceeaZceONNx660fyBAwfixhtvjEsvvXTBP7N37955N5M/6qijIiJidnZ2wT+zZs2aWLNmTU9rmtgzs+ALi4iIm++aiIk9M5W/uGjjc0Ju+um4Lku1+o27H4jfOvvkiNAtLCX1azKL83jwRDm3nNp6oE2ptqxT6E+qLaf4+SFlbbasTahOv+9j+zcpSFPd12UdQjOafo6tbahH2+99aRuGV8XXfNXVosahd21fk1P+vJCTpr8Wu5evu/6j/323PqFPKXxfRZ1Sv6anvj7yUXrLpKfk+dXmsaXccr/npeQ9AstJueWDhmlU33RFVe9j+3kB0K4crssHPfTwzII3mY+I+PrdD8RDD8+40TydlcO/L/ci5bVBE0ppGdqW03vY3leGNNX1Wtn3RUKzUnrfq5eWI0LvsICuvVYu4RhgISldl4HBNXlddk2E+tTxNV8R2oSm+Zl9UIY6W9YxNMd7X1AGLUO+irrRfETEZZddFhdffHE873nPi1/8xV+Ma6+9Nh5++OG45JJLIiLioosuihNOOCGuuuqqiIg4//zz45prrolt27bFWWedFXfffXe8853vjPPPP//QDeeHMbVv/5If373Mx3P5nED/lmt1+tEDh/6/bmF4ro9p8XgwqNT2TmrrgVw02Y5OoT5t99X254dSVN2SNqE9/k0K8jdIUzqE9FTRpbahfXV0qG1IQ10tahzq0VZbmob09Pp11/oEnij1a3rq6wNYTMnzq+RjG0a/58V5hLQN06i+YT4/LwCowtS+R4f6OPC4lJ+vprw2SI1eYHE59eF9ZegW3xcJ3dVLy7PL/B16h+WVcN0s4RgAIGL4a5prIqShn6/5itAmpMp701AG/7YMAAALK+5G87/+678eP/vZz+L3f//346c//Wk897nPjS996UuxadOmiIjYuXNnrFy58tDvf8c73hErVqyId7zjHXHvvffGk5/85Dj//PPjve99byXrGV27esmPH7PMx3P5nED/lmt1zarDs0q3MDzXx7R4PBhUansntfVALppsR6dQn7b7avvzQymqbkmb0B7/JgX5G6QpHUJ6quhS29C+OjrUNqShrhY1DvVoqy1NQ3p6/bprfQJPlPo1PfX1ASym5PlV8rENo9/z4jxC2oZpVN8wn58XAFRhdO3SP/5puY8Dj0v5+WrKa4PU6AUWl1Mf3leGbvF9kdBdVbSsd1heCdfNEo4BACKGv6a5JkIa+vmarwhtQqq8Nw1l8G/LAACwsCK/k+jSSy+NSy+9dMGP3XTTTXP+e9WqVXHFFVfEFVdcUctaxjeMxPYt43HzXRPzPrZ9y3iMbxgZ+nNM7p2JiT0zMbVvf4yuWx0b1q6Kl572lPjqd++v7XNCFx3Z2vjRIzG2fvCelpoPZ5+yMW7/0a6I0C1UpYlrMr3zeKSr6utd1ZreO8udD3sZBnNkO+tHjorfOufk2Lb52IiIODA7G5N7ZyqZPzqF+rTxvtcTr8X6hmpU3VIbbab+Ogaa0kZ/rseLM5sYxCBNLfRnDr7O/qWf3xiTj8zEv/1sjz0IDari+tjP3+GaA/Wo47nu+IaReOlpT4lTnzoa2zYfG9OPHoi1q4+K23Y+FHf+ZKrTz5+hSXX0Pbl3Jg7MzsYnLn5erFixIm7b+VB88uvfj70zjw319wLtvf/k9TakZ6nn09+5bzJu/9Eu11xgntRfi/u3NqBfqfybQMnzK7dja2pP9HtecjuPUKrFZsQwjeob5lusi/UjR8U7Xn5ajK1bHR/9zTPiuPWP/xwQIG1tve467uiROOeUjfH1ux+Y97FzTtkYxx3tGgu9SPnfeT2Xht7phVw18Vwypz7qel85lX8rgS7ppbuqvi9yuT8DDK6ua2ivLesdhvPE1p748/qmHz2Qzb9BufYDUIqlrmkvPe0psWHtqvi3+/f4OdaQuF7vERPRXpveD4flHWz5n3740JzXymtXHxX/PrXPe9OQCd+zBAAAC1sxOzs72/Yicjc1NRVjY2MxOTkZo6Oj8z5+365H4vIb7pjzAmP7lvH4wAVb46nHrhvqc9+365F4yw13xNeO+Lvf88pnx7v//jtzbjZf1eeEEvXS8UKtvf+CrXH8EE0tNB/OPmVjXHL2yfGGz9wezzvpON1CH9q8JtM/j0d66rre9SuVlns9H/YyLKzXlv/phw/F/3XhtrjuG9+PbzzhB6FUOX90CoNL8X2vJ84GfUNvmm65yTZTeR0DTViu5Yh2ro2ux/OZTSyljuvyE//M+pGjan+dDTTzHLuXv8M1B4bTxntfOx94ON76+W/NuU6fc8rGeN+vPidO3Hj0QH8ndFkvr5UXUmXfC12Pff0X9CeVrxNZ6vN6vQ3LG/S63I/Fnk+/8xXPig/f+K/x9pc/0zUXhtREy01L/bW4f2ujDiW2THr/JlDy/Erl2Nr6fsfF9HteUjmP0La2rsvLzYhhGtU3XdTv+9jrR46KT1z8vPjo/3N3fM17ypCM1J5jH2nnAw/H2z7/rTk3m0/pfSxIRT/X5dT+nddzaTgs1a8VgUE1+VwylT7q+F7H5X5/28/ZoURVvlYe9vsie/0zwHxtv+/V6/dB6h2W1kvLV3zh2/Hrv3hiMu939cssoAt6/TqR2267Lc4888x46duviyedeGqDK+zND279ctz6ySvjnDd+JE44bVvby5kn9fVFpL/G1Nf34M4746vvvSR27NgRZ5xxRuOff5D3sF962lPina94Zrz9b77t51hDIgZp+ZxTNsZ/+/9/RsDemcdaa9P74XDYci3/ZNcj8cMH98aH//ddc14rn/v/97tQM67F0Lyqv05Ex9AO37sMZdAy5MON5ivQy9Cb3DsTE3tmYve+/XHM2tUxvmEkxtaPDPV5J/fOxKWfuX3OG3wHbd8yHh981emxZ9+jlX5OKNVSHS/X2ocv3DZUW0+cD0evWRUjR62MyUdm4ug1uoV+tXVNZnAej3TUfb3rRwot93s+7GWYr9eWd+3dH+/4m2/N+cFJB1U5f3QKg0n1fa8nzgZ9w/LaaLmJNlN6HQNN6PUf4du4NroeH2Y2sZy6rssH/8yB2dn4g7/7l9pfZ0PXNfUce6m/wzUHhtf062XdQvWG+YL1qq7Vi3V97pbxeM9/fnYcu361tmEZKXydyGK83obe1f2NZMtdd//wVafHptG1lX9e6JrSvik0l9fi/q2NqpXWMunOs5LnVwrH1ub3Oy6m3/OSwnmEtrVxXe51RgzTqL7pmn7fxz52/ep4599823vKkJgUn2Mf6d+n9sVDD8/E1L5HY3Ttqjju6BHvfcMR+rkup/jvvJ5Lw+NS/loR6FcbzyVT6KOu73Vc7Pen8pwdSlP1a+Vhvi/SNR8Gl8L7Xr20rHdYWi/Psf99al+8+XP/nNT7Xf0yCyidG803I/X1RaS/xtTXl/qN5iPmX9M2rF0Vb/7L/9fPsYaEDNryw9OPxtQj7bXp/XCYa7mWJ/fOxKV/fnt87e7+mnEthmbV8XUiOobm+d5lKIOWIR+r2l5AV4ytr/7FxMSemQXf4IuIuPmuidiz79F4+lM2VPo5oYuWa21iz8xQfS88H44e+O8DllbHNZnBeTzSUff1rmp1751+z4e9DIMZWz/yeG8LfNF6RLXzR6dQnzbe93ribNA3VKPqlppoM7fXMdCUNq6NrseHmU1UYZCmDv6Zf7t/TyOvs4HlVXF9XOrvcM2BZlT5XFe3kJYq+l6q66/dNRGPHpjVNVSkrfefvN6GdCx33d2z79HY5PvXgCPk8lrcv7UBy0l1npU8v1I/trb2RL/nJfXzCKXqdUYM06i+Yb4nduE9ZchPKq+7No2udWN5qEDK/87ruTT0Ti/koo3nkjn1UdX7yqk8Z4cuGaS7Yb4vEqhHU9fQXlrWOwxvz75Hk3u/q19mAQClOPKa9m/37/FzrCFDKbbo/XDoz+M/277/ZlLsH7rO9ywBAMBcK9teAIOb2rd/yY/vXubjQG+0BkAXuN7N5XxAc/QGLMRsAHphVgApMptomz0I3aF3yI9uoTy6hu7QO7RPh8AgzA6gFOYZR7IngKWYEdA+HUJ+dAtl0jYATXC9aYbzDM3THZRBy1AWTQNAulyngaqYJ9AfzQAAAFAqN5rP2Oja1Ut+/JhlPg70RmsAdIHr3VzOBzRHb8BCzAagF2YFkCKzibbZg9Adeof86BbKo2voDr1D+3QIDMLsAEphnnEkewJYihkB7dMh5Ee3UCZtA9AE15tmOM/QPN1BGbQMZdE0AKTLdRqoinkC/dEMAAAApXKj+YyNbxiJ7VvGF/zY9i3jMb5hpOEVQZm0BkAXuN7N5XxAc/QGLMRsAHphVgApMptomz0I3aF3yI9uoTy6hu7QO7RPh8AgzA6gFOYZR7IngKWYEdA+HUJ+dAtl0jYATXC9aYbzDM3THZRBy1AWTQNAulyngaqYJ9AfzQAAAFAqN5rP2Nj6kXj/BVvnvWmxfct4fOCCrTG23hsWUAWtAdAFrndzOR/QHL0BCzEbgF6YFUCKzCbaZg9Cd+gd8qNbKI+uoTv0Du3TITAIswMohXnGkewJYClmBLRPh5Af3UKZtA1AE1xvmuE8Q/N0B2XQMpRF0wCQLtdpoCrmCfRHMwAAAJRqVdsLYDjHH7suPnzhtpjYMxO79+2PY9aujvENI96sgIppDYAucL2by/mA5ugNWIjZAPTCrABSZDbRNnsQukPvkB/dQnl0Dd2hd2ifDoFBmB1AKcwzjmRPAEsxI6B9OoT86BbKpG0AmuB60wznGZqnOyiDlqEsmgaAdLlOA1UxT6A/mgEAAKBEbjRfgLH13qCAJmgNgC5wvZvL+YDm6A1YiNkA9MKsAFJkNtE2exC6Q++QH91CeXQN3aF3aJ8OgUGYHUApzDOOZE8ASzEjoH06hPzoFsqkbQCa4HrTDOcZmqc7KIOWoSyaBoB0uU4DVTFPoD+aAQAAoDQr214AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNe40TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhq9peQAlmZ2cjImJqaqrllUB3HHPMMbFixYrK/j4dQzu0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZaiyZR1DO1yToQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMvj6TcifazKUQctQBi1DGdpqec+ePRERMfnje+LAo49V9vmrsuf+eyMiYuqnP4g1a9a0vJr5Ul9fRPprTH19u3/6w4h4vJVero2uy1AGLUMZtAxl0DKUQctQBi1D/gbt2I3mK7B79+6IiNi8eXPLK4HumJycjNHR0cr+Ph1DO7QMZdAylEHLUAYtQxmqbvmBBx6ICC1D01yXoQxahjJoGcqgZShDlS3rGNrhmgxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpTB129C/lyToQxahjJoGcrQdsvf/L/fXdnnrsMdf/HBtpewpNTXF5H+GlNf34te9KKefl/bLQPV0DKUQctQBi1DGbQMZdAy5G/QjlfMzs7O1rCeTjlw4EDcd999ccwxx8SKFSvaXk7ypqamYvPmzfGjH/2o0otPF3X5XFbdW10dd/kxOpJz8TjnYa66Wp6dnY0TTzyxqPNc6t4p8bi6eEy5XJerVuJjfVCpx1bqcUVUc2x1tHznnXfGM5/5zCLPea9K3ne9cg6aPQdNX5c9vs5BhHMQUf05qLrlXbt2xXHHHRc7d+6MsbGxyv7eNpW270o7nojyjmmQ4+nq6+WDStsD/ejqsZd63N7H7k1pj7/jSZvrcu9Ke+zr4BwtL6Vz1NWWnyilx2MYjiMtTR9Hlc1V2XEpj2eTnLPBlHDeUrkml3Au6+C8LM65mSuVlttW2r5wPGmr43hSabm0xyrCMeWilGNKpeUmlPKYpcC5rFaqX4u9UMse++o4l9Uo7TymcF3O+ZzmvPYI629bletPoeWq5P64LsZx5aeNYyup5SaUvP8W07VjzvV4fb9jf3Jff0T+x2D9C/N9FXPluk+su1kprjvVr99sSoqPSZUcX956Pb4SXyuX8tiWcBwlHENEHseRU8s5nM8jWXMzrDmvlquQ42OeGudweCV/LfZC7JnFOTcL6/J5SbHlHB+PHNcckee6rXlhKbZcpRwf94U4jnSkegxNtpzqOSiF81ufHM5tG9flHM5LXRx7N489ov7jb+s5dimPq+NISynHEdH/sWh5OI4jLV09jkE7XjXI4phr5cqV8XM/93NtLyM7o6OjWUeaEudyeHV37DE6zLl4nPNQj4MtT01NRUSZ57nEY4oo87gc0+Bye35d4mN9UKnHVupxRaR1bCtXrowTTjghItJaV1ucA+cgIs9z0Ot1Ocdjq5pz4BxEpHsOVq5cGRERY2NjSa5vGKme80GVdjwR5R1Tm8eT2+vlg0rbA/3o6rF39bh7Vfr72I4nbY6nOrldl0t77OvgHC2vxHOUW8tPVMrj4TjSkuNx1NFxjuehbc7ZYJy3w4Zt2blcmPOyOOemHjk/v44ob184nrSlfDyuy/M5pjyUeEzDyOG67DGrjnNZrZTO53Itp7TW3DmX1XAeFzbMdTnnc5rz2iOsv20prj+F59gpnpcqOK785HxsKbTchJwfo0F17Zi7drxH6sr3O+a+/oj8j8H661XK91VYd7OsOy05P78u9TE5yPHlrenjS6nlUh7bEo6jhGOIKOc4etFEyzmeT2tuhjVXJ6Xr8lJSPX85cQ6Hl/I59P2OzXJuFua8DK/KlnN8PHJcc0Se67bmeqX6HDunc7gUx5GOEo5hKb20XPo5aJvzW58undt+rstdOi9HcuzdPPaIfI6/3+fYuRzXchxHWko5joj2jkXLeXMcaan7OFbW9jcDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsCA3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomBvN07g1a9bEFVdcEWvWrGl7KdlzLtPnMTrMuXic89CMEs9ziccUUeZxOabuKPm8lHpspR5XRLrHluq6muQcOAcRZZ+Dko+tV86BcxCR/jlIfX2DKO2YSjueiPKOqbTjaUKXz1lXj72rxz2o0s6X40mb4+ku52p5ztHynKO0lPJ4OI60lHIcw3Ie+uecDcZ5q45zuTDnZXHODQspbV84nrSVdjxPVOKxOaY8lHhMpfOYVce5rFZO5zOntabOuayG81i9nM9pzmuPsP625b7+upR6XhxXfko+tlJ08THq2jF37XgHlft5yn39Efkfg/U3K7f1HmTdzbJuqlL6Y+L48lb68S2llGMv4ThKOIaIco4jFTmeT2tuhjV3j/M3POdweF07h1073n44NwtzXtKS4+OR45oj8ly3NXdTKefQcaSjhGMYlnNQL+e3Ps7twrp8Xhx7N489otzjL+W4HEdaSjmOiHyOJZd1LsdxpMVx9GfF7OzsbK2fAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA5Vra9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICucaN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIa50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DA3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZG8xW6+eab4/zzz4/jjz8+VqxYEX/zN3/T998xOzsbf/iHfxjPeMYzYs2aNXHCCSfEe9/73uoXCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRmVdsLKMnDDz8cp59+evzWb/1W/Jf/8l8G+jt+93d/N77yla/EH/7hH8ZznvOcePDBB+PBBx+seKUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAm1bMzs7Otr2IEq1YsSI+//nPxytf+cpDvzY9PR1vf/vb4zOf+Uzs2rUrnv3sZ8cHPvCB+OVf/uWIiPjud78bW7dujW9/+9tx6qmntrNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHYr215Al1x66aVxyy23xF/8xV/EHXfcEa961aviP/2n/xR33XVXRET83d/9Xfz8z/98/P3f/32cfPLJ8bSnPS1e85rXxIMPPtjyygEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAqudF8Q3bu3BnXXXdd/OVf/mWce+658fSnPz3e/OY3xznnnBPXXXddRETcc8898cMf/jD+8i//Mj71qU/F9ddfHzt27Ij/+l//a8urBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKq0qu0FdMW3vvWteOyxx+IZz3jGnF+fnp6OjRs3RkTEgQMHYnp6Oj71qU8d+n2f+MQn4swzz4w777wzTj311MbXDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFTPjeYbsmfPnjjqqKNix44dcdRRR8352IYNGyIi4qlPfWqsWrVqzs3oTzvttIiI2LlzpxvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCHcaL4h27Zti8ceeyzuv//+OPfccxf8PWeffXY8+uij8W//9m/x9Kc/PSIi/vVf/zUiIk466aTG1goAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUa8Xs7Oxs24soxZ49e+Luu++OiMdvLH/NNdfEi1/84njSk54UJ554Yrz61a+Ob3zjG3H11VfHtm3b4mc/+1nceOONsXXr1nj5y18eBw4ciOc///mxYcOGuPbaa+PAgQPx+te/PkZHR+MrX/lKy0cHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVMWN5it00003xYtf/OJ5v37xxRfH9ddfH/v374/3vOc98alPfSruvffeGB8fjxe84AVx5ZVXxnOe85yIiLjvvvvid37nd+IrX/lKHH300fErv/IrcfXVV8eTnvSkpg8HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqIkbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0bGXbCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoGjeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYG81XYHZ2NqampmJ2drbtpQAD0jGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5A/HUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRPx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPlwo/kK7N69O8bGxmL37t1tLwUYkI6hDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWob86RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliF/OoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZciHG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1zo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhrnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDVrW9AGA4k3tnYmLPTEzt2x+j61bH+NEjMbZ+pO1l9aWEY4CmpNxLymujbPZeb5wn6F/O3eS8duhXyfu95GODtrTRlZZhcVX0oTH60fR+sT+BtpU6h0o9LtJin9XPOYbF5dRHTmslX/ZZvZxfStTFfd3FYyZf9uvinBtS0dZe1EDZPL69c64ADht2JpqpDMseSoPHAdoxaHuahfI8sesNa1bFyFErY9cjM7FhrcZhKSlfE1NeG/lIbR+lth4oldaq5Xx2h8e6bB5fStal/d2lY6Vc9rFzAHXx85oA0uf7gIDlpNxrymsDGERdc828BIDucaN5yNh9ux6Jt9xwR3ztrolDv7Z9y3i8/4Ktcfyx61pcWe9KOAZoSsq9pLw2ymbv9cZ5gv7l3E3Oa4d+lbzfSz42aEsbXWkZFldFHxqjH03vF/sTaFupc6jU4yIt9ln9nGNYXE595LRW8mWf1cv5pURd3NddPGbyZb8uzrkhFW3tRQ2UzePbO+cK4LBhZ6KZyrDsoTR4HKAdg7anWSjPQl2ffcrGuOTsk+PCP701nnfScRqHBaR8TUx5beQjtX2U2nqgVFqrlvPZHR7rsnl8KVmX9neXjpVy2cfOAdTFz2sCSJ/vAwKWk3KvKa8NYBB1zTXzEgC6aWXbCwAGM7l3Zt4T+IiIm++aiMtvuCMm9860tLLelXAM0JSUe0l5bZTN3uuN8wT9y7mbnNcO/Sp5v5d8bNCWNrrSMiyuij40Rj+a3i/2J9C2UudQqcdFWuyz+jnHsLic+shpreTLPquX80uJurivu3jM5Mt+XZxzQyra2osaKJvHt3fOFcBhw85EM5Vh2UNp8DhAOwZtT7NQnsW6/sbdD8R13/h+/NY5J2scFpDyNTHltZGP1PZRauuBUmmtWs5nd3isy+bxpWRd2t9dOlbKZR87B1AXP68JIH2+DwhYTsq9prw2gEHUNdfMSwDoLjeah0xN7JmZ9wT+oJvvmoiJPek/iS/hGKApKfeS8toom73XG+cJ+pdzNzmvHfpV8n4v+digLW10pWVYXBV9aIx+NL1f7E+gbaXOoVKPi7TYZ/VzjmFxOfWR01rJl31WL+eXEnVxX3fxmMmX/bo454ZUtLUXNVA2j2/vnCuAw4adiWYqw7KH0uBxgHYM2p5moTxLdf2Nux+IbZuPjQiNw5FSviamvDbykdo+Sm09UCqtVcv57A6Pddk8vpSsS/u7S8dKuexj5wDq4uc1AaTP9wEBy0m515TXBjCIuuaaeQkA3eVG85CpqX37l/z47mU+noISjgGaknIvKa+Nstl7vXGeoH85d5Pz2qFfJe/3ko8N2tJGV1qGxVXRh8boR9P7xf4E2lbqHCr1uEiLfVY/5xgWl1MfOa2VfNln9XJ+KVEX93UXj5l82a+Lc25IRVt7UQNl8/j2zrkCOGzYmWimMix7KA0eB2jHoO1pFsqzXNfTjx449P81DoelfE1MeW3kI7V9lNp6oFRaq5bz2R0e67J5fClZl/Z3l46VctnHzgHUxc9rAkif7wMClpNyrymvDWAQdc018xIAusuN5iFTo2tXL/nxY5b5eApKOAZoSsq9pLw2ymbv9cZ5gv7l3E3Oa4d+lbzfSz42aEsbXWkZFldFHxqjH03vF/sTaFupc6jU4yIt9ln9nGNYXE595LRW8mWf1cv5pURd3NddPGbyZb8uzrkhFW3tRQ2UzePbO+cK4LBhZ6KZyrDsoTR4HKAdg7anWSjPcl2vWXX4x5ZpHA5L+ZqY8trIR2r7KLX1QKm0Vi3nszs81mXz+FKyLu3vLh0r5bKPnQOoi5/XBJA+3wcELCflXlNeG8Ag6ppr5iUAdJcbzUOmxjeMxPYt4wt+bPuW8RjfMNLwivpXwjFAU1LuJeW1UTZ7rzfOE/Qv525yXjv0q+T9XvKxQVva6ErLsLgq+tAY/Wh6v9ifQNtKnUOlHhdpsc/q5xzD4nLqI6e1ki/7rF7OLyXq4r7u4jGTL/t1cc4NqWhrL2qgbB7f3jlXAIcNOxPNVIZlD6XB4wDtGLQ9zUJ5lur67FM2xu0/2hURGocjpXxNTHlt5CO1fZTaeqBUWquW89kdHuuyeXwpWZf2d5eOlXLZx84B1MXPawJIn+8DApaTcq8prw1gEHXNNfMSALrLjeYhU2PrR+L9F2yd90R++5bx+MAFW2NsffpP4ks4BmhKyr2kvDbKZu/1xnmC/uXcTc5rh36VvN9LPjZoSxtdaRkWV0UfGqMfTe8X+xNoW6lzqNTjIi32Wf2cY1hcTn3ktFbyZZ/Vy/mlRF3c1108ZvJlvy7OuSEVbe1FDZTN49s75wrgsGFnopnKsOyhNHgcoB2DtqdZKM9iXZ99ysa45OyT45Nf/77GYQEpXxNTXhv5SG0fpbYeKJXWquV8dofHumweX0rWpf3dpWOlXPaxcwB18fOaANLn+4CA5aTca8prAxhEXXPNvASA7loxOzs72/Yicjc1NRVjY2MxOTkZo6OjbS+HjpncOxMTe2Zi9779ccza1TG+YSS7J/ApHIOOyUUKvSwmhbVpuZtS2Hs5yOk8aZlU5NTNkVJYu5ZpSgr7vS4pHJuWKU0bXWkZFldFHyk01hQtD6/p/dKl/UnvtEyTSp1DKRyXlsuXwj4rXQrnWMukKoU+etX2WnXcDW3vs9KlcH61TNVS2NdNS+GYtUyvUtivqUrh3GiZiPb2YgoNlCLFlj2+vXOuOCjFlqFpw87EFGaqlvOWwh4ijcdBy3TRoO2l0OxitAyDeWLXR69ZFSNHrYzJR2bi6DWuy7CUlK+JKaxNy/lLYR+lvJ4u0HE3aa1aKZxPLTcjhcea+qTw+GqZuqSwv5uSwrFqmWGlsI/blsI50DIl6uLPa9IylKFLLfs+IErWpZbrlHKvKa+N6miZLqlrrqUwL7UMZdAy5GNV2wsAhjO2Pv83OUo4BmhKyr2kvDbKZu/1xnmC/uXcTc5rh36VvN9LPjZoSxtdaRkWV0UfGqMfTe8X+xNoW6lzqNTjIi32Wf2cY1hcTn3ktFbyZZ/Vy/mlRF3c1108ZvJlvy7OuSEVbe1FDZTN49s75wrgsGFnopnKsOyhNHgcoB2DtqdZKM/CXR/dylogJylfE1NeG/lIbR+lth4oldaq5Xx2h8e6bB5fStal/d2lY6Vc9rFzAHXx85oA0uf7gIDlpNxrymsDGERdc828BIDuWdn2AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6xo3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpW3I3m77333nj1q18dGzdujHXr1sVznvOc+Kd/+qcl/8xNN90UZ5xxRqxZsyZOOeWUuP7665tZLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBJRd1o/qGHHoqzzz47Vq9eHf/rf/2v+M53vhNXX311HHfccYv+me9///vx8pe/PF784hfHP//zP8cb3/jGeM1rXhNf/vKXG1w5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0CWr2l5AlT7wgQ/E5s2b47rrrjv0ayeffPKSf+bjH/94nHzyyXH11VdHRMRpp50WX//61+NDH/pQnHfeebWuFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOimlW0voEp/+7d/G8973vPiVa96VTzlKU+Jbdu2xZ/+6Z8u+WduueWWeMlLXjLn184777y45ZZb6lwqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GGr2l5Ale6555742Mc+Fpdddlm87W1vi//zf/5PvOENb4iRkZG4+OKLF/wzP/3pT2PTpk1zfm3Tpk0xNTUVjzzySKxbt27en5meno7p6elD/z01NVXtgQC10zGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5A/HUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRPx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPla2fYCqnTgwIE444wz4n3ve19s27Ytfvu3fzte+9rXxsc//vFKP89VV10VY2Njh/63efPmSv9+oH46hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8qdjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqG/OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhXytmZ2dn215EVU466aR46UtfGn/2Z3926Nc+9rGPxXve85649957F/wz27dvjzPOOCOuvfbaQ7923XXXxRvf+MaYnJxc8M9MT0/H9PT0of+empqKzZs3x+TkZIyOjlZzMECtdAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRPx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPnTMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQ75Wtb2AKp199tlx5513zvm1f/3Xf42TTjpp0T/zwhe+ML74xS/O+bWvfvWr8cIXvnDRP7NmzZpYs2bNcIsFWqVjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhfzqGMmgZyqBlKDJFev0AAQAASURBVIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXIn46hDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnytbLtBVTpTW96U/zjP/5jvO9974u77747/vzP/zz+5E/+JF7/+tcf+j1vfetb46KLLjr036973evinnvuid/7vd+L733ve/HRj340Pve5z8Wb3vSmNg4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6ICibjT//Oc/Pz7/+c/HZz7zmXj2s58d7373u+Paa6+N3/zN3zz0e37yk5/Ezp07D/33ySefHP/zf/7P+OpXvxqnn356XH311fFnf/Zncd5557VxCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAHrGp7AVV7xSteEa94xSsW/fj1118/79d++Zd/OW6//fYaVwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABw2Mq2FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMNWtb0AYGGTe2diYs9MTO3bH6PrVsf40SMxtn6k7WVB1nQFMJ/ZSFfY61AGLQPDMkegTNrmSPYEkDMzDPKhVyifzqFdGgQOMg9gLk1Ad+kfBqMdIBfmFeRDr0BXmHfQHv1BszQHadEkpEOPkD8dAxFmAXSBzgFzAKAcZjpAO8xf6CbtAwApc6N5SNB9ux6Jt9xwR3ztrolDv7Z9y3i8/4Ktcfyx61pcGeRLVwDzmY10hb0OZdAyMCxzBMqkbY5kTwA5M8MgH3qF8ukc2qVB4CDzAObSBHSX/mEw2gFyYV5BPvQKdIV5B+3RHzRLc5AWTUI69Aj50zEQYRZAF+gcMAcAymGmA7TD/IVu0j4AkLqVbS8AmGty78y8FxERETffNRGX33BHTO6daWllkC9dAcxnNtIV9jqUQcvAsMwRKJO2OZI9AeTMDIN86BXKp3NolwaBg8wDmEsT0F36h8FoB8iFeQX50CvQFeYdtEd/0CzNQVo0CenQI+RPx0CEWQBdoHPAHAAoh5kO0A7zF7pJ+wBADtxoHhIzsWdm3ouIg26+ayIm9nghAf3SFcB8ZiNdYa9DGbQMDMscgTJpmyPZE0DOzDDIh16hfDqHdmkQOMg8gLk0Ad2lfxiMdoBcmFeQD70CXWHeQXv0B83SHKRFk5AOPUL+dAxEmAXQBToHzAGAcpjpAO0wf6GbtA8A5MCN5iExU/v2L/nx3ct8HJhPVwDzmY10hb0OZdAyMCxzBMqkbY5kTwA5M8MgH3qF8ukc2qVB4CDzAObSBHSX/mEw2gFyYV5BPvQKdIV5B+3RHzRLc5AWTUI69Aj50zEQYRZAF+gcMAcAymGmA7TD/IVu0j4AkAM3mofEjK5dveTHj1nm48B8ugKYz2ykK+x1KIOWgWGZI1AmbXMkewLImRkG+dArlE/n0C4NAgeZBzCXJqC79A+D0Q6QC/MK8qFXoCvMO2iP/qBZmoO0aBLSoUfIn46BCLMAukDngDkAUA4zHaAd5i90k/YBgBy40TwkZnzDSGzfMr7gx7ZvGY/xDSMNrwjypyuA+cxGusJehzJoGRiWOQJl0jZHsieAnJlhkA+9Qvl0Du3SIHCQeQBzaQK6S/8wGO0AuTCvIB96BbrCvIP26A+apTlIiyYhHXqE/OkYiDALoAt0DpgDAOUw0wHaYf5CN2kfAMiBG81DYsbWj8T7L9g678XE9i3j8YELtsbYei8koF+6ApjPbKQr7HUog5aBYZkjUCZtcyR7AsiZGQb50CuUT+fQLg0CB5kHMJcmoLv0D4PRDpAL8wryoVegK8w7aI/+oFmag7RoEtKhR8ifjoEIswC6QOeAOQBQDjMdoB3mL3ST9gGAHKyYnZ2dbXsRuZuamoqxsbGYnJyM0dHRtpdDhib3zsTEnpmY2rc/RtetjvGjH3+xMLFnJnbv2x/HrF0d4xtGvIiokY674WBrg3S1UKeaTI+Wq2Xfd8Mws7EuWqYOT9zrR69ZFSNHrYxdj8zEhrXmW120TB2qum55ntM7LdOGOhtN8flvE7ScJ9er3nWl7V5atm8e15U9QZ5cl1lOqjPMNWYuLRMxfK+6ap+WWU7d12VzYHg6LttyDWqoHFpmKZN7Z2LX3v3x8MyjsXfmsRhbtzqecswavSdIy81J9f2jnHlecZh/j0qb/umVlufSDrnyHLt7zKve5HYN03I76t4neu0eLVOiXmZlafNOy+Sk1/5ye35cBS1zpCo6KO2al4M2Wu7izMyVJvPgmtwNpfbomnCYlvMx6L4ttWPm0jLL6WUWuD62T8sM49+n9sVDD8/E1L5HY3Tdqjhu/UhsGl3b9rI6Scu0xRyolpahDLm2PMj7OV7TUbKUW9ZeWbyfXq+UW6bbPPfqj5ahDFqGfKxqewFVete73hVXXnnlnF879dRT43vf+96Cv//666+PSy65ZM6vrVmzJvbt21fbGuFI9+16JN5ywx3xtbsmDv3a9i3j8f4LtsbTn7KhxZVBecbWD/bieqlOjz92XZVLhGTY990x6GyE3Bzc6+Yb5K2K65Y5AGmru1HPf8mF61V/tP04++YwewLIWYozzDUGFjZMr7qCPNR5XTYHYHlLNagh6IalWh9b3+LCoGUpvn+UM88r+uN8tUv/VKVrLWsHyIV5tbyuXcMYTBP7RK9A7nqdleYdtKeX/jw/huo6cM0rn5mZF01COkrs0TWBHA2zb0vsGOjfcrPA9RHypmHAHAAoS7/v57gOQDu0Vx7vp0M3ee4FAKRsZdsLqNqznvWs+MlPfnLof1//+teX/P2jo6Nzfv8Pf/jDhlYKEZN7Z+Y9+Y+IuPmuibj8hjticu9MSysDDtIpXWTfA6Uy3wBzANKmUXicFhiEfQNAXVxjoHq6AswBGI6GoBu0DjTBrOmP8wVl0DIAuXINoxf2CcDyzEoog5ZBB/TOXgHgINcEcmTfAnUzZyBvGgbMAYBucx2AdmgPoJvMfwCgacXdaH7VqlXxH/7Dfzj0v/Hx8SV//4oVK+b8/k2bNjW0UoiY2DMz78n/QTffNRETe7wAgLbplC6y74FSmW+AOQBp0yg8TgsMwr4BoC6uMVA9XQHmAAxHQ9ANWgeaYNb0x/mCMmgZgFy5htEL+wRgeWYllEHLoAN6Z68AcJBrAjmyb4G6mTOQNw0D5gBAt7kOQDu0B9BN5j8A0LRVbS+ganfddVccf/zxsXbt2njhC18YV111VZx44omL/v49e/bESSedFAcOHIgzzjgj3ve+98WznvWsJT/H9PR0TE9PH/rvqampytZPt0zt27/kx3cv83EGp2N6pdO0abke9j1N0zJNMd/qpWVyYA4sT8u0SaPV0XLetMBB/bRs30C6XJfJnWvM47RMlXTVHi2TCnNgcDomQkMl0DK90Hr6tEwJzBr/HgWl0DKUwXNsWFou1zAttyuXfUL6tEzJujQrtUzJtAzd6qAEbbZsr0A1XJMpgWuClnNk37IQLVMlc6Y9WqYKGm6flmmbOVANLUMZutiy6wAlyqFl7cHycmgZ+tXF+a9lKIOWIV8r215Alc4666y4/vrr40tf+lJ87GMfi+9///tx7rnnxu7duxf8/aeeemp88pOfjC984Qvx6U9/Og4cOBC/9Eu/FD/+8Y+X/DxXXXVVjI2NHfrf5s2b6zgcOmB07eolP37MMh9ncDqmVzpNm5brYd/TNC3TFPOtXlomB+bA8rRMmzRaHS3nTQsc1E/L9g2ky3WZ3LnGPE7LVElX7dEyqTAHBqdjIjRUAi3TC62nT8uUwKzx71FQCi1DGTzHhqXlcg3Tcrty2SekT8uUrEuzUsuUTMvQrQ5K0GbL9gpUwzWZErgmaDlH9i0L0TJVMmfao2WqoOH2aZm2mQPV0DKUoYstuw5Qohxa1h4sL4eWoV9dnP9ahjJoGfJV1I3mf+VXfiVe9apXxdatW+O8886LL37xi7Fr16743Oc+t+Dvf+ELXxgXXXRRPPe5z40XvehF8dd//dfx5Cc/Of74j/94yc/z1re+NSYnJw/970c/+lEdh0MHjG8Yie1bxhf82PYt4zG+YaThFXWHjumVTtOm5XrY9zRNyzTFfKuXlsmBObA8LdMmjVZHy3nTAgf107J9A+lyXSZ3rjGP0zJV0lV7tEwqzIHB6ZgIDZVAy/RC6+nTMiUwa/x7FJRCy1AGz7Fhablcw7Tcrlz2CenTMiXr0qzUMiXTMnSrgxK02bK9AtVwTaYErglazpF9y0K0TJXMmfZomSpouH1apm3mQDW0DGXoYsuuA5Qoh5a1B8vLoWXoVxfnv5ahDFqGfBV1o/kjHXvssfGMZzwj7r777p5+/+rVq2Pbtm3L/v41a9bE6OjonP/BIMbWj8T7L9g670XA9i3j8YELtsbY+vJeAKRCx/RKp2nTcj3se5qmZZpivtVLy+TAHFielmmTRquj5bxpgYP6adm+gXS5LpM715jHaZkq6ao9WiYV5sDgdEyEhkqgZXqh9fRpmRKYNf49CkqhZSiD59iwtFyuYVpuVy77hPRpmZJ1aVZqmZJpGbrVQQnabNlegWq4JlMC1wQt58i+ZSFapkrmTHu0TBU03D4t0zZzoBpahjJ0sWXXAUqUQ8vag+Xl0DL0q4vzX8tQBi1DvlbMzs7Otr2IuuzZsydOPPHEeNe73hVveMMblv39jz32WDzrWc+Kl73sZXHNNdf0/HmmpqZibGwsJicnDUAGMrl3Jib2zMTuffvjmLWrY3zDSJFP/lOmY5aj0zxouVr2PW3RMnUz35qhZVJmDvROy7RBo9XTcp60wJF6adm+gfS5LpMr15i5tEwVdNU+LdM2c2B4Ou42DZVDyyxF6/nQMjkzaw7z71FQBi1DGTzHhoXldg3Tcjty2yekT8uUqIuzUsuUSMtappsdlKCNlu0VqJZrMjlzTThMy/mwb1mKlqmCOdM+LTMMDadDy7TFHKiWlqEMXWrZdYCSpdyy9qB3KbcM/ery/NcylEHLkI9VbS+gSm9+85vj/PPPj5NOOinuu+++uOKKK+Koo46KCy+8MCIiLrroojjhhBPiqquuioiIP/iDP4gXvOAFccopp8SuXbvigx/8YPzwhz+M17zmNW0eBh00tr47T/ghVzqli+x7oFTmG2AOQNo0Co/TAoOwbwCoi2sMVE9XgDkAw9EQdIPWgSaYNf1xvqAMWgYgV65h9MI+AVieWQll0DLogN7ZKwAc5JpAjuxboG7mDORNw4A5ANBtrgPQDu0BdJP5DwA0pagbzf/4xz+OCy+8MB544IF48pOfHOecc0784z/+Yzz5yU+OiIidO3fGypUrD/3+hx56KF772tfGT3/60zjuuOPizDPPjH/4h3+IZz7zmW0dAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANABRd1o/i/+4i+W/PhNN900578/9KEPxYc+9KEaVwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw38q2FwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0bFXbC4CSTe6diYk9MzG1b3+Mrlsd40ePxNj6kbaXBcnSDNAkMwfSoUdIgxaBLjMDIQ1aJBf2KlA1cwXSp1Mom8bJif0K5MK8Iif2K9AGsweapztgGGYIubOHAWibaxFdY8/D4vQBw9EQUBXzBPKhVyiDliE/ugWOZC4A0DbXIqDLzECgTmYMAJAiN5qHmty365F4yw13xNfumjj0a9u3jMf7L9gaxx+7rsWVQZo0AzTJzIF06BHSoEWgy8xASIMWyYW9ClTNXIH06RTKpnFyYr8CuTCvyIn9CrTB7IHm6Q4YhhlC7uxhANrmWkTX2POwOH3AcDQEVMU8gXzoFcqgZciPboEjmQsAtM21COgyMxCokxkDAKRqZdsLgBJN7p2Z9wIgIuLmuybi8hvuiMm9My2tDNKkGaBJZg6kQ4+QBi0CXWYGQhq0SC7sVaBq5gqkT6dQNo2TE/sVyIV5RU7sV6ANZg80T3fAMMwQcmcPA9A21yK6xp6HxekDhqMhoCrmCeRDr1AGLUN+dAscyVwAoG2uRUCXmYFAncwYACBlbjQPNZjYMzPvBcBBN981ERN7vAiAJ9IM0CQzB9KhR0iDFoEuMwMhDVokF/YqUDVzBdKnUyibxsmJ/QrkwrwiJ/Yr0AazB5qnO2AYZgi5s4cBaJtrEV1jz8Pi9AHD0RBQFfME8qFXKIOWIT+6BY5kLgDQNtcioMvMQKBOZgwAkDI3mocaTO3bv+THdy/zcegazQBNMnMgHXqENGgR6DIzENKgRXJhrwJVM1cgfTqFsmmcnNivQC7MK3JivwJtMHugeboDhmGGkDt7GIC2uRbRNfY8LE4fMBwNAVUxTyAfeoUyaBnyo1vgSOYCAG1zLQK6zAwE6mTGAAApc6N5qMHo2tVLfvyYZT4OXaMZoElmDqRDj5AGLQJdZgZCGrRILuxVoGrmCqRPp1A2jZMT+xXIhXlFTuxXoA1mDzRPd8AwzBByZw8D0DbXIrrGnofF6QOGoyGgKuYJ5EOvUAYtQ350CxzJXACgba5FQJeZgUCdzBgAIGVuNA81GN8wEtu3jC/4se1bxmN8w0jDK4K0aQZokpkD6dAjpEGLQJeZgZAGLZILexWomrkC6dMplE3j5MR+BXJhXpET+xVog9kDzdMdMAwzhNzZwwC0zbWIrrHnYXH6gOFoCKiKeQL50CuUQcuQH90CRzIXAGibaxHQZWYgUCczBgBImRvNQw3G1o/E+y/YOu+FwPYt4/GBC7bG2HovAuCJNAM0ycyBdOgR0qBFoMvMQEiDFsmFvQpUzVyB9OkUyqZxcmK/Arkwr8iJ/Qq0weyB5ukOGIYZQu7sYQDa5lpE19jzsDh9wHA0BFTFPIF86BXKoGXIj26BI5kLALTNtQjoMjMQqJMZAwCkbMXs7Oxs24vI3dTUVIyNjcXk5GSMjo62vRwSMrl3Jib2zMTuffvjmLWrY3zDiBcAidJxGjTDsLRMP8ycdGm5e/RYJi3nR4ssRMt0RekzUMvkovQWh6XldNirDEPLLMRcyY+Wu0enZdIyB2k8X13s2H6lRF1suQvMq+7JuWX7FQ7LueXcmD3UScsL0x250XJazBAGlUrL9jAMJ5WWIWcpXIu0TJNS2POl0nL+9EGEloehIVKh4/yZJ0RoORd6ZTlazoOWWY6W06NbBqHlspkL3aFlKEOJLbsW0UUltsxgzMC8aZnUmTG90TKUQcuQj1VtLwBKNrbek37oh2aAJpk5kA49Qhq0CHSZGQhp0CK5sFeBqpkrkD6dQtk0Tk7sVyAX5hU5sV+BNpg90DzdAcMwQ8idPQxA21yL6Bp7HhanDxiOhoCqmCeQD71CGbQM+dEtcCRzAYC2uRYBXWYGAnUyYwCAFK1sewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeNG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANc6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIa50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhq9peAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQrp07/z/27j5Kz7o+8P8nk2TyNMkEGHnSYBEi6NJYUH8tInFtrRV1t7o5/MHSg6K73bOFFs8eepDtepRiN9DW7YPWXR8q2D0q57BUbP1t3aVaCCq2SvAHVmWDgqGC6CiZyTBkJsL8/mAnJJmH++l6+F7f6/U6h3PIzCS57vv+vj/f67qTybU3xsfH6z6MZY2NjcUpp5xS92EAAAAAAC1T643mf//3fz9+8zd/M9atWxcREV/60pfiZS97WaxZsyYiIvbv3x9XXXVVfPCDH6zzMAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPuzduzfOPPNF8eST03UfyrLWrVsf3/72t9xsHgAAAACoVK03mr/66qvjrW9966EbzV9wwQXx9a9/PV7wghdERMT09HR86EMfcqN5KjUxPRvjU7MxeeBgbFq3OsY2DMfo+uG6DwsaQT+QJm0C/TI/IA9aBhicWQqYAxzOeoA8aBnSoEWgTGYMZbCugDqYPeTCWgZyY67B4HQEDMocIQfWMQDdsmdAuvRJzqxvqIbWgF6ZG7CQLoAqmTmQBy0D/TI/YHDj4+Px5JPT8fNve3dsOuln6j6cRU0++lD8/ceuifHxcTeaJwv2LyB15hRQJTMHAEhdrTean5ubW/bHULVH9j0ZV91yb9y5Z/zQx7ZvHYvrdmyLkzevq/HIIH36gTRpE+iX+QF50DLA4MxSwBzgcNYD5EHLkAYtAmUyYyiDdQXUwewhF9YykBtzDQanI2BQ5gg5sI4B6JY9A9KlT3JmfUM1tAb0ytyAhXQBVMnMgTxoGeiX+QHF2nTSz8Sxp5xR92FA9uxfQOrMKaBKZg4A0ARDdR8ApGJienbBCXxExK494/HOW+6NienZmo4M0qcfSJM2gX6ZH5AHLQMMziwFzAEOZz1AHrQMadAiUCYzhjJYV0AdzB5yYS0DuTHXYHA6AgZljpAD6xiAbtkzIF36JGfWN1RDa0CvzA1YSBdAlcwcyIOWgX6ZHwA0kf0LSJ05BVTJzAEAmsKN5uH/Gp+aXXACP2/XnvEYn3ISD0vRD6RJm0C/zA/Ig5YBBmeWAuYAh7MeIA9ahjRoESiTGUMZrCugDmYPubCWgdyYazA4HQGDMkfIgXUMQLfsGZAufZIz6xuqoTWgV+YGLKQLoEpmDuRBy0C/zA8Amsj+BaTOnAKqZOYAAE2xqu4D+OhHPxojIyMREfHTn/40brzxxhgbG4uIiP379/f0a73nPe+Ja6655oiPnXHGGfHtb397yZ9z8803x7ve9a546KGHYuvWrXH99dfH61//+h4fBTmYPHBw2c/v7/B5aDP9QJq0CfTL/IA8aBlgcGYpYA5wOOsB8qBlSIMWgTKZMZTBugLqYPaQC2sZyI25BoPTETAoc4QcWMcAdMueAenSJzmzvqEaWgN6ZW7AQroAqmTmQB60DPTL/ACgiexfQOrMKaBKZg4A0BS13mj+lFNOiY985COHfnziiSfGf//v/33B1/Tin/2zfxZ/+7d/e+jHq1Yt/RC//OUvx0UXXRQ7d+6MN77xjfHJT34y3vSmN8Xu3bvjrLPO6un3pfk2rV297Oc3dvg8tJl+IE3aBPplfkAetAwwOLMUMAc4nPUAedAypEGLQJnMGMpgXQF1MHvIhbUM5MZcg8HpCBiUOUIOrGMAumXPgHTpk5xZ31ANrQG9MjdgIV0AVTJzIA9aBvplfgDQRPYvIHXmFFAlMwcAaIqhOn/zhx56KB588MGO//Vi1apVceKJJx76b2xsbMmv/ZM/+ZN43eteF7/9278dL3rRi+Laa6+Nc845Jz7wgQ8M+tBooLGR4di+dfH1sn3rWIyNDFd8RNAc+oE0aRPol/kBedAywODMUsAc4HDWA+RBy5AGLQJlMmMog3UF1MHsIRfWMpAbcw0GpyNgUOYIObCOAeiWPQPSpU9yZn1DNbQG9MrcgIV0AVTJzIE8aBnol/kBQBPZv4DUmVNAlcwcAKApar3R/F133RWf/exnj/jYX/zFX8Spp54axx9/fPz6r/96zMzM9PRr7tmzJ04++eR4wQteEBdffHHs3bt32d//Na95zREf+5Vf+ZW46667lv09ZmZmYnJy8oj/aL7R9cNx3Y5tC07kt28di+t3bIvR9U7ic6LjYumHumh5edqkKbScHvODfmg5PVqmH1qGIzV1lmoZilPnHNByepq6L1AvLadHy/RDy8XTInXQcnuYMfmqs2PrCopjT+6e2UPKemnZWoZ02Zf7Y66Rmia2rCNYqIkt18kcIVWulyEP9mVSY8/oj5apgj7Lp+X6WN8USctL0xpNoeN0mBsMIteWdUHb5NpyU5g5FEXL9dIyRdFy+5gfedIy5EHLS7N/0SRabidzKj9aJmVmTve0DHnQMjTXirm5ubm6fvPXve518epXvzquuuqqiIi477774pxzzom3vvWt8aIXvSj+4A/+IP7dv/t38Z73vKerX+9v/uZvYmpqKs4444x49NFH45prronvf//78Y1vfCM2bty44OuHh4fj4x//eFx00UWHPvbBD34wrrnmmnjssceW/H3e8573xDXXXLPg4xMTE7Fp06aujpV0TUzPxvjUbOw/cDA2rl0dYyPDTuAzpONy6Ieqabk72iR1Wk6X+UEvtJwuLdMLLcPimjZLtQzFq2MOaDldTdsXqJeW06VleqHl8miRKmm5fcyY/KTQsXUFg0uh5aYxe0hRPy1by5Ae+/JgzDVS0eSWdQTPanLLdTJHSI3rZciDfZlU2TN6o2WqpM/yaLl+1jdF0HJnWiN1Ok6PuUE/cm9ZF7RF7i03hZnDoLScBi0zKC23l/mRFy3XY/fu3fHSl740fvl3bohjTzmj7sNZ1E/23h+3/d6lcffdd8c555xT9+HQgZY7s3/RBFpuN3MqH1qmCcyczrQMedAyNFetN5o/6aST4q//+q/jZS97WURE/M7v/E7ccccd8cUvfjEiIm6++eZ497vfHd/85jf7+vX37dsXz3/+8+O//Jf/Em9/+9sXfL7fG83PzMzEzMzMoR9PTk7Gli1bDD1oEB1DHrQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAzNp2PIg5YhD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWobm0zHkQcuQBy1DHrQMedAy5EHL9XCjeYqmZciDliEPWoY8aBnyoGVorlV1/uaPP/54nHDCCYd+fMcdd8QFF1xw6Mcvf/nL4+GHH+7719+8eXO88IUvjAceeGDRz5944okLbij/2GOPxYknnrjsr7tmzZpYs2ZN38cF1E/HkActQx60DHnQMuRBy5AHLUMetAx50DLkQcuQBy1D8+kY8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5ah+XQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAx50DLkQcvQXEN1/uYnnHBCPPjggxERMTs7G7t3745f+IVfOPT5/fv3x+rVq/v+9aempuI73/lOnHTSSYt+/txzz43Pf/7zR3zstttui3PPPbfv3xMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgk1pvNP/6178+3vnOd8add94ZV199daxfvz7OP//8Q5+/995747TTTuv617vyyivjjjvuiIceeii+/OUvx5vf/OZYuXJlXHTRRRERcckll8TVV1996OuvuOKK+NznPhfve9/74tvf/na85z3via997Wtx+eWXF/cgAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI6yqs7f/Nprr41/9a/+VbzqVa+KkZGR+PjHPx7Dw8OHPv+xj30sXvva13b96/3TP/1TXHTRRfHjH/84nvOc58QrX/nK+MpXvhLPec5zIiJi7969MTQ0dOjrX/GKV8QnP/nJ+E//6T/Ff/yP/zG2bt0at956a5x11lnFPUgqMTE9G+NTszF54GBsWrc6xjYMx+j64c4/EeiZ3oDcmGvQHa1AObQFtJX5B/nTObAYswFrAFiK+QDNoVdyZ40DRTBLoHl0C+TGXINqaA3azQyA3mgGFqcNgPyZ9SzH+gCaxtyCdtI+dbH2gF6YGYA5AO2hdwBoF3s/ubGmgRyYZQAA5av1RvNjY2Oxa9eumJiYiJGRkVi5cuURn7/55ptjZGSk61/vpptuWvbzt99++4KPXXjhhXHhhRd2/XuQnkf2PRlX3XJv3Lln/NDHtm8di+t2bIuTN6+r8cggP3oDcmOuQXe0AuXQFtBW5h/kT+fAYswGrAFgKeYDNIdeyZ01DhTBLIHm0S2QG3MNqqE1aDczAHqjGVicNgDyZ9azHOsDaBpzC9pJ+9TF2gN6YWYA5gC0h94BoF3s/eTGmgZyYJYBAFRjqO4DiIgYHR1dcJP5iIhjjz02hoeHazgimmJienbBhUNExK494/HOW+6NienZmo4M8qM3IDfmGnRHK1AObQFtZf5B/nQOLMZswBoAlmI+QHPoldxZ40ARzBJoHt0CuTHXoBpag3YzA6A3moHFaQMgf2Y9y7E+gKYxt6CdtE9drD2gF2YGYA5Ae+gdANrF3k9urGkgB2YZAEB1VtV9ADCIH+6fWXDhMG/XnvEYn5qN0fXDFR8VNNvE9GyMT83G5IGDsWnd6hjbMByj64djfGpWb0BylppZ3TDXYHFHd/X003NagR51sz/Zh4C26nb+DXKuD9Qr9fMc84WiWVPdSX02UL4q1oAeoZk6zYdHJw9EROgZEtCx14kD8d3xJ+zDJMmf3QBVmJiejUcnDpglkIBe3idyDgAUIaX3p801WFzRnWoN0lb23mwGkKqUzksPpxlYnDboRqqzHdqu2zbNepbTy/qwH0D/9FMc+xqkq8xZp33q0s/as+9Dferuz34F7bDcrDEHoD38uwQA0L26r9eL4Fyf3OS0pnOYMUB/ipxlZgkAwPLcaJ7GemTfk7H3J9PLfs3+AwcrOhrIwyP7noyrbrn3iIvy7VvH4rod22KyQ096A6q23Mw6efO6jj/fXIOFFuvqz9/ysmV/jlbgSN3uT/YhoK26mX+DnusD9Ur5PMd8oWjWVPdSng1Uo+w1oEdork7z4bs/eiL+8//7LT1DAjr2Ov5E/MYndkeEfZi0+LMboArzs+ai/+eUZb/OLIHy9fo+kXMAYFCpvT9trsFCZXSqNUhXFXuzGUCKUjsvPZxmYHHaoJOUZzu0WS9tmvUsp9v1YT+A/umnWPY1SFPZs0771KXXtWffh/qk0J/9CvLXadaYA9Ae/l0CAOhOCtfrRXCuT25yWdO5zBigP0XNMrMEAKCzoboPAPoxMT0bV91yb8evWzu8MiamZys4Imi++a4Ov4iOiNi1Zzzeecu9MbJm1bI/f+3qlXHP3sfjOz+a0h1Quk4zq5s5tGnt6mU/v7HD54swMT0b3/nhlPlJrebX4e7v/SS+9+Mn4iVbNsf64ZVd//wqWoEmmJiejT2P7Y9vPToZl553alz+i6cfammx/SmFfQigDp3m34Y1q+KqW+6Nu7/3eFz+i6fHn7/lZfHBi8+Jt553atzxf37knBkqMsj1aqrnOUW8lwCHq3pNNf19pFRnA9Xpdg30s9bNeGi2TvNhzaqhnntu+r4JqerU65Zj1x96b9w+TCq6OVec3zfWrFr+r9O6bgGWcvis6TRLNnT4e5hAZ8td8/XzPpH3LoFBpPj+dDd/LwPapKxOO7XmexqhHlXtzVVcR/jzLnqR4nnp4To1M7xqyDqnlZr0vpR9qXqpz3Zoq17b7GbWm7Ht1e36WGzNfe17j8cd/+dHseex/dYOLKGI8ykz+khNuoaBtqji2rHs9s1altLL9yL28m/9AMXqZy8qY/Y7V4W8dfMeme8Jg+YY9FygjH+XAAByk8LfOyrq+t81P7nJYU2nMGPonT+To0jdfA9zp/VmlgAAdMe/DkMjjU/Nxp17xuMlWzbHeacfF1964McLvua804+Lz977aNz78L64bse2OHnzuhqOFJpjvqvF7NozHsMrh2L71rHYtcjXvPL04+Kz9z0aH/jCAxERsX3rmO6AUnWaWeNTszG6fnjZX2NsZHjJubZ961iMjSz/8wf1yL4nF7yBaX5StcXW4XmnHxd/etHZ8VufuiemZ5+Kex7et+Q5dxWtQBN009LR+1Pd+xBAXTrNv+GVQ3H39x6PP73o7LjhSw8eeq8h4pnZeu4Ljut4rg8MZtDr1VTPc4p4LwEOV+WayuF9pFRnA9XpZg30u9bNeGi25ebDeacfF/c8vC8iuu85h30TUtWp1//1jz+Ie/Y+fui9cfswKVjuXPFr33s8Hp8+GO/6zDfizj3jcfkvnu7PRYG+HD5rlvs7Fuedflx87XuPx4Y1q5ybQp86XfP18z6R9y6BQaT4/nSn63fnI7RNWZ12as33NEI9qtqby76O8Odd9CrF89LDddo3/+c3fhAf+MID1jmt05T3pexL9Uh9tkNb9dpmp1m/dvVQXP6pe8zYlurmXGCxNbd+eOWh77u7+i/vO+LnWDvwrEHPp5wHL9SUaxhokyquHcts36xlOf1+L2Knf+sHKFave1FZs9+5KuStm/fIfE8YNEMR5wJF/7sEAJCjuv/eUZHX/675yU0Oa7ruGUPv/JkcRVtulp2/dSy+9r3HO/69NrMEAKA7Q3UfAPRj8sDBiIj42BcfjEvPOzXOO/24Iz5/3unHxaXnnRof++KDsWvPeLzzlntjYnq2jkOFxpjvaikTT87GdTu2xfatY0d8/JWnHxdv/b+9zdMdULZOM2t/h89HRIyuH150rm3fOhbX79hW6puHE9OzC95UjzA/qdZS6/BLD/w4bvjSg/G2V54aEc+ec59fQyvQBN22FHHk/lTnPgRQp07zb9+Ts/G2V54aN3zpwQXfvPOlB34c7/rMN5wvQ4mKuF5N9TyniPcS4HBVralc3kdKdTZQnU5rICL6XutmPDTbUvPh8L/3Ma9Tz7nsm5Cqbno9+r1x+zB1W+5c8W2vPDXedet9h/aNpf4uousWoJPDZ82hv2OxxN9rvvaz33RuCn3q5pqvn/eJvHcJDCLF96c7Xb87H6Ftyuq0m/fKvDcN1atqby7zOsKfd9GPFM9LD9ftnwlb57RNE96Xsi/VJ/XZDm3Va5vLzfr//OafjXf/1T+asS3WzbnAYmtuqe+7s3bgSIOcTzkPXlwTrmGgbaq4diyrfbOWTvr9XsRO/9YPUKxe9qIyZ79zVchbN++R+Z4wSF9R5wJF/rsEAJCrOv/eUdHX/675yU0Oa9rfbWwWfyZHGZabZZe9+vS49rPfPOLji603swQAoDur6j4A6MemtasjImJ69qn4rU/dE2975anxzgvOjId/8mSsWTUU9zy8L37rU/fE9OxTEfHMRcP41Gwj3hiBusx3tZQNa1bHyZvXxfsvOjvGp2Zj/4GDsXb1yvjsfY8e0ds83QFl6jSzNnb4/Lyj59rGtatjbGS49Nk1PjW74E31eeYnVVluHX7pgR/H28575htm5s+5/+a3zo+fPj1XaSvQBN22FLFwf6prHwKo23Lzb3r2qTh7y+b4wBceWPTn3ul8GUpV1PVqiuc5Rb2XAPOqWlM5vY+U4mygWsutge/8cKrvtW7GQ/PNz4dHJw7Ed8efWPTvfUR07jmnfRNS1U2vh783bh+mbsudKx79PuThfxfxbeedGqPrVscx64ddtwAdHT5r5mfJTb/+C/HW/TMx89OnF+yXzk2hP91c8/X7PpH3LoF+pfr+9Mmb18W1v3pWPPCjKecjtF6ZnXbzXpneoFpV7s1lXUf48y76kep56eEOb+bx6dmYePLgon8mbJ3TNqm/L2Vfqk8TZju0UT9tLjXrf/zEbPztt3646K9jxrZHp3OBxdbcct93Z+3AswY5n3IevLTUr2Ggbaq6diyjfbOWbvT7vYid/q0foDi97EVlz37nqpCvbt4j8z1hkL4izwWK+ncJACBXdf69ozKu/13zk5umr2l/t7FZ/JkcZVlslq0aWhEX/OmdC+5dF7FwvZklAADdcaN5GmlsZDi2bx2LXXvGY3r2qfjAFx6IF5+0KX7jE7uX/Dn7Dxys8AiheQ7v6mjbt47F2MgzF9yj6599o/GevY8v+Q1oEboDytPtzOrG4XOtKpMd5qP5SRU6rcOZnz596P9f9vxjYvP61f7ABxbRbUtL7U917EMAKVhq/o2NDMdDP35i2Z/rfBnKU+T1amrnOUW+lwAR1a2p3N5HSm02UL2l1sAga92MhzzMz4b//D+/1XfPue2bkKrR9cPx3fEnlv17WjM/fdo+TBKWO1dczPzfRYyIuPU3XhGnHT9S5uEBmTh61kzPPhX/9PiT/k4zFKyba75Txzb0/T6R9y6BfqT8/vRPpmfj7R//2pKfdz5CW5TdaTfvlekNqlP13lzGdYQ/76IfKZ+XHm6+mXv2Pu5cFQ6T8vtS9qX6NGW2Q9v02+Zis/674753imcsdy6w2Jo7/Pv/F2PtwDMGOZ9yHry8lK9hoG2qvHYsun2zlm71+72Inf6tH6AYvexFVcx+56qQp27fI/M9YZC2os8Fivh3CQAgV3X+vaOyrv9d85ObJq9pf7exWfyZHGU6epbds/fxRW8yP+/w9WaWAAB0Z6juA4B+jK4fjut2bIvtW8cOfWzNquWX88a1q8s+LGi0xbqKeOYi+vod2xZ9s3FTh650B5Sln5mVEvOTFHRah/Pn103pCurSTUs6Auje6PrheN4x65b9GufLUJ6cr1eb/l4C6alqTeXcJRxukLVuxkM+Bu3ZvgnV6dTb5nWr7cMkYbm9xfuQQFH8nWaoRjfXfN4nAqqW8tzxXhk8o4pO9QbpSHlv7paZQj+atvatc2gOvdanabMd2qLINs1YuuHPoqF/g8xsMxpoiiZfO5q1DMq/9QNp6GUvMvuBfnmPDPJQxrlAk6+LAaBMde6Rrv8hf87Dm8Vcpkq9rDezBACgO6vqPgDo18mb18X7Lzo7xqdmY/+Bg3HM+uHYvnUsdu0ZX/C127eOxdiIiwDo5OiuNq5dHWMjw0teRI+N6A6oT68zKyXmJylYbh2ev3UsTjl2fXz+P7yqMV1BXTq1dPpzRuL9F52tI4AenLhprfNlqEnu16tNfi+BNFWxpnLvEuYNutbNeMjHID3bN6E6nd4bP+34kThh09oajgwWWmpviQj7BlAYf6cZytftNZ/3iYCqpTp3vFcGzyq7U71BWlLdm7tlptCvJq196xyaQ6/1atJshzYpqk0zlm75s2joX78z24wGmqSp145mLYPyb/1AOrrdi8x+YBDeI4PmK+tcoKnXxQBQtrr2SNf/0A7Ow5vDXKZKva43swQAoLOhug8ABjG6fjhOO34kfu6UY+L5Yxviuh3bYvvWsSO+ZvvWsbh+xzYXAtClw7s67fiRZdsZXT+sO6BWvcyslJifpGC5dfj7O7bF1hM2NqorqEunlp4/tkFHAD1yvgz1aUN/TX0vgXSVvaba0CVEFLPWzXjIR7892zehOp3eG3eTeVKz2N5i3wCK5u80Q7l62bu9TwRULcW545oHjlRmp3qD9KS4N3fLTGEQTVn71jk0h17r15TZDm1TRJtmLL3wZ9HQv35mthkNNE0Trx3NWgbl3/qBtHSzF5n9wKC8RwbNVua5QBOviwGgCnXska7/oT2chzeDuUyV+llvZgkAwPJWzM3NzdV9EE03OTkZo6OjMTExEZs2bar7cFpvYno2xqdmY/+Bg7Fx7eoYGxl2IUBHOh6M7kiFlmka83NxWq6WdUhZ2taylshV21omLWZrcbRMr/SXJi23my7zoeXlWes0hZbTZpbQLS0PTm/UrYiOrWOoX857shlDm1TVsq6gXDnvy21lbraTluuhN4qm5XYzU/Kh5aVZ5zRJ21vWK7loe8ukyYztnZafYe3QdE1oWWewvCZ0TPrM2vo1vWVrCJ7RpJZ1C0trUsupMFNIkZaXp1uaQsvV2L17d7z0pS+NX/6dG+LYU86o+3AW9ZO998dtv3dp3H333XHOOefUfTj0SMv1sedTJC3D4FKYy1pujxTWG+XRMuRBy9Acq+o+ACja6HoXCFA13QH0x/wkBdYhFENLAMUzW6E++oP06JK2sNaBIpglUB29kQPrGCiTGQPF0xVAb8xNqI7egCKZKbSBdQ7NoVeA8pix9MvagfLpDKB8Zi2DsoageXQLFMlMgebRLQC0gz0fIC3mMlWy3gAAijNU9wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtI0bzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACq2qu4DgCpMTM/G+NRsTB44GJvWrY6xDcMxun647sOCRtERQHXMXKpgnUG9NAjkyGwDqmDWAN0wKzic9QDtpH1IiyZhcDqC5tEt5E/nQNuZg1A93UGxNAUsxmygKaxVgHqYvzSZ9QuQDzMdiqervHg9gXnmAXA0cwHqoz8AoC7OQ+BZegCWY0YAAKTFjebJ3iP7noyrbrk37twzfuhj27eOxXU7tsXJm9fVeGTQHDoCqI6ZSxWsM6iXBoEcmW1AFcwaoBtmBYezHqCdtA9p0SQMTkfQPLqF/OkcaDtzEKqnOyiWpoDFmA00hbUKUA/zlyazfgHyYaZD8XSVF68nMM88AI5mLkB99AcA1MV5CDxLD8ByzAgAgPQM1X0AUKaJ6dkFFyEREbv2jMc7b7k3JqZnazoyaA4dAVTHzKUK1hnUS4NAjsw2oApmDdANs4LDWQ/QTtqHtGgSBqcjaB7dQv50DrSdOQjV0x0US1PAYswGmsJaBaiH+UuTWb8A+TDToXi6yovXE5hnHgBHMxegPvoDAOriPASepQdgOWYEAECa3GierI1PzS64CJm3a894jE+5EIFOdARQHTOXKlhnUC8NAjky24AqmDVAN8wKDmc9QDtpH9KiSRicjqB5dAv50znQduYgVE93UCxNAYsxG2gKaxWgHuYvTWb9AuTDTIfi6SovXk9gnnkAHM1cgProDwCoi/MQeJYegOWYEQAAaXKjebI2eeDgsp/f3+HzgI4AqmTmUgXrDOqlQSBHZhtQBbMG6IZZweGsB2gn7UNaNAmD0xE0j24hfzoH2s4chOrpDoqlKWAxZgNNYa0C1MP8pcmsX4B8mOlQPF3lxesJzDMPgKOZC1Af/QEAdXEeAs/SA7AcMwIAIE1uNE/WNq1dveznN3b4PKAjgCqZuVTBOoN6aRDIkdkGVMGsAbphVnA46wHaSfuQFk3C4HQEzaNbyJ/OgbYzB6F6uoNiaQpYjNlAU1irAPUwf2ky6xcgH2Y6FE9XefF6AvPMA+Bo5gLUR38AQF2ch8Cz9AAsx4wAAEiTG82TtbGR4di+dWzRz23fOhZjI8MVHxE0j44AqmPmUgXrDOqlQSBHZhtQBbMG6IZZweGsB2gn7UNaNAmD0xE0j24hfzoH2s4chOrpDoqlKWAxZgNNYa0C1MP8pcmsX4B8mOlQPF3lxesJzDMPgKOZC1Af/QEAdXEeAs/SA7AcMwIAIE1uNE/WRtcPx3U7ti24GNm+dSyu37EtRte7EIFOdARQHTOXKlhnUC8NAjky24AqmDVAN8wKDmc9QDtpH9KiSRicjqB5dAv50znQduYgVE93UCxNAYsxG2gKaxWgHuYvTWb9AuTDTIfi6SovXk9gnnkAHM1cgProDwCoi/MQeJYegOWYEQAAaVoxNzc3V/dBNN3k5GSMjo7GxMREbNq0qe7DaY2J6dkYn5qNyQMHY9O61TG2YXjJC4v5r91/4GBsXLs6xkaW/lraScedLddRLz1CmbScpzbOmLafu2i5Goevs03rVseGNati6sBPW9Ua5dLy8nqZ9W3cC0mHlvNVxmxp+3lsyrRMXcyaYmkZurfUrEjh+krL1Zl/vSeenI31a1bFyhUrYuXQijjOdTUF0HJ1+p3dbT5vpHta7k4R51CapCxVdZzCtYSOyFkOe/JicyIidEur5NByt7zvRM7a1DKDa9t1SgrXht3Scr6q6q5J6z1nWi7XxPRs/HD/TOx78mCMDK+M9cOrYvP61dY6hdNy8/heDxaTSsuHr7mRNatieOVQTDw5GxvW5H9NBkVIpWWqUdY+3bb3xFLU5JbrPn+0fklJk1uGKnTaM1KY6TpmUHWfGy11PG07V8q15fnX84mZgzG6bjhmn3o6pmZ+msRagzLk2nIR/Bu6NImWq/HY5IF4/InZmDzw09i0blUcs344Tti0tu7DIiNaXpp9mSbRcjV2794dL33pS+OXf+eGOPaUM+o+nEX9ZO/9cdvvXRp33313nHPOOXUfDj3SMvPa+v5vEVI4T9NysZrUQwrrj+JouV7d9tSkGUE9tAx50DI0x6q6DwD68ci+J+OqW+6NO/eMH/rY9q1jcd2ObXHy5nULvn50vQsPGNRSHfXaI0Av2jpjnLtQhcPX2SP7nowrb/7/Wtca1KnbWd/WvRAoV1mzxXkscDizBqjTYrPC9VW7LPd620egOQaZ3c4boRhFnUNpkiZL5VpCR5Cu5ebEaceP1HhkQBm87wTwrDZdp6RybQhVdGe90wbLn9fXeGBAEnyvB6my5gC6V+bMbNN7YhQrhb3c+gVohm72DDOdpkvh3OhousrL/OuZ4loDquXf0AUOp32ol30ZAKiL93/74zwtT03pwfqD4vTSU1NmBABAWwzVfQDQq4np2QUXIBERu/aMxztvuTcmpmdrOjJoHz0CZTJjoBpag3TpEyiD2QJUwawBUmMutYvXG/KgZaifDkEHQGfmBLSL5gHayfynTax32sA6B4pgllA1aw6ge2YmKbIuAeiWPYM2sM6pirUGLMV8gHbSPqRJmwAAaXKeRp2sPyiOngAAms2N5mmc8anZBRcg83btGY/xKRchUBU9AmUyY6AaWoN06RMog9kCVMGsAVJjLrWL1xvyoGWonw5BB0Bn5gS0i+YB2sn8p02sd9rAOgeKYJZQNWsOoHtmJimyLgHolj2DNrDOqYq1BizFfIB20j6kSZsAAGlynkadrD8ojp4AAJptVd0HAL2aPHBw2c/v7/B5oDh6BMpkxkA1tAbp0idQBrMFqIJZA6TGXGoXrzfkQctQPx2CDoDOzAloF80DtJP5T5tY77SBdQ4UwSyhatYcQPfMTFJkXQLQLXsGbWCdUxVrDViK+QDtpH1IkzbJwd69e2N8fPEbN6ZgZmYm1qxZU/dhLOpb3/pW3YcAwBKcp1En6w+KoycAgGZzo3kaZ9Pa1ct+fmOHzwPF0SNQJjMGqqE1SJc+gTKYLUAVzBogNeZSu3i9IQ9ahvrpEHQAdGZOQLtoHqCdzH/axHqnDaxzoAhmCVWz5gC6Z2aSIusSgG7ZM2gD65yqWGvAUswHaCftQ5q0SdPt3bs3zjzzRfHkk9N1H8rSVqyImJur+yiWdXBmtu5DAOAoztOok/UHxdETAECzudE8jTM2Mhzbt47Frj3jCz63fetYjI0M13BU0E56BMpkxkA1tAbp0idQBrMFqIJZA6TGXGoXrzfkQctQPx2CDoDOzAloF80DtJP5T5tY77SBdQ4UwSyhatYcQPfMTFJkXQLQLXsGbWCdUxVrDViK+QDtpH1IkzZpuvHx8Xjyyen4+be9Ozad9DN1H84Cj953V3zjrz4cP/evr4rnnHpm3YezwPzx/fSnP637UAA4ivM06mT9QXH0BADQbEN1HwD0anT9cFy3Y1ts3zp2xMe3bx2L63dsi9H1LkKgKnoEymTGQDW0BunSJ1AGswWoglkDpMZcahevN+RBy1A/HYIOgM7MCWgXzQO0k/lPm1jvtIF1DhTBLKFq1hxA98xMUmRdAtAtewZtYJ1TFWsNWIr5AO2kfUiTNsnFppN+Jo495Yzk/tswdlJERIwcf0rtx7Lc8QGQHudp1Mn6g+LoCQCg2VbVfQBluu666+Lqq6+OK664Iv74j/940a+58cYb49JLLz3iY2vWrIkDBw5UcIT06+TN6+L9F50d41Ozsf/Awdi4dnWMjQy7AIEa6BEokxkD1dAapEufQBnMFqAKZg2QGnOpXbzekActQ/10CDoAOjMnoF00D9BO5j9tYr3TBtY5UASzhKpZcwDdMzNJkXUJQLfsGbSBdU5VrDVgKeYDtJP2IU3aBABIk/M06mT9QXH0BADQXNneaP6rX/1qfOhDH4pt27Z1/NpNmzbF/ffff+jHK1asKPPQKMjoehcdkAo9AmUyY6AaWoN06RMog9kCVMGsAVJjLrWL1xvyoGWonw5BB0Bn5gS0i+YB2sn8p02sd9rAOgeKYJZQNWsOoHtmJimyLgHolj2DNrDOqYq1BizFfIB20j6kSZsAAGlynkadrD8ojp4AAJppqO4DKMPU1FRcfPHF8ZGPfCSOOeaYjl+/YsWKOPHEEw/9d8IJJ1RwlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBbZXmj+csuuyze8IY3xGte85quvn5qaiqe//znx5YtW+JXf/VX4x//8R9LPkIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgzVbVfQBFu+mmm2L37t3x1a9+tauvP+OMM+JjH/tYbNu2LSYmJuIP//AP4xWveEX84z/+Yzzvec9b9OfMzMzEzMzMoR9PTk4WcuxAdXQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAx50DI0n44hD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBmaT8eQBy1DHrQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAzNNVT3ARTp4YcfjiuuuCI+8YlPxNq1a7v6Oeeee25ccskl8XM/93Pxqle9Kv7yL/8ynvOc58SHPvShJX/Ozp07Y3R09NB/W7ZsKeohABXRMeRBy5AHLUMetAx50DLkQcuQBy1DHrQMedAy5EHL0Hw6hjxoGfKgZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ8qBlaD4dQx60DHnQMuRBy5AHLUMetAx50DLkQcuQBy1DHrQMedAyNNeKubm5uboPoii33nprvPnNb46VK1ce+thTTz0VK1asiKGhoZiZmTnic0u58MILY9WqVfGpT31q0c/PzMzEzMzMoR9PTk7Gli1bYmJiIjZt2jT4A2mgienZGJ+ajckDB2PTutUxtmE4RtcP131YsCQdD073pEDLzWFmsBwtH0kvNJWWn6VjmkzLS9M2TaLlI+mXptIyuWj7HNbyM9q+Dmg+LT9DyzRd21vWMDloSsd6g+U1peWlaBye0eSWdQzPanLLkKo69hktUzfnV8XQcjvoJX9arpfGKEpTWrbmYXlNaZnlmXVouRhaom5aTp85QSc6bh5ds5gmtmwtw0JNbLlK5gZNkXPLOqRNcm65W5onB/22vHv37njpS18av/w7N8Sxp5xRxaH25KG//1/x9x+7Jl75jj+L577o7LoPZ4HUjy8i4id774/bfu/SuPvuu+Occ86p+3DowL7cPs5D8qTl9tJ0XrRcLz1RFC1DHrQMzbWq7gMo0i/90i/Ffffdd8THLr300jjzzDPjqquu6uom80899VTcd9998frXv37Jr1mzZk2sWbNm4OPNxSP7noyrbrk37twzfuhj27eOxXU7tsXJm9fVeGSwNB0PRvekQsvNYGbQiZafpReaTMvP0DFNp+XFaZum0fKz9EuTaZkcmMNajrAOyIOWtUwe2tyyhslFEzrWG3TWhJaXonF4VlNb1jEcqaktQ6rq2me0TJ2cXxVHy/nTSztouT4ao0hNaNmah86a0DLLM+uI0HIRtEQKtJw2c4Ju6LhZdM1SmtaytQyLa1rLVTI3aJJcW9YhbZNry93SPLloe8uQCy23i/OQfGm5nTSdHy3XR08UScuQBy1Dcw3VfQBF2rhxY5x11llH/Ldhw4Y47rjj4qyzzoqIiEsuuSSuvvrqQz/nd3/3d+N//+//Hd/97ndj9+7d8Wu/9mvxve99L/7Nv/k3dT2MRpmYnl1wcRARsWvPeLzzlntjYnq2piMDyqJ7oBdmBnRPL9B8OoY8aRuaS78A9TKHibAOIBdahmbTMFRHb5A3jUPz6RiAMtlnaCPrHrqnFyiXxmgbax5oA7MOiqEloBNzAvKja3JhLQO9MjegfjqEdtE8AFAX5yGQF01DcfQEAJCXrG403429e/fGo48+eujHjz/+ePzbf/tv40UvelG8/vWvj8nJyfjyl78cL37xi2s8yuYYn5pdcHEwb9ee8RifcoEAudE90AszA7qnF2g+HUOetA3NpV+AepnDRFgHkAstQ7NpGKqjN8ibxqH5dAxAmewztJF1D93TC5RLY7SNNQ+0gVkHxdAS0Ik5AfnRNbmwloFemRtQPx1Cu2geAKiL8xDIi6ahOHoCAMjLqroPoGy33377sj/+oz/6o/ijP/qj6g4oM5MHDi77+f0dPg80j+6BXpgZ0D29QPPpGPKkbWgu/QLUyxwmwjqAXGgZmk3DUB29Qd40Ds2nYwDKZJ+hjax76J5eoFwao22seaANzDoohpaATswJyI+uyYW1DPTK3ID66RDaRfMAQF2ch0BeNA3F0RMAQF6G6j4Amm3T2tXLfn5jh88DzaN7oBdmBnRPL9B8OoY8aRuaS78A9TKHibAOIBdahmbTMFRHb5A3jUPz6RiAMtlnaCPrHrqnFyiXxmgbax5oA7MOiqEloBNzAvKja3JhLQO9MjegfjqEdtE8AFAX5yGQF01DcfQEAJAXN5pnIGMjw7F969iin9u+dSzGRoYrPiKgbLoHemFmQPf0As2nY8iTtqG59AtQL3OYCOsAcqFlaDYNQ3X0BnnTODSfjgEok32GNrLuoXt6gXJpjLax5oE2MOugGFoCOjEnID+6JhfWMtArcwPqp0NoF80DAHVxHgJ50TQUR08AAHlxo3kGMrp+OK7bsW3BRcL2rWNx/Y5tMbreBQLkRvdAL8wM6J5eoPl0DHnSNjSXfgHqZQ4TYR1ALrQMzaZhqI7eIG8ah+bTMQBlss/QRtY9dE8vUC6N0TbWPNAGZh0UQ0tAJ+YE5EfX5MJaBnplbkD9dAjtonkAoC7OQyAvmobi6AkAIC+r6j4Amu/kzevi/RedHeNTs7H/wMHYuHZ1jI0MuziAjOke6IWZAd3TCzSfjiFP2obm0i9AvcxhIqwDyIWWodk0DNXRG+RN49B8OgagTPYZ2si6h+7pBcqlMdrGmgfawKyDYmgJ6MScgPzomlxYy0CvzA2onw6hXTQPANTFeQjkRdNQHD0BAOTDjeYpxOh6FwTQNroHemFmQPf0As2nY8iTtqG59AtQL3OYCOsAcqFlaDYNQ3X0BnnTODSfjgEok32GNrLuoXt6gXJpjLax5oE2MOugGFoCOjEnID+6JhfWMtArcwPqp0NoF80DAHVxHgJ50TQUR08AAHkYqvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANrGjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVW1X3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1O1b3/pW3YewpJmZmVizZk3dh7GksbGxOOWUU+o+DAAAAABoHDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABa68mJH0fEivi1X/u1ug9laStWRMzN1X0US1q3bn18+9vfcrN5AAAAAOiRG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK11cHp/RMzFz/3rq+I5p55Z9+Es8Oh9d8U3/urDyR7f5KMPxd9/7JoYHx93o3kAAAAA6JEbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArTdy/Clx7Cln1H0YC0w++lBEpHt8AAAAAED/huo+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC2caN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIq50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxdxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBibjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDE3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVc6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIq50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxdxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBibjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULFVdR8A5ZmYno3xqdmYPHAwNq1bHWMbhmN0/XDdhwUcRatAm5mB5MJahvTpFPKlb0iTNqFdNA/10yHkSduQJ21D3jQOedE0pEeXQI7MNqCpzK/28ZoD88wDWEgXQBHMEsifzgEoQpP2kyYdK1APcwLyoGWgW+YFLE0fAFA9+y/kQcvQTtoHACB3bjSfqUf2PRlX3XJv3Lln/NDHtm8di+t2bIuTN6+r8ciAw2kVaDMzkFxYy5A+nUK+9A1p0ia0i+ahfjqEPGkb8qRtyJvGIS+ahvToEsiR2QY0lfnVPl5zYJ55AAvpAiiCWQL50zkARWjSftKkYwXqYU5AHrQMdMu8gKXpAwCqZ/+FPGgZ2kn7AAC0wVDdB0DxJqZnF1zMRETs2jMe77zl3piYnq3pyIDDaRVoMzOQXFjLkD6dQr70DWnSJrSL5qF+OoQ8aRvypG3Im8YhL5qG9OgSyJHZBjSV+dU+XnNgnnkAC+kCKIJZAvnTOQBFaNJ+0qRjBephTkAetAx0y7yApekDAKpn/4U8aBnaSfsAALSFG81naHxqdsHFzLxde8ZjfMoFDaRAq0CbmYHkwlqG9OkU8qVvSJM2oV00D/XTIeRJ25AnbUPeNA550TSkR5dAjsw2oKnMr/bxmgPzzANYSBdAEcwSyJ/OAShCk/aTJh0rUA9zAvKgZaBb5gUsTR8AUD37L+RBy9BO2gcAoC3caD5DkwcOLvv5/R0+D1RDq0CbmYHkwlqG9OkU8qVvSJM2oV00D/XTIeRJ25AnbUPeNA550TSkR5dAjsw2oKnMr/bxmgPzzANYSBdAEcwSyJ/OAShCk/aTJh0rUA9zAvKgZaBb5gUsTR8AUD37L+RBy9BO2gcAoC3caD5Dm9auXvbzGzt8HqiGVoE2MwPJhbUM6dMp5EvfkCZtQrtoHuqnQ8iTtiFP2oa8aRzyomlIjy6BHJltQFOZX+3jNQfmmQewkC6AIpglkD+dA1CEJu0nTTpWoB7mBORBy0C3zAtYmj4AoHr2X8iDlqGdtA8AQFu40XyGxkaGY/vWsUU/t33rWIyNDFd8RMBitAq0mRlILqxlSJ9OIV/6hjRpE9pF81A/HUKetA150jbkTeOQF01DenQJ5MhsA5rK/GofrzkwzzyAhXQBFMEsgfzpHIAiNGk/adKxAvUwJyAPWga6ZV7A0vQBANWz/0IetAztpH0AANrCjeYzNLp+OK7bsW3BRc32rWNx/Y5tMbreBQ2kQKtAm5mB5MJahvTpFPKlb0iTNqFdNA/10yHkSduQJ21D3jQOedE0pEeXQI7MNqCpzK/28ZoD88wDWEgXQBHMEsifzgEoQpP2kyYdK1APcwLyoGWgW+YFLE0fAFA9+y/kQcvQTtoHAKAtVtV9AGW67rrr4uqrr44rrrgi/viP/3jJr7v55pvjXe96Vzz00EOxdevWuP766+P1r399dQdagpM3r4v3X3R2jE/Nxv4DB2Pj2tUxNjLsYgYSo1WgzcxAcmEtQ/p0CvnSN6RJm9Aumof66RDypG3Ik7YhbxqHvGga0qNLIEdmG9BU5lf7eM2BeeYBLKQLoAhmCeRP5wAUoUn7SZOOFaiHOQF50DLQLfMClqYPAKie/RfyoGVoJ+0DANAG2d5o/qtf/Wp86EMfim3bti37dV/+8pfjoosuip07d8Yb3/jG+OQnPxlvetObYvfu3XHWWWdVdLTlGF3vAgaaQKtAm5mB5MJahvTpFPKlb0iTNqFdNA/10yHkSduQJ21D3jQOedE0pEeXQI7MNqCpzK/28ZoD88wDWEgXQBHMEsifzgEoQpP2kyYdK1APcwLyoGWgW+YFLE0fAFA9+y/kQcvQTtoHACB3Wd5ofmpqKi6++OL4yEc+Eu9973uX/do/+ZM/ide97nXx27/92xERce2118Ztt90WH/jAB+K//bf/VsXhDmxiejbGp2Zj8sDB2LRudYxtcCEDZdAaAG1gvzuS5wOqozdgMWYD0A2zAkiR2UTdrEFoD71D8+gW8qNraA+9Q/10CPTD7AByYZ5xNGsCWI4ZAfXTITSPbiFP2gagCvabanieoXq6gzxoGfKiaWg2DQMA3XDOAL3RDAAAALnJ8kbzl112WbzhDW+I17zmNR1vNH/XXXfFf/gP/+GIj/3Kr/xK3HrrrUv+nJmZmZiZmTn048nJyYGOdxCP7Hsyrrrl3rhzz/ihj23fOhbX7dgWJ29eV9txQep67VhrkKaU9mTIQV37Xaot2/+hN4O0rDdIR0r7stkA/Uup5bKZFeSsTS3nxmzicHW0bA1C8VLdl/UOvUmhZd3CYFLo+Gi6ht6l2HI39A5H8r4X5KGp+3IvzA7aoA0tY561ge93hDyksi+bETCYIlrWIdTPOTbkYdB9WduQhlSul6EsbdhvUui4Dc8zlM21MuRBy5CHfs+xNQ1psS9DHlJ47wsYXE4tO2egzfppWTOQnpz2ZWgzLUMetAzNNVT3ARTtpptuit27d8fOnTu7+vof/OAHccIJJxzxsRNOOCF+8IMfLPlzdu7cGaOjo4f+27Jly0DH3K+J6dkFb1ZEROzaMx7vvOXemJiereW4oAl66VhrkK5U9mTIQZ37XYot2/+hd/22rDdISyr7stkAg0ml5bKZFeSuLS3nxmziaFW3bA1COVLcl/UOvau7Zd3C4Oru+Gi6hv6k1nI39A4Led8L8tDEfbkXZgdtkXvLmGdt4fsdIQ8p7MtmBAxu0JZ1CGlwjg15GGRf1jakI4XrZShLW/abujtuy/MMZXOtDHnQMuShn3NsTUN67MuQh7rf+wKKkUvLzhlou15b1gykKZd9GdpOy5AHLUNzZXWj+YcffjiuuOKK+MQnPhFr164t7fe5+uqrY2Ji4tB/Dz/8cGm/13LGp2YXvFkxb9ee8Rif8oYFLKWXjrUG6UplT4Yc1Lnfpdiy/R9612/LeoO0pLIvmw0wmFRaLptZQe7a0nJuzCaOVnXL1iCUI8V9We/Qu7pb1i0Mru6Oj6Zr6E9qLXdD77CQ970gD03cl3thdtAWubeMedYWvt8R8pDCvmxGwOAGbVmHkAbn2JCHQfZlbUM6UrhehrK0Zb+pu+O2PM9QNtfKkActQx76OcfWNKTHvgx5qPu9L6AYubTsnIG267VlzUCactmXoe20DHnQMjTXqroPoEh33313/PCHP4xzzjnn0Meeeuqp2LVrV3zgAx+ImZmZWLly5RE/58QTT4zHHnvsiI899thjceKJJy75+6xZsybWrFlT7MH3YfLAwWU/v7/D56HNeulYa5CuVPZkyEGd+12KLdv/oXf9tqw3SEsq+7LZAINJpeWymRXkri0t58Zs4mhVt2wNQjlS3Jf1Dr2ru2XdwuDq7vhouob+pNZyN/QOC3nfC/LQxH25F2YHbZF7y5hnbeH7HSEPKezLZgQMbtCWdQhpcI4NeRhkX9Y2pCOF62UoS1v2m7o7bsvzDGVzrQx50DLkoZ9zbE1DeuzLkIe63/sCipFLy84ZaLteW9YMpCmXfRnaTsuQBy1Dc2V1o/lf+qVfivvuu++Ij1166aVx5plnxlVXXbXgJvMREeeee258/vOfj3e84x2HPnbbbbfFueeeW+ixTUzPxvjUbEweOBib1q2OsQ3DMbp+eKBfc9Pa1ct+fmOHzwPdqbK1MmYFcCSdweKadm5ZdstNez6gqSamZ2Pd6oXX6ofTG6TP+16QhyZeL5sVsLgm9pwTs4kiDNKxNQjp8D425KHIlnULaSmib11Ddep+z0vvUL9OHW5Yk9W3xgAFsYcDuTDPqlf3dWgnTVkTqT+PkKtuZ4RGoTwjHd6rSmWvBp6Vyjm2/RmKMd/SmlVDy36dPRnSZl+kKVI5l8zFUu17nqF6/XRn/4b0pLSHmhEwOH8GBc3WzfdEfOeHU/ZKAKhRCteuKV3LQxP020wKvQNH0iUAABwpq39Na+PGjXHWWWcd8bENGzbEcccdd+jjl1xySTz3uc+NnTt3RkTEFVdcEa961avife97X7zhDW+Im266Kb72ta/Fhz/84cKO65F9T8ZVt9wbd+4ZP/Sx7VvH4rod2+Lkzev6/nXHRoZj+9ax2HXYr3v4rz824mIHilBVa2XNCuBZOoOlNencsoqWm/R8QFPNt/ySLZvjvNOPiy898OMFX6M3SJ/3vSAPTb1eNitgoab2nBOziUEN2rE1CGnwPjbkoeiWdQvpKKpvXUM1UnjPS+9Qv+U6PO/04+Jr33s8NqxZ5b1w4AhjI8Nx/taxI84j5p1vDwcaxDVJtVK4Du2kCWuiCc8j5KqbGaFRKM8j+56Mr33vcd8rBQ2Twjm2/RmKcXhLl//i6fZkaCj7Ik2SwrlkLpZr3/MM1eu1O/s3pCmVPdSMgMH5MyhovuX25fO3jsXXvvd4XP2X9x36mL0SAKqVyrVrKtfy0BT9NJNK78CzdAkAAAsN1X0AVdu7d288+uijh378ile8Ij75yU/Ghz/84XjJS14S/+N//I+49dZbF9ywvl8T07MLLkQiInbtGY933nJvTEzP9v1rj64fjut2bIvtW8eO+Pj2rWNx/Y5tMbrem3xQhCpaK3NWAM/QGSyvKeeWVbXclOcDmurwlj/2xQfj0vNOjfNOP+6Ir9EbpM/7XpCHJl8vmxVwpCb3nBOziUEU0bE1CPXzPjbkoYyWdQtpKLJvXUP5UnnPS+9Qv6U6PO/04+LS806Naz/7Te+FA4u67NWnL/i7aeedflxc9urTazoigN65JqlOKtehnaS+JpryPEKuOs2IiNAolGR+D7z2s9/0vVLQMHWfYzuHhmIc3ZLvX4Zmsi/SNHWfS+aiU/sR4XmGivUy3+zfkK4UzlXMCBicP4OCPCy3L1/26tPj2s9+84iP2ysBoDopXbumcC0PTdJrMyn1DjxDlwAAsLhVdR9A2W6//fZlfxwRceGFF8aFF15Yyu8/PjW74EJk3q494zE+NTvQm3Enb14X77/o7Bifmo39Bw7GxrWrY2xk2Bt8ULCyWyt7VgA6g2404dyyypab8HxAUx3e8vTsU/Fbn7on3vbKU+Nt550aMz99Ol4wtiFOGl2rN0ic970gD02/XjYr4FlN7zknZhP9KqpjaxDq5X1syENZLesW6ld037qGcqX0npfeoX4nb14X1/7qWfHAj6Zi5qdPx5pVQ3HPw/vitz51T0zPPuW9cGCB8anZeNuNXz3i76bNz4633fjV+OvLX2lmAI3hmqQaKV2HdpLymmjS8wi5Wm5GfOeHUxqFkhy+Bx79vVJrVg3F6c8ZiZM2r6v5KIGl1HmO7RwainF0S0d///LoutVxzPrhZK6fgcXZF2milN+vbYpu2j/t+BHPM1Ss2/lm/4a01X2uYkbA4PwZFORjsX151dCKuOBP74zp2acWfL29EgCqkdq1a93X8tA0vTSTWu+ALgEAYCnZ32i+bpMHDi77+f0dPt+N0fXe1IMqlNlaFbMC2k5n0J3Uzy2rbjn15wOa6uiWp2efig984YFDP771N16hPWgA73tBHnK4XjYr4Bk59JwTs4l+FNmxNQj18T425KHMlnUL9Sqjb11DeVJ7z0vvUL+fTM/G2z/+tSU/771w4HCTBw4u+LtphzMzgKZxTVK+1K5DO0l1TTTteYRcLTUjNArlObyvxa5Hb/2NV8TzY0PVhwX0oK5zbPszFGOxlg7fk2/9jVfEacePVH1YQI/sizRVqu/XNkW37XueoXrddGf/hvTVuYeaETA4fwYFeTl6X75n7+OL3mR+nr0SAMqX4rWr98OhN902k2Lv0Ha6BACAxQ3VfQC527R29bKf39jh80A7mBVQPp1BHrQMedAy5EHLkActQz70DM2nY8iDliEPWoZ86RuaRbPA0cwFoBdmBgC9sncUw/MIadMolEdfQL/MDyiGliAPWoZ20j40m4aB5ZgRMDgdQd40DgD1sx9De+gd0qNLAABYnBvNl2xsZDi2bx1b9HPbt47F2MhwxUcEpMisgPLpDPKgZciDliEPWoY8aBnyoWdoPh1DHrQMedAy5Evf0CyaBY5mLgC9MDMA6JW9oxieR0ibRqE8+gL6ZX5AMbQEedAytJP2odk0DCzHjIDB6QjypnEAqJ/9GNpD75AeXQIAwOLcaL5ko+uH47od2xZckGzfOhbX79gWo+tdjABmBVRBZ5AHLUMetAx50DLkQcuQDz1D8+kY8qBlyIOWIV/6hmbRLHA0cwHohZkBQK/sHcXwPELaNArl0RfQL/MDiqElyIOWoZ20D82mYWA5ZgQMTkeQN40DQP3sx9Aeeof06BIAABa3qu4DaIOTN6+L9190doxPzcb+Awdj49rVMTYy7EIEOIJZAeXTGeRBy5AHLUMetAx50DLkQ8/QfDqGPGgZ8qBlyJe+oVk0CxzNXAB6YWYA0Ct7RzE8j5A2jUJ59AX0y/yAYmgJ8qBlaCftQ7NpGFiOGQGD0xHkTeMAUD/7MbSH3iE9ugQAgIXcaL4io+tdfACdmRVQPp1BHrQMedAy5EHLkActQz70DM2nY8iDliEPWoZ86RuaRbPA0cwFoBdmBgC9sncUw/MIadMolEdfQL/MDyiGliAPWoZ20j40m4aB5ZgRMDgdQd40DgD1sx9De+gd0qNLAAA40lDdBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQNm40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAxN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqNiqug8gB3NzcxERMTk5WfORQHts3LgxVqxYUdivp2Ooh5YhD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPRbasY6iHPRnyoGXIg5YhD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDv78JzWdPhjxoGfKgZciDliEPdbU8NTUVERET//TdePqnTxX2+xdl6offj4iIyR88FGvWrKn5aBZK/fgi0j/G1I9v/w++FxHPtNLN3mhfhjxoGfKgZciDliEPWobm67djN5ovwP79+yMiYsuWLTUfCbTHxMREbNq0qbBfT8dQDy1DHrQMedAy5EHLkIeiW/7xj38cEVqGqtmXIQ9ahjxoGfKgZchDkS3rGOphT4Y8aBnyoGXIg5YhD1qGPGgZ8qBlyIOWIQ9ahjxoGfLg729C89mTIQ9ahjxoGfKgZchD3S3/w8evLez3LsO9N/1B3YewrNSPLyL9Y0z9+F71qld19XV1twwUQ8uQBy1DHrQMedAyNF+/Ha+Ym5ubK+F4WuXpp5+ORx55JDZu3BgrVqyo+3CSNzk5GVu2bImHH3640M2njdr8XBbdW1kdt/k1Oprn4hmehyOV1fLc3FyccsopWT3Pua6dHB9XGx9TU/blouX4Ws/L9bHl+rgiinlsZbR8//33x4tf/OIsn/Nu5bzuuuU5qPY5qHpf9vp6DiI8BxHFPwdFt7xv37445phjYu/evTE6OlrYr1un3NZdbo8nIr/H1M/jaev18rzc1kAv2vrYc33c3sfuTm6vv8eTNvty93J77cvgOeospeeorS0fLqXXYxAeR1qqfhxFNldkx7m8nlXynPUnh+ctlT05h+eyDJ6XpXlujpRKy3XLbV14PGkr4/Gk0nJur1WEx9QUuTymVFquQi6vWQo8l8VK9e9iL9ay1744nsti5PY8prAvN/k5bfKxRzj+uhV5/Cm0XJSmv65L8biap47HllPLVch5/S2lbY+5qY/X9zv2punHH9H8x+D4F+f7Ko7U1HXiuKuV4nGn+vc3q5Lia1Ikj6/Zun18OV4r5/La5vA4cngMEc14HE1quQnP59EcczUcc7NaLkITX/PUeA4Hl/PfxV6MNbM0z83i2vy8pNhyE1+PJh5zRDOP2zEvLsWWi9TE130xHkc6Un0MVbac6nOQC89veZrw3NaxLzfheSmLx97Oxx5R/uOv6xw7l9fV40hLLo8jovfHouXBeBxpaevj6LfjVf0cHEcaGhqK5z3veXUfRuNs2rSp0ZGmxHM5uLI79ho9y3PxDM9DOeZbnpycjIg8n+ccH1NEno/LY+pf086vc3yt5+X62HJ9XBFpPbahoaF47nOfGxFpHVddPAeeg4hmPgfd7stNfGxF8xx4DiLSfQ6GhoYiImJ0dDTJ4xtEqs95v3J7PBH5PaY6H0/Trpfn5bYGetHWx97Wx92t3N/H9njS5vEUp2n7cm6vfRk8R53l+Bw1reXD5fJ6eBxpaeLjKKPjJj4PdfOc9cfz9qxBW/ZcLs7zsjTPTTmafH4dkd+68HjSlvLjsS8v5DE1Q46PaRBN2Je9ZsXxXBYrpeezU8spHWvTeS6L4Xlc3CD7cpOf0yYfe4Tjr1uKx5/COXaKz0sRPK7mafJjS6HlKjT5NepX2x5z2x7v0dry/Y5NP/6I5j8Gx1+uXL6vwnFXy3Gnpcnn17m+JvM8vmar+vGl1HIur20OjyOHxxCRz+PoRhUtN/H5dMzVcMzFSWlfXk6qz1+TeA4Hl/Jz6Psdq+W5WZznZXBFttzE16OJxxzRzON2zOVK9Ry7Sc/hcjyOdOTwGJbTTcu5Pwd18/yWp03PbS/7cpuel6N57O187BHNefy9nmM35XF14nGkJZfHEVHfY9Fys3kcaSn7cQyV9isDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsCg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComBvNU7k1a9bEu9/97lizZk3dh9J4nsv0eY2e5bl4huehGjk+zzk+pog8H5fH1B45Py+5PrZcH1dEuo8t1eOqkufAcxCR93OQ82PrlufAcxCR/nOQ+vH1I7fHlNvjicjvMeX2eKrQ5uesrY+9rY+7X7k9Xx5P2jye9vJcdeY56sxzlJZcXg+PIy25PI5BeR565znrj+etOJ7LxXlelua5YTG5rQuPJ225PZ7D5fjYPKZmyPEx5c5rVhzPZbGa9Hw26VhT57kshuexeE1+Tpt87BGOv25NP/6y5Pq8eFzNk/Njy0UbX6O2Pea2Pd5+Nf15avrxRzT/MTj+ajXteOc57mo5boqS+2vi8TVb7o9vObk89hweRw6PISKfx5GKJj6fjrkajrl9PH+D8xwOrm3PYdseby88N4vzvKSlia9HE485opnH7ZjbKZfn0ONIRw6PYVCeg3J5fsvjuV1cm58Xj72djz0i38efy+PyONKSy+OIaM5jacpxduJxpMXj6M2Kubm5uVJ/BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOMFT3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0jRvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVc6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIq50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAxdxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBibjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDE3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAComBvNF2jXrl3xL/7Fv4iTTz45VqxYEbfeemtPP/8973lPrFixYsF/GzZsKOeAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFq40XyBnnjiiXjJS14Sf/Znf9bXz7/yyivj0UcfPeK/F7/4xXHhhRcWfKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAndxovkAXXHBBvPe97403v/nNi35+ZmYmrrzyynjuc58bGzZsiJ//+Z+P22+//dDnR0ZG4sQTTzz032OPPRbf/OY34+1vf3tFjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoghvNV+jyyy+Pu+66K2666aa4995748ILL4zXve51sWfPnkW//qMf/Wi88IUvjPPPP7/iIwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADK5EbzFdm7d2/ccMMNcfPNN8f5558fp512Wlx55ZXxyle+Mm644YYFX3/gwIH4xCc+EW9/+9trOFoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgTKvqPoC2uO++++Kpp56KF77whUd8fGZmJo477rgFX//pT3869u/fH295y1uqOkQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgIm40X5GpqalYuXJl3H333bFy5cojPjcyMrLg6z/60Y/GG9/4xjjhhBOqOkQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgIm40X5Gzzz47nnrqqfjhD38Y559//rJf++CDD8bf/d3fxV/91V9VdHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAldxovkBTU1PxwAMPHPrxgw8+GF//+tfj2GOPjRe+8IVx8cUXxyWXXBLve9/74uyzz44f/ehH8fnPfz62bdsWb3jDGw79vI997GNx0kknxQUXXFDHwwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKtmJubm6u7oPIxe233x6vfvWrF3z8LW95S9x4441x8ODBeO973xt/8Rd/Ed///vdjbGwsfuEXfiGuueaa+Nmf/dmIiHj66afj+c9/flxyySXxe7/3e1U/BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKACbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULGhug8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoG3caB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYm40X4C5ubmYnJyMubm5ug8F6JOOIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5YhD1qG5tMx5EHLkActQx60DHnQMuRBy5AHLUMetAx50DLkQcuQBy1D8+kY8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5ahOdxovgD79++P0dHR2L9/f92HAvRJx5AHLUMetAx50DLkQcuQBy1DHrQMedAy5EHLkActQ/PpGPKgZciDliEPWoY8aBnyoGXIg5YhD1qGPGgZ8qBlyIOWofl0DHnQMuRBy5AHLUMetAx50DLkQcuQBy1DHrQMedAy5EHL0BxZ3Wh+586d8fKXvzw2btwYxx9/fLzpTW+K+++/v+uff9NNN8WKFSviTW96U3kHCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALReVjeav+OOO+Kyyy6Lr3zlK3HbbbfFwYMH47WvfW088cQTHX/uQw89FFdeeWWcf/75FRwpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Gar6j6AIn3uc5874sc33nhjHH/88XH33XfH9u3bl/x5Tz31VFx88cVxzTXXxJ133hn79u0r+UgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANsvqRvNHm5iYiIiIY489dtmv+93f/d04/vjj4+1vf3vceeedHX/dmZmZmJmZOfTjycnJwQ4UqJyOIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5YhD1qG5tMx5EHLkActQx60DHnQMuRBy5AHLUMetAx50DLkQcuQBy1D8+kY8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5ahuYbqPoCyPP300/GOd7wjzjvvvDjrrLOW/LovfvGL8ed//ufxkY98pOtfe+fOnTE6Onrovy1bthRxyPRoYno2vvPDqbhn7+PxnR9NxcT0bN2HRIPouFh6pC5abgczJn9aToPWGJSWy6NPqqTl9jBb8qZlUmHWDEbLULw65pKW62Mfokharo+WKZKW+6NDUlJXxzqAYuW4J5sTtFGOLXdL8+SkzS1Dr1Ke/1qmaCmv95xpuVrWOWXRcruYJflKtWVrDnqTastUw8zMR04tW5e0WU4tQxVS3DN0TNFSXOdt0MaWrTVy1MaWy2A+UDct10P7FE3LxdAmddNyd7RK6rQMedAy85x7NJuW06In+qVlyIOWoblWzM3NzdV9EGX49//+38ff/M3fxBe/+MV43vOet+jX7N+/P7Zt2xYf/OAH44ILLoiIiLe+9a2xb9++uPXWW5f8tWdmZmJmZubQjycnJ2PLli0xMTERmzZtKvRxsLhH9j0ZV91yb9y5Z/zQx7ZvHYvrdmyLkzevq/HIaAodF0eP1EnL+TNj2kHL9dMaRdByOfRJ1bTcDmZL/rRMCsyawWkZilXXXNJyPexDFE3L9dAyRdNy73RIauroWAdQvNz2ZHOCtsqt5W5pnty0tWXoVerzX8sUKfX1njMtV8c6p0xabg+zJG8ptmzNQe9SbJlqmJl5yaVl65K2y6VlqEKqe4aOKVKq67wN2taytUau2tZyGcwHUqDl6mmfMmh5cNokBVruTKs0gZYhD1omwrlHDrScDj0xCC1DHrQMzZXljeYvv/zy+MxnPhO7du2KU089dcmv+/rXvx5nn312rFy58tDHnn766YiIGBoaivvvvz9OO+20jr/f5ORkjI6OGnoVmZiejcs/dc8RFyDztm8di/dfdHaMrh+u4choMh33R4+kRst5MWPaS8vV0hpl0fLg9EkKtJwfs6WdtEzVzJpyaBn6l9Jc0nL5Unq9yZeWy6dlqqDl5emQJii7Yx1ANZq8J5sT8Kwmt9wtzdMGbWgZetXE+a9l+tXE9Z4zLZfDOqdqWs6TWdI+dbdszUEx6m6ZapiZ+Wtiy9YlLNTElqEKTdozdEy/mrTO2yDnlq012iTnlstgPpAqLZdL+1RFy73RJqnS8pG0SlNpGfKg5fZx7pEnLddDTxRNy5AHLUNzDNV9AEWam5uLyy+/PD796U/HF77whWVvMh8RceaZZ8Z9990XX//61w/99y//5b+MV7/61fH1r389tmzZUtGR04vxqdlFL0AiInbtGY/xqdmKjwjaS49AmcwYqIbWIF36BMpgtgBVMGuA1JhL7eL1hjxoGeqnQ9AB0Jk5Ae2ieYB2Mv9pE+udNrDOgSKYJVTNmgPonplJiqxLALplz6ANrHOqYq0BSzEfoJ20D2nSJjSDVgGAKjn3gOLoCQCg2VbVfQBFuuyyy+KTn/xkfOYzn4mNGzfGD37wg4iIGB0djXXr1kVExCWXXBLPfe5zY+fOnbF27do466yzjvg1Nm/eHBGx4OOkY/LAwWU/v7/D54Hi6BEokxkD1dAapEufQBnMFqAKZg2QGnOpXbzekActQ/10CDoAOjMnoF00D9BO5j9tYr3TBtY5UASzhKpZcwDdMzNJkXUJQLfsGbSBdU5VrDVgKeYDtJP2IU3ahGbQKgBQJeceUBw9AQA0W1Y3mv+v//W/RkTEP//n//yIj99www3x1re+NSIi9u7dG0NDQxUfGUXatHb1sp/f2OHzQHH0CJTJjIFqaA3SpU+gDGYLUAWzBkiNudQuXm/Ig5ahfjoEHQCdmRPQLpoHaCfznzax3mkD6xwogllC1aw5gO6ZmaTIugSgW/YM2sA6pyrWGrAU8wHaSfuQJm1CM2gVAKiScw8ojp4AAJotqzuuz83NLfrf/E3mIyJuv/32uPHGG5f8NW688ca49dZbSz9W+jc2Mhzbt44t+rntW8dibGS44iOC9tIjUCYzBqqhNUiXPoEymC1AFcwaIDXmUrt4vSEPWob66RB0AHRmTkC7aB6gncx/2sR6pw2sc6AIZglVs+YAumdmkiLrEoBu2TNoA+ucqlhrwFLMB2gn7UOatAnNoFUAoErOPaA4egIAaLasbjRPO4yuH47rdmxbcCGyfetYXL9jW4yudxECVdEjUCYzBqqhNUiXPoEymC1AFcwaIDXmUrt4vSEPWob66RB0AHRmTkC7aB6gncx/2sR6pw2sc6AIZglVs+YAumdmkiLrEoBu2TNoA+ucqlhrwFLMB2gn7UOatAnNoFUAoErOPaA4egIAaLYVc3Nzc3UfRNNNTk7G6OhoTExMxKZNm+o+nNaYmJ6N8anZ2H/gYGxcuzrGRoZdgNA3HQ9Gj6RCy3kyY9pHy/XQGkXTcnH0SZ20nC+zpV20TF3MmmJpGQaXwlzScnVSeL3Jl5aro2XKpOXu6JCUVdWxDqBcOezJ5gTk0XK3NE/O2tQy9KpJ81/LDKpJ6z1nWi6XdU5VtJw3s6Q9UmnZmoPBpNIy1TAz89Xklq1LeFaTW4YqNGHP0DGDasI6b4M2tGyt0QZtaLkM5gOp0XI1tE/ZtNwfbZIaLS9OqzSNliEPWm4v5x550XK99ERRtAx50DI0x6q6DwD6NbreRQekQo9AmcwYqIbWIF36BMpgtgBVMGuA1JhL7eL1hjxoGeqnQ9AB0Jk5Ae2ieYB2Mv9pE+udNrDOgSKYJVTNmgPonplJiqxLALplz6ANrHOqYq0BSzEfoJ20D2nSJjSDVgGAKjn3gOLoCQCgmYbqPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAtnGjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICKudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMXcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYm40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAxN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICKudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMXcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYm40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAxN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICKudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMXcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYm40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAxN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUzI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACqW1Y3md+7cGS9/+ctj48aNcfzxx8eb3vSmuP/++5f9OR/5yEfi/PPPj2OOOSaOOeaYeM1rXhP/8A//UNERAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG2U1Y3m77jjjrjsssviK1/5Stx2221x8ODBeO1rXxtPPPHEkj/n9ttvj4suuij+7u/+Lu66667YsmVLvPa1r43vf//7FR45AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Car6j6AIn3uc5874sc33nhjHH/88XH33XfH9u3bF/05n/jEJ4748Uc/+tG45ZZb4vOf/3xccsklpR0rAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0F5DdR9AmSYmJiIi4thjj+3650xPT8fBgwd7+jkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvVhV9wGU5emnn453vOMdcd5558VZZ53V9c+76qqr4uSTT47XvOY1S37NzMxMzMzMHPrx5OTkQMcKVE/HkActQx60DHnQMuRBy5AHLUMetAx50DLkQcuQBy1D8+kY8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGXIg5ah+XQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAx50DLkQcvQXEN1H0BZLrvssvjGN74RN910U9c/57rrroubbropPv3pT8fatWuX/LqdO3fG6Ojoof+2bNlSxCEDFdIx5EHLkActQx60DHnQMuRBy5AHLUMetAx50DLkQcvQfDqGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBnyoGVoPh1DHrQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAx50DI014q5ubm5ug+iaJdffnl85jOfiV27dsWpp57a1c/5wz/8w3jve98bf/u3fxsve9nLlv3amZmZmJmZOfTjycnJ2LJlS0xMTMSmTZsGOnagGjqGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWoY8aBmaT8eQBy1DHrQMedAy5EHLkActQx60DHnQMuRBy5AHLUMetAzNp2PIg5YhD1qGPGgZ8qBlyIOWIQ9ahjxoGfKgZciDliEPWobmWlX3ARRpbm4ufvM3fzM+/elPx+233/7/s3fvUXae9WHvf5Kl0cXSjLCnJrYj1T6xQmC5ppKhLdgWlxRS07AOxUl6TCkX56SlYBIWTQ52OZAC4dgObdpwS1fWie2wEmgWGJOElZLlEwq+hOVTSyaGAK4MduRiGXeMNaPxSBrZnvOHzwhprvvyXp7neT+ftfyHtDXW++79fH/Pu/ee0e75Q+Z/8zd/Mz784Q/Hn//5n6/6IfMRERs2bIgNGzYMe7hAi3QMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz50zGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUO+ivqg+Xe84x3x6U9/Ov74j/84tm7dGo8++mhERIyNjcWmTZsiIuJNb3pTnHvuuXHddddFRMQNN9wQ73//++PTn/50nHfeeSe+ZsuWLbFly5Z2TgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo2tq2D6BKv/M7vxOTk5Px8pe/PM4+++wT//3RH/3RiT9z4MCBOHjw4ClfMzs7Gz/3cz93ytf8u3/379o4BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAD1rV9AFWam5tb9c985StfOeXXDz30UD0HAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALCMtW0fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDX+KB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICG+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICG+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICG+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICG+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICG+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICG+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICG+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhvmgeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICG+aB5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIb5oHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhq1r+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDrDhw4EBMTE20fxrLGx8djx44dbR8GAAAAQFGK+qD56667Lj7/+c/Hd77zndi0aVO89KUvjRtuuCGe97znrfh1n/3sZ+N973tfPPTQQ7Fz58644YYb4jWveU1DRw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJcdOHAgfuqnnh9Hjsy0fSjL2rRpc3znO9/2YfMAAAAAFSrqg+a/+tWvxjve8Y548YtfHE899VT8m3/zb+LVr351fOtb34rTTz99ya/5y7/8y7jyyivjuuuui5/92Z+NT3/60/G6170u9u3bFxdeeGHDZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNdMTEzEkSMz8fev+vUYPfu8tg9nkamDD8XdN34gJiYmfNA8AAAAQIWK+qD5L33pS6f8+uabb46zzjor9u7dG3v27Fnya377t387/tE/+kfxa7/2axER8aEPfShuu+22+PjHPx7/6T/9p9qPGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIiJGzz4vztjxvLYPAwAAAICGFPVB8wtNTk5GRMQZZ5yx7J/52te+Fu9+97tP+b2f+ZmfiS984QvLfs2xY8fi2LFjJ349NTU13IECjdMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQcuQPx1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DLkT8dQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz5Wtv2AdTlmWeeiXe9611xySWXxIUXXrjsn3v00Ufjuc997im/99znPjceffTRZb/muuuui7GxsRP/bd++vbLjph6TM7Px3cem494DT8R3/+d0TM7Mtn1ItEzH/dMRKdIyperazNVyO7q2zqiflvujQVKlZYZhtqVDy5SsS7NGyzC4lGaFltuX0nogX1rOj/ZZipbbo0mq0uWOdURJutKybildV1peic4pgZYZhjmYDi13h+7KpuXmaYo6aDl/ZgMRebRsrcLqcmiZ/Ji/zdNydaxf2qRlqFYbM13HlK4r10pdabkrjyfd1ZWWq2AekDItt8NcoGpa7p3+SJmWq6N12qRlKIOW62WvpilazpMZwUJahjJoGfK1Zm5ubq7tg6jDv/pX/yr+y3/5L3HnnXfGj//4jy/750ZGRuL3f//348orrzzxe5/85CfjAx/4QPzgBz9Y8muOHTsWx44dO/Hrqamp2L59e0xOTsbo6Gh1J0ElHjl0JN5zy31xx/6JE7+3Z+d4XH/FRXHOtk0tHhlt0nF/dESqtEyJujhztdy8Lq4z6qfl3mmQlGmZQZltadEyperarNEyDCa1WaHldqW2HsiXlvOifZaj5XZokip1tWMdUZoutKxbuqALLa9E55Si6y0zOHMwLVruBt2VT8vN0hR10XLezAbmpd6ytQq9Sb1l8mP+tkPL1bB+aZuWoTptzXQdU7IuXSt1oeUuPZ50VxdaroJ5QOq03DxzgTpouTf6I3VarobWaVupLe/bty8uvvjieNV7b4ozdjyv7cNZ5IcH7o/bPvzW2Lt3b+zevbvtw6EApbacAns1TdJyfswIlqJlKIOWIV9r2z6AOlx99dXxxS9+Mf7rf/2vK37IfETEj/3Yjy36QPkf/OAH8WM/9mPLfs2GDRtidHT0lP9I0+TM7KInIRERt++fiGtuuS8mZ2ZbOjLapuPe6YiUaZnSdHXmarlZXV1n1E/LvdEgqdMygzDb0qNlStTFWaNl6F+Ks0LL7UlxPZAvLedD+6xEy83TJFXrYsc6okSlt6xbuqL0lleic0rS5ZYZnDmYHi2XT3fdoOXmaIo6aTlfZgMnS7llaxV6l3LL5Mf8bY+Wh2f9kgItQzXanOk6plRdu1YqveWuPZ50V+ktV8E8IAdabpa5QF20vDr9kQMtD0/rpEDLUAYt18NeTdO0nBczguVoGcqgZchXUR80Pzc3F1dffXXceuut8eUvfznOP//8Vb/mJS95SfzFX/zFKb932223xUte8pK6DpMGTUzPLnoSMu/2/RMxMe2JCKxGRwDNMXNpgnUG7dIgUCKzDWiCWQP0wqzgZNYDdJP2IS2ahOHpCPKjWyifzoGuMwehebqDamkKWIrZQC6sVYB2mL/kzPoFKIeZDtXTVVk8nsA88wBYyFyA9ugPukHrAJA2ezWwEjMCACBN69o+gCq94x3viE9/+tPxx3/8x7F169Z49NFHIyJibGwsNm3aFBERb3rTm+Lcc8+N6667LiIifuVXfiVe9rKXxb//9/8+/vE//sfxn//zf4577rknfvd3f7e186A6U0ePr3j74VVuB3QE0CQzlyZYZ9AuDQIlMtuAJpg1QC/MCk5mPUA3aR/SokkYno4gP7qF8ukc6DpzEJqnO6iWpoClmA3kwloFaIf5S86sX4BymOlQPV2VxeMJzDMPgIXMBWiP/qAbtA4AabNXAysxIwAA0rS27QOo0u/8zu/E5ORkvPzlL4+zzz77xH9/9Ed/dOLPHDhwIA4ePHji1y996Uvj05/+dPzu7/5uvPCFL4zPfe5z8YUvfCEuvPDCNk6Bio1uXL/i7VtXuR3QEUCTzFyaYJ1BuzQIlMhsA5pg1gC9MCs4mfUA3aR9SIsmYXg6gvzoFsqnc6DrzEFonu6gWpoClmI2kAtrFaAd5i85s34BymGmQ/V0VRaPJzDPPAAWMhegPfqDbtA6AKTNXg2sxIwAAEhTUR80Pzc3t+R/b3nLW078ma985Stx8803n/J1P//zPx/3339/HDt2LL75zW/Ga17zmmYPnNqMbxmJPTvHl7xtz87xGN8y0vARQX50BNAcM5cmWGfQLg0CJTLbgCaYNUAvzApOZj1AN2kf0qJJGJ6OID+6hfLpHOg6cxCapzuolqaApZgN5MJaBWiH+UvOrF+AcpjpUD1dlcXjCcwzD4CFzAVoj/6gG7QOAGmzVwMrMSMAANJU1AfNw0Jjm0fi+isuWvRkZM/O8bjhiotibLMnIrAaHQE0x8ylCdYZtEuDQInMNqAJZg3QC7OCk1kP0E3ah7RoEoanI8iPbqF8Oge6zhyE5ukOqqUpYClmA7mwVgHaYf6SM+sXoBxmOlRPV2XxeALzzANgIXMB2qM/6AatA0Da7NXASswIAIA0rZmbm5tr+yByNzU1FWNjYzE5ORmjo6NtHw5LmJyZjYnp2Th89Hhs3bg+xreMeBLCKXS8Oh2RAy1Tiq7PXC03o+vrjPppeWUaJBdaph9mW7q0TEm6PGu0DL1LeVZouXkprwfypeX0aZ9eaLk5mqQuXepYR5Ss1JZ1S9eU2vJKdE6JutgygzMH06XlcumuW7RcP03RBC3nx2xgKSm2bK1C/1JsmfyYv+3T8uCsX1KiZRhOCjNdx5Qmha7aUGrLXX086a5SW66CeUBOtNwMc4G6aXl5+iMnWh6c1klJKS3v27cvLr744njVe2+KM3Y8r+3DWeSHB+6P2z781ti7d2/s3r277cOhQKW0nAp7NW3Rch7MCFajZSiDliEf69o+AGjC2GZPPGBYOgJojplLE6wzaJcGgRKZbUATzBqgF2YFJ7MeoJu0D2nRJAxPR5Af3UL5dA50nTkIzdMdVEtTwFLMBnJhrQK0w/wlZ9YvQDnMdKiersri8QTmmQfAQuYCtEd/0A1aB4C02auBlZgRAABp8UHzVGJyZjYmpmdj6ujxGN20PsZPd+EPpdM90A8zA3qnF8ifjqFM2oZ86RegXeYwEdYBlELLkDcNQ3P0BmXTOORPxwDUyT5DF1n30Du9QL00RtdY80AXmHVQDS0BqzEnoDy6phTWMtAvcwPap0PoFs1DfnQLAKTINQpUR08AAGXwQfMM7ZFDR+I9t9wXd+yfOPF7e3aOx/VXXBTnbNvU4pEBddE90A8zA3qnF8ifjqFM2oZ86RegXeYwEdYBlELLkDcNQ3P0BmXTOORPxwDUyT5DF1n30Du9QL00RtdY80AXmHVQDS0BqzEnoDy6phTWMtAvcwPap0PoFs1DfnQLAKTINQpUR08AAOVY2/YBkLfJmdlFTw4iIm7fPxHX3HJfTM7MtnRkQF10D/TDzIDe6QXyp2Mok7YhX/oFaJc5TIR1AKXQMuRNw9AcvUHZNA750zEAdbLP0EXWPfROL1AvjdE11jzQBWYdVENLwGrMCSiPrimFtQz0y9yA9ukQukXzkB/dAgApco0C1dETAEBZfNA8Q5mYnl305GDe7fsnYmLaEwQoje6BfpgZ0Du9QP50DGXSNuRLvwDtMoeJsA6gFFqGvGkYmqM3KJvGIX86BqBO9hm6yLqH3ukF6qUxusaaB7rArINqaAlYjTkB5dE1pbCWgX6ZG9A+HUK3aB7yo1sAIEWuUaA6egIAKIsPmmcoU0ePr3j74VVuB/Kje6AfZgb0Ti+QPx1DmbQN+dIvQLvMYSKsAyiFliFvGobm6A3KpnHIn44BqJN9hi6y7qF3eoF6aYyuseaBLjDroBpaAlZjTkB5dE0prGWgX+YGtE+H0C2ah/zoFgBIkWsUqI6eAADK4oPmGcroxvUr3r51lduB/Oge6IeZAb3TC+RPx1AmbUO+9AvQLnOYCOsASqFlyJuGoTl6g7JpHPKnYwDqZJ+hi6x76J1eoF4ao2useaALzDqohpaA1ZgTUB5dUwprGeiXuQHt0yF0i+YhP7oFAFLkGgWqoycAgLL4oHmGMr5lJPbsHF/ytj07x2N8y0gjxzE5MxvffWw67j3wRHz3f07H5MxsI38vdNGWjevisgS6B/KQyrXCSlxHkIrUe9EKrG6QjrUF6Ut9j86V+UcT9NsunQMrzeHLdo7HutPWmA0dsNo62LJxXcNHBAyiiWtr149Qn6ob1iulG2aNez0KytZP4/ZLSNNqHa9bu0a3QDFcjzTPc8Ju6npr1j1d188M0AvUu29qjJwN0oY1D3RBSbOu668fsLK610dJLQH16HdO2NcgfXXs/9qnDa5lgX75d3KhfW3v365boVltNq93GEzbe3U/dA5Ayexzp8rpGgVS12RPZhkAQP38q+0MZWzzSFx/xUVxzS33xe37J078/p6d43HDFRfF2Ob6n3A/cuhIvOeW++KOBX//9VdcFOds21T73w9d8sihI/H+P/5mvPml58Uzc3Nx1wOPn7itye6BfKRwrbAS1xGkJOVetAK96bdjbUEeUt6jc2X+0RT9tkfnQMTyc/iSC86MN7/0vLj8t++IF/3t55gNhVttHfyft34jPvC/XmgNQOLqvrZ2/Qj1qrJhvVK6Yde416OgbL02br+EdC3X8WU7x+Ptr7ggLv/oHTEz+3RE6BbIm+uRdnhO2D1as+7ptn5ngF7ourr3TY2Rq0HbsOaBLihl1nn9gJU0sT5KaQmoTz9zwr4Geah6/9c+bZmZfTre/ooL4ukF/97lZa5lgSX4d3IhDW2+FuW6FZrXVvN6h8Hl8r6RzgEomX1usVyuUSAHTfVklgEANGPN3NzcXNsHkbupqakYGxuLycnJGB0dbftwWjE5MxsT07Nx+Ojx2LpxfYxvGWnkyfbkzGxc/Zl7T3niMG/PzvH42JW7POmnJzpe3cm9bR45La669PzYtX1bHHvqmdi2aX38xFlb4rmjG9s+TDpOy+lq61phtWNyHZGmrrecWi9aYVBdbrmXjrVFLrrc8kKp7dG5Mv/a0fWW9dssnden6y2Tr8mZ2Xjs8LE48MOZiIi49+FDceOdD57ygU1dmg1dbfkHU0fju49Nx6Ejx2PDurWnrIOurQHK0NWW67i2dv1Im7rW8rAN65UUVdlxlWvc61HQn9z25JUat1/SZTm1fHLHp29YF/f8zRPxoS9+68RrlvN0Sxfl1DJLcz3SvhSeE2q5flo7VQrrvkRaTtcwM0Av3aPlZvdNjVGXOlquog1rHvpjX85TzrPO6wf1KKXlptdHzi1RplJaLslqc8K+xkI6Tl8V+7/2y5dqy/Nrb+/fPHHKv3e5Yd3aeOzwsXjNhT9m7cFJUm25Kf6dXEpRUstNvxblupWUlNRyr5psXu80pfSWU37fSOdUqZSW9+3bFxdffHG86r03xRk7ntf24SzywwP3x20ffmvs3bs3du/e3fbhUKBSWo6wz60m5WsUhldSyzmosyezrNu0DGXQMuRjXdsHQBnGNrfzBHtienbJJw4REbfvn4iJ6VlPHqAiJ/c2M/t0fPzLD5xy+1+8+2XxXNd9wDLaulZYiesIUpVaL1qB/vXSsbYgP6nt0bky/2iDfpulc2Chsc0jMTE9G7/4+/csebvZ0A3TR5+KN/zfdy95mzUA+ajj2tr1IzRn2Ib1SumqXONej4KyrdS4/RLycHLH331sOq79/DeW/HO6BXLkeqR9nhN2g9ZOZd3TNcPMAL3QRU3umxojJ1W0Yc0DXZDzrPP6AStpen3k3BLQjNXmhH0N8lPF/q992nLy2lv4711GRPy9886w9oAT/Du5kJ6mX4ty3QrtarJ5vUM1Un7fSOcAlMw+t7KUr1EgN3X2ZJYBADRnbdsHAMOYOnp8xdsPr3I70Du9AaUx16A3WoF6aAvoKvMPyqdzYClmA9YAsBzzAfKhV0pnjQNVMEsgP7oFSmOuQTO0Bt1mBkB/NANL0wZA+cx6VmJ9ALkxt6CbtE9brD2gH2YGYA5Ad+gdyqdzAEpmnwNKYJYBADTHB82TtdGN61e8fesqtwO90xtQGnMNeqMVqIe2gK4y/6B8OgeWYjZgDQDLMR8gH3qldNY4UAWzBPKjW6A05ho0Q2vQbWYA9EczsDRtAJTPrGcl1geQG3MLukn7tMXaA/phZgDmAHSH3qF8OgegZPY5oARmGQBAc1r9oPmvfe1r8cUvfvGU3/vUpz4V559/fpx11lnxL/7Fv4hjx461dHTkYHzLSOzZOb7kbXt2jsf4lpGGjwjKpTegNOYa9EYrUA9tAV1l/kH5dA4sxWzAGgCWYz5APvRK6axxoApmCeRHt0BpzDVohtag28wA6I9mYGnaACifWc9KrA8gN+YWdJP2aYu1B/TDzADMAegOvUP5dA5AyexzQAnMMgCA5rT6QfMf/OAH46//+q9P/Pob3/hG/OIv/mL8w3/4D+Oaa66JP/3TP43rrruuxSMkdWObR+L6Ky5a9ARiz87xuOGKi2JssycPUBW9AaUx16A3WoF6aAvoKvMPyqdzYClmA9YAsBzzAfKhV0pnjQNVMEsgP7oFSmOuQTO0Bt1mBkB/NANL0wZA+cx6VmJ9ALkxt6CbtE9brD2gH2YGYA5Ad+gdyqdzAEpmnwNKYJYBADRnzdzc3Fxbf/nZZ58df/qnfxovetGLIiLive99b3z1q1+NO++8MyIiPvvZz8av//qvx7e+9a22DrEnU1NTMTY2FpOTkzE6Otr24XTS5MxsTEzPxuGjx2PrxvUxvmXEEwf6ouPe6Y2UaZlBmGvp0XKatEK/tNwbbZE6LVMX869ZWqYNOq+elimB2aBla4BSdL3lOpgPtEHLg9ErKamjY2scmlfinmyW0EW5t6xbeFbuLfMj5lq3abk5WqNOWk6fGUAvtPwjmiFndbasDWiOfZm2mPXVKq1l64OuKq3lLjG3mKfjbtF+uVJv2dqD3qTeclPMDHKn5eGZA6RAy83QO3XTcvt0ThVKaXnfvn1x8cUXx6vee1OcseN5bR/OIj88cH/c9uG3xt69e2P37t1tHw4FKqXlk9nn6KISW+46s6ybtAxl0DLkY12bf/kTTzwRz33uc0/8+qtf/WpcfvnlJ3794he/OB5++OE2Do3MjG32ZAGaojegNOYa9EYrUA9tAV1l/kH5dA4sxWzAGgCWYz5APvRK6axxoApmCeRHt0BpzDVohtag28wA6I9mYGnaACifWc9KrA8gN+YWdJP2aYu1B/TDzADMAegOvUP5dA5AyexzQAnMMgCA+q1t8y9/7nOfGw8++GBERMzOzsa+ffviH/yDf3Di9sOHD8f69evbOjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAWrT6QfOvec1r4pprrok77rgjrr322ti8eXNcdtllJ26/77774id+4idaPEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA6q1r8y//0Ic+FK9//evjZS97WWzZsiVuvvnmGBkZOXH7jTfeGK9+9atbPEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA6rX6QfPj4+Nx++23x+TkZGzZsiVOO+20U27/7Gc/G1u3bm3p6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADq0eoHzb/+9a/v6c99/vOfr/lIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrT6gfNj42NtfnXAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALSi1Q+av+mmm9r86wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABasbbtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADomqI+aP7222+P1772tXHOOefEmjVr4gtf+MKqX/OHf/iH8cIXvjA2b94cZ599dlx11VXx+OOP13+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGeta/sAqvTkk0/GC1/4wrjqqqvi9a9//ap//q677oo3velN8R/+w3+I1772tfH9738/3va2t8Uv/dIvxec///kGjpg6TM7MxsT0bEwdPR6jm9bH+OkjMbZ5pO3DgqLpDmAw5icpsA6hGloCqJ7ZCu3RH6RHl3SFtQ5UwSyB5uiNEljHQJ3MGKiergD6Y25Cc/QGVMlMoQusc8iHXgHqY8YyKGsH6qczgPqZtQzLGoL86BaokpkC+dEtsBSzAQCgXq63aJL1BgBQnaI+aP7yyy+Pyy+/vOc//7WvfS3OO++8+OVf/uWIiDj//PPjX/7Lfxk33HBDXYdIzR45dCTec8t9ccf+iRO/t2fneFx/xUVxzrZNLR4ZlEt3AIMxP0mBdQjV0BJA9cxWaI/+ID26pCusdaAKZgk0R2+UwDoG6mTGQPV0BdAfcxOaozegSmYKXWCdQz70ClAfM5ZBWTtQP50B1M+sZVjWEORHt0CVzBTIj26BpZgNAAD1cr1Fk6w3AIBqrW37ANr0kpe8JB5++OH4sz/7s5ibm4sf/OAH8bnPfS5e85rXtH1oDGByZnbRk4WIiNv3T8Q1t9wXkzOzLR0ZlEt3AIMxP0mBdQjV0BJA9cxWaI/+ID26pCusdaAKZgk0R2+UwDoG6mTGQPV0BdAfcxOaozegSmYKXWCdQz70ClAfM5ZBWTtQP50B1M+sZVjWEORHt0CVzBTIj26BpZgNAAD1cr1Fk6w3AIDqrWv7ANp0ySWXxB/+4R/GP/2n/zSOHj0aTz31VLz2ta+NT3ziEyt+3bFjx+LYsWMnfj01NVX3odKDienZRU8W5t2+fyImpmdjbPNIw0dFqnRcDd3RNi2TK/PzVFpuh3VI1braspYoTVdbJi1m6/C0zKD0lxYtE6HLEmi5N9Y6qdNyHswSVqPl6uiNtlTZsXUM7enCnmzG0AVNt6wrqEcX9uWuMje7Rcvt0htV0TIRZkoJtLw665wcaPlZeiV3WiZlZmzvtHwqa4dc5dSyzmBpOXVM+sza9pTSsjVE1+XYsm5hsRxbToWZQkq03Bvdkjott8NsoGpahjJoGarT5vWWlrvH9X2ZtAxl0DLka23bB9Cmb33rW/Erv/Ir8f73vz/27t0bX/rSl+Khhx6Kt73tbSt+3XXXXRdjY2Mn/tu+fXtDR8xKpo4eX/H2w6vcTrfouBq6o21aJlfm56m03A7rkKp1tWUtUZqutkxazNbhaZlB6S8tWiZClyXQcm+sdVKn5TyYJaxGy9XRG22psmPrGNrThT3ZjKELmm5ZV1CPLuzLXWVudouW26U3qqJlIsyUEmh5ddY5OdDys/RK7rRMyszY3mn5VNYOucqpZZ3B0nLqmPSZte0ppWVriK7LsWXdwmI5tpwKM4WUaLk3uiV1Wm6H2UDVtAxl0DJUp83rLS13j+v7MmkZyqBlyNeaubm5ubYPog5r1qyJW2+9NV73utct+2f++T//53H06NH47Gc/e+L37rzzzrjsssvikUceibPPPnvJrzt27FgcO3bsxK+npqZi+/btMTk5GaOjo5WdA/357mPT8dO/9dVlb/+Ld78sfuKsLQ0eEb2anJmNienZmDp6PEY3rY/x00dibPNIrX+njquhO06mZehdG/OzjUZ7peV22MfLZl9ujpaok5bpqtJmq5bJSdP9pfxcNQVarl6Oa660fbGLtNwba51+uMZmOWZJXrScN70xr+mWq+zYOoZn2ZPrYcbQtC60rCu6oAst05xh5maO76l1nZbbVfV1iga7S8tEeO5TNdfYabLO6ZeW26NXBpHScxotk7JcZ6x9uX25rh3SouWV6SxPKV2HliqnjkmfWfsse/LgrCFSouXe6JbUaTkvZgrL0XK6dJu3Lrz2puV2mA1ly21fPnDgQExMTNR6fIP69re/HW984xvjVe+9Kc7Y8by2D2eRHx64P2778Ftj7969sXv37rYPhwLYl7unC9ebbWnzekvL3eP6vn65XWMD6dAy5Gtd2wfQppmZmVi37tS74LTTTouIiLm5uWW/bsOGDbFhw4Zaj43+jW8ZiT07x+P2/YtfhN2zczzGt3ghIEWPHDoS77nlvrjjpMdtz87xuP6Ki+KcbZtq+3t1XA3dMU/L0J+m52dbjfZKy+2wj5fLvtwsLVEXLdNlJc1WLZObJvtL/blqCrRcrVzXXEn7YldpuTfWOr1yjc1KzJJ8aDl/eiOinZar7Ng6BntyncwYmtSVlnVF6brSMs0ZdG7m+p5a12m5XVVep2iw27RMhOc+VXKNnS7rnH5ouV16pV+pPafRMinLccbal9OQ49ohLVpenc7yk9p1aKly6pj0mbX25GFZQ6RCy73TLSnTcn7MFJai5bTpNl9dee1Ny+0wG8qV27584MCB+Kmfen4cOTJTw1FV5/ix2bYPARphX+6WrlxvtqXN6y0td4/r+3rldo0NpEXLkK81cyt9onpmpqen44EHHoiIiF27dsVv/dZvxSte8Yo444wzYseOHXHttdfG97///fjUpz4VERE333xz/NIv/VJ89KMfjZ/5mZ+JgwcPxrve9a5Yu3Zt3H333T3/vVNTUzE2NhaTk5MxOjpay7nRm0cOHYlrbrnvlCcNe3aOxw1XXBRnexEgOZMzs3H1Z+495UnIvD07x+NjV+6Ksc3NPNHT8eB0h5ZhME3Nz5Qa7ZWWm2MfL09KzXepZS1RNS1DGbNVy+Sqif5S6iMnWh5c7muuhH2RH9Hy8qx1VpPSPNdyusyS9Gm5HHrrtlRaHrZj65guS6XjiHL3ZDOGJnStZV1Rqq61THP6nZsprUWGo+XmVXGdokEW0nJ3ee4zvJRmqpaXZp3TCy2nQa/0KqVml9PllklTTjM2pca1nNfaIS1a7p3O8pHSuu6a1DsmfV2etSnNrpxb7vIaIg1a7p9uSZGW82WmcDIt50G3+UmpraZpuTlmQ3lSmh29trxv3764+OKL4+9f9esxevZ5jRxbPw5+42vxzT/53bj0XZ+Ic5+/q+3DWeSHB+6P2z781ti7d2/s3r277cOhQPblcqW0Z5QslestLXdDKuutNCnNSy1DGbQM+VjX9gFU6Z577olXvOIVJ3797ne/OyIi3vzmN8fNN98cBw8ejAMHDpy4/S1veUscPnw4Pv7xj8e//tf/OrZt2xavfOUr44Ybbmj82KnGOds2xceu3BUT07Nx+Ojx2LpxfYxvGfHkP1ET07NLPgmJiLh9/0RMTM967DKgO7QMg2lqfmqUldjHy6P5dmiJqmkZypitWiZXTfSnD5qW+5orYV+EXljrrCb3eU4zzJL0abkceuu2Ulq2jumyUjpOmRlDE7rWsq4oVddapjn9zk1rEQZXxXWKBoF5nvsMz0xNn3VOL7ScBr3SK81C/3KasRpPS05rh7RouXc6y4d1Dfnq8qw1u6rR5TVEGrTcP92SIi3ny0zhZFrOg27zoy2aYDaUJ+fZMXr2eXHGjue1fRiLTB18qO1DAKhFzntGTlxv0STrrR7mJQB0V1EfNP/yl7885ubmlr395ptvXvR773znO+Od73xnjUdF08Y2e4KQi6mjx1e8/fAqt5MO3XWblmFwTcxPjbIa+3hZNN8eLVElLcOzcp+tWiZndfenD5pWwprLfV+EXlnrrKSEeU4zzJK0abkseuuuklq2jumqkjpOmRlD3brYsq4oURdbpjn9zE1rEYYz7HWKBoGTee4zHDM1D9Y5q9FyOvRKLzQLg8llxmo8PbmsHdKi5f7oLA/WNeStq7PW7KpOV9cQadDyYHRLarScNzOFeVrOh27zoi2aYjaUxewAoFf2jOa43qJJ1lv1zEsA6K61bR8A0F2jG9evePvWVW4H0qBlSJtGoVs0D2XQMpRBy7A8fdA0aw6gDOY5lEHLUAYtQ/50DGXQMpRBy6TCWoR2aRCgOmYqlEHLkBfNQtk0DmXQMiWyroEcmV1QBi1DGbQMZdAy1ENbwCDMDgB6Zc8A6I15CQDd5YPmgdaMbxmJPTvHl7xtz87xGN8y0vARAYPQMqRNo9AtmocyaBnKoGVYnj5omjUHUAbzHMqgZSiDliF/OoYyaBnKoGVSYS1CuzQIUB0zFcqgZciLZqFsGocyaJkSWddAjswuKIOWoQxahjJoGeqhLWAQZgcAvbJnAPTGvASA7vJB80BrxjaPxPVXXLToycieneNxwxUXxdhmT0QgB1qGtGkUukXzUAYtQxm0DMvTB02z5gDKYJ5DGbQMZdAy5E/HUAYtQxm0TCqsRWiXBgGqY6ZCGbQMedEslE3jUAYtUyLrGsiR2QVl0DKUQctQBi1DPbQFDMLsAKBX9gyA3piXANBda+bm5ubaPojcTU1NxdjYWExOTsbo6GjbhwPZmZyZjYnp2Th89Hhs3bg+xreMNP4kRMcwPC1D2lJotFdahuGl0LyWYXhahjJoGZaXQh850fLwrDlSoGUYXgrzXMswPC1DGdpuWccwvLY7jtAyVEHLUAYtk4oU1iLD0XLeNMg8LcPwUpipWobhaRnykkKzy9EyDC+FxrUMw9MyJUphXXeNjmF4KcwuLcPwtAxl0DKUQctQjxTaapqWYXgpzI5eW963b19cfPHF8ar33hRn7Hheg0fYm4fu/vO4+8YPxKXv+kSc+/xdbR/OIj88cH/c9uG3xt69e2P37t1tHw4Fsi+XL4U9g/ppGYaXwrzUMpRBy5CPdW0fAMDYZi/UQAm0DGnTKHSL5qEMWoYyaBmWpw+aZs0BlME8hzJoGcqgZcifjqEMWoYyaJlUWIvQLg0CVMdMhTJoGfKiWSibxqEMWqZE1jWQI7MLyqBlKIOWoQxahnpoCxiE2QFAr+wZAL0xLwGge9a2fQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXeOD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5oPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuaD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5oPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuaD5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5oPmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmg+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrau7QOA1EzOzMbE9GxMHT0eo5vWx/jpIzG2eaTtw4Is6AfSpE1gUOYHlEHLAMMzSwFzgJNZD1AGLUMatAjUyYyhDtYV0Aazh1JYy0BpzDUYno6AYZkjlMA6BqBX9gxIlz4pmfUNzdAa0C9zAxbTBdAkMwfKoGVgUOYHpEmbAJA3eznQJDMHAEidD5qHkzxy6Ei855b74o79Eyd+b8/O8bj+iovinG2bWjwySJ9+IE3aBAZlfkAZtAwwPLMUMAc4mfUAZdAypEGLQJ3MGOpgXQFtMHsohbUMlMZcg+HpCBiWOUIJrGMAemXPgHTpk5JZ39AMrQH9MjdgMV0ATTJzoAxaBgZlfkCatAkAebOXA00ycwCAHKxt+wAgFZMzs4su4CMibt8/Edfccl9Mzsy2dGSQPv1AmrQJDMr8gDJoGWB4ZilgDnAy6wHKoGVIgxaBOpkx1MG6Atpg9lAKaxkojbkGw9MRMCxzhBJYxwD0yp4B6dInJbO+oRlaA/plbsBiugCaZOZAGbQMDMr8gDRpEwDyZi8HmmTmAAC5WNf2AUAqJqZnF13Az7t9/0RMTM/G2OaRho8K8qAfSJM2gUGZH1AGLQMMzywFzAFOZj1AGbQMadAiUCczhjpYV0AbzB5KYS0DpTHXYHg6AoZljlAC6xiAXtkzIF36pGTWNzRDa0C/zA1YTBdAk8wcKIOWgUGZH5AmbUL7vv3tb7d9CMsaHx+PHTt2tH0YwArs5UCTzBwAIBc+aJ6sTc7MxsT0bEwdPR6jm9bH+OkjA19oTx09vuLth1e5HUoxSFf6gTR1oc0qrwWAZ03OzMaxp56OT/6z3bFx/Wmx78ATceOdD8bM7NMn/kwJ8wPqlMr+1IVrAaBcZilQl37niznAyRauh80jp8VVl54fu7Zvi2NPPROzTz0dkzO+KQza0uuMN9shDcu1OL+/Hnvq6bj3wBPe/4FMpPJazjz7PQtVsUatK2A1deyHZg+laHotp3Z9CpTn5Lm28P2ijetPi2fm5lo8OsiD6wNgWN5rogRV74f2O4DyzM/2x5+cjRvf8uIlf9YzwvsF0LSTr7s2rFsbV7/ygiXbjNAn1WjrWt/71ZQgh+fKWgP65f1qWGz62PG4+pUXnNLCya+j2E+hXjlcd1fJNTy0o+pZo2UoR9PXIuYH1GeYnrUJ7Tky+XhErIk3vvGNbR/KsjZt2hzf+c63fdg8VMjzdKAKvi8OAGBlPmiebD1y6Ei855b74o79Eyd+b8/O8bj+iovinG2b+v7/jW5cv+LtW1e5HUowaFf6gTSV3mbV1wLA0l1dcsGZ8dErd8Uvf+beE//IQe7zA+qU0v5U+rUAUC6zFKjLIPPFHOBkJ6+HzSOnxUev3BU33fVgfPzLD5z4fa9PQTv6mfFmO6RhqRbtr5CnlF7LmWe/52RVrVHrClhJXfuh2UMpmlzLKV6fAuWZn2vLvZ512c7xuMHcgRW5PgCG5b0mSlDlfmi/AyhPrz/rGeH9AmhSP21G6JPhtXmt7/1qcpfLc2WtAf3yfjUsNrZpJO498MQpLZz8XM1+CvXJ5bq7Sq7hoXl1zBotQxnauBYxP6Aew/asTWjP8ZnDETEXf/cN74m/df5PtX04i0wdfCjuvvEDMTEx4YPmoSKepwNV8H1xAACrW9v2AcAgJmdmF13sR0Tcvn8irrnlvpicme37/zm+ZST27Bxf8rY9O8djfMvIQMcKuRimK/1Amkpus45rAei65bq664HH46a7HoyrLj0/IvKfH1Cn1Pankq8FgHKZpUBdBp0v5gAnO3k9XHXp+XHTXQ/GXQ88fsqf8foUNK/fGW+2QxqWatH+CvlJ7bWcefZ75lW5Rq0rYDl17odmD6Voai2nen0KlGd+ri33etYd5g6syvUBMCzvNVGCqvZD+x1AeXr9Wc8I7xdAk/ppM0KfDK/ta33vV5Oztvvph9aAfnm/Gk41OTMb7/vCNxe1MP9c7X0/+wL7KdQkp+vuKrmGh2bVNWu0DPlr61rE/IDqVdGzNqF9W87aEWfseF5y/42efV7bdw0UxfN0oAptv79g5gAAufBB82RpYnp20cX+vNv3T8TEdP8X/GObR+L6Ky5adCG/Z+d43HDFRTG22UU8ZRumK/1Amkpus45rAei6lbq664HHY9f2bUXMD6hTavtTydcCQLnMUqAug84Xc4CTnbwedm3ftugfnpjn9SloVr8z3myHNCzVov0V8pPaaznz7PfMq3KNWlfAcurcD80eStHUWk71+hQoz/xce+n/cqbXs2BArg+AYXmviRJUtR/a7wDK08vPekZ4vwCa1mubEfqkGm1f63u/mpy13U8/tAb0y/vVcKqJ6dm444Hln6vt3rHNfgo1yem6u0qu4aFZdc0aLUP+2roWMT+gelX0rE0AaIbn6UAV2n5/wcwBAHKxru0DgEFMHT2+4u2HV7l9Oeds2xQfu3JXTEzPxuGjx2PrxvUxvmXEBTydMGxX+oE0ldpmXdcC0GWrdTW2aX187Mpd2c8PqFOK+1Op1wJAucxSoC7DzBdzgJPNr4f//tj0in/O61PQnEFmvNkOaVjY4vFn5lb88/ZXSE+Kr+XMs98TUf0ata6ApdS9H5o9lKKJtZzy9SlQnnO2bYpHJ4+s+GfMHViZ6wNgWN5rogRV7If2O4DyrDbbt25cH3/x7pd5vwAa1svPYX/h7S/1fh6VSeFa3/vV5CqFfvqhNaBf3q+GH1lt3z8y+3RDRwLdk9t1d5Vcw0Nz6pw1Woa8tXktYn5AtarqWZsAUD/P04EqpPD+gpkDAOTAB82TpdGN61e8fesqt69kbLOLdrqpiq70A2kqsc06rwWgq1br6jkFzhKoWqr7U4nXAkC5zFKgLsPOF3OAk41tHokzVlkPXp+C5gw64812SMPJLX73sekV/6z9FdKT6ms58+z31LFGrStgoSb2Q7OHUtS9llO/PgXKM7bJ+0UwLNcHwLC810QJht0P7XcA5Vlttp95+kj8xFlbGjoaYF4vP4etTaqUyrW+96vJUSr99ENrQL+8Xw3PynHfh1J0vT/X8NCMumeNliFfbV+LmB9QnSp71iYA1MvzdKAKbT+nn2fmAACp80HzZGl8y0js2Tket++fWHTbnp3jMb4lr4vwyZnZmJiejamjx2N00/oYP733JxLDfC2crLSuqpZKa6kcB92Q8nozs6B6Xeqq1/mW8hwkTV3qKCWDtKpvSFfds1T/5MR67U2v91NXrtWsm+b0sqY8HtCMrsz4QVQ5h8w0mpBSz02seV1RgpS6zdFyc8B8qI41WgatkDqzpl7eD6YfesxDio2meEwpc3/9iLlTLWurWU3f3209vjqFbtF8eZbaPyLCNcMC1v5iVV17uEYF2tLEbF9txpmBsFiK112+z61sKa65FKW6RlM9rq5YqZ/Ldo7HutPWxOTMrMdkCNY4tK+Na4VS2i/lPHhWDtfNVaw565YU5dAfvfPeLKkya3ozOTMbh2aOx5OzT8WTs0/Htk3r46ytGzRL0cyHU5X0nKGkc6E3Xey5C+u8C+cIkNOsq+pYu7hvA9XLfZb4HmwAoCk+aJ4sjW0eieuvuCiuueW+Uy769+wcjxuuuCiri+NHDh2J99xyX9yx4Dyuv+KiOGfbptq+FhYqqauqpdJaKsdBN6S+3uZn1sJjvOSCM+Ptr7ggZmafjrHNLR4gZKgr1wK9zrfU5yBp6kpHKRmkVX1D2mZmn463v+KCeHpuLu564PETv39ZBbNU/+TEeu1NP/dTF67VrJtmrbamZmafjv/D4wGN6MKMH0SV+4I9hqak0nMTa15XlCKVbnO01Bx41fPPivf97AvivV/4pvlQEWs0f8vtmb/xugvjg1/8Vvw/337slN/XCm0wa+rj/WD6pcf0pdhoiseUMvfXqcyd6lhbzWr6/m7z8dUpdIvmy7LU/nHZzvF4xysuiKtu/m8xM/t0RLhmiLD2F6rq2sM1KtCmumf7ajPODISlpXbd5fvcypfamktRqms01ePqkuX6ueSCM+PNLz0vLv/tO+JFf/s5HpMBWeOQhqavFUppv5Tz4EdSv26uYs1Zt6Qq9f7o3cI5s3nktLjxLS+OT3z5gbjjAbOHdpk1qzt46Ej8zQ9n4mNf3r/kv9elWUplPvxISc8ZSjoXete1nruwzrtwjgA5zboqj7Vr+zZQj5xnie/BBgCatGZubm6u7YPI3dTUVIyNjcXk5GSMjo62fTidMjkzGxPTs3H46PHYunF9jG8ZSfpif6HJmdm4+jP3nnJxP2/PzvH42JW7lj2fYb6WxXT8I7l3VbVUWkvlOFKn5Wrkst4mZ2bjz775aJy1dUMce+qZ2LBubdz78KG48c4H40V/+znJHCf903K7Sr4W6HW+5TIHU9fllkvuKCWDtKrv/nW5ZZo33+jev3kirrr0/Ni1fduJa/3HDh+L11z4YwM32vX+tZyXrq/XXg16P+V8rbZSy9ZNe5ZaUxHh8WBZ9uX65Dzjq1blvmCPWZqW69Vmz02seV2lQ8vVsQ/3Z7k5cPUrL4h7Dzxxyj/oMs98WFqvHVujeVppz7z0gjPj7+54Tnz8yw+c8vtayVMpe7JZUy3vB+cnpZb1mKYUG03xmNrm/ajBmDvDsbaql1LLqTy+OiVHKV1j50bz+Vtp/7jkgjNj14LXBlO+ZmiyZWu/umuPVK5hSId9mbbUMdtXm3Ef+fkXxq9+9q+KnIFapiopXHd1+fvcuthyCmsuRamu0VSPKzVNtTw5MxuPHT4WB344ExFx4t+kmZl9OiI8JoOwxpnXxT05VU1cK5TSfinnUaWSWk7xurmKNWfd0ou2W06xP3q31Jzx803taLvl1Jk1S5v/N3m/eN8jmk2ElpvX9flQ0nOGlM5Fy+3oQs8prfO6pHSOvba8b9++uPjii+NV770pztjxvEaOrR8P3f3ncfeNH4hL3/WJOPf5u9o+nEVSP74fHrg/bvvwW2Pv3r2xe/futg+HAaS4L6c061ZT17F2Yd+mWim2TPtymyVd/h7seVqGMmgZ8rGu7QOo0u233x4f+chHYu/evXHw4MG49dZb43Wve92KX3Ps2LH44Ac/GH/wB38Qjz76aJx99tnx/ve/P6666qpmDpqhjG1O+wJ/NRPTs0te3EdE3L5/IiamZ5c9v2G+FlaSe1dVS6W1VI6DbshlvU1Mz8a1n//GkreldJyQm5KvBXqdb7nMQdJVckcpGaRVfUPaTm504YcDRUT8vfPOGLhR/ZMT67U3g95PpV6rWTftWWpNffexaY8HtKDUGT+IKvcFewxtaLPnJta8riiRfbg/y82BXdu3Lfm6WIT5MCxrNE8r7Zl3PvB4vPWS8xf9vlZok1lTLe8HMww9pinFRlM8ppS5v5Zn7gzH2mpW0/d3Ko+vTqFbNJ+/lfaPux54PK5a8Nqga4ZnWfvVXXukcg0DUMdsX23GPfGkGQirSeG6y/e5dUsKay5Fqa7RVI+rq+b/7Yhf/P17lrzdY9I/axzS08S1Qintl3IeLC3F6+Yq1px1Sw5S7I/eLTVn/HwTKTJrljYxPRtnbd2w5IfMR2iWbuj6fCjpOUNJ58JgutBzF9Z5F84RIKdZV9exdmHfBuqX2yzxPdgAQNOK+qD5J598Ml74whfGVVddFa9//et7+ppf+IVfiB/84Afxe7/3e3HBBRfEwYMH45lnnqn5SOFZU0ePr3j74RVuH+Zrgd6l0loqx0E35LLecjlOIB29zg3zBfIwSKv6hrTV2aj+yYn12hv306ncH2nxeABtq3IOmWl0TRNrXlfAcnPg2FMrf9+i+UDXrLZnLteMVqAM3g+G8qTYaIrHlDL3F3WxtprV9P3t8QVgEIO8NmhPIaK6aw/XMEDJVptxU0efWvF2MxDS4PvcIN01mupxdZnHpFruT+imUtov5TzIRxVrzroF6rbUnPHzTZCPqaPHNQsdV9JzhpLOBZbThXXehXMEyGnW5XSsAKnzPdgAQNOK+qD5yy+/PC6//PKe//yXvvSl+OpXvxrf+9734owzzoiIiPPOO6+mo4PFRjeuX/H2rSvcPszXAr1LpbVUjoNuyGW95XKcQDp6nRvmC+RhkFb1DWmrs1H9kxPrtTfup1O5P9Li8QDaVuUcMtPomibWvK6A5ebAhnVrV/w684GuWW3PXK4ZrUAZvB8M5Umx0RSPKWXuL+pibTWr6fvb4wvAIAZ5bdCeQkR11x6uYYCSrTbjRjeu/M8QmYGQBt/nBumu0VSPq8s8JtVyf0I3ldJ+KedBPqpYc9YtULel5oyfb4J8jG5cHz98cnbFP6NZKFtJzxlKOhdYThfWeRfOESCnWZfTsQKkzvdgAwBNW/md+8L9yZ/8SbzoRS+K3/zN34xzzz03fvInfzJ+9Vd/NY4cObLi1x07diympqZO+Q+WMjkzG999bDruPfBEfPd/TsfkzKlvvI9vGYk9O8eX/No9O8djfMvIsv/vYb4WHadqtWbakEprqRxHarRcj1zW27DHmeLM6Sot01SPvc6NXOZgarScv9z2xkFa1ffqtEyb6mx0pf/3q55/VmzZuC6rGbgaLeety/tVP9cjXbif+mm5C/dHSup8/4fy2JfpRdXPyaucQ2bas7TcHUut+c0jp8XVr7wgPv2///2YPDI7dKe6ao+WWU7Tr48vNwfuffhQXHrBmUt+jfnwLB3n937OMFbaMy+94My49+FDi35fK3nQcjcMO6+8H5y+klru0v7aphQbTfGYmub9qPaYPT9ibQ0v5ZZTenx1R+pKusYukRnSrJX2j0uWeG0wpWuGVFvuyhqu6tojpWsY2pFqy1CF1Wbcc06vZwa2sRdpmTbVveabuF5J5ZpIy+Wpqo9U1uhCqR5X29psubTHpO3n+KXdn/TOnlyeLv48bynnMQwtN6uKNTe+ZSSue/3fid9784vik/9sd9z4lhfH1a+8IDaPnNaZdctiWs5T29fyy1lqVt378KG4xM831U7L6Uu125ONbxmJxw4f02yLtNwtKc6Fkp7rtnkuWuZkdbZeUrPL0TIwrBxazmme53Ssq0nxepzl5dAynKyXGdPW92C3SctQBi1Dvjr9QfPf+9734s4774xvfvObceutt8Z//I//MT73uc/F29/+9hW/7rrrrouxsbET/23fvr2hIyYnjxw6Eld/5t746d/6avyTT/5l/PS//2q88zP3xiOHjpz4M2ObR+L6Ky5adJG/Z+d43HDFRTG2efkL/GG+Fh2nqJdm2pBKa6kcR2q0XI9c1tswx5nqzOkqLXdbkz32OjdymYOp0XLectwbB2lV36vTMm2qs9Hl/t+vev5Z8b6ffUH86mf/KqsZuBot562r+1W/1yNduJ/6abkL90cq6n7/h/LYl1lNHc/Jq5xDZtqztNwdC9f85pHT4qNX7op7DzwRb/i/747X/87Xhu5UV+3RMktp4/Xx5ebA/Qen4v/6J3/HfFhB1zvO8f2cYay0Z/5f/+TvxP0Hpxb9vlby0PWWu6CKeeX94PSV0nLX9tc2pdhoisfUNO9HtcPsOZW1NbyUW07l8dUdOSjlGrtEZkjzlts/Lts5Hu985c648c4HT/xeatcMKbbcpTVc1bVHKtcwtCfFlqEqq824545urHwGtrUXaZm2NLHmm7heSeWaSMtlqbKPVNZoLsfVtjZbLukxSeE5fkn3J/2xJ5elqz/PW8p5DEPLzapizT05+3T82X0H4xd//554+x/ui6tu/m9x74En4sa3vDh+syPrlsW0nJ8UruWXs9SsuvHOB+Odr9wZl3V4z2yCltOWcrcnG9s8Ei//yb8V73zlzkUfNn+ZZhuh5e5IdS6U9Fy3zXPRMvPqbr2kZpejZWBYObSc0zzP6VhXkur1OMvLoWWY1+uMaeN7sNumZSiDliFfa+bm5ubaPog6rFmzJm699dZ43etet+yfefWrXx133HFHPProozE2NhYREZ///Ofj537u5+LJJ5+MTZs2Lfl1x44di2PHjp349dTUVGzfvj0mJydjdHS00vMgT5Mzs3H1Z+6NO/ZPLLptz87x+NiVu065eJ+cmY2J6dk4fPR4bN24Psa3jPR8cT/M13aZjtPSbzNtSKW1VI4jFVquVy7rrd/jzGHmdI2Wu6utHnudG7nMwVRoOV+5742DtKrv5WmZFNTZ6ML/95aN6+JXP/tX2c7A5Wi5DF3ar4a5Hin5fhqk5ZLvjxQ0+f4P5bAvs5K6n5NXOYe6PtO03D3za/6Zubn44J/+ddzxwOOL/sywnXa9qzZomYXafn18uTlgPiyvyx23vV7bpJXydLnlLqh6Xnk/OF0ltNzl/bVNKTaa4jE1xftRzTN7lmdtDS6Hltt8fHVHLkq4xi6RGdKupfaPiEj6miG1lru6hqu69nCN2l2ptQx1WG3GVTlL29qLtEwbml7zTVyvtH1NpOVy1NVH22s0t+NqSwot5/6YpPYcP/f7k/6l0DHV8PO85ZzHILTcjkHXXGr7P+nQcl5yaTnH92Zzp+V05dLtySZnZuPQzPF4cvapmJl9OsY2rY+ztm5I7jhLpOVuyGEulPRct41z0TIRzbZeUrPLyanlffv2xcUXXxyveu9NccaO59V6jIN46O4/j7tv/EBc+q5PxLnP39X24SyS+vH98MD9cduH3xp79+6N3bt3t3049CCnfTmneZ7TsS6Uw/U4i+XUMt02yIxp6nuwU6BlKIOWIV/r2j6ANp199tlx7rnnnviQ+YiI5z//+TE3Nxf/43/8j9i5c+eSX7dhw4bYsGFDU4dJhiamZ5d8AhARcfv+iZiYnj3lAn5s8+AX9MN8bZfpOC39NtOGVFpL5ThSoeV65bLe+j3OHGZO12i5u9rqsde5kcscTIWW85X73jhIq/penpZJQZ2NLvx/f/ex6axn4HK0XIYu7VfDXI+UfD8N0nLJ90cKmnz/h3LYl1lJ3c/Jq5xDXZ9pWu6e+TX/3ceml/yQ+YjhO+16V23QMgu1/fr4cnPAfFhelztue722SSvl6XLLXVD1vPJ+cLpKaLnL+2ubUmw0xWNqivejmmf2LM/aGlwOLbf5+OqOXJRwjV0iM6RdK702mKrUWu7qGq7q2sM1anel1jLUYbUZV9UMbHMv0jJtaHrNN3G90vY1kZbLUVcfba/R5aR6XG1JoeXcH5PUnuPnfn/SvxQ6php+nrec8xiEltsx6JpLbf8nHVrOSy4t5/jebO60nK5cuj1Zl69x26blbshhLpQ0B9o4Fy0T0WzrJTW7HC0Dg8qp5ZzmeU7HulAO1+MsllPLdNsgM6ap78FOgZahDFqGfK1t+wDadMkll8QjjzwS09PTJ37vv//3/x5r166NH//xH2/xyMjd1NHjK95+eJXboWs0AzTJzIF06BHSoEWgy8xASIMWyYW1ClTNXIH06RTKpnFyYr0CuTCvyIn1CrTB7IHm6Q4YhhlC7qxhANpmL6JrrHlYnj5gOBoCqmKeQD70CmXQMuRHt8BC5gJ0g9YBIE32aKBOZgwAkLJ1bR9Alaanp+OBBx448esHH3wwvv71r8cZZ5wRO3bsiGuvvTa+//3vx6c+9amIiHjDG94QH/rQh+Ktb31rfOADH4iJiYn4tV/7tbjqqqti06ZNbZ1G3yZnZmNiejamjh6P0U3rY/z0kRjbPNL2YXXa6Mb1K96+dZXbSZPW6qMZoElmzsrsd6dyf9RLj5xMb+3RIikzG6ibGVgGsyJ/WiQX/axVs4m2WYN5sAdSBb3XS6fUQbfp0DhVaaJr6xXSYB9fnXlF3ars0HqF7khpDzd7oHkldZfSPCMN1kT9SpohdM/kzGxsWn9afPKf7Y6N60+LfQeeiBvvfDBmZp8+8WesYaiXvRryu57SLcPKbc13hbbToA8YjobSZ79phvt5eOYJ/dJde/RKlbTcHi1TB03XS7fUTcP5MRfoh8bzpXWAvNmDy2WPBupkxgAAKSvqg+bvueeeeMUrXnHi1+9+97sjIuLNb35z3HzzzXHw4ME4cODAidu3bNkSt912W7zzne+MF73oRXHmmWfGL/zCL8Rv/MZvNH7sg3rk0JF4zy33xR37J0783p6d43H9FRfFOds2tXhk3Ta+ZST27ByP2096XObt2Tke41tWf0HJC1Fp0Vq9qmimF7oCIpqbObmYn43Tx47H2KaReN8Xvhl3PGC/i7D/N6HJHl0HpE1v7cppb9Ryt5gN1GHhHNmycV02M5ClmRVlGPZ6xDUCC9W1Jnpdq2YTbbMG87HSXLls53isO21NTM7M2tdYlt7rt9r+v27tmrj3wBOuQ+mZbtOyWuNbNq6L7z427fkmK2qq65zez6mK13xIjX28N3XMK/OAeVV3mOv+qgnoT2p7+DCzR/8wmC0b18VlO8dPmQPzUt7zF0ptntE+a6IZfuaBXC01Iy654Mz46JW74pc/c2/MzD6d1T6YGr3SC3s1Jahi3uX0OqxuqUJVa971RnW0nY6U9wTNkYOUG6pajk3ab5rhfq5GP/Mkxx6plu7a5d+0pSpablcK1/JmQVk0Xb8Uuu2XzvOh4TzlMBfMgTRoPG8pta5pgP7Yg8vms6yAOpXys6cAQJnWzM3NzbV9ELmbmpqKsbGxmJycjNHR0cb+3smZ2bj6M/cue6H5sSt3edLZokcOHYlrbrnvlBcb9uwcjxuuuCjOXuXFJC9ENW+ljrXWjGGa6fX/r6vytbUnk5+6Z04uTp6NV7/ygrj3wBNx1wOPL/pzTe93KbRs/29OEz26DmhHry3rLQ057I1abofXvSjJUnPkVc8/K973sy+I//ML30x6Bg4rhWvsOpgVZRn0eqRL1wiltly1utfEamvVbGI1dbdsDeZnqblyyQVnxlsvOT9++TP3xov+9nOK3Ndyl8K+rPfmLNXpZTvH4x2vuCCuuvm/xczs0xFR7nVoyZpuWbdpWu4a/zded2F88Ivfiv/n24+d8vs6T0vbe3LTXefwfk5VuvSaD+233Av7eH+qnFfmQT5yfd0rt/1VE9Qth325H6nu4YPMHv3Tj9JaHsYjh47E+//4m/G//b0dcdNdD57yvfIp7/kLpTrPqJefd0yHn3lgGG3syyvNiEsuODN27XhO3PfwoWz2wdTotZv6bdleTQmqnHepvA7rGpumDLvmXW+srJ99WdvpSWVPWHhMmmue17EHk2JDVcuxya7uN74PO2+9zJMce6R/niunz79pSy+0nL42r+XNgnz0co2t6ebk9Bxc52mxL5cr5blgDlRvkNe+NF6GFFrXdHV6bXnfvn1x8cUXx6vee1OcseN5DR5hbx66+8/j7hs/EJe+6xNx7vN3tX04i6R+fD88cH/c9uG3xt69e2P37t1tHw4DWK1le3A3+Cyr/Pk+EVJUys+eNknLUAYtQz7WtX0ADG5ienbJFysiIm7fPxET07NesGjROds2xceu3BUT07Nx+Ojx2LpxfYxvGVn1MZmcmV30AkLEs4/pNbfc54WoFmitGYM20wtdAQvVOXNysXA27tq+LT7+5QeW/LNd3O/s/82pu0fXAenTWxpS3xu13D1mA1Vbbo7c9v9/UNhHfv6FMX30qSRnIMszK8oyyPWIawQWamJNrLZWzSbaZg3mZ36uPHb4WBz44UxERNz78KH45c/cGzOzT9vXWJbem7Nw/z99w7q452+eOOVD5iNch7I63aZpqWv8LRvXxXtv/cYpHzIfoXMWa7rr1N/PqYrXfEiRfbw/Vc0r84CT1dVhTvurJqB/qe7h/c4e/cNgTm7nL7/7eFx16flx1SXnx7Gnnoltm9bHT5y1JZ47urHtw+xJqvOM9lgTzfIzD+RmpRlx1wOPx/v+8Qvily4937oagF7plb2a3FU973J4HVa3VGmYNe96o1raTk9qe4LmyE1qDVUt1ybtN81wP1drtXmSa49US3dp8G/aMiwtp6Gta3mzoDyabk4uz8F1nhcN5y3VuWAOpEPjZWi7dU0D9M8e3A0+ywqoWkk/ewoAlMsHzWds6ujxFW8/vMrt1G9sc/8vLHghKj1aa84gzfRCV8BS6po5uVg4G4899cyKf75r+539v1l19ug6IH16S0fKe6OWu8dsoGorzZHbvv1YXHP5U/ETZ21p+KgYlllRnn6vR1wjsFBTa2KltWo20TZrME9jm0diYno2fvH371nydvsaS9F7s07e/7/72HRc+/lvLPnn9MpKdJuuhdf4331setGHzM/TOSdro+uU38+pitd8SJF9vH9VzCvzgJPV2WEu+6smoH8p7+H9zB79w2BObmdm9un4+JcfOOX2v3j3y+K5o20cWf9Snme0w5ponp95ICerzYijx5+2pgakV3plryZ3dcy71F+H1S1VG3TNu96olrbTlNKeoDlylFJDVcu1SftNM9zP1VtpnuTaI9XSXTr8m7YMQ8vpaONa3iwoj6ablcNzcJ3nRcP5S3EumAPp0Hg52mxd0wD9swd3h8+yAqpU0s+eAgDlWtv2ATC40Y3rV7x96yq3kyYvRKVHa/nTFcBiC2fjhnUrPzXo2n5n/y+H64D06Y1eaLl7zAaqZo6UyaxA2yyUwpowm2ibNZivFGYYedF7e/TKoHSbD53TK13XQ4OkSO/tMA84mQ41AYMoZXboHwZTUjulzDOqY02UpaR5RRrMiProlV7pkNx1cd7pllR0sb86aZvVaA7SkmuT9ptmuJ+blWuPVEt3edMx87TcbWZBeTTNQjrPi4apgzmQDo1TBU0D9M8ezLDsv9BN2gcAcuCD5jM2vmUk9uwcX/K2PTvHY3zLSMNHRBW8EJUereVPVwCLLZyN9z58KC654Mwl/2wX9zv7fzlcB6RPb/RCy91jNlA1c6RMZgXaZqEU1oTZRNuswXylMMPIi97bo1cGpdt86Jxe6boeGiRFem+HecDJdKgJGEQps0P/MJiS2illnlEda6IsJc0r0mBG1Eev9EqH5K6L8063pKKL/dVJ26xGc5CWXJu03zTD/dysXHukWrrLm46Zp+VuMwvKo2kW0nleNEwdzIF0aJwqaBqgf/ZghmX/hW7SPgCQAx80n7GxzSNx/RUXLXrRYs/O8bjhiotibLMXLHLkhaj0aC1/ugJYbOFsvPHOB+Otl5y/6MPmu7rf2f/L4TogfXqjF1ruHrOBqpkjZTIr0DYLpbAmzCbaZg3mK4UZRl703h69Mijd5kPn9ErX9dAgKdJ7O8wDTqZDTcAgSpkd+ofBlNROKfOM6lgTZSlpXpEGM6I+eqVXOiR3XZx3uiUVXeyvTtpmNZqDtOTapP2mGe7nZuXaI9XSXd50zDwtd5tZUB5Ns5DO86Jh6mAOpEPjVEHTAP2zBzMs+y90k/YBgBysmZubm2v7IHI3NTUVY2NjMTk5GaOjo43//ZMzszExPRuHjx6PrRvXx/iWES9WZO6RQ0fimlvui9v3T5z4vfkXos7etqnFIytXLx1rLW+66oa292TIzcLZuHnktHjfz74gdu/YFkdmn25tv0upZft/GVwHtKPflvXGarTcjrb3ZbOBKnV5jrTdct3Mim7rUtult1yVVNaE2cRymmrZGsxTKjOM1aW0L+u9HXotQ1st6zYPOs9DKnuyrqunwW5JpeVe6L155kE+vO7VDE1Qt5z25X6UMDv0Tz9KbXkQpbVTwjyjd37esVtKm1f8SJv7shlRD71206At65CclTjvXGOTixL7q9Ig+7K2WYnm2uF1bJaTc5Nd2298H3b5cu6R3nmuXDYdd4eWWYlZkI9+rrE1zcl0nhb7Mm0wB6o3zGtfGmdYmq5Ory3v27cvLr744njVe2+KM3Y8r8Ej7M1Dd/953H3jB+LSd30izn3+rrYPZ5HUj++HB+6P2z781ti7d2/s3r277cNhAL22bA9mGPbf+vk+EVKk/f5pGcqgZciHD5qvgKFHHbwQ1Swdd4Ouyqdl6F+Ks1HL1CHFtV46LVMHLTdPy5Smq3NEy5SuK21ruXddWRPkScusxgzLg5aJ0GsJtMxqdJ4+HZdNg92hZVZjHuRBy83RBHXSctr0T6+0fCrtkCstd495VSYtl0mv3aNluqq0eadlclJaf1XSMnXQXPO0zEo0mQcdd4Mey6fl8um4G7TMasyCPGiZYeg8HVqmLeZAtbRM2zRdDR8034zUj88HzefPvkxT7L/10jKp0n5/tAxl0DLkY13bBwAsbWyzJw5QNV0BLGY20hXWOpRBy8CwzBEok7ZZyJoAcmaGQT70CuXTObRLg8A88wBOpQnoLv3DYLQD5MK8gnzoFegK8w7aoz9oluYgLZqEdOgR8qdjIMIsgC7QOWAOQFk0DQDNs/9CN2kfAEjZ2rYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBrfNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMN80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw3zQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDfNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMN80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw3zQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDfNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMN80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw3zQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDfNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMN80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw3zQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDDfNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMN80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw3zQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDD1rV9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMP69re/3fYhrOjYsWOxYcOGtg9jWePj47Fjx462DwMAAAA6xQfNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2Toy+XhErIk3vvGNbR/KytasiZiba/solrVp0+b4zne+7cPmAQAAoEE+aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMjW8ZnDETEXf/cN74m/df5PtX04Szr4ja/FN//kd5M9xqmDD8XdN34gJiYmfNA8AAAANKioD5q//fbb4yMf+Ujs3bs3Dh48GLfeemu87nWv6+lr77rrrnjZy14WF154YXz961+v9TgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBqbTlrR5yx43ltH8aSpg4+FBFpHyMAAADQvLVtH0CVnnzyyXjhC18Yn/jEJ/r6ukOHDsWb3vSm+Omf/umajgwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgR9a1fQBVuvzyy+Pyyy/v++ve9ra3xRve8IY47bTT4gtf+EL1BwYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwkqI+aH4QN910U3zve9+LP/iDP4jf+I3fqO3vmZyZjYnp2Zg6ejxGN62P8dNHYmzzSG1/H5AnswLqpzMog5ahDFqGMmgZyqBlKIeeIX86hjJoGcqgZSiXviEvmgUWMheAfpgZAPTL3lEN9yOkTaNQH30BgzI/oBpagjJoGbpJ+5A3DQMrMSNgeDqCsmkc8qJZAMibvRzSo0sAADhVpz9ofv/+/XHNNdfEHXfcEevW9X5XHDt2LI4dO3bi11NTUyv++UcOHYn33HJf3LF/4sTv7dk5HtdfcVGcs21T/wcODK3fjptgVkD/7MlQBi1DGbQMZdAylEHLUIZBXsfWM6THvgxl0DKUQcuQv6q+50vf0C57MpShze/FNhegOin+XEXVzAy6oAstQ5Pa2jtKa9keTFfl0rJGYWXDtKwvSEcu+/I88wOW5v1lKIOWIX9NXF9rH+pXZ8sahubk9rpXhBkBS/FcGcrg5x2hDPZlKEOOz5eBxbwnBWVwjQ1lcI0NZdAy5Gtt2wfQlqeffjre8IY3xAc+8IH4yZ/8yb6+9rrrrouxsbET/23fvn3ZPzs5M7voiUhExO37J+KaW+6LyZnZgY4fGE4/HTfBrIDB2JOhDFqGMmgZyqBlKIOWoQz9vo6tZ0iTfRnKoGUog5Yhf1V8z5e+oX32ZChDW9+LbS5AtVL7uYqqmRl0RektQ5Pa3DtKatkeTJfl0LJGYXWDtqwvSEsO+/I88wOW5/1lKIOWIX91X19rH5pRV8sahmbl9LpXhBkBy/FcGcrg5x2hDPZlKENuz5eBpXlPCsrgGhvK4BobyqBlyFdnP2j+8OHDcc8998TVV18d69ati3Xr1sUHP/jB+Ku/+qtYt25dfPnLX172a6+99tqYnJw88d/DDz+87J+dmJ5d9ERk3u37J2Ji2pMRaEM/HTfBrIDB2JOhDFqGMmgZyqBlKIOWoQz9vo6tZ0iTfRnKoGUog5Yhf1V8z5e+oX32ZChDW9+LbS5AtVL7uYqqmRl0RektQ5Pa3DtKatkeTJfl0LJGYXWDtqwvSEsO+/I88wOW5/1lKIOWIX91X19rH5pRV8sahmbl9LpXhBkBy/FcGcrg5x2hDPZlKENuz5eBpXlPCsrgGhvK4BobyqBlyNe6tg+gLaOjo/GNb3zjlN/75Cc/GV/+8pfjc5/7XJx//vnLfu2GDRtiw4YNPf09U0ePr3j74VVuH8bkzGxMTM/G1NHjMbppfYyfPhJjm0dq+/sgJ/10XLfJmdk49tTT8cl/tjs2rj8t9h14Im6888GYmX36xJ+pc1ZAznLZk1me6xUiymjZWob0W9Yp9Cb1lpeib1gshZa1CcPr93Vs70lBmpral3UI9WrrGlvbUK0Uni9HaBuGUcX3fNX9/FnjsLpU9uReaBqW19b3Yj89Nxe/9+YXxbGnnlny+659Lyj0J6Wfq6hD29cSvXLNwbBKb5l0lTi/2tw7cmi518c8lz0Y6pBDy1U0WuIeACcbpGX/XgCkJ4d9ed7U0eOxeeS0uOrS82PX9m2LXgM3P+iynN5f7oVrabqqtJahbW3sJ4NeX3tdGdJS13NlPxcJzUrxda+VWrbPw9K6+lzZ3k9pqvp5R+8TQbva2JftiVC9FJ8vA/0b9Ps3e91XS3qODSlr4hrbNTXUzzU2lEHLkK+iPmh+eno6HnjggRO/fvDBB+PrX/96nHHGGbFjx4649tpr4/vf/3586lOfirVr18aFF154ytefddZZsXHjxkW/P4zRjetXvH3rKrcP6pFDR+I9t9wXd+yfOPF7e3aOx/VXXBTnbNtUy98J9G+pVi+54Mz46JW74pc/c++JHx6va1ZAl7S1J7M81ysMIsWWrWXoX9Mt6xTqkcK+rG8YXh0taxPa4T0pyN+gHesQ0lLVnqxtaFdd19fahvbV+fxZ41C9Nt+P0jSk55FDR+JDf/rXcccDj5/4vYXfd+17QYGTpfC9LatxzQHkqtT5lcPe0ZZ+HnP3I6Rt2EZL3QNgGP69AGBYY5vWx0ev3BU33fVgfPzLP/p3k+Znyegm8wN6kfrzUdfS0JvUW4a25bSfeF0ZusPPRUK3rdayfR6GV0pH9n5YmveJIC9V7Mv2RACoTr/7ainPsaEkg3TpmhoAgC5Y2/YBVOmee+6JXbt2xa5duyIi4t3vfnfs2rUr3v/+90dExMGDB+PAgQONHtP4lpHYs3N8ydv27ByP8S0jlf+dkzOzi57MRETcvn8irrnlvpicma387wT6t1yrdz3weNx014Nx1aXnR0R9swK6po09meW5XmFQqbVsLcNgmmxZp1CftvdlfUM1qm5Zm9Ae70lB/gbpWIeQnir2ZG1D++q4vtY2pKGu588ah3q09X6UpiE9J7o86UPmI079vmvfCwos1Pb3tqzGNQeQq5LnV+p7R1v6fczdj5C2YRoteQ+AQfn3AoAqnL5hXdx014Nx1xKvgd9814Nx+oZ1LR0Z5CXl56OupaF3KbcMbctpP/G6MnSLn4uE7uqlZfs8DK+Ejuz9sDzvE0Feht2X7YkAUJ1B9tUSnmNDafrt0jU1AABdUdQHzb/85S+Pubm5Rf/dfPPNERFx8803x1e+8pVlv/7f/tt/G1//+tcrPaaxzSNx/RUXLXpCsmfneNxwxUUxtrn6FwkmpmcXPZmZd/v+iZiY9oQGUrBSq3c98Hjs2r6t1lkBXdPGnszyXK8wqNRatpZhME22rFOoT9v7sr6hGlW3rE1oj/ekIH+DdKxDSE8Ve7K2oX11XF9rG9JQ1/NnjUM92no/StOQntW+7/ql/8uZvhcUWKTt721ZjWsOIFclz6/U94629PuYux8hbcM0WvIeAIPy7wUAVZg++tSiDw+Zd+cDj8f00acaPiLIU8rPR11LQ+9SbhnaltN+4nVl6BY/Fwnd1UvL9nkYXgkd2fthed4ngrwMuy/bEwGgOoPsqyU8x4bS9Nula2oAALpiXdsH0AXnbNsUH7tyV0xMz8bho8dj68b1Mb5lpLYXCKaOHl/x9sOr3A40Y7VWxzatj49ducuLiVChpvdklud6hWGk1LK1DINrqmWdQr3a3Jf1DdWpsmVtQru8JwX567djHUKaht2TtQ1pqPr6WtuQjjqeP2sc6tPG+1GahvSs1uXG9afF2ds2NXQ0QE5S+p7ThVxzALkqfX6lvHe0ZZDH3P0IaRu00dL3ABiEfy8AqII9FqqT6vNRnUN/Um0Z2pbTfuJ1ZegePxcJ3dRry/Z5GF7uHdn7YXn6gPwMsy9rHgCqM+i+mvtzbChRP126pgYAoCt80HxDxjY396LA6Mb1K96+dZXbgWas1upzGpwb0CVN7sksz/UKw0qlZWsZhtNEyzqF+rW1L+sbqlVVy9qE9nlPCvLXT8c6hHQNsydrG9JR5fW1tiEtVT9/1jjUq+n3ozQN6Vmty7FNugSWl8r3nC7kmgPIVRfmV6p7R1sGfczdj5C2QRrtwh4A/fLvBQBVsMdCtVJ8Pqpz6F+KLUPbctpPvK4M3eTnIqF7+mnZPg/Dy7kjez8sTx+Qp0H3Zc0DQHWG2Vdzfo4Npeq1S9fUAAB0xdq2D4DqjW8ZiT07x5e8bc/O8Rjf4sUKSIFWgS4zAymFtQzp0ymUS9+QJm1Ct2ge2qdDKJO2oUzahrJpHMqiaUiPLoESmW1Arsyv7vGYA/PMA1hMF0AVzBIon84BqEJO+0lOxwq0w5yAMmgZ6JV5AcvTB3SL5gGgOvZV6CbtAwDQFT5ovkBjm0fi+isuWvSkZs/O8bjhiotibLMnNJACrQJdZgZSCmsZ0qdTKJe+IU3ahG7RPLRPh1AmbUOZtA1l0ziURdOQHl0CJTLbgFyZX93jMQfmmQewmC6AKpglUD6dA1CFnPaTnI4VaIc5AWXQMtAr8wKWpw/oFs0DQHXsq9BN2gcAoCvWtX0A1OOcbZviY1fuionp2Th89Hhs3bg+xreMeDIDidEq0GVmIKWwliF9OoVy6RvSpE3oFs1D+3QIZdI2lEnbUDaNQ1k0DenRJVAisw3IlfnVPR5zYJ55AIvpAqiCWQLl0zkAVchpP8npWIF2mBNQBi0DvTIvYHn6gG7RPABUx74K3aR9AAC6wAfNF2xssycwkAOtAl1mBlIKaxnSp1Mol74hTdqEbtE8tE+HUCZtQ5m0DWXTOJRF05AeXQIlMtuAXJlf3eMxB+aZB7CYLoAqmCVQPp0DUIWc9pOcjhVohzkBZdAy0CvzApanD+gWzQNAdeyr0E3aBwCgdGvbPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArvFB8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN80HzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1b1/YBlGBubi4iIqamplo+EuiOrVu3xpo1ayr7/+kY2qFlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUoQ5Ut6xjaYU+GMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnK4Ps3IX/2ZCiDlqEMWoYyaBnKoGUoQ1stT09PR0TE5P/4Xjzz1NOV/f1VmX7s+xERMfXoQ7Fhw4aWj2Yxxze81I/x8KN/ExHPttLL3mhfhjJoGcqgZSiDliF/g3bsg+YrcPjw4YiI2L59e8tHAt0xOTkZo6Ojlf3/dAzt0DKUQctQBi1DGbQMZai65ccffzwitAxNsy9DGbQMZdAylEHLUIYqW9YxtMOeDGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylMH3b0L+7MlQBi1DGbQMZdAylEHLUIa2W/5/f/9Dlf3ddbjvP3+k7UNYkeMbXurH+LKXvaynP9d2y0A1tAxl0DKUQcuQv0E7XjM3NzdXw/F0yjPPPBOPPPJIbN26NdasWdP24SRvamoqtm/fHg8//HClm08Xdfm+rLq3ujru8mO0kPviWe6HU9XV8tzcXOzYsaOo+7nUtVPieXXxnHLZl6tW4mM9r9RzK/W8Iqo5tzpavv/+++MFL3hBkfd5r0ped71yHzR7HzS9L3t83QcR7oOI6u+Dqls+dOhQPOc5z4kDBw7E2NhYZf/fNpW27ko7n4jyzmmQ8+nq8+V5pa2BfnT13Es9b69j96a0x9/5pM2+3LvSHvs6uI9Wl9J91NWWT5bS4zEM55GWps+jyuaq7LiUx7NJ7rPBlHC/pbInl3Bf1sH9sjz3zalSabltpa0L55O2Os4nlZZLe6winFMuSjmnVFpuQimPWQrcl9VK9Xuxl2rZY18d92U1SrsfU9iXc75Pcz72CMfftiqPP4WWq5L747oc55WfNs6tpJabUPL6W07XzjnX8/Xzjv3J/fgj8j8Hx780P1dxqlzXieNuVorHner3bzYlxcekSs4vb72eX4nPlUt5bEs4jxLOISKP88ip5Rzuz4UcczMcc14tVyHHxzw17sPhlfy92EuxZpbnvllal++XFFvO8fHI8Zgj8jxux7y0FFuuUo6P+1KcRzpSPYcmW071PiiF+7c+Ody3bezLOdwvdXHu3Tz3iPrPv61r7FIeV+eRllLOI6L/c9HycJxHWrp6HoN2vG6Qg+NUa9eujR//8R9v+zCyMzo6mnWkKXFfDq/ujj1GP+K+eJb7oR7zLU9NTUVEmfdziecUUeZ5OafB5XZ9XeJjPa/Ucyv1vCLSOre1a9fGueeeGxFpHVdb3Afug4g874Ne9+Ucz61q7gP3QUS698HatWsjImJsbCzJ4xtGqvf5oEo7n4jyzqnN88nt+fK80tZAP7p67l09716V/jq280mb86lObvtyaY99HdxHqyvxPsqt5ZOV8ng4j7TkeB51dJzj/dA299lg3G8/MmzL7suluV+W576pR87X1xHlrQvnk7aUz8e+vJhzykOJ5zSMHPZlj1l13JfVSun+XK3llI41d+7LargflzbMvpzzfZrzsUc4/ralePwpXGOneL9UwXnlJ+dzS6HlJuT8GA2qa+fctfNdqCs/75j78Ufkfw6Ov16l/FyF426W405LztfXpT4m85xf3po+v5RaLuWxLeE8SjiHiHLOoxdNtJzj/emYm+GYq5PSvrySVO+/nLgPh5fyfejnHZvlvlma+2V4Vbac4+OR4zFH5HncjrleqV5j53QfrsR5pKOEc1hJLy2Xfh+0zf1bny7dt/3sy126XxZy7t0894h8zr/fa+xczms1ziMtpZxHRHvnouW8OY+01H0ea2v7PwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwJB80DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwHzRP4zZs2BC//uu/Hhs2bGj7ULLnvkyfx+hH3BfPcj80o8T7ucRziijzvJxTd5R8v5R6bqWeV0S655bqcTXJfeA+iCj7Pij53HrlPnAfRKR/H6R+fIMo7ZxKO5+I8s6ptPNpQpfvs66ee1fPe1Cl3V/OJ23Op7vcV6tzH63OfZSWUh4P55GWUs5jWO6H/rnPBuN+q477cmnul+W5b1hKaevC+aSttPM5WYnn5pzyUOI5lc5jVh33ZbVyuj9zOtbUuS+r4X6sXs73ac7HHuH425b78del1PvFeeWn5HMrRRcfo66dc9fOd1C530+5H39E/ufg+JuV2/HOc9zNctxUpfTHxPnlrfTzW0kp517CeZRwDhHlnEcqcrw/HXMzHHP3uP+G5z4cXtfuw66dbz/cN0tzv6Qlx8cjx2OOyPO4HXM3lXIfOo90lHAOw3If1Mv9Wx/37dK6fL84926ee0S551/KeTmPtJRyHhH5nEsux7ka55EW59GfNXNzc3O1/g0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnGJt2wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DU+aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYT5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhPmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGE+aB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYT5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhPmgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGE+aB4AAAAAAAAAAAAA4P9j7+6j9C7rA/9/EpLJAyFDYRClS9BKAO0ajHTFJ6Lu4nFZy5aaqoe2K4KwPWdF28O6Fc66VnusYH2ia9laTwvRXYEeFxGtHnt66GqwWPeA5OC2aIPFxkpQxpqZTB5mAuT3B78ZSObpnvv+PlzX9X29zsk5Tu47w3cy1/tzXffMmC8AAAAAAAAAAAAAAAAAAAAAAAAAQMPcaL5C27dvjwsvvDBOOeWUWLZsWXz+859f0p9/73vfG8uWLZv169hjj63nggEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBWuNF8hfbt2xdnn3123HDDDX39+Xe+852xe/fuI349//nPjze84Q0VXykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQJjear9AFF1wQ73//++OXf/mX53x8cnIy3vnOd8bP/uzPxrHHHhvnnntufPWrX515fN26dfHMZz5z5tePfvSj+Lu/+7t461vf2tBHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTBjeYbdOWVV8Y3vvGNuPXWW+P++++PN7zhDfFv/+2/jZ07d875/D/5kz+JM844I84777yGrxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACokxvNN2TXrl1x0003xWc/+9k477zz4rnPfW68853vjFe84hVx0003zXr+wYMH4zOf+Uy89a1vbeFqAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDqtaPsCuuLb3/52PP7443HGGWcc8fuTk5Nx4oknznr+7bffHnv37o1LLrmkqUsEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuJG8w2ZmJiIY445Ju6999445phjjnhs3bp1s57/J3/yJ/GLv/iLcfLJJzd1iQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBD3Gi+IZs3b47HH388fvzjH8d555234HMfeuih+D//5//EF77whYauDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiSG81XaGJiIh588MGZtx966KHYsWNHnHDCCXHGGWfEr/3ar8Wb3/zm+MhHPhKbN2+ORx99NO68887YtGlTvO51r5v5czfeeGM861nPigsuuKCNDwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACo2bLDhw8fbvsiSvHVr341Xv3qV8/6/UsuuSS2bdsWhw4dive///3x6U9/On74wx/GyMhIvOQlL4n3ve998YIXvCAiIp544ok47bTT4s1vfnP83u/9XtMfAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaNjyti8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGvcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYW40X4HDhw/H+Ph4HD58uO1LAfqkYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX86hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyJ+OoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8uFG8xXYu3dvDA8Px969e9u+FKBPOoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfKnYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahvzpGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIR9uNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQMDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMyN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1b0fYFQNXG9k/F6MRUjB88FOvXrIyRY4dieO1Q25cFRdMdQH/MT1JgHUI1tARQPbMV2qM/SI8u6QprHaiCWQLN0RslsI6BOpkxUD1dASyNuQnN0RtQJTOFLrDOIR96BaiPGUu/rB2on84A6mfWMihrCPKjW6BKZgrkR7fAXMwGKI+uAaC7nAMAAKrjRvMU5eE9B+Jdt90fd+0cnfm9LRtH4rqtm+KU49e0eGVQLt0B9Mf8JAXWIVRDSwDVM1uhPfqD9OiSrrDWgSqYJdAcvVEC6xiokxkD1dMVwNKYm9AcvQFVMlPoAusc8qFXgPqYsfTL2oH66QygfmYtg7KGID+6BapkpkB+dAvMxWyA8ugaALrLOQAAoFrL274AqMrY/qlZLxYiIrbvHI2rb7s/xvZPtXRlUC7dAfTH/CQF1iFUQ0sA1TNboT36g/Tokq6w1oEqmCXQHL1RAusYqJMZA9XTFcDSmJvQHL0BVTJT6ALrHPKhV4D6mLH0y9qB+ukMoH5mLYOyhiA/ugWqZKZAfnQLzMVsgPLoGgC6yzkAAKB6bjRPMUYnpma9WJi2fedojE54wQBV0x1Af8xPUmAdQjW0BFA9sxXaoz9Ijy7pCmsdqIJZAs3RGyWwjoE6mTFQPV0BLI25Cc3RG1AlM4UusM4hH3oFqI8ZS7+sHaifzgDqZ9YyKGsI8qNboEpmCuRHt8BczAYoj64BoLucAwAAqudG8xRj/OChBR/fu8jjwNLpDqA/5icpsA6hGloCqJ7ZCu3RH6RHl3SFtQ5UwSyB5uiNEljHQJ3MGKiergCWxtyE5ugNqJKZQhdY55APvQLUx4ylX9YO1E9nAPUzaxmUNQT50S1QJTMF8qNbYC5mA5RH1wDQXc4BAADVc6N5irF+9coFHz9ukceBpdMdQH/MT1JgHUI1tARQPbMV2qM/SI8u6QprHaiCWQLN0RslsI6BOpkxUD1dASyNuQnN0RtQJTOFLrDOIR96BaiPGUu/rB2on84A6mfWMihrCPKjW6BKZgrkR7fAXMwGKI+uAaC7nAMAAKrnRvMUY2TdUGzZODLnY1s2jsTIuqGGrwjKpzuA/pifpMA6hGpoCaB6Ziu0R3+QHl3SFdY6UAWzBJqjN0pgHQN1MmOgeroCWBpzE5qjN6BKZgpdYJ1DPvQKUB8zln5ZO1A/nQHUz6xlUNYQ5Ee3QJXMFMiPboG5mA1QHl0DQHc5BwAAVM+N5inG8NqhuG7rplkvGrZsHIkPbt0Uw2u9YICq6Q6gP+YnKbAOoRpaAqie2Qrt0R+kR5d0hbUOVMEsgebojRJYx0CdzBionq4AlsbchOboDaiSmUIXWOeQD70C1MeMpV/WDtRPZwD1M2sZlDUE+dEtUCUzBfKjW2AuZgOUR9cA0F3OAQAA1Vt2+PDhw21fRO7Gx8djeHg4xsbGYv369W1fTueN7Z+K0Ymp2HvwUBy3emWMrBvyYoFF6XgwuiMVWiY35ufctNws65C6dK1lLVGqrrVMWszW6miZpdJfmrTcbbosh5YXZq2TCy2nzSyhV1oenN5oWxUdW8fQvpL3ZDOGLmmqZV1BvUrel7vK3OwmLbdDb1RNy91mppRDy/OzzslJ11vWK6XoesukyYxdOi0/ydohdzm0rDMYLh1JAAEAAElEQVRYWA4dkz6ztn25t2wNwZNyalm3ML+cWk6FmUKKtLww3ZILLTfLbKAuWm6PrqmSlqEMWu4O54CyaRnKoGXIx4q2LwCqNrzWCwRomu4A+mN+kgLrEKqhJYDqma3QHv1BenRJV1jrQBXMEmiO3iiBdQzUyYyB6ukKYGnMTWiO3oAqmSl0gXUO+dArQH3MWPpl7UD9dAZQP7OWQVlDkB/dAlUyUyA/ugXmYjZAeXQNAN3lHAAAUJ3lbV8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNe40TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DA3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANc6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIa50TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DA3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANc6N5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIZldaP57du3x4UXXhinnHJKLFu2LD7/+c8v+Pyvf/3r8fKXvzxOPPHEWLNmTZx11lnxsY99bNbzbrjhhnj2s58dq1evjnPPPTf+7//9vzV9BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ3Wh+3759cfbZZ8cNN9zQ0/OPPfbYuPLKK2P79u3xwAMPxLvf/e5497vfHZ/85CdnnvNnf/ZncdVVV8Xv/M7vxLe+9a04++yz47WvfW38+Mc/ruvDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADpuRdsXsBQXXHBBXHDBBT0/f/PmzbF58+aZt5/97GfH5z73ubjrrrviP/7H/xgRER/96EfjiiuuiEsvvTQiIj7xiU/El770pbjxxhvj6quvrvYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIiI5W1fQJPuu+++uPvuu+OVr3xlRERMTU3FvffeG+eff/7Mc5YvXx7nn39+fOMb32jrMgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDCrWj7AprwL/7Fv4hHH300HnvssXjve98bl19+eUREjI6OxuOPPx4nn3zyEc8/+eST4zvf+c68729ycjImJydn3h4fH6/nwoHa6BjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZcifjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfKnYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahnwtb/sCmnDXXXfFPffcE5/4xCfi+uuvj1tuuWWg93fttdfG8PDwzK9TTz21oisFmqJjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhfzqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXIn46hDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnytezw4cOH276Ifixbtixuv/32uOiii5b0597//vfH//yf/zO++93vxtTUVKxduzb+9//+30e8n0suuST27NkTd9xxx5zvY3JyMiYnJ2feHh8fj1NPPTXGxsZi/fr1/Xw4QMN0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5E/HUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+dMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1Dvla0fQFNe+KJJ2YG1tDQUJxzzjlx5513ztxo/oknnog777wzrrzyynnfx6pVq2LVqlVNXC5QEx1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUMZtAz50zGUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy1AGLUP+dAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMpRBy5CvrG40PzExEQ8++ODM2w899FDs2LEjTjjhhNiwYUNcc8018cMf/jA+/elPR0TEDTfcEBs2bIizzjorIiK2b98eH/7wh+Md73jHzPu46qqr4pJLLolf+IVfiBe/+MVx/fXXx759++LSSy9t9oMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiOrG83fc8898epXv3rm7auuuioiIi655JLYtm1b7N69O3bt2jXz+BNPPBHXXHNNPPTQQ7FixYp47nOfGx/84AfjN37jN2ae86Y3vSkeffTReM973hOPPPJIvPCFL4yvfOUrcfLJJzf3gQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACdktWN5l/1qlfF4cOH531827ZtR7z99re/Pd7+9rcv+n6vvPLKuPLKKwe9PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICeLG/7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6xo3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAwN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMPcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYW40DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCwFW1fADC3sf1TMToxFeMHD8X6NStj5NihGF471PZlQdZ0BTCb2UhXWOtQBi0DgzJHoEza5mjWBJAzMwzyoVcon86hXRoEppkHcCRNQHfpH/qjHSAX5hXkQ69AV5h30B79QbM0B2nRJKRDj5A/HQMRZgF0gc4BcwDKoulu8/kHAGiOsxcAkDI3mocEPbznQLzrtvvjrp2jM7+3ZeNIXLd1U5xy/JoWrwzypSuA2cxGusJahzJoGRiUOQJl0jZHsyaAnJlhkA+9Qvl0Du3SIDDNPIAjaQK6S//QH+0AuTCvIB96BbrCvIP26A+apTlIiyYhHXqE/OkYiDALoAt0DpgDUBZNd5vPPwBAc5y9AIDULW/7AoAjje2fmvUiIiJi+87RuPq2+2Ns/1RLVwb50hXAbGYjXWGtQxm0DAzKHIEyaZujWRNAzswwyIdeoXw6h3ZpEJhmHsCRNAHdpX/oj3aAXJhXkA+9Al1h3kF79AfN0hykRZOQDj1C/nQMRJgF0AU6B8wBKIumu83nHwCgOc5eAEAO3GgeEjM6MTXrRcS07TtHY3TCCwlYKl0BzGY20hXWOpRBy8CgzBEok7Y5mjUB5MwMg3zoFcqnc2iXBoFp5gEcSRPQXfqH/mgHyIV5BfnQK9AV5h20R3/QLM1BWjQJ6dAj5E/HQIRZAF2gc8AcgLJoutt8/gEAmuPsBQDkwI3mITHjBw8t+PjeRR4HZtMVwGxmI11hrUMZtAwMyhyBMmmbo1kTQM7MMMiHXqF8Ood2aRCYZh7AkTQB3aV/6I92gFyYV5APvQJdYd5Be/QHzdIcpEWTkA49Qv50DESYBdAFOgfMASiLprvN5x8AoDnOXgBADtxoHhKzfvXKBR8/bpHHgdl0BTCb2UhXWOtQBi0DgzJHoEza5mjWBJAzMwzyoVcon86hXRoEppkHcCRNQHfpH/qjHSAX5hXkQ69AV5h30B79QbM0B2nRJKRDj5A/HQMRZgF0gc4BcwDKoulu8/kHAGiOsxcAkAM3mofEjKwbii0bR+Z8bMvGkRhZN9TwFUH+dAUwm9lIV1jrUAYtA4MyR6BM2uZo1gSQMzMM8qFXKJ/OoV0aBKaZB3AkTUB36R/6ox0gF+YV5EOvQFeYd9Ae/UGzNAdp0SSkQ4+QPx0DEWYBdIHOAXMAyqLpbvP5BwBojrMXAJADN5qHxAyvHYrrtm6a9WJiy8aR+ODWTTG81gsJWCpdAcxmNtIV1jqUQcvAoMwRKJO2OZo1AeTMDIN86BXKp3NolwaBaeYBHEkT0F36h/5oB8iFeQX50CvQFeYdtEd/0CzNQVo0CenQI+RPx0CEWQBdoHPAHICyaLrbfP4BAJrj7AUA5GDZ4cOHD7d9EbkbHx+P4eHhGBsbi/Xr17d9ORRibP9UjE5Mxd6Dh+K41StjZN2QFxE10nE36Kp8WoalS3E2apk6pLjWS6dl6qDl5mmZ0nR1jmiZ0nWlbS33ritrgjxpmcWYYXnQMhF6LYGWWYzO06fjsmmwO7TMYsyDPGi5OZqgTlpOm/7plZaPpB1ypeXuMa/KpOUy6bV7tExXlTbvtExOSuuvSlqmDpprnpZZiCbzoONu0GP5tFw+HXeDllmMWZAHLTMInadDy7TFHKiWlmmbpquRa8s+/3CkXFsGjqRlUuXstTRahjJoGfKxou0LAOY2vNYLB6iargBmMxvpCmsdyqBlYFDmCJRJ2xzNmgByZoZBPvQK5dM5tEuDwDTzAI6kCegu/UN/tAPkwryCfOgV6ArzDtqjP2iW5iAtmoR06BHyp2MgwiyALtA5YA5AWTTdbT7/AADNcfYCAFK2vO0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgaN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJgbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0zI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADXOjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGudE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMOyutH89u3b48ILL4xTTjklli1bFp///OcXfP7nPve5eM1rXhMnnXRSrF+/Pl760pfGX/zFXxzxnPe+972xbNmyI36dddZZNX4UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNdldaP5ffv2xdlnnx033HBDT8/fvn17vOY1r4kvf/nLce+998arX/3quPDCC+O+++474nk///M/H7t375759fWvf72OywcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIiIgVbV/AUlxwwQVxwQUX9Pz866+//oi3P/CBD8Qdd9wRX/ziF2Pz5s0zv79ixYp45jOfWdVlAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwoqxvND+qJJ56IvXv3xgknnHDE7+/cuTNOOeWUWL16dbz0pS+Na6+9NjZs2DDv+5mcnIzJycmZt8fHx2u7ZqAeOoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfKnYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahvzpGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIV/L276AJn34wx+OiYmJeOMb3zjze+eee25s27YtvvKVr8Qf/dEfxUMPPRTnnXde7N27d973c+2118bw8PDMr1NPPbWJywcqpGMog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliF/OoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZcifjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfK17PDhw4fbvoh+LFu2LG6//fa46KKLenr+zTffHFdccUXccccdcf7558/7vD179sRpp50WH/3oR+Otb33rnM+ZnJyMycnJmbfHx8fj1FNPjbGxsVi/fv2SPg6gHTqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnyp2Mog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWob86RjKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliFfK9q+gCbceuutcfnll8dnP/vZBW8yHxFx/PHHxxlnnBEPPvjgvM9ZtWpVrFq1qurLpEBj+6didGIqxg8eivVrVsbIsUMxvHao7csidJwqzbBUWmYQZk46tIwey6Dl/GmRCC3TXaXNQC2Tq9JaHJSW02WtshRaphfmSvq0jE7LoGXmo/F86Nh6pQxa7gbzqnwltWy90mUltZwbs4cqabk3uiN1Wk6bGUKvUm3ZGoalSbVlyFkbe5GWaZPzV3W0XB59dJOWq6Mh2qLj8pgn3aTlPOmVo2k5T1rmaFpOn27phZa7xVwol5Z5Oq3nqwstW590QRdahi7QMrlxzpqblqEMWoZ8FX+j+VtuuSUuu+yyuPXWW+N1r3vdos+fmJiI733ve/Ef/sN/aODqKNnDew7Eu267P+7aOTrze1s2jsR1WzfFKcevafHKIE2aAZpk5kA69Ahp0CLQZWYgpEGL5MJaBapmrkD6dApl0zg5sV6BXJhX5MR6Bdpg9kDzdAcMwgwhd9YwAG2zF9E11jzMTx8wGA0BVTFPIB96hTJoGfKjW+Bo5gJ0g9ZJmfUJAFAP5ywAIFXL276ApZiYmIgdO3bEjh07IiLioYceih07dsSuXbsiIuKaa66JN7/5zTPPv/nmm+PNb35zfOQjH4lzzz03HnnkkXjkkUdibGxs5jnvfOc742tf+1p8//vfj7vvvjt++Zd/OY455pi4+OKLG/3YKMvY/qlZLwAiIrbvHI2rb7s/xvZPtXRlkCbNAE0ycyAdeoQ0aBHoMjMQ0qBFcmGtAlUzVyB9OoWyaZycWK9ALswrcmK9Am0we6B5ugMGYYaQO2sYgLbZi+gaax7mpw8YjIaAqpgnkA+9Qhm0DPnRLXA0cwG6QeukzPoEAKiHcxYAkLKsbjR/zz33xObNm2Pz5s0REXHVVVfF5s2b4z3veU9EROzevXvmpvMREZ/85Cfjsccei7e97W3xrGc9a+bXb/7mb84855/+6Z/i4osvjjPPPDPe+MY3xoknnhh/8zd/EyeddFKzHxxFGZ2YmvUCYNr2naMxOuFFADydZoAmmTmQDj1CGrQIdJkZCGnQIrmwVoGqmSuQPp1C2TROTqxXIBfmFTmxXoE2mD3QPN0BgzBDyJ01DEDb7EV0jTUP89MHDEZDQFXME8iHXqEMWob86BY4mrkA3aB1UmZ9AgDUwzkLAEjZirYvYCle9apXxeHDh+d9fNu2bUe8/dWvfnXR93nrrbcOeFW0ZWz/VIxOTMX4wUOxfs3KGDl2KIbXDrV9WRERMX7w0IKP713kccjNoD1qBlhI1Xu+mQNza+N8rUfoTd19ahG6KeWvrTXJDIR69TprtEgurNX8OQN1Sw6fb3MFFtd2yzqF9jusk8bpVQodWK+QthTmRCrMK3LS73rVPDAIe2W+zP986W7prHe6wM810RXWcL3smTTNmiNH9iLa0tbMtOZZSNf3cn3AYDTULV3fM6hXKvPEOqcpOa+1VHqFUjU1H7QMaemlfd1C81I/t5sL8KTUWx2U1kmZ9UlbSp/9AF1hns/POQsASFlWN5qHaQ/vORDvuu3+uGvn6Mzvbdk4Etdt3RSnHL+mxSt70vrVKxd8/LhFHoecVNGjZoD51LHnmzkwW1vnaz3C4proU4vQPal/ba1JZiDUZymzRovkwlrNmzNQt+Ty+TZXYGEptKxTui6FDuukcXqRSgfWK6QrlTmRCvOKnPSzXjUPDMpemSfzP2+6WxrrnS7wc010iTVcH3smTbPmyJW9iDa0OTOteeZjL9cHDEpD3WHPoG4pzBPrnKbkvtZS6BVK1eR80DKko9f2dQvNyuHcbi5AHq0OSuukzPqkDV2Y/QBdYJ4vzDkLAEjZ8rYvAJZqbP/UrBcgERHbd47G1bfdH2P7p1q6sqeMrBuKLRtH5nxsy8aRGFk31PAVQT2q6lEzwFzq2vPNHDhSm+drPcLCmupTi9AtOXxtrUlmINRjqbNGi+TCWs2XM1C35PT5Nldgfqm0rFO6LJUO66RxFpNSB9YrpCmlOZEK84qcLHW9ah6ogr0yP+Z//nTXO+udLvBzTXSNNVwPeyZNs+bImb2IprU9M6155tL2ukyFPmAwGuoGewZNaHueWOc0pYS11navUKqm54OWIQ1LaV+30Jxczu3mAl2XS6uD0jopsz5pWldmP0DpzPPFOWcBAClzo3myMzoxNesFyLTtO0djdGKwFyFj+6fiez+eiPt2/TS+9+hEXy9qhtcOxXVbN816IbBl40h8cOumGF7rRQBlWKzHH++d7On9aAbqVcXe1oa69nwzB460WGu7xw7WNj/0CAurai9c7CygReiWur+2lpteZ2Cur6ugLUudNTmcR8wBIp5cqx/cuimuff0L4k8v+YX4H7/2orjxLf8qrn39C+L3E1mrzM0ZqFt6/XynMNtz2AOhbvO1mMrs1ildlkqHg/D1cQa16PdSxw82do60XiFNTe2XKbyG7ZV5xUJSW8tLXa8lnJGBavUz1+yV+TH/69XE+UB3vbPeydFS50iJP9dE/urcD63hetgzaZo1x7TUvsbaC3sRTWtrZk73+Q+j++Ldr3t+XPv6F8TaoWNmHrfmuy33vbyq/ceeAAvz845E5L9n0Kx+9+i254l1Tp2e3sXu8YPZr7W2e4VSNfVvek3TMqRhsfZ/uOfATMu6hebk8hrx6LmwduiYuPJfnx43X35u/Oa/2Rij+6ay+N4t9CuXViMG+76WMwApq2p95vizR7Qjp9kPwPzM84WN7Z+K0YmpeMe/2Ri3XHFuXPmvT5/5uU+vAwCAFKxo+wIow/TBd/zgoVi/ZmWMHDtU20F3/OChBR/fu8jjC3l4z4F41233H/EiZ8vGkbhu66Y45fg1S3pfpxy/Jj5+8eYYnZiKvQcPxXGrV8bIuvr+XqBpY/unYvKxx+N//NqLYvXKY+Jbu34aN379odg/9fjMc3b98/44dtWKnvrRDNSjyr1tEP2cFerc880cUtbk2Tpi8db+YXRf/KfPfCsi6pkfeqREVXVcxV7Y61lAi7C4pvfoutR5zs7VYjMwlddV9K+UfnPSz6xJ+TxiDvB0hyPiy/fvjrsePHI9vPKMk9q7qMSlMIedgdqX2veTU5rtKe+BcLSqW16oxZRmt04pxVIbTqnDfvj6OFVY9Hupj+6LD3zpgVnrqq7zr/UKaXh646tWLI8r//Xps352cloV+2VKr2F7ZV4xl5TW8tF79YfecHbsm3wsxg8svF5zPyMD1Rpkrtkr87LU+Z/C98Zy0eT5QHe96fe8Y93Tln7mSNs/16QXjtbEftilfbCpxnyNgKbNtebWDh0Tl73iObH51OPjJ/umIh6dsK8ULqWvsS5Vl/YiqpfDz7vM1+eX33FejB+YimNXWfNdl8L5sd+zctX7jz0B5pbCzzv6ulUaUtgzyEMvc2Ohrtvck61zlqrXPeroLv7Hr71owfeby1pzhoalW2xuNPlvek3TMl2T4mvMxdr//k/2x3/6zLeOaFm30JtBms/pNeL0XPjJvqk4HBHvveP/xR/+1YMzj+fyvVuIyON7sP2o4vtazgCkbND1mfPPHs0nxdcepchl9gMwt+k98if7puLGt/yrOe8nF9HteT7X2ei8jSPxxbe/IpZFxInOFQBAAtxonoE1/UXB9atXLvj4cYs8Pp+x/VOzPo6IiO07R+Pq2+6Pj1+8eckH+OG1Dv2Uaa7uX376ifHfL94c77jlviO+OLCUfjQD1apjb+tHv2eFuvb8aWYOKWrjG+6LtbZqxfKZ/13X/NAjJamy40H3wqWeBbQI8yvph+LqPmfnar4ZmMrrKvpXUr856XfWpHgeMQd4upn18KD10KtU5rAzULtS+37ysatWJDfbU9wD4WhVt7zYOeu//eLzF/zzTc9unZK7fhrO+Qzl6+NUpZfvpR69ruo+/1qv0K6l/OxkxOD7Zc5fnzSveLqU1vJCe/XPnbRuwT+b8xkZqFYVc81emY+lzP9UvjeWgzbOB7pbXD/nHeuetvQ7R9r8uSa9cLQm98Mu7INNNuZrBDTt6DW3duiY+O8Xb46b/voh/3B9R6T0NdZ+dWEvono5/LzLQn2+547/l0Wf1K/t82O/Z+W69h97AhwphZ939HWrdLS9Z5CHXubGvqnHF+26rT3ZOmcpet2j5uri6f9m1lxyWmvO0NC7XuZG0/+m1zQt0xWpvsbs9d/bPLpl3cLCBm0+t9eI0zPhylvui7se/MkRj+X0vVu6LYfvwfajyu9rOQOQsn7XZwk/e3S0VF97lCKH2Q/A3Jbyb6J0dZ7Pdza6a+dovO8Lf5vl2QgAKNPCP/0Ei1jsi4Jj+6cq/2+OrBuKLRtH5nxsy8aRGFnX30F7dGJq1scxbfvO0RidqP5j4Ulj+6fiez+eiPt2/TS+9+hELeuG6szX/V8/+JO46a8fiste8ZyIePILBff9YI9+OkTL6UlhbxvkrFDXnt9VGk1fG2friIVbm97Pj74ee3v6NN+OqjsedC9M4SzAYLSchrb26Lo4Zy9NFbNUy+0prd+c9DprcujDmaosg64562FpUprDzkDtSfH7yUPHLNdy5nI4Q5SmjpYX21eHjlludhdOy83pt+Gcz1DO7s0pveVev5c6va5Seh0EvSq94yr1+rOT06rYL+1p9Cr1llNZy4Pu1TmfkclD6i3zlFTmWl2sxSMt5fvfXhP2rvSOBtFmg0s971j3tKnfOdLWuV4v7Uj9XGM/rE7TjfkaQbNSb7kJR6+5y17xnLjprx+Kv57nH67v4t9R6XLaMzRLVXL5eZec+qyCxvvT5vlxkLNy19Z3l2g5LW23VsrXrUpZ177mQC8Wmxt79h9Kumvr/CmlzK66LGWPmquL+36wJ15++olzvu+urTXqpeV09Do3/JtezEXL1Uj5NeZS/r1NLedLy82qovkcXyN28SygrXLk8j3YfnSxzdSZHWmpq5G2Ps8pv/YoRQ6zH4DZlvJvonR5nuf6+sEZGwC6Z0XbF0Deejn4Dq+t9kXB8NqhuG7rprj6tvtj+9P+21s2jsQHt27q+783fvDQgo/vXeRx+vPwngOzXmRu2TgS123dFKccv6bFK2M+C3X/1w/+JC57+XPi5aefGJe+/Dnxjlvuiwj9dIGW05TC3jbIWaGuPb+LNJqHNs7WEfO3dvR+/nT29rRpvj1VdzzoXpjCWYD+aTkdbe3RdXHOXppBZ6mW21VavznpZdbk0oczVTmqWHPWw9KkNIedgdqT4veTf7z34IJ/Xstpy+UMUZo6Wl5sXx07MGV2F0zLzeq34ZzPUM7uzehCy0v5Xur0ukrldRD0ogsdV6mXn52cVtV+aU+jFzm0nMpaHvT1bc5nZNKXQ8s8JZW5VgdrcbZe539K3xvLQckdDaLtBpd63rHuaVO/c6Stc71emtf2TO2F/bA6TTfmawTNyaHlJhy95jafenz84V89OOdz7StlymXP0CxVyuXnXXLpswoa71+b58dBzspdWt9douX0tN1aCV+3Kmld+5oDvVhsbuybeizprq3zJ5U0u+qylD1qri5u/PpD8d8v3hwRT/6M57SurTXqpeW09Do3/JteHE3L1Un5NeZS/71NLedHy82rovkcXyN27SygrbLk8j3YfnStzdSZHempo5E2P88pv/YoRQ6zH4DZev03Ubo+z3N8/eCMDQDd5EbzDKStg+8px6+Jj1+8OUYnpmLvwUNx3OqVMbJuaKAXIOtXr1zw8eMWeZylG9s/NetFSMSTX4C9+rb74+MXb+7si8qULdb9satWxOYNPxPvuOW+2D/1eETop3RaTlcKe9ugZ4U69vyu0Wg+2vyi8tGtrV55TPz5t3cfsZ8/nb09XZpvVx0dD7IXpnAWoD9aTkuO3/hdjHN27waZpVpuX4n95mShWZNTH85UZahqzVkPS5PaHHYGakeK30+e6+tdT6fldOV0hihNHS0vtq8eu2ql2V0oLTdvkIZz7dDZvX5danm6g91jB+MfRvfFqhXL474f7Jn1vdTjVq9M7nUQLKRLHVdlscaH16yMz/+nl1W6X9rTWEwuLaeylqvYq3M9I5O2XFrmKanMtapZi/PrZf57Tbg0pXY0iFQaXMp5x7qnTYPMkTbO9XppViozdTH2w+q00ZivEdQvl5ab8vQ195N9Uws+175Snhz2DM1StVx+3iWHPqug8cG1dX4cpKWurO8u0XKa2m4t969blbiufc2BxSw2N/Yt8v+bSqHrrq/zEmdXHZayR83Vxf6px+Mdt9wXl73iOfHfXvf8OHjo8c6tNeql5fQsZW74N72YpuVqpf4a8+nt/3T/VIwdODTn/0csQsu50XI7qmo+t9eIXToLaKs8uXwPth9dajN1Zkeaqm6k7c9z6q89SpH67AdgtsX2yONWr4w7r3pl5+d5bq8f2j57AQDtcaN5BtLmwXd4bbUvOkbWDcWWjSOx/ahDcUTElo0jMbLOgbhqoxNTs16ETNu+czRGJ6a8EEnQoj9kPvlY/OFfPTjztn7Kp+V0pbC3VXFWqHrP7xqN5qPtLyo/vbWx/VNx/w/2zHnTLXt72jTfrro67ncvTOEsQH+0nJa29+i6OGf3ZpBZquX2ldpvTuabNTn14UxVhqrWnPWwNCnOYWeg5qX4/WQt5yunM0Rp6mi51xbN7vJouXmDNpxjh/b7+nWt5emP5QNffmCgdeXrUaSkax1XYbE99WfWDsVzn7Gu0v+mPY3F5NJyKmu5qte3OZ6RSVsuLfOUVOZa1azFhS02/1P83ljKSu1oECk12Ot5x7qnTYPOkabP9XppVkozdSH2w+q01ZivEdQrl5abNLPmfjyx4PPsK+XJYc/QLFXL5eddcuizChqvRhvnx0Fa6sr67hItp6nt1nL/ulWp69rXHFjIYnPj+DV5dN3ldV7q7KraUvao+brYP/V43P+DPXHFK57j75TKaTk9Sz3b+je9iNBy1XJ4jTnd/tj+qXj7LfdpuRBabkeVzef0GrFLZwFtlSeX78H2o0ttps7sSFPVjbT9ec7htUcpUp79AMy22B554rHV/5soOcrt9UPbZy8AoD3L274A8jZ98J1LigffhQyvHYrrtm6a9fFs2TgSH9y6yYG4BuMHDy34+N5FHqcdC3X/itNPjPt+sGfmbf10g5bTlcLeVtJZIVcazUdKvaQwP+iP5tuVUscRWs6ZltOSWts0a5BZquX26TddOfXhTFWGqtac9bA05jARaa4DLecrpzNEaepoWYvdpeXmpbgf182MqV8XW+5lXXWxN/LVxY4H1Ubj9jQWk0vLqaxlezWpyqVlnpLKXKuatTgY+8zSlNrRIHJs0LqnTbnNEb00K5eZmts6TpnGypRLy22w5rsnhz1Ds1Qtl1mXQ59V0Hi+BmmpK+u7S7ScprZby2XPnY91TRctNjeecdyqrLvuArOrN0vZo9reT+kmLaenqbOtmVMWLVcrp9eYWi6LltuRU/NV6tL80FZ5Su62S22mzuxIU9WNtP15LnmeAcAg7JG9ye31Q9tnLwCgPSvavgDyNn3wvfq2+2P7ztGZ30/14LuYU45fEx+/eHOMTkzF3oOH4rjVK2Nk3VB2H0cu1q9eueDjxy3yOO1YqPsP/PILYurxJ+L8s56hnw7Rctra3ttKOyvkSKP5SK2XtucH/dF8u1LrOELLudJyWlJsm2b1O0u13D79piu3Ppyp8lflmrMeemcOE5HuOtBynnI7Q5Skrpa12E1abl6q+3HdzJh6dbXlxdZVV3sjT13teBBtNW5PYyE5tZzCWrZXk6qcWuYpKcy1qlmLg7HPLF2JHQ0ixwate9qW0xzRS7Nymqk5reOUaaxMObXcNGu+m1LfMzRL1XKadan3WQWN52vQlrqwvrtEy+lqs7Wc9ty5WNd01WJzI+euu8Ds6s1S9yhnV5qm5fQ0ebY1c8qh5Wrl9hpTy+XQcjtya75KXZkf2ipP6d12pc3UmR3pqrKRtj/Ppc8zAOiXPbJ3Ob1+aPvsBQC0x43mGVhOB99eDK/N99pzM7JuKLZsHDnixeW0LRtHYmSdz0OqSuuewWg5fW3vbWZGuzSal9R6aXt+sHSab19qHUdoOUdaTk+KbdOsfmapltOg3zTl2IczVd6qXnPWQ+/MYSLSXQdazk+OZ4iS1NWyFrtHy+1IdT+umxlTny63vNi66mpv5KfLHQ+ircbtacwnt5ZTWMv2alKUW8s8JYW5ViVrcXD2maUrraNB5NqgdU/bcpojemlObjM1p3WcMo2VJ7eWm2bNd1PKe4ZmqUNOsy7lPqug8bwN2lLp67tLtJy2NlvLac89mnVNly00N3LuugvMrt4tdS07u9IkLaepyT3QzCmDlquX21lUy2XQcntya75KXZgf2ipT6d12oc3UmR1pq6qRFD7Ppc8zAOiXPbJ3ubx+SOHsBQC0Y9nhw4cPt30RuRsfH4/h4eEYGxuL9evXt305kJWH9xyIq2+7/4gXI1s2jsQHt26KZx2/prHr0DEMRsuQtlQa7ZWWYTCpNK9lGIyWoQxahvml0kdOtDwYa45UaBkGk8o81zIMRstQhhRa1jEMJoWOI7QMg9IylEHLpCKVtchgtJwvDfJ0WobBpDJTtQyD0TLkJZVm56NlGEwqjWsZBqNlSpTKuu4aHcNgUpldWobBaBnKoGUog5ahHqm01TQtw2BSmR1arlcqn2fKp2Uog5ZhMKmcvbQMZdAy5KORG80fOHAg/vIv/zL+/u//PiIizjjjjHjNa14Ta9aU8QUeQw8GM7Z/KkYnpmLvwUNx3OqVMbJuKIbXDjV6DTqGwWkZ0pZCo73SMgwuhea1DIPTMpRByzC/FPrIiZYHZ82RAi3D4FKY51qGwWkZytB2yzqGwbXdcYSWoQpahjJomVSksBYZjJbzpkGmaRkGl8JM1TIMTsuQlxSanY+WYXApNK5lGJyWKVEK67prdAyDS2F2aRkGp2Uog5ahDFqGeqTQVtO0DINLYXZouX4pfJ4pn5abs2vXrhgdHV38iS0ZGRmJDRs2tH0Z9EnLMLgUzl5ahjJoGfKxou7/wBe+8IW4/PLLZ70YHBkZiT/90z+NCy+8sO5LABI3vNYXfaEEWoa0aRS6RfNQBi1DGbQM89MHTbPmAMpgnkMZtAxl0DLkT8dQBi1DGbRMKqxFaJcGAapjpkIZtAx50SyUTeNQBi1TIusayJHZBWXQMpRBy1AGLUM9tAX0w+zoBp9nKMeuXbvirLOeFwcO7G/7Uua1Zs3a+M53HnCzeaCznL0AoHtqvdH83XffHb/yK78S//7f//v4z//5P8fznve8iIj4u7/7u/jIRz4Sv/IrvxJf+9rX4iUveUmdlwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACdNjo6GgcO7I9zL/udWP+sZ7d9ObOM7/5+fPPG98Xo6KgbzQMAAJ1R643m3//+98ell14af/zHf3zE77/sZS+Ll73sZfEbv/Eb8bu/+7vx5S9/uc7LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJi/bOeHSdsOLPtywAAACAiltf5zv/mb/4mrrzyynkff9vb3hbf+MY36rwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOTUeqP5AwcOxPr16+d9fHh4OA4ePFjnJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkp9YbzW/cuDH+6q/+at7H77zzzti4cWOdlwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQnFpvNH/ppZfGO9/5zvjyl78867EvfelL8du//dvxlre8pc5LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEjOijrf+W/+5m/G3XffHb/4i78YZ555Zjzvec+Lw4cPxwMPPBA7d+6Miy66KH7rt36rzksAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASM7yWt/58uXx2c9+Nm655ZY444wz4jvf+U5897vfjbPOOis+85nPxG233RbLl9d6CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJWdHEf+RNb3pTvOlNb2riP0XHjO2fitGJqRg/eCjWr1kZI8cOxfDaobYvC7KmKyAnZhZUT1cwOB0BDM4sBepivlA1awrSoUcoh54hP7olddYo0ASzBtKhR6Bp5g6kT6fQLZqnq6x9gPKY7ZAmbdI0aw76px+gC8w6eJIWoD36A5pg1gDzMR+gHHqGamkKAEid8woAwMJqvdH88uXLY9myZQs+Z9myZfHYY4/VeRkU6uE9B+Jdt90fd+0cnfm9LRtH4rqtm+KU49e0eGWQL10BOTGzoHq6gsHpCGBwZilQF/OFqllTkA49Qjn0DPnRLamzRoEmmDWQDj0CTTN3IH06hW7RPF1l7QOUx2yHNGmTpllz0D/9AF1g1sGTtADt0R/QBLMGmI/5AOXQM1RLUwBA6pxXAAAWt7zOd3777bfH5z73uTl//Zf/8l9i1apVsWJFrfe6p1Bj+6dmHfYjIrbvHI2rb7s/xvZPtXRlkC9dATkxs6B6uoLB6QhgcGYpUBfzhapZU5AOPUI59Az50S2ps0aBJpg1kA49Ak0zdyB9OoVu0TxdZe0DlMdshzRpk6ZZc9A//QBdYNbBk7QA7dEf0ASzBpiP+QDl0DNUS1MAQOqcVwAAelPrjeZ/6Zd+adavs846K7Zt2xYf/vCH4w1veEN897vfrfMSKNToxNSsw/607TtHY3TCgR+WSldATswsqJ6uYHA6AhicWQrUxXyhatYUpEOPUA49Q350S+qsUaAJZg2kQ49A08wdSJ9OoVs0T1dZ+wDlMdshTdqkadYc9E8/QBeYdfAkLUB79Ac0wawB5mM+QDn0DNXSFACQOucVAIDe1Hqj+ad7+OGH44orrogXvOAF8dhjj8WOHTviU5/6VJx22mlNXQIFGT94aMHH9y7yODCbroCcmFlQPV3B4HQEMDizFKiL+ULVrClIhx6hHHqG/OiW1FmjQBPMGkiHHoGmmTuQPp1Ct2ierrL2AcpjtkOatEnTrDnon36ALjDr4ElagPboD2iCWQPMx3yAcugZqqUpACB1zisAAL2p/UbzY2Nj8a53vStOP/30+Nu//du4884744tf/GL8y3/5L+v+T1Ow9atXLvj4cYs8DsymKyAnZhZUT1cwOB0BDM4sBepivlA1awrSoUcoh54hP7olddYo0ASzBtKhR6Bp5g6kT6fQLZqnq6x9gPKY7ZAmbdI0aw76px+gC8w6eJIWoD36A5pg1gDzMR+gHHqGamkKAEid8woAQG9qvdH87//+78fP/dzPxZ//+Z/HLbfcEnfffXecd955df4n6YiRdUOxZePInI9t2TgSI+uGGr4iyJ+ugJyYWVA9XcHgdAQwOLMUqIv5QtWsKUiHHqEceob86JbUWaNAE8waSIcegaaZO5A+nUK3aJ6usvYBymO2Q5q0SdOsOeiffoAuMOvgSVqA9ugPaIJZA8zHfIBy6BmqpSkAIHXOKwAAvan1RvNXX311HDx4ME4//fT41Kc+Fa9//evn/AVLNbx2KK7bumnWoX/LxpH44NZNMbzWgR+WSldATswsqJ6uYHA6AhicWQrUxXyhatYUpEOPUA49Q350S+qsUaAJZg2kQ49A08wdSJ9OoVs0T1dZ+wDlMdshTdqkadYc9E8/QBeYdfAkLUB79Ac0wawB5mM+QDn0DNXSFACQOucVAIDeLDt8+PDhut75W97ylli2bNmiz7vpppt6en/bt2+PD33oQ3HvvffG7t274/bbb4+LLrpo3ud/7nOfiz/6oz+KHTt2xOTkZPz8z/98vPe9743Xvva1RzzvhhtuiA996EPxyCOPxNlnnx0f//jH48UvfnFP1xQRMT4+HsPDwzE2Nhbr16/v+c8xuLH9UzE6MRV7Dx6K41avjJF1Qw779EXHT9EVOdNy95hZZdJyu3RFVbrcso4oSZdbpl1mabW0DE/Jeb5oOU05rynaoeX66JEmableeqYpWq6ObmlLrx1bo5C2UvZks4auS6llPUL/Umo5J+YOqdHybDolR1run+ZJSZMtW/tQH/sybTHbq6VlqqLNdnWxZWuOEjXVsn6gPl3ck1Nl1jGIklrWAl3Wdsv6g2q03XLqzBpyoeXmmQ/UQcvt0DNV63rLmqIUXW+5Kd/61rfinHPOidf815vihA1ntn05s/zzru/GX/7epXHvvffGi170orYvhz5ombk4r+RHy1AGLUM+VtT5zrdt21bp+9u3b1+cffbZcdlll8XrX//6RZ+/ffv2eM1rXhMf+MAH4vjjj4+bbropLrzwwvjmN78ZmzdvjoiIP/uzP4urrroqPvGJT8S5554b119/fbz2ta+N7373u/GMZzyj0uunesNrHfCharoCcmJmQfV0BYPTEcDgzFKgLuYLVbOmIB16hHLoGfKjW1JnjQJNMGsgHXoEmmbuQPp0Ct2iebrK2gcoj9kOadImTbPmoH/6AbrArIMnaQHaoz+gCWYNMB/zAcqhZ6iWpgCA1DmvAAAsrNYbzVftggsuiAsuuKDn519//fVHvP2BD3wg7rjjjvjiF784c6P5j370o3HFFVfEpZdeGhERn/jEJ+JLX/pS3HjjjXH11VdXdu0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA07K60fygnnjiidi7d2+ccMIJERExNTUV9957b1xzzTUzz1m+fHmcf/758Y1vfGPe9zM5ORmTk5Mzb4+Pj9d30UAtdAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DGXQMuRPx1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPnTMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQ76Wt30BTfrwhz8cExMT8cY3vjEiIkZHR+Pxxx+Pk08++YjnnXzyyfHII4/M+36uvfbaGB4envl16qmn1nrdQPV0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAy5E/HUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQM+dMxlEHLUAYtQxm0DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DvpYdPnz4cNsX0Y9ly5bF7bffHhdddFFPz7/55pvjiiuuiDvuuCPOP//8iIh4+OGH42d/9mfj7rvvjpe+9KUzz/3t3/7t+NrXvhbf/OY353xfk5OTMTk5OfP2+Ph4nHrqqTE2Nhbr16/v/4MCGqNjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhfzqGMmgZyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGXIn46hDFqGMmgZyqBlKIOWoQxahjJoGcowSMu7du2K0dHRui+xbyMjI7Fhw4a2L2NO3/rWt+Kcc86J1/zXm+KEDWe2fTmz/POu78Zf/t6lce+998aLXvSiti+HHtiXoQxahjJoGfK1ou0LaMKtt94al19+eXz2s5+ducl8xJMvoo855pj40Y9+dMTzf/SjH8Uzn/nMed/fqlWrYtWqVbVdL1A/HUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPnTMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQ/50DGXQMpRBy1AGLUMZtAxl0DKUQctQhn5b3rVrV5x11vPiwIH9NVxVNdasWRvf+c4Dyd5sHqpkX4YyaBnKoGXIV/E3mr/lllvisssui1tvvTVe97rXHfHY0NBQnHPOOXHnnXfGRRddFBERTzzxRNx5551x5ZVXtnC1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzGV0dDQOHNgf5172O7H+Wc9u+3JmGd/9/fjmje+L0dFRN5oHAACgJ1ndaH5iYiIefPDBmbcfeuih2LFjR5xwwgmxYcOGuOaaa+KHP/xhfPrTn46IiJtvvjkuueSS+IM/+IM499xz45FHHomIiDVr1sTw8HBERFx11VVxySWXxC/8wi/Ei1/84rj++utj3759cemllzb/AQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALCg9c96dpyw4cy2LwMAAAAGltWN5u+555549atfPfP2VVddFRERl1xySWzbti12794du3btmnn8k5/8ZDz22GPxtre9Ld72trfN/P708yMi3vSmN8Wjjz4a73nPe+KRRx6JF77whfGVr3wlTj755GY+KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBzsrrR/Kte9ao4fPjwvI9P3zx+2le/+tWe3u+VV14ZV1555QBXRurG9k/F6MRUjB88FOvXrIyRY4dieO1Q25cFWdERQHPMXJpgnUG7NAiUyGwDmmDWAL0wK3g66wG6SfuQFk3C4HQE+dEtlE/nQNeZg9A83UG1NAXMxWwgF9YqQDvMX3Jm/QKUw0yH6umqLD6fwDTzADiauQDt0R90g9aBFJlNANAbeyYAQFqyutE89OPhPQfiXbfdH3ftHJ35vS0bR+K6rZvilOPXtHhlkA8dATTHzKUJ1hm0S4NAicw2oAlmDdALs4Knsx6gm7QPadEkDE5HkB/dQvl0DnSdOQjN0x1US1PAXMwGcmGtArTD/CVn1i9AOcx0qJ6uyuLzCUwzD4CjmQvQHv1BN2gdSJHZBAC9sWcCAKRnedsXAHUa2z8160VIRMT2naNx9W33x9j+qZaurDpj+6fiez+eiPt2/TS+9+hEER8TaelCRznRPMxWUhdmLk2wznpX0nwhHRqsnlahfTnNNjMD8rXQrHnXbffH3/9or65Jjn2neTmdS6if9WAO0U1Vta8fqIb9uD9mEE+nI02QH922z9ygbjofjEYhf3XNQfOhbD6/g3H+gGppKh/2D5q02M8o/uNP9lmDJME+RlPsw3CkLs9f8yB/XV6/bdIOpbPG22Gm07YS29dVWVL9fJbYDqQu1XmQG/OLknRhLmiWVHWhP6plnuVJ6xxNy83y9z03swkAemPPrJazGQBQlRVtXwDUaXRiataLkGnbd47G6MRUDK8daviqqvPwngOzXmht2TgS123dFKccv6bFK6MkpXeUE83DbKV1YebSBOusN6XNF9KhwWppFdKQy2wzMyBvC82au3aOxg/+eX+89VP36Jpk2Hfakcu5hGZ0fT2YQ3RVFe3rB6rT9f24H2YQR+t6R5ogR13vtm3mBk3Qef80CmWoYw6aD2Xz+R2c8wdUS1N5sH/QtMV+RvHBH0/Ep+7+vjVI6+xjNME+DLN1df6aB2Xo6vptk3YonTXeHjOdNpXavq7KkuLns9R2IHUpzoPcmF+UpvS5oFlSVnp/VMs8y5fWeTotN8vf9/zMJgDojT2zOs5mAECVlrd9AVCn8YOHFnx87yKPp2xs/9SsFwYRT77Auvq2+2Ns/1RLV0ZpSu4oJ5qH2UrswsylCdbZ4kqcL6RDg9XRKqQjh9lmZkD+Fps1k489ERG6Jg32nfbkcC6hOV1eD+YQXTZo+/qBanV5P+6HGcRcutyRJshVl7ttm7lBU3TeH41COaqeg+ZD2Xx+q+H8AdXSVPrsH7Shl59RtAZJgX2MutmHYW5dnL/mQTm6uH7bpB1KZ423y0ynLSW3r6uypPb5LLkdSF1q8yA35hclKnkuaJbUldwf1TLP8qZ1pmm5Wf6+F2Y2AUBv7JnVcDYDAKrmRvMUbf3qlQs+ftwij6dsdGJq1guDadt3jsbohBcHVKPkjnKieZitxC7MXJpgnS2uxPlCOjRYHa1COnKYbWYG5G+xWbNqxVPf8tI1bbPvtCeHcwnN6fJ6MIfoskHb1w9Uq8v7cT/MIObS5Y40Qa663G3bzA2aovP+aBTKUfUcNB/K5vNbDecPqJam0mf/oA29/oyiNUjb7GPUzT4Mc+vi/DUPytHF9dsm7VA6a7xdZjptKbl9XZUltc9nye1A6lKbB7kxvyhRyXNBs6Su5P6olnmWN60zTcvN8ve9MLMJAHpjz6yGsxkAUDU3mqdoI+uGYsvGkTkf27JxJEbWDTV8RdUZP3howcf3LvI49KrkjnKieZitxC7MXJpgnS2uxPlCOjRYHa1COnKYbWYG5G+hWfPy00+M+36w54jf0zVtsu+0J4dzCc3p8nowh+iyQdvXD1Sry/txP8wg5tLljjRBrrrcbdvMDZqi8/5oFMpR9Rw0H8rm81sN5w+olqbSZ/+gDUv5GUVrkDbZx6ibfRjm1sX5ax6Uo4vrt03aoXTWeLvMdNpScvu6Kktqn8+S24HUpTYPcmN+UaKS54JmSV3J/VEt8yxvWmealpvl73thZhMA9MaeWQ1nMwCgam40T9GG1w7FdVs3zXoxsmXjSHxw66YYXpvvC5H1q1cu+PhxizwOvSq5o5xoHmYrsQszlyZYZ4srcb6QDg1WR6uQjhxmm5kB+Ztv1rz89BPj0pc/J278+kNH/L6uaZN9pz05nEtoTpfXgzlElw3avn6gWl3ej/thBjGXLnekCXLV5W7bZm7QFJ33R6NQjqrnoPlQNp/fajh/QLU0lT77B21Yys8oWoO0yT5G3ezDMLcuzl/zoBxdXL9t0g6ls8bbZabTlpLb11VZUvt8ltwOpC61eZAb84sSlTwXNEvqSu6PaplnedM607TcLH/fCzObAKA39sxqOJsBAFVb0fYFQN1OOX5NfPzizTE6MRV7Dx6K41avjJF1Q9m/CBlZNxRbNo7E9p2jsx7bsnEkRtbl/fGRllI7yonmYbZSuzBzaYJ1trBS5wvp0GA1tAppSX22mRlQhqfPmrEDh+Lgocfj7n/4Sbzjlvti/9TjM8/TNW2z77Qr9XMJzerqejCH6LpB2tcPVK+r+3E/zCDm09WONEHOutpt28wNmqTzpdMolKXKOWg+lM3ntzrOH1AtTaXN/kFbpmfDj/dOxq5/3h8REff9YM8RP6NoDZIC+xh1sg/D/Lo2f82DsnRt/bZJO5TOGm+fmU4bSm9fV2VJ6fNZejuQupTmQW7ML0pV6lzQLDkotT+qZZ7lT+tEaLlp/r4XZzYBQG/smYNzNgMAqra87QuAJgyvHYrnPmNdvHDDz8Rzn7GuiBchw2uH4rqtm2LLxpEjfn/LxpH44NZNRXyMpKXEjnKieZit5C7MXJpgnc2v5PlCOjQ4OK1CelKebWYGlGN61rzotJ+JZ48cG/f/YM+sm8zrmrbZd9qX8rmE5nVxPZhD0H/7+oF6dHE/7ocZxEK62JEmyF0Xu22buUHTdL40GoXyVDUHzYey+fxWy/kDqqWpdNk/aNPw2qHYePJx8bxnrY9P3f39+MO/evCIm8xbg6TCPkZd7MOwsC7NX/OgPF1av23SDqWzxtNgptO0LrSvq7Kk8vnsQjuQulTmQW7ML0pW4lzQLLkosT+qZZ6VQetouVn+vntjNgFAb+yZg3E2AwCqtqLtCwD6d8rxa+LjF2+O0Ymp2HvwUBy3emWMrBvywgAKpXmYTRdAXcwXyINWgaUwM6A8uiZl1ifQNnMI+qcfoE1mEBxJE8BSmRuQNo0C8zEfyubzC0A/7B+0zRoEuswMBKaZB9Af7VA6axy6SfvQH+0AuTK/IC+aBUphnkEZtNwsf98AAOlwNgMAquRG85C54bVeDECXaB5m0wVQF/MF8qBVYCnMDCiPrkmZ9Qm0zRyC/ukHaJMZBEfSBLBU5gakTaPAfMyHsvn8AtAP+wdtswaBLjMDgWnmAfRHO5TOGodu0j70RztArswvyItmgVKYZ1AGLTfL3zcAQDqczQCAqixv+wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAusaN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5kbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1zo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhrnRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDD3GgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEr2r4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKMUDDzzQ9iXMKdXrAgAA6DI3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIABHRj7SUQsi1//9V9v+1IWdGhyqu1LAAAA4P/nRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwoEP790bE4Xjhr74rTnrOWW1fziy7v/2N+H9f+GQ89thjbV8KAAAA/z83mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICKrHvGhjhhw5ltX8Ys47u/3/YlAAAAcJTlbV8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNe40TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAw9xoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhbjQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DA3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTMjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANW9H2BUAVxvZPxejEVIwfPBTr16yMkWOHYnjtUNuXBUXSG1Aacw16oxWoh7aArjL/oHw6B+ZiNmANAPMxHyAfeqV01jhQBbME8qNboDTmGjRDa9BtZgAsjWZgbtoAKJ9Zz0KsDyA35hZ0k/Zpi7UHLIWZAZgD0B16h/LpHHg6MwEA0mN/BgConxvNk72H9xyId912f9y1c3Tm97ZsHInrtm6KU45f0+KVQXn0BpTGXIPeaAXqoS2gq8w/KJ/OgbmYDVgDwHzMB8iHXimdNQ5UwSyB/OgWKI25Bs3QGnSbGQBLoxmYmzYAymfWsxDrA8iNuQXdpH3aYu0BS2FmAOYAdIfeoXw6B57OTACA9NifAQCasbztC+jV9u3b48ILL4xTTjklli1bFp///OcXfP7u3bvjV3/1V+OMM86I5cuXx2/91m/Nes62bdti2bJlR/xavXp1PR8AtRjbPzXrhUNExPado3H1bffH2P6plq4MyqM3oDTmGvRGK1APbQFdZf5B+XQOzMVswBoA5mM+QD70SumscaAKZgnkR7dAacw1aIbWoNvMAFgazcDctAFQPrOehVgfQG7MLegm7dMWaw9YCjMDMAegO/QO5dM58HRmAgCkx/4MANCcbG40v2/fvjj77LPjhhtu6On5k5OTcdJJJ8W73/3uOPvss+d93vr162P37t0zv/7xH/+xqkumAaMTU7NeOEzbvnM0Rie8eICq6A0ojbkGvdEK1ENbQFeZf1A+nQNzMRuwBoD5mA+QD71SOmscqIJZAvnRLVAacw2aoTXoNjMAlkYzMDdtAJTPrGch1geQG3MLukn7tMXaA5bCzADMAegOvUP5dA48nZkAAOmxPwMANGdF2xfQqwsuuCAuuOCCnp//7Gc/O/7gD/4gIiJuvPHGeZ+3bNmyeOYznznw9dGO8YOHFnx87yKPA73TG1Aacw16oxWoh7aArjL/oHw6B+ZiNmANAPMxHyAfeqV01jhQBbME8qNboDTmGjRDa9BtZgAsjWZgbtoAKJ9Zz0KsDyA35hZ0k/Zpi7UHLIWZAZgD0B16h/LpHHg6MwEA0mN/BgBozvK2L6BtExMTcdppp8Wpp54av/RLvxR/+7d/2/YlsQTrV69c8PHjFnkc6J3egNKYa9AbrUA9tAV0lfkH5dM5MBezAWsAmI/5APnQK6WzxoEqmCWQH90CpTHXoBlag24zA2BpNANz0wZA+cx6FmJ9ALkxt6CbtE9brD1gKcwMwByA7tA7lE/nwNOZCQCQHvszAEBzOn2j+TPPPDNuvPHGuOOOO+J//a//FU888US87GUvi3/6p39a8M9NTk7G+Pj4Eb9ox8i6odiycWTOx7ZsHImRdUMNXxG50PHS6Y0UaZlBmGvp0HLatEKvtLw02iJVWqZu5l8ztEybdF4dLVOSLs8GLT+py2uAMmi5PuYDTdLyYPRKCurs2BqH5pS8J5sldEkpLeuWriulZZ5irnWTlpunNeqg5XyYASxEy7Nphhw10bI2oH72Zdpm1lej1JatD7qm1Ja7xNxCx92k/fLk0rK1BwvLpeWmmBnkSsvVMQdok5abpXfqouV06JxBaLk8ZkI3aRnKoOVy2Z+7RctQBi1Dvjp9o/mXvvSl8eY3vzle+MIXxitf+cr43Oc+FyeddFL88R//8YJ/7tprr43h4eGZX6eeempDV8zRhtcOxXVbN816AbFl40h8cOumGF7rxQNz0/HS6Y0UaZlBmGvp0HLatEKvtLw02iJVWqZu5l8ztEybdF4dLVOSLs8GLT+py2uAMmi5PuYDTdLyYPRKCurs2BqH5pS8J5sldEkpLeuWriulZZ5irnWTlpunNeqg5XyYASxEy7Nphhw10bI2oH72Zdpm1lej1JatD7qm1Ja7xNxCx92k/fLk0rK1BwvLpeWmmBnkSsvVMQdok5abpXfqouV06JxBaLk8ZkI3aRnKoOVy2Z+7RctQBi1DvpYdPnz4cNsXsVTLli2L22+/PS666KKenv+qV70qXvjCF8b111+/6HPf8IY3xIoVK+KWW26Z9zmTk5MxOTk58/b4+HiceuqpMTY2FuvXr+/pmqjW2P6pGJ2Yir0HD8Vxq1fGyLohLxxYkI77pzdSomWqYK61T8t50AqL0XJ/tEVqtExTzL96aZkU6HxwWqZEXZwNWj5SF9cAZdBy/cwHmqDlauiVNjXRsTUO9evCnmyW0AWltaxbuqq0lnmKudYtWm6P1qiSlvNjBjAXLc9PM+SkyZa1AfWxL5MKs34wpbdsfdAVpbfcJeZWd+m427RfjtxatvZgbrm13BQzg9xouXrmAG3Qcjv0TtW0nB6d0w8tl8tM6JZ+W/7Wt74V55xzTrzmv94UJ2w4s4lLXZLvf/Mv4ps3vi9e8Vs3xM8+b3PblzNL6tf3z7u+G3/5e5fGvffeGy960Yvavhx6YF8un/25G7QMZdAy5GtF2xeQkscffzy+/e1vx7/7d/9uweetWrUqVq1a1dBV0YvhtV4ssDQ67p/eSImWqYK51j4t50ErLEbL/dEWqdEyTTH/6qVlUqDzwWmZEnVxNmj5SF1cA5RBy/UzH2iClquhV9rURMfWONSvC3uyWUIXlNaybumq0lrmKeZat2i5PVqjSlrOjxnAXLQ8P82QkyZb1gbUx75MKsz6wZTesvVBV5TecpeYW92l427Tfjlya9nag7nl1nJTzAxyo+XqmQO0Qcvt0DtV03J6dE4/tFwuM6FbtAxl0HL57M/doGUog5YhX9ncaH5iYiIefPDBmbcfeuih2LFjR5xwwgmxYcOGuOaaa+KHP/xhfPrTn555zo4dO2b+7KOPPho7duyIoaGheP7znx8REb/7u78bL3nJS+L000+PPXv2xIc+9KH4x3/8x7j88ssb/dgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAiAceeKDtS1jQyMhIbNiwoe3LAAAACpHNjebvueeeePWrXz3z9lVXXRUREZdcckls27Ytdu/eHbt27Triz2zevHnmf997771x8803x2mnnRbf//73IyLipz/9aVxxxRXxyCOPxM/8zM/EOeecE3fffffMjegBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA+h0Y+0lELItf//Vfb/tSFrRmzdr4zncecLN5AACgEtncaP5Vr3pVHD58eN7Ht23bNuv3Fnp+RMTHPvax+NjHPjbopQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOLR/b0Qcjhf+6rvipOec1fblzGl89/fjmze+L0ZHR91oHgAAqEQ2N5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyrbuGRvihA1ntn0ZAAAAjXCjeUjA2P6pGJ2YivGDh2L9mpUxcuxQDK8davuygKfRKV1k3QOlMt8AcwDSplF4khboh3UDQF3sMVA9XQHmAAxGQ9ANWgeaYNYsjb8vKIOWAciVPYxeWCcAizMroQxaBh3QO2sFgGn2BHJk3QJ1M2cgbxoGzAHIi2apmjUFANAcZy8AoCluNA8te3jPgXjXbffHXTtHZ35vy8aRuG7rpjjl+DUtXhkwTad0kXUPlMp8A8wBSJtG4UlaoB/WDQB1scdA9XQFmAMwGA1BN2gdaIJZszT+vqAMWgYgV/YwemGdACzOrIQyaBl0QO+sFQCm2RPIkXUL1M2cgbxpGDAHIC+apWrWFABAc5y9AIAmLW/7AqDLxvZPzTr8R0Rs3zkaV992f4ztn2rpyoBpOqWLrHugVOYbYA5A2jQKT9IC/bBuAKiLPQaqpyvAHIDBaAi6QetAE8yapfH3BWXQMgC5sofRC+sEYHFmJZRBy6ADemetADDNnkCOrFugbuYM5E3DgDkAedEsVbOmAACa4+wFADTNjeahRaMTU7MO/9O27xyN0QkvAKBtOqWLrHugVOYbYA5A2jQKT9IC/bBuAKiLPQaqpyvAHIDBaAi6QetAE8yapfH3BWXQMgC5sofRC+sEYHFmJZRBy6ADemetADDNnkCOrFugbuYM5E3DgDkAedEsVbOmAACa4+wFADTNjeahReMHDy34+N5FHgfqp1O6yLoHSmW+AeYApE2j8CQt0A/rBoC62GOgeroCzAEYjIagG7QONMGsWRp/X1AGLQOQK3sYvbBOABZnVkIZtAw6oHfWCgDT7AnkyLoF6mbOQN40DJgDkBfNUjVrCgCgOc5eAEDT3GgeWrR+9coFHz9ukceB+umULrLugVKZb4A5AGnTKDxJC/TDugGgLvYYqJ6uAHMABqMh6AatA00wa5bG3xeUQcsA5MoeRi+sE4DFmZVQBi2DDuidtQLANHsCObJugbqZM5A3DQPmAORFs1TNmgIAaI6zFwDQNDeahxaNrBuKLRtH5nxsy8aRGFk31PAVAUfTKV1k3QOlMt8AcwDSplF4khboh3UDQF3sMVA9XQHmAAxGQ9ANWgeaYNYsjb8vKIOWAciVPYxeWCcAizMroQxaBh3QO2sFgGn2BHJk3QJ1M2cgbxoGzAHIi2apmjUFANAcZy8AoGluNA8tGl47FNdt3TTrRcCWjSPxwa2bYnitFwDQNp3SRdY9UCrzDTAHIG3/H3v3HmR5WR/4/9PDTM+FmW4urQyYQVEH1MAIauIqMmJkI8ZNZJdlS6JlvO0lq4lsKgmakBiRFOBPE2KMG+OqyFaUlD8Mm02lsrpkEVTWC2CAbOIOikJE0MZM9zTDTI/Qvz/49TA9fTuX7+V5nu/rVTVVTJ+e5vv9nuf9ec45PdNHo/A4LTAI6waAuthjoHq6AswBGI6GoBu0DjTBrOmP6wVl0DIAubKH0QvrBGB1ZiWUQcugA3pnrQAwz55AjqxboG7mDORNw4A5AHnRLFWzpgAAmuOxFwDQtLVtHwB03QlHbYw/vPCMmJyZjT37DsSWDetiYvOoB/+QEJ3SRdY9UCrzDTAHIG0ahcdpgUFYNwDUxR4D1dMVYA7AcDQE3aB1oAlmTX9cLyiDlgHIlT2MXlgnAKszK6EMWgYd0DtrBYB59gRyZN0CdTNnIG8aBswByItmqZo1BQDQHI+9AIAmeaN5SMD4Jg/4IXU6pYuse6BU5htgDkDaNAqP0wKDsG4AqIs9BqqnK8AcgOFoCLpB60ATzJr+uF5QBi0DkCt7GL2wTgBWZ1ZCGbQMOqB31goA8+wJ5Mi6BepmzkDeNAyYA5AXzVI1awoAoDkeewEATVnT9gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdI03mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjY2rYPoCum9s7G5MxsTO87EGMb18XEkaMxvmm07cMCEmNWQP10BmXQMpRBy1AGLUMZtAzl0DPkT8dQBi1DGbQM5dI35EWzwOHMBaAfZgYA/bJ3VMN1hLRpFOqjL2BQ5gdUQ0tQBi1DN2kf8qZhYCVmBAxPR1A2jUNeNAtl0jYAtMc+DAAAC3mj+Qbcv/uRuPi6O+LmXZMHP7Zz+0Rccf6OOOGojS0eGZASswLqpzMog5ahDFqGMmgZyqBlKIeeIX86hjJoGcqgZSiXviEvmgUOZy4A/TAzAOiXvaMariOkTaNQH30BgzI/oBpagjJoGbpJ+5A3DQMrMSNgeDqCsmkc8qJZKJO2AaA99mEAAFhsTdsHULqpvbOLnohERNy0azLecd0dMbV3tqUjA1JiVkD9dAZl0DKUQctQBi1DGbQM5dAz5E/HUAYtQxm0DOXSN+RFs8DhzAWgH2YGAP2yd1TDdYS0aRTqoy9gUOYHVENLUAYtQzdpH/KmYWAlZgQMT0dQNo1DXjQLZdI2ALTHPgwAAEtb2/YBlG5yZnbRE5F5N+2ajMmZ2RjfNNrwUQGpMSugfjqDMmgZyqBlKIOWoQxahnLoGfKnYyiDlqEMWoZy6RvyolngcOYC0A8zA4B+2Tuq4TpC2jQK9dEXMCjzA6qhJSiDlqGbtA950zCwEjMChqcjKJvGIS+ahTJpG4Cq/P3f/33bh7CsiYmJOPHEE9s+jEXswwAAsDRvNF+z6X0HVrx9zyq3A91gVkD9dAZl0DKUQctQBi1DGbQM5dAz5E/HUAYtQxm0DOXSN+RFs8DhzAWgH2YGAP2yd1TDdYS0aRTqoy9gUOYHVENLUAYtQzdpH/KmYWAlZgQMT0dQNo1DXjQLZdI2AMN6ZOqhiBiJ173udW0fyrI2btwU//APf5/cm83bhwEAYGneaL5mYxvWrXj7llVuB7rBrID66QzKoGUog5ahDFqGMmgZyqFnyJ+OoQxahjJoGcqlb8iLZoHDmQtAP8wMAPpl76iG6whp0yjUR1/AoMwPqIaWoAxahm7SPuRNw8BKzAgYno6gbBqHvGgWyqRtAIZ1YO+eiJiL03/+4njSSc9q+3AWmf7et+PLH3t3TE5OJvdG8/ZhAABY2pq2D6B0E5tHY+f2iSVv27l9IiY2jzZ8RECKzAqon86gDFqGMmgZyqBlKIOWoRx6hvzpGMqgZSiDlqFc+oa8aBY4nLkA9MPMAKBf9o5quI6QNo1CffQFDMr8gGpoCcqgZegm7UPeNAysxIyA4ekIyqZxyItmoUzaBqAqm598Yhxz4inJ/Ro7/mltX5pl2YcBAGBp3mi+ZuObRuOK83csekKyc/tEXHn+jhjf5MkIYFZAE3QGZdAylEHLUAYtQxm0DOXQM+RPx1AGLUMZtAzl0jfkRbPA4cwFoB9mBgD9sndUw3WEtGkU6qMvYFDmB1RDS1AGLUM3aR/ypmFgJWYEDE9HUDaNQ140C2XSNgC0xz4MAABLW9v2AXTBCUdtjD+88IyYnJmNPfsOxJYN62Ji86gnIsACZgXUT2dQBi1DGbQMZdAylEHLUA49Q/50DGXQMpRBy1AufUNeNAsczlwA+mFmANAve0c1XEdIm0ahPvoCBmV+QDW0BGXQMnST9iFvGgZWYkbA8HQEZdM45EWzUCZtA0B77MMAALCYN5pvyPgmTz6A1ZkVUD+dQRm0DGXQMpRBy1AGLUM59Az50zGUQctQBi1DufQNedEscDhzAeiHmQFAv+wd1XAdIW0ahfroCxiU+QHV0BKUQcvQTdqHvGkYWIkZAcPTEZRN45AXzUKZtA0A7bEPAwDAQmvaPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACArvFG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANW9v2ATC8qb2zMTkzG9P7DsTYxnUxceRojG8abfuwoDhaA6AL7HcLuR7QHL0BSzEbgF6YFUCKzCbaZg1Cd+gd8qNbKI+uoTv0Du3TITAIswMohXnG4awJYCVmBLRPh5Af3UKZtA1AE+w3zXCdoXm6gzJoGcqiacibhqFsGgeqYp4AAAAAdJs3ms/c/bsfiYuvuyNu3jV58GM7t0/EFefviCNHj/DiH1RkpdZOOGrjUF/bC/VAl5mBaalzv8tRP9fDWobhNDF/dAr56XU26BvS1FSbnsdAGuzHC5lNtGG+w5n9B2J842j81vV3xc13W4OQu9X2WHsO5Of+3Y/Exf/vHfZpKMhS+/FZ2yfid37ux2MkIo7t+HNkyJ3n25AWj6eBQeTwGprvtQG9SHGemV/tamNNuM8hH3XPCPMAFju0i/GN62L0iDXxzj+/M6nHb8DKUnjeZY+F6qXQ9qF0DlCmpvebnPaTKo81tX0dusDPA4IyaBnKkvvjYvOCrvN+ElA2P8ca8pNqi7k/7geAJqS6jwMAQFW80XzGpvbOLnqBLyLipl2TcfF1d8TPnHZ8vPMzdx78uBf/YDArtfaO6+6IP7zwDH9xHWAAZmBa6tzvctTP9bCWYThNzB+dQn56nQ36hjQ11abnMZAG+/FCZhNtOLTDt/3UM+P2e/8pvnj3Qws+xxqE/Ky2x9pzID9Te2cXvSlmxBN/1+uDuoXsLLcf37xrMn77v90VZ5x4dNxx3+7OPkeG3Hm+DWnxeBoYRA6vofleG9CLFOeZ+dWuNtaE+xzyUfeMMA9gscO78Joy5CeF5132WKheCm0fSucAZWp6v8lpP6nyWFPb16EL/DwgKIOWoSy5Py42L+g67ycBZfNzrCE/qbaY++N+AGhCqvs4AABUaU3bB9Crm266KX72Z382TjjhhBgZGYnrr79+xc//3ve+Fz//8z8fJ598cqxZsyYuuuiiJT/v05/+dDzrWc+KDRs2xGmnnRZ/9Vd/Vf3B12RyZnbRC3zzbt41GU/esn7Bx+Zf/JvaO9vE4UExVmrtpl2TMTkzWFOrvVCvVaBkZmB66trvctXr9bCWYXh1zx+dQp56mQ36hjQ12abnMdA++/FiZhNNO7zDM7YdtegHFM+zBiEfveyx9hzIz/f37F/0ppjzbt41Gd/fs7/hIwKGtdJ+/MW7H4ozth3V6efIkDPPtyE9Hk8Dg0j9NTTfawN6ldo8M7/a1/SacJ9DXuqcEeYBLLZUF15Thvy0/bzLHgv1aLvtQ+kcoFxN7jc57SdVH2tK+zp0hZ8HBGXQMpQl58fF5gV4PwkonZ9jDXlJucWcH/cDQBNS3scBAKBK2bzR/MMPPxzPfe5z44/+6I96+vz9+/fHk570pLjkkkviuc997pKf86UvfSkuvPDCePOb3xy33357nHfeeXHeeefFXXfdVeWh12Z634EVb9//o8cWfcyLf9C/1Vrbs8rty/FCPdBlZmB66trvctXr9bCWYXh1zx+dQp56mQ36hjQ12abnMdA++/FiZhNNO7zDpb5HfChrEPLQyx5rz4H87H5k5S6nVrkdSE+vf4ezq8+RIWeeb0N6PJ4GBpH6a2i+1wb0KrV5Zn61r+k14T6HvNQ5I8wDWGypLrymDPlp+3mXPRbq0Xbbh9I5QLma3G9y2k+qPtaU9nXoCj8PCMqgZShLzo+LzQvwfhJQOj/HGvKScos5P+4HgCakvI8DAECV1rZ9AL165StfGa985St7/vynPe1p8Qd/8AcREfGxj31syc/5gz/4gzj33HPj137t1yIi4j3veU987nOfiw9+8IPxx3/8x8MfdM3GNqxb8fb1a9cs+XEv/kF/Vmttyyq3L8cL9UCXmYHpqWu/y1Wv18NahuHVPX90CnnqZTboG9LUZJuex0D77MeLmU007fAOl/se8TxrEPLQyx5rz4H8HDl6xIq3b1rldiA9/fwdzi4+R4aceb4N6fF4GhhE6q+h+V4b0KvU5pn51b6m14T7HPJS54wwD2CxpbrwmjLkp+3nXfZYqEfbbR9K5wDlanK/yWk/qfpYU9rXoSv8PCAog5ahLDk/LjYvwPtJQOn8HGvIS8ot5vy4HwCakPI+DgAAVVr5XygW7pZbbolzzjlnwcde8YpXxC233LLin9u/f39MT08v+NWGic2jsXP7xJK3nfnMY+P2+3YveZsX/6C/jldqbef2iZjYPDrQMXihHoaXyp5M/8zA9NS13/UixZZ7vR7WMjxh0Jbrnj86hf6ksi/3Mhv0Dctrs+Um22zzeQw0IZV9eSX248XMJg5Xd8uHd3j7fbvjzGceu+TnWoMwuKb35V72WHsO9K/tx9hHjq5ddp8+85nHxpGjaxs9HshR2x0frp+/w9nF58iwnNRaXorn27C6plv2eBrqkcO+PIzUX0PzvTaqUnrLpDfPzK96pPDvHZfjPofepbAv1zkjzAO6op+Wl+rCa8qQhpQfYx/OHgvLG+YxdtttH0rndF0Kz5ehLk3uN23uJ/12XPWxprSvQ85Seq7sMTIMTstQhkGeK+f8uNi8oFRV7cveTwLaVcVr2H6ONbRv2L/zdag2W8z5cT9UwfeWoQx1tpzyPg6lsS9DGbQM+er0G80/8MADcdxxxy342HHHHRcPPPDAin/u8ssvj/Hx8YO/tm3bVudhLmt802hccf6ORS/07dw+Eb/0U9vjY1+4Z9Gf8eIfPK6fjldq7crzd8T4psGa8kI9DC+VPZn+mYHpqWu/60WKLfd6PaxleMKgLdc9f3QK/UllX+5lNugbltdmy0222ebzGGhCKvvySuzHi5lNHK7ulg/v8GNfuCfeeOZJi35QsTUIw2l6X+5lj7XnQP/afox91KZ18Us/tX3RPn3mM4+NX/qp7XHUJv9IBVbTdseHW24/PvOZx8Ybzzzp4N/h7OpzZFhOai0vxfNtWF3TLXs8DfXIYV8eRuqvofleG1UpvWXSm2fmVz1S+PeOy3GfQ+9S2JfrnBHmAV3RT8tLdTH/mvJLvKYMrUr5Mfbh7LGwvGEeY7fd9qF0Ttel8HwZ6tLkftPmftJvx1Ufa0r7OuQspefKHiPD4LQMZRjkuXLOj4vNC0pV1b7s/SSgXVW8hu3nWEP7hv07X/PabjHnx/1QBd9bhjLU2XLK+ziUxr4MZdAy5Gtkbm5uru2D6NfIyEj8+Z//eZx33nk9ff7ZZ58dp59+elx11VULPj46Ohqf+MQn4sILLzz4sQ996EPx7ne/Ox588MFlv97+/ftj//79B38/PT0d27Zti6mpqRgbG+vrXKowtXc2JmdmY8++A7Flw7qY2Dwae2cfjYuvuyNu2jV58PPmX/w7/qiNjR8jpGaQjpdqbdgX0+/f/Ui8Q6swsNT2ZPpjBqapjv1uNSm33Mv1sJbhccO2XOf80Sn0LrV9ebXZoG9YWtstN91mG89joAltt9wr+/HSzCbmNdHy4R1uGj0ifutfPCeed+JR8cjso9YgVKCNfbnXPdaeA71L4TH293Y/Ejf+3x/Ek7esj/0/eizWr10T39+zP1528pNia4cfP0OvUuh4KfP78e5HZmP/gcfiS996KD72hXti7+yjniPDElJt+XCeb8PK2mjZ42moXi778rBSfg3N99qoQldaJq15Zn5VL5V/77gc9zn0JqV9ua4ZYR7QBf22vFQX//zZT47f+bkfj30HHkvi8Rt0UeqPsQ9nj4WlVfEYO5XXVHROl6X0fBnq0tR+09Z+MkjHdRxrKvs65Cq158oeI8NgtAxlGOa5cq6Pi80LSlTVvuz9JKBdVb6G7edYQ3uq+DtfKbWY6+N+GNag+/Jtt90Wz3/+8+Of/+bH45gTT2niUPvy7S//j/jyx94dL7noj+Ipzz6j7cNZxPENL/Vj/OG934jP/e4b49Zbb43nPe95tf//6v57Iqnv41AKf+cLyqBlyNfatg+gTVu3bl30hvIPPvhgbN26dcU/t379+li/fn2dh9aX8U2LX9Qb3xTxhxee4cU/WMYgHS/V2rBOOGqjVmEIqe3J9McMTFMd+91qUm65l+thLcPjhm25zvmjU+hdavvyarNB37C0tltuus02nsdAE9puuVf246WZTcxromUdQv3a2Jd7bdueA71L4TH28UdtjJ85deuCtl/w1KN1DD1KoeOlHLofT+2djePGNsQ5z3qyx+awjFRbPpzn27CyNlr2eBqql8u+PKyUX0PzmIMqdKVl0ppn5lf1Uvn3jstxn0NvUtqX65oR5gFd0G/LuoA0pf4Y+3BmCSytisfYqbymonO6LKXny1CXpvabtvaTQTqu41hT2dchV6k9V/YYGQajZSjDMM+Vc31cbF5Qoqr2Ze8nAe2q8jVsP8ca2lPa3/nK9XE/DMv3lqEMdbec+j4OpbAvQxm0DPnq9BvNv+hFL4obbrghLrroooMf+9znPhcvetGL2juoCnnxD/KgVaDLzEBKYS1D+nQK5dI3pEmb0C2ah/bpEMqkbSiTtqFsGoeyaBrSo0ugRGYbkCvzq3vc58A88wAW0wVQBbMEyqdzAKqQ036S07EC7TAnoAxaBnplXsDy9AHdonlIgxYBIF/2cQAASpfNG83PzMzE3XffffD399xzT3z961+PY445Jk488cR45zvfGd/97nfjmmuuOfg5X//61w/+2R/84Afx9a9/PUZHR+M5z3lORES8/e1vj5e+9KXx/ve/P171qlfFtddeG1/72tfiT/7kTxo9NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBbsnmj+a997Wvxspe97ODvf+VXfiUiIn7hF34hrr766vje974X995774I/c8YZZxz871tvvTU++clPxlOf+tT49re/HRERL37xi+OTn/xkXHLJJfEbv/EbsX379rj++uvj1FNPrf+EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgM7K5o3mzz777Jibm1v29quvvnrRx1b6/HkXXHBBXHDBBcMcGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBfsnmj+ZTNv6H99PR0y0cC3bFly5YYGRmp7OvpGNqhZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKEOVLesY2mFPhjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyuDvb0L+7MlQBi1DGbQMZdAylEHLUAYtQxnaanlmZiYiIqb+8Vvx2I8erez/X5WZ7383IiKmH/h2rF+/vuWjWczxDS/1Y9zzwHci4vFWetkb7ctQBi1DGbQM+Ru0Y280X4E9e/ZERMS2bdtaPhLojqmpqRgbG6vs6+kY2qFlKIOWoQxahjJoGcpQdcsPPfRQRGgZmmZfhjJoGcqgZSiDlqEMVbasY2iHPRnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDv78J+bMnQxm0DGXQMpRBy1AGLUMZtAxlaLvlr3ziPZX9v+twx7X/T9uHsCLHN7zUj/GlL31pT5/XdstANbQMZdAy5G/Qjkfm5ubmajieTnnsscfi/vvvjy1btsTIyEjbh5O86enp2LZtW9x3332Vbj5d1OVrWXVvdXXc5fvocK7F41yHhepqeW5uLk488cSirnOpa6fE8+riOeWyL1etxPt6XqnnVup5RVRzbnW0/I1vfCOe85znFHnNe1XyuuuVa9DsNWh6X3b/ugYRrkFE9deg6pZ3794dRx99dNx7770xPj5e2ddtU2nrrrTziSjvnAY5n64+X55X2hroR1fPvdTz9jp2b0q7/51P2uzLvSvtvq+Da7S6lK5RV1s+VEr3xzCcR1qaPo8qm6uy41Luzya5ZoMp4bqlsieXcC3r4Losz7VZKJWW21baunA+aavjfFJpubT7KsI55aKUc0ql5SaUcp+lwLWsVqp/F3uplt331XEtq1HadUxhX875muZ87BGOv21VHn8KLVcl9/t1Oc4rP22cW0ktN6Hk9becrp1zrufr3zv2J/fjj8j/HBz/0vy7ioVyXSeOu1kpHneqf3+zKSneJ1Vyfnnr9fxKfK5cyn1bwnmUcA4ReZxHTi3ncD0P55ib4ZjzarkKOd7nqXENh1fy38VeijWzPNdmaV2+Lim2nOP9keMxR+R53I55aSm2XKUc7/elOI90pHoOTbac6jUohetbnxyubRv7cg7XpS7OvZvnHlH/+bf1GLuU+9V5pKWU84jo/1y0PBznkZaunsegHa8d5OBYaM2aNfFjP/ZjbR9GdsbGxrKONCWu5fDq7th99ATX4nGuQz3mW56eno6IMq9ziecUUeZ5OafB5fb4usT7el6p51bqeUWkdW5r1qyJpzzlKRGR1nG1xTVwDSLyvAa97ss5nlvVXAPXICLda7BmzZqIiBgfH0/y+IaR6jUfVGnnE1HeObV5Prk9X55X2hroR1fPvavn3avSX8d2PmlzPtXJbV8u7b6vg2u0uhKvUW4tH6qU+8N5pCXH86ij4xyvQ9tcs8G4bk8YtmXXcmmuy/Jcm3rk/Pg6orx14XzSlvL52JcXc055KPGchpHDvuw+q45rWa2UrudqLad0rLlzLavhOi5tmH0552ua87FHOP62pXj8KTzGTvG6VMF55Sfnc0uh5SbkfB8Nqmvn3LXzPVxX/r1j7scfkf85OP56lfLvKhx3sxx3WnJ+fF3qfTLP+eWt6fNLqeVS7tsSzqOEc4go5zx60UTLOV5Px9wMx1ydlPbllaR6/XLiGg4v5Wvo3zs2y7VZmusyvCpbzvH+yPGYI/I8bsdcr1QfY+d0DVfiPNJRwjmspJeWS78GbXN969Ola9vPvtyl63I4597Nc4/I5/z7fYydy3mtxnmkpZTziGjvXLScN+eRlrrPY01tXxkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJXmjeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGeaN5Grd+/fp417veFevXr2/7ULLnWqbPffQE1+JxrkMzSrzOJZ5TRJnn5Zy6o+TrUuq5lXpeEemeW6rH1STXwDWIKPsalHxuvXINXIOI9K9B6sc3iNLOqbTziSjvnEo7nyZ0+Zp19dy7et6DKu16OZ+0OZ/ucq1W5xqtzjVKSyn3h/NISynnMSzXoX+u2WBct+q4lktzXZbn2rCU0taF80lbaedzqBLPzTnlocRzKp37rDquZbVyup45HWvqXMtquI7Vy/ma5nzsEY6/bbkff11KvS7OKz8ln1spungfde2cu3a+g8r9OuV+/BH5n4Pjb1ZuxzvPcTfLcVOV0u8T55e30s9vJaWcewnnUcI5RJRzHqnI8Xo65mY45u5x/YbnGg6va9ewa+fbD9dmaa5LWnK8P3I85og8j9sxd1Mp19B5pKOEcxiWa1Av17c+ru3SunxdnHs3zz2i3PMv5bycR1pKOY+IfM4ll+NcjfNIi/Poz8jc3Nxcrf8HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZY0/YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSNN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABomDeaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiYN5oHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJg3mq/QTTfdFD/7sz8bJ5xwQoyMjMT111/f99eYm5uL973vfXHyySfH+vXr4ylPeUr87u/+bvUHCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRmbdsHUJKHH344nvvc58ab3vSm+Ff/6l8N9DXe/va3x2c/+9l43/veF6eddlr88Ic/jB/+8IcVHykAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQppG5ubm5tg+iRCMjI/Hnf/7ncd555x382P79++M3f/M341Of+lTs3r07Tj311Ljyyivj7LPPjoiIv//7v48dO3bEXXfdFaeccko7Bw4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUbk3bB9Alb3vb2+KWW26Ja6+9Nu6444644IIL4txzz41du3ZFRMR//+//PZ7+9KfHX/7lX8ZJJ50UT3va0+Itb3lL/PCHP2z5yAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAqeaP5htx7773x8Y9/PD796U/HWWedFc94xjPiV3/1V+MlL3lJfPzjH4+IiG9961vxne98Jz796U/HNddcE1dffXXceuut8a//9b9u+egBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAKq1t+wC64s4774xHH300Tj755AUf379/fxx77LEREfHYY4/F/v3745prrjn4eR/96Efj+c9/fnzjG9+IU045pfHjBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKrnjeYbMjMzE0cccUTceuutccQRRyy4bfPmzRERcfzxx8fatWsXvBn9s5/97IiIuPfee73RPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTCG8035IwzzohHH300vv/978dZZ5215OeceeaZ8aMf/Si++c1vxjOe8YyIiPi///f/RkTEU5/61MaOFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKjXyNzc3FzbB1GKmZmZuPvuuyPi8TeW/73f+7142cteFsccc0yceOKJ8brXvS6++MUvxvvf//4444wz4gc/+EHccMMNsWPHjnjVq14Vjz32WPzET/xEbN68Oa666qp47LHH4q1vfWuMjY3FZz/72ZbPDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiKN5qv0I033hgve9nLFn38F37hF+Lqq6+OAwcOxGWXXRbXXHNNfPe7342JiYn4Z//sn8W73/3uOO200yIi4v77749f+qVfis9+9rNx5JFHxitf+cp4//vfH8ccc0zTpwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUxBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRsTdsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA13mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaL4Cc3NzMT09HXNzc20fCjAgHUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQxm0DPnTMZRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLUAYtQ/50DGXQMpRBy1AGLUMZtAxl0DKUQctQBi1DGbQMZdAylEHLkA9vNF+BPXv2xPj4eOzZs6ftQwEGpGMog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZSiDliF/OoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGcqgZcifjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahjJoGfLhjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuaN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa5o3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrmjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuaN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAatrbtAwCY2jsbkzOzMb3vQIxtXBcTR47G+KbRtg8L6JOWIW0ahW7RPJRBy1AGLcPy9EHTrDmAMpjnUAYtQxm0DPnTMZRBy1AGLZMKaxHapUGA6pipUAYtQ140C2XTOJRBy5TIugZyZHZBGbQMZdAylEHLUA9tAYMwO7rB/QxUwSwBAABYmjeaB1p1/+5H4uLr7oibd00e/NjO7RNxxfk74oSjNrZ4ZEA/tAxp0yh0i+ahDFqGMmgZlqcPmmbNAZTBPIcyaBnKoGXIn46hDFqGMmiZVFiL0C4NAlTHTIUyaBnyolkom8ahDFqmRNY1kCOzC8qgZSiDlqEMWoZ6aAsYhNnRDe5noApmCQAAwPLWtH0AQHdN7Z1d9KJNRMRNuybjHdfdEVN7Z1s6MqAfWoa0aRS6RfNQBi1DGbQMy9MHTbPmAMpgnkMZtAxl0DLkT8dQBi1DGbRMKqxFaJcGAapjpkIZtAx50SyUTeNQBi1TIusayJHZBWXQMpRBy1AGLUM9tAUMwuzoBvczUAWzBAAAYGXeaB5ozeTM7KIXbebdtGsyJme8cAM50DKkTaPQLZqHMmgZyqBlWJ4+aJo1B1AG8xzKoGUog5YhfzqGMmgZyqBlUmEtQrs0CFAdMxXKoGXIi2ahbBqHMmiZElnXQI7MLiiDlqEMWoYyaBnqoS1gEGZHN7ifgSqYJQAAACvzRvNAa6b3HVjx9j2r3A6kQcuQNo1Ct2geyqBlKIOWYXn6oGnWHEAZzHMog5ahDFqG/OkYyqBlKIOWSYW1CO3SIEB1zFQog5YhL5qFsmkcyqBlSmRdAzkyu6AMWoYyaBnKoGWoh7aAQZgd3eB+BqpglgAAAKzMG80DrRnbsG7F27escjuQBi1D2jQK3aJ5KIOWoQxahuXpg6ZZcwBlMM+hDFqGMmgZ8qdjKIOWoQxaJhXWIrRLgwDVMVOhDFqGvGgWyqZxKIOWKZF1DeTI7IIyaBnKoGUog5ahHtoCBmF2dIP7GaiCWQIAALAybzQPtGZi82js3D6x5G07t0/ExObRho8IGISWIW0ahW7RPJRBy1AGLcPy9EHTrDmAMpjnUAYtQxm0DPnTMZRBy1AGLZMKaxHapUGA6pipUAYtQ140C2XTOJRBy5TIugZyZHZBGbQMZdAylEHLUA9tAYMwO7rB/QxUwSwBAABYmTeaB1ozvmk0rjh/x6IXb3Zun4grz98R45u8cAM50DKkTaPQLZqHMmgZyqBlWJ4+aJo1B1AG8xzKoGUog5YhfzqGMmgZyqBlUmEtQrs0CFAdMxXKoGXIi2ahbBqHMmiZElnXQI7MLiiDlqEMWoYyaBnqoS1gEGZHN7ifgSqYJQAAACsbmZubm2v7IHI3PT0d4+PjMTU1FWNjY20fDmRnau9sTM7Mxp59B2LLhnUxsXm08RdtdAzD0zKkLYVGe6VlGF4KzWsZhqdlKIOWYXkp9JETLQ/PmiMFWobhpTDPtQzD0zKUoe2WdQzDa7vjCC1DFbQMZdAyqUhhLTIcLedNg8zTMgwvhZmqZRieliEvKTS7HC3D8FJoXMswPC1TohTWddfoGIaXwuzSMgxPy1AGLUMZtAz1SKGtpmkZhpfC7NBy/VK4nymflstnlnSDlqEMWoYyaBnysbbtAwAY3+SFGiiBliFtGoVu0TyUQctQBi3D8vRB06w5gDKY51AGLUMZtAz50zGUQctQBi2TCmsR2qVBgOqYqVAGLUNeNAtl0ziUQcuUyLoGcmR2QRm0DGXQMpRBy1APbQGDMDu6wf0MVMEsAQAAWNqatg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGuyeaP53/md34mRkZEFv571rGet+Gc+/elPx7Oe9azYsGFDnHbaafFXf/VXC26fm5uL3/7t347jjz8+Nm7cGOecc07s2rWrztMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyOeN5iMifvzHfzy+973vHfz1hS98YdnP/dKXvhQXXnhhvPnNb47bb789zjvvvDjvvPPirrvuOvg5733ve+MDH/hA/PEf/3F8+ctfjiOPPDJe8YpXxL59+5o4HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCjsnqj+bVr18bWrVsP/pqYmFj2c//gD/4gzj333Pi1X/u1ePaznx3vec974nnPe1588IMfjIiIubm5uOqqq+KSSy6JV7/61bFjx4645ppr4v7774/rr7++oTMCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAumht2wfQj127dsUJJ5wQGzZsiBe96EVx+eWXx4knnrjk595yyy3xK7/yKws+9opXvOLgm8jfc8898cADD8Q555xz8Pbx8fF44QtfGLfccku85jWvWfY49u/fH/v37z/4++np6SHOCmiDjqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWoQxahvzpGMqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX86hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyNeatg+gVy984Qvj6quvjr/+67+O//yf/3Pcc889cdZZZ8WePXuW/PwHHnggjjvuuAUfO+644+KBBx44ePv8x5b7nOVcfvnlMT4+fvDXtm3bBj0toCU6hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8qdjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqG/OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhXyNzc3NzbR/EIHbv3h1PfepT4/d+7/fizW9+86LbR0dH4xOf+ERceOGFBz/2oQ99KN797nfHgw8+GF/60pfizDPPjPvvvz+OP/74g5/zb/7Nv4mRkZH4sz/7s2X/3/v374/9+/cf/P309HRs27YtpqamYmxsrKIzBOqkYyiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlKIOWIX86hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZyqBlyJ+OoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8rW27QMY1FFHHRUnn3xy3H333UvevnXr1njwwQcXfOzBBx+MrVu3Hrx9/mOHvtH8gw8+GKeffvqK/+/169fH+vXrhzh6oG06hjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqGMmgZ8qdjKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5ahDFqG/OkYyqBlKIOWoQxahjJoGcqgZSiDlqEMWoYyaBnKoGUog5YhX2vaPoBBzczMxDe/+c0FbxJ/qBe96EVxww03LPjY5z73uXjRi14UEREnnXRSbN26dcHnTE9Px5e//OWDnwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQh2zeaP5Xf/VX4/Of/3x8+9vfji996UvxL//lv4wjjjgiLrzwwoiIeP3rXx/vfOc7D37+29/+9vjrv/7reP/73x//8A//EL/zO78TX/va1+Jtb3tbRESMjIzERRddFJdddln8xV/8Rdx5553x+te/Pk444YQ477zz2jhFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCPWtn0AvfrHf/zHuPDCC+Ohhx6KJz3pSfGSl7wk/vf//t/xpCc9KSIi7r333lizZs3Bz3/xi18cn/zkJ+OSSy6J3/iN34jt27fH9ddfH6eeeurBz/n1X//1ePjhh+Pf/bt/F7t3746XvOQl8dd//dexYcOGxs8PBjW1dzYmZ2Zjet+BGNu4LiaOHI3xTaNtHxZQE83DYroA6mK+QB60CvTDzIDy6JqUWZ9A28whGJx+gDaZQbCQJoB+mRuQNo0CyzEfyub+BWAQ9g/aZg0CXWYGAvPMAxiMdiidNQ7dpH0YjHaAXJlfkBfNAqUwz6AMWm6W6w2sxpwAAADITzZvNH/ttdeuePuNN9646GMXXHBBXHDBBcv+mZGRkbj00kvj0ksvHfbwoBX3734kLr7ujrh51+TBj+3cPhFXnL8jTjhqY4tHBtRB87CYLoC6mC+QB60C/TAzoDy6JmXWJ9A2cwgGpx+gTWYQLKQJoF/mBqRNo8ByzIeyuX8BGIT9g7ZZg0CXmYHAPPMABqMdSmeNQzdpHwajHSBX5hfkRbNAKcwzKIOWm+V6A6sxJwAAAPK0pu0DAAYztXd20YsxERE37ZqMd1x3R0ztnW3pyIA6aB4W0wVQF/MF8qBVoB9mBpRH16TM+gTaZg7B4PQDtMkMgoU0AfTL3IC0aRRYjvlQNvcvAIOwf9A2axDoMjMQmGcewGC0Q+mscegm7cNgtAPkyvyCvGgWKIV5BmXQcrNcb2A15gQAAEC+vNE8ZGpyZnbRizHzbto1GZMzXpCBkmgeFtMFUBfzBfKgVaAfZgaUR9ekzPoE2mYOweD0A7TJDIKFNAH0y9yAtGkUWI75UDb3LwCDsH/QNmsQ6DIzEJhnHsBgtEPprHHoJu3DYLQD5Mr8grxoFiiFeQZl0HKzXG9gNeYEAABAvrzRPGRqet+BFW/fs8rtQF40D4vpAqiL+QJ50CrQDzMDyqNrUmZ9Am0zh2Bw+gHaZAbBQpoA+mVuQNo0CizHfCib+xeAQdg/aJs1CHSZGQjMMw9gMNqhdNY4dJP2YTDaAXJlfkFeNAuUwjyDMmi5Wa43sBpzAgAAIF/eaB4yNbZh3Yq3b1nldiAvmofFdAHUxXyBPGgV6IeZAeXRNSmzPoG2mUMwOP0AbTKDYCFNAP0yNyBtGgWWYz6Uzf0LwCDsH7TNGgS6zAwE5pkHMBjtUDprHLpJ+zAY7QC5Mr8gL5oFSmGeQRm03CzXG1iNOQEAAJAvbzQPmZrYPBo7t08sedvO7RMxsXm04SMC6qR5WEwXQF3MF8iDVoF+mBlQHl2TMusTaJs5BIPTD9AmMwgW0gTQL3MD0qZRYDnmQ9ncvwAMwv5B26xBoMvMQGCeeQCD0Q6ls8ahm7QPg9EOkCvzC/KiWaAU5hmUQcvNcr2B1ZgTAAAA+fJG85Cp8U2jccX5Oxa9KLNz+0Rcef6OGN/kBRkoieZhMV0AdTFfIA9aBfphZkB5dE3KrE+gbeYQDE4/QJvMIFhIE0C/zA1Im0aB5ZgPZXP/AjAI+wdtswaBLjMDgXnmAQxGO5TOGodu0j4MRjtArswvyItmgVKYZ1AGLTfL9QZWY04AAADka2Rubm6u7YPI3fT0dIyPj8fU1FSMjY21fThkaGrvbEzOzMb0vgMxtnFdTBw52vMLKvN/ds++A7Flw7qY2Nz7n+UJOmY1w3Rax3FofmlarlYq6341uiiPlqlbr/PNfBmOlmnKIK3m8jgnBVqmDXU22tX9Xct5sl/1pktd99KydZOWLq1PemdfpklVziF7zEJaLl8T+7iu2qdl2rbcHPBconc67oblmrCXlkPLrGSQ1u2l7dAyvUqxUY8rnuD7UbQpxfmQqxRbdv9C/zzGhqX3j4jI6vGolttR1WMdj2GYp2VKtNqsLHEGapkSNfEaT2rzQMscLtXvW6TWTmraaDnVtZIraxx7cjeV0r494QlabkYV7Vi3rETLVGGpORMRRez9udAyw5jaOxu79x6Ih2d/FHtnH43xjeviyVvWa7YFWqYtJT1nSOH1By1Tt5KaXY6Wm/Xg9L74p4dnY3rfj2Js49o4etNoHDe2oe3Dgkqk3HJO8zyFuUy3pdwy0DstQxm0DPlY2/YBQNfdv/uRuPi6O+LmXZMHP7Zz+0Rccf6OOOGojav++fFNXoCBug3baZU0T1NSWver0QXQj37mm/kCeei31Zwe50AX1d2o/Z1c2K96p+snWDfpsT6BtlU1h+wxdFHd+7iugNXmgOcS8ISl9mV7KXTDoK17XQ7SllqjHlf0x/WiTqnNh5K10bL7F4BBHL5/eDxKL6pcJx7DAKXqZVaagZC+ph4fmwekLOXnidpJS8prJVfWOHRTCe3bE2jDsO1Yt0DdVpozz3jy5haPDOjFSg2Pb2rxwIDGlPacoYTXH2AlpTW7HC03pytrClKTW3vmMgAAQH7WtH0A0GVTe2cXvfgTEXHTrsl4x3V3xNTe2ZaODJinU7rIugdKZb4B5gCkTaPwOC0wCOsGgLrYY6B6ugLMARiOhqAbtA40wazpj+sFZdAyALmyh9EL6wRgdWYllEHLoAN6Z60AMM+eQI6sW6Bu5gzkTcOAOQB50SxVs6agHdoDAACgCd5oHlo0OTO76MWfeTftmozJGS8AQdt0ShdZ90CpzDfAHIC0aRQepwUGYd0AUBd7DFRPV4A5AMPREHSD1oEmmDX9cb2gDFoGIFf2MHphnQCszqyEMmgZdEDvrBUA5tkTyJF1C9TNnIG8aRgwByAvmqVq1hS0Q3sAAAA0wRvNQ4um9x1Y8fY9q9wO1E+ndJF1D5TKfAPMAUibRuFxWmAQ1g0AdbHHQPV0BZgDMBwNQTdoHWiCWdMf1wvKoGUAcmUPoxfWCcDqzEoog5ZBB/TOWgFgnj2BHFm3QN3MGcibhgFzAPKiWapmTUE7tAcAAEATvNE8tGhsw7oVb9+yyu1A/XRKF1n3QKnMN8AcgLRpFB6nBQZh3QBQF3sMVE9XgDkAw9EQdIPWgSaYNf1xvaAMWgYgV/YwemGdAKzOrIQyaBl0QO+sFQDm2RPIkXUL1M2cgbxpGDAHIC+apWrWFLRDewAAADTBG81DiyY2j8bO7RNL3rZz+0RMbB5t+IiAw+mULrLugVKZb4A5AGnTKDxOCwzCugGgLvYYqJ6uAHMAhqMh6AatA00wa/rjekEZtAxAruxh9MI6AVidWQll0DLogN5ZKwDMsyeQI+sWqJs5A3nTMGAOQF40S9WsKWiH9gAAAGiCN5qHFo1vGo0rzt+x6EWgndsn4srzd8T4Ji8AQdt0ShdZ90CpzDfAHIC0aRQepwUGYd0AUBd7DFRPV4A5AMPREHSD1oEmmDX9cb2gDFoGIFf2MHphnQCszqyEMmgZdEDvrBUA5tkTyJF1C9TNnIG8aRgwByAvmqVq1hS0Q3sAAAA0YWRubm6u7YPI3fT0dIyPj8fU1FSMjY21fThkaGrvbEzOzMaefQdiy4Z1MbF51Is/DdMxq9FpHrRcLeuetmiZuplvzdAyKTMHeqdl2qDR6mk5T1rgcL20bN1A+uzL5Moes5CWqYKu2qdl2mYODE/H3aahcmiZlWg9H1omZ2bNE3w/CsqgZSiDx9iwtNz2MC23I7d1Qvq0TIm6OCu1TIm0rGW62UEJ2mjZWoFq2ZPJmT3hCVrOh3XLSrRMFcyZ9mmZYWg4HVqmLeZAtbRM3TTbjC61bE1RspRb1h70LuWWgd5pGcqgZcjH2rYPAIgY3+QFH0idTuki6x4olfkGmAOQNo3C47TAIKwbAOpij4Hq6QowB2A4GoJu0DrQBLOmP64XlEHLAOTKHkYvrBOA1ZmVUAYtgw7onbUCwDx7AjmyboG6mTOQNw0D5gDkRbNUzZqCdmgPAACAOq1p+wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAusYbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0bG3bBwAlm9o7G5MzszG970CMbVwXE0eOxvim0bYPC5KlGaBJZg6kQ4+QBi0CXWYGQhq0SC6sVaBq5gqkT6dQNo2TE+sVyIV5RU6sV6ANZg80T3fAMMwQcmcNA9A2exFdY83D8vQBw9EQUBXzBPKhVyiDliE/ugUOZy5AN2idlFmfQJeZgQAAQNd4o3moyf27H4mLr7sjbt41efBjO7dPxBXn74gTjtrY4pFBmjQDNMnMgXToEdKgRaDLzEBIgxbJhbUKVM1cgfTpFMqmcXJivQK5MK/IifUKtMHsgebpDhiGGULurGEA2mYvomuseViePmA4GgKqYp5APvQKZdAy5Ee3wOHMBegGrZMy6xPoMjMQAADoojVtH8CgrrjiihgZGYmLLrpo2c85++yzY2RkZNGvV73qVQc/5w1veMOi288999wGzoBUTe2djW9+fyZuv/ef4ps/mImpvbMDfY3DX2SIiLhp12S847o7evqaVRwHNG3QdVtFM3UeH+TO2l+oqZmTC+uDldS9Pprs0Vqny1Zb/zntjVoGhnX4HHlwel9PM9D8gXoN+3ikiUbNgbzUdX9N7Z2N3/5vd8Vztx0VH/2FF8SHXvu8+NgbfiJ2bDsq3vXf7rIuIDMpzPaV9sCLr7sjvvPQw2YLxUuhxZWs9lj1O5MPJ3vswPCvjz84vS/pGUU72tq7cvp+TlVSf5wATcqphzrmVU7nz8pSuy9z3V9Tu47QZYP0OMzs0T8lamJdPzi9Ly7+f/82uz0f6I1/80AJ6rzvc33umzq9Am1pev6k8rNXIAfzvdz2nR/Gdx56OJ677ajYNHrEwdv7XfMeb5CSqtZjynuC5khBST8PYFiahN408fP+9EhuSluzfqYtpK3XvlJ4LG8WwPKW6iOFbvulc6jX4XNh0+gR8bafemb8woufFn//venY9eCe1rszB+Bxw7SQ0mMATXdbnY9RrS0gdW0+TzcjAQCA1Kxt+wAG8dWvfjU+/OEPx44dO1b8vM985jMxO/vEE6+HHnoonvvc58YFF1yw4PPOPffc+PjHP37w9+vXr6/2gMnG/bsfWfQCwc7tE3HF+TvihKM29vx1JmdmF73IMO+mXZMxOTMb45tGaz8OaNIw63bYZuo+PsiZtb9YEzMnF9YHK2lifTTVo7VOl/Wy/nPZG7UMDGupOfLJt7xwxRn40MOz8fDso+YP1GyYxyNNPEbwOCQvdd5fDz08G6/5yRPj41+8Jz74N3cf/PiZzzw23njmSfHQw2k8dgZWl8psX2kPvHnXZNz9/Zn4xJe+bc+hWKm0uJLVHqve/YOZePMnvhYR6R07dF0Vr49/8/sz8fP/5cvL/nm6p829K5fv51Qlh8cJ0JTceqh6XuV2/iwvxfsyx/01xesIXTVoj4POHv1Toqa+3//tyYfj5rsfWvL2VPd8oDf+zQMlqPu+z/G5b+r0CrSl6fmTys9egRws1cuZzzw2PnDhGfHLn7o99s4+GhG9r3mPN0hJlesx1T1Bc6SgpJ8HMCxNQm+a+Hl/eiQ3Ja5ZP9MW0tVPX20/ljcLYHnL9XHpq0+NW7/zT0v+mRSfg+sc6nfofr5p9Ij4wIVnLPrZQ212Zw7A44Ztoe3H7vM03W3L3f+/+apnD70+rS0gdW0+TzcjAQCAFK1p+wD6NTMzE6997WvjIx/5SBx99NErfu4xxxwTW7duPfjrc5/7XGzatGnRG82vX79+weet9nUp09Te2UVP3CMef2HgHdfdEVN7Z3v+WtP7Dqx4+54Vbq/yOKApw67bYZpp4vggV9b+0uqeObmwPlhJU+ujiR6tdbqs1/Wfw96oZWBYy82R3Y+sPOMefWzO/IEGDPp4pInHCB6H5KXu++tHj83Fx794T3zxsDch+OLdD8XHv3hPPPrY3FBfH2hGSrN9tT1w/48es+dQrJRaXEkvnc5L7dihy6p6ffzw14503m1t7105fD+nKm1fa0hJjj1UOa9yPH+Wlup9mdv+mup1hC4apsdBZo/+KVGT3+9f7e8HpbbnA73xbx4oQRP3fW7PfVOnV6AtTc+fVH72CuRguV7m/375m15y0oKPr7bmPd4gJVWvxxT3BM2RgpJ+HsCwNAm9aeLn/emR3JS6Zv1MW0hTv321+VjeLIDlrdTHb/23uxa9tnuolJ6D6xyaceh+/qaXnLTkzx5qqztzAB5XRQspvA6v6W5b6f7/x396ZMU/6+8iALlr83m6GQkAAKRqbdsH0K+3vvWt8apXvSrOOeecuOyyy/r6sx/96EfjNa95TRx55JELPn7jjTfGk5/85Dj66KPjp37qp+Kyyy6LY489dtmvs3///ti/f//B309PT/d3EiRpcmZ20RP3eTftmozJmdkY3zTa09ca27Buxdu3rHB7lcfB8nRcrWHX7TDNNHF8pEvLK7P2l1b3zMlFSutDy+lpan000WNKa710Wk5Pr+s/h71Ry83RMqVabo6sX7tmxT/36GNzWc4fLZObQR+PNPEYoc3HIVruX93312OPzS36h17zvnj3Q95oniVpOT0pPcdcbQ+cf7ya8mPPrtBy9VJqcSW9djovpWNnMS13R1Wvjy/12pHO29Vmx23vXTl8P6cqbV9r6mdP7l2OPVQ5r3I8/y7pp+VU78vc9tdUryN5sy8PZpgeB5k9+mc1Obbc5Pf73/Dip634eant+XRXji23yb95IFWpPV/O7blv6vTaHfZlUtP0/EnlZ68MS8s0YaVevnj3Q/GmMxf+kOPV1rzHG4tpuT1Vr8cUn59orjlaXl5JPw9gWJpMm47T0cTP+9NjuUptudQ162faspxSW85Fv321+VjeLEibltu1Uh+r/Z2zlJ6D67x9Wu6GQ/fzM7YdFR/8m7uX/Lw2ujMHqqHl/FXRQgqvw2t6OLm3vNL9vxp/F4GS5N4yg2nzeboZWQ8tQxm0DGXQMuRr5XfRScy1114bt912W1x++eV9/9mvfOUrcdddd8Vb3vKWBR8/99xz45prrokbbrghrrzyyvj85z8fr3zlK+PRRx9d9mtdfvnlMT4+fvDXtm3b+j4e0jO978CKt+9Z5fZDTWwejZ3bJ5a8bef2iZjYvPyLAFUeB8vTcbWGXbfDNNMLXZVLyyuz9pdW98zJRUrrQ8vpaWp9NNFjSmu9dFpOT6/rP4e9UcvN0TKlWm6O3H7f7jjzmccuedvO7ROxd/ZHK37dVOePlsnNoI9HmniM0ObjEC33r+77a7V9Ye/s8t9fpLu0nJ6UnmOutAee+cxj4/b7dh/8faqPPbtCy9VLqcWV9NPpvFSOncW03B1VvD6+XOOH/nma12bHbe9dOXw/pyptX2vqZ0/uXY49VDmvcjz/Lumn5VTvy9z211SvI3mzLw9mmB4HmT36ZzU5ttzk9/tX+/tBqe35dFeOLbfJv3kgVak9X87tuW/q9Nod9mVS0/T8SeVnrwxLyzRhtV72/+ixg//dy5r3eGMxLben6vWY4vMTzTVHy8sr6ecBDEuTadNxOpr4eX96LFepLZe6Zv1MW5ZTasu56LevNh/LmwVp03K7VutjOak9B9d5+7TcDYfu54d+72cpTXdnDlRDy/mrooUUXofX9HByb3ml+//2+3bHWUOsT2uLnOTeMoNp83m6GVkPLUMZtAxl0DLkK5s3mr/vvvvi7W9/e/zpn/5pbNiwoe8//9GPfjROO+20+Mmf/MkFH3/Na14TP/dzPxennXZanHfeefGXf/mX8dWvfjVuvPHGZb/WO9/5zpiamjr467777uv7eEjP2IZ1K96+ZZXbDzW+aTSuOH/Hom8I7Nw+EVeevyPGNy3/QkOVx8HydFytYdftMM00cXykS8srs/aXVvfMyUVK60PL6WlqfTTRY0prvXRaTk+v6z+HvVHLzdEypVpujnzsC/fEG888adFfnDw4AzeuPANTnT9aJjeDPh5p4jFCm49DtNy/uu+v1faF8Y1p7gu0S8vpSek55nJ74JnPPDbeeOZJ8bEv3NPKcbGYlquXUosr6afTeakcO4tpuTuGfX38rO0TyzZ+6J+neW123PbelcP3c6rS9rWmfvbk3uXYQ5XzKsfz75J+Wk71vsxtf031OpI3+/JghulxkNmjf1aTY8tNfr9//u8HHf5m82cluufTXTm23Cb/5oFUpfZ8ObfnvqnTa3fYl0lN0/MnlZ+9Miwt04TVelm/9vEf7dXrmvd4YzEtt6fq9Zji8xPNNUfLyyvp5wEMS5Np03E6mvh5f3osV6ktl7pm/UxbllNqy7not682H8ubBWnTcrtW6+PHjt6YxXNwnbdPy91w6H4+/72f5TTdnTlQDS3nr4oWUngdXtPDyb3lle7/j33hnnjPq08deH1aW+Qk95YZTJvP083IemgZyqBlKIOWIV9r2z6AXt16663x/e9/P573vOcd/Nijjz4aN910U3zwgx+M/fv3xxFHHLHkn3344Yfj2muvjUsvvXTV/8/Tn/70mJiYiLvvvjte/vKXL/k569evj/Xr1w92IiRrYvNo7Nw+ETftmlx0287tEzGxub8XB044amP84YVnxOTMbOzZdyC2bFgXE5tHV32RoerjYGk6rlYV63bQZpo6PtKk5ZVZ+8urc+bkIqX1oeX0NLk+6u4xpbVeOi2np5/1n/reqOXmaJlSLTdH9s4+Gn/2lXvjfRc8N2b2/WjRDJzaO5vl/NEyORrk8UgTjxHafByi5f7VfX95XMogtJye1Fqe3wO/v2d/3PvDvRERcft9u+OXP3V77J19tLXjYiEtVy+1Fldy+GPVI9evja99558WdDovtWNnIS13x7Cvj2/esDYu+fM7FzW+1J+nWW12nMLelfr3c6qSwrWmXvbk3uXaQ1XzKtfz74p+Wk75vsxpf035OpIv+/Jghu2x39mjf1aTY8tNf7//lz91e7zpJSfFm848Kfb/6LE4auO6eMaTN8dxYxuG/v9AVXJsuU3+zQOpSvH5ck7PfVOn1+6wL5OapudPKj97ZVhapgkr9XLW9ok48ZhNccOvvLTnNe/xxmJabk8d6zG15yeaa46Wl1fSzwMYlibTpuN0NPHz/vRYrlJbLnnN+pm2LKXUlnMxSF9tPZY3C9Km5Xat1sfWsQ1ZPAfXefu03B3z+/nuvQfirO0TcXMi3ZkD1dBy/qpqoe3X4TU9nNxbXun+f8FTj46jN60beH1aW+Qk95YZTJvP083IemgZyqBlKIOWIV9r2j6AXr385S+PO++8M77+9a8f/PWCF7wgXvva18bXv/71Zd9kPiLi05/+dOzfvz9e97rXrfr/+cd//Md46KGH4vjjj6/y8MnA+KbRuOL8HbFz+8SCj+/cPhFXnr9joBcIxjeNxjOevDlOP/HoeMaTN/f0Neo4DqhbVet2kGaaPD7IjbW/srpmTi6sD1bS9Pqos0drnS7rd/2nvDdqGRjWSnPk0lefGseNbVhyBpo/0Kx+H4800ag5kJe67y/rAcqQYsvjm0Zj+3Fb4tnHj8UnvvTt+ODf3L3gTebNGEqUYosrOfSx6vbjtsRLT35SvOCpRy/4nFSPHbpo2NfHjxvbEO9+9anZzCiakcrelfL3c6qSyrWGFOTcQxXzKufzZ6HU78tc9tfUryN0SRU99jN79E+Jmv5+/97ZR+ODf3N3vPkTX4trv3JvnDRxpDeZh8z5Nw+UoMn7PpfnvqnTK9CWNh77pPCzVyAHK/Xy3vN3xPbjtvS15j3eICV1rceU9gTNkYKSfh7AsDQJvWni5/3pkdyUvmb9TFtIy6B9tfFY3iyA5fXSRw7PwXUOzRrfNBpPnTgyrkyoO3MAHldlC20+BtB0t9X5GNXaAlLX5vN0MxIAAEjVyNzc3FzbBzGos88+O04//fS46qqrIiLi9a9/fTzlKU+Jyy+/fMHnnXXWWfGUpzwlrr322gUfn5mZiXe/+91x/vnnx9atW+Ob3/xm/Pqv/3rs2bMn7rzzzli/fn1PxzE9PR3j4+MxNTUVY2NjlZwb7ZnaOxuTM7OxZ9+B2LJhXUxsHm3liXsqx9EVOq5G6us29eNjeFpemrXPSlJcH1pOR4rrY1AlnUsutJyOktZ/SeeSCy1TmkHnSO7zR8uUrolGU5gDWu5d3fdXCuuBfGk5Ham2nOpxsZCWq5Pzms/52Hmclss3bKc6T18bHVsXzXGtu8OevLqu99D1889FLy27L6vhOlIn+3J/mu5R//Qqp5a78v1+GEROLbeppMZLOhee4Plymdxn3WNfJhVeixiOlqlT1b2U1l+VtNy8LqzHLpxjarS8mHX4BNciDzpun++zUYXSWrZmF3NNuqG0lnORU185HWuXabkdpfRRynmUQMvdkVp3qR1P7rScr1JaKOU82pZry3Xe/9YWOcq1ZQbT5pwyI+ulZSiDlqEMWoZ8rG37AKp07733xpo1axZ87Bvf+EZ84QtfiM9+9rOLPv+II46IO+64Iz7xiU/E7t2744QTToif/umfjve85z09v8k85RnflMaT9VSOA/qR+rpN/figLtY+K7E+WElJ66Okc4F+lbT+SzoXoB2DzhHzB9LWRKPmQF7qvr+sByhDqi2nelxQl5zXfM7HDl0xbKc6ZynWRXNca3hC13vo+vmXxH1ZDdcR0tF0j/qnRL7fDwyrpMZLOhf6477Pj/sMaIvXIiBdVfeiP1LShfXYhXMkfdbhE1wL6I3vs8Fi1uxirgnUJ6e+cjpWaFopfZRyHpCT1LpL7XigLaW0UMp5MJg6739rC0hdm3PKjAQAAFKT9RvN33jjjSv+PiLilFNOibm5uSX//MaNG+N//I//UcORAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACxvTdsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA13mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh3mgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGHeaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYd5oHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBh2b7R/BVXXBEjIyNx0UUXLfs5V199dYyMjCz4tWHDhgWfMzc3F7/9278dxx9/fGzcuDHOOeec2LVrV81HDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTZ2rYPYBBf/epX48Mf/nDs2LFj1c8dGxuLb3zjGwd/PzIysuD29773vfGBD3wgPvGJT8RJJ50Uv/VbvxWveMUr4v/8n/+z6E3pSc/U3tmYnJmN6X0HYmzjupg4cjTGN422fViQNV0BOTGzoHq6guHpCGB4ZilQF/OFqllTkA49Qjn0DPnRLamzRoEmmDWQDj0CTTN3IH06hW7RPF1l7QOUx2yHNGmTpllzMDj9AF1g1sHjtADt0R/QBLMGWI75AOXQM1RLU0CdzBgAAID6ZfdG8zMzM/Ha1742PvKRj8Rll1226uePjIzE1q1bl7xtbm4urrrqqrjkkkvi1a9+dUREXHPNNXHcccfF9ddfH695zWsqPXaqdf/uR+Li6+6Im3dNHvzYzu0TccX5O+KEoza2eGSQL10BOTGzoHq6guHpCGB4ZilQF/OFqllTkA49Qjn0DPnRLamzRoEmmDWQDj0CTTN3IH06hW7RPF1l7QOUx2yHNGmTpllzMDj9AF1g1sHjtADt0R/QBLMGWI75AOXQM1RLU0CdzBgAAIBmrGn7APr11re+NV71qlfFOeec09Pnz8zMxFOf+tTYtm1bvPrVr46/+7u/O3jbPffcEw888MCCrzU+Ph4vfOEL45Zbbqn82KnO1N7ZRS8cRETctGsy3nHdHTG1d7alI4N86QrIiZkF1dMVDE9HAMMzS4G6mC9UzZqCdOgRyqFnyI9uSZ01CjTBrIF06BFomrkD6dMpdIvm6SprH6A8ZjukSZs0zZqDwekH6AKzDh6nBWiP/oAmmDXAcswHKIeeoVqaAupkxgAAADRnbdsH0I9rr702brvttvjqV7/a0+efcsop8bGPfSx27NgRU1NT8b73vS9e/OIXx9/93d/Fj/3Yj8UDDzwQERHHHXfcgj933HHHHbxtKfv374/9+/cf/P309PQAZ8MwJmdmF71wMO+mXZMxOTMb45tGGz4qcqLjxXRFjrTcXWZWWbScBl0xLC3riDJombaZpdXQMiyW43zRctpyXFO0Q8v10yNN0HIz9EzdtFw93dK0fju2RiFNpe3JZg1dlWLLeoT+pdhyTswdUqHl5emUnGh5eJonBW20bO1D9ezLtM1sr4aWqZo229Hllq05StJ0y/qB6nV5T06VWccgSmxZC3RRKi3rD4aTSsupM2tInZbbYz5QJS23S89URcuP0xS503LazBh6pWUog5ahDFqGfK1p+wB6dd9998Xb3/72+NM//dPYsGFDT3/mRS96Ubz+9a+P008/PV760pfGZz7zmXjSk54UH/7wh4c6lssvvzzGx8cP/tq2bdtQX4/+Te87sOLte1a5HXS8mK7IkZa7y8wqi5bToCuGpWUdUQYt0zaztBpahsVynC9aTluOa4p2aLl+eqQJWm6GnqmblqunW5rWb8fWKKSptD3ZrKGrUmxZj9C/FFvOiblDKrS8PJ2SEy0PT/OkoI2WrX2onn2Ztpnt1dAyVdNmO7rcsjVHSZpuWT9QvS7vyaky6xhEiS1rgS5KpWX9wXBSaTl1Zg2p03J7zAeqpOV26ZmqaPlxmiJ3Wk6bGUOvtAxl0DKUQcuQr2zeaP7WW2+N73//+/G85z0v1q5dG2vXro3Pf/7z8YEPfCDWrl0bjz766KpfY926dXHGGWfE3XffHRERW7dujYiIBx98cMHnPfjggwdvW8o73/nOmJqaOvjrvvvuG+LMGMTYhnUr3r5lldtBx4vpihxpubvMrLJoOQ26Ylha1hFl0DJtM0uroWVYLMf5ouW05bimaIeW66dHmqDlZuiZumm5erqlaf12bI1Cmkrbk80auirFlvUI/Uux5ZyYO6RCy8vTKTnR8vA0TwraaNnah+rZl2mb2V4NLVM1bbajyy1bc5Sk6Zb1A9Xr8p6cKrOOQZTYshboolRa1h8MJ5WWU2fWkDott8d8oEpabpeeqYqWH6cpcqfltJkx9ErLUAYtQxm0DPla2/YB9OrlL3953HnnnQs+9sY3vjGe9axnxcUXXxxHHHHEql/j0UcfjTvvvDN+5md+JiIiTjrppNi6dWvccMMNcfrpp0dExPT0dHz5y1+OX/zFX1z266xfvz7Wr18/+MkwtInNo7Fz+0TctGty0W07t0/ExObRFo6KnOh4MV2RIy13l5lVFi2nQVcMS8s6ogxapm1maTW0DIvlOF+0nLYc1xTt0HL99EgTtNwMPVM3LVdPtzSt346tUUhTaXuyWUNXpdiyHqF/KbacE3OHVGh5eTolJ1oenuZJQRstW/tQPfsybTPbq6FlqqbNdnS5ZWuOkjTdsn6gel3ek1Nl1jGIElvWAl2USsv6g+Gk0nLqzBpSp+X2mA9UScvt0jNV0fLjNEXutJw2M4ZeaRnKoGUog5YhX2vaPoBebdmyJU499dQFv4488sg49thj49RTT42IiNe//vXxzne+8+CfufTSS+Ozn/1sfOtb34rbbrstXve618V3vvOdeMtb3hIRESMjI3HRRRfFZZddFn/xF38Rd955Z7z+9a+PE044Ic4777w2TpMejW8ajSvO3xE7t08s+PjO7RNx5fk7YnyTFw+gX7oCcmJmQfV0BcPTEcDwzFKgLuYLVbOmIB16hHLoGfKjW1JnjQJNMGsgHXoEmmbuQPp0Ct2iebrK2gcoj9kOadImTbPmYHD6AbrArIPHaQHaoz+gCWYNsBzzAcqhZ6iWpoA6mTEAAADNGZmbm5tr+yAGdfbZZ8fpp58eV1111cHfP+1pT4urr746IiL+03/6T/GZz3wmHnjggTj66KPj+c9/flx22WVxxhlnHPwac3Nz8a53vSv+5E/+JHbv3h0veclL4kMf+lCcfPLJPR/H9PR0jI+Px9TUVIyNjVV5iqxiau9sTM7Mxp59B2LLhnUxsXnUCwcMRMdP0BU503L3mFll0nK7dEVVutyyjihJl1umXWZptbQMT8h5vmg5TTmvKdqh5frokSZpuV56pilaro5uaUuvHVujkLZS9mSzhq5LqWU9wuBSajkn5g6p0fJiOiVHWh6c5klJky1b+1Af+zJtMdurpWWqos12dbFla44SNdWyfqA+XdyTU2XWMYySWtYCXdZ2y/qDarTdcurMGnKh5eaZD9RBy+3QM1XresuaohRdbzlVZgz90jKUQctQBi1DPta2fQDDuPHGG1f8/e///u/H7//+76/4NUZGRuLSSy+NSy+9tOKjownjm7xYAFXTFZATMwuqpysYno4AhmeWAnUxX6iaNQXp0COUQ8+QH92SOmsUaIJZA+nQI9A0cwfSp1PoFs3TVdY+QHnMdkiTNmmaNQeD0w/QBWYdPE4L0B79AU0wa4DlmA9QDj1DtTQF1MmMAQAAqN+atg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGvWtn0AULWpvbMxOTMb0/sOxNjGdTFx5GiMbxpt+7CgaLoDGIz5SQqsQ6iGlgCqZ7ZCe/QH6dElXWGtA1UwS6A5eqME1jFQJzMGqqcrgP6Ym9AcvQFVMlPoAusc8qFXgPqYsQzK2oH66QygfmYtw7KGID+6BapkpkB+dAssxWyA8ugaIC3mMgAA5MkbzVOU+3c/Ehdfd0fcvGvy4Md2bp+IK87fEScctbHFI4Ny6Q5gMOYnKbAOoRpaAqie2Qrt0R+kR5d0hbUOVMEsgebojRJYx0CdzBionq4A+mNuQnP0BlTJTKELrHPIh14B6mPGMihrB+qnM4D6mbUMyxqC/OgWqJKZAvnRLbAUswHKo2uAtJjLAACQrzVtHwBUZWrv7KInpxERN+2ajHdcd0dM7Z1t6cigXLoDGIz5SQqsQ6iGlgCqZ7ZCe/QH6dElXWGtA1UwS6A5eqME1jFQJzMGqqcrgP6Ym9AcvQFVMlPoAusc8qFXgPqYsQzK2oH66QygfmYtw7KGID+6BapkpkB+dAssxWyA8ugaIC3mMgAA5M0bzVOMyZnZRU9O5920azImZzxBharpDmAw5icpsA6hGloCqJ7ZCu3RH6RHl3SFtQ5UwSyB5uiNEljHQJ3MGKiergD6Y25Cc/QGVMlMoQusc8iHXgHqY8YyKGsH6qczgPqZtQzLGoL86BaokpkC+dEtsBSzAcqja4C0mMsAAJA3bzRPMab3HVjx9j2r3A70T3cAgzE/SYF1CNXQEkD1zFZoj/4gPbqkK6x1oApmCTRHb5TAOgbqZMZA9XQF0B9zE5qjN6BKZgpdYJ1DPvQKUB8zlkFZO1A/nQHUz6xlWNYQ5Ee3QJXMFMiPboGlmA1QHl0DpMVcBgCAvHmjeYoxtmHdirdvWeV2oH+6AxiM+UkKrEOohpYAqme2Qnv0B+nRJV1hrQNVMEugOXqjBNYxUCczBqqnK4D+mJvQHL0BVTJT6ALrHPKhV4D6mLEMytqB+ukMoH5mLcOyhiA/ugWqZKZAfnQLLMVsgPLoGiAt5jIAAORtbdsHAFWY2jsbj83NxUd/4QUxMjISt937T/GxL9wTe2cfjYiIndsnYmLzaMtHCWWY2jsbkzOzMb3vQGxevzYu/1enxXv+8v8c7G2e7oBcHDrXxjaui4kjR2N8U73za2LzaOzcPhE37ZpcdJv5SVP6XYdttAI5GHamawvoqpXmn8fL0J4q+/M4B6pR2r5oNrDcGihtrQP9q2KPMEugGf6eFqVYat/YNHpEvOklJ8WLn35sTD0yG9/8wYznLcBANm9YG598ywtj9yMHYsO6Ixbsl/ZKGEzdz/m8dgmUxuMRaIbXyqDb6nge4ftdlGy+malHZuNT//aF8cVvPrRg34ywzummlF+Xsi8BVGOpWW/GMq/fxwLWDtRPZytL+TkMUJ+q2zdr6ZV/iwjlaKJbj1WhO/ybMMhP1Y8F7PtQhuVmw6bRI+K3/sVz4rG5ubj93n/SOWSkruf/9n5KY03TFN9PAQCAvHmjebJ3/+5H4uLr7oibD3lieuYzj40PXHhG/PKnbo8XPPXouPL8HV4YgQos1dtZ2yfiY2/4iXjT1V9d8IOQdAfkYKm5tnP7RFxx/o444aiNtf1/xzeNxhXn74h3XHfHghfXzU+a1M86bKsVyMEwM11bQFetNv88Xob2VNWfxzlQnZL2RbOB1dZAKWsd6F9Ve0RJ+yakyt/ToiSH7xubRo+ID1x4Rnz8i/fEB//m7oOf53kL0K+V9ss/+8q9cemrT7VXwgDqfM7ntUugNB6PQDO8VgbdVtfzCN/volRLNfOSQ/bNvbOPWud0UuqvS9mXAIa30qy/8vwdcbEZ22mDPBawP0P9dLa81J/DAPWoo32zll74t4hQlrpnv8eq0C3+TRjkp8rHAvZ9KMdSs2HT6BHxsTf8RPzR39wd7/zMnQc/V+eQhzqe/9v7KY01TZN8Tw4AAPI2Mjc3N9f2QeRueno6xsfHY2pqKsbGxto+nE6Z2jsbb/vU7QteBJl31vaJuOzVp8ZRm9Z5csqqdLy6lXrbuX0i3vPqU+Of9s7Glg3rYmLzqO5ohZbpx2pz7Q8vPKP2WTa1dzYmZ2Zjz74D5uchtNys1dZhCq2Qp6613O9M1xa56FrL1K+f+efxcnW0TL+G6c/jnPpoudty3xfNhid0teVe10Dua53u6GrLdahjjzBL6JWW++PvaZGiKjqe3zcem5uLS//738XNdz+06HO69rwFmlbSnrzafvm+C54bx41taOHIoH5NtVz1cz6vXcJCJe3LXeXxCBFaboLXymiCltPVxPMI3+8qh5ZX3zd/+188J9aMjFjnJK2OlnN6Xcq+RCnsyzStl1kfEWZsn0ppedjHAvZncpdDyzpbKKfnMDQjh44ZXt3tm7XtS7Vl/xYR+pNqy0upo1uPVSlFTi2nwr8JI0VaXtmwjwXs+zRFy806dDYcvWk0Lrn+rrj5bp0zPC23p6rn//Z+Ispq2ZqmLSl8P6WklqHLtAxl0DLkY23bBwDDmJyZXfJFkIiIm3dNxo8em/NCCFRkpd5u+v97O/3Eoxs+KoDBrTbXJmdma38cMb7JP0ygfautwxRagRz0O9O1BXRVP/PP42VozzD9eZwD9ch9XzQb6HUN5L7Wgf7VsUeYJVAPf0+LUs3vG9/8/sySP1AowvMWoHer7Zcz+34Ux/n3NTCUqp/zee0SKI3HI9AMr5VBtzXxPML3uyjJavvmmpGReMaTNzd8VNC+nF6Xsi8BDKaXWf+MJ282Yztq2McC9meon84Wyuk5DFCduts3a1mOf4sI5aqjW49Vobv8mzDIz7CPBez7UKZDZ8Pj+7rOIXdVPf+391Maa5q2+H4KAADkqbY3mj/jjDNiZGRk1c+77bbb6joEOmB634EVb9+zyu1A7/QGlMZcg95oBeqhLaCrzD8on86BpZgNWAPAcswHyIdeKZ01DlTBLIH86BYojbkGzdAadJsZAP3RDCxNGwDlM+tZifUB5Mbcgm7SPm2x9oB+mBmAOQDdoXcon86BQ5kJlMaaBppw7733xuTkZNuHsayJiYk48cQT2z4MAIAs1PZG8+edd97B/56bm4vLL788/sN/+A9xzDHH1PW/pIPGNqxb8fYtq9wO9E5vQGnMNeiNVqAe2gK6yvyD8ukcWIrZgDUALMd8gHzoldJZ40AVzBLIj26B0phr0AytQbeZAdAfzcDStAFQPrOelVgfQG7MLegm7dMWaw/oh5kBmAPQHXqH8ukcOJSZQGmsaaBu9957bzzrWc+ORx7Z2/ahLGvjxk3xD//w995sHgCgB7W90fy73vWuBb9///vfH29/+9vj6U9/el3/SzpoYvNo7Nw+ETftmlx0287tEzGxebSFo4Iy6Q0ojbkGvdEK1ENbQFeZf1A+nQNLMRuwBoDlmA+QD71SOmscqIJZAvnRLVAacw2aoTXoNjMA+qMZWJo2AMpn1rMS6wPIjbkF3aR92mLtAf0wMwBzALpD71A+nQOHMhMojTUN1G1ycjIeeWRvvPBN74qx45/W9uEsMv29b8eXP/bumJyc9EbzAAA9WNP2AcAwxjeNxhXn74id2ycWfHzn9om48vwdMb7JCyFQFb0BpTHXoDdagXpoC+gq8w/Kp3NgKWYD1gCwHPMB8qFXSmeNA1UwSyA/ugVKY65BM7QG3WYGQH80A0vTBkD5zHpWYn0AuTG3oJu0T1usPaAfZgZgDkB36B3Kp3PgUGYCpbGmgaaMHf+0OObEU5L7NXb809q+NAAAWRmZm5uba+J/tGXLlvjbv/3bePrTn97E/65R09PTMT4+HlNTUzE2Ntb24XTS1N7ZmJyZjT37DsSWDetiYvOoF0Hoi457pzdSpmUGYa6lR8tp0gr90nJvtEXqtExdzL9maZk26Lx6WqYEZoOWrQFK0fWW62A+0AYtD0avpKSOjq1xaF6Je7JZQhfl3rJu4XG5t8wTzLVu03JztEadtJw+M4BeaPkJmiFndbasDWiOfZm2mPXVKq1l64OuKq3lLjG3mKfjbtF+uVJv2dqD3qTeclPMDHKn5eGZA6RAy83QO3XTcvt0ThW0XA4zodtKbNmapotKbDlFt912Wzz/+c+Pf/6bH49jTjyl7cNZ5If3fiM+97tvjFtvvTWe97zntX04DEDLUAYtQz7Wtn0AUIXxTV74gKboDSiNuQa90QrUQ1tAV5l/UD6dA0sxG7AGgOWYD5APvVI6axyoglkC+dEtUBpzDZqhNeg2MwD6oxlYmjYAymfWsxLrA8iNuQXdpH3aYu0B/TAzAHMAukPvUD6dA4cyEyiNNQ0AAEAvanuj+Q984AMLfv+jH/0orr766piYmFjw8V/+5V+u6xDgoKm9szE5MxvT+w7E2MZ1MXGkF06gXzoCaI6ZSxOsM2iXBoESmW1AE8waoBdmBYeyHqCbtA9p0SQMT0eQH91C+XQOdJ05CM3THVRLU8BSzAZyYa0CtMP8JWfWL0A5zHSonq7K4v4E5pkHwOHMBWiP/qAbtA6kyGyCJ+gBAAAgH7W90fzv//7vL/j91q1b47/+1/+64GMjIyPeaJ7a3b/7kbj4ujvi5l2TBz+2c/tEXHH+jjjhqI0tHhnkQ0cAzTFzaYJ1Bu3SIFAisw1oglkD9MKs4FDWA3ST9iEtmoTh6Qjyo1son86BrjMHoXm6g2ppCliK2UAurFWAdpi/5Mz6BSiHmQ7V01VZ3J/APPMAOJy5AO3RH3SD1oEUmU3wBD0AAADkZU1dX/iee+5Z9de3vvWtuv73EBERU3tnF71QERFx067JeMd1d8TU3tmWjgzyoSOA5pi5NME6g3ZpECiR2QY0wawBemFWcCjrAbpJ+5AWTcLwdAT50S2UT+dA15mD0DzdQbU0BSzFbCAX1ipAO8xfcmb9ApTDTIfq6aos7k9gnnkAHM5cgPboD7pB60CKzCZ4gh4AAADyU9sbzf/N3/xNPOc5z4np6elFt01NTcWP//iPx8033zzw17/iiitiZGQkLrroomU/5yMf+UicddZZcfTRR8fRRx8d55xzTnzlK19Z8DlveMMbYmRkZMGvc889d+DjIi2TM7OLXqiYd9OuyZic8WIFrEZHAM0xc2mCdQbt0iBQIrMNaIJZA/TCrOBQ1gN0k/YhLZqE4ekI8qNbKJ/Oga4zB6F5uoNqaQpYitlALqxVgHaYv+TM+gUoh5kO1dNVWdyfwDzzADicuQDt0R90g9aBFJlN8AQ9AAAA5Ke2N5q/6qqr4t/+238bY2Nji24bHx+Pf//v/3383u/93kBf+6tf/Wp8+MMfjh07dqz4eTfeeGNceOGF8b/+1/+KW265JbZt2xY//dM/Hd/97ncXfN65554b3/ve9w7++tSnPjXQcZGe6X0HVrx9zyq3AzoCaJKZSxOsM2iXBoESmW1AE8waoBdmBYeyHqCbtA9p0SQMT0eQH91C+XQOdJ05CM3THVRLU8BSzAZyYa0CtMP8JWfWL0A5zHSonq7K4v4E5pkHwOHMBWiP/qAbtA6kyGyCJ+gBAAAgP7W90fzf/u3fxrnnnrvs7T/90z8dt956a99fd2ZmJl772tfGRz7ykTj66KNX/Nw//dM/jf/4H/9jnH766fGsZz0r/st/+S/x2GOPxQ033LDg89avXx9bt249+Gu1r0s+xjasW/H2LavcDugIoElmLk2wzqBdGgRKZLYBTTBrgF6YFRzKeoBu0j6kRZMwPB1BfnQL5dM50HXmIDRPd1AtTQFLMRvIhbUK0A7zl5xZvwDlMNOheroqi/sTmGceAIczF6A9+oNu0DqQIrMJnqAHAACA/NT2RvMPPvhgrFu3/BPBtWvXxg9+8IO+v+5b3/rWeNWrXhXnnHNO33927969ceDAgTjmmGMWfPzGG2+MJz/5yXHKKafEL/7iL8ZDDz204tfZv39/TE9PL/hFmiY2j8bO7RNL3rZz+0RMbB5t+IhIhY57pyNSpmVK09WZq+VmdXWdUT8t90aDpE7LDMJsS4+WKVEXZ42WoX8pzgottyfF9UC+tJwP7bMSLTdPk1Stix3riBKV3rJu6YrSW16JzilJl1tmcOZgerRcPt11g5aboynqpOV8mQ0cKuWWrVXoXcotkx/ztz1aHp71Swq0DNVoc6brmFJ17bFS6S137f6ku0pvuQrmATnQcrPMBeqi5dXpjxxoeXhaJwVa5nBmU560XA890DQtQxm0DGXQMuSrtjeaf8pTnhJ33XXXsrffcccdcfzxx/f1Na+99tq47bbb4vLLLx/omC6++OI44YQTFrxJ/bnnnhvXXHNN3HDDDXHllVfG5z//+XjlK18Zjz766LJf5/LLL4/x8fGDv7Zt2zbQ8VC/8U2jccX5Oxa9YLFz+0Rcef6OGN/kxYqu0nHvdETKtExpujpztdysrq4z6qfl3miQ1GmZQZht6dEyJerirNEy9C/FWaHl9qS4HsiXlvOhfVai5eZpkqp1sWMdUaLSW9YtXVF6yyvROSXpcssMzhxMj5bLp7tu0HJzNEWdtJwvs4FDpdyytQq9S7ll8mP+tkfLw7N+SYGWoRptznQdU6quPVYqveWu3Z90V+ktV8E8IAdabpa5QF20vDr9kQMtD0/rpEDLHM5sypOW66EHmqZlKIOWoQxahnyNzM3NzdXxhX/pl34pbrzxxvjqV78aGzZsWHDbI488Ej/5kz8ZL3vZy+IDH/hAT1/vvvvuixe84AXxuc99Lnbs2BEREWeffXacfvrpcdVVV63656+44op473vfGzfeeOPBP7+Ub33rW/GMZzwj/uf//J/x8pe/fMnP2b9/f+zfv//g76enp2Pbtm0xNTUVY2NjPZ0PzZraOxuTM7OxZ9+B2LJhXUxsHvVCRcfpuH86IkVaplRdm7labkfX1hn103J/NEiqtMwwzLZ0aJmSdWnWaBkGl9Ks0HL7UloP5EvL+dE+S9FyezRJVbrcsY4oSVda1i2l60rLK9E5JdAywzAH06Hl7tBd2bTcPE1RBy3nz2wgIo+WrVVYXQ4tkx/zt3laro71S5u0DNVqY6brmNJ15bFSV1ruyv1Jd3Wl5SqYB6RMy+0wF6ialnunP1Km5eponTZpmeWYTXnRcr30QFO03I7bbrstnv/858c//82PxzEnntL24Szyw3u/EZ/73TfGrbfeGs973vPaPhx6oGUog5YhX2vr+sKXXHJJfOYzn4mTTz453va2t8Up/x979x6kZ1kf/v+TJckmIWQ5bE1ISAQlcg6HUDHIgFOxARklM4iabzU2Ra3+SitDByjKYThNwHoAC+KhYHFafjhUZTotQ4ppA9Zg1AQH8EBBxYghwaWSJSAbvmF/f/jLliW72d3s89yHz/16zeSPffbZzXXdz/2+7ud5dpPrkN8/efzpT38aN910U2zfvj0+8YlPjPr7rVu3Lp5++ulBT/K2b98e999/f9x4443R19cXe+yxx5Bf+6lPfSquvfba+Na3vrXLTeYjIl73utdFd3d3PP7448NuNN/Z2RmdnZ2jHjvl65rmzQkG0/HY6Ygq0jJZNW3N1XI5mnae0X5aHhsNUlVaZjysbdWhZTJr0lqjZdh9VVortFy+Kp0P1JeW60f7DEXL5dEkrdLkjnVEJk1pWbdk15SWd0XnZKBlxsM6WB1abg7d5abl4mmKdtBy/VkbiKhHy85VGFkdWqZ+rL/F03LrOH8pk5ahtcpY03VMdk15rtSUlpvyeNJcTWm5FawHVJmWy2FdoNW0PHr6o8q03Dpap0xaZjjWpnrRcnvpgaJoGXLQMuSgZaivtm00P3PmzFizZk189KMfjYsvvjj6+/sjImLChAmxePHiuOmmm2LmzJmj/n5vfetb4+GHHx502/Lly+PQQw+Niy66aNhN5j/5yU/GNddcEytXrozjjz9+xL/nySefjGeeeSb233//UY+Ncmx5YVv0bN0WvS++FDOmToruPb0hAWXRI9BO1hgohtaguvQJtIO1BSiCtQaoGutSs3i8IQctQ/l0CDoARmadgGbRPEAzWf9pEuc7TeA8B1rBWkLRnHMAo2fNpIqclwCMlmsGTeA8pyjONWA41gdoJu1DNWkT6kGrAM1j7adMzj8AAKDp2rbRfETEa1/72rj77rvjt7/9bTz++OPR398f8+fPj3322WfM32uvvfaKI488ctBte+65Z+y3334Dty9btizmzJkTK1asiIiI6667Li677LK4/fbb48ADD4xNmzZFRMT06dNj+vTpsXXr1rjiiivirLPOilmzZsXPfvazuPDCC+Pggw+OxYsXj3P2tNPGZ38XF339ofj2Yz0Dt508vzuuPWtBzN57aokjg+bRI9BO1hgohtaguvQJtIO1BSiCtQaoGutSs3i8IQctQ/l0CDoARmadgGbRPEAzWf9pEuc7TeA8B1rBWkLRnHMAo2fNpIqclwCMlmsGTeA8pyjONWA41gdoJu1DNWkT6kGrAM1j7adMzj8AAICIjiL+kn322Sf+8A//MN74xjfu1ibzo7Vhw4Z46qmnBj6++eabY9u2bfGud70r9t9//4E/n/rUpyIiYo899oiHHnoo3vnOd8Yb3vCGOOecc2LhwoXx7W9/Ozo7O9s2TsZnywvbdnpBHxFx/2M98Tdffyi2vLCtpJFB8+gRaCdrDBRDa1Bd+gTawdoCFMFaA1SNdalZPN6Qg5ahfDoEHQAjs05As2geoJms/zSJ850mcJ4DrWAtoWjOOYDRs2ZSRc5LAEbLNYMmcJ5TFOcaMBzrAzST9qGatAn1oFWA5rH2UybnHwAAwO9NLHsA47F69epdfvzEE0/s8uunTp0aK1eubO2gaLuerdt2ekG/w/2P9UTP1m3RNW1ywaOCZtIj0E7WGCiG1qC69Am0g7UFKIK1Bqga61KzeLwhBy1D+XQIOgBGZp2AZtE8QDNZ/2kS5ztN4DwHWsFaQtGccwCjZ82kipyXAIyWawZN4DynKM41YDjWB2gm7UM1aRPqQasAzWPtp0zOPwAAgN+r9UbzVMeWF7ZFz9Zt0fviSzFj6qTo3nNy215Y97740i4//9wInwdaY8sL26Lv/26Pz//JcTFl0h6xfsNv49b/+kW8sG37wH30COywO88VXPNpqiKfW0doDdqhVR3rE6ql6Gt0u1hbaKIs/daJtQZ4pSqsw9al8vl5MuSgZai3sTasQ9j9DqrwOghon1c23jmxI879o4N3+t3JHVwvoZp291rtOTJAM411/feakDrzXghNUPbzer1AexXVWNlrCc0z1Dk3bfIe8WcnHRTHzt07nnl+W8RvtrquACn5fRcyqMJ56fUoMBLrRDVU4ZpBHlXt2nnOWPldL2CsRlo3rA/QflV8Lqp9aJ/xNK9NKIefwQJZVPG1RxbWfsqwo+lnnt8Wt/7pHw65/1WE8w8AAGgOG80zbhuf/V1c9PWH4tuP9QzcdvL87rj2rAUxe++pLf/7ZkyZtMvP7zXC54HxG6r7Nx+8X3xu6bHxV//vgwNvtukRiNj95wqu+TRR0c+tI7QGrdbKjvUJ1VHGNbpdrC00TaZ+68RaA+xQlXXYulQuP0+GHLQM9bY7DesQdq+DqrwOAtpjtL87uYPrJVTPeK7VniMDNNNY1n+vCak774XQBGU+r9cLtFeRjXmPgKK9+pybNnmP+NzSY+Mr3/lF3Pgfjw/c7roCZOP3Xcii7PPS61FgJNaJ6ij7mkEeVe7aec5Y+F0vYKxGs25YH6C9qvpcVPvQHuNtXptQPD+DBbKo6muPLKz9FG0s/4eD8w8AAGiKjrIHQL1teWHbTi+2IyLuf6wn/ubrD8WWF7a1/O/snj45Tp7fPeTnTp7fHd3TJ7f87wT+13Ddf+fxZ+Ir3/lF/NlJB0WEHoHfG89zBdd8mqaM59YRWoNWanXH+oRqKOsa3S7WFpokW791Yq0BIqq1DluXyuPnyZCDlqHedrdhHcLYO6jS6yCg9Ub7u5M7uF5C9Yz3Wu05MkAzjXb995qQDLwXQhOU9bxeL9BeRTfmPQKK9upz7s9OOii+8p1fxHcef2bQ/VxXgEz8vguZlHleej0KjMQ6US2ey9AKVe/aec5o+V0vYKxGu25YH6B9qvxcVPvQeq1oXptQLD+DBbKo8muPLKz9FGks/4eD8w8AAGgSG80zLj1bt+30YnuH+x/riZ6trX8TrWva5Lj2rAU7vbF08vzuuO6sBdE1zYt6aKdddf+dx5+JY+furUdgwHieK7jm0zRlPLeO0Bq0Uqs71idUQ1nX6HaxttAk2fqtE2sNEFGtddi6VB4/T4YctAz1trsN6xDG3kGVXgcBrTea353cwfUSqmm812rPkQGaabTrv9eEZOC9EJqgrOf1eoH2Krox7xFQtFefc8fO3XunTeZ3cF0BsvD7LmRS5nnp9SgwEutEtXguQytUvWvnOaPld72AsRrtumF9gPap8nNR7UPrtaJ5bUKx/AwWyKLKrz2ysPZTpNH+Hw7OP8jjJz/5Saxfv76SfzZs2FD24QEAGDCx7AFQb70vvrTLzz83wud31+y9p8bfLT02erZui+defCn2mjIpuqdP9oIeCjBS911TJ8XfLT1Wj0BEjP+5gms+TVLWc+sIrUGrtKNjfUL5yrxGt4u1habI2G+dWGuAqq3D1qVy+Hky5KBlqLfxNKxDGFsHVXsdBLTWaH538q7/50TXS6iwVlyrPUcGaKbRrP9eE5KF90JogjKe1+sF2quMxrxHQNFeec498/yu/yNc1xUgA7/vQjZlnZdejwIjsU5Uj+cyjFcdunaeMxp+1wsYq7GsG9YHaI+qPxfVPrRWq5rXJhTHz2CBLKr+2iMLaz9FGanpvaZMilXnn+L8gwR+t+WZiJgQ73vf+8oeyrCmTp0WP/3pT2LevHllDwUAwEbzjM+MKZN2+fm9Rvj8eHRN8yIeyjBS9/toE3iFVjxXcM2nKcp8bh2hNWiFdnWsTyhX2dfodrG20ARZ+60Taw00WxXXYetS8fw8GXLQMtTbeBvWIYy+gyq+DgJaZzS/O/n610wvaDTA7mjVtdpzZIBmGmn995qQTLwXQhMU/bxeL9BeZTXmPQKKNnDOPb11l/dzXQEy8PsuZFTGeen1KDAS60Q1eS7DeNSla+c5I/G7XsBYjXXdsD5A69Xhuaj2oXVa2bw2oRh+BgtkUYfXHllY+ynCSE3vt6f/wwGyeOmF5yKiP475PxfFHxx0aNnD2UnvU0/E2luviJ6eHhvNAwCV0FH2AKi37umT4+T53UN+7uT53dE93Zs+kI3ugbGwZsDo6QXqT8eQk7ahvvQLUC7rMBHOA8hCy1BvGobi6A1y0zjUn44BaCfXGZrIeQ+jpxdoL43RNM55oAmsddAaWgJGYp2AfHRNFs5lYKysG1A+HUKzaB7qR7dAFtYzyEXT0DzTXzMv9p13SOX+zNj/wLIPDQDAIDaaZ1y6pk2Oa89asNOL7pPnd8d1Zy2IrmlecEM2ugfGwpoBo6cXqD8dQ07ahvrSL0C5rMNEOA8gCy1DvWkYiqM3yE3jUH86BqCdXGdoIuc9jJ5eoL00RtM454EmsNZBa2gJGIl1AvLRNVk4l4Gxsm5A+XQIzaJ5qB/dAllYzyAXTQMAAAxtQn9/f3/Zg6i73t7e6Orqii1btsSMGTPKHk4ptrywLXq2bovnXnwp9poyKbqnT/Zim1rR8djpnirScnVZMxiLpresF7Jocss6JpMmt/xq2qbOmt6yfsmi6S1TX9bhwZrasvOAbLSsZXJoWssaJqOqdqw3GJuqtjwcjcPQ6tSyjmF4dWoZqqoK1xktU7QqnPcZaTknvTSPloulMdqlqi0752Fsqtoyu2at49W0vHu0RNVouXqsE4yVjqtP14xGHVp2LsPI6tBykawb1FWmlnVIk2VqebQ0T0bZW9YtTZG9ZaxnTaHl5tB0blouxvr162PhwoXxtk98Jfadd0jZw9nJE2tXxtpbr4iTzrsp5hx2bNnD2cn/bHg07r1meaxbty6OO+64sodTSVqGHLQM9TGx7AGQQ9c0L7ChaXQPjIU1A0ZPL1B/OoactA31pV+AclmHiXAeQBZahnrTMBRHb5CbxqH+dAxAO7nO0ETOexg9vUB7aYymcc4DTWCtg9bQEjAS6wTko2uycC4DY2XdgPLpEJpF81A/ugWysJ5BLpoGAAAYrKPsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0jY3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApmo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgtloHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgNpoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJiN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZqN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgILZaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYDaaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAClbbjeavvfbamDBhQpx33nm7vN+dd94Zhx56aEyZMiWOOuqouPvuuwd9vr+/Py677LLYf//9Y+rUqXHqqafGY4891saRAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1Xy43mv//978cXv/jFWLBgwS7vt2bNmli6dGmcc8458eCDD8aSJUtiyZIl8cgjjwzc55Of/GR87nOfiy984Quxdu3a2HPPPWPx4sXx4osvtnsaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEPVbqP5rVu3xp/8yZ/El7/85dhnn312ed8bbrghTjvttLjgggvisMMOi6uuuiqOO+64uPHGGyMior+/P66//vq45JJL4swzz4wFCxbEV7/61di4cWPcddddBcwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaKKJZQ9grP7iL/4izjjjjDj11FPj6quv3uV9H3jggTj//PMH3bZ48eKBTeR/8YtfxKZNm+LUU08d+HxXV1eccMIJ8cADD8R73/veIb9vX19f9PX1DXzc29u7m7MByqJjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1B/OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6k/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUN9dZQ9gLG44447Yv369bFixYpR3X/Tpk0xc+bMQbfNnDkzNm3aNPD5HbcNd5+hrFixIrq6ugb+zJ07dyzTACpAx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ah/nQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMtSfjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG+prQ39/fX/YgRuNXv/pVHH/88XHvvffGggULIiLiLW95SxxzzDFx/fXXD/k1kydPjttuuy2WLl06cNvnP//5uOKKK2Lz5s2xZs2aePOb3xwbN26M/ffff+A+7373u2PChAnxta99bcjv29fXF319fQMf9/b2xty5c2PLli0xY8aMFswWaDcdQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWob60zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUH86hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWi7H+vXrY+HChfG2T3wl9p13SNnD2ckTa1fG2luviJPOuynmHHZs2cPZyf9seDTuvWZ5/OM//mMcdthhZQ9nWN3d3TFv3rxC/i4tQw5ahvqaWPYARmvdunXx9NNPx3HHHTdw2/bt2+P++++PG2+8Mfr6+mKPPfYY9DWzZs2KzZs3D7pt8+bNMWvWrIHP77jtlRvNb968OY455phhx9LZ2RmdnZ3jnRJQIh1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvrTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQfzqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5apo5+t+WZiJgQ73vf+8oeyi5NnTotfvrTnxSy2byWIQctQ33VZqP5t771rfHwww8Pum358uVx6KGHxkUXXbTTJvMREYsWLYpVq1bFeeedN3DbvffeG4sWLYqIiIMOOihmzZoVq1atGthYvre3N9auXRsf/ehH2zYXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBYL73wXET0xzH/56L4g4MOLXs4Q+p96olYe+sV0dPTU8hG8wBAuWqz0fxee+0VRx555KDb9txzz9hvv/0Gbl+2bFnMmTMnVqxYERERH/vYx+KUU06JT3/603HGGWfEHXfcET/4wQ/iS1/6UkRETJgwIc4777y4+uqrY/78+XHQQQfFpZdeGrNnz44lS5YUOj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoP2mv2Ze7DvvkLKHAQBQn43mR2PDhg3R0dEx8PGJJ54Yt99+e1xyySXx8Y9/PObPnx933XXXoA3rL7zwwnj++efjwx/+cDz77LNx0kknxT333BNTpkwpYwoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAA9R6o/nVq1fv8uOIiLPPPjvOPvvsYb/HhAkT4sorr4wrr7yyxaMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGFpH2QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaBobzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzEbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWz0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwWw0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMxG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFs9E8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMFsNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbPRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBbDQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDAbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzEbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWz0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwWw0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCwiWUPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDm2LBhQ/T09JQ9jGF1d3fHvHnzyh4GAAANYKN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxYcOGOPTQw+J3v3uh7KEMa+rUafHTn/7EZvMAALSdjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKERPT0/87ncvxAl/dnnM2P/Asoezk96nnoi1t14RPT09NpoHAKDtarPR/M033xw333xzPPHEExERccQRR8Rll10Wp59++pD3f8tb3hL33XffTre//e1vj3/7t3+LiIg//dM/jdtuu23Q5xcvXhz33HNPawcPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIAZ+x8Y+847pOxhAABAqWqz0fwBBxwQ1157bcyfPz/6+/vjtttuizPPPDMefPDBOOKII3a6/ze+8Y3Ytm3bwMfPPPNMHH300XH22WcPut9pp50WX/nKVwY+7uzsbN8kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJGG82/4x3vGPTxNddcEzfffHN897vfHXKj+X333XfQx3fccUdMmzZtp43mOzs7Y9asWa0fMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAwarPR/Ctt37497rzzznj++edj0aJFo/qaW265Jd773vfGnnvuOej21atXx2te85rYZ5994o/+6I/i6quvjv3222+X36uvry/6+voGPu7t7R37JIBS6Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1J+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWob60zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUF8dZQ9gLB5++OGYPn16dHZ2xkc+8pH45je/GYcffviIX/e9730vHnnkkfjgBz846PbTTjstvvrVr8aqVaviuuuui/vuuy9OP/302L59+y6/34oVK6Krq2vgz9y5c8c1L6B4OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM9adjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqH+dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1NeE/v7+/rIHMVrbtm2LDRs2xJYtW+Kf//mf4+///u/jvvvuG3Gz+T//8z+PBx54IB566KFd3u/nP/95vP71r49vfetb8da3vnXY+/X19UVfX9/Ax729vTF37tzYsmVLzJgxY2yTAkqhY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQfzqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGepPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIYXdbXr9+fSxcuDDe9omvxL7zDiliqGPyPxsejXuvWR7r1q2L4447ruzh7KTqx++JtStj7a1XxEnn3RRzDju27OHspOrjiyj+HHRdhhy0DPU1sewBjMXkyZPj4IMPjoiIhQsXxve///244YYb4otf/OKwX/P888/HHXfcEVdeeeWI3/91r3tddHd3x+OPP77LjeY7Ozujs7Nz7BMAKkPHkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqH+dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1J+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWob66ih7AOPx8ssvR19f3y7vc+edd0ZfX1+8733vG/H7Pfnkk/HMM8/E/vvv36ohAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOxkYtkDGK2LL744Tj/99Jg3b14899xzcfvtt8fq1atj5cqVERGxbNmymDNnTqxYsWLQ191yyy2xZMmS2G+//QbdvnXr1rjiiivirLPOilmzZsXPfvazuPDCC+Pggw+OxYsXFzYvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHlqs9H8008/HcuWLYunnnoqurq6YsGCBbFy5cp429veFhERGzZsiI6OjkFf8+ijj8Z//dd/xb//+7/v9P322GOPeOihh+K2226LZ599NmbPnh1//Md/HFdddVV0dnYWMicAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgmWqz0fwtt9yyy8+vXr16p9sOOeSQ6O/vH/L+U6dOjZUrV7ZiaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABj0lH2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaxkbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWz0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwWw0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMxG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFs9E8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMEmlj0A2mfLC9uiZ+u26H3xpZgxdVJ07zk5uqZNLntYwKtoFWgyayBZOJeh+nQKeekbqkmb0Cyah/LpEHLSNuSkbchN45CLpqF6dAlkZG0D6sr61Twec2AH6wHsTBdAK1hLID+dA9AKdbqe1GmsQDmsE5CDloHRsl7A8PQBzaJ5qAYtQg5aBgAAICMbzSe18dnfxUVffyi+/VjPwG0nz++Oa89aELP3nlriyIBX0irQZNZAsnAuQ/XpFPLSN1STNqFZNA/l0yHkpG3ISduQm8YhF01D9egSyMjaBtSV9at5PObADtYD2JkugFawlkB+OgegFep0PanTWIFyWCcgBy0Do2W9gOHpA5pF81ANWoQctAwAAEBWHWUPgNbb8sK2nd7IiIi4/7Ge+JuvPxRbXthW0siAV9Iq0GTWQLJwLkP16RTy0jdUkzahWTQP5dMh5KRtyEnbkJvGIRdNQ/XoEsjI2gbUlfWreTzmwA7WA9iZLoBWsJZAfjoHoBXqdD2p01iBclgnIActA6NlvYDh6QOaRfNQDVqEHLQMAABAZjaaT6hn67ad3sjY4f7HeqJnqzczoAq0CjSZNZAsnMtQfTqFvPQN1aRNaBbNQ/l0CDlpG3LSNuSmcchF01A9ugQysrYBdWX9ah6PObCD9QB2pgugFawlkJ/OAWiFOl1P6jRWoBzWCchBy8BoWS9gePqAZtE8VIMWIQctAwAAkJmN5hPqffGlXX7+uRE+DxRDq0CTWQPJwrkM1adTyEvfUE3ahGbRPJRPh5CTtiEnbUNuGodcNA3Vo0sgI2sbUFfWr+bxmAM7WA9gZ7oAWsFaAvnpHIBWqNP1pE5jBcphnYActAyMlvUChqcPaBbNQzVoEXLQMgAAAJnZaD6hGVMm7fLze43weaAYWgWazBpIFs5lqD6dQl76hmrSJjSL5qF8OoSctA05aRty0zjkommoHl0CGVnbgLqyfjWPxxzYwXoAO9MF0ArWEshP5wC0Qp2uJ3UaK1AO6wTkoGVgtKwXMDx9QLNoHqpBi5CDlgEAAMjMRvMJdU+fHCfP7x7ycyfP747u6ZMLHhEwFK0CTWYNJAvnMlSfTiEvfUM1aROaRfNQPh1CTtqGnLQNuWkcctE0VI8ugYysbUBdWb+ax2MO7GA9gJ3pAmgFawnkp3MAWqFO15M6jRUoh3UCctAyMFrWCxiePqBZNA/VoEXIQcsAAABkZqP5hLqmTY5rz1qw0xsaJ8/vjuvOWhBd07yZAVWgVaDJrIFk4VyG6tMp5KVvqCZtQrNoHsqnQ8hJ25CTtiE3jUMumobq0SWQkbUNqCvrV/N4zIEdrAewM10ArWAtgfx0DkAr1Ol6UqexAuWwTkAOWgZGy3oBw9MHNIvmoRq0CDloGQAAgMwmlj0A2mP23lPj75YeGz1bt8VzL74Ue02ZFN3TJ3sjAypGq0CTWQPJwrkM1adTyEvfUE3ahGbRPJRPh5CTtiEnbUNuGodcNA3Vo0sgI2sbUFfWr+bxmAM7WA9gZ7oAWsFaAvnpHIBWqNP1pE5jBcphnYActAyMlvUChqcPaBbNQzVoEXLQMgAAAFnZaD6xrmnevIA60CrQZNZAsnAuQ/XpFPLSN1STNqFZNA/l0yHkpG3ISduQm8YhF01D9egSyMjaBtSV9at5PObADtYD2JkugFawlkB+OgegFep0PanTWIFyWCcgBy0Do2W9gOHpA5pF81ANWoQctAwAAEBGHWUPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBpbDQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAULCJZQ9gtG6++ea4+eab44knnoiIiCOOOCIuu+yyOP3004e8/z/8wz/E8uXLB93W2dkZL7744sDH/f39cfnll8eXv/zlePbZZ+PNb35z3HzzzTF//vyWj3/LC9uiZ+u26H3xpZgxdVJ07zk5uqZNbvnfA9SbtQLaT2eQg5YhBy1DDlqGHLQMeegZ6k/HkIOWIQctQ176hnrRLPBq1gVgLKwZAIyVa0drOI5QbRqF9tEXsLusH9AaWoIctAzNpH2oNw0Du2KNgPHTEeSmcagXzUJO2obm0DsAAABVV5uN5g844IC49tprY/78+dHf3x+33XZbnHnmmfHggw/GEUccMeTXzJgxIx599NGBjydMmDDo85/85Cfjc5/7XNx2221x0EEHxaWXXhqLFy+OH//4xzFlypSWjX3js7+Li77+UHz7sZ6B206e3x3XnrUgZu89tWV/D1Bv1gpoP51BDlqGHLQMOWgZctAy5KFnqD8dQw5ahhy0DHnpG+pFs8CrWReAsbBmADBWrh2t4ThCtWkU2kdfwO6yfkBraAly0DI0k/ah3jQM7Io1AsZPR5CbxqFeNAs5aRuaQ+8AAADUQUfZAxitd7zjHfH2t7895s+fH294wxvimmuuienTp8d3v/vdYb9mwoQJMWvWrIE/M2fOHPhcf39/XH/99XHJJZfEmWeeGQsWLIivfvWrsXHjxrjrrrtaNu4tL2zb6Q2CiIj7H+uJv/n6Q7HlhW0t+7uA+rJWQPvpDHLQMuSgZchBy5CDliEPPUP96Rhy0DLkoGXIS99QL5oFXs26AIyFNQOAsXLtaA3HEapNo9A++gJ2l/UDWkNLkIOWoZm0D/WmYWBXrBEwfjqC3DQO9aJZyEnb0Bx6BwAAoC5qs9H8K23fvj3uuOOOeP7552PRokXD3m/r1q3x2te+NubOnRtnnnlm/OhHPxr43C9+8YvYtGlTnHrqqQO3dXV1xQknnBAPPPBAy8bas3XbTm8Q7HD/Yz3Rs9WbBIC1AoqgM8hBy5CDliEHLUMOWoY89Az1p2PIQcuQg5YhL31DvWgWeDXrAjAW1gwAxsq1ozUcR6g2jUL76AvYXdYPaA0tQQ5ahmbSPtSbhoFdsUbA+OkIctM41ItmISdtQ3PoHQAAgLqYWPYAxuLhhx+ORYsWxYsvvhjTp0+Pb37zm3H44YcPed9DDjkkbr311liwYEFs2bIlPvWpT8WJJ54YP/rRj+KAAw6ITZs2RUTEzJkzB33dzJkzBz43nL6+vujr6xv4uLe3d9j79r740i6/13MjfB5oj7F0XARrBewe12TIQcuQg5YhBy1DDlqGHMb6PraeoZpclyEHLUMOWob6a8XvfOkbyueaDDmU9bvY1gVorar9u4pWs2bQFNlbhiKVee3I1LJrME1Wh5Y1CiPb3Zb1BdVSh+vyDtYPGJ6fL0MOWob6a/fza+1DMdrVsoahWHV63yvCGgHD8VoZcvDvHSEH12XIYTzXZW1DdfiZFORQt/exgaFpGXLQMtRXR9kDGItDDjkkfvjDH8batWvjox/9aHzgAx+IH//4x0Ped9GiRbFs2bI45phj4pRTTolvfOMb8Qd/8AfxxS9+cdzjWLFiRXR1dQ38mTt37rD3nTFl0i6/114jfB5oj7F0XARrBewe12TIQcuQg5YhBy1DDlqGHMb6PraeoZpclyEHLUMOWob6a8XvfOkbyueaDDmU9bvY1gVorar9u4pWs2bQFNlbhiKVee3I1LJrME1Wh5Y1CiPb3Zb1BdVSh+vyDtYPGJ6fL0MOWob6a/fza+1DMdrVsoahWHV63yvCGgHD8VoZcvDvHSEH12XIYTzXZW1DdfiZFORQt/exgaFpGXLQMtRXrTaanzx5chx88MGxcOHCWLFiRRx99NFxww03jOprJ02aFMcee2w8/vjjERExa9asiIjYvHnzoPtt3rx54HPDufjii2PLli0Df371q18Ne9/u6ZPj5PndQ37u5Pnd0T198qjGD7TWWDougrUCdo9rMuSgZchBy5CDliEHLUMOY30fW89QTa7LkIOWIQctQ/214ne+9A3lc02GHMr6XWzrArRW1f5dRatZM2iK7C1Dkcq8dmRq2TWYJqtDyxqFke1uy/qCaqnDdXkH6wcMz8+XIQctQ/21+/m19qEY7WpZw1CsOr3vFWGNgOF4rQw5+PeOkIPrMuQwnuuytqE6/EwKcqjb+9jA0LQMOWgZ6qtWG82/2ssvvxx9fX2juu/27dvj4Ycfjv333z8iIg466KCYNWtWrFq1auA+vb29sXbt2li0aNEuv1dnZ2fMmDFj0J/hdE2bHNeetWCnNwpOnt8d1521ILqmeZMAyjCWjotgrYDd45oMOWgZctAy5KBlyEHLkMNY38fWM1ST6zLkoGXIQctQf634nS99Q/lckyGHsn4X27oArVW1f1fRatYMmiJ7y1CkMq8dmVp2DabJ6tCyRmFku9uyvqBa6nBd3sH6AcPz82XIQctQf+1+fq19KEa7WtYwFKtO73tFWCNgOF4rQw7+vSPk4LoMOYznuqxtqA4/k4Ic6vY+NjA0LUMOWob6mlj2AEbr4osvjtNPPz3mzZsXzz33XNx+++2xevXqWLlyZURELFu2LObMmRMrVqyIiIgrr7wy3vSmN8XBBx8czz77bPzt3/5t/PKXv4wPfvCDERExYcKEOO+88+Lqq6+O+fPnx0EHHRSXXnppzJ49O5YsWdLSsc/ee2r83dJjo2frtnjuxZdirymTonv6ZG8QAINYK6D9dAY5aBly0DLkoGXIQcuQh56h/nQMOWgZctAy5KVvqBfNAq9mXQDGwpoBwFi5drSG4wjVplFoH30Bu8v6Aa2hJchBy9BM2od60zCwK9YIGD8dQW4ah3rRLOSkbWgOvQMAAFAHtdlo/umnn45ly5bFU089FV1dXbFgwYJYuXJlvO1tb4uIiA0bNkRHR8fA/X/729/Ghz70odi0aVPss88+sXDhwlizZk0cfvjhA/e58MIL4/nnn48Pf/jD8eyzz8ZJJ50U99xzT0yZMqXl4++a5k0BYGTWCmg/nUEOWoYctAw5aBly0DLkoWeoPx1DDlqGHLQMeekb6kWzwKtZF4CxsGYAMFauHa3hOEK1aRTaR1/A7rJ+QGtoCXLQMjST9qHeNAzsijUCxk9HkJvGoV40CzlpG5pD7wAAAFRdbTaav+WWW3b5+dWrVw/6+LOf/Wx89rOf3eXXTJgwIa688sq48sorxzs8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgFHrKHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE0zsewBZNDf3x8REb29vSWPBJpjr732igkTJrTs++kYyqFlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZcihlS3rGMrhmgw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZcvD7m1B/rsmQg5YhBy1DDlqGHLQMOWgZctAy5FBWy1u3bo2IiC1P/jxe/r/bW/b3t8pzm34ZERHr168fGGuV/Pd//3dEVPf4bX361xER0bvpiejs7Cx5NDur+vgi/vcc3Lp166iuja7LkIOWof52t+MJ/TuKZbc9+eSTMXfu3LKHAY2yZcuWmDFjRsu+n46hHFqGHLQMOWgZctAy5NDqln/+85/H61//+pZ9P2B0XJchBy1DDlqGHLQMObSyZR1DOVyTIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOfn8T6s81GXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLU3+52bKP5Fnj55Zdj48aNsddee8WECRPKHk7l9fb2xty5c+NXv/pVSy8+TdTkY9nq3trVcZMfo1dzLH7PcRisXS339/fHvHnzUh3nrOdOxnk1cU51uS63WsbHeoesc8s6r4jWzK0dLT/66KNx+OGHpzzmo5X5vBstx6DYY1D0ddnj6xhEOAYRrT8GrW752WefjX322Sc2bNgQXV1dLfu+Zcp23mWbT0S+Oe3OfJr6enmHbOfAWDR17lnn7X3s0cn2+JtPtbkuj162x74dHKORVekYNbXlV6rS4zEe5lEtRc+jlc21suMsj2eRHLPdk+G4VeWanOFYtoPjMjzHZrCqtFy2bOeF+VRbO+ZTlZazPVYR5lQXWeZUlZaLkOUxqwLHsrWq+rvYQ7XssW8dx7I1sh3HKlyX63xM6zz2COMvWyvHX4WWW6Xuj+twzKt+yphbppaLkPn8G07T5lzX+fr3jmNT9/FH1H8Oxj80/65isLqeJ8ZdrCqOu6q/v1mUKj4mrWR+9Tba+WV8rZzlsc0wjwxziKjHPOrUch2O56sZczGMuV4tt0IdH/OqcQzHL/PvYg/FOTM8x2ZoTT4uVWy5jo9HHcccUc9xG/PQqthyK9XxcR+KeVRHVedQZMtVPQZZOL7tU4djW8Z1uQ7HpV3MvZlzj2j//Mt6jp3lcTWPaskyj4ixz0XL42Me1dLUeexuxxN3Z3AM1tHREQcccEDZw6idGTNm1DrSKnEsx6/dHXuM/pdj8XuOQ3vsaLm3tzcich7njHOKyDkvc9p9dXt+nfGx3iHr3LLOK6Jac+vo6Ig5c+ZERLXGVRbHwDGIqOcxGO11uY5zazXHwDGIqO4x6OjoiIiIrq6uSo5vPKp6zHdXtvlE5JtTmfOp2+vlHbKdA2PR1Lk3dd6jlf19bPOpNvNpnbpdl7M99u3gGI0s4zGqW8uvlOXxMI9qqeM82tFxHY9D2Ryz3eO4/a/xtuxYDs1xGZ5j0x51fn4dke+8MJ9qq/J8XJd3Zk71kHFO41GH67LHrHUcy9aq0vEcqeUqjbXuHMvWcByHNp7rcp2PaZ3HHmH8Zavi+KvwHLuKx6UVzKt+6jy3KrRchDo/RruraXNu2nxfrSn/3rHu44+o/xyMv72y/LsK4y6WcVdLnZ9fZ31MdjC/eit6flVqOctjm2EeGeYQkWceo1FEy3U8nsZcDGNunSpdl3elqsevThzD8avyMfTvHYvl2AzNcRm/VrZcx8ejjmOOqOe4jbm9qvocu07HcFfMozoyzGFXRtNy9mNQNse3fZp0bMdyXW7ScXk1c2/m3CPqM/+xPseuy7xGYh7VkmUeEeXNRcv1Zh7V0u55dLTtOwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJBvNAwAAAAAAAAAAAAAAAAAA4rbHZQAA17tJREFUAAAAAAAAAAAAAAAAAAAAABTMRvMUrrOzMy6//PLo7Owseyi151hWn8fofzkWv+c4FCPjcc44p4ic8zKn5sh8XLLOLeu8Iqo7t6qOq0iOgWMQkfsYZJ7baDkGjkFE9Y9B1ce3O7LNKdt8IvLNKdt8itDkY9bUuTd13rsr2/Eyn2ozn+ZyrEbmGI3MMaqWLI+HeVRLlnmMl+Mwdo7Z7nHcWsexHJrjMjzHhqFkOy/Mp9qyzeeVMs7NnOoh45yy85i1jmPZWnU6nnUaa9U5lq3hOLZenY9pncceYfxlq/v42yXrcTGv+sk8tyya+Bg1bc5Nm+/uqvtxqvv4I+o/B+MvVt3Gu4NxF8u4aZXsj4n51Vv2+e1KlrlnmEeGOUTkmUdV1PF4GnMxjLl5HL/xcwzHr2nHsGnzHQvHZmiOS7XU8fGo45gj6jluY26mLMfQPKojwxzGyzFoL8e3fRzboTX5uJh7M+cekXf+WeZlHtWSZR4R9ZlLXcY5EvOoFvMYmwn9/f39bf0bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiko+wBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSNjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmajeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICC2WgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGA2mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApmo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgtloHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgNpoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJiN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZqN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgILZaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYDaaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmajeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICC2WgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGA2mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApmo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgtloHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgNpoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJiN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZqP5Fujv74/e3t7o7+8veyjAbtIx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZag/HUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM9adjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqE+bDTfAs8991x0dXXFc889V/ZQgN2kY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQfzqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGepPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DfdhoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgNpoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJiN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZqN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgILZaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYDaaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmajeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICC2WgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGA2mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApmo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgtloHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgNpoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJiN5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZqN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgILZaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYDaaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmajeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICC2WgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGA2mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomI3mAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApmo3kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgtVuo/mbbropDjzwwJgyZUqccMIJ8b3vfW+X97/zzjvj0EMPjSlTpsRRRx0Vd99997D3/chHPhITJkyI66+/vsWjBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPhftdpo/mtf+1qcf/75cfnll8f69evj6KOPjsWLF8fTTz895P3XrFkTS5cujXPOOScefPDBWLJkSSxZsiQeeeSRne77zW9+M7773e/G7Nmz2z0NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOFqtdH8Zz7zmfjQhz4Uy5cvj8MPPzy+8IUvxLRp0+LWW28d8v433HBDnHbaaXHBBRfEYYcdFldddVUcd9xxceONNw66369//ev4y7/8y/inf/qnmDRpUhFTAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpsYtkDGK1t27bFunXr4uKLLx64raOjI0499dR44IEHhvyaBx54IM4///xBty1evDjuuuuugY9ffvnleP/73x8XXHBBHHHEEaMaS19fX/T19Q183NvbO4aZAFWgY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQfzqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGepPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DfXWUPYDR6unpie3bt8fMmTMH3T5z5szYtGnTkF+zadOmEe9/3XXXxcSJE+Ov/uqvRj2WFStWRFdX18CfuXPnjmEmQBXoGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLUn44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahvrTMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQXxP6+/v7yx7EaGzcuDHmzJkTa9asiUWLFg3cfuGFF8Z9990Xa9eu3elrJk+eHLfddlssXbp04LbPf/7zccUVV8TmzZtj3bp1ccYZZ8T69etj9uzZERFx4IEHxnnnnRfnnXfesGPp6+uLvr6+gY97e3tj7ty5sWXLlpgxY0YLZgu0m44hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/3pGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWoPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPU1sewBjFZ3d3fssccesXnz5kG3b968OWbNmjXk18yaNWuX9//2t78dTz/9dMybN2/g89u3b4+//uu/juuvvz6eeOKJIb9vZ2dndHZ2jmM2QNl0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnqT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/3pGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWor46yBzBakydPjoULF8aqVasGbnv55Zdj1apVsWjRoiG/ZtGiRYPuHxFx7733Dtz//e9/fzz00EPxwx/+cODP7Nmz44ILLoiVK1e2bzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAo00sewBjcf7558cHPvCBOP744+ONb3xjXH/99fH888/H8uXLIyJi2bJlMWfOnFixYkVERHzsYx+LU045JT796U/HGWecEXfccUf84Ac/iC996UsREbHffvvFfvvtN+jvmDRpUsyaNSsOOeSQYicHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEatNpp/z3veE7/5zW/isssui02bNsUxxxwT99xzT8ycOTMiIjZs2BAdHR0D9z/xxBPj9ttvj0suuSQ+/vGPx/z58+Ouu+6KI488sqwpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANRro/mIiHPPPTfOPffcIT+3evXqnW47++yz4+yzzx7193/iiSd2c2QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo9NR9gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmsZG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFs9E8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMFsNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbPRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBbDQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDAbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzEbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWz0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwWw0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMxG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFs9E8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMFsNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMRvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbPRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBbDQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDAbzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzEbzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWz0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwWw0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwG80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMxG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFs9E8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMFsNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQsNptNH/TTTfFgQceGFOmTIkTTjghvve97+3y/nfeeWcceuihMWXKlDjqqKPi7rvvHvjcSy+9FBdddFEcddRRseeee8bs2bNj2bJlsXHjxnZPAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiwWm00/7WvfS3OP//8uPzyy2P9+vVx9NFHx+LFi+Ppp58e8v5r1qyJpUuXxjnnnBMPPvhgLFmyJJYsWRKPPPJIRES88MILsX79+rj00ktj/fr18Y1vfCMeffTReOc731nktAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICGqdVG85/5zGfiQx/6UCxfvjwOP/zw+MIXvhDTpk2LW2+9dcj733DDDXHaaafFBRdcEIcddlhcddVVcdxxx8WNN94YERFdXV1x7733xrvf/e445JBD4k1velPceOONsW7dutiwYUORUwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaZGLZAxitbdu2xbp16+Liiy8euK2joyNOPfXUeOCBB4b8mgceeCDOP//8QbctXrw47rrrrmH/ni1btsSECRNi7733HvY+fX190dfXN/Bxb2/v6CYBVIaOIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUP96Rhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlqD8dQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAz11VH2AEarp6cntm/fHjNnzhx0+8yZM2PTpk1Dfs2mTZvGdP8XX3wxLrrooli6dGnMmDFj2LGsWLEiurq6Bv7MnTt3jLMByqZjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1B/OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZ6k/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUN9Tejv7+8vexCjsXHjxpgzZ06sWbMmFi1aNHD7hRdeGPfdd1+sXbt2p6+ZPHly3HbbbbF06dKB2z7/+c/HFVdcEZs3bx5035deeinOOuusePLJJ2P16tW73Gi+r68v+vr6Bj7u7e2NuXPnxpYtW3b5dUB16Bhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy1J+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWob60zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUF8Tyx7AaHV3d8cee+yx0wbxmzdvjlmzZg35NbNmzRrV/V966aV497vfHb/85S/jP/7jP0ZcuDo7O6Ozs3M3ZgFUhY4hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/3pGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGWoPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DPXVUfYARmvy5MmxcOHCWLVq1cBtL7/8cqxatSoWLVo05NcsWrRo0P0jIu69995B99+xyfxjjz0W3/rWt2K//fZrzwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/n8Tyx7AWJx//vnxgQ98II4//vh44xvfGNdff308//zzsXz58oiIWLZsWcyZMydWrFgREREf+9jH4pRTTolPf/rTccYZZ8Qdd9wRP/jBD+JLX/pSRPx+k/l3vetdsX79+vjXf/3X2L59e2zatCkiIvbdd9+YPHlyORMFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUqvVRvPvec974je/+U1cdtllsWnTpjjmmGPinnvuiZkzZ0ZExIYNG6Kjo2Pg/ieeeGLcfvvtcckll8THP/7xmD9/ftx1111x5JFHRkTEr3/96/iXf/mXiIg45phjBv1d//mf/xlvectbCpkXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Cy12mg+IuLcc8+Nc889d8jPrV69eqfbzj777Dj77LOHvP+BBx4Y/f39rRweAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIg6yh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNPYaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYDaaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYjeYBAAAAAAAAAAAAAAAAAADg/2Pv/mOtvuvDj7/ukXKvtXIZTQuil9Y2zYC1lUgnvU0T13IjzZYolRBtaovIaDReFa7rYrWBrm4hm18r1OKYm3ZjlNjQKU5nWMh1/ohAq9gQoYWYuYat5FZaC5dWe0rhfv8wPfbaC70Xzv2c83mdxyPhj3vuOdz3633uM5c2kBcAAAAAAAAAAAAAAAAAAAAUzKJ5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJZNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMIvmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApm0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwSyaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbNoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgFs0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMyieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICCWTQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDCL5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZtE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMEsmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomEXzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWzaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYBbNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMonkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAglk0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwi+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmbRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBLJoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJhF8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFmzCWJ7/00ktx4sSJaG9vrz321FNPxYYNG+L555+Pd7/73XHttdfW/ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmVTG8uTly5fHxz/+8drHx44diz/+4z+O9evXx3/+53/GddddF9/5znfqfshXWr9+fVx88cXR0dER8+bNi0ceeeS0z9+yZUvMnDkzOjo64oorrnjV+YaGhmLVqlXxpje9KV7/+tdHT09P/PznPx/PEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAWN6ZF8z/60Y9i0aJFtY83btwYJ06ciJ///OexZ8+e6Ovri8997nN1P+TLHnzwwejr64vVq1fHT3/603jb294WCxYsiF/+8pcjPn/Hjh1x0003xbJly+LRRx+NhQsXxsKFC2Pv3r215/zd3/1d3HvvvbFhw4Z4+OGH4w1veEMsWLAgXnjhhXGbAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhtY1o0/+STT8Zll11W+7i/vz8WLVoUnZ2dERGxZMmS2LdvX31P+Ar33HNPLF++PJYuXRqzZ8+ODRs2xLnnnhtf/epXR3z+unXr4oYbbojbb789Zs2aFZ/97Gfj7W9/e9x3330RETE0NBRr166NO++8M97znvfElVdeGRs3boxDhw7F1q1bx20OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoLWNadF8R0dH/OY3v6l9vGvXrpg3b96wzz/33HP1O90rvPjii7F79+7o6empPVapVKKnpyd27tw54mt27tw57PkREQsWLKg9/3/+539iYGBg2HM6Oztj3rx5p/w9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM7WhLE8ec6cOfGv//qvsWbNmvjhD38YTz31VFx//fW1z//3f/93TJ8+ve6HjIh4+umn48SJEzF16tRhj0+dOjX2798/4msGBgZGfP7AwEDt8y8/dqrnjKRarUa1Wq19PDg4OPpBgKagY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQfjqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcpPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DeVXG8uRVq1bFunXr4tJLL40FCxbEBz/4wXjTm95U+/w3vvGNuOaaa+p+yGazZs2a6OzsrP3q6upq9JGAMdIx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZSg/HUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM5adjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqG82oaGhobG8oLHHnsstm/fHtOmTYvFixdHpfK7XfVf/vKX44orroju7u66H/TFF1+Mc889Nx566KFYuHBh7fElS5bEkSNH4pvf/OarXjNjxozo6+uLFStW1B5bvXp1bN26Nfbs2RO/+MUv4tJLL41HH3005syZU3vOO9/5zpgzZ06sW7duxLNUq9WoVqu1jwcHB6OrqyuOHj0akyZNOutZgfGnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQctQfjqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcpPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DeU0Y6wtmz54ds2fPftXj1Wo1jh07FjfeeGMMDAzU5XCvNHHixJg7d2709/fXFs2fPHky+vv7o7e3d8TXdHd3R39//7BF89u3b4/u7u6IiHjrW98a06ZNi/7+/tqi+cHBwXj44YfjIx/5yCnP0t7eHu3t7XWZC2gMHUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG8tMx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1B+OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZyqsylidXq9W444474qqrroprrrkmtm7dGhER999/f7z1rW+NtWvXxsqVK8fjnBER0dfXF//4j/8Y//Iv/xKPP/54fOQjH4nnn38+li5dGhERt956a9xxxx2153/iE5+Ibdu2xec///nYv39/3HXXXfGTn/yktpi+ra0tVqxYEX/9138d//7v/x4/+9nP4tZbb43p06fXltkDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1NuEsTx51apV8Q//8A/R09MTO3bsiMWLF8fSpUtj165dcc8998TixYvjda973XidNd73vvfF4cOHY9WqVTEwMBBz5syJbdu2xdSpUyMi4uDBg1GpVGrPv+aaa2Lz5s1x5513xqc//em47LLLYuvWrXH55ZfXnvOXf/mX8fzzz8dtt90WR44ciWuvvTa2bdsWHR0d4zYHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0NrGtGh+y5YtsXHjxnj3u98de/fujSuvvDJeeuml2LNnT7S1tY3XGYfp7e2N3t7eET/3ve9971WPLV68OBYvXnzK36+trS3uvvvuuPvuu+t1RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDTqozlyf/3f/8Xc+fOjYiIyy+/PNrb22PlypWFLZkHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyGBMi+ZPnDgREydOrH08YcKEOO+88+p+KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDMJozlyUNDQ/HBD34w2tvbIyLihRdeiA9/+MPxhje8Ydjzvv71r9fvhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADJjGnR/JIlS4Z9/IEPfKCuhwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoBWNaNH///feP1zkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWkal0QcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDUWzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzKJ5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJZNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMIvmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApm0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwSyaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbNoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgFs0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMyieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICCWTQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDCL5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZtE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMEsmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomEXzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWzaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYBbNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMonkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAglk0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwi+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmbRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBLJoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFhpFs3/6le/iptvvjkmTZoUkydPjmXLlsVzzz132te88MIL8dGPfjTOP//8OO+882LRokXx1FNP1T6/Z8+euOmmm6Krqyte//rXx6xZs2LdunXjPQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ4kqzaP7mm2+Offv2xfbt2+Pb3/52/OAHP4jbbrvttK9ZuXJlfOtb34otW7bE97///Th06FC8973vrX1+9+7dceGFF8amTZti37598ZnPfCbuuOOOuO+++8Z7HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCFTWj0AUbj8ccfj23btsWPf/zjuOqqqyIi4otf/GL86Z/+afy///f/Yvr06a96zdGjR+MrX/lKbN68Oa6//vqIiLj//vtj1qxZsWvXrrj66qvjQx/60LDXXHLJJbFz5874+te/Hr29veM/GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCSKo0+wGjs3LkzJk+eXFsyHxHR09MTlUolHn744RFfs3v37jh+/Hj09PTUHps5c2bMmDEjdu7cecqvdfTo0ZgyZUr9Dg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADweyY0+gCjMTAwEBdeeOGwxyZMmBBTpkyJgYGBU75m4sSJMXny5GGPT5069ZSv2bFjRzz44IPxH//xH6c9T7VajWq1Wvt4cHBwFFMAzUTHkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqH8dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWobyqjTyi3/qU5+Ktra20/7av39/IWfZu3dvvOc974nVq1fHu971rtM+d82aNdHZ2Vn71dXVVcgZgfrRMeSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUoPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOWnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ahvNqGhoaGGvXFDx8+HM8888xpn3PJJZfEpk2b4pOf/GQ8++yztcdfeuml6OjoiC1btsSNN974qtd997vfjfnz58ezzz4bkydPrj1+0UUXxYoVK2LlypW1xx577LG47rrr4s///M/jb/7mb17z3NVqNarVau3jwcHB6OrqiqNHj8akSZNe8/VA4+kYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMpSfjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG8tMx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1BeExr5xS+44IK44IILXvN53d3dceTIkdi9e3fMnTs3In67SP7kyZMxb968EV8zd+7cOOecc6K/vz8WLVoUEREHDhyIgwcPRnd3d+15+/bti+uvvz6WLFkyqiXzERHt7e3R3t4+qucCzUnHkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqH8dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWobyqjT6AKMxa9asuOGGG2L58uXxyCOPxI9+9KPo7e2N97///TF9+vSIiHjyySdj5syZ8cgjj0RERGdnZyxbtiz6+vriv/7rv2L37t2xdOnS6O7ujquvvjoiIvbu3RvXXXddvOtd74q+vr4YGBiIgYGBOHz4cMNmBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPKb0OgDjNYDDzwQvb29MX/+/KhUKrFo0aK49957a58/fvx4HDhwIH7961/XHvvCF75Qe261Wo0FCxbEl770pdrnH3rooTh8+HBs2rQpNm3aVHv8oosuiieeeKKQuQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWU5pF81OmTInNmzef8vMXX3xxDA0NDXuso6Mj1q9fH+vXrx/xNXfddVfcdddd9TwmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGuqNPoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK3GonkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAglk0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwi+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmbRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBLJoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJhF8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFs2geAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGAWzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzKJ5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJZNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMIvmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApm0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwSyaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbNoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgFs0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMyieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICCWTQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDCL5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZtE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMEsmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomEXzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWzaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYBbNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMonkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAglk0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwi+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAClaaRfO/+tWv4uabb45JkybF5MmTY9myZfHcc8+d9jUvvPBCfPSjH43zzz8/zjvvvFi0aFE89dRTIz73mWeeibe85S3R1tYWR44cGYcJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH6rNIvmb7755ti3b19s3749vv3tb8cPfvCDuO222077mpUrV8a3vvWt2LJlS3z/+9+PQ4cOxXvf+94Rn7ts2bK48sorx+PoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMOUYtH8448/Htu2bYt/+qd/innz5sW1114bX/ziF+NrX/taHDp0aMTXHD16NL7yla/EPffcE9dff33MnTs37r///tixY0fs2rVr2HP//u//Po4cORJ/8Rd/UcQ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQIsrxaL5nTt3xuTJk+Oqq66qPdbT0xOVSiUefvjhEV+ze/fuOH78ePT09NQemzlzZsyYMSN27txZe+yxxx6Lu+++OzZu3BiVSimuAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACi5CY0+wGgMDAzEhRdeOOyxCRMmxJQpU2JgYOCUr5k4cWJMnjx52ONTp06tvaZarcZNN90Un/vc52LGjBnxi1/8YlTnqVarUa1Wax8PDg6OYRqgGegYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMpSfjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqG8tMx5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1BelUZ+8U996lPR1tZ22l/79+8ft69/xx13xKxZs+IDH/jAmF63Zs2a6OzsrP3q6uoapxMC40XHkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDlqH8dAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWobyahsaGhpq1Bc/fPhwPPPMM6d9ziWXXBKbNm2KT37yk/Hss8/WHn/ppZeio6MjtmzZEjfeeOOrXvfd73435s+fH88++2xMnjy59vhFF10UK1asiJUrV8acOXPiZz/7WbS1tUVExNDQUJw8eTJe97rXxWc+85n4q7/6qxHPVK1Wo1qt1j4eHByMrq6uOHr0aEyaNGksVwA0iI4hBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/npGHLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DLkoGUoPx1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOU1oZFf/IILLogLLrjgNZ/X3d0dR44cid27d8fcuXMj4reL5E+ePBnz5s0b8TVz586Nc845J/r7+2PRokUREXHgwIE4ePBgdHd3R0TEv/3bv8VvfvOb2mt+/OMfx4c+9KH44Q9/GJdeeukpz9Pe3h7t7e2jnhNoPjqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DOWnY8hBy5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5ah/HQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMpRXQxfNj9asWbPihhtuiOXLl8eGDRvi+PHj0dvbG+9///tj+vTpERHx5JNPxvz582Pjxo3xjne8Izo7O2PZsmXR19cXU6ZMiUmTJsXHPvax6O7ujquvvjoi4lXL5J9++una15s8eXKhMwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtoxSL5iMiHnjggejt7Y358+dHpVKJRYsWxb333lv7/PHjx+PAgQPx61//uvbYF77whdpzq9VqLFiwIL70pS814vgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANaVZND9lypTYvHnzKT9/8cUXx9DQ0LDHOjo6Yv369bF+/fpRfY0/+ZM/edXvAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBvlUYfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDVWDQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDCL5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZtE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMEsmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomEXzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWzaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYBbNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMonkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAglk0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwi+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmbRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBLJoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJhF8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFs2geAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGAWzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzKJ5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJZNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMIvmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApm0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwSyaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZvQ6ANkMDQ0FBERg4ODDT4JtI43vvGN0dbWVrffT8fQGFqGHLQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhzq2bKOoTH8TIYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOfj7m1B+fiZDDlqGHLQMOWgZctAy5KBlyEHLkIOWIYdGtjwwMBADAwN1+9qQzbRp02LatGmjeq6fy1B+Z9qxRfN1cOzYsYiI6OrqavBJoHUcPXo0Jk2aVLffT8fQGFqGHLQMOWgZctAy5FDvlp955pmI0DIUzc9lyEHLkIOWIQctQw71bFnH0Bh+JkMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHPz9TSg/P5MhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ/mdacdtQ0NDQ+NwnpZy8uTJOHToULzxjW+Mtra2Rh+n6Q0ODkZXV1f87//+b11/+LSiVr7Levc2Xh238nv0+9zFb7mH4car5aGhoZgxY0aqe876vZNxrlacqSw/l+st43v9sqyzZZ0roj6zjUfLBw4ciNmzZ6e889HK/H03Wu6g2Dso+uey99cdRLiDiPrfQb1bPnLkSPzBH/xBHDx4MDo7O+v2+zZStu+7bPNE5JvpTOZp1f9eflm274GxaNXZs87t/2OPTrb33zzNzc/l0cv23o8Hd/TamumOWrXlV2qm9+NsmKO5FD1HPZurZ8dZ3s8iubMzk+HemuVncoa7HA/u5dTczXDN0nKjZfu+ME9zG495mqXlbO9VhJnKIstMzdJyEbK8Z83AXdZXs/5d7JFa9t7Xj7usj2z32Aw/l8t8p2U+e4TzN1o9z98MLddL2d/XUzFX+TRitkwtFyHz99+ptNrMZZ3Xv3ccm7KfP6L8Mzj/yPy7iuHK+n3i3MVqxnM369/fLEozvif1ZL5yG+18Gf9bOct7m2GODDNElGOOMrVchvv8fc5cDGcuV8v1UMb3vNm4w7OX+e9ij8T3zKm5m5G18r00Y8tlfD/KeOaIcp7bmUfWjC3XUxnf95GYo3k06wxFttysd5CF+x0/ZbjbRvxcLsO9jBezt+bsEeM/f6P+jJ3lfTVHc8kyR8TYZ9Hy2TFHc2nVOc604wlncjiGq1Qq8Za3vKXRxyidSZMmlTrSZuIuz954d+w9+h138VvuYXy83PLg4GBE5LznjDNF5JzLTGeubH++zvhevyzrbFnnimiu2SqVSrz5zW+OiOY6V6O4A3cQUc47GO3P5TLOVm/uwB1ENO8dVCqViIjo7OxsyvOdjWa98zOVbZ6IfDM1cp6y/ffyy7J9D4xFq87eqnOPVvb/j22e5mae+inbz+Vs7/14cEevLeMdla3lV8ryfpijuZRxjvHouIz30Gju7My4t98525bd5cjcy6m5m/FR5j9fR+T7vjBPc2vmefxcfjUzlUPGmc5GGX4ue8/qx13WVzPd52u13ExnLTt3WR/ucWRn83O5zHda5rNHOH+jNeP5m+HP2M14L/VgrvIp82zN0HIRyvwenalWm7nV5v19rfLvHct+/ojyz+D84yvLv6tw7mI5d3Mp85+vs74nLzNfuRU9XzO1nOW9zTBHhhki8swxGkW0XMb7dOZiOHP9NNPP5dNp1vsrE3d49pr5Dv17x2K5m5G5l7NXz5bL+H6U8cwR5Ty3M4+vZv0zdpnu8HTM0TwyzHA6o2k5+x00mvsdP610t2P5udxK9/L7zN6as0eUZ/6x/hm7LHO9FnM0lyxzRDRuFi2Xmzmay3jPURm33xkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEVk0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwi+YpXHt7e6xevTra29sbfZTSc5fNz3v0O+7it9xDMTLec8aZInLOZabWkfless6Wda6I5p2tWc9VJHfgDiJy30Hm2UbLHbiDiOa/g2Y/35nINlO2eSLyzZRtniK08p216uytOveZynZf5mlu5mld7uq1uaPX5o6aS5b3wxzNJcscZ8s9jJ07OzPurX7c5cjcy6m5G0aS7fvCPM0t2zyvlHE2M5VDxpmy857Vj7usrzLdZ5nO2uzcZX24x/or852W+ewRzt9oZT//eMl6L+Yqn8yzZdGK71Grzdxq856pst9T2c8fUf4ZnL9YZTvvy5y7WM5NvWR/T8xXbtnnO50ss2eYI8MMEXnmaBZlvE9nLoYztx73d/bc4dlrtTtstXnHwt2MzL00lzK+H2U8c0Q5z+3MrSnLHZqjeWSY4Wy5g/HlfsePux1ZK9+L2Vtz9oi882eZyxzNJcscEeWZpSznfC3maC7mGJu2oaGhoXH9CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMU2n0AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABajUXzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWzaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYBbNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMonkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAglk0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwi+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmbRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBLJoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJhF8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFs2geAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGAWzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzKJ5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJZNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMIvmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApm0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwSyaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbNoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgFs0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMyieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICCWTRfB0NDQzE4OBhDQ0ONPgpwhnQMOWgZctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGcpPx5CDliEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1D+ekYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZSgPi+br4NixY9HZ2RnHjh1r9FGAM6RjyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy1B+OoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZyk/HkIOWIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUN5WDQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDCL5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZtE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMEsmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomEXzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWzaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYBbNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMonkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAglk0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwi+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmbRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBLJoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJhF8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFs2geAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGAWzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzKJ5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJZNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMIvmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApm0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwSyaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbNoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgFs0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMyieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICClW7R/Pr16+Piiy+Ojo6OmDdvXjzyyCOnff6WLVti5syZ0dHREVdccUV85zvfOeVzP/zhD0dbW1usXbu2zqcGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+J1SLZp/8MEHo6+vL1avXh0//elP421ve1ssWLAgfvnLX474/B07dsRNN90Uy5Yti0cffTQWLlwYCxcujL17977qud/4xjdi165dMX369PEeAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhxpVo0f88998Ty5ctj6dKlMXv27NiwYUOce+658dWvfnXE569bty5uuOGGuP3222PWrFnx2c9+Nt7+9rfHfffdN+x5Tz75ZHzsYx+LBx54IM4555wiRgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABaWGkWzb/44ouxe/fu6OnpqT1WqVSip6cndu7cOeJrdu7cOez5ERELFiwY9vyTJ0/GLbfcErfffnv80R/90fgcHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAVJjT6AKP19NNPx4kTJ2Lq1KnDHp86dWrs379/xNcMDAyM+PyBgYHax3/7t38bEyZMiI9//OOjPku1Wo1qtVr7eHBwcNSvBZqDjiEHLUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1D+ekYctAy5KBlyEHLkIOWIQctQw5ahhy0DDloGXLQMuSgZSg/HUMOWoYctAw5aBly0DLkoGXIQcuQg5YhBy1DDlqGHLQM5VVp9AEaaffu3bFu3br453/+52hraxv169asWROdnZ21X11dXeN4SmA86Bhy0DLkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAylJ+OIQctQw5ahhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoby0zHkoGXIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUF5tQ0NDQ40+xGi8+OKLce6558ZDDz0UCxcurD2+ZMmSOHLkSHzzm9981WtmzJgRfX19sWLFitpjq1evjq1bt8aePXti7dq10dfXF5VKpfb5EydORKVSia6urnjiiSdGPEu1Wo1qtVr7eHBwMLq6uuLo0aMxadKks54VGH86hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAzlp2PIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWofx0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBly0DKU14RGH2C0Jk6cGHPnzo3+/v7aovmTJ09Gf39/9Pb2jvia7u7u6O/vH7Zofvv27dHd3R0REbfcckv09PQMe82CBQvilltuiaVLl57yLO3t7dHe3n52AwENpWPIQcuQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLUH46hhy0DDloGXLQMuSgZchBy5CDliEHLUMOWoYctAw5aBnKT8eQg5YhBy1DDlqGHLQMOWgZctAy5KBlyEHLkIOWIQctQ3mVZtF8RERfX18sWbIkrrrqqnjHO94Ra9eujeeff762FP7WW2+NN7/5zbFmzZqIiPjEJz4R73znO+Pzn/98/Nmf/Vl87Wtfi5/85Cfx5S9/OSIizj///Dj//POHfY1zzjknpk2bFn/4h39Y7HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAyyjVovn3ve99cfjw4Vi1alUMDAzEnDlzYtu2bTF16tSIiDh48GBUKpXa86+55prYvHlz3HnnnfHpT386Lrvssti6dWtcfvnljRoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFyL5iMient7o7e3d8TPfe9733vVY4sXL47FixeP+vd/4oknzvBkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKNTafQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqNRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbNoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBgFs0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMyieQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICCWTQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUDCL5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZtE8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMEsmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAomEXzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWzaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgYBbNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTMonkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAglk0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAwi+YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmbRPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDBLJoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJhF8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFs2geAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGAWzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzKJ5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgIJZNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQMIvmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApm0TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwSyaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiYRfMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbNoHgAAAAAAAAAAAAAA/j979x5uVVnvC/y3lshFE8iUq4hKKl4QU46Eth9vJJa7I2beMiVvHdtyjkiZnNTwsgs10zRRa6d28ZpmVm6zCAW3ipdQy1tk4c4SUTMBL7kkGOcPD0sXLFhzzjUvY7zz83ken2KuueB93zG+Y/7GGO8cLwAAAAAAAAAAAAAAAAAAAAAAAADUmYXmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOqscAvNz5w5M7bYYovo3bt3jB07Nh566KF1vv/mm2+OkSNHRu/evWPUqFFxxx13tP9s+fLlcdppp8WoUaNiww03jCFDhsTRRx8dixYtqnU3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCZWqIXmb7rpppg6dWpMnz49HnnkkRg9enRMmDAhXnrppU7ff//998cRRxwRxx13XDz66KMxceLEmDhxYjzxxBMREfHmm2/GI488EmeeeWY88sgjceutt8aCBQvif/7P/1nPbgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNplALzV900UVxwgknxDHHHBPbb799XHnllbHBBhvE1Vdf3en7L7nkkth///3j1FNPje222y7OPffc2GWXXeKyyy6LiIh+/frFrFmz4tBDD41tt902PvzhD8dll10W8+fPj+eee66eXQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaSGEWmn/77bdj/vz5MX78+PbXWltbY/z48TFv3rxOf2fevHkd3h8RMWHChLW+PyJi6dKl0dLSEv37969KuwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABW16PRDSjV3/72t1ixYkUMHDiww+sDBw6M3//+953+zuLFizt9/+LFizt9/1tvvRWnnXZaHHHEEdG3b9+1tqWtrS3a2tra/7xs2bJSuwHkhBxDGmQZ0iDLkAZZhjTIMqRBliENsgxpkGVIgyxDGmQZik+OIQ2yDGmQZUiDLEMaZBnSIMuQBlmGNMgypEGWIQ2yDGmQZSg+OYY0yDKkQZYhDbIMaZBlSIMsQxpkGdIgy5AGWYY0yDKkQZahuFob3YC8WL58eRx66KGRZVlcccUV63zvjBkzol+/fu3/DRs2rE6tBKpFjiENsgxpkGVIgyxDGmQZ0iDLkAZZhjTIMqRBliENsgzFJ8eQBlmGNMgypEGWIQ2yDGmQZUiDLEMaZBnSIMuQBlmGNMgyFJ8cQxpkGdIgy5AGWYY0yDKkQZYhDbIMaZBlSIMsQxpkGdIgy1BcLVmWZY1uRCnefvvt2GCDDeKWW26JiRMntr8+adKkWLJkSfz0pz9d43c233zzmDp1akyZMqX9tenTp8dtt90Wv/3tb9tfW7XI/MKFC+Ouu+6KD3zgA+tsS1tbW7S1tbX/edmyZTFs2LBYunRp9O3bt/JOAnUjx5AGWYY0yDKkQZYhDbIMaZBlSIMsQxpkGdIgy5AGWYbik2NIgyxDGmQZ0iDLkAZZhjTIMqRBliENsgxpkGVIgyxDGmQZik+OIQ2yDGmQZUiDLEMaZBnSIMuQBlmGNMgypEGWIQ2yDGmQZSiuHo1uQKl69uwZu+66a8yePbt9ofmVK1fG7NmzY/LkyZ3+zrhx42L27NkdFpqfNWtWjBs3rv3PqxaZf+aZZ+Luu+/ucpH5iIhevXpFr169utUfoLHkGNIgy5AGWYY0yDKkQZYhDbIMaZBlSIMsQxpkGdIgy1B8cgxpkGVIgyxDGmQZ0iDLkAZZhjTIMqRBliENsgxpkGVIgyxD8ckxpEGWIQ2yDGmQZUiDLEMaZBnSIMuQBlmGNMgypEGWIQ2yDMVVmIXmIyKmTp0akyZNijFjxsRuu+0W3/zmN+ONN96IY445JiIijj766Bg6dGjMmDEjIiJOPvnk2HPPPeMb3/hGHHDAAXHjjTfGb37zm/jOd74TEe8sMv+pT30qHnnkkbj99ttjxYoVsXjx4oiI2HjjjaNnz56N6SgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQtEItNH/YYYfFyy+/HF/5yldi8eLFsfPOO8edd94ZAwcOjIiI5557LlpbW9vfv/vuu8f1118fZ5xxRnz5y1+OrbfeOm677bbYcccdIyLi+eefj5/97GcREbHzzjt3+Lfuvvvu2GuvverSLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKC5FGqh+YiIyZMnx+TJkzv92Zw5c9Z47ZBDDolDDjmk0/dvscUWkWVZNZsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0KXWRjcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoNlYaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgziw0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBnFpoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqDMLzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUmYXmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrMQvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdWaheQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6s9A8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ1ZaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgziw0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBnFpoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqDMLzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUmYXmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrMQvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdWaheQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6s9A8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ1ZaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgziw0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBnFpoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqDMLzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUmYXmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrMQvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdWaheQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6s9A8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ1VbaH5t956Ky688MJq/XUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAySprofmXX345br/99vjVr34VK1asiIiI5cuXxyWXXBJbbLFFnHfeeTVpJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBKepT6xnvvvTf+9V//NZYtWxYtLS0xZsyYuOaaa2LixInRo0ePOOuss2LSpEm1bCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAElpLfeMZZ5wRH//4x+N3v/tdTJ06NR5++OE46KCD4mtf+1o89dRTceKJJ0afPn1q2daIiJg5c2ZsscUW0bt37xg7dmw89NBD63z/zTffHCNHjozevXvHqFGj4o477ujw8yzL4itf+UoMHjw4+vTpE+PHj49nnnmmll0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmlzJC80//vjjccYZZ8SOO+4Y55xzTrS0tMQFF1wQn/rUp2rZvg5uuummmDp1akyfPj0eeeSRGD16dEyYMCFeeumlTt9///33xxFHHBHHHXdcPProozFx4sSYOHFiPPHEE+3vueCCC+LSSy+NK6+8Mh588MHYcMMNY8KECfHWW2/Vq1sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAkyl5oflXX301Ntlkk4iI6NOnT2ywwQax44471qxhnbnooovihBNOiGOOOSa23377uPLKK2ODDTaIq6++utP3X3LJJbH//vvHqaeeGtttt12ce+65scsuu8Rll10WERFZlsU3v/nNOOOMM+LAAw+MnXbaKX7wgx/EokWL4rbbbqtjzwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBmUvJC8xERTz31VPzud7+L3/3ud5FlWSxYsKD9z6v+q5W333475s+fH+PHj29/rbW1NcaPHx/z5s3r9HfmzZvX4f0RERMmTGh//7PPPhuLFy/u8J5+/frF2LFj1/p3AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHRXj3LevO+++0aWZe1//td//deIiGhpaYksy6KlpSVWrFhR3Rb+f3/7299ixYoVMXDgwA6vDxw4MH7/+993+juLFy/u9P2LFy9u//mq19b2ns60tbVFW1tb+5+XLVtWekeAXJBjSIMsQxpkGdIgy5AGWYY0yDKkQZYhDbIMaZBlSIMsQ/HJMaRBliENsgxpkGVIgyxDGmQZ0iDLkAZZhjTIMqRBliENsgzFJ8eQBlmGNMgypEGWIQ2yDGmQZUiDLEMaZBnSIMuQBlmGNMgyFFdrqW989tlnY+HChfHss8+u8d+q1xcuXFjLtubGjBkzol+/fu3/DRs2rNFNAsokx5AGWYY0yDKkQZYhDbIMaZBlSIMsQxpkGdIgy5AGWYbik2NIgyxDGmQZ0iDLkAZZhjTIMqRBliENsgxpkGVIgyxDGmQZik+OIQ2yDGmQZUiDLEMaZBnSIMuQBlmGNMgypEGWIQ2yDGmQZSiulizLslLeeM4558QXv/jF2GCDDWrdpk69/fbbscEGG8Qtt9wSEydObH990qRJsWTJkvjpT3+6xu9svvnmMXXq1JgyZUr7a9OnT4/bbrstfvvb38bChQtjxIgR8eijj8bOO+/c/p4999wzdt5557jkkks6bUtbW1u0tbW1/3nZsmUxbNiwWLp0afTt27fbfQVqT44hDbIMaZBlSIMsQxpkGdIgy5AGWYY0yDKkQZYhDbIMxSfHkAZZhjTIMqRBliENsgxpkGVIgyxDGmQZ0iDLkAZZhjTIMhSfHEMaZBnSIMuQBlmGNMgypEGWIQ2yDGmQZUiDLEMaZBnSIMtQXD1KfePZZ58dJ554YsMWmu/Zs2fsuuuuMXv27PaF5leuXBmzZ8+OyZMnd/o748aNi9mzZ3dYaH7WrFkxbty4iIjYcsstY9CgQTF79uz2heaXLVsWDz74YHz+859fa1t69eoVvXr1qkq/gMaQY0iDLEMaZBnSIMuQBlmGNMgypEGWIQ2yDGmQZUiDLEPxyTGkQZYhDbIMaZBlSIMsQxpkGdIgy5AGWYY0yDKkQZYhDbIMxSfHkAZZhjTIMqRBliENsgxpkGVIgyxDGmQZ0iDLkAZZhjTIMhRXyQvNZ1lWy3aUZOrUqTFp0qQYM2ZM7LbbbvHNb34z3njjjTjmmGMiIuLoo4+OoUOHxowZMyIi4uSTT44999wzvvGNb8QBBxwQN954Y/zmN7+J73znOxER0dLSElOmTIl///d/j6233jq23HLLOPPMM2PIkCHti9kDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVFvJC81HvLMweyMddthh8fLLL8dXvvKVWLx4cey8885x5513xsCBAyMi4rnnnovW1tb29+++++5x/fXXxxlnnBFf/vKXY+utt47bbrstdtxxx/b3fOlLX4o33ngjPve5z8WSJUviIx/5SNx5553Ru3fvuvcPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaA5lLTS/zTbbdLnY/N///vduNagrkydPjsmTJ3f6szlz5qzx2iGHHBKHHHLIWv++lpaWOOecc+Kcc86pVhMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1qmshebPPvvs6NevX63aAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAUylpo/vDDD48BAwbUqi0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATaG11De2tLTUsh0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATaPkheazLKtlOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaRo9S37hy5cpatgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgabQ2ugEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzcZC8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1ZqF5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDqz0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnVloHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDOLDQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUGcWmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoMwvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSZheYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6sxC8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1ZqF5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDqz0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnVloHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDOLDQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUGcWmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoMwvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSZheYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6sxC8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1ZqF5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDqz0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnVloHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDOLDQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUGcWmgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACos8IsNP/3v/89jjzyyOjbt2/0798/jjvuuHj99dfX+TtvvfVWnHTSSfGBD3wg3ve+98XBBx8cL774YvvPf/vb38YRRxwRw4YNiz59+sR2220Xl1xySa27AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADS5wiw0f+SRR8aTTz4Zs2bNittvvz3uueee+NznPrfO3znllFPi5z//edx8880xd+7cWLRoUXzyk59s//n8+fNjwIABce2118aTTz4Zp59+evzf//t/47LLLqt1dwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAm1qPRDSjF008/HXfeeWc8/PDDMWbMmIiI+Na3vhUf//jH48ILL4whQ4as8TtLly6Nq666Kq6//vrYZ599IiLimmuuie222y4eeOCB+PCHPxzHHntsh9/ZaqutYt68eXHrrbfG5MmTa98xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoCm1NroBpZg3b17079+/fZH5iIjx48dHa2trPPjgg53+zvz582P58uUxfvz49tdGjhwZm2++ecybN2+t/9bSpUtj4403rl7jAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbTo9ENKMXixYtjwIABHV7r0aNHbLzxxrF48eK1/k7Pnj2jf//+HV4fOHDgWn/n/vvvj5tuuin+8z//c53taWtri7a2tvY/L1u2rIReAHkix5AGWYY0yDKkQZYhDbIMaZBlSIMsQxpkGdIgy5AGWYbik2NIgyxDGmQZ0iDLkAZZhjTIMqRBliENsgxpkGVIgyxDGmQZik+OIQ2yDGmQZUiDLEMaZBnSIMuQBlmGNMgypEGWIQ2yDGmQZSiu1kb+49OmTYuWlpZ1/vf73/++Lm154okn4sADD4zp06fHfvvtt873zpgxI/r169f+37Bhw+rSRqB65BjSIMuQBlmGNMgypEGWIQ2yDGmQZUiDLEMaZBnSIMtQfHIMaZBlSIMsQxpkGdIgy5AGWYY0yDKkQZYhDbIMaZBlSIMsQ/HJMaRBliENsgxpkGVIgyxDGmQZ0iDLkAZZhjTIMqRBliENsgzF1ZJlWdaof/zll1+OV155ZZ3v2WqrreLaa6+NL3zhC/Hqq6+2v/7Pf/4zevfuHTfffHMcdNBBa/zeXXfdFfvuu2+8+uqr0b9///bXhw8fHlOmTIlTTjml/bWnnnoq9t577zj++OPjq1/9apftbmtri7a2tvY/L1u2LIYNGxZLly6Nvn37dvn7QOPJMaRBliENsgxpkGVIgyxDGmQZ0iDLkAZZhjTIMqRBlqH45BjSIMuQBlmGNMgypEGWIQ2yDGmQZUiDLEMaZBnSIMuQBlmG4pNjSIMsQxpkGdIgy5AGWYY0yDKkQZYhDbIMaZBlSIMsQxpkGYqrRyP/8U033TQ23XTTLt83bty4WLJkScyfPz923XXXiHhnIfmVK1fG2LFjO/2dXXfdNdZff/2YPXt2HHzwwRERsWDBgnjuuedi3Lhx7e978sknY5999olJkyaVtMh8RESvXr2iV69eJb0XyCc5hjTIMqRBliENsgxpkGVIgyxDGmQZ0iDLkAZZhjTIMhSfHEMaZBnSIMuQBlmGNMgypEGWIQ2yDGmQZUiDLEMaZBnSIMtQfHIMaZBlSIMsQxpkGdIgy5AGWYY0yDKkQZYhDbIMaZBlSIMsQ3G1NroBpdhuu+1i//33jxNOOCEeeuihuO+++2Ly5Mlx+OGHx5AhQyIi4vnnn4+RI0fGQw89FBER/fr1i+OOOy6mTp0ad999d8yfPz+OOeaYGDduXHz4wx+OiIgnnngi9t5779hvv/1i6tSpsXjx4li8eHG8/PLLDesrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkL4ejW5Aqa677rqYPHly7LvvvtHa2hoHH3xwXHrppe0/X758eSxYsCDefPPN9tcuvvji9ve2tbXFhAkT4vLLL2//+S233BIvv/xyXHvttXHttde2vz58+PD47//+77r0CwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGg+hVlofuONN47rr79+rT/fYostIsuyDq/17t07Zs6cGTNnzuz0d84666w466yzqtlMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgC61NroBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3GQvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdWaheQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6s9A8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ1ZaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgziw0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBnFpoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqDMLzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUmYXmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrMQvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdWaheQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6s9A8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ1ZaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgziw0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBnFpoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqDMLzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUmYXmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrMQvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdWaheQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6s9A8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ1ZaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgziw0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBnFpoHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqDMLzQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUmYXmAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrMQvMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdWaheQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6s9A8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ0VZqH5v//973HkkUdG3759o3///nHcccfF66+/vs7feeutt+Kkk06KD3zgA/G+970vDj744HjxxRc7fe8rr7wSm222WbS0tMSSJUtq0AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAdxRmofkjjzwynnzyyZg1a1bcfvvtcc8998TnPve5df7OKaecEj//+c/j5ptvjrlz58aiRYvik5/8ZKfvPe6442KnnXaqRdMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOijEQvNPP/103HnnnfHd7343xo4dGx/5yEfiW9/6Vtx4442xaNGiTn9n6dKlcdVVV8VFF10U++yzT+y6665xzTXXxP333x8PPPBAh/deccUVsWTJkvjiF79Yj+4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATa5HoxtQinnz5kX//v1jzJgx7a+NHz8+Wltb48EHH4yDDjpojd+ZP39+LF++PMaPH9/+2siRI2PzzTePefPmxYc//OGIiHjqqafinHPOiQcffDAWLlxYUnva2tqira2t/c/Lli2rtGtAg8gxpEGWIQ2yDGmQZUiDLEMaZBnSIMuQBlmGNMgypEGWofjkGNIgy5AGWYY0yDKkQZYhDbIMaZBlSIMsQxpkGdIgy5AGWYbik2NIgyxDGmQZ0iDLkAZZhjTIMqRBliENsgxpkGVIgyxDGmQZiqu10Q0oxeLFi2PAgAEdXuvRo0dsvPHGsXjx4rX+Ts+ePaN///4dXh84cGD777S1tcURRxwRX//612PzzTcvuT0zZsyIfv36tf83bNiw8joENJwcQxpkGdIgy5AGWYY0yDKkQZYhDbIMaZBlSIMsQxpkGYpPjiENsgxpkGVIgyxDGmQZ0iDLkAZZhjTIMqRBliENsgxpkGUoPjmGNMgypEGWIQ2yDGmQZUiDLEMaZBnSIMuQBlmGNMgypEGWobhasizLGvWPT5s2Lc4///x1vufpp5+OW2+9Nb7//e/HggULOvxswIABcfbZZ8fnP//5NX7v+uuvj2OOOSba2to6vL7bbrvF3nvvHeeff35MnTo1Fi1aFDfeeGNERMyZMyf23nvvePXVV9dYoP692traOvy9y5Yti2HDhsXSpUujb9++XXUbyAE5hjTIMqRBliENsgxpkGVIgyxDGmQZ0iDLkAZZhjTIMhSfHEMaZBnSIMuQBlmGNMgypEGWIQ2yDGmQZUiDLEMaZBnSIMtQfHIMaZBlSIMsQxpkGdIgy5AGWYY0yDKkQZYhDbIMaZBlSIMsQ3H1aOQ//oUvfCE++9nPrvM9W221VQwaNCheeumlDq//85//jL///e8xaNCgTn9v0KBB8fbbb8eSJUs6LBr/4osvtv/OXXfdFY8//njccsstERGRZVlERGyyySZx+umnx9lnn93p392rV6/o1atXKV0EckqOIQ2yDGmQZUiDLEMaZBnSIMuQBlmGNMgypEGWIQ2yDMUnx5AGWYY0yDKkQZYhDbIMaZBlSIMsQxpkGdIgy5AGWYY0yDIUnxxDGmQZ0iDLkAZZhjTIMqRBliENsgxpkGVIgyxDGmQZ0iDLUFwNXWh+0003jU033bTL940bNy6WLFkS8+fPj1133TUi3lkkfuXKlTF27NhOf2fXXXeN9ddfP2bPnh0HH3xwREQsWLAgnnvuuRg3blxERPz4xz+Of/zjH+2/8/DDD8exxx4b//Vf/xUjRozobvcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOtXQheZLtd1228X+++8fJ5xwQlx55ZWxfPnymDx5chx++OExZMiQiIh4/vnnY999940f/OAHsdtuu0W/fv3iuOOOi6lTp8bGG28cffv2jf/9v/93jBs3Lj784Q9HRKyxmPzf/va39n+vf//+de0jAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DwKsdB8RMR1110XkydPjn333TdaW1vj4IMPjksvvbT958uXL48FCxbEm2++2f7axRdf3P7etra2mDBhQlx++eWNaD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAu8IsNL/xxhvH9ddfv9afb7HFFpFlWYfXevfuHTNnzoyZM2eW9G/stddea/wdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANXW2ugGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQbC80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1JmF5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqzELzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHVmoXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOrPQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdWWgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM4sNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQZxaaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgzC80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1JmF5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqzELzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHVmoXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOrPQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdWWgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM4sNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQZxaaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgzC80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1JmF5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqzELzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHVmoXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOrPQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECd9Wh0A1KQZVlERCxbtqzBLYHmsdFGG0VLS0vV/j45hsaQZUiDLEMaZBnSIMuQBlmGNMgypEGWIQ2yDGmQZUhDNbMsx9AYPpMhDbIMaZBlSIMsQxpkGdIgy5AGWYY0yDKkQZYhDbIMaTB/E4rPZzKkQZYhDbIMaZBlSIMsQxpkGdIgy5AGWYY0yDKkoZFZXrx4cSxevLhq/zakZNCgQTFo0KCS3ltpji00XwWvvfZaREQMGzaswS2B5rF06dLo27dv1f4+OYbGkGVIgyxDGmQZ0iDLkIZqZ/mVV16JCFmGevO5DGmQZUiDLEMaZBnSUM0syzE0hs9kSIMsQxpkGdIgy5AGWYY0yDKkQZYhDbIMaZBlSIMsQxrM34Ti85kMaZBlSIMsQxpkGdIgy5AGWYY0yDKkQZYhDbIMaZBlKL5Kc9ySZVlWg/Y0lZUrV8aiRYtio402ipaWlkY3J/eWLVsWw4YNi7/85S9V/fBpRs08ltXOW61y3MzbaHXG4h3GoaNaZTnLsth8882TGudU950U+9WMfSrK53K1pbitV0m1b6n2K6I6fatFlhcsWBDbb799kmNeqpT3u1IZg/qOQb0/l21fYxBhDCKqPwbVzvKSJUvi/e9/fzz33HPRr1+/qv29jZTafpdafyLS61Ml/WnW8+VVUtsHytGsfU+1365jlya17a8/+eZzuXSpbftaMEZdy9MYNWuW3ytP26M79CNf6t2PamaumjlOZXvWkzGrTArjlpfP5BTGshaMy9oZm47ykuVGS22/0J98q0V/8pLl1LZVhD4VRSp9ykuW6yGVbZYHxrK68joXu7Ms2/bVYyyrI7VxzMPncpHHtMhtj9D+Rqtm+/OQ5Wop+nZdG/0qnkb0LaUs10PK+9/aNFufi9pf33csT9HbH1H8Pmh/53yvoqOi7ifaXV95bHde52/WSx63STXpX7GV2r8Uz5VT2bYp9COFPkQUox9FynIRxnN12lwf2lysLFdDEbd53hjD7kt5LnZn7DNrZ2w618zjkscsF3F7FLHNEcVstzZ3Lo9ZrqYibvfO6Ed+5LUP9cxyXscgFca3doowto34XC7CuNSKvjdn3yNq3/9G1dipbFf9yJdU+hFRfl9kuXv0I1+atR+V5rhHJY2jo9bW1thss80a3YzC6du3b6FDmifGsvtqnWPb6F3G4h3GoTZWZXnZsmURkeY4p9iniDT7pU+VK1p9neK2XiXVvqXar4h89a21tTWGDh0aEflqV6MYA2MQUcwxKPVzuYh9qzZjYAwi8jsGra2tERHRr1+/XLavO/I65pVKrT8R6fWpkf0p2vnyKqntA+Vo1r43a79Llfp1bP3JN/2pnqJ9Lqe27WvBGHUtxTEqWpbfK5XtoR/5UsR+1CLHRRyHRjNmlTFu7+pulo1l54zL2hmb2ihyfR2R3n6hP/mW5/74XF6TPhVDin3qjiJ8Lttm1WMsqytP49lVlvPU1qIzltVhHDvXnc/lIo9pkdseof2Nlsf256HGzuO4VIN+FU+R+5aHLNdDkbdRpZqtz83W39U1y/cdi97+iOL3QftrK5XvVWh3fWl3vhS5vk51m6yif8VW7/7lKcupbNsU+pFCHyLS6Ucp6pHlIo6nNteHNldPnj6X1yWv41ckxrD78jyGvu9YX8amc8al+6qZ5SJujyK2OaKY7dbm2sprjV2kMVwX/ciPFPqwLqVkOfUxaDTjWzvNNLblfC4307isTt+bs+8Rxel/uTV2UfrVFf3Il1T6EdG4vshyselHvtS6H601+5sBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6JSF5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqzELz1F2vXr1i+vTp0atXr0Y3pfCMZf7ZRu8yFu8wDvWR4jin2KeINPulT80j5XFJtW+p9isiv33La7vqyRgYg4i0xyDlvpXKGBiDiPyPQd7bV4nU+pRafyLS61Nq/amHZh6zZu17s/a7UqmNl/7km/40L2PVNWPUNWOUL6lsD/3Il1T60V3GoXzGrDLGrXqMZeeMy9oZGzqT2n6hP/mWWn/eK8W+6VMxpNin1Nlm1WMsq6tI41mktuadsawO41h9RR7TIrc9Qvsbrejtr5VUx0W/iiflvqWiGbdRs/W52fpbqaKPU9HbH1H8Pmh/fRWtvatod31pN9WS+jbRv2JLvX/rkkrfU+hHCn2ISKcfeVHE8dTm+tDm5mP8us8Ydl+zjWGz9bccxqZzxiVfirg9itjmiGK2W5ubUypjqB/5kUIfussY1JbxrR1j27lmHhd9b86+R6Tb/1T6pR/5kko/IorTl6K0syv6kS/6UZ6WLMuymv4LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHTQ2ugGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQbC80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1JmF5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqzELzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHVmoXnqZosttoiWlpY1/jvppJMa3bRCWbFiRZx55pmx5ZZbRp8+fWLEiBFx7rnnRpZljW4a72F/f4f9taPXXnstpkyZEsOHD48+ffrE7rvvHg8//HCjm1VIzz//fHzmM5+JD3zgA9GnT58YNWpU/OY3v1nr++fMmdNpJhcvXlzHVq9bJceNm2++OUaOHBm9e/eOUaNGxR133FHHFnet3D5973vfW+O9vXv3rnOr163S49qcOXNil112iV69esUHP/jB+N73vlefBpegkj4VIVPVMnPmzNhiiy2id+/eMXbs2HjooYfW+t7ly5fHOeecEyNGjIjevXvH6NGj484776xja0tzzz33xCc+8YkYMmRItLS0xG233dbl7+R5H36vcvv2wgsvxKc//enYZpttorW1NaZMmVKXdlai3L7deuut8dGPfjQ23XTT6Nu3b4wbNy5++ctfNk276qmSTK1y3333RY8ePWLnnXeuWftqrZL+t7W1xemnnx7Dhw+PXr16xRZbbBFXX3117RtbI5WMwXXXXRejR4+ODTbYIAYPHhzHHntsvPLKK7VvbAXK+Szca6+9Oq0RDjjggDq2uDbKGYeIiG9+85ux7bbbRp8+fWLYsGFxyimnxFtvvVWn1tZGinVROfJYQ1U7n5/97GfX+Pn+++9f1TavTa3Gt9zsVkstaqSzzjprje0zcuTIGvaio3L7VOp5Y1G2UWf5aGlpiR122KH9PY3eRo2Q8jnYujTzeVC5fb/33ntjjz32aL+OO3LkyLj44ovr09gcSK2WTq0mTqm+zWOt2h3N+vlSbc1Ym5Sr3PuNzci8h/qrJLt5vGdcbj/yfJ+4kmNFHj9nU5xj0R3nnXdetLS0rLNuyPN+WS+pHJPqLaVjYF6pdddNnds5tW1zc13Lda16Sfm6Vik1dN7vSdeivs2yLL7yla/E4MGDo0+fPjF+/Ph45plnatmNDsrt03/8x3/Ev/zLv8T73//+eP/73x/jx49f4xhSpG1USi3d6G1ER2rV6lHfVlcev/vWzPMSqqnZ53hXk/nilSt6HVr0mrPoNWa57c/beVmt7rM1at5po5Vybl4UKV/nT/G8x/lH/qR0jbgrqV1DLkXK15mrqejzeYo+j6foz0Up+jNQiva8k0rbm4fvYFfyjKg8HGvKbXderi1255lcjbyWV0m7XTerndTnPDbD3MSi13ldKXodWKlUsplKBlPJWbPmqVaKuF8UbR8o4rl0Ec+fi3bOXCQp3v+oN/dbuieP87uqKbXvO1RDM94jKpW5hflV6ryORtd571WU71oX8dpCUa8jFPH8sNFSeDZjCs9jnDFjRvyP//E/YqONNooBAwbExIkTY8GCBV3+Xp7m60ZU1o+8zdutBXNpakdtWVue2bmmK664Inbaaafo27dv+z70i1/8Yq3vz0uNVAtFPH+olqKch1RLEc9n1qbcGjVvtdYq5fQj77VWOX3J2/el3iuFNRaKtLaCLMtyrchy7bJsoXnq5uGHH44XXnih/b9Zs2ZFRMQhhxzS4JYVy/nnnx9XXHFFXHbZZfH000/H+eefHxdccEF861vfanTTeA/7+zvsrx0df/zxMWvWrPjhD38Yjz/+eOy3334xfvz4eP755xvdtEJ59dVXY4899oj1118/fvGLX8RTTz0V3/jGN+L9739/l7+7YMGCDtkcMGBAHVpcmnKPG/fff38cccQRcdxxx8Wjjz4aEydOjIkTJ8YTTzxRz2avUyXHwr59+3b4nT//+c/1am5JKjmuPfvss3HAAQfE3nvvHY899lhMmTIljj/++NzcAOnOsTrPmaqGm266KaZOnRrTp0+PRx55JEaPHh0TJkyIl156qdP3n3HGGfHtb387vvWtb8VTTz0VJ554Yhx00EHx6KOP1rnl6/bGG2/E6NGjY+bMmSW9P+/78HuV27e2trbYdNNN44wzzojRo0fXuHXdU27f7rnnnvjoRz8ad9xxR8yfPz/23nvv+MQnPlH1/TGv7aqncsdglSVLlsTRRx8d++67b41aVh+V9P/QQw+N2bNnx1VXXRULFiyIG264IbbddtsatrK2yh2D++67L44++ug47rjj4sknn4ybb745HnrooTjhhBNq3NLylftZeOutt3aoDZ544olYb731Cn8uXO44XH/99TFt2rSYPn16PP3003HVVVfFTTfdFF/+8pfr3PLqSbUuKkfeaqha5XP//ffv8L4bbrihKu3tSi3Gt9wxqqZa1Ug77LBDh+1z77331qL5naq05lnXeWORttEll1zSoR9/+ctfYuONN14jQ43cRo2Q8jnYujTzeVC5fd9www1j8uTJcc8998TTTz8dZ5xxRpxxxhnxne98p8YtbbzUaunUauLU6tu81ard1ayfL7XQbLVJObpzv7GZmPfQGOVkN8/3jMs9BuXxPnElx4o8fs6mOseiUg8//HB8+9vfjp122qnL9+Zxv6y3VI5J9ZbCMTDv1LqdU+eundq2ebmu5bpWPaV6XavUGjrv96Qjql/fXnDBBXHppZfGlVdeGQ8++GBsuOGGMWHChLo+rLGcPs2ZMyeOOOKIuPvuu2PevHkxbNiw2G+//db4LkNRtlFE17V0HrYR71CrVpf6trry+N23Zp6XUE3NPse7mswX756i16FFrzmLXmOW0/48nZfV6j5bI+edNlI597eKIsXr/Kme9zj/yJfUrhF3JbVryKVI9TpzNRV9Pk8K83iK/lyUoj8DpWjPO6mkvXn5Dna5z4jKy7Gm3Hbn5dpipc/kavS1vEra7bpZbaU+5zHluYlFr/O6kkId2B2pZLPoGUwlZ82ep2or4n5RxH2giOfSRTx/Lto5c1Gkev+j3txv6Z48zu+qltS+71AtzXiPqFTmFuZTqfM68lDnrVK071oX8dpC0a4jFPH8MA9SeDZjCs9jnDt3bpx00knxwAMPxKxZs2L58uWx3377xRtvvLHW38njfN1K+pHHebvVZi5N7agta8szO9e02WabxXnnnRfz58+P3/zmN7HPPvvEgQceGE8++eRaf6fRNVItFPH8oVqKdh5SLUU8n1lduTVqHmutSvqR51qrkvOGvH1fqpJ+5Ol7U+9VlLUVZFmW89IPWS4zyxk0yMknn5yNGDEiW7lyZaObUigHHHBAduyxx3Z47ZOf/GR25JFHNqhFlKJZ93f767vefPPNbL311stuv/32Dq/vsssu2emnn96gVhXTaaedln3kIx8p63fuvvvuLCKyV199tTaNqoGujhuHHnpodsABB3R4bezYsdn/+l//qx7Nq0hXfbrmmmuyfv361bdRZarkuPalL30p22GHHTq8dthhh2UTJkyoSRvLVUmfipipSuy2227ZSSed1P7nFStWZEOGDMlmzJjR6fsHDx6cXXbZZR1ey/vnXkRkP/nJT9b5nrzvw2tTSt/ea88998xOPvnkmrWnmsrt2yrbb799dvbZZ1e/Qf9fXttVT+WMwWGHHZadccYZ2fTp07PRo0fXtF31Ukr/f/GLX2T9+vXLXnnllfo0qs5KGYOvf/3r2VZbbdXhtUsvvTQbOnRoDVtWmXI/C1d38cUXZxtttFH2+uuv16qJdVHuOJx00knZPvvs0+G1qVOnZnvssUdN21lLzVAXlSMPNVQt8jlp0qTswAMPrEr7uqNa49vdMaqWatVIeaoZSulTKeeNRd5GP/nJT7KWlpbsv//7v9tfy9M2aoSUz8HWpZnPgyrt+0EHHZR95jOfqX6Dcia1Wjq1mjjl+jYPtWo1NevnSzU0e23SlUruN9K88x7qqdzs5vWecbn9yOt94kqOFXn8nG2WORaleO2117Ktt946mzVrVpd1Q173y3pK5ZhUb6kcA/NMrbt26tzSqW2bh+tarms1SirXtcqpoVeXt3vS1a5vV65cmQ0aNCj7+te/3v7zJUuWZL169cpuuOGGqrS5K92ti/75z39mG220Ufb973+//bUibaOuauk8bCPepVatLfVt9+T9u2/NPC+hmpp9jnc1mS9enqLXoUWvOYteY3Z3/Bt5Xlar+2x5mXdaT905N8+rVD9jm+W8x/lHY6V8jbgrqV1DLkUq15mrrejzeVKcx1P056IU7RkoRXveSSXtzcN3sCt5RlQejjXVerZVva8tdqfdjbyWV0m7XTerrdTnPKY+N7HodV5XUqwDS5VKNlPIYCo5a+Y81UIR94sU9oEinksX4fy5aOfMRdEs9z/qzf2W8uR9fld3pPZ9h1poxntEpTK3MB/KmdeRlzqvaN+1LuK1hSJeRyji+WHepPBsxlSex/jSSy9lEZHNnTt3re/J23zdzpTSj9U1et5urZlLUztqy9ryzM61e//7359997vf7fRneaiRqq2I5w/VUrTzkGop4vlMZ8qtUfNaa3W31s5TrVVuX/L2falVUlxjIc9rK8jyO2S5+mT5XbXIcmvpS9JD9bz99ttx7bXXxrHHHhstLS2Nbk6h7L777jF79uz4wx/+EBERv/3tb+Pee++Nj33sYw1uGWvTzPu7/fVd//znP2PFihXRu3fvDq/36dMn7r333ga1qph+9rOfxZgxY+KQQw6JAQMGxIc+9KH4j//4j5J+d+edd47BgwfHRz/60bjvvvtq3NLKlXLcmDdvXowfP77DaxMmTIh58+bVo4llK/VY+Prrr8fw4cNj2LBhceCBB8aTTz5Zx1Z2rZLjWt63VXeO1UXJVCXefvvtmD9/fodt19raGuPHj1/rtmtra0vyOJ/3fZjSrFy5Ml577bXYeOONG92UDvLarlq75pprYuHChTF9+vRGN6XuVtVyF1xwQQwdOjS22Wab+OIXvxj/+Mc/Gt20uhk3blz85S9/iTvuuCOyLIsXX3wxbrnllvj4xz/e6KZ1UMln4equuuqqOPzww2PDDTesVTNrrpJx2H333WP+/Pnx0EMPRUTEwoUL44477sjdNi6VuqgytayhapnPOXPmxIABA2LbbbeNz3/+8/HKK690u7210NX4VmOMGmltNdIzzzwTQ4YMia222iqOPPLIeO655xrUwtKt7byx6NvoqquuivHjx8fw4cM7vF7EbUT9Net5UETEo48+Gvfff3/sueeejW5KTaVWS6dWE6tvXe9rJmqTtevO/cZm1czzHuqtnOzm+Zhe7jEoj/eJKzlW5HGbNMMci1KddNJJccABB6yxjdYmj/tlvaVyTKq3FI6BeafW7Zw6tzRq2+bhupbrWnRfuTX0e+XxnnQ169tnn302Fi9e3OE9/fr1i7Fjx9Z1n+xOXfTmm2/G8uXL17hnVZRtFLHuWjov24h3qFVrR33bfSl+962Z5yV0VzPP8a4m88U7KnodWvSas+g1ZnfGv5HnZbW4z1b0eaeV6s65eZ6leJ2/Gc57nH80lmvEXXMNuTkUfT5PavN4iv5clCI+A6VozzuppL15+A52Jc+IysO+Xo1nWzXi2mKl7W70tbxK2u26We2lPucx5bmJRa/zupJaHViuVLJZ9AymkrNmz1O1FXG/KPo+UMRz6aKcPxftnLkomuH+R72531K+FOd3RaT3fYdGcjwvnbmF1VfOvI687KtF/K51Ea8tFO06QhHPD4sspWcz5vF5jEuXLo2IWOfnXR7n666ulH6sLg/zdmkeasvaSv2ZnStWrIgbb7wx3njjjRg3btxa39foGqnainj+UC1FPA+pliKez7xXJTVqHmutatTaeam1Ku1L3r4v1cxrLDTi+1Oy/C5Zzkc/3kuW181C8zTEbbfdFkuWLInPfvazjW5K4UybNi0OP/zwGDlyZKy//vrxoQ99KKZMmRJHHnlko5vGWjTz/m5/fddGG20U48aNi3PPPTcWLVoUK1asiGuvvTbmzZsXL7zwQqObVygLFy6MK664Irbeeuv45S9/GZ///Ofj//yf/xPf//731/o7gwcPjiuvvDJ+/OMfx49//OMYNmxY7LXXXvHII4/UseWlK+W4sXjx4hg4cGCH1wYOHBiLFy+ucesqU0qftt1227j66qvjpz/9aVx77bWxcuXK2H333eOvf/1r/RrahUqOa2vbVsuWLcvFl70q6VPRMlWJv/3tb7FixYqycjZhwoS46KKL4plnnomVK1fGrFmz4tZbby38cT7v+zClufDCC+P111+PQw89tNFN6SCv7aqlZ555JqZNmxbXXntt9OjRo9HNqbuFCxfGvffeG0888UT85Cc/iW9+85txyy23xL/92781uml1s8cee8R1110Xhx12WPTs2TMGDRoU/fr1i5kzZza6aR1U8ln4Xg899FA88cQTcfzxx9eqiXVRyTh8+tOfjnPOOSc+8pGPxPrrrx8jRoyIvfbaK7785S/Xo8lVpy6qTC1rqFrlc//9948f/OAHMXv27Dj//PNj7ty58bGPfSxWrFjRrfbWQlfj290xarTOaqSxY8fG9773vbjzzjvjiiuuiGeffTb+5V/+JV577bUGtnTtujpvLPI2WrRoUfziF79YI0NF20Y0TjOeB2222WbRq1evGDNmTJx00kmFrxG7klotnVpNrL51va9ZqE3WrZL7jc2umec91FO52c3rPeNy+5HX+8SVHCvy+DnbDHMsSnHjjTfGI488EjNmzCjp/XndL+splWNSvaVyDMwzte7aqXNLo7ZtHq5rua5F95RbQ79XHu9JV7u+XfW/jayBu1sXnXbaaTFkyJAOX0ws0jbqqpbOwzbiXWrV2lHfdl+K331rxnkJ1dDsc7yryXzxdxW9Di16zVn0GrM749/o87Ja3Gcr8rzTSnXn3DzPUr3O3wznPc4/Gss14q65htwcij6fJ7V5PEV/LkoRn4FStOedVNLePHwHu5JnROXhWFONZ1s14tpiJe3Ow7W8StrtulltpT7nMfW5iUWv87qSWh1YjlSymUIGU8lZM+epFoq4XxR9HyjiuXRRzp+Lds5cFM1w/6Pe3G8pX4rzuyLS+75DIzmel87cwuoqd15HHuq8In7XuojXFop4HaGI54dFlNqzGfP4PMaVK1fGlClTYo899ogdd9xxre/L23zd1ZXaj9U1et4uzUVtWRupP7Pz8ccfj/e9733Rq1evOPHEE+MnP/lJbL/99p2+Nw81UjUV8fyhWop4HlItRTyfWV0lNWoea61q1Np5qbUq6Uvevi8V0dxrLDTi+1Oy/C5Zri5Zrn2WfdudhrjqqqviYx/7WAwZMqTRTSmcH/3oR3HdddfF9ddfHzvssEM89thjMWXKlBgyZEhMmjSp0c2jE828v9tfO/rhD38Yxx57bAwdOjTWW2+92GWXXeKII46I+fPnN7pphbJy5coYM2ZMfO1rX4uIiA996EPxxBNPxJVXXrnW/WrbbbeNbbfdtv3Pu+++e/zpT3+Kiy++OH74wx/Wpd3lSPG4UUqfxo0bF+PGjWv/8+677x7bbbddfPvb345zzz23Hs3sUorHtUr6VLRM1csll1wSJ5xwQowcOTJaWlpixIgRccwxx8TVV1/d6KbR5K6//vo4++yz46c//WkMGDCg0c1pl9d21dKKFSvi05/+dJx99tmxzTbbNLo5DbFy5cpoaWmJ6667Lvr16xcRERdddFF86lOfissvvzz69OnT4BbW3lNPPRUnn3xyfOUrX4kJEybECy+8EKeeemqceOKJcdVVVzW6eVVz1VVXxahRo2K33XZrdFPqbs6cOfG1r30tLr/88hg7dmz88Y9/jJNPPjnOPffcOPPMMxvdvLpQF+Xb2vJ5+OGHt///UaNGxU477RQjRoyIOXPmxL777lvvZjattdVIH/vYx9r//0477RRjx46N4cOHx49+9KM47rjjGtHUdUr5vPH73/9+9O/fPyZOnNjh9aJtIxqjGc+DIiL+67/+K15//fV44IEHYtq0afHBD34wjjjiiEY3K7dSqKVTq4nVtxSR2mTdKrnf2OxSvH+ZR6lkt9x+5PU+cSrHimaYY9GVv/zlL3HyySfHrFmzonfv3iX9Tl73y3pK5ZhUb6kcA/PMvrl2qXx21ZralnVxXQveUUkN/V55vCedYg3RnT6dd955ceONN8acOXM6bOMibSO1dLGoVWtHfdt9qX1HpFnnJXSXOd7VZb74u4pehxa95ix6jdmd8W/0eZn6r/u6e26eZ0U/Nq5NM+z3zj+KxzViUlT0421q83iK/tlQxGegFO1aViXtzct3sIv6jKjutLuR1xbLaXeeruWVO96um9VWquebqxT9WldXil7ndSW1OrAcqWQzhQymkrNmzlMtFHG/KPo+UMRz6aKcPxftnLkoinicyLsiHgcaTb7fldr3Hagvcwurq4jzOor6XesiXlso4nUEdV995On8tBry+DzGk046KZ544om49957a/rv1Fol/cjDvF2ah9qydlJ/Zue2224bjz32WCxdujRuueWWmDRpUsydO7fTxebzUCNVSxHPH6qlqOch1VLE8xk6V/RaK6VcrdLo701RTLKcP7LctdZGN4Dm8+c//zl+/etfx/HHH9/ophTSqaeeGtOmTYvDDz88Ro0aFUcddVSccsopMWPGjEY3jU40+/5uf+1oxIgRMXfu3Hj99dfjL3/5Szz00EOxfPny2GqrrRrdtEIZPHjwGhf7tttuu3juuefK+nt22223+OMf/1jNplVFqceNQYMGxYsvvtjhtRdffDEGDRpUy+ZVpNJj4frrrx8f+tCHcrWdKjmurW1b9e3bNxdf8qrWsTqvmarUJptsEuutt15ZOdt0003jtttuizfeeCP+/Oc/x+9///t43/veV/jjfN73YdbtxhtvjOOPPz5+9KMfxfjx4xvdnHZ5bVetvfbaa/Gb3/wmJk+eHD169IgePXrEOeecE7/97W+jR48ecddddzW6iTU3ePDgGDp0aPuXnyPeqeWyLIu//vWvDWxZ/cyYMSP22GOPOPXUU2OnnXaKCRMmxOWXXx5XX311vPDCC41uXrtKPgtXeeONN+LGG29M4mZlJeNw5plnxlFHHRXHH398jBo1Kg466KD42te+FjNmzIiVK1fWo9lVpS6qTC1rqHrlc6uttopNNtkkl3V+V+PbnTFqpHJqpP79+8c222yTy+2zNu89byzqNsqyLK6++uo46qijomfPnut8bxG3EbXVrOdBERFbbrlljBo1Kk444YQ45ZRT4qyzzmp0k2oqtVo6tZpYfet6X7NSm3RUrfuNzaLZ5z00UlfZLco943KPQXm5T1zJsSKPn7Opz7Eoxfz58+Oll16KXXbZpf3+zNy5c+PSSy+NHj16xIoVK7r8O/KyXzZSKsekeivqMbBI1LrvUud2TW3bXFzXcl2LynWnhi7KPenu1rer/jdPNXCpddGFF14Y5513XvzqV7+KnXbaaZ3vzfM2Wt3qtXQet1EzU6vWhvq2OlL67lszz0voLnO8q8t88bUreh1a9Jqz6DVmqe3Pw3lZLe6zFXXeaaWqcX+rKFK5zp/6eY/zj8ZzjbhrriE3h6LP50lpHk/Rn4tS1GegFO15J5W0Ny/fwS73GVF5OdZU+myrRl9bLKfdebqWV+54u25WX6nPeUxtbmLR67yupFQHdlcq2SxiBlPJmTxVVxH3iyLvA0U8ly7S+XPRzpmLIvX7H/XmfktlUprf9V6pfd+hkRzPu9bo638pqmReR6PrvFS+a13EawtFuI5QxPPDVBT12Yx5fB7j5MmT4/bbb4+77747Nttss3W+N8/zdcvpxyp5nbdLmtSWtZX6Mzt79uwZH/zgB2PXXXeNGTNmxOjRo+OSSy4p6XfzUItWqojnD9WSynlItRTxfKaSGjWPtVZ3au281VrVOG/Iw/elmnmNhUZ8f0qWZTmP20SWS2OheerummuuiQEDBsQBBxzQ6KYU0ptvvhmtrR2ju9566zX1zdw8a/b93f7auQ033DAGDx4cr776avzyl7+MAw88sNFNKpQ99tgjFixY0OG1P/zhDzF8+PCy/p7HHnssBg8eXM2mVUWpx41x48bF7NmzO7w2a9asGDduXC2bV5FKj4UrVqyIxx9/PFfbqZLjWt63VbWO1XnNVKV69uwZu+66a4dtt3Llypg9e3aX2653794xdOjQ+Oc//xk//vGPC3+cz/s+zNrdcMMNccwxx8QNN9yQq3o0r+2qh759+8bjjz8ejz32WPt/J554Ymy77bbx2GOPxdixYxvdxJrbY489YtGiRfH666+3v/aHP/whWltbS57AUnRr++yNeGeyVF5057Pw5ptvjra2tvjMZz5T62bWXCXjUJRtXCp1UWVqWUPVK59//etf45VXXsllnd/V+HZnjBql3Brp9ddfjz/96U+53D5r897zxiJuo4iIuXPnxh//+MeSbj4WcRtRO818HrS6lStXRltbW6ObUVOp1dKp1cTqW9f7mpXapKNq3W9sFs0+76GRuspuUY7p5R6D8nKfuJJjRR63SepzLEqx7777rnF/ZsyYMXHkkUfGY4891l6rrkte9stGSuWYVG9FPQYWiVr3Xercrqltm4vrWu9yXYtydaeGLso96e7Wt1tuuWUMGjSow3uWLVsWDz74YMP2yVLqogsuuCDOPffcuPPOO2PMmDFd/p153karW72WzuM2amZq1dpQ31ZHKt99My+he8zxri7zxdeu6HVo0WvOoteYpbY/D+dltbjPVtR5p5Wqxv2tokjlOn/q5z3OPxrPNeKuuYbcHIo+nyeleTxFfy5KUZ+BUrTnnVTS3rzdsy31GVF529fLebZVnq4tltLuPF7LK3W8XTerr9TnPKY2N7HodV5XUqoDuyuVbBYxg6nkTJ6qq4j7RZH3gSKeSxfp/Llo58xFkfr9j3pzv6UyqczvWl1q33doJMfzdcvT9b+UVDKvo9H7airftS7itYUiXEco4vlhKor6bMY8PY8xy7KYPHly/OQnP4m77rorttxyyy5/J4/zdSvpR0S+5+2SHrVlfTXDMzvL6WMeatFKFfH8oVpSOQ+pliKez1RSo+ax1qq01s5jrVWN84Y8fF+qmddYaMT3p2RZlvO2TSJkuWQZ1NGKFSuyzTffPDvttNMa3ZTCmjRpUjZ06NDs9ttvz5599tns1ltvzTbZZJPsS1/6UqObxmrs7/bX1d15553ZL37xi2zhwoXZr371q2z06NHZ2LFjs7fffrvRTSuUhx56KOvRo0f21a9+NXvmmWey6667Lttggw2ya6+9tv0906ZNy4466qj2P1988cXZbbfdlj3zzDPZ448/np188slZa2tr9utf/7oRXVirdR03jjrqqGzatGntf77vvvuyHj16ZBdeeGH29NNPZ9OnT8/WX3/97PHHH69nk7tUTp/OPvvs7Je//GX2pz/9KZs/f352+OGHZ717986efPLJejZ5nUo5rq2+/y1cuDDbYIMNslNPPTV7+umns5kzZ2brrbdedueddzaiC2uopE9FyVR33XjjjVmvXr2y733ve9lTTz2Vfe5zn8v69++fLV68OMuyNffhBx54IPvxj3+c/elPf8ruueeebJ999sm23HLL7NVXX21QDzr32muvZY8++mj26KOPZhGRXXTRRdmjjz6a/fnPf86yrHj78HuV27csy9rfv+uuu2af/vSns0cffTRXx51Vyu3bddddl/Xo0SObOXNm9sILL7T/t2TJkqZoVz1Vst+91/Tp07PRo0fXqbXVV27/X3vttWyzzTbLPvWpT2VPPvlkNnfu3GzrrbfOjj/++EZ1odvKHYNrrrkm69GjR3b55Zdnf/rTn7J77703GzNmTLbbbrs1qgtrVe5n4Sof+chHssMOO6zeza2Zcsdh+vTp2UYbbZTdcMMN7ed/I0aMyA499NBGdaHbUq2LypG3Gqra+XzttdeyL37xi9m8efOyZ599Nvv1r3+d7bLLLtnWW2+dvfXWW1Vp87rUYny7GqM89aeUGukLX/hCNmfOnOzZZ5/N7rvvvmz8+PHZJptskr300ks1708lfSrlvLFI22iVz3zmM9nYsWM7/TsbvY0aIeVzsHVp5vOgcvt+2WWXZT/72c+yP/zhD9kf/vCH7Lvf/W620UYbZaeffnqjulA3qdXSqdXEqdW3eatVu6tZP1+qrRlrk3KUcr+Rd5j3UF9dZbco94zL7Ude7xNXMjchj5+zKc+x6I4999wzO/nkk9v/XJT9sp5SOSbVWyrHwDxT666dOnfd1LbNyXUt17XqKfXrWl3V0Kvk9Z50Lerb8847L+vfv3/205/+NPvd736XHXjggdmWW26Z/eMf/6h5fyrp03nnnZf17Nkzu+WWWzrcs3rttdeyLCveNiqllm70NuJdatXqU99WTx6/+9bM8xKqqdnneFeT+eKVK3odWvSas+g1ZrntXyUP52W1us/WyHmnebD6uXlRpXqdP+XzHucf+ZHaNeKupHYNuRSpX2euhqLP50llHk/Rn4tS5GegFO15J5W0Ny/fwe7qGVF5GufutDsv1xbLbffqGnUtr9x2u25WW6nPeUx9bmLR67yupFIHViKVbKaQwVRy1sx5qoUi7hdF3QeKeC5dtPPnop0zF0XK9z/qzf2WyuVxfle1pPZ9h2ppxntEpTK3MN+6+s5FXuq89yrCd62LeG2hiNcRinh+mAcpPJsxhecxfv7zn8/69euXzZkzp8Pn3Ztvvtn+nrzP1620H3mbt1sL5tLUjtqytjyzc03Tpk3L5s6dmz377LPZ7373u2zatGlZS0tL9qtf/SrLsnzWSLVUxPOHainCeUi1FPF8pjPlXsPKY61VST/yXGuV25e8fV+q0n6skofvTa3+71b7emYtzg1lWZbz0o9VZLk0Fpqnrn75y19mEZEtWLCg0U0prGXLlmUnn3xytvnmm2e9e/fOttpqq+z000/P2traGt00VmN/t7+u7qabbsq22mqrrGfPntmgQYOyk046ycXPCv385z/Pdtxxx6xXr17ZyJEjs+985zsdfj5p0qRszz33bP/z+eefn40YMSLr3bt3tvHGG2d77bVXdtddd9W51V1b13Fjzz33zCZNmtThtR/96EfZNttsk/Xs2TPbYYcdsv/8z/+sU0tLV06fpkyZkm2++eZZz549s4EDB2Yf//jHs0ceeaSOre1aKce11fe/LMuyu+++O9t5552znj17ZltttVV2zTXX1Lfh61BJn4qSqWr41re+1b5f7rbbbtkDDzzQ/rPV9+E5c+Zk2223XdarV6/sAx/4QHbUUUdlzz//fANavW533313FhFr/LeqL0Xbh9+rkr519v7hw4fXve1dKbdve+655zrfn3q76qmS/e69iv4Qwkr6//TTT2fjx4/P+vTpk2222WbZ1KlTO0xcKZpKxuDSSy/Ntt9++6xPnz7Z4MGDsyOPPDL761//Wv/Gl6Ccz8Isy7Lf//73WUS036RPRTnjsHz58uyss85qr5eGDRuW/du//VthHsS0NinWReXIYw1VzXy++eab2X777Zdtuumm2frrr58NHz48O+GEE+r24MVaje+6xqiWalEjHXbYYdngwYOznj17ZkOHDs0OO+yw7I9//GNd+lNJn0o9byzKNsqyLFuyZEnWp0+fNa5DrdLobdQIKZ+DrUsznweV2/dLL70022GHHbINNtgg69u3b/ahD30ou/zyy7MVK1Y0pgN1llotnVpNnFJ9m8datTua9fOl2pqxNilXV/cbeYd5D/XVVXaLcs+43H7k+T5xuXMTsiyfn7OpzrHojtW/dFSk/bJeUjkm1VtKx8C8Uuuumzp37dS2zct1Lde16iX161pd1dBZlu970rWob1euXJmdeeaZ2cCBA7NevXpl++67b10/Z8rt0/Dhwzvd56ZPn55lWfG2USm1dKO3ER2pVatLfVs9efzuWzPPS6imZp/jXU3mi1eu6HVo0WvOoteYlew/eTovq9V9tkbNO82D1c/Niyrl6/ypnvc4/8iXlK4RdyW1a8ilSP06c7UUfT5PCvN4iv5clCI/A6VozzuptL15+A52V8+IytM4v1e57c7LtcVKxvu9GnUtr5J2u25WO6nPeWyGuYlFr/O6kkIdWIlUsplKBlPJWbPmqVaKuF8UcR8o4rl00c6fi3bOXCSp3v+oN/dbKpfH+V3VlNr3HaqhGe8Rlcrcwnwr5TsXeajz3qsI37Uu4rWFol5HKOL5YaOl8GzGFJ7H2Fn7I6LD/pj3+bqV9iNv83ZrwVya2lFb1pZndq7p2GOPzYYPH5717Nkz23TTTbN99923w5z3vNZItVLE84dqKcJ5SLUU8Xxmbcp9tm7eaq1K+pH3WqucvuTt+1KV9iPL8vW9qVWKtLaCLMtyHvqRZbJcjpYsy7IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoG5aG90AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGZjoXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOrPQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECdWWgeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM4sNA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQZxaaBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgzC80DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1JmF5oGqu+eee+ITn/hEDBkyJFpaWuK2224r++/IsiwuvPDC2GabbaJXr14xdOjQ+OpXv1r9xgJrJcuQBlmGNHQ3y2eddVa0tLSs8d+GG25YmwYDnZJlKD45hjTIMqRBliENsgxpcD8K0iDLkAZZhjTIMqTBtS8oPp/JkAZZhjSoryENPpchDbIMaVBjQxp8LkMaZBnSIMuQBlmGNMgyFJ8cQxrcj4I0+FyGNPhchjTIMqRBjQ0AlMJC89TFZz/72U5PFPfff/+IiLUWrJ/97Gdj4sSJERGxfPnyOO2002LUqFGx4YYbxpAhQ+Loo4+ORYsWtb9/zpw5nf47LS0t8fDDD3fZzjlz5sSBBx74/9q797Cq6nyP4x9uQoqAOCqQmpcQR5+ysrE8czzmLTHTctQpzcRbU5OZdjRTsqNZojk6drGGkwhoxzJtxFtj5Y00x7RMTMcL3s3CbDR80kxBfuePHnjYctvsvfZesHm/nofnibXX3nwxPvv727+11m8pOjpaderU0W233aYlS5aU2G/58uVq3bq1QkJCdMstt+gf//hH0WPO1ClJ58+f1yOPPKKwsDBFRERo5MiRunjxojP/nFXepUuX1K5dO7355psuv8bYsWOVkpKiOXPm6ODBg1q9erU6dOhgYZWoTq5/D6lfv77i4+P19ddfF+1TVvaXLl1qY+XVG1mGlZzJsTFGCxYsUMeOHRUWFqbQ0FC1bdtWY8eO1ZEjR2ysvnojy/CEM2fOaMyYMWrRooWCg4PVpEkT9enTRxs3bizzIFHh14svvmh3+dWSu1meMGGCcnJyHL7atGmjgQMHWlwpqoPifTkoKEiNGjVSjx49lJqaqoKCgqL9mjVrpldffbXoe2OMJkyYoLCwMGVmZnq/cB9AlmGlymS5tJ48a9YsG6uvvsgxPKGi+XNybD2yDE8qfmyronzDPWQZnuBMXy7+WRnuI8vwhIqyvGfPHvXt21cNGzZUSEiImjVrpoceekhnz561ufLqi+NR8ISysnzkyJESc2PNmzfXxIkT9csvv9hddrVGlmGl4p+Piys8xzM3N7fE+Z4NGjTQfffdp71793q/YB9CluFJhdku77wQPz8/TZs2ze5Sqz2yDE8p67yvF198UUFBQfrss88c9r906ZJatGihCRMm2FRx9cbcFzzh+rH23LlzVa9evVI/E//8888KCwvT66+/7sUKfQs9GZ5UPM8nTpyocJydnp5ua73VGVmGJ5Q1/3XPPfdo3LhxJbanp6crIiLC43X5MsbXsJoz89jlZdfVxbxqOvoyrFR43PiJJ54o8djo0aPl5+dX5nFn5rTdQ5bhCYV5vf46iZUrV8rPz0+SY5+G+xhjw5O2b9+ugIAA9e7dW1LZ54IVfjVr1szegqsx+jI8oXhma9WqpZtvvlnTp09Xfn4+/dhDyDI8oawsDxkyhL7sIWQZVnL2mom1a9eqc+fOqlu3rmrXrq3f/e53HFt2E1mGJ/3www/685//rKZNmyo4OFhRUVHq2bOntm3bJolrmK1EluEJlc0wa/a5hxzD0yq6hrm0c0pQeRyPgqc405dZt8869GV4UvG+W1G24R76MqzkzLleknTt2jXNmzdPt9xyi0JCQlSvXj316tWLXLuBLMMTyrvvjFT23PW0adN02223ebdYH8EYG1Zz5vjyp59+qq5duyoyMlK1a9dWbGysEhISdPXqVRsrB1DImWufrl+PIDIyUp07d9bWrVvtLh+eYgAvSEhIMPHx8SYnJ8fh6/z588YYYySZjIyMUp/3wAMPGGOMyc3NNd27dzfvv/++OXjwoNm+fbvp0KGDad++fdH+V65cKfEzRo0aZZo3b24KCgoqrHPGjBlmypQpZtu2bebIkSPm1VdfNf7+/mbNmjVF+2zbts0EBASY2bNnm/3795spU6aYoKAgs3fvXqfrNMaY+Ph4065dO/P555+brVu3mptvvtkMGjSosv+0VV5p/29/+eUXM378eBMTE2Nq165tOnToYDZv3lz0+P79+01gYKA5ePCgd4tFlXX9e8ju3btN7969TZMmTYr2kWTS0tJKvAdcvnzZxsp9B1mGuyrKcUFBgXn44YdNSEiImT59utm+fbs5efKk2b59u5k4caJJSEiw9xfwEWQZVjh+/LiJiYkxbdq0MR988IE5dOiQ2bdvn5k7d66Ji4szP/30U4l+nJOTY4YNG2YiIiJMdna23b9CtedKlq+XlZVlJJktW7Z4tlhUScX78unTp82uXbvMjBkzTGhoqOnVq5fJy8szxhhz0003mXnz5hljjMnPzzfDhw83DRo0MF9++aWN1fsOsgx3VSbL06dPL9GbL168aPNvUP2RY1ilovlzcuxZZBlWK35sq6J8wzpkGVZxpi8XflaG9cgyrFJels+ePWvq169vEhISzFdffWWOHTtmNm3aZMaNG2eOHTtmd+k+geNRsEpZWc7Pz3d47NSpUyYjI8OEhYWZiRMn2l22zyDLcFfxz8fFbd682UgyP/74Y9F/Hzp0yOTk5Jhdu3aZrl27miZNmpgrV654v2gfRJZhtcJsF+/Nr776qgkLC3PY9tNPP9ldqk8hy7BKRed9PfPMM6Zly5YOx6CefPJJ06ZNG87HtgBzX7DK9WPt77//3gQFBZklS5aU2HfRokUmODjYnDt3zosV+i56MqxWPM/5+fkOY+rx48ebtm3bOmz7+eef7S3YR5BlWKWs+a/OnTubsWPHltielpZmwsPDPV5XTcH4GlZwZh67vOyWtTYCnEdfhrsSEhJMkyZNTHh4uMN4+fLlyyYiIsI0bdrUJCQkMKftYWQZVklISDAhISEmIiLC4VzrjIwMU7g8VvE+DWsxxobVRo4cacaOHWtCQ0PNt99+a3Jzcx367/VrBJ09e9bukn0CfRlWKX6O5okTJ8xbb71l/Pz8TFJSEv3YC8gyrFJWlqdNm0Zf9gKyDHc5c83E66+/bvz9/c3kyZPNv/71L3P48GEzZ84cExwcbMaPH29j9b6DLMNqnTp1MnfddZfZtGmTOXHihNmxY4dJSkoyq1atMsZwDbOnkGVYpTIZZs0+a5FjeEJF1zCXdk4J3MPxKFjJmb7Mun2eQV+G1Yr33YqyDevQl+EuZ871KigoMAMGDDARERFmwYIF5tixYyYrK8s89thjJjAwkPOwLUCWYYWK1h8wpuy566lTp5p27dp5t2AfxBgbVqjo+PK//vUvExISYp599lmzd+9ec+TIEbNu3TozatQorl0Gqghnrn06fvy4kWQ2bNhgcnJyzN69e83DDz9swsLCzJkzZ+z+FeABgdbdsh4oX3BwsKKiolx+fnh4uNavX++wbf78+erQoYNOnTqlpk2bqlatWg4/Iy8vT6tWrdKYMWPk5+dX4c9ITEx0+H7s2LH65JNPtGLFCt1///2SpNdee03x8fF69tlnJUkvvfSS1q9fr/nz5ys5OdmpOg8cOKCPPvpIX3zxhe68805J0htvvKH77rtPc+bMUUxMTOX/gaqRp556Svv379fSpUsVExOjjIwMxcfHa+/evYqNjdWaNWvUokULrV27VvHx8TLGqHv37po9e7YiIyPtLh82Kf4eEhUVpUmTJqlTp0764Ycf1KBBA0lSRESEW+8zqByyjMoqL8cbN27U0qVLtWrVKvXt27foOU2bNtXdd98tY4xdZfs8sozKevLJJ+Xn56edO3eqTp06Rdvbtm2rESNGKDQ0VKGhoQ7PWbJkid555x19+OGHio2N9XbJNUJFWb5eSkqKWrVqpU6dOtlQLaqC4n35xhtv1B133KG7775b3bp1U3p6ukaNGlW075UrVzRo0CB9+eWX2rp1q+Li4uwq2+eRZVSWs1muW7cun5e9hBzDVRXNn5Nj7yLLsJK7x8fgOrIMV5HbqoUsw1VlZXnlypW6cOGCUlJSFBj462lTzZs3V5cuXbxdYo3C8Si4qry+XPyxJk2aqHv37lq/fr1eeeUVb5ZYo5BleErDhg2LzvsaN26c+vbtq4MHD+rWW2+1uzSfRJZhheL9OTw8XH5+fnyW9jKyDFdUdN5XSEiIPvroIz333HOaP3++Nm/erJSUFP3zn/9USEiIjZX7Lua+YIWGDRuqT58+Sk1N1eDBgx0eS01N1YMPPsh7vwfRk2GVgIAAhzF1aGioAgMDGWd7CVkGfAPja8A30JdRWXfccYeOHj2qFStW6JFHHpEkrVixQk2bNlXz5s0lMadtB7IMV3Xv3l1HjhzRzJkzNXv2bLvLqfEYY8NVFy9e1Pvvv68vv/xSZ86cUXp6uhITExUeHu6wH2sEeQd9Ga4qfo7mn//8Z2VkZGj16tXq2LGjzZXVTGQZriotyx999JGmTp3qsB992TvIMiqrvGsmvvnmG40fP17jxo1TUlJS0XPGjx+vWrVq6emnn9bAgQN111132VW+zyLLcFVubq62bt2qzMxMde7cWZJ00003qUOHDjZXVjORZVRWZTLMmn3eQY5hBdYWsR/Ho+AKZ/sy6/Z5D30ZVuBzs/3oy6isis71WrZsmT744AOtXr1affr0Kdr+9ttv69y5cxo1apR69OjhcL0z3EeWUVkVrT8AezDGhivKO778ySefKCoqyqFnt2zZUvHx8XaVC+A6zlz79O9//1uSVL9+fUVFRSkqKkqJiYlaunSpduzY4XDPR/gGf7sLANxx4cIF+fn5KSIiotTHV69erXPnzmn48OFu/YziA+Dt27ere/fuDvv07NlT27dvd7rO7du3KyIiougm89KvkyD+/v7asWOHy7VWB6dOnVJaWpqWL1+uTp06qWXLlpowYYL+8z//U2lpaZKkY8eO6eTJk1q+fLkWL16s9PR07dq1SwMGDLC5elQVFy9e1P/93//p5ptvVv369e0up0Yiy3DX9Tl+7733FBcXV+YHDj8/Py9XWDOQZVTW+fPn9dFHH2n06NGlHnwrbVy+a9cuPfbYY5o1a5Z69uzphSprHmeyXNwvv/yiJUuWaOTIkTZUi6qsa9euateunVasWFG07eLFi+rdu7f279+vbdu2ccK6B5FlWKW0LMM7yDHgG8gy4BvIMuAbyDI8ISoqSvn5+crIyJAxxu5yagSOR8Eb9u3bp3/+85+qVauW3aX4LLIMb7hw4YKWLl0qSeTZQ8gy4BvIMlzhzHlfISEhWrx4sd5++22tWrVKI0aMUGJiotq3b29Dxb6PuS9YaeTIkdq0aZNOnjxZtO3YsWPasmULfzMeRE8GfANZBnwD42vAN9CX4aoRI0Y4vN+npqa6tb4I3EOW4Y6AgAAlJSXpjTfe0OnTp+0up0ZjjA13LFu2TK1bt1ZcXJyGDBmi1NRUzte0CX0ZVrrhhht09epVu8uokcgyrESW7UOW4a7rr5n44IMPlJeXpwkTJpTY9/HHH1doaKjee+89b5fp88gy3BEaGqrQ0FCtXLlSV65csbucGo0swxXOZpg1+7yDHAO+geNRcBVj66qFvgyrkG170ZfhiorO9Xr33XfVqlUrh5vMFxo/frzOnTun9evXe6PUGoMso7Jcue8MPI8xNqxw/fHlqKgo5eTkaMuWLTZXBsBKly9f1uLFiyWxZp+vCrS7ANQca9euVWhoqMO2xMREJSYmuvR6v/zyi5577jkNGjRIYWFhpe6zcOFC9ezZU40bN3bpZyxbtkxffPGF/vd//7do25kzZ9SoUSOH/Ro1aqQzZ844XeeZM2fUsGFDh/0CAwMVGRlZ5uv4ir179+ratWtq1aqVw/YrV64U3TC8oKBAV65c0eLFi4v2W7hwodq3b69Dhw5xkkQNVfw95NKlS4qOjtbatWvl7+9ftM+gQYMUEBDg8Lz9+/eradOmXq21JiDLcEV5Oc7Ozi7xNzFu3DilpKRI+nUSkQvCrUeWUVlHjhyRMUatW7d2av+zZ8+qX79+6t+/f6kXpcAazmS5uIyMDP30009KSEjwVomoRlq3bq2vv/666PuXXnpJdevW1YEDB9SgQQMbK/N9ZBlWuj7Lzz33nKZMmeKwz7p169SpUydvl+bTyDHcUdH8OTn2HrIMq1l9fAzOIctwB7mtOsgy3FFelhMTEzV48GA98cQT6tChg7p27aqhQ4eWOBcE1uB4FNxxfZZ79eql5cuXOzyWn5+vK1euyN/fX/Pnz7erVJ9HluGK0vrxtWvXSuxXeH7npUuXJEl9+/Z1+pg0KocsA76BLMMVzp73deedd2ry5Mn6wx/+oNtvv13PP/+8lyqseZj7gpV69uypmJgYpaWladq0aZKk9PR0NWnSRN26dbO3OB9GTwZ8A1kGfAPja7jK2XlseAd9Ga4aMmSIJk+erJMnT0qStm3bpqVLlyozM9Pewmoosgx39evXT7fddpumTp2qhQsX2l1OjcUYG+5YuHChhgwZIkmKj4/XhQsX9Omnn+qee+6xt7AaiL4MKxhjtHHjRn388ccaM2aM3eXUSGQZViDL9iPLcEV510xkZ2crPDxc0dHRJZ5Xq1YttWjRQtnZ2d4u2eeRZbgjMDBQ6enpeuyxx5ScnKw77rhDnTt31sMPP6xbb73V7vJqFLIMVzibYdbs8w5yDKuUdw0zPI/jUXCVs32Zdfu8g74Mq/C52V70ZbiqvHO9srOz9dvf/rbU5xVuZx7bWmQZlVWZ+86UNr6+evWq2rRp46nyaizG2HBVeceXBw4cqI8//lidO3dWVFSU7r77bnXr1k1Dhw4t896vAKqu//iP/5C/v79+/vlnGWPUvn171hXxUdxoHl7TpUsX/e1vf3PYFhkZ6dJr5eXl6Y9//KOMMSVes9Dp06f18ccfa9myZS79jM2bN2v48OFasGCB2rZt67E6a5qLFy8qICBAu3btKnFD8MKDqtHR0QoMDHT4wFI40XPq1Ck+jNRQxd9DfvzxR7311lvq1auXdu7cqZtuukmSNG/ePHXv3t3heTExMV6vtSYgy3BFeTkuzfPPP6+nnnpKK1asUFJSkjdLrTHIMirLGOP0vnl5eRowYIAaNWqkBQsWeLAqOJPl4lJSUnT//fdz0ySUyhgjPz+/ou/vvfdebdiwQUlJSZo3b56Nlfk+sgwrXZ/lZ599VsOGDXPY58Ybb/RyVb6PHMMdFc2fk2PvIcuwmpXHx+A8sgx3kNuqgyzDHeVlecaMGfrv//5vbdq0STt27FBycrKSkpK0ZcsW3XLLLXaU69M4HgV3XJ/lOnXqlHjs0qVLmjdvngIDA9W/f387yqwRyDJcUVo/3rFjR9Fi4oW2bt2q2rVr6/PPP1dSUpKSk5O9WWaNQpYB30CW4YrKnPf1wgsvaPr06Zo0aZICA7nkyFOY+4KVAgIClJCQoPT0dE2dOlXGGC1atEjDhw+Xv7+/3eX5LHoy4BvIMuAbGF/DVc7OY8M76MtwVYMGDdS7d2+lp6fLGKPevXvrN7/5jd1l1VhkGVZ45ZVX1LVrV02YMMHuUmosxthw1aFDh7Rz505lZGRI+vVmAA899JAWLlzIjeZtQF+GOwoXHs7Ly1NBQYEGDx6sadOm6YsvvrC7tBqHLMMdZWUZ3keW4Qqumah6yDLc1b9/f/Xu3Vtbt27V559/rnXr1mn27NlKSUkpsZ4IPIcsw1XOZJg1+7yDHMMq5V3DDM/jeBTc4UxfZt0+76Avw0p8brYPfRnuKO9cr8pc2wz3kWVUVmUyWtr4+vXXX9eWLVssrgqMseGq8o4vBwQEKC0tTS+//HLR+ptJSUl65ZVXtHPnTkVHR9tcPYDKeP/999W6dWvt27dPEydOVHp6uoKCguwuCx7Aqk/wmjp16ujmm28u9bG6devqwoULJbbn5uYqPDzcYVvhzdtPnjypTZs2KSwsrNTXTEtLU/369dW3b99K1/rpp5+qT58+mjdvnoYOHerwWFRUlL7//nuHbd9//72ioqKcrjMqKkpnz5512D8/P1/nz58v8Tq+5vbbb9e1a9d09uxZderUqdR9fv/73ys/P19Hjx5Vy5YtJUnZ2dmSVHRDcdQ817+HpKSkKDw8XAsWLNDLL78s6ddslfU+A2uRZbiivBzHxsbq0KFDDvs3aNBADRo0UMOGDb1dao1BllFZsbGx8vPz08GDByvc9+mnn9bhw4f1xRdfKCQkxAvV1VzOZLnQ8ePHtXnzZq1evdpL1aG6OXDggJo3b170fbdu3TRmzBg98MADKigo0GuvvWZjdb6NLMNK12f5N7/5DZ+XvYAcwx3lzZ9L5NibyDKsVlG+4RlkGe4gt1UHWYY7Kspy/fr1NXDgQA0cOFBJSUm6/fbbNWfOHC1atMiLVdYMHI+CO8rLcvHHUlNT1a5dOy1cuFAjR470Zok1BlmGK0rL8OnTp0vs17x5c0VERCguLk5nz57VQw89xIVkHkKWAd9AluGKypz3VXhzeW4y71nMfcFqI0aM0MyZM7Vp0yYVFBTom2++0fDhw+0uy6fRkwHfQJZhtbCwMKevlYZ1GF/DVRXNY4eFhenSpUsqKCiQv79/0fbc3FxJItcWoy/DHSNGjNBTTz0lSXrzzTdtrqZmI8uwwn/913+pZ8+emjx5MguF24QxNly1cOFC5efnKyYmpmibMUbBwcGaP38+Y2gvoy/DHYULD9eqVUsxMTEcP7YRWYY7yHLVQZbhivKumWjVqpUuXLig7777zmH8LUlXr17V0aNH1aVLFzvK9mlkGVYICQlRjx491KNHD73wwgsaNWqUpk6dyjyYF5FluKOiDLNmn3eQY1iFtUXsxfEouKuivsy6fd5BX4bV+NxsD/oy3FHWuV6tWrXSgQMHSn1O4fbiN0iG+8gyKqsy6w+UNr6OjIz0VGk1GmNsuMqZNfluvPFGPfroo3r00Uf10ksvqVWrVkpOTtaLL75oV9kAXNCkSRPFxsYqNjZW+fn56tevn/bt26fg4GC7S4PF/CveBfC8uLg47dq1y2HbtWvXtGfPHocP9oU3bz98+LA2bNig+vXrl/p6xhilpaVp6NChCgoKqlQtmZmZ6t27t1555RX96U9/KvF4x44dtXHjRodt69evV8eOHZ2us2PHjsrNzXX4nQsXc7rrrrsqVW9VdPHiRWVlZSkrK0vSrxMEWVlZOnXqlFq1aqVHHnlEQ4cO1YoVK3T8+HHt3LlTM2fO1IcffihJ6t69u+644w6NGDFCu3fv1q5du/T444+rR48eTPSgiJ+fn/z9/XX58mW7S/FZZBmeVjzHgwYN0qFDh7Rq1Sq7y/I5ZBlWioyMVM+ePfXmm2/q0qVLJR4vXCjp7bffVmpqqv7+97+rcePGXq7SN7mb5UKpqamKjo5Wr169bPgtUNVt2rRJe/fuVf/+/R2233vvvVqzZo0WLFigp59+2qbqfANZhjeUlWVYgxwDvoEsA76BLAO+gSyjKqhVq5ZatmxZ6rw3nMPxKNjN399fiYmJmjJlCueRuIEsoyoYPXq09u3bp4yMDLtLqbbIMuAbyDKs5ux5X7AWc1/wppYtW6pz585KTU1VWlqaunfvzmIAFqAnA76BLMOb4uLi9NVXX5XY/tVXX/H34ibG17BDXFyc8vPzi/7uChXmnFxXHn0ZnhIfH6+rV68qLy9PPXv2tLscn0eW4Q2zZs3SmjVrtH37drtL8VmMsWG1/Px8LV68WHPnzi3628rKytKePXsUExOj9957z+4SfRJ9GZ5SuPBw06ZNuTG1F5BleApZ9i6yDE+6/pqJ/v37KygoSHPnzi2xb3Jysi5duqRBgwbZUGn1R5bhbW3atOG6Rg8gy/CW0jLMmn3WIMeAb+B4FLyJsbXn0JdhJ7JtHfoyPKm0c70efvhhHT58WGvWrCmx/9y5c1W/fn316NHDm2X6BLIMK7H+gH0YY8PTnFmTr169eoqOjma8DVRzAwYMUGBgoN566y27S4EnGMALEhISTHx8vMnJyXH4+uGHH4wxxrz77rvmhhtuMG+++abJzs42u3fvNiNGjDDh4eHmzJkzxhhjrl69avr27WsaN25ssrKyHF7nypUrDj9vw4YNRpI5cOBAperctGmTqV27tpk8ebLD6587d65on23btpnAwEAzZ84cc+DAATN16lQTFBRk9u7dW6k64+Pjze2332527NhhPvvsMxMbG2sGDRrk0r9vVbN582YjqcRXQkKCMebXf6P/+Z//Mc2aNTNBQUEmOjra9OvXz3z99ddFr/Htt9+aP/zhDyY0NNQ0atTIDBs2zOH/A2qW699D9u/fb5588knj5+dnNm/ebIwxRpJJS0sr8T5z8eJFe4uvxsgyrFRRjgsKCsyAAQNMSEiIefHFF83nn39ujh8/bjIzM018fLyJjIy0+1eotsgyrHb06FETFRVl2rRpYz744AOTnZ1t9u/fb1577TXTunVr89lnn5latWqZl19+uURfzsnJMbm5uXb/CtWSFVm+du2aady4sUlMTLTpt0BVUbwvnz592uzatcvMmDHDhIaGmvvvv9/k5+cbY4y56aabzLx584qet3HjRlO7dm0zevRomyqv/sgyrFSZLE+fPr1ET75w4YLNv0H1RI7hCRXNn5Nj65FleFJCQoJ54IEHiv67vHzDPWQZnuBMX54wYYLZvXu3w9f58+dtrrz6IsvwhPKyvGbNGvPII4+YNWvWmEOHDpmDBw+av/zlLyYgIMAsXrzY7tKrLY5HwROKj62deSwvL8/ceOON5i9/+Yvni/NRZBlWKivDhX9nP/74o8N/Fzdx4kRzyy23mIKCAu8U62PIMjyptGynpaWZ8PBwW+rxZWQZnlDReV/FSTIZGRn2FOpDmPuCJyQkJJh77rmnxDz1qVOnzDvvvGNCQkJMSEiIWbp0qd2l+gR6MjypvDxPnTrVtGvXzu4SfQZZhieUleHMzEwTEhJixowZY/bs2WMOHjxo5s6dawIDA826devsLrtaY3wNqzkzj22MMffee69p166d2bBhgzl27JhZt26diYuLMw899JB3C/YR9GVY6focX7hwweH86gceeKDob6sQc9rWIMvwhNJ686OPPmpCQkJM4fJYhX97W7ZscRiHZ2Vl2VBx9ccYG1bLyMgwtWrVKnUtgYkTJ5o777yz6HuORVmHvgxPKO/8TfqxZ5BleEJ5WS6OvmwdsgwrOXPNxLx584y/v79JTEw0Bw4cMEeOHDFz5841wcHBZvz48TZU7RvIMjzl3//+t+nSpYt55513zJ49e8yxY8fMsmXLTKNGjcyIESOMMSXX+4LryDKs5kqGWbPPPeQYnlbZa5jhGo5HwROc7cus22cd+jI8qbDvOpNtuIe+DCs5c65XQUGB6devn6lXr55JSUkxx48fN3v27DF/+tOfTGBgIMenXESWYTVn1h8oa+6aayBdxxgbVqvo+HJycrJ54oknzMcff2yOHDli9u3bZyZOnGj8/f1NZmamPUUDKFNZ1z4dP37cSDK7d+922P7WW2+Zhg0bmkuXLnmnQHiNnzHGCPCwYcOGadGiRSW2x8XF6eDBg5Kkd999V3/961+VnZ2t2rVrq3379po5c6ZuvfVWSdKJEyfUvHnzUl9/8+bNuueee4q+Hzx4sE6ePKlt27ZZUmfnzp2VmZlZ9P3y5cs1ZcoUnThxQrGxsZo9e7buu+++StV5/vx5PfXUU1qzZo38/f3Vv39/vf766woNDa1UzUBNcH0269atq9atW+u5555T//79JUl+fn6lPnfmzJmaNGmSV+oEUDZnclxQUKAFCxYoLS1N+/btU15enho3bqxu3brpmWee0W9/+1u7ygdwnZycHM2YMUNr165VTk6OGjRooPbt2+uZZ57RokWLlJ6eXuZzExISyn0cgOcV78uBgYGqV6+e2rVrp8GDByshIUH+/v6SpGbNmmncuHEaN25c0XMzMzN1//33KyEhQfPnzy9zHA7A8yqT5ZMnT5Z4/uOPP67k5GSv1gygdBXNn5NjoHoZNmyYcnNztXLlSqeOjwGoWlzty++8846GDBnijRIBOKG8LP/jH//QrFmz9Omnn+qbb75RcHCwYmNj9eSTT2rYsGHeLxZAmYqPrZ19bNasWfrrX/+q48ePq06dOt4pFECpysppZmamunTpoh9//FFZWVlF/x0REVG0zzfffKMWLVpoyZIl+uMf/+jdwgGUq7Rsp6ena9y4ccrNzbWtLgDOK++8r+LXY/j5+SkjI0MPPvigbbUCKF1Zc18jR47UG2+8oejoaAUEBOi7775TcHCwDRUCcFZ5eW7cuLFWrlyprKws7xcGwCnlZfjxxx/X888/r6ysLF29elWtW7fWpEmTGF8DVYwz89gRERHKzc3V1KlT9eGHH+q7775T48aN1a9fP73wwgusCQDYrLxjypL04IMPKiIiwuFaRua0gaqrtEyfOHFCcXFxunr1qowxRX36egEBAcrPz/ditQBK06dPHxUUFOjDDz8s8djOnTt11113ac+ePbr11ls5FgVUceWNtenHQPVR0efmQvRloGpy9pqJ1atXa86cOfrqq6907do1tW3bVqNHj9bw4cPtKRxAma5cuaJp06bpk08+0dGjR5WXl6cmTZpo4MCBSkxM1A033FDqel8AqgZXM8yafUDV5co1zACqBmf7Muv2AdVDYd99//33K8w2gKrDmXO9JCk/P1+vvvqq0tPTdfjwYYWEhKhjx4564YUX9Pvf/96m6gFcr6L1B8qau542bRrXQAJVREXHlzMyMpScnKxt27bpu+++U2hoqNq2basJEyaoT58+9hQNoExlXftUeH/k3bt367bbbiva/vPPP6tx48aaNGmSJk6c6N1i4VHcaB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvMzf7gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoKbhRvOoUXr16qXQ0NBSv5KSkuwuDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWEnzHG2F0E4C3ffvutLl++XOpjkZGRioyM9HJFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqIm40TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeJm/3QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQE3DjeYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwMu40TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeBk3mgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL+NG8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgZdxoHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8jBvNAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICXcaN5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCy/wdaR1SDTToeTQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sns.pairplot(df_carbon_short)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Energy data" - ] - }, - { - "cell_type": "code", - "execution_count": 189, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
tableAFC...FC_OTH_HH_Ecountry
time1990199119921993199419951996199719981999...201420152016201720182019202020212022
0218484.0178925.0175263.0175606.0169048.0181335.0193531.0194520.0187928.0214365.0...415.685628.687542.327611.261560.179687.3351220.5561316.0171457.559EU27_2020
1146824.0137183.0133881.0141083.0144691.0152598.0152735.0160130.0160913.0181350.0...49.42284.73345.14351.24761.07664.42150.72865.282176.339EA20
24785.04998.05849.07590.09053.09398.09637.09975.07828.09059.0...0.0000.0000.0000.0000.0000.0000.0000.0000.000BE
35387.03083.03289.01630.01173.01961.01803.0785.0564.01670.0...0.0000.0000.0000.0000.0000.0000.0000.0000.000BG
48179.07194.06156.05952.05415.06722.08811.09013.08383.08983.0...1.3071.9612.2884.0474.5205.0123.61011.80823.064CZ
\n", - "

5 rows × 166 columns

\n", - "
" - ], - "text/plain": [ - "table AFC \\\n", - "time 1990 1991 1992 1993 1994 1995 1996 \n", - "0 218484.0 178925.0 175263.0 175606.0 169048.0 181335.0 193531.0 \n", - "1 146824.0 137183.0 133881.0 141083.0 144691.0 152598.0 152735.0 \n", - "2 4785.0 4998.0 5849.0 7590.0 9053.0 9398.0 9637.0 \n", - "3 5387.0 3083.0 3289.0 1630.0 1173.0 1961.0 1803.0 \n", - "4 8179.0 7194.0 6156.0 5952.0 5415.0 6722.0 8811.0 \n", - "\n", - "table ... FC_OTH_HH_E \\\n", - "time 1997 1998 1999 ... 2014 2015 2016 \n", - "0 194520.0 187928.0 214365.0 ... 415.685 628.687 542.327 \n", - "1 160130.0 160913.0 181350.0 ... 49.422 84.733 45.143 \n", - "2 9975.0 7828.0 9059.0 ... 0.000 0.000 0.000 \n", - "3 785.0 564.0 1670.0 ... 0.000 0.000 0.000 \n", - "4 9013.0 8383.0 8983.0 ... 1.307 1.961 2.288 \n", - "\n", - "table country \n", - "time 2017 2018 2019 2020 2021 2022 \n", - "0 611.261 560.179 687.335 1220.556 1316.017 1457.559 EU27_2020 \n", - "1 51.247 61.076 64.421 50.728 65.282 176.339 EA20 \n", - "2 0.000 0.000 0.000 0.000 0.000 0.000 BE \n", - "3 0.000 0.000 0.000 0.000 0.000 0.000 BG \n", - "4 4.047 4.520 5.012 3.610 11.808 23.064 CZ \n", - "\n", - "[5 rows x 166 columns]" - ] - }, - "execution_count": 189, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "full_energy_df, energy_tables = scraper.get_eurostat_dataframe(\"nrg_cb_e\", lambda raw: [\"AFC\", \"FC_IND_E\", \"FC_TRA_E\", \"FC_OTH_CP_E\", \"FC_OTH_HH_E\"])\n", - "full_energy_df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 196, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
countryEU27_2020EA20BEBGCZDKDEEEIEEL...BAMEMDMKGEALRSTRUAXK
time
1990218484.0146824.04785.05387.08179.011973.031669.01475.00.01330.0...NaNNaNNaN511.0NaN323.0392.0176.015401.0NaN
1991178925.0137183.04998.03083.07194.03075.030416.02222.00.01498.0...NaNNaNNaN523.0NaN0.0235.0759.018317.0NaN
1992175263.0133881.05849.03289.06156.08647.028418.0254.00.0967.0...NaNNaNNaN483.0NaN0.00.0189.015417.0NaN
1993175606.0141083.07590.01630.05952.06279.033628.0221.00.01093.0...NaNNaNNaN623.0NaN0.00.0213.015773.0NaN
1994169048.0144691.09053.01173.05415.01781.035908.0315.00.0816.0...NaNNaNNaN73.0NaN0.00.031.012378.0NaN
\n", - "

5 rows × 43 columns

\n", - "
" - ], - "text/plain": [ - "country EU27_2020 EA20 BE BG CZ DK DE \\\n", - "time \n", - "1990 218484.0 146824.0 4785.0 5387.0 8179.0 11973.0 31669.0 \n", - "1991 178925.0 137183.0 4998.0 3083.0 7194.0 3075.0 30416.0 \n", - "1992 175263.0 133881.0 5849.0 3289.0 6156.0 8647.0 28418.0 \n", - "1993 175606.0 141083.0 7590.0 1630.0 5952.0 6279.0 33628.0 \n", - "1994 169048.0 144691.0 9053.0 1173.0 5415.0 1781.0 35908.0 \n", - "\n", - "country EE IE EL ... BA ME MD MK GE AL RS TR \\\n", - "time ... \n", - "1990 1475.0 0.0 1330.0 ... NaN NaN NaN 511.0 NaN 323.0 392.0 176.0 \n", - "1991 2222.0 0.0 1498.0 ... NaN NaN NaN 523.0 NaN 0.0 235.0 759.0 \n", - "1992 254.0 0.0 967.0 ... NaN NaN NaN 483.0 NaN 0.0 0.0 189.0 \n", - "1993 221.0 0.0 1093.0 ... NaN NaN NaN 623.0 NaN 0.0 0.0 213.0 \n", - "1994 315.0 0.0 816.0 ... NaN NaN NaN 73.0 NaN 0.0 0.0 31.0 \n", - "\n", - "country UA XK \n", - "time \n", - "1990 15401.0 NaN \n", - "1991 18317.0 NaN \n", - "1992 15417.0 NaN \n", - "1993 15773.0 NaN \n", - "1994 12378.0 NaN \n", - "\n", - "[5 rows x 43 columns]" - ] - }, - "execution_count": 196, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_energy_short = full_energy_df.xs(\"AFC\", level=\"table\", axis=1).T\n", - "df_energy_short.columns = full_energy_df.xs(\"country\", axis=1)\n", - "df_energy_short.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 197, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
countryEU27_2020EA20BEBGCZDKDEEEIEEL...BAMEMDMKGEALRSTRUAXK
time
2008305128.218245213.21817158.03097.08520.012815.041670.01369.0753.0317575.0...NaN1884.0NaN2733.0NaN2434.08875.0789.02101.0708.0
2009292276.753237029.7539486.02662.08586.011208.041859.03025.0939.2177600.0...NaN1227.0NaN1438.0NaN1886.05184.0812.025.0768.0
2010291540.094241227.09412395.01167.06642.010599.042962.01100.0759.8878517.0...NaN732.03033.01420.0NaN1986.05620.01144.023.0819.0
2011321114.673260179.67313189.01449.010457.011694.051003.01690.0731.6227180.0...NaN1993.03146.02749.0NaN3262.06701.04556.032.03135.0
2012349454.141277236.14116848.02353.011587.015920.046268.02710.0783.6055954.0...NaN1440.03279.02741.0NaN2538.05781.05827.089.02773.0
\n", - "

5 rows × 43 columns

\n", - "
" - ], - "text/plain": [ - "country EU27_2020 EA20 BE BG CZ DK DE \\\n", - "time \n", - "2008 305128.218 245213.218 17158.0 3097.0 8520.0 12815.0 41670.0 \n", - "2009 292276.753 237029.753 9486.0 2662.0 8586.0 11208.0 41859.0 \n", - "2010 291540.094 241227.094 12395.0 1167.0 6642.0 10599.0 42962.0 \n", - "2011 321114.673 260179.673 13189.0 1449.0 10457.0 11694.0 51003.0 \n", - "2012 349454.141 277236.141 16848.0 2353.0 11587.0 15920.0 46268.0 \n", - "\n", - "country EE IE EL ... BA ME MD MK GE AL \\\n", - "time ... \n", - "2008 1369.0 753.031 7575.0 ... NaN 1884.0 NaN 2733.0 NaN 2434.0 \n", - "2009 3025.0 939.217 7600.0 ... NaN 1227.0 NaN 1438.0 NaN 1886.0 \n", - "2010 1100.0 759.887 8517.0 ... NaN 732.0 3033.0 1420.0 NaN 1986.0 \n", - "2011 1690.0 731.622 7180.0 ... NaN 1993.0 3146.0 2749.0 NaN 3262.0 \n", - "2012 2710.0 783.605 5954.0 ... NaN 1440.0 3279.0 2741.0 NaN 2538.0 \n", - "\n", - "country RS TR UA XK \n", - "time \n", - "2008 8875.0 789.0 2101.0 708.0 \n", - "2009 5184.0 812.0 25.0 768.0 \n", - "2010 5620.0 1144.0 23.0 819.0 \n", - "2011 6701.0 4556.0 32.0 3135.0 \n", - "2012 5781.0 5827.0 89.0 2773.0 \n", - "\n", - "[5 rows x 43 columns]" - ] - }, - "execution_count": 197, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Drop the rows until 2008 to match carbon dataset\n", - "df_energy_short = df_energy_short.drop([str(i) for i in np.arange(1990, 2008)])\n", - "df_energy_short.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 198, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
countryEU27_2020BEBGCZDKDEEEIEELES...PTROSISKFISEISNORSTR
time
2008305128.21817158.03097.08520.012815.041670.01369.0753.0317575.05881.0...10744.0921.06225.09412.016107.012754.00.03412.08875.0789.0
2009292276.7539486.02662.08586.011208.041859.03025.0939.2177600.06751.0...7598.0651.07780.08994.015460.013765.00.05651.05184.0812.0
2010291540.09412395.01167.06642.010599.042962.01100.0759.8878517.05206.0...5814.0767.08625.07334.015719.014931.00.014673.05620.01144.0
2011321114.67313189.01449.010457.011694.051003.01690.0731.6227180.07932.0...6742.03410.07036.011227.017656.012481.00.011254.06701.04556.0
2012349454.14116848.02353.011587.015920.046268.02710.0783.6055954.07787.0...10766.03903.07452.013472.019089.011682.00.04191.05781.05827.0
\n", - "

5 rows × 32 columns

\n", - "
" - ], - "text/plain": [ - "country EU27_2020 BE BG CZ DK DE EE \\\n", - "time \n", - "2008 305128.218 17158.0 3097.0 8520.0 12815.0 41670.0 1369.0 \n", - "2009 292276.753 9486.0 2662.0 8586.0 11208.0 41859.0 3025.0 \n", - "2010 291540.094 12395.0 1167.0 6642.0 10599.0 42962.0 1100.0 \n", - "2011 321114.673 13189.0 1449.0 10457.0 11694.0 51003.0 1690.0 \n", - "2012 349454.141 16848.0 2353.0 11587.0 15920.0 46268.0 2710.0 \n", - "\n", - "country IE EL ES ... PT RO SI SK \\\n", - "time ... \n", - "2008 753.031 7575.0 5881.0 ... 10744.0 921.0 6225.0 9412.0 \n", - "2009 939.217 7600.0 6751.0 ... 7598.0 651.0 7780.0 8994.0 \n", - "2010 759.887 8517.0 5206.0 ... 5814.0 767.0 8625.0 7334.0 \n", - "2011 731.622 7180.0 7932.0 ... 6742.0 3410.0 7036.0 11227.0 \n", - "2012 783.605 5954.0 7787.0 ... 10766.0 3903.0 7452.0 13472.0 \n", - "\n", - "country FI SE IS NO RS TR \n", - "time \n", - "2008 16107.0 12754.0 0.0 3412.0 8875.0 789.0 \n", - "2009 15460.0 13765.0 0.0 5651.0 5184.0 812.0 \n", - "2010 15719.0 14931.0 0.0 14673.0 5620.0 1144.0 \n", - "2011 17656.0 12481.0 0.0 11254.0 6701.0 4556.0 \n", - "2012 19089.0 11682.0 0.0 4191.0 5781.0 5827.0 \n", - "\n", - "[5 rows x 32 columns]" - ] - }, - "execution_count": 198, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Match countries w/ the carbon dataset\n", - "countries = list(df_carbon_short.columns)\n", - "df_energy_short = df_energy_short[df_energy_short.columns.intersection(countries)]\n", - "df_energy_short.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 316, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "country=EU27_2020
time=%{x}
value=%{y}", - "legendgroup": "EU27_2020", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "EU27_2020", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 305128.218, - 292276.753, - 291540.094, - 321114.673, - 349454.141, - 332062.258, - 363686.914, - 387638.649, - 362524.588, - 366554.329, - 372348.275, - 369432.448, - 381008.85, - 401425.821, - 422411.977 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=BE
time=%{x}
value=%{y}", - "legendgroup": "BE", - "marker": { - "color": "#EF553B", - "symbol": "circle" - }, - "mode": "markers", - "name": "BE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 17158, - 9486, - 12395, - 13189, - 16848, - 17243, - 21791, - 23714, - 14648, - 14189.4, - 21635.9, - 12734.4, - 13721.9, - 15193.6, - 16349.6 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=BG
time=%{x}
value=%{y}", - "legendgroup": "BG", - "marker": { - "color": "#00cc96", - "symbol": "circle" - }, - "mode": "markers", - "name": "BG", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 3097, - 2662, - 1167, - 1449, - 2353, - 3351, - 4319, - 4251, - 4568, - 3705.423, - 2222.726, - 3044.947, - 3706.736, - 1856.976, - 1470.003 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=CZ
time=%{x}
value=%{y}", - "legendgroup": "CZ", - "marker": { - "color": "#ab63fa", - "symbol": "circle" - }, - "mode": "markers", - "name": "CZ", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 8520, - 8586, - 6642, - 10457, - 11587, - 10571, - 11842, - 16146, - 13817, - 15071.999, - 11573.41, - 11026.213, - 13368.051, - 15152.981, - 16726.075 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=DK
time=%{x}
value=%{y}", - "legendgroup": "DK", - "marker": { - "color": "#FFA15A", - "symbol": "circle" - }, - "mode": "markers", - "name": "DK", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 12815, - 11208, - 10599, - 11694, - 15920, - 11459, - 12702, - 15644.747, - 14976.458, - 15218.109, - 15633.609, - 15981.899, - 18593.972, - 20119.85, - 18752.207 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=DE
time=%{x}
value=%{y}", - "legendgroup": "DE", - "marker": { - "color": "#19d3f3", - "symbol": "circle" - }, - "mode": "markers", - "name": "DE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 41670, - 41859, - 42962, - 51003, - 46268, - 39222, - 40435, - 37008, - 28338, - 27842, - 31727, - 40126, - 47853, - 51731, - 49331 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=EE
time=%{x}
value=%{y}", - "legendgroup": "EE", - "marker": { - "color": "#FF6692", - "symbol": "circle" - }, - "mode": "markers", - "name": "EE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 1369, - 3025, - 1100, - 1690, - 2710, - 2712, - 3730, - 5452, - 3577, - 2281, - 3053, - 4861, - 7367, - 7332.438, - 7183 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=IE
time=%{x}
value=%{y}", - "legendgroup": "IE", - "marker": { - "color": "#B6E880", - "symbol": "circle" - }, - "mode": "markers", - "name": "IE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 753.031, - 939.217, - 759.887, - 731.622, - 783.605, - 2625.164, - 2853.015, - 1751.975, - 871.263, - 1116.408, - 1621.519, - 2179.579, - 1761.112, - 2450.715, - 1581.629 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=EL
time=%{x}
value=%{y}", - "legendgroup": "EL", - "marker": { - "color": "#FF97FF", - "symbol": "circle" - }, - "mode": "markers", - "name": "EL", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 7575, - 7600, - 8517, - 7180, - 5954, - 5788, - 9461, - 11081, - 9833, - 8696, - 8550, - 11067, - 9831, - 7581, - 7751 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=ES
time=%{x}
value=%{y}", - "legendgroup": "ES", - "marker": { - "color": "#FECB52", - "symbol": "circle" - }, - "mode": "markers", - "name": "ES", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 5881, - 6751, - 5206, - 7932, - 7787, - 9887, - 12310, - 14956, - 21845, - 23762, - 24018, - 18720.84, - 17928.364, - 17411.223, - 8031.52 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=FR
time=%{x}
value=%{y}", - "legendgroup": "FR", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "FR", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 10748, - 18517, - 19475, - 9501, - 12213, - 11687, - 7873, - 9961, - 19903, - 21119.18, - 13512.09, - 15631.75, - 19536.102, - 24334.451, - 52437.269 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=HR
time=%{x}
value=%{y}", - "legendgroup": "HR", - "marker": { - "color": "#EF553B", - "symbol": "circle" - }, - "mode": "markers", - "name": "HR", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 12254, - 11892, - 12415, - 13985, - 13174, - 11260, - 10898, - 13158, - 12398, - 12157.9, - 12693.4, - 11400.8, - 10491, - 11504.7, - 11919.7 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=IT
time=%{x}
value=%{y}", - "legendgroup": "IT", - "marker": { - "color": "#00cc96", - "symbol": "circle" - }, - "mode": "markers", - "name": "IT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 43433, - 47070, - 45987, - 47519, - 45407, - 44338, - 46747, - 50849, - 43181, - 42894.881, - 47170.204, - 43974.94, - 39789.94, - 46571.698, - 47391.065 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=CY
time=%{x}
value=%{y}", - "legendgroup": "CY", - "marker": { - "color": "#ab63fa", - "symbol": "circle" - }, - "mode": "markers", - "name": "CY", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=LV
time=%{x}
value=%{y}", - "legendgroup": "LV", - "marker": { - "color": "#FFA15A", - "symbol": "circle" - }, - "mode": "markers", - "name": "LV", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 4643, - 4259, - 3973, - 4009, - 4935, - 5005, - 5340, - 5246, - 4828, - 4072.912, - 5173.682, - 4610.761, - 4173.365, - 4666.37, - 5308.232 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=LT
time=%{x}
value=%{y}", - "legendgroup": "LT", - "marker": { - "color": "#19d3f3", - "symbol": "circle" - }, - "mode": "markers", - "name": "LT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 5649, - 4783, - 8174, - 8086, - 8060, - 8073, - 8521, - 7938, - 11106, - 11926.2, - 12847.5, - 13267.9, - 12013.4, - 12478.9, - 12933.9 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=LU
time=%{x}
value=%{y}", - "legendgroup": "LU", - "marker": { - "color": "#FF6692", - "symbol": "circle" - }, - "mode": "markers", - "name": "LU", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 6829.873, - 6022.472, - 7279.51, - 7096.34, - 6732.098, - 6851.524, - 6961.176, - 7518.755, - 7718.393, - 7566.69, - 7553.012, - 6817.52, - 6543.493, - 6758.47, - 7146.086 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=HU
time=%{x}
value=%{y}", - "legendgroup": "HU", - "marker": { - "color": "#B6E880", - "symbol": "circle" - }, - "mode": "markers", - "name": "HU", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 12774, - 10972, - 9897, - 14664, - 16970, - 16635, - 19079, - 19935, - 17951, - 19803, - 18613, - 19853, - 19176, - 19967, - 21589 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=MT
time=%{x}
value=%{y}", - "legendgroup": "MT", - "marker": { - "color": "#FF97FF", - "symbol": "circle" - }, - "mode": "markers", - "name": "MT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1054, - 1526.688, - 897.066, - 631.293, - 656.756, - 419.81, - 547.25, - 646.139 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=NL
time=%{x}
value=%{y}", - "legendgroup": "NL", - "marker": { - "color": "#FECB52", - "symbol": "circle" - }, - "mode": "markers", - "name": "NL", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 24967, - 15452, - 15583, - 20620, - 32155.723, - 33252, - 32855, - 30760.009, - 24257.626, - 22457.716, - 26754.589, - 20402.855, - 19773.283, - 20885.396, - 18544.448 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=AT
time=%{x}
value=%{y}", - "legendgroup": "AT", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "AT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 19795.314, - 19542.064, - 19908.697, - 24976.711, - 23429.715, - 24959.57, - 26711.723, - 29389.163, - 26366.16, - 29362.427, - 28076.136, - 26046.847, - 24522.492, - 26436.192, - 28595.17 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=PL
time=%{x}
value=%{y}", - "legendgroup": "PL", - "marker": { - "color": "#EF553B", - "symbol": "circle" - }, - "mode": "markers", - "name": "PL", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 9034, - 7403, - 6310, - 6780, - 9803, - 7801, - 13508, - 14459, - 14017, - 13271, - 13815.804, - 17868.327, - 20624.119, - 15099.836, - 15237.63 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=PT
time=%{x}
value=%{y}", - "legendgroup": "PT", - "marker": { - "color": "#00cc96", - "symbol": "circle" - }, - "mode": "markers", - "name": "PT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 10744, - 7598, - 5814, - 6742, - 10766, - 8100, - 7247, - 8077, - 4616, - 5505.732, - 5667.568, - 8099.208, - 7553.113, - 9544.418, - 12314.691 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=RO
time=%{x}
value=%{y}", - "legendgroup": "RO", - "marker": { - "color": "#ab63fa", - "symbol": "circle" - }, - "mode": "markers", - "name": "RO", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 921, - 651, - 767, - 3410, - 3903, - 2737, - 2811, - 4492, - 4177, - 4841.754, - 3696.594, - 5492.633, - 8251.648, - 8697.204, - 8653.371 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=SI
time=%{x}
value=%{y}", - "legendgroup": "SI", - "marker": { - "color": "#FFA15A", - "symbol": "circle" - }, - "mode": "markers", - "name": "SI", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 6225, - 7780, - 8625, - 7036, - 7452, - 7521, - 7254, - 9045, - 8359, - 9132.532, - 8930.239, - 9021.273, - 7119.95, - 8387.153, - 10198.242 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=SK
time=%{x}
value=%{y}", - "legendgroup": "SK", - "marker": { - "color": "#19d3f3", - "symbol": "circle" - }, - "mode": "markers", - "name": "SK", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 9412, - 8994, - 7334, - 11227, - 13472, - 10719, - 12964, - 14999, - 13249, - 15563, - 12428, - 13538, - 13289, - 13884, - 16743 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=FI
time=%{x}
value=%{y}", - "legendgroup": "FI", - "marker": { - "color": "#FF6692", - "symbol": "circle" - }, - "mode": "markers", - "name": "FI", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 16107, - 15460, - 15719, - 17656, - 19089, - 17591, - 21622, - 21459, - 22110, - 22204, - 22548, - 23938, - 21774, - 24492, - 19397 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=SE
time=%{x}
value=%{y}", - "legendgroup": "SE", - "marker": { - "color": "#B6E880", - "symbol": "circle" - }, - "mode": "markers", - "name": "SE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 12754, - 13765, - 14931, - 12481, - 11682, - 12674, - 13852, - 9294, - 14287, - 11896, - 12202, - 9070, - 11827, - 8341, - 6181 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=IS
time=%{x}
value=%{y}", - "legendgroup": "IS", - "marker": { - "color": "#FF97FF", - "symbol": "circle" - }, - "mode": "markers", - "name": "IS", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - null - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=NO
time=%{x}
value=%{y}", - "legendgroup": "NO", - "marker": { - "color": "#FECB52", - "symbol": "circle" - }, - "mode": "markers", - "name": "NO", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 3412, - 5651, - 14673, - 11254, - 4191, - 10135, - 6347, - 7371, - 5740, - 6111, - 8339.724, - 12353, - 4496.145, - 8235.069, - 13271 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=RS
time=%{x}
value=%{y}", - "legendgroup": "RS", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "RS", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 8875, - 5184, - 5620, - 6701, - 5781, - 4077, - 7008, - 6303, - 5068, - 6549.189, - 6400.007, - 5416.609, - 5069.528, - 6984.008, - 8446.83 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=TR
time=%{x}
value=%{y}", - "legendgroup": "TR", - "marker": { - "color": "#EF553B", - "symbol": "circle" - }, - "mode": "markers", - "name": "TR", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2008", - "2009", - "2010", - "2011", - "2012", - "2013", - "2014", - "2015", - "2016", - "2017", - "2018", - "2019", - "2020", - "2021", - "2022" - ], - "xaxis": "x", - "y": [ - 789, - 812, - 1144, - 4556, - 5827, - 7429, - 7953, - 7136, - 6330, - 2728.268, - 2476.887, - 2211.506, - 1889.521, - 2334.453, - 6438.816 - ], - "yaxis": "y" - } - ], - "layout": { - "legend": { - "title": { - "text": "country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "time" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "value" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = px.scatter(df_energy_short)\n", - "fig.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 317, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'
'" - ] - }, - "execution_count": 317, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plotly.offline.plot(fig, include_plotlyjs=False, output_type=\"div\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Merge Datasets\n", - "And standardize the data" - ] - }, - { - "cell_type": "code", - "execution_count": 200, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
countrycarbonenergy
0EU27_20208626928.75305128.218
1EU27_20207851179.61292276.753
2EU27_20208024312.00291540.094
3EU27_20207901995.31321114.673
4EU27_20207728876.39349454.141
\n", - "
" - ], - "text/plain": [ - " country carbon energy\n", - "0 EU27_2020 8626928.75 305128.218\n", - "1 EU27_2020 7851179.61 292276.753\n", - "2 EU27_2020 8024312.00 291540.094\n", - "3 EU27_2020 7901995.31 321114.673\n", - "4 EU27_2020 7728876.39 349454.141" - ] - }, - "execution_count": 200, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_carbon_long = pd.melt(df_carbon_short)\n", - "df_energy_long = pd.melt(df_energy_short)\n", - "df_merged = pd.concat([df_carbon_long, df_energy_long[\"value\"]], axis=1)\n", - "df_merged.columns = [\"country\", \"carbon\", \"energy\"]\n", - "df_merged.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 201, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
countrycarbonenergy
0EU27_20208626928.75305128.218
1EU27_20207851179.61292276.753
2EU27_20208024312.00291540.094
3EU27_20207901995.31321114.673
4EU27_20207728876.39349454.141
\n", - "
" - ], - "text/plain": [ - " country carbon energy\n", - "0 EU27_2020 8626928.75 305128.218\n", - "1 EU27_2020 7851179.61 292276.753\n", - "2 EU27_2020 8024312.00 291540.094\n", - "3 EU27_2020 7901995.31 321114.673\n", - "4 EU27_2020 7728876.39 349454.141" - ] - }, - "execution_count": 201, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_merged.fillna(0)\n", - "df_merged.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 202, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
carbonenergycountry
00.1705454.622992EU27_2020
1-0.0256784.412569EU27_2020
20.0181154.400507EU27_2020
3-0.0128254.884745EU27_2020
4-0.0566145.348760EU27_2020
\n", - "
" - ], - "text/plain": [ - " carbon energy country\n", - "0 0.170545 4.622992 EU27_2020\n", - "1 -0.025678 4.412569 EU27_2020\n", - "2 0.018115 4.400507 EU27_2020\n", - "3 -0.012825 4.884745 EU27_2020\n", - "4 -0.056614 5.348760 EU27_2020" - ] - }, - "execution_count": 202, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_merged_s = pd.DataFrame()\n", - "for feat in df_merged.columns:\n", - "\tif feat == \"country\": continue\n", - "\tdf_merged_s[f'{feat}'] = ((df_merged[feat] - df_merged[feat].mean()) / df_merged[feat].std())\n", - "df_merged_s[\"country\"] = df_merged[\"country\"]\n", - "df_merged_s.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 203, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
carbonenergy
country
ATcarbon1.000000-0.752501
energy-0.7525011.000000
BEcarbon1.000000-0.201674
energy-0.2016741.000000
BGcarbon1.000000-0.215923
............
SIenergy-0.5667301.000000
SKcarbon1.000000-0.755988
energy-0.7559881.000000
TRcarbonNaNNaN
energyNaN1.000000
\n", - "

64 rows × 2 columns

\n", - "
" - ], - "text/plain": [ - " carbon energy\n", - "country \n", - "AT carbon 1.000000 -0.752501\n", - " energy -0.752501 1.000000\n", - "BE carbon 1.000000 -0.201674\n", - " energy -0.201674 1.000000\n", - "BG carbon 1.000000 -0.215923\n", - "... ... ...\n", - "SI energy -0.566730 1.000000\n", - "SK carbon 1.000000 -0.755988\n", - " energy -0.755988 1.000000\n", - "TR carbon NaN NaN\n", - " energy NaN 1.000000\n", - "\n", - "[64 rows x 2 columns]" - ] - }, - "execution_count": 203, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_merged_s.groupby(\"country\").corr()" - ] - }, - { - "cell_type": "code", - "execution_count": 302, - "metadata": {}, - "outputs": [], - "source": [ - "df_merged_s = df_merged_s.drop(df_merged_s[df_merged_s[\"country\"] == \"EU27_2020\"].index, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 318, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertemplate": "country=BE
energy=%{x}
carbon=%{y}", - "legendgroup": "BE", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "BE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.09207599049527926, - -0.21769313971441526, - -0.17006275818698216, - -0.15706223466247826, - -0.09715176164464477, - -0.09068424679303388, - -0.016217771995245763, - 0.015268382586140905, - -0.13317336334981933, - -0.14068222995981616, - -0.018757294915460545, - -0.16450560745119297, - -0.14833682032216577, - -0.12424000612693603, - -0.10531229177639885 - ], - "xaxis": "x", - "y": [ - 0.47760478084574987, - 0.199320222126489, - 0.32643243314201936, - 0.1434134570209363, - 0.04985034780797156, - -0.009229465346972774, - -0.06742077142345268, - -0.019344179359169867, - -0.038858763178727135, - -0.04446064040838501, - -0.018471934204128775, - -0.02843673447927031, - -0.19339400025659154, - -0.20570899879715415, - -0.28625792517573434 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=BG
energy=%{x}
carbon=%{y}", - "legendgroup": "BG", - "marker": { - "color": "#EF553B", - "symbol": "circle" - }, - "mode": "markers", - "name": "BG", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.3223031457573063, - -0.3294255988217385, - -0.35390391452593667, - -0.34928660012554613, - -0.33448499651578345, - -0.3181442881058907, - -0.3022947833556138, - -0.3034081783174102, - -0.2982177929808009, - -0.3123411589508211, - -0.33661803203421076, - -0.323155433227106, - -0.3123196606039852, - -0.342606623317696, - -0.34894270844344893 - ], - "xaxis": "x", - "y": [ - 0.10663759653249247, - -0.17070549066366839, - -0.07062173210699872, - 0.11945027215462098, - -0.03658967217331065, - -0.20448125266752779, - -0.07361006605497691, - 0.04020188987675464, - -0.032621178551857595, - 0.05628309322216829, - -0.08906911487076365, - -0.12621769439457095, - -0.3479379159251024, - -0.11186632058646587, - 0.12985102553320169 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=CZ
energy=%{x}
carbon=%{y}", - "legendgroup": "CZ", - "marker": { - "color": "#00cc96", - "symbol": "circle" - }, - "mode": "markers", - "name": "CZ", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.233509897554051, - -0.23242924950289576, - -0.26425924664601363, - -0.20179451459817685, - -0.18329251008597355, - -0.199927940691636, - -0.1791172789792374, - -0.10864592727965956, - -0.14677970472118299, - -0.1262310346673683, - -0.18351502534377961, - -0.1924745309748098, - -0.15413055111388135, - -0.1249050795086008, - -0.09914809518460085 - ], - "xaxis": "x", - "y": [ - 1.0460820477330466, - 0.7833664025646742, - 0.8285319256853165, - 0.7702814984490651, - 0.6556596587653218, - 0.5348980058228977, - 0.5199478775557195, - 0.5020342597350042, - 0.5459529493914188, - 0.49405218732751605, - 0.5086101879828145, - 0.3701966357906448, - 0.11979058875740493, - 0.28557782981850793, - 0.2399744008482942 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=DK
energy=%{x}
carbon=%{y}", - "legendgroup": "DK", - "marker": { - "color": "#ab63fa", - "symbol": "circle" - }, - "mode": "markers", - "name": "DK", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.16318590695235793, - -0.1894980496524559, - -0.19946948394266104, - -0.18154055036667643, - -0.11234632818210022, - -0.1853883123670019, - -0.16503610740357827, - -0.11685317087944315, - -0.1277953709621474, - -0.12383870911048506, - -0.11703553842480323, - -0.1113328276712145, - -0.06856416711174156, - -0.04358027185415599, - -0.06597331340909691 - ], - "xaxis": "x", - "y": [ - 2.661041427886728, - 2.3331398791174665, - 2.2296302171819464, - 2.189425471076711, - 1.8704410009283043, - 1.7904627114880676, - 1.5121748594068065, - 1.486478202575164, - 1.594981092018486, - 1.5802812946757927, - 1.6690683308569074, - 1.5156571597128072, - 1.0926557588201993, - 1.2996711190213062, - 1.1180281763216164 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=DE
energy=%{x}
carbon=%{y}", - "legendgroup": "DE", - "marker": { - "color": "#FFA15A", - "symbol": "circle" - }, - "mode": "markers", - "name": "DE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 0.3092701463216474, - 0.3123647293772283, - 0.3304246505957772, - 0.46208360482819016, - 0.3845552938854622, - 0.26918792769698047, - 0.28904892900078805, - 0.2329370976173184, - 0.0909792399882896, - 0.08285800614930479, - 0.14646888006957895, - 0.2839895313067431, - 0.4105072205685084, - 0.4740034803015388, - 0.4347071875322575 - ], - "xaxis": "x", - "y": [ - 0.5471033040435122, - 0.34618222928032183, - 0.43370528982034795, - 0.434069899394443, - 0.45911207514779634, - 0.49010997736546447, - 0.3499810894641423, - 0.3554379727640335, - 0.31850570287523444, - 0.27506564849613446, - 0.1963019266785962, - -0.0055432573674733965, - -0.23092013768020578, - -0.10740834787595224, - -0.14187416027948505 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=EE
energy=%{x}
carbon=%{y}", - "legendgroup": "EE", - "marker": { - "color": "#19d3f3", - "symbol": "circle" - }, - "mode": "markers", - "name": "EE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.3505964765511888, - -0.3234820345403847, - -0.35500093603241245, - -0.3453405973932974, - -0.3286396729663529, - -0.3286069260557118, - -0.31193874853940834, - -0.283743658477449, - -0.31444388720345, - -0.33566388529886193, - -0.3230235777914098, - -0.29342037057188447, - -0.2523884915386266, - -0.25295439090141486, - -0.2554012073176048 - ], - "xaxis": "x", - "y": [ - 1.9079734594822086, - 1.2227419591939221, - 2.1133072573761775, - 2.120204834783178, - 1.95814709347625, - 2.4262104966498637, - 2.254439755610806, - 1.5922152294795804, - 1.8024882735922267, - 2.0698508576013452, - 1.817378463682793, - 0.6706767166473364, - 0.002782144234305275, - 0.2476074552971768, - 0.5752527693732079 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=IE
energy=%{x}
carbon=%{y}", - "legendgroup": "IE", - "marker": { - "color": "#FF6692", - "symbol": "circle" - }, - "mode": "markers", - "name": "IE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.3606820174515228, - -0.35763350929921384, - -0.3605697610418452, - -0.3610325567564801, - -0.36018141542855275, - -0.3300287314219257, - -0.32629802325368673, - -0.3443258524998074, - -0.3587461510820654, - -0.35473228037751314, - -0.34646186798710293, - -0.33732449751092575, - -0.34417624823854365, - -0.3328850643291375, - -0.347115005119839 - ], - "xaxis": "x", - "y": [ - 0.9224809956771697, - 0.6313070831670679, - 1.034786273906455, - 0.8997445173308171, - 0.9965101732011943, - 0.9975864651502488, - 1.0076625542486684, - 1.112327763825672, - 1.3175275709578453, - 1.4225407209418326, - 1.4446961561353509, - 1.3030380378314357, - 0.637157783760725, - 0.7543788094890421, - 1.0339818942678933 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=EL
energy=%{x}
carbon=%{y}", - "legendgroup": "EL", - "marker": { - "color": "#B6E880", - "symbol": "circle" - }, - "mode": "markers", - "name": "EL", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.2489828128319555, - -0.24857347644894218, - -0.2335590179200126, - -0.2554503276835664, - -0.27552418390654093, - -0.27824217748974955, - -0.2181024760974286, - -0.1915774784781637, - -0.21201155071819, - -0.23062816941763703, - -0.23301869389443497, - -0.19180670685265117, - -0.21204429762883106, - -0.24888457210003231, - -0.24610108469554154 - ], - "xaxis": "x", - "y": [ - 0.7766251510857198, - 0.6075758197869613, - 0.5151436414727893, - 0.42187057323810007, - 0.40606819522802257, - 0.23786057086662116, - 0.18113089779942804, - 0.10615837694901664, - 0.06812464694534244, - 0.20681310633326488, - 0.20108801385803246, - 0.0602725839234684, - -0.20073097336740117, - -0.13863241199052587, - -0.11785345034511932 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=ES
energy=%{x}
carbon=%{y}", - "legendgroup": "ES", - "marker": { - "color": "#FF97FF", - "symbol": "circle" - }, - "mode": "markers", - "name": "ES", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.27671944614493993, - -0.26247454001607545, - -0.2877715284863003, - -0.2431374892825249, - -0.24551164030400233, - -0.21112738413088117, - -0.17145450188922756, - -0.1281303391110949, - -0.015333605407936933, - 0.01605430844152653, - 0.020245913003583207, - -0.06648689958213608, - -0.07946246996073147, - -0.08792985501864768, - -0.24150800300902536 - ], - "xaxis": "x", - "y": [ - -0.16265190778221864, - -0.3837245207878815, - -0.4690477596914361, - -0.4372997601305343, - -0.4540680721091038, - -0.599426340797544, - -0.5838300508588488, - -0.5280221397320345, - -0.5956811153662929, - -0.5248178958043441, - -0.5726842489469822, - -0.6745243787056803, - -0.8581794897033742, - -0.7981549445463608, - -0.7657941191187012 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=FR
energy=%{x}
carbon=%{y}", - "legendgroup": "FR", - "marker": { - "color": "#FECB52", - "symbol": "circle" - }, - "mode": "markers", - "name": "FR", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.1970298390999015, - -0.06982446471467371, - -0.05413869451760225, - -0.21744753788460724, - -0.17304272705531934, - -0.18165516455392017, - -0.2441035231464364, - -0.20991574843716165, - -0.04713085564041374, - -0.027217786748686836, - -0.15177213498296696, - -0.11706597667824412, - -0.053138243650607, - 0.025427309313221493, - 0.485567544217317 - ], - "xaxis": "x", - "y": [ - -0.3286732633747333, - -0.45186855400830056, - -0.4347234480280222, - -0.5108459441109416, - -0.5274197984931485, - -0.5514584170319374, - -0.6465309711808572, - -0.6524513433282199, - -0.6610274805687076, - -0.6271403867406837, - -0.6699542419773782, - -0.7044929737662662, - -0.835237085171329, - -0.7821476040763375, - -0.782130805906567 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=HR
energy=%{x}
carbon=%{y}", - "legendgroup": "HR", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "HR", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.17237141538717746, - -0.17829860621321073, - -0.1697352890805715, - -0.1440289642273333, - -0.15730783649228627, - -0.18864662997578813, - -0.1945738208018214, - -0.1575698117774148, - -0.17001363782102058, - -0.17394490444348076, - -0.16517691911933488, - -0.18634124746665698, - -0.2012378171172787, - -0.18464004545885349, - -0.17784506150083193 - ], - "xaxis": "x", - "y": [ - -0.5587837014900578, - -0.6925881834455523, - -0.7031123948982418, - -0.707049270220925, - -0.8031997326463323, - -0.85483747599482, - -0.8863875981241642, - -0.8747249989131, - -0.8675823923379525, - -0.805451985010556, - -0.8602720974829129, - -0.84019423999443, - -0.8780924059097622, - -0.8409860734920394, - -0.8462912066640823 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=IT
energy=%{x}
carbon=%{y}", - "legendgroup": "IT", - "marker": { - "color": "#EF553B", - "symbol": "circle" - }, - "mode": "markers", - "name": "IT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 0.33813654805174864, - 0.3976868050525304, - 0.3799543529403922, - 0.40503848649145013, - 0.3704577488544825, - 0.3529545251168318, - 0.3923981789839979, - 0.459562092708828, - 0.33401043731097413, - 0.3293256806481183, - 0.39932749076946916, - 0.34700997842815884, - 0.2784870679117245, - 0.38952787951939766, - 0.4029437484850176 - ], - "xaxis": "x", - "y": [ - -0.03967323031932811, - -0.3062620867334445, - -0.2590272521957971, - -0.3025761114646243, - -0.370516942731973, - -0.5293944978423785, - -0.6143408137415656, - -0.596453244340109, - -0.6029101309577823, - -0.5979516734607722, - -0.6169758245833779, - -0.6350711287372166, - -0.7577984634900616, - -0.6509362121574145, - -0.6375484831529705 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=CY
energy=%{x}
carbon=%{y}", - "legendgroup": "CY", - "marker": { - "color": "#00cc96", - "symbol": "circle" - }, - "mode": "markers", - "name": "CY", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997 - ], - "xaxis": "x", - "y": [ - 0.8172797547574604, - 0.6519761522532697, - 0.46986456059974857, - 0.2381676073128518, - 0.02320329803404827, - -0.15933848460414413, - -0.03586732051961388, - -0.077385986530674, - 0.027843708328464126, - 0.08942927419038561, - 0.08257116653810571, - 0.004366097058945225, - -0.06828175287573993, - -0.0782264059709052, - -0.07838995351839043 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=LV
energy=%{x}
carbon=%{y}", - "legendgroup": "LV", - "marker": { - "color": "#ab63fa", - "symbol": "circle" - }, - "mode": "markers", - "name": "LV", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.2969897838317609, - -0.3032771906748459, - -0.3079599988965186, - -0.30737055450497935, - -0.29220873487816496, - -0.2910625930057276, - -0.28557748547334877, - -0.28711659027347897, - -0.2939606945974621, - -0.3063240942285334, - -0.2883006858153493, - -0.2975176476578396, - -0.30467933152121984, - -0.29660713618092, - -0.28609763740197147 - ], - "xaxis": "x", - "y": [ - -0.6701842815424446, - -0.8147990041991565, - -0.6344352645132431, - -0.7018540397259423, - -0.7174102376617976, - -0.7352865104774696, - -0.7319333595393566, - -0.6855204641786754, - -0.6883654179948558, - -0.6587750056116606, - -0.5858618073253068, - -0.5742094043832299, - -0.7617878378360223, - -0.7136442933917282, - -0.7612011969795736 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=LT
energy=%{x}
carbon=%{y}", - "legendgroup": "LT", - "marker": { - "color": "#FFA15A", - "symbol": "circle" - }, - "mode": "markers", - "name": "LT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.28051808777930376, - -0.2946975000868861, - -0.2391751130949557, - -0.2406159771631627, - -0.24104168700149659, - -0.24082883208232964, - -0.23349352409873045, - -0.24303924855060172, - -0.19116814209515035, - -0.17773863404124846, - -0.1626537696544406, - -0.15577036903768815, - -0.1763108687372979, - -0.16868902528558938, - -0.16123910311474646 - ], - "xaxis": "x", - "y": [ - -0.2683931968333091, - -0.5805491742927957, - -0.49511700655578317, - -0.4028085089085431, - -0.3969247608690116, - -0.47859523383530994, - -0.4002589610635739, - -0.3241986240265722, - -0.33292792536522886, - -0.24848466165839853, - -0.1706154291014523, - -0.13219807554353502, - 0.02688079706933431, - -0.13998794410699655, - -0.2495846900967058 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=LU
energy=%{x}
carbon=%{y}", - "legendgroup": "LU", - "marker": { - "color": "#19d3f3", - "symbol": "circle" - }, - "mode": "markers", - "name": "LU", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.261183116474579, - -0.2744030606738333, - -0.2538210051446201, - -0.25682013095568224, - -0.26278403106854414, - -0.26082861479343405, - -0.2590332326706269, - -0.24990373782645892, - -0.2466349739531782, - -0.24911887624566917, - -0.24934283236754343, - -0.2613853777681535, - -0.26587214660927344, - -0.262352230304831, - -0.256005617047307 - ], - "xaxis": "x", - "y": [ - 2.2789272401662513, - 2.2108286690005357, - 2.1786691180744535, - 1.756508361744364, - 1.6059926906935895, - 1.4478119092979078, - 1.475241686499395, - 1.7751484238913686, - 1.6333655321921159, - 1.5398410023625781, - 1.5290562965994472, - 1.712405382936471, - 1.2921978356303037, - 1.2201386298874772, - 1.0466474916819999 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=HU
energy=%{x}
carbon=%{y}", - "legendgroup": "HU", - "marker": { - "color": "#FF6692", - "symbol": "circle" - }, - "mode": "markers", - "name": "HU", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.16385721862049982, - -0.1933621851081019, - -0.21096364957767583, - -0.13291138806469077, - -0.09515420009553964, - -0.10063930762791849, - -0.060622582824533665, - -0.046606905070156655, - -0.07909184042609589, - -0.04876820117246713, - -0.06825261300390245, - -0.047949528406440435, - -0.05903435765844188, - -0.046082954499899575, - -0.019525209969993608 - ], - "xaxis": "x", - "y": [ - -0.4843349440824292, - -0.6383296625486267, - -0.6133500480259514, - -0.6064002371893833, - -0.7168084174924754, - -0.7505080122793301, - -0.7267934787734686, - -0.6685019553372079, - -0.6734730095644479, - -0.6178758887824087, - -0.6039589908708244, - -0.6401317841642429, - -0.7107176657156293, - -0.6904963876239261, - -0.7210681535875575 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=MT
energy=%{x}
carbon=%{y}", - "legendgroup": "MT", - "marker": { - "color": "#B6E880", - "symbol": "circle" - }, - "mode": "markers", - "name": "MT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.355754114977157, - -0.34801457912860445, - -0.3583236668144297, - -0.36267528915533387, - -0.36225837186250714, - -0.36613799660688634, - -0.36405136346083755, - -0.36243220883764526 - ], - "xaxis": "x", - "y": [ - -0.18938685389725837, - -0.29224854812403606, - -0.2509535600763297, - -0.248160789100439, - -0.16122558103007026, - -0.3808387793662879, - -0.3992019916892635, - -0.8394729760102109, - -1.0316863282912887, - -0.9666420063733628, - -0.980465038409023, - -0.9588981993475492, - -1.0834862229231879, - -1.095854335146756, - -1.073560267625183 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=NL
energy=%{x}
carbon=%{y}", - "legendgroup": "NL", - "marker": { - "color": "#FF97FF", - "symbol": "circle" - }, - "mode": "markers", - "name": "NL", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 0.03578432210276987, - -0.12000910527211008, - -0.11786418262512013, - -0.035391088175590946, - 0.15348855695496422, - 0.17143839943339312, - 0.16493813767114118, - 0.13063589613572055, - 0.024169418608221464, - -0.005301327357760685, - 0.06505333072574772, - -0.038946502131168285, - -0.049254771144227445, - -0.031045638627342522, - -0.06937504611303569 - ], - "xaxis": "x", - "y": [ - 0.910274551609408, - 0.7953590588729375, - 0.8972310345821566, - 0.754685147803236, - 0.6841349772232124, - 0.6678480854617128, - 0.6497982560098968, - 0.7265656540913101, - 0.6977259511816124, - 0.642173078311604, - 0.5517817928875027, - 0.49341921681024625, - 0.20590789720465819, - 0.20263502892131763, - 0.06956745568427362 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=AT
energy=%{x}
carbon=%{y}", - "legendgroup": "AT", - "marker": { - "color": "#FECB52", - "symbol": "circle" - }, - "mode": "markers", - "name": "AT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.04889404755006078, - -0.05304062510998599, - -0.04703757606545266, - 0.03594332472738756, - 0.01061365484034293, - 0.035662667329738294, - 0.06435146618997774, - 0.10819041040338798, - 0.05869340584904806, - 0.10775264970193817, - 0.08669162148423329, - 0.05346514871028245, - 0.028506190225149962, - 0.05984007167205568, - 0.09519000149307127 - ], - "xaxis": "x", - "y": [ - 0.03657488399987218, - -0.16291731684102098, - -0.06376390269574791, - -0.11920053911108676, - -0.2161175479834794, - -0.2692463546537488, - -0.3519974398934457, - -0.3388713662233741, - -0.3765557974979501, - -0.305878091348008, - -0.38950831453187773, - -0.30846083334775787, - -0.48944586754557184, - -0.3874116368449215, - -0.4778160046563219 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=PL
energy=%{x}
carbon=%{y}", - "legendgroup": "PL", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "PL", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.22509394151929657, - -0.25179904714708734, - -0.2696952338124309, - -0.26199970981177995, - -0.21250275437780602, - -0.24528241192951486, - -0.15183910241522797, - -0.13626794640540024, - -0.1435050136570762, - -0.1557196113261945, - -0.14679928737374634, - -0.08044548309781037, - -0.03532364591312569, - -0.1257752467916106, - -0.12351908288917295 - ], - "xaxis": "x", - "y": [ - 0.37739869994426295, - 0.24575395015186374, - 0.337976529498758, - 0.36265872965588447, - 0.30052112347422416, - 0.2896053661863519, - 0.2415118924799898, - 0.25896184944968764, - 0.3356084706887282, - 0.4435505349841807, - 0.43444736117462174, - 0.32487279605386565, - 0.22286097387391945, - 0.4437263656083722, - 0.41346998585131073 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=PT
energy=%{x}
carbon=%{y}", - "legendgroup": "PT", - "marker": { - "color": "#EF553B", - "symbol": "circle" - }, - "mode": "markers", - "name": "PT", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.1970953329211836, - -0.24860622335958324, - -0.2778164676514157, - -0.2626219011139602, - -0.19673511690413187, - -0.24038674878867522, - -0.2543533061770906, - -0.2407633382610475, - -0.2974318671254153, - -0.282863879976166, - -0.2802140654609121, - -0.2403997165652891, - -0.249341178648556, - -0.2167366352015003, - -0.1713776940103189 - ], - "xaxis": "x", - "y": [ - -0.37006541066036375, - -0.4488402418833575, - -0.5597234883901994, - -0.5703960453123255, - -0.5890142958921066, - -0.6271400553809124, - -0.6220940708445156, - -0.5164893829619664, - -0.5658800821124037, - -0.43585364032335594, - -0.5170498084545392, - -0.6088460264251094, - -0.7948811707149438, - -0.8238300933464481, - -0.7766286199081986 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=RO
energy=%{x}
carbon=%{y}", - "legendgroup": "RO", - "marker": { - "color": "#00cc96", - "symbol": "circle" - }, - "mode": "markers", - "name": "RO", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.357931784534788, - -0.36235261747133213, - -0.3604532966541502, - -0.31717825424197915, - -0.30910614076895593, - -0.32819758967269846, - -0.32698595397897895, - -0.29946217558516147, - -0.30461981401112964, - -0.29373549409298344, - -0.31248572018784604, - -0.2830783558674097, - -0.2379037470362269, - -0.2306084557774311, - -0.23132615344449609 - ], - "xaxis": "x", - "y": [ - -0.2933879375501158, - -0.5567015884562467, - -0.5997306074808025, - -0.5203519173405818, - -0.5575265908139979, - -0.6949213938314105, - -0.6973331010705265, - -0.7061954446220151, - -0.7263054870091822, - -0.6914810446842178, - -0.6818910300164472, - -0.7222099510632717, - -0.7756088690657365, - -0.7443567734322053, - -0.8036562123493329 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=SI
energy=%{x}
carbon=%{y}", - "legendgroup": "SI", - "marker": { - "color": "#ab63fa", - "symbol": "circle" - }, - "mode": "markers", - "name": "SI", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.27108697751467625, - -0.24562625449124606, - -0.23179068474539494, - -0.25780810524972325, - -0.2509967478363812, - -0.24986697941926433, - -0.2542386919898469, - -0.2249138335107707, - -0.23614602386065695, - -0.22348063221965375, - -0.2267928676168105, - -0.22530232648516102, - -0.2564335536755645, - -0.23568506197301795, - -0.20603127715000755 - ], - "xaxis": "x", - "y": [ - 0.035725909912725486, - -0.14597872388206015, - -0.13030830294480097, - -0.17004550041300145, - -0.25652234685922687, - -0.29207380011039474, - -0.4654187504791436, - -0.4354050171352338, - -0.37133518636217894, - -0.35545017582536437, - -0.3350767327737332, - -0.36392877946727065, - -0.438031210265885, - -0.4634930341983678, - -0.5297910241919838 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=SK
energy=%{x}
carbon=%{y}", - "legendgroup": "SK", - "marker": { - "color": "#FFA15A", - "symbol": "circle" - }, - "mode": "markers", - "name": "SK", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.21890477540813477, - -0.22574887973211794, - -0.25292881556420416, - -0.18918695400136576, - -0.15242854680676718, - -0.19750466930419697, - -0.1607462621095984, - -0.12742628053231192, - -0.15607982734324624, - -0.11819165173153082, - -0.16952243416140456, - -0.15134789875561194, - -0.15542488913042488, - -0.1456826832147072, - -0.09887097445330083 - ], - "xaxis": "x", - "y": [ - 0.04116370081908736, - -0.16384045228029803, - -0.16362494701481042, - -0.16648570998037585, - -0.30034889573409834, - -0.3227485886092741, - -0.3913595153355766, - -0.37457580651023803, - -0.3634709110885882, - -0.3324445625198823, - -0.3336166907972405, - -0.4570017139886019, - -0.586138295435998, - -0.43506309432287216, - -0.5801916446881615 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=FI
energy=%{x}
carbon=%{y}", - "legendgroup": "FI", - "marker": { - "color": "#19d3f3", - "symbol": "circle" - }, - "mode": "markers", - "name": "FI", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.10928449203716038, - -0.11987811762954581, - -0.11563739270152754, - -0.08392200974565339, - -0.06045884827132833, - -0.0849862843414881, - -0.01898488594441599, - -0.021653759161663014, - -0.010994639747995453, - -0.009455534947865267, - -0.0038230663176016086, - 0.018936036577940494, - -0.016496120735694838, - 0.02800693082551627, - -0.05541582403260389 - ], - "xaxis": "x", - "y": [ - 1.1889069343803127, - 1.0246508967036456, - 1.388287441683703, - 1.023104774541118, - 0.7388909323731688, - 0.7627572160068786, - 0.5503956390810391, - 0.394282352947281, - 0.5277213121922122, - 0.3877814713639673, - 0.4405587331411937, - 0.31532076887496896, - -0.011708848392775835, - -0.008512853046868819, - -0.05419215075734672 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=SE
energy=%{x}
carbon=%{y}", - "legendgroup": "SE", - "marker": { - "color": "#FF6692", - "symbol": "circle" - }, - "mode": "markers", - "name": "SE", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.1641846877269105, - -0.14763112439785075, - -0.12853967549410825, - -0.16865464102941627, - -0.18173703183052284, - -0.16549456415255323, - -0.1462066337849643, - -0.22083684313595775, - -0.13908418072053205, - -0.17823311239192857, - -0.17322283506384523, - -0.22450449712775736, - -0.17936288080904542, - -0.23644074605642657, - -0.27180740954877974 - ], - "xaxis": "x", - "y": [ - -0.4565398692926662, - -0.616808621960555, - -0.45656056536630885, - -0.5932723372463748, - -0.6870644717093815, - -0.7344941053210182, - -0.7828757102604104, - -0.7867769176126173, - -0.7744383090559973, - -0.8242723169908993, - -0.8497301924302318, - -0.8886936015962968, - -1.0206174549650613, - -0.976863645883608, - -1.0051234186045879 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=IS
energy=%{x}
carbon=%{y}", - "legendgroup": "IS", - "marker": { - "color": "#B6E880", - "symbol": "circle" - }, - "mode": "markers", - "name": "IS", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - -0.3730117368849997, - null - ], - "xaxis": "x", - "y": [ - 2.4667320075194943, - 2.0812322866640365, - 2.08214096874658, - 1.9229438588730945, - 2.0040461130685396, - 2.2071303499478754, - 2.150913801398296, - 2.5353107291114014, - 2.7941688254745083, - 3.000798682729694, - 4.005300340937289, - 2.871103335118045, - 1.4994490379866672, - 1.444631589039799, - 1.9364500806140081 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=NO
energy=%{x}
carbon=%{y}", - "legendgroup": "NO", - "marker": { - "color": "#FF97FF", - "symbol": "circle" - }, - "mode": "markers", - "name": "NO", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.3171455073313381, - -0.2804853408686627, - -0.13276402696680598, - -0.18874487070771134, - -0.3043905856366422, - -0.20706676721138875, - -0.2690894159655711, - -0.2523229977173444, - -0.2790281033451352, - -0.27295355142121713, - -0.23646163858541555, - -0.1707504433104446, - -0.29939430761285785, - -0.23817520255198604, - -0.1557196113261945 - ], - "xaxis": "x", - "y": [ - 1.101862688709538, - 0.8639660396355535, - 0.9888190321432754, - 1.2010397938137132, - 1.1314749784260179, - 1.1102171361452984, - 1.0484341051544355, - 1.3587214057441273, - 0.9057384589357572, - 0.9959312725042844, - 1.1190686257671856, - 1.1090467582569605, - 0.8164900409506007, - 0.7778922683209742, - 0.7818404857597921 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=RS
energy=%{x}
carbon=%{y}", - "legendgroup": "RS", - "marker": { - "color": "#FECB52", - "symbol": "circle" - }, - "mode": "markers", - "name": "RS", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.22769732091526146, - -0.28813174450335205, - -0.28099291798359927, - -0.26329321278210216, - -0.2783567916769933, - -0.30625715954318306, - -0.25826656199869824, - -0.2698098479996746, - -0.29003106532053397, - -0.2657788834077677, - -0.2682215082193956, - -0.28432313143469795, - -0.2900060466808042, - -0.2586593939387485, - -0.23470794327985445 - ], - "xaxis": "x", - "y": [ - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734 - ], - "yaxis": "y" - }, - { - "hovertemplate": "country=TR
energy=%{x}
carbon=%{y}", - "legendgroup": "TR", - "marker": { - "color": "#636efa", - "symbol": "circle" - }, - "mode": "markers", - "name": "TR", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - -0.3600930806370985, - -0.3597164911647262, - -0.35428050399830896, - -0.2984142744446473, - -0.27760361273224876, - -0.25137333730875344, - -0.2427936467207937, - -0.2561707597176699, - -0.2693677647060202, - -0.32834056268455736, - -0.3324565382564885, - -0.3368017422029071, - -0.3420737492142892, - -0.3347886749916134, - -0.26758607079186103 - ], - "xaxis": "x", - "y": [ - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734, - -2.0116058190506734 - ], - "yaxis": "y" - } - ], - "layout": { - "legend": { - "title": { - "text": "country" - }, - "tracegroupgap": 0 - }, - "margin": { - "t": 60 - }, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "title": { - "text": "energy" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0, - 1 - ], - "title": { - "text": "carbon" - } - } - } - } - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = px.scatter(df_merged_s, x=\"energy\", y=\"carbon\", color=\"country\")\n", - "fig.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 319, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'
'" - ] - }, - "execution_count": 319, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plotly.offline.plot(fig, include_plotlyjs=False, output_type=\"div\")" - ] - }, - { - "cell_type": "code", - "execution_count": 304, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(465, 33)\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
carbonenergycountry_ATcountry_BEcountry_BGcountry_CYcountry_CZcountry_DEcountry_DKcountry_EE...country_NLcountry_NOcountry_PLcountry_PTcountry_ROcountry_RScountry_SEcountry_SIcountry_SKcountry_TR
150.477605-0.09207601000000...0000000000
160.199320-0.21769301000000...0000000000
170.326432-0.17006301000000...0000000000
180.143413-0.15706201000000...0000000000
190.049850-0.09715201000000...0000000000
\n", - "

5 rows × 33 columns

\n", - "
" - ], - "text/plain": [ - " carbon energy country_AT country_BE country_BG country_CY \\\n", - "15 0.477605 -0.092076 0 1 0 0 \n", - "16 0.199320 -0.217693 0 1 0 0 \n", - "17 0.326432 -0.170063 0 1 0 0 \n", - "18 0.143413 -0.157062 0 1 0 0 \n", - "19 0.049850 -0.097152 0 1 0 0 \n", - "\n", - " country_CZ country_DE country_DK country_EE ... country_NL \\\n", - "15 0 0 0 0 ... 0 \n", - "16 0 0 0 0 ... 0 \n", - "17 0 0 0 0 ... 0 \n", - "18 0 0 0 0 ... 0 \n", - "19 0 0 0 0 ... 0 \n", - "\n", - " country_NO country_PL country_PT country_RO country_RS country_SE \\\n", - "15 0 0 0 0 0 0 \n", - "16 0 0 0 0 0 0 \n", - "17 0 0 0 0 0 0 \n", - "18 0 0 0 0 0 0 \n", - "19 0 0 0 0 0 0 \n", - "\n", - " country_SI country_SK country_TR \n", - "15 0 0 0 \n", - "16 0 0 0 \n", - "17 0 0 0 \n", - "18 0 0 0 \n", - "19 0 0 0 \n", - "\n", - "[5 rows x 33 columns]" - ] - }, - "execution_count": 304, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_dummies = pd.get_dummies(df_merged_s, dtype=int)\n", - "print(df_dummies.shape)\n", - "df_dummies.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 305, - "metadata": {}, - "outputs": [], - "source": [ - "# TODO Fix later\n", - "df_dummies = df_dummies.fillna(0)" - ] - }, - { - "cell_type": "code", - "execution_count": 306, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1. , -0.09207599, 0. , 1. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. ],\n", - " [ 1. , -0.21769314, 0. , 1. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. ]])" - ] - }, - "execution_count": 306, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X = np.pad(df_dummies.iloc[:, 1:].to_numpy(), ((0,0), (1,0)), mode=\"constant\", constant_values=1)\n", - "y = np.array(df_dummies[\"carbon\"])\n", - "X[0:2,]" - ] - }, - { - "cell_type": "code", - "execution_count": 307, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1.63397514, -2.21470212, -0.39824008, 0.3802898 , -1.22706076,\n", - " -0.72706076, 0.65881969, 0.6805806 , 0.64455475, 0.27293924,\n", - " 0.45161452, -1.07691537, -0.14824008, -1.6197102 , -1.32691537,\n", - " -1.60544525, 0.53720418, 1.03720418, 0.13778577, -0.56265042,\n", - " 1.48014441, 0.25867429, -1.93426594, 1.05896509, -0.54838548,\n", - " 0.15881969, -1.28412054, -1.99132571, -2.28412054, -1.82691537,\n", - " -1.04838548, -1.32691537, -2.37720616])" - ] - }, - "execution_count": 307, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m = np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, y))\n", - "np.set_printoptions(suppress=True) #this just prevents python from printing it out in inconvenient scientific notation\n", - "m" - ] - }, - { - "cell_type": "code", - "execution_count": 308, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[-1.74058105 -2.29707018 -2.06447086 -2.21869755 -2.17957681]\n" - ] - }, - { - "data": { - "text/plain": [ - "-704.6" - ] - }, - "execution_count": 308, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# get the residuals\n", - "res = y - np.matmul(X, m)\n", - "print(res[0:5])\n", - "round(sum(res), 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 309, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADd2ElEQVR4nOy9eZxkZXX//75rrd3V+zo9aw8MwwwDgiCLQgTFfY0CGhVcMImaqFGj+RkVE0PMNyoxGvCbBbegoHHXL4uIGgFZZZmBgdmnp6f37tqr7vr8/rhVRff0Vr1M9/T083695gV96y5P3br3Puee8znnKEIIgUQikUgkEskqRF3uAUgkEolEIpEsF9IQkkgkEolEsmqRhpBEIpFIJJJVizSEJBKJRCKRrFqkISSRSCQSiWTVIg0hiUQikUgkqxZpCEkkEolEIlm1SENIIpFIJBLJqkUaQhKJRCKRSFYt0hCSSE5CPvOZz6AoSlXrKorCZz7zmeM6nksuuYRLLrnkhN2fZGZ+/etfoygKv/71r5d7KBLJoiMNIYnkOPL1r38dRVEq/3Rdp7Ozk6uvvpre3t7lHt4Jx/r16yecr5aWFl74whfywx/+cFH2n8/n+cxnPnNCT+j/8R//gaIofOMb35j02f3334+qqnzkIx+ZdvszzjiDtWvXMlP3pAsvvJDW1lZc112UMUskKxlpCEkkS8BnP/tZvvWtb3HTTTfx8pe/nG9/+9tcfPHFFIvF43K8T37ykxQKheOy7+PNmWeeybe+9S2+9a1v8ZGPfISjR4/yhje8gZtuumnB+87n81x33XUntCH0rne9i4suuoiPfOQjjIyMVJY7jsO1115LV1cX11133bTbv/Wtb6Wnp4f//d//nfLzgwcPcv/993PFFVeg6/qij18iWWlIQ0giWQJe/vKX8yd/8ie8+93v5j/+4z/4yEc+wr59+/jJT35yXI6n6zrhcPi47Pt409nZyZ/8yZ/wJ3/yJ3zsYx/j3nvvJRaL8aUvfWm5h7YkKIrC1772NVKp1ATPzxe+8AV27tzJV77yFWKx2LTbv+Utb0FRFG655ZYpP//Od76DEIK3vvWtiz52iWQlIg0hiWQZeOELXwjAvn37JizfvXs3f/zHf0xDQwPhcJhzzjlnkrHkOA7XXXcdmzdvJhwO09jYyEUXXcRdd91VWWcqjZBlWXzoQx+iubmZmpoaXvOa13DkyJFJY7v66qtZv379pOVT7fPmm2/mxS9+MS0tLYRCIbZu3cqNN944p3MxG21tbZx22mkcOHBgxvUGBwd517veRWtrK+FwmB07dkwILx08eJDm5mYArrvuukr4bTp91MMPPzxtiOqOO+5AURR+9rOfAZDJZPjgBz/I+vXrCYVCtLS08JKXvIRHH310Xt9569atfPSjH+XrX/86v/nNbzhw4ACf/exnecMb3sCrX/3qGbft6uriRS96Ed///vdxHGfS57fccgubNm3ivPPO49ChQ/z5n/85p556KpFIhMbGRt70pjdx8ODBWce4fv16rr766knLp9JvWZbFpz/9abq7uwmFQnR1dfGxj30My7ImrHfXXXdx0UUXUVdXRzwe59RTT+Vv/uZvZh2LRLIQpF9UIlkGyhNNfX19ZdmuXbu48MIL6ezs5OMf/zixWIzbbruN173udfzP//wPr3/964HAILn++ut597vfzbnnnks6nebhhx/m0Ucf5SUvecm0x3z3u9/Nt7/9bd7ylrdwwQUX8Ktf/YpXvvKVC/oeN954I6effjqvec1r0HWdn/70p/z5n/85vu/zvve9b0H7LuM4Dj09PTQ2Nk67TqFQ4JJLLmHv3r28//3vZ8OGDXzve9/j6quvJplM8pd/+Zc0Nzdz44038md/9me8/vWv5w1veAMQaGqm4pxzzmHjxo3cdtttvOMd75jw2a233kp9fT2XX345AH/6p3/K97//fd7//vezdetWRkZG+N3vfsfTTz/N8573vHl9709+8pN897vf5b3vfS/r1q1D13W+/OUvV7XtW9/6Vq699lruuOMOXvWqV1WWP/nkk+zcuZNPfepTADz00EPcd999XHnllaxZs4aDBw9y4403cskll/DUU08RjUbnNfbx+L7Pa17zGn73u99x7bXXctppp/Hkk0/ypS99iWeffZYf/ehHQHD9v+pVr+KMM87gs5/9LKFQiL1793LvvfcueAwSyYwIiURy3Lj55psFIH75y1+KoaEh0dPTI77//e+L5uZmEQqFRE9PT2XdSy+9VGzfvl0Ui8XKMt/3xQUXXCA2b95cWbZjxw7xyle+csbjfvrTnxbjb+/HHntMAOLP//zPJ6z3lre8RQDi05/+dGXZO97xDrFu3bpZ9ymEEPl8ftJ6l19+udi4ceOEZRdffLG4+OKLZxyzEEKsW7dOvPSlLxVDQ0NiaGhIPP744+LKK68UgPjABz4w7f5uuOEGAYhvf/vblWW2bYvzzz9fxONxkU6nhRBCDA0NTfq+M/GJT3xCGIYhRkdHK8ssyxJ1dXXine98Z2VZIpEQ73vf+6ra51y44447BCAAccMNN1S93ejoqAiFQuKqq66asPzjH/+4AMQzzzwjhJj697v//vsFIL75zW9Wlt1zzz0CEPfcc09l2bp168Q73vGOSdsf+9t861vfEqqqiv/93/+dsN5NN90kAHHvvfcKIYT40pe+JAAxNDRU9feUSBYDGRqTSJaAyy67jObmZrq6uvjjP/5jYrEYP/nJT1izZg0Ao6Oj/OpXv+LNb34zmUyG4eFhhoeHGRkZ4fLLL2fPnj2VLLO6ujp27drFnj17qj7+L37xCwD+4i/+YsLyD37wgwv6XpFIpPL/qVSK4eFhLr74Yvbv308qlZrXPu+8806am5tpbm5mx44dfO973+Ntb3sbn//856fd5he/+AVtbW1cddVVlWWGYfAXf/EXZLNZfvOb38xrLFdccQWO4/CDH/xgwviSySRXXHFFZVldXR0PPPAAR48enddxpqOhoQFVDR7TL33pS6verr6+nle84hX85Cc/IZfLASCE4Lvf/S7nnHMOp5xyCjDx93Mch5GREbq7u6mrq5t3WO9Yvve973HaaaexZcuWynU9PDzMi1/8YgDuueceIDiHAD/+8Y/xfX9Rji2RVIM0hCSSJeCrX/0qd911F9///vd5xStewfDwMKFQqPL53r17EULwt3/7txUjoPzv05/+NBBoYCDIQEsmk5xyyils376dj370ozzxxBMzHv/QoUOoqsqmTZsmLD/11FMX9L3uvfdeLrvsMmKxGHV1dTQ3N1c0HfM1hM477zzuuusufvnLX3LfffcxPDzMN7/5zQmT9rEcOnSIzZs3V4yGMqeddlrl8/mwY8cOtmzZwq233lpZduutt9LU1FSZyAH+6Z/+iZ07d9LV1cW5557LZz7zGfbv3z+vY5bxPI9rr72Wjo4O6urqJhmxs/HWt76VXC7Hj3/8YwDuu+8+Dh48OEEkXSgU+NSnPkVXVxehUIimpiaam5tJJpPz/v2OZc+ePezatWvSdV02xsrX9RVXXMGFF17Iu9/9blpbW7nyyiu57bbbpFEkOe5IjZBEsgSce+65nHPOOQC87nWv46KLLuItb3kLzzzzDPF4vPKw/8hHPlLRnRxLd3c3AC960YvYt28fP/7xj7nzzjv5j//4D770pS9x00038e53v3vBY52uEKPneRP+3rdvH5deeilbtmzhi1/8Il1dXZimyS9+8Qu+9KUvzXsCa2pq4rLLLpvXtseDK664gs997nMMDw9TU1PDT37yE6666qoJqedvfvObK/WO7rzzTv7P//k/fP7zn+cHP/gBL3/5y+d13H/5l3/hD3/4Az/60Y/o7e3lfe97H7fccgtvectbqtr+Va96FYlEorLNLbfcgqZpXHnllZV1PvCBD3DzzTfzwQ9+kPPPP59EIoGiKFx55ZWz/n4zXSeaplX+9n2f7du388UvfnHK9bu6uoDAO/Xb3/6We+65h5///Ofcfvvt3Hrrrbz4xS/mzjvvnLBPiWRRWe7YnERyMlPWCD300EMTlpc1F9dff70QQoiBgQEBiE984hNzPkYmkxFnnXWW6OzsrCw7Vs/zD//wDwIQu3fvnrDtgw8+OEkz86EPfUgkEolJx3nb2942YZ9lTcehQ4cmrPc3f/M3AhAHDhyoLJuLRmg2/dNU+3vpS18q2trahOd5E9b77ne/KwDx05/+VAghxPDw8Jw0QkII8dRTTwlA3HTTTeKHP/zhJK3MVAwMDIjOzk5x4YUXVn2c8Rw+fFjE43Hx2te+VgghhOd54txzzxWtra0imUxWvZ93vetdwjAM0d/fL5qbm8VLXvKSCZ8nEglxzTXXTFhWKBSEpmkT9D9TaYTOOuusyvjG09XVNeG3ecUrXiE6OzuF7/tVj7vM5z73OQGIu+66a87bSiTVIkNjEskycMkll3Duuedyww03UCwWaWlp4ZJLLuFrX/safX19k9YfGhqq/P/4InsA8Xic7u7uSanI4yl7JY7NOrrhhhsmrbtp0yZSqdSEcFtfX9+k6s7lN3QxroJxKpXi5ptvnnYcx4tXvOIV9Pf3Twhhua7Lv/7rvxKPx7n44osBKllQyWSy6n2fdtppbN++nVtvvZVbb72V9vZ2XvSiF1U+9zxvUhippaWFjo6OCb/J8PAwu3fvJp/Pz3rMD3zgAwgh+Nd//VcAVFXlpptuYnh4eE7p5G9961txHIf3vve9DA0NTaodpGnapArU//qv/zrJ+zcVmzZt4ve//z22bVeW/exnP6Onp2fCem9+85vp7e3l3//93yfto1AoVDRMo6Ojkz4/88wzAWa8tiWShSJDYxLJMvHRj36UN73pTXz961/nT//0T/nqV7/KRRddxPbt23nPe97Dxo0bGRgY4P777+fIkSM8/vjjQFBj5pJLLuHss8+moaGBhx9+uJK6PR1nnnkmV111Ff/2b/9GKpXiggsu4O6772bv3r2T1r3yyiv567/+a17/+tfzF3/xF+TzeW688UZOOeWUCQLal770pZimyatf/Wre+973ks1m+fd//3daWlqmNOaOJ9deey1f+9rXuPrqq3nkkUdYv3493//+97n33nu54YYbqKmpAYLwy9atW7n11ls55ZRTaGhoYNu2bWzbtm3G/V9xxRV86lOfIhwO8653vWuCFimTybBmzRr++I//mB07dhCPx/nlL3/JQw89xBe+8IXKel/5yle47rrruOeee2bsk/bDH/6QH//4x3zhC1+ohI0AzjrrLN73vvfxla98hauvvprnP//5s56Xiy++mDVr1vDjH/+YSCRSKRlQ5lWvehXf+ta3SCQSbN26lfvvv59f/vKXM5YqKPPud7+b73//+7zsZS/jzW9+M/v27ePb3/72JB3a2972Nm677Tb+9E//lHvuuYcLL7wQz/PYvXs3t912G3fccQfnnHMOn/3sZ/ntb3/LK1/5StatW8fg4CD/9m//xpo1a7joootmHY9EMm+W2SMlkZzUTBcaEyIId2zatEls2rRJuK4rhBBi37594u1vf7toa2sThmGIzs5O8apXvUp8//vfr2z393//9+Lcc88VdXV1IhKJiC1btojPfe5zwrbtyjpTpboXCgXxF3/xF6KxsVHEYjHx6le/WvT09EwZKrrzzjvFtm3bhGma4tRTTxXf/va3p9znT37yE3HGGWeIcDgs1q9fLz7/+c+L//qv/1ry0JgQQTjqmmuuEU1NTcI0TbF9+3Zx8803T9r2vvvuE2effbYwTbPqMNmePXsqaey/+93vJnxmWZb46Ec/Knbs2CFqampELBYTO3bsEP/2b/82Yb3y+ZsprJbJZMSaNWvEmWeeWbkmxpNOp0VHR4d43vOeN+XnU/HRj35UAOLNb37zpM/GxsYq5ywej4vLL79c7N69e1Jq/FShMSGE+MIXviA6OztFKBQSF154oXj44Yen/G1s2xaf//znxemnny5CoZCor68XZ599trjuuutEKpUSQghx9913i9e+9rWio6NDmKYpOjo6xFVXXSWeffbZqr6nRDJfFCFm6MwnkUgkEolEchIjNUISiUQikUhWLdIQkkgkEolEsmqRhpBEIpFIJJJVizSEJBKJRCKRrFqkISSRSCQSiWTVIg0hiUQikUgkqxZZUHEWfN/n6NGj1NTUTNtbRyKRSCQSyYmFEIJMJkNHR8ekhszjkYbQLBw9enRCdVeJRCKRSCQrh56eHtasWTPt59IQmoVyaf6enh5qa2uXeTQSiUQikUiqIZ1O09XVVZnHp0MaQrNQDofV1tZKQ0gikUgkkhXGbLIWKZaWSCQSiUSyapGGkEQikUgkklWLNIQkEolEIpGsWqQhJJFIJBKJZNUiDSGJRCKRSCSrFmkISSQSiUQiWbVIQ0gikUgkEsmqRRpCEolEIpFIVi3SEJJIJBKJRLJqkZWllwHfF/QmC+Rsl5ip01kXQVVlQ1eJRCKRSJaaFecR+upXv8r69esJh8Ocd955PPjgg9Ou+/Wvfx1FUSb8C4fDSzjayewdzHDjr/fxpbue5ct37+FLdz3Ljb/ex97BzLKOSyKRSCSS1ciKMoRuvfVWPvzhD/PpT3+aRx99lB07dnD55ZczODg47Ta1tbX09fVV/h06dGgJRzyRvYMZbr73IDuPpqiLGmxsilMXNdh5NMXN9x6UxpBEIpFIJEvMijKEvvjFL/Ke97yHa665hq1bt3LTTTcRjUb5r//6r2m3URSFtra2yr/W1tYlHPFz+L7gjp0DjOZsNrfEqQkbaKpCTdhgc0uc0ZzNnbsG8H2xLOOTSCQSiWQ1smIMIdu2eeSRR7jssssqy1RV5bLLLuP++++fdrtsNsu6devo6urita99Lbt27VqK4U6iN1lg31CW9kR4UidcRVFoT4TZO5ilN1lYlvFJJBKJRLIaWTGG0PDwMJ7nTfLotLa20t/fP+U2p556Kv/1X//Fj3/8Y7797W/j+z4XXHABR44cmfY4lmWRTqcn/FsMcrZL0fWImlPr0yOmhuV65Gx3UY4nkUgkEolkdlaMITQfzj//fN7+9rdz5plncvHFF/ODH/yA5uZmvva1r027zfXXX08ikaj86+rqWpSxxEydsK6Rn8bQKdgeIV0jNo2hJJFIJBKJZPFZMYZQU1MTmqYxMDAwYfnAwABtbW1V7cMwDM466yz27t077Tqf+MQnSKVSlX89PT0LGneZzroIm5rj9KWKCDFRBySEoC9VpLslTmddZFGOJ5FIJBKJZHZWjCFkmiZnn302d999d2WZ7/vcfffdnH/++VXtw/M8nnzySdrb26ddJxQKUVtbO+HfYqCqCpdva6UhZrJnMEum6OD6Ppmiw57BLA0xk5ee3irrCUkkEolEsoSsqDjMhz/8Yd7xjndwzjnncO6553LDDTeQy+W45pprAHj7299OZ2cn119/PQCf/exnecELXkB3dzfJZJL/83/+D4cOHeLd7373soy/u6WGay5czx07B9g3lGUgXSSka2zvTPDS01vpbqlZlnFJJBKJRLJaWVGG0BVXXMHQ0BCf+tSn6O/v58wzz+T222+vCKgPHz6Mqj7n5BobG+M973kP/f391NfXc/bZZ3PfffexdevW5foKdLfUsPGSuKwsLZFIJBLJCYAijhWsSCaQTqdJJBKkUqlFC5NJJBKJRCI5vlQ7f68YjZBEIpFIJBLJYiMNIYlEIpFIJKsWaQhJJBKJRCJZtUhDSCKRSCQSyapFGkISiUQikUhWLdIQkkgkEolEsmqRhpBEIpFIJJJVizSEJBKJRCKRrFpWVGVpiUQikUgkJwe+L06ILgvSEJJIJBKJRLKk7B3MVPpuFl2PsK6xqTnO5duWvu+mNIQkEolEIpEsGXsHM9x870FGczbtiTBRM0Ledtl5NMXRVIFrLly/pMaQ1AhJJBKJRCJZEnxfcMfOAUZzNptb4tSEDTRVoSZssLklzmjO5s5dA/j+0rVBlYaQRCKRSCSSJaE3WWDfUJb2RBhFmagHUhSF9kSYvYNZepOFJRuTNIQkEolEIpEsCTnbpeh6RM2plTkRU8NyPXK2u2RjkoaQRCKRSCSSJSFm6oR1jfw0hk7B9gjpGrFpDKXjgTSEJBKJRCKRLAmddRE2NcfpSxURYqIOSAhBX6pId0uczrrIko1JGkISiUQikUiWBFVVuHxbKw0xkz2DWTJFB9f3yRQd9gxmaYiZvPT01iWtJyQNIYlEIpFIJEtGd0sN11y4nm0dCZJ5h4PDOZJ5h+2diSVPnQdZR0gikUgkEskS091Sw8ZL4rKytEQikUgkktWJqip0NUSXexgyNCaRSCQSiWT1Ig0hiUQikUgkqxZpCEkkEolEIlm1SENIIpFIJBLJqkUaQhKJRCKRSFYt0hCSSCQSiUSyapGGkEQikUgkklWLNIQkEolEIpGsWqQhJJFIJBKJZNUiDSGJRCKRSCSrFtliQyKZA74vTojeOBKJRCJZHKQhJJFUyd7BDHfsHGDfUJai6xHWNTY1x7l8W+uSd0uWSCQSyeIgDSGJpAr2Dma4+d6DjOZs2hNhomaEvO2y82iKo6kC11y4XhpDEolEsgJZcRqhr371q6xfv55wOMx5553Hgw8+OOP63/ve99iyZQvhcJjt27fzi1/8YolGKjlZ8H3BHTsHGM3ZbG6JUxM20FSFmrDB5pY4ozmbO3cN4PtiuYcqkUgkkjmyogyhW2+9lQ9/+MN8+tOf5tFHH2XHjh1cfvnlDA4OTrn+fffdx1VXXcW73vUu/vCHP/C6172O173udezcuXOJRy5ZyfQmC+wbytKeCKMoE/VAiqLQngizdzBLb7KwTCOUSCQSyXxRhBAr5jX2vPPO4/nPfz5f+cpXAPB9n66uLj7wgQ/w8Y9/fNL6V1xxBblcjp/97GeVZS94wQs488wzuemmm6o6ZjqdJpFIkEqlqK2tXZwvIllR7O5P8+W797CxKY42hTDa9X0ODuf4wKWb2dImrxGJRCI5Eah2/l4xHiHbtnnkkUe47LLLKstUVeWyyy7j/vvvn3Kb+++/f8L6AJdffvm06wNYlkU6nZ7wT7K6iZk6YV0jb7tTfl6wPUK6RsyUkjuJRCJZaawYQ2h4eBjP82htbZ2wvLW1lf7+/im36e/vn9P6ANdffz2JRKLyr6ura+GDl6xoOusibGqO05cqcqwDVQhBX6pId0uczrrIMo1QIpFIJPNlxRhCS8UnPvEJUqlU5V9PT89yD0myzKiqwuXbWmmImewZzJIpOri+T6bosGcwS0PM5KWnt8p6QhKJRLICWTG+/KamJjRNY2BgYMLygYEB2traptymra1tTusDhEIhQqHQwgcsOanobqnhmgvXV+oIDaSLhHSN7Z0JXnq6rCMkkUgkK5UVYwiZpsnZZ5/N3Xffzete9zogEEvffffdvP/9759ym/PPP5+7776bD37wg5Vld911F+eff/4SjFhystHdUsPGS+KysrREIpGcRKwYQwjgwx/+MO94xzs455xzOPfcc7nhhhvI5XJcc801ALz97W+ns7OT66+/HoC//Mu/5OKLL+YLX/gCr3zlK/nud7/Lww8/zP/9v/93Ob+GZAWjqgpdDdHlHoZEIpFIFokVZQhdccUVDA0N8alPfYr+/n7OPPNMbr/99oog+vDhw6jqc7KnCy64gFtuuYVPfvKT/M3f/A2bN2/mRz/6Edu2bVuuryCRSCQSieQEYkXVEVoOZB0hiUQikUhWHiddHSGJRCKRSCSSxUYaQhKJRCKRSFYt0hCSSCQSiUSyapGGkEQikUgkklWLNIQkEolEIpGsWqQhJJFIJBKJZNWyouoISarD94WsfiyRSCQSSRVIQ+gkY+9gptIPq+h6hHWNTc1xLt8m+2FJJBKJRHIs0hA6idg7mOHmew8ymrNpT4SJmhHytsvOoymOpgpcc+F6aQxJJBKJRDIOqRE6SfB9wR07BxjN2WxuiVMTNtBUhZqwweaWOKM5mzt3DeD7spC4RCKRSCRlpCF0ktCbLLBvKEt7IoyiTNQDKYpCeyLM3sEsvcnCMo1QIpFIJJITD2kInSTkbJei6xE1p452RkwNy/XI2e4Sj0wikUgkkhMXaQidJMRMnbCukZ/G0CnYHiFdIzaNoSSRSCQSyWpEGkInCZ11ETY1x+lLFRFiog5ICEFfqkh3S5zOusgyjfA5fF/QM5pnd3+antG81C1JJBKJZNmQ7oGTBFVVuHxbK0dTBfYMBlqhiKlRsD36UkUaYiYvPb112esJnSjp/bLWkkQikUhAGkInFd0tNVxz4fqKoTGQLhLSNbZ3Jnjp6ctfR+hESe8/UYwxiUQikSw/0hA6yehuqWHjJfETzttxbHp/ObOtJmwQD+nsGcxy564BNjbFj+tYTxRjTCKRSCQnBtIQOglRVYWuhuhyD2MCc0nvP15jP1GMMYlEIpGcOEhDaJWy1BqZ59L7pxZrR0yNgXTxuKb3z8cYWw4tkdQvSSQSydIhDaFVyHJoZMan99eEjUmfL0V6/3hjTAhBpuhiez6mplIT1icZY8txnqR+SSKRSJYWaQitMpZLI1NO7995NEU8pE/wyJTT+7d3Jo5ren/ZGDuazNOfshjN27i+j66qNERN2hKhijG2HOdJ6pckEolk6ZF1hFYRy9mPrJze3xAz2TOYJVN0cH2fTNFhz2B2SdL7O+si1EUNHjo4xkC6QNhQqY+ahA2VgXSBhw6OURc1aK8NL/l5kr3iJBKJZHmQhtAqYrn7kZXT+7d1JEjmHQ4O50jmHbZ3JpbO21G2I475/uW/FeBo6vidp+mKSS73byORSCSrFRkaW0WcCILl5Uzv700WSBYcnr++nr6UxVjeJmu56KpKa22YttoQY3mH/cO543KeZtL/uL5Y9t9GIpFIViPSEFpFnAiCZVi+9P6yIbixKc6a+ugksbQnBAeHcwCLfp5m0/+8bFvbCfHbSCQSyWpDhsZWESupH9lCmC78NN4QVBSF2ohBUzxEbcRAUZSKsbGhKbao56ka/c8TPSk2NsVO+t9GIpFITjTk6+UqYqX0I1sIM4WfNjbFq8pc66qPLup5qkb/s28oyxue10lfunjS/jYSiURyIiINoVXGid6PbCFUk35erYGzmOepWm1WU03opP1tJBKJ5ERFGkKrkBO1H9lCqLZ9xp9evKlqY2OxztNctFldDdGT7reRSCSSExlpCK1STsR+ZAthLunnczFwFuM8zbWY5Mn220gkEsmJjDSEJCcc8+m1NVP4SQiB6wmGshb7hrKV/Y03NsoC6+PhhVkN2iyJRCJZqUhDaBmQTTWnZ769tqYLP43mLPYN5hjIFCk4Ht954DC7etMT9rcU/b1OZm2WRCKRrGRWjCE0OjrKBz7wAX7605+iqipvfOMb+Zd/+Rfi8fi021xyySX85je/mbDsve99LzfddNPxHu60yKaa07OQXltThZ9GcxaP9STJWy6uD2vro3TUhSfsD1iy/l4nozZLIpFIVjorxhB661vfSl9fH3fddReO43DNNddw7bXXcsstt8y43Xve8x4++9nPVv6ORpdPeyGbak5PtWLnjU3xabU848NPbbUh9gxkSRccdE2lNqKzubWG2ohJTdhgz2CWO3b2I2Dex5wPUv8jkUgkJxYrwhB6+umnuf3223nooYc455xzAPjXf/1XXvGKV/DP//zPdHR0TLttNBqlra1tqYY6LQud6E925iJ2ns6QGB9+eqI3Sc9YnrCh0VobZlNznIaYOWF/TxxJgRJ4k+Z7zOONDKNKJBLJ8WVFGEL3338/dXV1FSMI4LLLLkNVVR544AFe//rXT7vtf//3f/Ptb3+btrY2Xv3qV/O3f/u3M3qFLMvCsqzK3+l0elG+w2JM9Cczi9UHrRx++u2eIf7jd/vZ2BinLmpMOucRUyPvBPuKTtO24nj296rGwJFhVIlEIjn+rAhDqL+/n5aWlgnLdF2noaGB/v7+abd7y1vewrp16+jo6OCJJ57gr//6r3nmmWf4wQ9+MO02119/Pdddd92ijb3MYk30J6uHYDH7oKmqwqbmOC3xMLqmTDKCyvuLGjooLHl/r2oMHBlGlUgkkqVhWQ2hj3/843z+85+fcZ2nn3563vu/9tprK/+/fft22tvbufTSS9m3bx+bNm2acptPfOITfPjDH678nU6n6erqmvcYyizGRH8yewjmWmtnMfZ3xpoEAth1NL0ox6yGagycjU3xZQ2jnqzGtkQikUzFshpCf/VXf8XVV1894zobN26kra2NwcHBCctd12V0dHRO+p/zzjsPgL17905rCIVCIUKhUNX7rJb5TPTjJ6ShjMX/e7KfsfzkCbQ3mecV29tpqgmt2IlrsWvtVLO/y7cF105famn6e1WrE3vlGeqyhVFPZmNbIpFIpmJZDaHm5maam5tnXe/8888nmUzyyCOPcPbZZwPwq1/9Ct/3K8ZNNTz22GMAtLe3z2u8C2GuE/34CanguBwaKeB6PuduqK94lGrCBrbr8+DBUR7vSbK2MUbEWLkT12LX2ql2f0tV36dandiB4dyihFHnigzHSSSS1ciK0AiddtppvOxlL+M973kPN910E47j8P73v58rr7yykjHW29vLpZdeyje/+U3OPfdc9u3bxy233MIrXvEKGhsbeeKJJ/jQhz7Ei170Is4444xl+R7VTszHTkhxT+fZgSye5/P4kRRndik0xEKM5mweP5LCcnw8TaE5HkLXlBU9cS12rZ1q9rdU9X2q1YkBi6aXqhaZ1SiRSFYrK8IQgiD76/3vfz+XXnpppaDil7/85crnjuPwzDPPkM/nATBNk1/+8pfccMMN5HI5urq6eOMb38gnP/nJ5foKwOyT7lQT0nDWQgGaakIk8w77hnLURQz2DmYp2C7NNSapgoMnBPVhc8VPXItda6ea/S1FfZ9qdWIbm2KLqpc6lqk0QDKrUSKRrFZWjCHU0NAwY/HE9evXI4So/N3V1TWpqvRKYKoJydRUdE3F9SEe1hnN2fSliozlbeJhA9cXaKqKqanA3CcuKY6tjoWep2p1Ymvqo8etN9l0GqDNrfFlCcdJJBLJcrNiDKGThdnEqFOFT2rCOvVRk6FMkbqogef75B0P1/PRQxrJvEtLbZia8HM/Z7UT12KLY09Wo2oxztNcdGLHozfZTBqgZwcz2K6/5KUEJBKJZLmRT7UlpBox6lThE0VR6G6Jk7VchjI2uqYQ1jQEMJyxqIkYbGqOTfAwVJuOv5ji2JM142im8zTXjL25GDjz1S5NZYwCM2qAnh3IYLk+R5NFTmldmlICEolEciIgDaElolox6rUv3Dhl+KQhZrJjTYIHD45iqAoFxyWka7iKwo41CRpiz6X8VzNxLbY49mTNOJrpPM03Y68aA+dYY+aUlpqqf4epjNEzuhIzaoA66iIcHs0T0tUlKSUgkUgkJwrSEFoiqhWj9qWL04ZPRnI256yrr3ggyrWFRnI2pq5V1juaLBIyVLpbg8l2Ki/CYopjT+aMo+nO00Iz9mYSZ8/XszaTMbqrL0W26NIxjWEcMTVCusord7Szpz973EsJSCQSyYmCNISWiPHaHyEEmaKL7fmYmkpNWJ+g6dnSVltV+GRLG7QnwhPWs1wfy/FxfZUf/aGX2/X+yiS6sek5L0R/qkjB8ehYBHHsyZxxNJVmSwhx3DL25utZm80YffxIkuGsTc5yqI2Yk7Yvh1JPa6vlsi2tJ6XOSyKRSKZCGkJLRFn7czSZpz9lMZq3cX0fXVVpiJq0JUITND3V6kPGr/d0X5qfP9mHrnp01EWImnplEn26P01LKf2+6Hp4nqBnLE/EUOlqiE0a71zEsTnbpeC4xD2d4axVMe7Kk/FKzjiaSrOVKbqLlrE3noV41mYzRjc2xRjKWOwfzrFjjTGjBmi+pQROVqG8RCI5uZGG0BLRWRehLmpw11MDGJpC2NAI6RpCCPrTBXrG8rxka+sETU+1E5KqKnTWRfjJY0exXZ9TWmsmaVl+8+wQEUPjwu4mOkIRcpbDgZEcDx0cI2pqNMbDlf3NVRw7lLE4NFLg2YEsCqBrKvVRk+6WOA0xc0VnHE2V8m57/qJk7B3LQjxrsxVrjIZ0muIhYiWDarE1QCerUF4ikZz8qMs9gFWFAMcTJPMOvaMFDo/k6B0tkMw7OJ5gIe/O002iQgj2DeVQFYXyYk1VqI2YnLu+AYAHD4yRLgQeqkzRYc9gtuqJce9ghv/3ZD+u5+N5PnVRg7ChMZQp8lhPkpGsRV+qSHdLfEVmHJVT3htiJnsGs2SKDqpCJWMvYmrzytibiueMmam3i5galutNaWCN91xNRcH2aIqHeMu5a9nWkSCZdzg4nCOZd9jemViQmL0cztt5NEVd1GBjU5y6qMHOoyluvvcgewcz89qvRCKRLAUr7xV9hdKbLHB4LI+mQN4JQlMCgYKC7itEDI1Do/mKuHmuIYbpPALlME5d1CBvB7qkMo3xEM9fX8/u/ixHU0V0VZmTOLYcyhnL25y7oZ7Hj6RI5h3iYZ26qMFQxubBg6Ocs65+RWccHZvyXlxgxt5U+L4gXXCwHJ+BdIH2RGSSV2gmA6vaYo0XbGrigk1NixbCWgyhvAypSSSS5UQaQktExnLYO5glbTmENAUjpKMQeBYc1yNd+nxXX4qfPHZ0ziGG6do3lMM4pq5M0LKUaa+LUHQ83vz8tbQlwnOaiMZ7oWrCBmd2KewbzDGat/F8H11TMFSFV2xvX/HhkWM1W9Nl7M0nzFQOK+0dzNAzmufpPpd1jVG6W2poiAXC5tkMrLk29V0s0fpChfILCalJA0oikSwG0hBaIjIFh9GcDQJiYYPxc4apqWSKDsMZi+8/3IOhaXOuxTOdR8DUVHRVIZ136KiPTtCyQOBlCBs6m5rjc54cj/VCNcRC1K83KxlxWqlPWlNNaJY9zZ3lmATHa7amytgL6RrbOhKc0ZXA9QU9o/lZx3Vsltg56+t59PAY+4dzjOZsnreunoihVWVgHY9q1LOd52obyU4VzltI7SmpSZJIJIuFNISWiJztIQQz6oBsz2cs73DhpsScQwzTeQRA4AOegI1N0UWtGDxdFezaSDm7yiFsLL5I+kSZBI/1Eg1nLB47nOSHj/ZWNa6pwko1YYPnr29g70CWQ6N5Hj00xtb22qqNmflWo56Kas5ztY1kj70GFhJSO1mLd0okkuVBGkJLhKooREwV1xMUbK9kEQkgUN6WxcyNUXNSiAEgHtJ55NAoDx+q55x1DVNObNN5BF7Y3cRAxmIk5yw4jDOeanUpiymSXkidnfkaBzNtW/YS7R3M8P929s9pXNOFlRpiIZ6/wWRNQ5TRnMVV562d9jefivmmv4+nfJ5HshbxkI6mKGSLDg8cGKY3WeCdFwXfZ77XwHxDaidz8U6JRLI8SENoidjQFKMpHqY/XSBXdHCe0yxjqBAO6YQ0ldba8ITtRnMW+wZzDOcs0gWHr/1mPw+tHZvWyzCdR2D/cHZRQyYwd13KQpnvJLgQD1I12853XDOFlRRFoaU2RN52qY0Yiz6pz2Tclb/P4ZE86aJDb7JA0fEACOsah0YKhA2VT75y64zXwNFkgZCh0d0yucL5fENqJ3PxTolEsjxIQ2iJ6KqP0pEI8exABiHA1AIPkBDg+oKc5dISD6GPEzOP5iwe60lSsD1MXSURMWiIGbN6P8Z7BMoTnusLXrWjHeELDo7mgcA466qf/2Th+4KQrnHxqc08fGCUoYzFQNo/bm0Z5jMJLlSHUs22852c5xtWWiizGXe9yQJ/6BnjyFiekZyNAoR0FSHAcj2KrscdO/t58ZYWLtrcPKUn0nJ9LNfH9QU/eqyX23f2TzjGfL/7QjRJEolEMhXSEFoifF8wlnfQVEAoVNTSCugqQSq9An3JQkXQvG8wR8H2qI8ajOUdWmrDtCeCCaCaEMCxE55dar8RMlRMXV2QtubYfYc0leaaQOx7WnvtcREvz3USXEgYZS7bzndyPlFDi7bnc3g0T6rgIIRAAHnbRwgIwrkwlrf55VMDXLCpCVVVJlY470/z88f70FWfjrrwhArn5WNsbIrP67svl/EokUhOXmRBxSXi0Z4xBjMWa+ojNMVNQpqKpiqENJWmuElXQxRfgCcEewaz9KWKDOcsTF1lLO8QMYPMLkVRJnkZpuLYInd1EYMjY3meLaVo10XMeRe9m6qAXn3MpGcsz2+eHcJyveOiz6imaOD4SXAunppjmcu2cx1XmamKNc6nqGW1HGvc1YQNNDUQaG9uiTOas7lz1wDpgkOm6GB7Hq4vsF2/9L2D7+55AtvzebI3NeHclSuc7+nPYns+p7ROfwxgXt+9bDz2pYqIwDKrUDagVmrxTolEsjxIQ2iJGMnZOF4QNlIUBU1T0NTgv4oSFDIEOL+7kW0dCUZLmiDPF7TUhjmzq65SUwZmrjJ87IQXD+kcHM7jeoK19RE8X3BwJEc8pE+YnHxfTNrXbPuebqKrZl/T7b9nNM/u/jQ9o/kJ+5nrJLiQSs1z2XYhk3M5rLTY1Z6nolrjrmB7mJpK0QlqUAnA8Xxs18f2fHwAAcNZi4zlzOsYvcnCvL77UhuPEonk5Ef6j5eIxpIRczRZQFEUTF1FUxQ8IcjZHlnLJWwEdWjOWdfAw4fq+dpv9tMQM+ZcZfjYyShdcBjN28TDOqqqEg/rjOZsMsVAiDsXgWl532214Uq9oPFNVhciVp1NuzJXcfZCwihz2XahovHFTHmfiWpDeIqi0FQT4shoAV8BRQRhWwXwfaDkGcpZLtmiO69jlI3P+Xz341EvSSKRrF6kIbREnNlZR0jXGMvbNESfywLSFQVVVxjNu9RFTc7srENVFc5Z18BDa8fYeTQ1aV+z6UeOnYxsz8f1fQwt+LkNTSVrPdduYy4C05ztMpy1OJoskCwEb+O6qtIQNdnUEqM2YsxLrFqtMHkuk+BCNDhz3Xahk/NipLzPRrXG3YamGFvba3m8J4Xvi4qoX1FAU0r10Ev91qKmNq9jjDc+5/Pdl8p4lEgk1bNSq71LQ2iJGMhadNSFSRZs0kWPiAmGquD4olLduT0RZiBr0dUQXZCX4djJKKgurWK7HgoKBcfD94Pjw9wEpsMZi57RPEII6mImhqbjeD6DmSIZy2FzS3zOYtW5ipqrnQQXcg7ns+1iTM7H80Eyk3Hn+z77hrJsbIqjADu66vj+I0cAgaooqGV9kBAgFEK6iqGp5G2v6mMstgB8KYxHiURSHSdKodv5IA2hJSJnu9THTC7qbuaJI0lSBYeCL9BUhca4ybbOBEppvTLz9TIcOxnVhHXCusrh0TwKUHR9IqbG7v40bYkIw1mL0zsStB9Tw+hYfF/w2OEkhq7i+QJTUyv6JjOmMpK12Nmb5rVnds5poptP+nm1k+BCPDXHbtufKuIJQXsizKWntbKxKT5pm4VMzsfjQXKsYfWSrZONu75kgSd7UxRsj2zR5XM/f5rW2hANUZOM5eB4AtcXKCK4XmsjBqauEDV14qGpBeBLVVtKIpEsPyu92rs0hJaIspemLmrwujM76EsVyTseUSPoK5azPZJ5Z5InZT5ehmMno4jxXCjM8wURQyMe0nm6L8sTR1LURgzChsbXfrt/xkm3N1lg/3CObR217BkMemHFwzqGpuJ4Pq4PvhCc0ZWY00Q3k65ECIHrCYayFvuGsvPykEx1Dttrw/Sli+zuT0/4+9hzXN72vn3D/PKpQfpSBQbSRX74aC9P9KRmNVKq9fAcjwfJdIbVi7e0sLsvw76hLHsHs+wbzFJ0fUK6wmDGYjhr8cyAguP7NMRMfAG6GmQ56qqC7fnoJYNvqvCX1PBIJKuHk6HauzSElojxXpru5hg1YYOQoVW6wc/WWXw+GoprLlzP7U/284ud/WQtl6a4ie8HKfpjORtPBF6dltoQXfXRWSfdssGysSlOLGSwdzDLWN4ma7noqkpbIkxIV2meY5PV6XQl5araA5kiBcfjOw8cZldvel4ekvHncO9ghq/9dj/7hrIUHI900SFvu0RNndqwQcSY6InZP5zlF0/20ZssUB81qQ0baCqznq9qPTzlB8lI1qKtNozl+gjhUhMOsvrm8yCZzbB6xwXreJXezpfuepanPR8hBHlbAB4QhMJsT6CrKmsbIiQLLp7vI1BoqQkKfz5vbf20nj+p4ZFIVgcnQ7V3aQgtEWUvzdP9aW7fNYDlehUBakjXOLWtZtFDBt0tNbzmTJUnj6Y4tTVOXdQkZmrct38EVbFoiBooikKxVCdmtkl3vMHSEDN5/vr6CZljIEgV3DkXs5tKV1Kuqp23XFwf1tZH6agLL9jVOt5AiBgqR8cKHBjJYbkeIV1lfWOM7pb4cwbD+ev57oOHefjQGCrQO1ZA11TqoyabmmOMlMoFjD9fvi+4d98w33nwMDnLZWNTnI7Q9B6eciXnsZzNwZE8rudXjtHdEp/zg8R1fW576AiHRnJ0N8cr53T8G9ovnxrkFdvbeLI3RdHxgppWhlbJZLQcD98XZIsOph5je2cCTVXwfEGm6NIYnz3EJTU8EsnJz8lQ7V0aQktMpugykrUousFEo6oKYV0jUzw+BeDypUmusz6Kpgap9HnbozEeIqSr+EKQswNjRlEU2mpDPN6T5Ld7htjUHJ/wFj+VwVLuNC9KhSDnI4Q9NpTXVhtiz0CWdMFB11RqIzqbW2uojZjUhI15u1rHu3AbYwaP9SQ5miyiKFAfNSjYPkeSBXwBO7oSHBnL88937Oap/jSaolIfMzE0BccTDGWKZC2XzS2xCUbK3sFMxQs3mrNIRAwcV7CpJUZDLETM1HiiN8W3f3+Iay7cQFd9lKf70zw7kMFQVWoiBkZYn3CMbZ2109Y7Opa9gxlue6iH/7ezH01VGM7aFYOqIWZOeEN76MAog+kiqgJRU68UO9cVBc3UEb6DK6ApHsbzBXnbJaRrnLFGhrgkEknAyVDt/cQd2UmG7wtueeAwz/SnEQSaC6EGtVkE8Ex/mlseOFxpZLlYHHuR2l5QJM8otfFwPB9NVTE1ldGczbMDaY6MFfjP3+2nOR6eVMfnJVtbeXYgw6OHx2hPRGiuCVF0Fi6EHa8reaI3Sc9YnrCh0VobjKFcTHIhrtbxNZCe6c+QKbooCkR0DU1VCJsKruczmrP53z3D6Ar0Zyw8T9AYN/F9H1XXCekKZsxkNGfTmyzSGDPI2W7F23RkLI/lerTWhlEUKhl1G5piDGdsBjLFoHp4MgiHHhoNil3WRzVCehAqHX+MZwcyrK2PzvogKR//0EgOTYXGuInnUzGoykU5y29ofekiri+ImhrHeLRRFNB1Fdv2eMGmBs7f2CRDXBKJZBLL0SposZGG0BJxZCzPb54ZJGu5GJpK1NRQFfAFWK5P1nL57TODHLlgPWsbY4t23GMvUlNT0TUVxxOYGmSLLi21YRzP5/EjKdIFh7ChsaExjq4pE0I5AHc9NUDOdhnMWBwayRMxNdY2RHne2voFewm6W2pY/6IYP3ysl6FMkfUNcTrrw6jqxALo83W1ll24cV9nNG8TNjTSRZfynK4pCgVP4HounhC0lLROuq6Sszxcv0hbbZiIGdzs8bDOcNYiEdZJ5m1u39nPkbE8HYkwvWMFTF1FVRTMmEp/usgD+0eJh3ViIa3yPR46NMqhkTx1EYOc5VUqj0Ng9MVCOn3JIuesa5j0IBkvxI4YGrfv7Gc0Z9PdHGc4a+OVmuKWDap9Q1nqo/WVN7S22jC6quB6AqEzwRgSAlxXoKsKzTUhGeKSSCRTcjJkikpDaInYO5RlKGOVQmEKvhC4QV06wrqCJ4KMnb1D2UU1hKYKOyUiOv0pC12FaEhnY1OUfUM58raLrkJrbZi6kn6orCm55YHDFB2PsbzD2oYop7bWMJgp0pcqEgvpXLa1ZcGhkrK4+IkjSfrTFqmCS18qRFsiTLRkxNWE9Xm7WsvesXJbhqihoSoKvgBNAc8XOJ6PoakYmhKELhWFmKlhewLH9RnNO3QYgbGiqwqpvMNwzua//vcAO/vSRAyNTCEwpBxPENKDm99xfXK2S1si8BLpqoLleHi+T6rgBCUOVG1SJl626KBrCmevq5/wIDlWiO15gp6xPFvaaqiNGDRETQYzRcyYWjHaRnM26YLDQMZie2eC529ooKU2zEC6GIS9yhohX1CwA21Wc43JhkW8HiUSycnHSs8UlYbQEjGStXF8QUgNvAuOLypiaUNVUFQV2/cZydqLfuxjL9KQHnijNFWtpDsOZop4nk9NxGBTc2yCV6KtNsTv94/QXBNix5q6ymcddVHaE5GK+La7uWbeVv94EXNHXZhUweHwaJ7dAxme7k9TGwmyuaKmhoLC8zc0zFr36FjK3rEHD46gKUoQFjNUcrZHWFfI217FKFIAxxOEDY36mMlozsFyPHKWS9HxUVUYTBcpuoEGKxrSiRgasZBGqmCTtz08P8gCs10fy/NLYuPgN87bHkeThUpT02ctl60dtdSEQwymLRzfx1BV6qIG9bEQp7XXTnmuyhlhR8byjORsnhnIEAvpbGqJkbGcimGlqQpFx2PvUJZ1jTFeenor6xpiXLy5mV/s7Mf2PCzHx/ODfmJCgKoo6KrKzx7v42Xb2+b8MFupVWYlEsncWcmZotIQWiIa4yYKQX8mTVXQ1MAIEgRpyp4ThMwa4+as+5oPx16kQxmLx3uS7B/KcXAkR9H26GqMsrklTkMsCAkJEWQIDWVtRrITa0SUWYz0yKnqULTUhnl2IIvt+qgKFGyXgu1xcMRFVxVChjpr3aNjKXvHepMF+pJFknmHRNQga3kM5xwQAl9AxvMxdJWGmEZzOES26NJaE2I0H3hUkgWbiK5iuYLGeIgXbGgga3kYmoqqqDTGQzipIpbrM5KzS+EnH1UJvH6pQhCOC+kqvh80NbU8weM9KRriBhFDL10bgnTRY0dXtBIWm65mR33UpD5ikCu67BvKcc66es7sqmPfYI7RvE3RcfF8OL0jwZvOWVM5Z295wVoGsxbP9KfJFl3SRS8I55XKIJyxJsGuvjR96eKcMvWmKx3wktNbiBj6intQSiSS2VmpmaLSEFoiNjbFCBkqluuhCoDnlNJC+PhCEDZUIoZaKfK32JPE+It0SxtcuKmpIiD+zoOH6UhEKllg5Ro+weRvky46HBrJUxsxqY8aE9LmI6ZadVbTVBxbh0IIwVDGIh7WiHgqGcslmXcxdZX6qIGhBUX9nuydeyp9d0sN77xoPWFD5Z7dgwykLOySV0dVFCzHR1HA1IOQ0tqGGAeGcxRsl0TYIKSpdLfWkC442J7grLV1qKpKTVihPmoylAli4g1xk1TBIRExSOZtbFcE58n2UBWIhzRyto8vFAwt8D75AkayDnURQXNtGMvxcTyPwYzF/uEs3S019IzleeJIkoipkSm6lWa3NWGd+liIo8kCI1mLTNGlIRaifr1JuuCwdyjL1o5aPvrSU9F1dcL5+OBlm/l/T/bx48eOYns+iYhBa22Y7pYaGmJmJSOw2ky96WoY/X7/CHc+1U9zTQhTV1dUCX6JRHLysmIMoc997nP8/Oc/57HHHsM0TZLJ5KzbCCH49Kc/zb//+7+TTCa58MILufHGG9m8efPxH/AxqIpCQ8yk6HgIIfB8UflMUUDXgsnl5t8dRF/ESWKm8ETZMOqsi7CrN10SVGscKbVccFyfuoiBrqlEjEC/8vv9I8RCGkXHr9S7iZlB+Gi+6ZHH1qHIFN2gOW0shKHC4bECjufTWRemLmpiez45y2Nbh8nBkfyEVPRqDMfulho++cqtXHJqMzfctYcjyTxxUwUl6J2lKtCRCJMsBA1md6xJsG8oy6GRPDVhnZip0VEXxtRVOuoCw1JRFLpb4mQtl9GcTTSkoyrQVR8hHtLRNRWVQDQfM3WKjo/vB2Jk1wdNEYFRDBQcL/D4NMdprQ0znLO47eEe3nDmGr778GGePJoiYmgY42oNNcSC/6aLDiNZi7G8TTQUCBYHMhbrGmO8+ZyuCUbQ+PPxmjNVdvamiZga9VGzYmCVv1u1Xr/pPFaOJxjL2wxlLXRN4QUbGik43oopwS+RLDcy1Hz8WDGGkG3bvOlNb+L888/nP//zP6va5p/+6Z/48pe/zDe+8Q02bNjA3/7t33L55Zfz1FNPEQ7PTV+yUPKOR2ddBAUYzQUZPQKBQqkInwiEudGQzpr66KL0aZlLeGJ8scfhrIXleJh64I1pjIVoaDAZyVoMpIvomsLa+mhQ78YNau+4peax82GmFH/H9bFdn5CulWrdKBilVP/HelJkLbeSin7GmrqqDUdVVdjQFGddY5TuljiGHpQQCLLnkiQLgQdqKFOkLhIYNad31PLH56xha3sCXwhuuOtZBtIFTF3DUBU0BdY1RjmaLJDK2xRdn6Lr84KNjZzaVsPN9x3gwEgOUwSibEUh6OGlgKqq6GogsG6ImqiaQtH12D2QoeC47B3M8r/PDlMTfk6LpCrqpNT4U1vj7BaBMXVwOFe1YLHgeGiawppSvaljqTZTb6oqs0II9g5mKToebbUhcpZH3vaojaycEvwSyXKykhuargRWjCF03XXXAfD1r3+9qvWFENxwww188pOf5LWvfS0A3/zmN2ltbeVHP/oRV1555fEa6pTETJ2meIimuElfqkhvsoDtBqElAXi+T23YoD5qoqnKgvu0zDU8saU9uJkcz69kTillEROCroYIfekijuejKkEhRscL0v6b4ya1EYNfPj1Ad8vs4zz2zaa9VCtoqhT/spi4LmpglrwZmaJDuuCgAIloEMqLmNqcDcec7WJ5fqXYJATXTXdznP3DOYazFsm8TabokogYdDXo7B3Isak5ju/DcDZISddVhbwTGIFRUyOsq/gCnr++gQ+/5BTWlDxVqYLDEz2pSs83XVMqGWp520MogYEWMjVGsjYKQUPeqGmyfyjPYKaIqoSpCetkiy4NMY2GcanxdZE6Co7PK7e38eodHeQdr+o3x8UqijZVldmyhy8eNkrf1cb2gmrmK6UEv0SyXKz0hqYrgRVjCM2VAwcO0N/fz2WXXVZZlkgkOO+887j//vunNYQsy8KyrMrf6XR6UcZTzlj6/YERhBAY2nMhinwxSF1uiIeIh7SS/iQwktpqQ3OeJGYNT2QsfF+wtaMWIeCJI0l+9sRRFBXWNURwXI9E1MQsTdJjeYfeZLGUsQU5yyVZcIiaOi21YTY1xzA0tapxTvdms6W9ZsoUfyF8DE2phGqEEAymgzIErbVh7JLRVg7nzMVwPHbyH83Zlf5puaLDWM7GF4K1DVHOWVdP0fXZeTTF0/2la6KkJRrJBteLoir4Frhe0KXd9QW251fG8ZozOvjBI0fY1ZdGBcxSr7kgTOriehA1VPKWiy8EDTGTkK6RLjr4QtBeE8Fy/cCANZ5LtY+GdAbSRZ7oTbGmPsrl29rmXIJhsYqiTWVQTfDwjSvgWaYab5MMC0hWIydDQ9OVwElrCPX39wPQ2to6YXlra2vls6m4/vrrK96nxURVFba01/DDx3rJFB0aYyZ1UYNkziZru/gEWUQPH0oylrcr+ptERCdUqn3TM5qvaiKYKTyRLjooCA6N5klbQfZSpuAwlndQFYUDGng+WK6goy6MqmqVGjQIaKkJkQvpbOtM0DBOS+L6/qyT2WxvNuO7opdT/HVNo6POwHJ8io5LMu/gC2irDTLbygUhy+OYi3dh/ORvu0FByYIdZKWlCg5FN0h5f2Ygg+35bO+so7s5xu27BnA8nxdsqGckY5HWVJRyHSLXIx7SeGF3E6N5Z8JDStdVrrloA9f/4mn600Usx0NXg+28UimF+pjJUNYiagS3pu/7ZIsuuqYQC2m4vkrB8TmtvYaBlMVo3sbxPIqOz8amOG99wdp5vR0uVlG0qQyqioevVDi0/HuVsxKD610QMbRprxsZFpCsRk6GhqYrgWU1hD7+8Y/z+c9/fsZ1nn76abZs2bJEI4JPfOITfPjDH678nU6n6erqWvB+fV+wuy9De22Y5rjJWN4hVXAAhZqQgaLAU31p4qZGTcSs9JvqT1m4vs9/3XuATNGtdEnf3pngZdumru2SsRxGckVsL6hZU18KH/WnC+SsoMdZuX7RcCnDyBOgqYKoYZC1A4+P5/t0NUQJGRoQzNTpgkNHfZR1DdEJN+ZsoZNq3mye6c/w3hdtpK9kUJVT/B/rSfLsQIahjEciYuALgakHHpGIqbOp+bn9TeddmM6jEKTT53nw4CiW4xMPaxxNFsnZHqamUBPSsT3B4VIbjNZEiOGsheP5/O/eETJFl6ipURcxMHQVzxN4vo/l+oR0lcd7gnYh60oemktPCwzzf7tnL7v7M4zlnaBsQik7azBjYbs+muJyaCSPqkJt2CARMXB9MDSVnBVcA+esj1YMiYLjcc2FC6tKvhhF0aY2qAJB/ZFkgeZ40Kx2LO8E3recxVjBoSlm8tPHj066pmVYQLJSOB5ey5OhoelKYFkNob/6q7/i6quvnnGdjRs3zmvfbW1tAAwMDNDe3l5ZPjAwwJlnnjntdqFQiFAoNK9jzkTZst/cGidmavSliuQdj4ih0TuW5+n+DJ4jaKsJVfpNmRr4Iqg8fM/TgySiRqkNgsKBoRy7+zN88LLNkyeO3x3gscOpihA3bJS0JFm71O1exfUha7klrwf4XuAJUlWF2rBOquiRtYPU7ZaaUKUCsydgY1N0zqGTat9s+tLFKVP8n+5P8/CBUQ6O5NnZmySZD5qJbmyKVww9mNogm82j8Irt7TzWk8RVoT9VxHLK4bhAl6RqparSOZujqQJF28XUNcKGRtZysRyfUeHQVhtGVaE/Y/PIoTHUUhHDm+89wJ+8YF3ld7r0tFYu3tzMT544ym+eGWQs7yCEYP9QjpARhB9VJfAyIUBXIR42yBYdYiGtEloqp833p4vsWFPHmvqFvxFOVxQNqNojeaxBZbke9TET1xfURgxylsszA1myRRcFQVPc5NTWGnYdTdOXeq5ekQwLSJaa+Rozx8treTI0NF0JLOvZa25uprm5+bjse8OGDbS1tXH33XdXDJ90Os0DDzzAn/3Znx2XY85E2bIvOiq7+zKM5m1c30dXg7Rqz/PxBRRdH9MIhMiBBygQ1lrCJ2RoxEOBziJTcHi8JzmhUevewQw3/HIPj/ckSy0ggl5TlutzZCyP7frESx6OkK6WUvkDL4MvfDw/MGpChkZNCHK2R7bo4vqC1poQ521oZDBrMZJzMHVtTqGT+b7ZlFP8uxqiXLalld/tHeJLd1n0JvPkLJen+9P0p4t0twQG0bEG2bEehYgRZihjcf/+YZ4dyPC+P+qmqSbEusYYEV3jDz1j1McUxnJ25btoioIN2K5P0fGCVHi1FPJRVXQ10MEMZIq4pVYcEUNDL7XXODCc4+Z7D07wXui6yhuet4bXndnJkbE8//W7g6iqwrb2Gu7bP8Zw1qKhJBAfyztAYND2py3W1EdKdYSc49LL59iiaPN5yE9lUBVsjzt39fOLnf2M5iwSEYPGeIhNzTEaYqFJ9YqmC/GWa1jFQxp7BjIyLCBZFOZrzBxPr+XJ0NB0JbBizMjDhw8zOjrK4cOH8TyPxx57DIDu7m7i8TgAW7Zs4frrr+f1r389iqLwwQ9+kL//+79n8+bNlfT5jo4OXve61y35+GOmju36PHp4DNcTpX5SgVEzkrXxROCpcTxBMm+jqSqJiMFo1gpSszUVvVT0L6RrmHGVgXSRB/aPcGQsz5r6KLc/2c+zAxlMXaWrPsxAxiq1iVBxiz6+DznLIxHRqQnr5G2PIC0s2K+vCCw3ELOqSqnVhAJb2mv40xdt4oJNTewfzs4rdLIYbzb7h7PcsWuAeFinIWbilKpOD6aLjOYsWmrCrG2MVoyCYz0KY3m7YoQ6nsf+oRx/97OneM+LNhAxNHwRiJzrIgZFO+gNphkanggK/JTbXohSC46YGdRXytkuugLJnA2KQl0kaKw6lndorQ1zRmeCvUO5Kb0XqqqgKArposOm5ji6HuivHutJkrNdFFUhGgqKJ9ZHDdpqw9RFDJ7uS6EqKt0tcd54dudxCw8t5CE/VZXZsKHy5NEUp7bGqZulXtGxxvN4MbtbEqErwNP9aWkISRbEfK/z4+21PBkamq4EVowh9KlPfYpvfOMblb/POussAO655x4uueQSAJ555hlSqVRlnY997GPkcjmuvfZakskkF110EbfffvuS1xACaC9VCh7LO6ytj1Q6qod0jfqowVDGImpqvHBzI64PpqYykrPYUzJsQEEb9zagKAqJqMFI1mb/cA5FUXiyN4XnC2rCBiFdpU1RGM05FByvcqMEVZM1jJInSoiglo2mKoR0tZKl5JT6TUUNjfbaMG2JMKqqzLufzELfbMY/cM7qqmMsb1cqXyuKIFP0aKkRXH56K64v6BnNI4SoeBTG8jaP9SQp2B7xcGAI5nSXfUNZvv/IEZrioUoqvOtDQ8zA9jwKtosvIGRo5G0HhEJTTQhDU0kW3FKFaIdUwcX2QVcEBcdn33COxljg7VBVdUZR47ETfkPM5Myuusqk73iBJ2pbZxMXdTfx4IFR9g1l8YRgMF3krl2DqIqy6MbQ8XjI552gindnFfWKxhvPjidKv58bpOGH9SB7Me/w88f72NgUk1ohybxYyHW+FGLmld7QdCWwYgyhr3/967PWEBJCTPhbURQ++9nP8tnPfvY4jqw6+tJFQoZKXcRgLO9M6DCeK03OjhcUWGwq9RsbzQfp244vqA3plTo6z/HcjZezXXJOEFYytLJwWKfD0LBdH8f3OTKaB0WhuSaENc44QoChq0RMDd8XgQdK1dAU2NgcI1P0JoR25tNPZqFvNsc+cMrtI8phkuGsRc9onv/+/WE0TSGsa9SGDYazFu2JMLv7MhRsj4aYWXlgxUKBl240Z9McD9GRiNCXKjKWs2muMWmImQymLRTK3emhPqpzUXcTiqKwdzBLf7oQtMco/RohXQkm+ImX4oyixqm8ZQ0xk+evr39ODG17/NGWFu7cFTyw1zXGiJr6cRUOH4+HfNTQ8HxB71h+kkcIJnoGy8bzk71JUgWHvOUQD+l4vo/wwXI81jVGsVxfaoUk82Yh1/lSiZlXckPTlcCKMYRWOjk7qFR89roGDgznGMvbZC0XXVVprQ1zalsNO3tT7B3KckprDRFTw9SUoHihD/VRY5IXJZV3SERMNjTFUBWFWCnl2vEEIf25cEPI0MCF2oiBQCER0WltDdpBPHkkxXDWwhcC1/NxXQGqgiqgpTbEts466qPmoghTF/JmM9UDR1EUaiMGozmr0n19TX2U2rCB7wv2D2fpGc0TNTVG80HNnfHn0CmVKAg8Rg6vf14nEUPjnmcGOTJWIBbSOaW1JmjMWgxaZ8RCQTHJkKZy9toE9+33cD2B63kUXUFLbYiIrmHqaqnQYY76qDlj6G86b9l4MfQZaxI8eSS1pMLhhTzkpxKd7h/OcvuT/fSMFp7TCMVCbGp5TiM03jNYNp6fHcyw99AYAMmCg+sHLWpiIZ3Ta0I0xedea0siKbOQ63wpxcwrtaHpSkAaQktE+YYJG2rlTb9cNLEmrJO1XGzXZ2NTjOGszUC6iKmpnNIavAXkSy0Qyl6kTDEounf+xga6StlC2zsTHBjJkSk6mOM8H0IIMgWHiKFz4eZGGqMh9g/nUBWFLe21jOWCHlBDmaAwYEjVaK8Pc/ba+kon+mre/qvJuJjvm810DxwhBPsGc4zlbDwvqJWkqqCrKnVhHR94ui+NrgZGxfjtyjWImmtCHBrJ01wT4pOv2sofndbC3U8P0JcqoikKYUOjsy5CMmfzh54kvxobJBbSqQnpjORsNAUS8RC6ppItupjhIKOrXH8pXXAYyFjThv6q8Zbt6KrjB4/2Lmk9kfk+5KcSndZFDAazFp4v2NIW55mBoAZUbzJPqmhzamsNBcef5BnsbqnheWvr+PXuQTwh0JXA4xYJ65iawoHhPLGQvqCmv5LVzXyvc98X+EJQG9HZN5TljM5ERfIAUsy8kpCG0BIx/q1/c0u80uUdnrthnre2nmtf+FwdnZipU3Bcvnz3Xp4dyJApPveg11SFHV11XHXe2sqk8bLtbeweyPB4T5KBtFVqPxF4jnwBOzpqeOt56yoZOeNbXNz6yGH+7Vf7AIGmKQg/SOdWFGiIhWZ18c4l42I+bzbTeU0yRZejqTyZoouhqdSENUxdw/F8hnM2ClBwA72TqtqYuhqEVTyfaKkGUdHxKw86VVV44ebmStp+znYZzlj84sk+Cq7PWWvrOJosMpS16BnLU7A9ulvj7FhTByg81pOsVHzWVIWi47J3KMu6xtiMob/ZvGWuL5a8nsh8dF1TiU5zlsPv9g1TsD0uPqWJxniYWMio1BEaydo8IzK8YnvHpOvF9wW9Je9cIhI0r9UUpRImHs3ZPDuQYW19VKYQS+bFfK/z8r1aDsv3JYts66ylvS4ixcwrDPnkWCKq1cjoujrJSPjgZZu5/cl+nuxNkXdcoobOGWsSXH5M8bnulho+eNlmbvn9YX5/YLTS+qEuYnDexkbect5zVYePTY9+8MAYAqiLmsRKKfqDmSIZy+HMrjoMTZ3WxbsURe+mO3+jOYvhrI2qKHTWRQiXwoMhXcOMBe0vNEVBKIIjYwXUkkchETE4vSNGfdRgz2B20oOubKz5vuDup4JaP+WQ1Jr6oJDhSM7i9/tHMNSgxYeiKBNEzkXHw/Nha0ctbz6na9ZzMJO3rGc0v+T1ROaq65pOdAoKKoHOav9wnoZYaEoN1Kt2tFcKT5bpTRYYygQ6r1TBoSasTZioYiGdvmSRc9Y1yLduybyY63V+7POuoy5CU9xk59E0fzicZDhr0xQPSTHzCkIaQkvIfDUy3S01/PkfzRxOKoelXF/wjgvX8/YL1nFwJA/AxqZYpfHnsZQnr7LwdChjEQ89Z0iUU5YTEZMz1kx28S5l0bupzl+m6KIpgcA8Gpp4OZfHkio4bGyOEikJx8NGIAp/pj/NWM6ekHJ/LFMJKcvapJqwTu9Ygb5UkXTBIRE1KxN8uuCwdyjL6R0JPvrSU9EnCd2nZjpv2XLVE5nLNTud6NRygxYgph6UfEgXA21b+TxGQxoHh3MUSo1rx1NujHtqWw1P9qYq3rZyiDhbdNA1hbPX1cu3bsm8qfY6n+5519UQo7MuwhO9KTY2xbnmwvXTPnOXAtmbb25IQ2iJma9GZqZw0kKqmpYnr466CM01YbKWN2GyMXWVQyN5nr8hPKWxsJS9cHw/KBD5R1uaef6GeuLhoNnoP/z8afxSMcjxY/B9n9G8g6LAts4EuqpWUu5dPDJFl9ZaeMcF66Y9TzMJKRVF4ZS2Goay1gSRe8H2GMhYrGuM8aZz1lRtBM3EctYTqfaanepcjeasSu0mBYEv4A+Hk5yxJlHRn83kzXpOW6dxZldd5ffLWS6aqlIXM6mPmpzWXrvo31uyuqjmOp/peaeqKpua4yTzDoqiLNq9WI1RM36dcmui/UM52ZuvSqQhtAwspvp/oWGp8ZOXpk4M7WQtF7WUufTKM9qn3M9ipI9Wc6NPZ+yd0ZVgXWOMntH8JG/BWM7G9QX1UYOwrlMbMSak3Ntu0BU9Ykx/G8wmpIwYGqe01kwQuR+vGh/LWU+kmmv22HM1mrN4rCdJ3nKJhjTytoemQLJU0+nMriAjcSZv1rHaunPG/X6GqtCftqb0VEok82G263ype39V85I7lV7J0FS2ddaysSkue/NVgTSEVjCLEZY6dvIar90IjIUgPfy0tqnfuBeaPlrtjT6dsdebLLC2Porl+Lh+ULCyXJYgETXIWh6d9dFKxlg5HAPg+j4Hh3MzPrSqCUlNJXI/Xq7oE7meyPhzFTM19g3mKNgejfEQUdvjkJVH1RTqoibZosNTfWma42Ea49N7s6byhEVDGooNfanijNtKJIvNUqbLV/OSC1TWaasNcTRZCHpC+j57BrPEQjoNsZDszTcLC/q1bNtmcHAQ3/cnLF+7du2CBiWpjsUIS0010ZeNhXLvp5m0JwvRrlRzo69viHHbQz0cGsnR3RyvHGO8sdeeCNPVEGE0Z7OmPvBseb5gIG2RKbh0THF+YPJDa6YO9fMRuR8vTtR6IuPP1RO9KQYyRWIhDdvzKTgerbVhYiGNouPjCRhMW5y9rn5WIbmsrCuZiuXQwSyVVq+al9w7dg4ghKiskym6JAsO9TETU1Mm1DE7XiU2ThbmZQjt2bOHd77zndx3330Tlpc1Gp43WfQoWXzKbtqIESZdcCbUJVIUpSo37UK1J/Pdvpob/TsPHEZVFW7f2Y+mwnDWpiFqVgrwlW/uZN7hDc/r5PGeFPuGsuRtl5Cucd6GBrpb4vSlipP0Q8c+tGbzTE03EV+2tYWQrrG7P31CeWeWi/K5+vbvD7FnMAsETX1basNsag4a42aKLgXHZSBd5HVnVdcn7UT2hEmWnuPV7X02lkqrV81L7hO9SRDQWR9BURRsLwj1G6Xnf7mOWaboUhsxjkuJjZOFeRlCV199Nbqu87Of/Yz29vYp37Ylx59yI9ff7x8hZ3u4pUrJ9VGT7pY4hhZ0SE8XnBkn6oW+cc9n+9lu9Iih8qvdgzTETTRVoTFu4vliQkr/+PpGTTUh/uySTVNWM7753oMzPrTK6xzrmXqyN8WzAxleuaOd09pqee+LjqnxZHvctWvpH8YnOsH1sIG+ZJGIqVF/TCuN2oiBokB9NERNaHJ4YTpOVE+YZGlZinIdM7EUHspqtEh520MgiJY82qamomtqpbOAoankrEDiAMenxMbJwrzOyGOPPcYjjzzCli1bFns8q4JqXbqzrVewPYYyFv3pIu21YYxSv7KhTJFM0SGkq0RDOt954DCW5884US/0jXuu2890owsRfO+C49FZFyFnBfV4xqf0T9W6YqqJcraH1samODf+et8kz5Tj+aTyNodG8+zuT7O1vZbulhou39bKlrZa9g5m+Mb9y/cwPtHpqo9yxpo6dh5NTeonJivuSubLUpbrmInj7aGsRosUNTUQVNapCevUR02GMkXMmInj+Wiqiqmp8p6bhXkZQlu3bmV4eHixx7IqqNalO9N6G5viHBnLc8sDhzF1laaYQdZyiStBxlQspHFkrAAobO2ooT5mVtWgc6Fv3HPZvnyj5ywHUCaE9TJFl+GsHQj9ouaEm3surSvKzFao8FjPVDnbqWB71EUNPF+ga0rl3L3jgnXctWtw2R/GJzLLle4v66ec3CxFuY5qr6Hj6aGsRot0RmcdQgh29aUr63S3BD0kR3I2rufTXhcBAq2nrHI9PfMyhD7/+c/zsY99jH/4h39g+/btGMZEi7W2Vtb0mIqyS3cka1ET1qkNG3i+z5O9yQnGyUyu36f707TUhOhNFth5JEXY1KgJ6xgaFB2fXCnlPaSruD5saopX3ihOpIm6sy5CXcTgd/uGUQHXF5WwXkPJsNvQFKM2YlRu7vm0rigz3UPrWM9UuXdZuVO9AMbyNqausTkRYc9glv95pJfBdHFJ+36tRJZa5LxcuhHJ0nG809dPlGuomheJy7e1AtCXLlbWqY3obG6JsfNoGt8PpBGpgisTC2ZhXobQZZddBsCll146YbkUS09P2aV7eCQfpG2P5MdpegxylseduwZY3xCb1vVruz6/eXaIiKGxtaOGsKkSD+lkiy5hQ+O0thqiIR3L8XiiN4Xteji+mDCOE2Wi3j+cZTBrUSjVlqmNGigoHE0WODicRVeVSrZXQ8xcUOuKmTjWBZ0puhM61duuh15yL48/d54QdNZPfe6kKPE5lkrkvNy6kdmQnqrF4Ximr59o11C1LxJTrfPaHR3s6KqjqSYkr7cqmJchdM899yz2OE56epMF/tAzxmCmiOcL4mFjnKbHQlMVHj08xqM9Y1O6foUQ7BsKOsYrCuiaiqFppaaoJqM5m4GMxdn1EQ6PuiXjSMXQJl/8yz1Rl41CzxdcfEoT+4fyjOZtPN8LxqxC2NQYSFvUhg1qI8aCW1dMx7EuaNsL6hEZmj6hQ325DlHE1PCFj6YoS9r363gw14q1832gHm+R84miG5mOE8XLcDJwvNLXT9RrqJoXCZlRuXDm9aS++OKLF3scJz0Zy+HwaB7PEzTGzcqNFtIVzJjJSNamZzTPUNaa0vVbbk5ZFzXI2y6mrtIQNRnMBG7SeFinL1Xg3r0eyYLNaM4mYmo805+huyVOfXRiRWVTU5dtoh4f5w+KOIYqY8tbLodGcxxNFhnNORwYztGeCHNKWw0RQzvurSviIR1VUYJsC9cnUupQX/69CrZHXcSkuSZEz1hhSft+LSZzrVh7Ik/gS9nmZa6caF6Glc58tGfVGPMnyjU03VhnO6bMqFwY854Jk8kk//mf/8nTTz8NwOmnn8473/lOEonEog3uZCJbdCnY3qQMGghutJChkim6CCEqrt94SK8YCFnLxXE9TF1BU1VCmsamlhgZy2E0Z6OqMJK1KNoehqaSiBhoqsJgulgSHgeF7BzPo2D7bGqOU3AW7hGaTwZcf6pIwXHpKBl75QKOozmbvUM58lbgzdranmAgXaQvVWQoa3FKaw3PW1t/XFtX7B3MAJDMO6xrjNLdUkNDzAQmGjmXndbKN+6fPi3/stNaT9g3tGf7M3z1nr2M5Cw6EhE2NMYoON60FWtP9Al8qdseVMt4L0N3c4ys5QV6M02luznG3qHcsmv1ViJz0Z5Va8yfCNfQSnnxOBmZlyH08MMPc/nllxOJRDj33HMB+OIXv8jnPvc57rzzTp73vOct6iBPBuIhnYihYTkeMVPD8QSeEGiKgqEpWE6QDrmhIc6m5gK/3z9SaRnhej5CQKrgUnA81jfFKwZVWTuzuz+D7Qqa4hptiQhN8RAHhnMk8zZjmQKGqtCeiIBQqCm1mPjGfYcWNKHNNwPO8wU9owXCukZd1Kz0jdo7mKFgu8TDGpar0lobprslXgmHbWyOce0LNy6KJ+hYxruXn+5L8/Mn+7AcD0NTcH1/0hvnTA/jU9tquOupE/OB9uxAmr/72dPsG8oSMdUJRSo3t8RLFWv7EXDChQmmYynbHsyFspchYqg8cigZNPv1fXQ18Oa2JULLrtVbqVQTDpqLN265ryHpOVxe5vWrfuhDH+I1r3kN//7v/46uB7twXZd3v/vdfPCDH+S3v/3tog7yZKAmbLC2Mcq+oSz7hnKMlzArBEXmNjREqY0abGmv4YeP9ZIpOjTGTBJRg4LlUXQ9Cg40xozK5NQQC3FKK+wbytHWFOa8DQ2lgnUKtWGd3zw7hC/A8QWW69OaeK7C70ImtGpv3KnWy1kuu/sy/Gr3IPUxE11T8H1IFx2a4iY5y6vochRFIRE1OaW1huGMTV+6eNwmjbJ7uashysbm2KxvnFM9jAuOyzfuO3RCPtD2Dmb46j372DeUpS5qEAvpOJ4/oUhleyLME0dSoAR6jBMt1DQVS9X2YK7kbJfhrMVIzsJy/FJD4OfOeapo0xgLSVH9PJkpHDRXzc9yXkMnqj5prqzkhIB5e4TGG0EAuq7zsY99jHPOOWfRBncy0VkXYW19lJ1H0wAIAQoCgYKiQtH1WdcQpb02zE8eO0p7IkxzzGSs4JAuOGhq4E7vT1s8M5ClKR4iGgqqG+8byhE2VM5aW08ialaOaWgqUVMjHoqSs122rUmwriFaudHmO6FVe+NOlwEXiJGD2kFjeYe1DRGKrkfOcrEcj7ZEhE3NsQkPo6UOb1QrQBz/MPZ9MWVxxqkeaMCSPjTKv9lI1iJqasRKWqhji1Se2VVHvhQyjU7z9rvcYvtjWa6aRbMRNTSGsxZ5KxDcP6cLDM75QLoIIlhPsrjMVfOznNfQiaJPWgizRQdOdCNpXoZQbW0thw8fnlRZuqenh5oa6b6bFgUMVSEaNQgbGoqiIISg6Hg4nkAAvangptjcEp+gESoXGzwylmd3f4ajySK6FkxkWztqCRsaYWNiyMj2fDxfEAqpRAmKEy6GcVHtjTtVBly5Tg/A2oYoIzk7qBwtgvCYqirEQ0FbhvEs1DU9nxtxrgLEas/LffuGK33Rlip0Nn5sw1kb2/VRoBKejYU0RnM2QxmLqKGDwgkXapqJE7Exa+D1VRBMd50Fn4lpPpXMn/lofpbrGjoR9EkLYbbowIu3tLC7L3NCSgXKzOtJdsUVV/Cud72Lf/7nf+aCCy4A4N577+WjH/0oV1111aIO8GShN1kgmXd4/vp6+lNWkC7ueWiqSlsiQlttiGQ+yJIq3xRlEfF42usiFB2fNz+/i7ZEmJip014b5mu/3T/JrWtqKrqqkM47dNRHKyngZeY7oVV7447k7Enrja/TY2gqni84vSNBLKSxuz/DSNYib3uVRoGwcNf0XESIxxpM7bXhCf3F5ts2pHxe9g5mueXBwwjBkobOymPb0BgjpGfpGc2jKOALUBWFsKGiKdCXKnD+xkYEsOto+oQKNc3GiZZGXHA8muImikKlGKihqTieT7boEg/rNMZMCo6su7bYzFfzsxzX0HLrkxbCbNGBP/Qk+fLde2hPhOmoi5xQUoHxzOvM/vM//zOKovD2t78d1w2sVMMw+LM/+zP+8R//cVEHeLJQnog2NsVZUx+d5OnxhODgcOApme2mCBvBRD7eWzGVW1cIH8vzKbg+LTUTPSwLmdCqvXEbY+ak9cp1enRVI2u5uL7A0BSa4iG2tis8cGCU4axFb7JAxNQoOgtzTc9FhHiswWS7PpbjEzJUTF2d9U1mtvOStwLNiKLAjjV1S6oFKI+tL1Ugb3u4fuCnCBkqCgrpgoMnoLtV5fJtbQD0pYKKtW21IVxfVEo4dNZFTthS/SdSGnHM1GmKh2iKm/SlLMbyNlnLRVdVWmrDtNWGAOWEnOBWOgvR/Cz1NXSiatyqYSYvOATPvKGMxVlddSdkh4My87oDTdPkX/7lX7j++uvZt28fAJs2bSIaPTEeQCci4yfJmKmTsRwKtkfE1IiXtD4hXWNjU2xeN8Wxbt29g1mGszaaoqAADx4Yo2e0UKnHsxDjor02TFM8xFN9Kbqb4xVxthBiQsHDMzvreLB5lIcOjtJZFyGkaxiagucLjowVyFpBPaSdvSn2DmURgiBM6AZtRw6O5FjbEJ13yvxcRIjHdqAvOhqPHBolWXCojxo8b209YUOb8U1mtgfa/uEcoLCxKbbkWoDOuggbm2L85Imj+EKwriHKWN6h4Hj4wscXgqihs64hVnkwXXPhem75/WF+f2CUVMEGAXVRg03N8UUd28nK+OvhnHV1ZC2v8vITD2nsHcqdsBPcSudE1Y2t9LEey0xe8EzRJVN6xp+oHQ7KLOhVJBqNUldXV/l/yfSUH4q/emaAwVSRVNHF8wWaqpAI67Qkwly6pZU19dF53xRlt+69+4b5zoOHURTY2BTHcj2e6c8sSj2estdk/3CWwyN59g8FBQ9bE2EGUkHNH11VCBsa/3jHbpI5m8MjeZ7pzxAL6cRMjWTeqRiEHYkIri/YPxR4w+IhjdM6aumqj9KfLhIL6Vy2tYWNTXF6RvNzcldXq9k5MpafYDABPN03hucL1tZHGMs7HBzJc866+kqK+VRvMrM90OIhHSEgFprsLYLjqwVQVYUz19bxP48eQQiBFtZpS4QqYchoTYitHbWkCs6EB1PR9WmuMTm1NehZp6kKfakiN9978Li7teej61qqatnVMP562Fu6T+qiBgXbY+9Q7oSe4E4GTkTd2HSspLGOZyYvuO35WCUpgqlNLnlyImmf5mUIua7Lddddx5e//GWy2SwA8XicD3zgA3z605+e1IRVEjwUayM6ewayWK5H1NSJmiqWKxjMWqSKLq87sxNVVRZ8UzzRk0KI8eEXg6Z4aMH1eMaHmdY2RGmpCfFMf4bDo3meGcgQNXW6GiKc2lpD0fG466kBAE5ti5MtegxmiuwfzuH6gqihEdYDvUQybyN8Hx8FT8DmljiN8SCmvGcwy60P9lAfM9k/lCt5MATtiTCXntbKhZuaFqTZGUgHYxpvMKXyNgPpYknPISpC4rJuaaY3mZl+u+1rEvzw0d5l0wI01YToaohiuz7JgoPn+2iqSldDlE3NQYPbg8M5crZb8aaN5e0JYTyAmvDxd2tXq+sab9QMZyweO5xkf0lnd7yrZVdjUK3UCe5k4UTTjc3EShprmZm84Iaq4LiCprg+SZ8KJ5b2aV4j+MAHPsAPfvAD/umf/onzzz8fgPvvv5/PfOYzjIyMcOONNy7qIE8GXNfnzl0DGJpCTcik6ApsV6AqCk0xk6Lrc9dTA1z1/LXoujrvm2I6L8j4ejxDaYtHe8aojRhzetM+NsxUEzZojJn4QnB4NE9nXZgLNjahKPDwwTFMTQFFIW/7PH99PX2pIg8fGiNvu6iKgl0KkVmuh66pxENBur+haZUxRwyVX+0eZG1jlIaoQV+ywHDO5pFDY/x69yAv3tLKW16wdl6anfKNCFQMptGczRNHkgxmAkOoLCTW1SDdH2Z/k5nut4PASF0uLUBZs5KIPKfXKmvUFEUhU3QqD6blTOmdS42qsoExnLXoGc1j6CrbOmrZ2BSftA3MXC37HeevJ2JqVd1vczGoVuIEd7xYjjTqE0k3Nhsraawwsxe8P23RXBMKslCP4UTTPs3LELrlllv47ne/y8tf/vLKsjPOOIOuri6uuuoqaQhNwaM9YxwcydFaGw6ae7p+JXXZ1FWylsuB4Ry3P9XHxqY4WSvIKqkJGZzSUlP1w2I2L0jR8djVl+Zrv9lPyJhdAFxmuokxa3kUHJ/W2jAFJ2gFAjCatysVrEdzNlnLI2Ro+L7A9QWO67GmPorn+xxNFYNmsgT6obLBIUTw0Cw4HkLAfftHyVkumqqgKQpjeZe7nxmk6Hq886INc9bslG/EDU0xwrrG0WSePYM50gUHXQ0a1qqKQtZyUVDIWy7EQxUDKmJo04brpnugLacWYPz5GK+ZOvZ8dNZFeHYwsywpvdXqunwfvnF/YNS01YY5miwghMDzBXsGc8RCQaPe8jazVcv+Q0+Sv/vZUzTFTSzPn/G+mE8V4JU2wR0PZAuJk5PpvJ5nrEnwpnPW8Kvdgye89mlehlAoFGL9+vWTlm/YsAHTNCdvIGEkZ+N4PhFTK/UWm1xEbSxv839/s5+i41NwAiH12oYoZ3XVV/2wmMkLMpqzeOTQGNmiS0PMoLW2+lTG6Qws2/NxPZ9E1CBdcCpGTLmDO0DWcittNPJOkLGkq0qpDpJOSNfQVLBcH2EHLlUIxHbDWRtDVXiqL03B9oiHdDQ1SPsuOB6pvM2zA5l5aXbKN2JXfbQiJPZ8QUuNiecLcrZLxAjE5qoK/ekia+oj9KWKdCTC/PTxo+wfmj4MMxXLGSqZiyhzuVJ6q/FE7RnIkMzbFaMmU3RJFhzqYiamVi4OmaU+Wl/ZZqZq2WN5m8F0kUzRpS3RSGf9ZG9S+Xc5WaoALzWyhcTJzUxez3WN0RM+NDyvp9j73/9+/u7v/o6bb76ZUCgEgGVZfO5zn+P973//og7wZKExZmJoaqnx6kRtTsF2OZos4Hg+Q5kimqoSMTU8T9Azmsdy/KofFtN5QYQQ7B3Ikiw4bGyK0Z6IVMJb1TzAj50YhQjSqbOWixBQsIKaSGVRnK4G+p/y/5uaihBB5oDwBaquVrxhEUMjZznlCnSV7LOBdIFk3sbQ1aBHW0hD14KxaUpQkTdtueQsjz0DmTlrdsbfiOOFxI4vAlGr45IqBA1gG+MhBjMWT/SmqAkbDGQsjqaK83qoL2eopNrzsVwpvdXoug4M26SLDusag+y7ckkGQwvGGQ/rEzRdEVObtlq27wt2HU2Ts1wMTcHQVDR1+vviZKgCvNRI43F1MJ3XcyWEhqs2hN7whjdM+PuXv/wla9asYceOHQA8/vjj2LbNpZdeurgjPEl4Xlc96xtjPDuYIWqo5Gy/0oAxmbfI2R4qkCo4hAydguMT1lU0P2j6OZK1uGPnAMYOlYLjzdjyYaq3/sG0xaHRPHVRk+6Wmkn6odke4OMnRtv12TeUYyxv47geqUIweXU3xyqiuIaoyUC6AIpCa6lv2EjOJmpoFGwX1wtCYLqmEg9rpIsOQgiEL7hv/wiW65O3PPK2h+b4oAQG1Xh8wFBViq5HsmDPWbMz/twdKyR2PZ+oqWNoflD40fMpuj4bGmOopcyphTzUlzNUUs35WK6U3mo8Uaqi4glRMWqCwqGB4R2UaFArXsjyNlNVyx7NWew6mmbPQAZfCEDhsZ4kz1tbT2M8NOV9sdKrAC8H0nhceSy2lutEDw1XbQglEokJf7/xjW+c8HdXV9fijGgaPve5z/Hzn/+cxx57DNM0SSaTs25z9dVX841vfGPCsssvv5zbb7/9OI1yenRd5eoL1/PJH+3kid50MOmXPvN8UBXQNIVoyMDUggd93vFQXYX+dJHasM7PnzjKA/tH8BVBzNDZ3pngZdvbphRnHvvWX3Q8asI6Z6+tpyE2OXw52wO8PDE+3Z/mN88OoSoKdVEDU1coOB55B44kizwzkGFTc5y2RIiesTyu7xMxVMbyNkPpAmN5O9ihAkfGCuiaQiJi0FEXYSBdJFl0SBddDF2hIWIQNkMMposgBJauEi6FFIUA2/WJhTSEEKiKOmOYZrYbcbyQOFmw2T+UwxdOadINBryuMcrLt7dx60NHVvxDvZoH03KE8arxRHW3xBlMFytGTU04aB8zmClixgKDaLwXsi9V5Iw1iQnVssfyNo/1JBnKWNiuH1TYVgWHR/KM5GzO29DIhqbYpPtiJkNNCMFgukjR8UkXHHxfnFBvvcuFNB6XhsUyXlajlqtqQ+jmm28Ggpu9p6eH5uZmIpGlU3vbts2b3vQmzj//fP7zP/+z6u1e9rKXVcYOVEJ5y4ko/UM89/8C0FQFU1NRFNAVBc0IHrijOZtdR9MkCw5pyyVUSns/MJJj90CGD162edZMlXTB4TsPHJ7Uj6xMNZqPjU1xWmpCRAwNpfR2Heh9VOoiOumiy/37RjgwlKMxbtJSGyKZs9nZm+YPh5M4no+qqNSENToSYfJOUMNGCMgW7YooOaQraKpK3vGJGEH4rOh4ZIuBUNrzBa4nMHW10o+tuyW+oDBNeQL+/YERxnIW6ULgUSg6gQbK9nxytstT/emT/qF+7AP1vS/aWHWbkYVSjSfqjWd3cteuwQnG0qaWGBnLYSRr4frQlggDgj2DWRpi5oRq2c8OZBnKFEnm7OD3LVU3rwkbgTi+6PLAgRFqwzqmrk64L6Yz1EZzNnsHMxwayVMT1vnOA4d56MDYST15VMtKbiGxmCy2l2X8/oYyFo/3JEslRlx8H9oTES7b2sIFM5QYOZbVquWa85UnhKC7u5tdu3axefPm4zGmKbnuuusA+PrXvz6n7UKhEG1tbcdhRHPDdX2+fu9BfCHY0VlLzvZxfB/H9ekdKyAIPByu52OMq++joJC1HAqOi6lq1IR14iEdxxNkig6P9yT5zgOH+f9euXXWzugPHRhbkOaj3C/twu4mAIayRZ46mkYgqIuaNMZCpIoOhqZyNFWkMWaQiJr4wmI455Y8OCqGrpIsOMTDOq21QS2ivB30W4qFNMKGjgLYrke66BA2NISAvO0xnLVRFTA0FV1TGM7arKmP8MazOxfsun3J1lbufKqfvlQR1xdYTlBx2RcCVQnCljf/7iDttWFipkZbbXhCteCasL7iH+ozvQ1uaaud1z7nOgFU44lSFWWCsVQbMdjcEmdnbxpfCEK6SqrgTvJeXXPhem57qIedvUmylofn+0RLCQxG6SUkFtLIWy5PHU3RUhvmjDV1lftiKkOt4Hg8emhsTlXIVxMruYXEYrHYXpYpS0doKmsbI2SLHkNZi8eOJPnNs4P80ZYW3nLe1CVGxrOatVxzflqrqsrmzZsZGRlZUkNovvz617+mpaWF+vp6XvziF/P3f//3NDY2Tru+ZVlYllX5O51OL8o4yunzjTETTdOojQQhnpzlomsWnu/j+cHbka6puH6gkSm6Hq4Pig/hEOhK0CQzpCuYMZOBtMX9+0fpGcuzrjE27fEXQ/NRdnF3hCIk8zZP9KQYzdsYmkreLmmaNAVNg2zRpWC51EQMIqaOWXQxS2JxH2itMckUXFzfLxVJDMKDluPjeEH6esRU8R0f2/HQVAVdDeoKlZuF5iyPWEjnj89ewymt85ukxxMxNZriJkeTBfKWixACXVMJ6YGANm+59I4VSJaykiKmhq4Fom9dU6mPGuiqyvmbGlfkQ/14vA3OdwKYTcc0nbH02jM7OaMrQXNNaEqjq7ulhtc9r5PHe5P0pyxihoamKQykixQcD7P0WwP0jBXoaoxNui/GH3vvYIan+tJkii4bm2J0t8RpiAVe55N98qiWldxCYjFY7Ptq/P7aakMcTRaCLFrb5dFDSeJhnYZYiPqowXDG4nd7hik6Pu+8aObjrGYt17xeW//xH/+Rj370o9x4441s27Ztsce0aLzsZS/jDW94Axs2bGDfvn38zd/8DS9/+cu5//770bTJ6esA119/fcX7tJiMT58fT9COQqXoCLySbihTDNLQff+59YxSccKBjEWbohAx9VKRRIORrMWB4dyMhhAsXPNRdnEfTebZdTTNaN4mbGgVTVPWcvFF8GahKZB3PNrrIiWvSvBdy4X7hO/TGA/hegLPD0KDZZ2UgoLj+XhWYFxlLZ94SCcRMaiN6PgCFKA+ahAthcbmq8cY763oTxVxXB/H8zE0hbCho2sKnifI2R4oCojgd7Icn4zlEjE0mmpC2K7HnkGLRMTg1Lbq6z4tJgtxvR+Pt8GFTgCz6Zjmm41SEzKImwYKFrGwjqootNWGGc0Fvdfc0o1XE9Z55fb2KcdYPvbDh0b52m/20RgL0TZFEdOTefKYC6u1wvZi31fH7q9SOqI0D1iuT8QXmFrwrK2LmRRsj95kftbjrGYt17wMobe//e3k83l27NiBaZqTtEKjo6NV7efjH/84n//852dc5+mnn2bLli3zGSZXXnll5f+3b9/OGWecwaZNm/j1r389bXbbJz7xCT784Q9X/k6n04siBJ8ufT7QuRhBBpUIHr7JglOptQMKvhDETI2IqVNwPEbzDh2GVrqpxLTHnIqFpDJ21kXY2BzjJ48dJW8H6cZlTZNGMHHhByE7VVHQ1GDsmqLgC0qp9oGRVB71ULZY+X9fgOUITB10TcH1BAXHx/MDz8ym5hinttbg+KISispa7rwnmmf7M3z/kR72DWXxSuLrXUdTZIouugo5m0qRvspZFkG9o/qoSQSVZMHl8Eg+6E5vaLi+4L69w/zRqS1Lagwt1PW+2G+DS+Vmn082SjlU83RfGsf1CRnBvdVhaFiuz2jOJhEx6G6Jc1r79J7GoG2OQcjQaKmduvv2yTx5zJWVkEa92Cz2fVXeX1ttiEzRZSBTpGC7GFqQaRwxNYqOj126rg1NJSdc6qPmrMdZzVqueX2jG264YVEO/ld/9VdcffXVM66zcePGRTlWeV9NTU3s3bt3WkMoFAodF0H1+PT5mKnheKJSWbouojOSs4iHdE5pjfPsQBZVBQSYus5o3qLcvNfUA2PKdn1MXSWVd6iLGGxsmtkbNJ7ZJo/pPAuqqrCjq47/eeQIoCBEkNqvKAq2G6SZx6MaA2kL8AkbGpqiYGgKolRR2ih5hXwReMncQBqEAugquH7QeiSoFySwneDz2rBOd0sNiejEjLepJppqPCO/fGqAL9z5DMM5C1NTMVSFrO0FobuSet0VgVdOENQtIliMW8ry84VCSA8MwY5EhLChMZZ3+NXuQS7Z0sILNzdX/ZsshMVwvS/22+CJ7GZXVYU/PqeTBw6M0Jcu0lYbwtQ1HM8nZ7kkIjr1saAdzWwhztU8ecyHEz2NerFZ7PsqZ7sMZy2OJgskCw5F22Ms75C13aAvohkY816pZpvjBf0Ea8MGIzlrxuOsZi3XvO7Od7zjHYty8ObmZpqbl2ayADhy5AgjIyO0t7cv2THLlNPnr/vpUzzdn0FTlHKkBU8I4iGd5poQzwxkGcvbmJpKfdRkW2ctPWNBl/e87WLqGr4IdDWZooMv4LyNjaypX5yHy2yeheZSvR3L9dg3lCNneYSNIHW9IWZi6gojWZuC41MTDjK+bNcPDCmeM3Js10dTlcDg88seIgVDB9sJ1it7YQyVKbsXw+SJphrPyF1P9fO3P9pJMu9g6gqe55PyAs9PSFNwPIEdlC5CVcATwT+VIDpGybtl6hrxkE7RDQTuIUOjuUbhyFiBu58emLEh7GIxm+fl2YEstz3cw+vO6qQmZEz7Br7YE/qJ7mY/pbWWv7h0M1++ew9DGQtTVzB1jUTUIGrqrG2IVqVbWc2Th2R2Fvu+GsoEwmhfQH3MJB7SKLo+qYIdyAMU0NRAtyiEIFt0aakNo6nMepzVrOVa8GtKsVjEtu0Jy2prFy5cPZbDhw8zOjrK4cOH8TyPxx57DIDu7m7i8TgAW7Zs4frrr+f1r3892WyW6667jje+8Y20tbWxb98+Pvaxj9Hd3c3ll1++6OOrhnWNUTY0RclZLpbrIXyBUgohQTDJdjVE0JRgohAoHBzJs6EpRs7yGMlZWE6Q6VJ0ghtoR0cNbzlv7aJcnNV4Fp6rt6PTkYhUCiwGNYVUcpaLqasoioLjBWEk1xe4vo9AQfCckaMQlAyImWola8wbp4vSlUAb1VkfZSRv84fDY5w1rg7SsRNNNeP3heCLdz7LWN6hJqRh6hq252NZDpoCiqZhaAI7KB5U8cRBqcxBSZ9UdHxMTStllAW9zyDwaMVCOn2p4pJ4O2byvIzlbYYyRXYdTfHsQIaGaGjacNliT+grwVNy6WlBe5VyeNQXUBcx2NxaU7VuZTVPHpLZWcz7yvcFj/ckgwKvvl/RAbXUhHC9oLBt1vJoqQl0qKM5m4ipsbEpSn/aquo4q1XLNa+nUC6X46//+q+57bbbGBkZmfS553kLHtixfOpTn5pQHPGss84C4J577uGSSy4B4JlnniGVSgGgaRpPPPEE3/jGN0gmk3R0dPDSl76Uv/u7v1uWWkLlN/eoqXPV89fQn7bIOx6O6/N4zxgjOYdk3sbU1aCujuXR1RChUHKFnrehgb2DGfYP54iaJqe21nDGmjpesrWVkK6xuz+9oJh7tZqOa1+4cULjznhYZ99gjtG8Tc6yyNs+p7XXctlpLfzPo70MZSxc38dyfFQFwoaKAqXaLYHI2vMhFtIxVUhZPkINHhLRUODNOb0jwWM9YwxlLZ7qS3HehgaKjj9hogFmHf8dOwdI5m2GsxZhXS0ZbCWRdukNyhdBfSLX81BVKqGxMmVVlicgW3TQNJVEyQgsv4E114TQFGVJvB3TeV5GcxaP9STJl5rUttVGiJrTp3Qv9oS+Ujwlp7TV8PGXn7Yg3cpqnTwks7OY91VvssD+oRzbOmvZM5hlNGcTD+uEDJWmmhBF1y/1qQwSOZprQnQkwozknDkdZzVqueZlCH3sYx/jnnvu4cYbb+Rtb3sbX/3qV+nt7eVrX/sa//iP/7jYYwSC+kGz1RAq97ICiEQi3HHHHcdlLPNh/Ju7pml01kcZzVn8755hRvMOqhKUJgiXBJt5x+PAcJ62RIjhrEVnXZi6qMn5myK8cns7p7XXUnBc7tq1OLUpqtV09KWLk27sM9fWMZSx6EsVaIyHeN8l3ZzSVsMLNjXyvYeOcPfuAbKWh/D9kvdLwfM8hBu4fxwhMDSNhngI27fwRaAnaktE2NaZoCEW4qy19Tx1NM1g2uLpvjT10dCEiebwSI4nepNEDY1M0aUm/NzkWx7/40eSDGeKKEECHp4PuhYYN8EyBdcXpR5oQejSQaAKcEuXlq4ppX5k4AgQfiBMTBcdXE8QMYNikaAsibdjKs+LEIJ9g7mgSW3YCDJJDG1WofJiTugryVOyGLqV1Th5SKpjse6r8kvPxqY4sdD4F1AXTVXZ1lFLzvLY0BzDcv2Sl1qZ9/27mrRc83pS//SnP+Wb3/wml1xyCddccw0vfOEL6e7uZt26dfz3f/83b33rWxd7nCueY9/chRDsHcwylrNRUDA1BU8EoaLasEHWcnA8QTLnYOgqozmHs9fVVy7ovYMZvnHfoUWrTTEXTceWttoJN7blBjf2BZuaJtxwp7TW8rbz13F4LE9LTYin+zOBsWCo+EIErQ18gaIE8e6iKyqNWpviIc7d0FCpydIQC3Hexkae7kvz5ud3sa0jUZlo9g5m+Pb9h9l5JEXYVAOjKmqyqSVGfdQkU3TpTwchonypB5XrB2G7eEgPmm2qCrYn8HwfVVepjRjkLY9oJNA4eb4ohckEbqnmEUC4pIEaztqc0hJnY3OMkZxTlbdjMSrNTuV5yRRdRvM2sZBGzgo0AuUecLMJlRdzQl9tnpLVNnlIAma6j8ufub7g1TvaETBjr8iZGP/S0xALUb8+eLaVC7qCIFVw+cvLNqOWPNIxU6e9NkxfurjgqMHJzLwModHR0Uo2V21tbSVd/qKLLuLP/uzPFm90JxHjL+KYqbN3KMP+oSxOyUviU/JKlNY3dQ0hguKKG5tivPfijZyzrgFVVY5LavJcNR3VTph5x0MtvZkkIga+H6TEqyWxuKaCoqjEQjpr6iLkrMCbc8GmJhpjE0OYRccLBOQdicqEU9YFHRnLEza1kjEAg5kiQ1mLWEgjVXAYyliVppyB100ElasLDvGwQchQsT0PT0Bc1ziltYbHepIUbA9T11BVgVFq7BlRFRIRndGcQ8zUiZiBkLuzPlK1G3qxKs1OV+m44LjYjoKhazTEzAlesmr6ylWbIj/b7y89JScOi93iYTVTPpdP96V5+OAYQ5kiludPuI+Bae/x+RjMU7301Eae8wLvGcyyvTNBV3208rvuHczwtd/uX1V9w+bDvAyhjRs3cuDAAdauXcuWLVu47bbbOPfcc/npT39KXV3dIg/x5KB8Ef/qmQEGU0VG806lonI5OylqBuLbfNGttN+wXZ+iE6EualQu7uORmjwfTUc1E2bM1PGFYChrBVllWsnDIgLvTzLvkLVcBtNF2mvDbCnVbTm2MexUY/B9we1P9nNkLE9HIkym6JIqODTGTCKmxqGRPLpaSt8XUB81sVwPywmyvFRFw3K8IBtPK3c019jSVoOhKcRDesVgS+YddFVQEzFoKP0WiqJQFzErvdxGczZnr2uY1dtxbGXYuK+TLjo8eHCE3mSed160YU4PqWM9L2N5u6LJEgrs7kuzt5SF2N0Sx9CUBQuV52LISU/J8rMaG2keL8rn8g89Yzzbn8H1Be2JMKe21RI2VHYeTfF0f9CRwCt9thhV2ucabl6tfcPmw7yehNdccw2PP/44F198MR//+Md59atfzVe+8hVs2+ZLX/rSYo/xpCAovqazZyCLVXoQ6UpJZ0KQneR4Asd3ET6gBK00DF1FVeEb9x2qXLjHIzV51pssarJ9TaJUB2luRRjbE2Ee70lSHzVQFIVQpYO8wPGCB0UspPOWF6yjIxHhG/cfrOpGv3ffML/Y2Y/levSOFfCEIG8FNZYczwcRNGe1XAgbGi01YYTwOTRawPcFETMQbtuej6ZCd3OcD75kM1vbE2Qshx892svhkTyxsMajh5JESh4noPRwiXD22jr600VGc84Er910jPfmNcZMdvcHhovr+eiqQl+qSMTQpuwdNxPjPS+7jqb4l1/uCQoDhg0MXcXxBEOZIpmiQ33UnLYNSDVegxPpASu9HAEznYcT6fda6ZTP5UjWZixnY2gKDTGTVMHhyd4UZ3bV0d0c446nBkDA5ae3oqqBx3gxiolWG25ezX3D5sO8DKEPfehDlf+/7LLL2L17N4888gibN29m+/btiza4kwnX9blz10DQ5TpkUizV1lGEQCVIyw66s1PpsB5UU45z/sZG9g7lKhfu8UpNnu4ma0+EQcAPH+2d89ukqipcelorv3lmiKGMTX3MwNCCEFO26BI1dTY0xQCFTc1xuhqiVd3oewczfOfBw4zmLFprw5ilyd7zLPK2R8Hx0FUFxw8KPZaNKv7/9u48SrKyTPD/966x5r5XVVYVtVGsimyCGwgN1dq2jNDOoNJCM0j3Eec0Mj3AUQ9tc/qn9nCmnXZQexvEVsdxQZu2bRQF6REBEdkKqorKhKKK3NfY48Zd3t8fNzMqsyq3qFyj8vmckxwq8kbmjbiR9z73eZ/3eTHYUKcYzpVI2CYRM5xp8c6dLXzsXdumrVlmn6+XT3qNCZvxiXXVskUX0zg65JQpepy7pYHztjQCcGQ0P+uFeTKbF7N0nn8jRaHkkYxaWNFwId2xXOmEGzLqusbG+hgPPtdLc00EQw/7HSU1E8vQSUQM+tMOhq5x+enHd75eSNZgLZ1gT+YsRyUB3lzvw9bGBN95+g1eH8mxoyVZzvbKBbFyUz/77bURDo3kqIlZREwD29QZnViDcFdrEn+i70bW8amNTVlEewmaiS5kuHktNzRdiyq6Uj7yyCPccsstPPnkk9N6BW3ZsoX6+nouvvhivvrVr/KOd7xjyXe02k0uutpWGyUZMSl5AbmSz2C6SN71USqcUh6zdEDD1KG9Llz5Wtf1aR/c5ZyafOwf2XDG4ccv9jGWd0/4bvJt25u59NRWftk9TLHkk1Uepq7TWhtlW3OCkVxp2v7O94c+eUIKuwBbE1Pgw4Vo2+ui9I4XcP2A1lobxw0bOJrG0feoJmbhBYozNtShaWHx4n+5bCebj1mrbWpg+OyRgKGJjq6WoWEr2NuTwnH9idl8TTzePczzR8Z5dSg364U5V/IouB5jOZdCyaMxYZePX8TUaKmxF9WQcfIEuLM1ievHj5tZsqkhFi4PYk3/019o1mCtnGBP5ixHJQHeXO/Dvv40McvgyVdHMHSN4WypPDw6+bk7WS+Iy5EpnPrZD/ujBVjG0UkIyajJaK7EWD5sh6+hKE1tjDZhKZqJzjfcvNYbmq41FQVCX/ziF7nppptmbJhYV1fHzTffzP/4H/9DAqEZzLToatQKA5yxfInxvItHGAwloyabGmKctbG+XCsz9YO73FOTJ//IgkDx85cHGcu7i7r713WND711M0XPp2e8QEPcDjsyuz6HRnI0JSNcftr0/Z3rD33yhLStOYnrKQYzRexE2MRR08JZd+mCS97x2dKUQBF2ZJ3cxvWD8mrxAxmHN22qn7Uz99Sg7JH9A3z710dIFVyYaAmpaTCcc/jqL7rR9XDK/Jkba9nWnJzxwpywTYIAhrIONVHruGBisQ0Zp54ADV07bmZJWDuVO25JkoVmedbCCXau/U3YBi/0pPjGk69zw9tOmVY4Wg0qCfDmeh9KXsBjrwxNNPuEpqSNH8BQpkjW8XhzZ3huORkviMuVKZz62VcTN3OTEzCAMFvseOUZLwptxo74K9FMtBoamq4lFb0Lzz///JyLpF5xxRXcc889i96pk9HkoqvjE4WsuZKPHygMXSNu6TQlLIZzJc7cWMeZG+qojU2/SM40a2u5pyYv5d3/jtYa/ujtp5SLDF/uS1Mo+cTtcBbXwy8PoOssaL8nT0gbIjG2tybIOG65uZhl6JhGOAvPU7CtJYGmaWQdj9FcOKU8W/SpT1j0p4s0JSPTgsbZ7iQ31sfIFsPAqr02wnCuxMGBDIau0WIbHB4roBRETJ2Dg1kSEZPGROS4QCKsmYrx3BthzdRUS9GQ8dgT4NSZJQCZonvcCbCS47wWTrCz7e9ozqF7MMdApsjBwSx940XO3lRfNUNllQ47zvY+KKXoHsqVgyBN18PlY0wDO2GXh3Aa4g0n3QVxOTOF0z/7Jo1xe9pNmOsHmLpOfdQM+6UpSEaMaT9jpZqJVktD07Wiok//wMAAlnX8ya/8w0yToaGhRe/UyegtnQ201kTY25tCBeroolVo5IoKTddoTkZoStjHBUGzfXCXe2ryUt/972itIThD8cpghtaaCB11UVprwunelZyoju2n8ebO+mlDQIGC9toom5vijOTCIb2zNtZxoD9DX6qIaWg0xG3O3lR/XN3RbHeSEdOgeyjLhvpwaPPAQBY/UDQlbEre0fR3TdQi53h0D+VoiM88/HD56a089sogwxmH+okAebJmarENGU/kBFjJcd7VWrPqJ9iZ9neyk3ah5JOYuPjE5uikvRZVeuMx23HLFD3G8iXq4+FnMRExyRa98gV7cggnXXAZyCxs6YVqsNz1a1P/tna2JqfdhE29wRrIOOxqmzinDOVWpZloNTU0XQsqOtNu3LiRvXv3smPHjhm//8ILL6zKgqbVQNc1GhIWnq8mpsyriUVXw3W3dKXY0pSgKRmp6IO7nFOTl/ruPwgUD780SMkLeMvmhqMnKkOv6ER17MV+anMxZ2L47YKtTfzOGa08/NLgRNNHn82Ncc7d2sB5Wxs5rb22opk179rVUr7oTF5okhMZl8mVnjXCJTomLzSZokdtzDouYLx4ezOX7m7llweHKZR8ciqs3wlrpuILbsg49X2dGgz/zumVnQArOc5r4QR77P5O7aTdmLAp+WGBfEPcpiZaPQXBld54zHbcSn6A5wfYphb2IWtJ0DVlSQZD1yi6Pl1DWbY0JU6aC+Jy16/N9Nmf6wYLWNVmouutoeliVBQIvec97+Ezn/kMe/bsIRqNTvteoVDgrrvu4vd+7/eWdAdPFm+M5XltKIdl6Hh+gK/CmWIAhgamoTOULvInl2znxTfSa+KDu9Tp1aU6Uc12MdY0GMu7bGqIl4dDdrTUzJsxW8id5DOvjxExdPIlr3yhsSa6NU8uuKoIF1+1jHDx2clCyWMDRl3X+NCFmym6AT3jeRriNrVRC0OH/rRTUTAxWxbr3btb2d+XWdDnqNLjvNon2GP3d7KTdnLieEyuuD3ZQLJaCoIrvfGY7bjZho6pa6TzLhsa4nQ2xElOWZKh6Hr4AZyxoY4/OG/TSXNBXIn6tWM/+/PdYK12M1FpaLowFQVCn/70p3nggQfYtWsXt9xyC6eeeioA+/fv595778X3fT71qU8ty45Wu66hbFiwa+k0xE1cn/LK5ZYBOTdgMOPgBYo/uWT7mvjgLvXdf6Unqrlmfiz0YryQjNlCArTBdJGWmghHxgq01UQwjXC6fsQMGzZqgKaDZYS1AoauYxv6nMOaf/T2o/s/knMqDibmy2J99OIt/L61Yd7P0Ykc59U8wR67vxFTx/X98hTmmG2yveVoQFstBcGVBqSzHTdQBIQLA29rjqNpWjlrmi64dA1lOX1DLX92xamY5vHFvNVqperXKvnsr4VmomthH9a6ij4RbW1t/OpXv+JP/uRPuPPOO8uLnGqaxpVXXsm9995LW1vbsuxotRvJlnADRcI00DQdQw/7B2mEM50sHfKex0i2tKY+uEt591/JiWohMz+W6mK8sAAt4LxTGsmVhuhPF0nYBuN5FxU1yDk+TUkb0BjNu3h+QEddjKzjcnAwM+OsuMXu/0KyWD97eZA/ftf2Ba84XelxXs3P6dT9faFnnKIbAB5ttVG2tySndSavloLgEw1IZzpu79jRzEDGYSTnYptG+ecMZBy2NCX44HmdJ1UQBCtbILyWztFi8So+M2zZsoUf//jHjI2N0dXVhVKKnTt30tDQsBz7d9JoStqYuk7B9XC8cJVzNVEzbeoagVKYuj5xQV1blirgWOiJquB6C15QdilOSAsN0E5rr2Vbc6I8820o6zCU8emoj3JqWw1F12dvb5qiq+hPh9Pf55sVd6L7vxz1ENWWRp/c3zfG8vzvXx7itZEsZ2+sK3fyheqbIXMiAelsx+3V4ey6qg9ZC/Vrojqd8C1SQ0MD559//lLuy0ltR0uS+rhF33gBTQsb/Jl6WGhbdAOUUmyoj7CjJbnauzqjpQg4FnKiuvy0Nh5+aWU7F1dyJ6nrWvmis68/zW9eG2Uo45AqhNPS37a9iddH85S84IRnxS3EctVDVNudrq5rbG5K8JGLNnPf44dWZZbOUjfvW0hAOtPvPPa4VVtguxRWu35NVKe1nSs+iWyoi9FaE2EwU8T3FKVATUyeD78MU6OlNsKGurV/17oYs52oztxQy5s66+lNFXjhjXE21K9c5+JK7yQng4XOxjiX724rX2jilsGDz/XSn3Y4c0PdCc+KW4i10M9nLVmtC+ByNe+bKyCVBW/nth4DQLE46+MsuQb0pYs0JGyipkHKO/4uPWEaNMRt+tLFeU9c1b7Q5LEnqqGMw/NHxnngtz0MZYt0D+VIFVx2ttUctwr9chW+nuiFdOqF5shonleHcyuy/IQ0TDveSl8AV2OZj5N5aZGltB4DQHHiJBBaIbmSx6HhLBln5gt4xgm/P98F/mRYaHJqIDeUcfi3F/sZy4cn9mTEpHe8SF+qSK7kl5cCmLQUmY7ZAsnFXkhXcvkJqYeY2UpdAFdj8dm1tOCtECcTCYRWiKHD6yMFAgWmFmYIFAoNDaUUngq/P8PSNGXVfjcYBIpfdQ/zs5cH6UsV0DTF4dEinh9wwSkN5eZ4bTVRBtIF8iWvvBSApmlLkumYL5BczIV0ruEqpRSDaYei65MuuASBWvTFSuohVs9qLD67Vha8FeJkI4HQCnn84DBuoCb6zUz0nZlcnU/T0HyFFygePzjMztbjF7Wt9rvBrsEM33rqMI/uHyTv+iQjJjVRk0zRxdDg+TdSvGlT2IywMWkzkguDhoF0kbF8CcvQF53pWO5AcrbhqtGcQ9dAltdH89RETf7PU4d5+rWxJcniST3EygsCRfdQlsFskWTERCl1XGCyHEO4a2HBWyFORhIIrZDe8WK5MDoIwkaKTCw3Fig1+b/0jhdnfH613A0GgeLIWJ7XhnMAbGtOUPR8vvb46/zm0ChKKTobYngBjGQdxvIubTU2I9kS//7KEHHbwFMKP1AEgSLjuhwaydGciIQdXLc0EDGNijMqKxFIzjRcVXR9nnl9jPGCS33c5tzNDUQtfUmzeFIPsXImM4ov9Izz2mCOvvEirTVRdrQuf+8iKZAXYnnIX8wK2dgQRdfC5TTQwr5BKgj7CIUrFSt8FW43k2q4G+wazPCtJw/z5GujjBdKaArq4hYxK1z+QtOgPmFj6Dolz6Pk+RRdnyNjhfJddWdDjMZkBNcLGMwU0dDY0ZrE1DQG00V++FwPD+3tr7guaqUCyanDVV2DGV7qS5MtemxrTrCj9WjxdzVk8cR0UzOKG+pipPIu/akCg5kiWccr17MtV7G6FMgLsTwkEFoh//Etm/kfP+0i7bjEDFDo5YaKGoqCB3VRi//4ls0zPr/Su8GlmFm2kJ8xuc2+/jTffuowBwez6JpGSzKCQjGSLXFoOE9DwsLQNWpjFoWSR1+qiOP5GDq4niL8sYqxvIth6OSKHpmihxcoHnimh9baKGdtrGVbc/KEhrOWO5A89r26+Z3b+O2RMf72sVdpTFh01MWmXbjWUhZPzG+mjOLOtiS5kkfe8UgXXF4ZyHB6R03F68UtlBTIC7E8JBBaIdGoyR9evIWv/KKbvKvQUOXvKcLu0tddtIVodOZDstC7wY7aKP/v4BA/3zdAX6qIrmnErMpnli1kdtrkNl2DGfb2puhPFbEMnY31UaKWAUBDHMZyJbKOh6VrZIsugxmHrOOhaxq+H66LpBRYOjiuz5HRPLqmEbUMIkqR93xKns/BwRyJiEVjwq44o7KcwwqzvVc725JELJ222thxWShYG1k8sTAzZRQbExHe3FlP92COgUyRN8by1Mcs3tRZv2zF6lIgL8TSk0BoBb3/zRt4ZP8AB/ozeMHRx00dTm1P8v43b5j1ubqu8TtntPLKYIbfHh6joy5KS02EohuU7wZPba/h//vxPh49MEjB9UlETFqSEWL10YoyKAspKgbK2yQjBn4QDm35gWIg49CuacRsE1PXiFgGrh9QcgPSTg7XC2uiDD388v3w9/oBKBRKKZqTEepjFoNZB8vQqYma5EseL/Wm2N1eQ8Q0aK+NLDijslzDCnO9V68MZih5gdR0nARmyyhOLmY6nnd5bSTHtRdu5p07W5Y1KyMF8rOr9h5rYnXIGXiFTKbWNzcmeNeOJl7qy5J2XGojFmd0JHlttDhndqNrMMPDLw2SczwG0w6vj+SJ2wadjXHesrmBU9tr+Pm+AX7z+hiBgk0NMbxAMZx1yJU83rSpjpFcad4MykKKin+ytx8F5W1GciVcX2HoGlFTp+gFjOZdNlgGtqljGRrpgo+uh5kfBega+IHCm6gZNw0wdJ1AKWxDpzlplwMrUw/XZss5Yd+hkZxDzDKpj1nYpr6gjMpyDCvM9169MpDB8QJ6x4vsapOajmo2V0ZxcsmclmSE7S0rU+8lBfLHOxl6rInVIYHQCpmaWrcsizdvnr5IbUcddA1meWMsj6Zpxy2eOJl12NwY59S2GoYyDr2pAgnb5N2ntvLz/YP0jBfQgYaJgmRDBzuhM5or8epwnlPbkvNmUHrGC3QNZkhGDEZyJeyJbIymaeW6lhfeSIEWZlk0TcM2dKyJBkgKsE2dQsmn5AXYpo7rBfgKAp/ygKCvJpYXUWFWKGIaGLpGpuhhGzrGxMKZfhAGRiPZEq4foGmQjFhYhkZfqoCuaQxnHGif/xgs9bDCfAXYG+pjHB7NEzF1qemoclKovLZVe481sbokEFohCynW7RrM8r9/eYh00S3f0WxrTjCaLx2Xdeioj9FeF+XgYJYHnnuDobRDQ9ymZ6yAZUwvyk1GTUZzJfwAHM+fM4Oyrz/NS31pNMIgxDR0GuJ2eXpwzDbIu+Hz4xNDOjVRk9aaCOP5Eo4XEDXDzE7B9RnKOowVwu3VDL8vETHChpKBIl/y8VW4jwPpsN4oYZsUXR9dC4MlL1BYehh8mYaOoWs8f2Sci7c3LyigWMphhYUc04ip8943dXCwPys1HUtopYdApFB57ar2Hmti9UkgtELmK9btGy9wZDSPpsH2lmT5jubp10c5PJLnnM31s0777h7M4ivF5oYEpqHj+oqIeXRby9DJOR7pojtnTUrXYIZ/fb6PbNGjPm5RG7NwfcXQlOnBlqERt0wUMJguYpk6tqGzY2KIbLIBousrMgUXb4boZ7JnkgKKno9GOLQw0UUADY1M0SUZsTilJcH+vjR+oCh6YSNGhWI0VyJum+xsTdA9lKto5tVSDSsstAD7tPbaaYuzSu3C4qzWEIgUKq9N1dJjTaxdEgitkLlS60EQsLcnjWXqnLWhllwpYCwfDkttqIuyvz9Db6rIpob4jB1sAwWGFg6FNcRthjJF7IRd3tb1A3RNYyxf4sJTmmZM30/eVTlewJbGOENZh2QEIqaOnbAZzZXoGsxQF7PYWB/llcEse3tSxGwdyzBojNs0xC16xnIUZ4p+YLKPNpoGugIfcH0ARczSicYsGmIWmqbh+mE1ed7xiNsGRTcIX6eu4XiK1too21uS1MZMDg3nyDguR0bz0wINYFmDj0qGS6SmY2ms9hCIFCqvPdXQY02sbRIIrZC5UuvdQ1lcX7G9Nc4zh1OM5Ut4foBp6MQsA9vQGco4ZIoetbHpmYdCyac+ZtFSE+XIWJ7tLQmyjhfO5oqGs7bGciUipsGm+vis6fvJu6oN9VFaamyypaM/wzJ0bFPn9ZE8uztqGMyWAIhaOjnHxzYChjNFUgW3PBvOmPi5/jG/R038ZzIYCoC4pVEft6mJWpwzUTvVNZhlMFNkIO2g67C1Oc6WxgTxiDmtbilTdHG8gB/+tofhbKmcIaiPW6BgvOAuW9ZAhktW1loZApGgdm2RjttiseSTsYJmS62f0pwg53j0pRwc1ycZtbCiJq6vSBfCuptCycfxfODoH/rUrMPlp7dy/69eZyRXYkdLnNeGc2Fg4PokbYO372zmQxdunjUImHpXZehauT/KaL5EzvHKtUY1E6vDp4ouw9kShZJHoCCYnA1GOAPMNgxKvl+eGg/Ta4Q0LSyYBohaBhsb4mxvObpMwflbGxjNldjfn6Y+blHyAjY1xND1o6vSKqU4OJAlXXQxdZ0N9WGGoHc8z8MvD5R/zok2YVwIGS5ZOSsxBCLTr6uPFLKLxaqKQOjQoUPcfffdPPLII/T397NhwwY+8pGP8KlPfQrbtmd9XrFY5LbbbuPb3/42juNw5ZVX8uUvf5m2trYV3PvpdrTWsPWdCX57ZIyRXImmhE1T0uYT33qOnOPRVhsp/yFHTA07GaHgFij4AT3jBaKWMWPWYUdrDR+9eAt//9irPHN4nKzjggq7Vb9lSwP/6fzZgyA4/q5qsj9KphgGSL0TNUz/fnCYQins+KwRLpKqaZArhamgADBUeALyj00HTVCEdUCmrggUnLWxnjd11qMU9IznKZR8XF8xnC0ylCmhaTCcKdGfcjhzYy0d9TEKpXCf0kWX2pjFrrZkeYX6/pSDbYRrevSnHTY1xJc1ayDDJctrMjjZ25tiNB8Oic1ksUMgMv26OklmVixWVQRC+/fvJwgC/vZv/5YdO3awd+9ebrrpJnK5HPfcc8+sz7v11lv513/9V7773e9SV1fHLbfcwgc+8AEef/zxFdz76WY62TYlbRzXm9ZteqqwQNliV1sNI9nStKzD5ae3EjENHtrbx4PP9fDs4XGKXkDCNmiuiXBKUzhUdv8Th+bMhMx0V6VpGiM5h1+/OsJQtlTO4EyKmmHgowJVrv9RTGR6jt14Co0wULJMnYa4RdTSeW04y/NHUowXXFw/wPUCNF1jS2OcC7Y20ZcqsLc3zbOHxxnOlmhORtjSlMALFJsbj9ZOZYoeo/kSNRNDiKO5UnlIcTkLJ9fjcMlKZE+m/r2M5h26B3NkCi6nb6ilMRGZtu1iu4PL9OvqJZlZsRhVEQjt2bOHPXv2lP+9bds2Dhw4wFe+8pVZA6FUKsU//uM/8q1vfYt3v/vdANx3332cdtppPPnkk7z1rW9dkX2faraT7b6+NHk3IGHr0+pyXD8gW/RIRk2aEhH+w1s2UhOxyJU8YpbB68N5vvXkEZ5/Y4zuwSz5sPKYRMTEU4rRbDhlfiHNFGe6qxpIF3nslSHypbABkMH0mp/SxOy0yWGxcjCkwFMKQwcVzDxtXhEWdv/H8zfxs32DHBzIolAkLB1Pm6wlUvSni7zUm+KU5iRXnNbKi71ptjUnueFtW8k6Hv/r0a7yNP5wnwK8IMAywseyjkfJP9rGu9oKJ9fqUM1KZE+O/XvpqIuSKXi8MV7A8XzO2dxQDoYWMwSyVmqPxOJIZlacqKoIhGaSSqVobGyc9fvPPPMMruty+eWXlx/bvXs3mzdv5oknnljxQGiuk+2OliSvDuWwTYO6qMVYwSXneBi6TmttlPbaCKBRE7HobIzTNZjh/l8d4tH9g6QLLtmSjx8ETCxsj+MFKAW+qSBf4tXh3JzNFCcvtl6g2HNmO88fGadrMMuTr45QcH1MPazB0NDwp6wNEqhwRpplaGj+0WBIn6j/mbqMyFS6BgnbYHNDjIf29tM1mMMNwoVXsypAKYVt6miEd/lPvTZKX6pIUyJCe12EVMFF0zRqotZxRZK2oWPqennWmamH0/snzZQ1WM/Bxonu13JnT2b7ezl9Qx2OFzCUdXi5L82FpzRRdBc3BCLTr08e6zEzKxavKgOhrq4uvvSlL805LNbf349t29TX1097vK2tjf7+/lmf5zgOjuOU/51Opxe9vzD9ZAuQLriU/KA8A6qjLkpfqsh5mxvIez6Fkk/U0klYJq+O5DhjQ7igatdghv/9y0P85tAoQRBgmjpB0QsbICqIGOGq9kEQNiksBQEjWQevJTFjM8WZLrbbmhOctbGOX3YNETcNLFMjXwrQtTCICaakePwgXCtt8nFNCxeQDXw1LRNkEjZerImFGS2n5HFoJAcTdT3WxPIb/sQP94MAXQs7VvuBwg8Ug5kiqWKJpkSEXMljV2vNccN5NVGTxrjNQLoAmkZbbZSaiYVsZ8oarOdg40SsVPZktuCkMWFzzuYGXu5NMZh22NeXpiFuL2oIRKZfC7G+rWogdMcdd/CFL3xhzm327dvH7t27y//u6elhz549/MEf/AE33XTTku/T5z73OT772c8u+c+dPNkWXYN9fWPTpsg3xG3a66L0pgo8emBgortyQGkis5OMmkQtg68+1s1ovkTPeNh4MR61SI0X0LVwnS7fC8LOy4aGrxRRTcP1AoqeT6boHZcJme1i+1Jfmozj4vkKwwDT0NG0IFxTSddwpwQ5CsL1wUwdU9couD5eMD0IsgyIWybxiEld3CJVcCkFYJlhpiZQR4fVJofZlA8xOyyqdrxwgzDAKYKCuGXMWiTZXhfhyFgeULTXRvCVouB4x2UNFhJsbGteuVT7ZGYqU3T54bO9jGQddrXVrKmhmqXMnsyViZsrOGlM2Fy4rZF9fWk+eH4nZ26oW9RxkenXQqxvq/qXfdttt3H99dfPuc22bdvK/9/b28ull17KxRdfzN/93d/N+bz29nZKpRLj4+PTskIDAwO0t8++MNWdd97JJz/5yfK/0+k0nZ2dc7+QBUjYJiUv4JnXR/EDNW2K/FCmSH+qQN7xKXo+rqeYHFUyNEhGDWqjZrnL9LaWJL5SmFqY/dG08CJkTCxSaunaxOMK11doiuOaKc53Z//UayP4E8NVGpQDIFMPf8dkLbQBWIYxMRymaIyHs+BeHcrhTmxk6DqGoZF1PFJFlyAIF2g1dJ3xvDttSA3CzFZAmBXStHBWmlWeNq+hppSVz1Yk+Tunt5X7CB0azh1XOLmQzMa3njpMY9zm1eHcgrNFlQyzTd12KOPw/JFxXh0KWxZ0D2ZprYnQUhMttxSA1R+qqSR7Mtd7MV8mbr7gpOgGNMQjnLmhbtHvgUy/FmJ9W9VAqKWlhZaWlgVt29PTw6WXXsq5557LfffdN62fzEzOPfdcLMvi5z//OVdffTUABw4c4PDhw1x00UWzPi8SiRCJRGb9/onqqI3iuAHjBZfNU/rhREwNK27xYk+Kkq84erkPKWA467KvL82bO+vZ359hNOdgahqBUpiGhheEw0eWoeF7qrwSfFjDo9B0jY31sWn1E/Pd2Z/WXsOrQzlyjo+GT8wy8JVPMBFoTQ59TX6Zhk5j1OLtO5rY15fBMnWSUZ2SF+B4AfmST8IyIIBAU+gKCq4/MZQWDrFxTLwQjkQERCfGzUYmCsmbEjYF92jZ9mxFkpOvc6YL8XyvP2bpPLp/kM1N8WlLnsw1NFXJMNvUbYezDkdG81iGzpkba2mvjXJoOMt43uW5I+O8ubN+WjC0mkM1C82eDGccfv7y4IzvBbCgTNxKBScy/VqI9a0qcr09PT1ccsklbNmyhXvuuYehoaHy9yazOz09PVx22WV8/etf54ILLqCuro4bb7yRT37ykzQ2NlJbW8snPvEJLrroolWZMdaXLhKxwuniY3l32sywkUyR0kQWSNcmui5r4bCQr8L6mNeG85zeUUcyYpIuuNTFbVL5EjHLwPUVgQom6nW08vT0bNEjZptcuquFD711y7SL8Xx39omoxZamOD3jRcbzJXzlEzE1iq4KAzYd6qMW525t5E2b6nj+yDgbG2KARq4UznRz3ICYFa4q7wfQWhtFqYDXRvLYho7jhkGOFrNI5V3cY4qrJ//pK0VPqkhdzOKU5ji1Ufu4YYrZiiRnyxbM9fqVUvSOFym4PhvrY+UL/lxDU5XU9Ezdtr02Qu94gUCFGbCDg1l2tCaJWiYRUyPneHQPZWmIN5SDgdUcqllI9qSjLsqPX+xjLO8e9170jOeJWsa8NUZ//K7kigYnMv1aiPWrKgKhhx9+mK6uLrq6uti0adO07ykVDpK4rsuBAwfI5/Pl7/31X/81uq5z9dVXT2uouBpyJQ/b1HnL5gYODefLHZsNXcc2TQLCAm3TCIegJmeAGZqG7yscLyBVKNGctCeWuoiG/XZ8F8vQUUrhBEdnXNmWQUsywg1vP4UPntt53AVjIXf2mxsTXHNeJ999+ggHB7MUSgGaBnUxm3M213HD207h4u3NvDKY4aW+NImIxVi+hK8USdskUyiS9QM0wsaJgxmHmGUQNQ0MDfKej22AqYWLrgaeOm6qvalDa010IrDyOdCf5YrT2xadCZjr9WeKHkNZh0TEJGIa074309BUJQXEwLRtM0WP8YJLQ8LGNjRGcyUGUg4NcYuhTLgPU3shrfZQzbzZk7gNCsby7ozvxfNvjDOccbjglKZ5a4xWOjiR6ddCrE9VEQhdf/3189YSbd26tRwUTYpGo9x7773ce++9y7h3CzN54Y1aBudtbSBT9Mqzxvb1pekezk0EPxqadvR1TAZEgYJcKcxQDKYdso7HztYkveNFeib6qliGTkPCYlNDnLM31XHNWzrZ1b7wBoqTpl5sP3huJ9ecs4lnDo/yykC2vP9bGhPlC8TUoMKemOWVLrgYuoat6Xi+QlOKguvhB4qYreP5UPI8RrwAXdfKx27qkGCY2YKRnEPc1qd9b7Hmev2O55NzPLY2JcozzqY6dmiqkgJiYNq2JT/A8wOsibXTklGT0XyJ0zpqyDoe2aKLr6Dgemgaa2KoZq4A5axNdfzgtz3T3gulVPnzHjENxvJueXbgsY59b1c6OJHp10KsP1URCJ0Mpl54d7Ympy2emoiElUGTBcP6RNGzPrE6qZqYVZWwDQpuwLt3t9KQCAuSGxM2dXGL9toIb+psYHd7DTVRa96LRSV1EbquceG2Zi7c1jzva9venMD3FUU3oC5mopQiVwqHyGqjBkfGCph6WEv0xGujDGecclG1RriQqz8x60wDUGE2bDBTYnd7DR11Ucbz7qILhed6/T3jBWKWyYb64wMbOH5oqtLp11O3tQ0d09BxJ5pTWoZOzvGI2yZv7qzn5d40gxmHgXSRhnhkzQzVzBagvDKYmfb6RnNOec06LwjwA0WmGB6/hsTxy+PMNOwnwYkQYjlJILRC5rrwlryAiKHhBQrXDzB0fWIhU0UwERREDI2Sr2irs7n2ws1LMq17qYYepr62F3tTKNREfYsPGkQsnfq4yVCmhGnoJKMGaBqNCZtUwSVwg3DBVg1sXSMfKCxDJ2EbaEDe9UnYJqe21ZCImhwazi1JofBsr/+CrU1sb3boSxdRSs1bqFvp9Oup29ZETRriNkOZInbCLh//yf5SLTVRzt3awFXnhF3F19JQzUwBytT3wvUDnjsyTqHkT9TEmWSLLgD7+tJ01EVoSh5dN2y1h/2EEOuTBEIraLYL71u3tRAxDR5/dRTPD++aNY5Oodc1aKuNcuEpTdNmIM3WIbqS4Giphh4mX9s3nnydg4NZEhGrPLMrbhm4fnjh3FgTI110+feDQ5S8AJ2JITDCafN5Nxwqi1k6tqnjBYqIqWMY4AZqyQuFZ3v9rw5nue/xQwsq1K10+vWx2+5oTZJ1PEZyYW+pjvoYoDg4mKUpafPB8zpXPQO0UJPvxYs9KVL5EoWST2PCLi+I6/qKbS1JRnMlfv3aGG/b0UQ8YsoMLSHEqpFAaIXNfuFt4+4fvczenjQF10MpDRNFxDTZ3prg1st3cfH25lkvEIvpkLxUQw9hMHQKfeNFYrZB/cTwnxuEM9he6k2BUozlXDQNaqMWug4qV6LghQXipqFhTgwNBoEKs2WWTtQ0sHRtWTIGk69/MpB8ZTBDwjb56MVbePilwXmzZZVOvz5229qYyY6WBM8eGcedeN3jeXfNDINVYvK9eGUgw+ujeerjFgooeX55FuPZm+rJOS77+7P0poqYuiYztIQQq0ZTx1YYi2nS6TR1dXWkUilqa2uX9Xd1DWb4txf6ePrQGNmSS9K2uOCUBvac1THnxeH4qdsm+dLRTsoruRxDECi+8ovuci3UZHYkXXD5VfcwvakCjhvQELcwJ9YAc/2AkYnV7aOmhm3q6Fo4ey5q6cQtk9a6CC3JCE3JyLK8ntkCyd85vY2YbSwoWzb1ZzhemLna0Zqc8eJ+bB+h4WwJVEAyalETtdjekuSa8zayq23mz9xaXR9t0k9f7ueenxyYWPpFYeo6jQmb7S1JGhM2XhDw2lCWD56/mfa66Jp8DUKI6rbQ67dkhNaQHa01fPzdlQ1TrbWVs2fLjkBY9Oz6YeNHY0pDTFPXiNkGRden5CkgmFhVfKIzth6uVH/2pvplyRi8MpDm3ke7Gck6dNRFOaUpQcH1p/UA2t0+fxBcyTDj5LaPdw/zf359GE2Dbc1JEpEwiD0yluf+X72+6MaNq+W09lrO6KjFNDRs0yjXPE3thRS1TLa3JKUQWgixqiQQWmMqHaZaiytnz1YLdU5nPb/sGqbg+hOtAzR8BSUvIG6btNdGGMyUsAyNzU0x2muitNZFOW9rI6e1155QxmC+zMkr/Rnu/tE+uoeyxG2D4WyJhniRHa1JdrYmKw4kKz1+LxxJoRS8aVP9goLYtboY67E21sfY0VoTZgbrYrJshRBizZJAqMqt1ZWzp2ZHMo5LtuiRczwGMg6vDWfJFD38IBwCS9jmREEtJEsB7zq1mesu2rroWVLzZU66BjPc+2gX3UNZ6uMWicjRtd+yjsebO+uXNZCsNIhda9m/uciyFUKIaiGBUJVbyytn67qG4/k8um+I7qEsBddjPO9i6Rp1URNPQU3EpC5m4QUB/WmH9tooN7ztlFlrYxZqvszJZCH0SM4hZuskIia6phExNeyEzWiuRPdQljd31oUNFmcIJBdbp1NpEDtX4ASQjBg88/oYv3l9lPO2NK56kCHLVgghqoEEQlVuLa+cfWww0mFFyRQ9Do/mcX0f29DJO+FyFhHTYENdlE9ctnPRQdBCMifff6aHwXSRDXUxhrMl3Imux8DRDs+5EkMZZ8ZAcinqdCoNYmcLnEZzJboGs4zkHNIFl799rJunN4+tiZohWbZCCLHWSSBU5dbqEMRkMDKSLU3U/ji8OpSlZ6yA5/sEAXiaojZqEihoStjc8u4dXHZa26J/90KHnHylOKOjlsa4zWCmiJ3Qy9tbhk62GM68u3h787RAcqnqdCoNYmcKnEZzpYmmheFadnUxi6ZEZE3VDElnaCHEWqbPv4lY6yaHIM7cUMd43uXQcK7ch2a1LoQ94wWePTLGUKbIYweH+PdXhugazFJ0fWqiFrUxE02DmGXyth3NbGmK88pAlmCWNagqcTRzMnOcH7MNAhVgaFBwfba3JojZ4YrojucTKEXO8ciXfJqSkWmB5LHZppqohaFr1EQtdraGjQJ/+tLAgl7HZBDbmLA5OJglU3TxgoBM0eXgYHbWxo19qbDjtVKKrsEshZJHQ9yi5AU0JSO010Ur3hchhFivJCN0klhrQxD7+tK80p/BNDSKJR9QTCY8ciWfhG0QMQ18pRjMOJzallyyouSFDDnVx2xaaiIcGSuwszXJmzvry2tiZYsu+VLAjtYkH790+7RAcqln6VVSRzMZOPWM53n+jXEipk5/ukDU1BnLu8Rsg+0tifJ+rcaMQSGEqDYSCJ1E1soQRBAofnNoDC9QJCImqYKHZeiUPIWph2uq5Us+UUsv1+J4gZq1KLlSCx1yuvy0Nu5/4ugyGm/eXM9QxqEvVaApGeHjl+xgV9v0bNpSz9ILAkXENLj0tBbOP6WBZMScd9HcqGUwlHEYyjhkih7JiMmmxhhnbayb6L90YvuyUGu9maMQQlRCAqEqtNYuRMfuj1LhFPSOuiiDGQc/CLBNA03zy4urlvyAmqhJwjYYL7hkil7Fs9tmex8WWjd1bDbG8cJszMXbm2ed1bSUs/TmKrie6XhOrU268JQmUoUST782ikLD8xXhqm0nti8LVQ3NHIUQohISCFWZlbwQLSTgmml/aqMWI7kSp7bXknVGGc+XCAKFoWm4fgAa6JpGTdTECxSmpjGWDy/uC53dNt/7sNAhp0qHFJdqll6lBdczzYSriZr0pxwG0gUKrk/3UJaGeEN5gdOlnjFYLc0chRCiEhIIVZGVvBAtJOCabX+6h7IcGc3TnLQ5f2sj//7KEKP5UhhcBIAiXEjV0hnLuUQsnY31sQXPblvo+7DQIKeSIcWlmKV3Io0RZ6pN0jSN7a0JMo5LuuAykC4yli9hGfqSzxispmaOQghRCZk1tkYFgeLIaJ79/WmOjObxvGDJZivNZzLQ2Nuboj5usa05SX3cYm9vivseP0TXYGbO2VNnb6zDMnX29qRpiFu8c1c4/bwuZrGxPkrcNjB1jcG0g65pvGNHM3/09lMWFMRVOmtrMsjZ3V5LZ2N8SS7Si52lV0nB9aTZZsI1JiITHbBjFF2fQyPLM2PwRPZZCCGqgWSE1qCZsjHNyQivDmfZ3Bhf1jXFFnrn/96z9VkvjLquc+aGWp49PM4LPSm2tyQ5d0sDB/oz9KWK1EQtOpvi7GxNctlpbbxte/OCA5S1srbaYmbpnUjB9Vy1SY2JCKd1aNTFLa69YDPbW5JLXje2VpdyEUKIxZJAaI2Zbdjn5b4Uh0fytNZEZizSXaoL0UIDjdeGc3NeGDvqw47NpzQnGM+7OJ7P5sY4525tWNQiqou9IC9loXmls/Qmf3d/qogfhL2KamMLK7ierzapP+3wpk31vHNny7IMTa3lpVyEEGIx5Ky1hsyVjdnRkuTVoRwHBjI0JyPHBSlLdSFaaKABzHthbE5GuOFtp6Br2pLNcFvMBXk1ZzxN/d0F1+PIaIHXhnJccEoDTcloebvZipxXu4P4Wl7KRQghFkMCoTVkrmxMbcyioy5K33iRdMGlLm6Xv7eUF6KFBhrbmhMLujB2NixNXc6kE70gr8aMp8kM0L6+NP/6Yh+O67OhPsYGO0bMMnj60BiPvTLM+Vsb6KiPzRvUrOYipqsdiAkhxHKRQGgNmSsbo2kau9prGMo6dA1l2dVWsywXooUGGpsa4ityYZxpKGvy974ykKEmamLoGn6gyBS945bEmPwZKz3jaTID1DWY4aXeNFnHY0tTnJaaKIau0dmYIG6b/PrQKAf6MxTdgKg1f1Czmh3EZTV5IcTJSAKhNWS+bEzMMtjVVsO25gTD2dKyXIgqufNf7gvjKwNpvvebHrqHsvgqoCFms6O1hivPbOPdu1v52uOHeKk3jesHWIbO1uYEf7C79bjfu9IF1lOzTzWRcE21+rjFUMYh6/i8ubOexoRNUzLC27Y30Tte5IPndy64yHk1O4ivtaVchBBisSQQWkMWko15y+YGPvaObfRNFAQvx4WokgBntgsjwJHR/Anv48/3DfA3Pz/IUMbBNnUipk6m4DGcLbGvPw1AImJy0bYmdF0jCBTposcj+wfZ0hSfto/HZtqUCrNHJT/ANnRitr6g5T0WUmh9bPZpJFfCV4raiEUyEq4WP7XxYTxiYhoa7XXRNbE8ykKslaVchBBiKUggtIYsNBtjmvqyX4gqufM/9sK42KLkV/oz/M3PD9KfLtJRG8UydVxfkSq4OF7A4dE8EUvnytPb0PWjrbDalZpxmGtqps31wxXbx/IlPD/ANHQStkFDwp6z0Hyhr+nY7JNt6Ji6jusHREyjvLZaphjOGJPZVkIIsbrk7LvGrKU6jBO5819sUXIQKL73zBGGMg7ttREilgFAxNSwEzYDaYdM0cXQLbKOT23saCA02zDXZKbtyVdHGMuXKLo+yaiFFTVxvYA3xgt4gaJQ8hf9mo7NPtVETRrjNoOZInZCxzJ0sk6YjZLZVkIIsfokEFqDqrUOYymKkiczKrapYZvGtO9pmkbU0hnJBXiBouQHxz1/pj5Cuq7xO2e08tOX+xnKhgGWZYTrnmUdj5akTW3M4mf7BtjRmlxUofWxdV5Tl8EYzZWwTR1d0yh5PgcHszLbSgghVpkEQmtUNdZhLEVRcq7k4SuImEZ5OGmqiKmjFAQKbOP4FWJmG2qKWSYtNRFMXSPreKQKLqDRmLA5vaMG2zRm3LdKX9NMdV6Ty2B0DWR5fTQfLjbrK5ltJYQQa4AEQuKEHVs8nCm6C2rGmCm6sxZSJ2yThphFpuCSKrjYCX1aAKJpGroGlqGRjEwPkuYaasqVPGxTZ1dbDQcGMpS8AKUg73h0D+XZ2hyfsWC60k7Ws9V5WYZOXdzm/Loo7z2744Q7awshhFhaEgiJEzLbemglL5g2/X/qDK2S51N0fX74bC/DWWfGouON9TF2tNYwnCvheD6juRLJqIll6JQ8n/60w4b6ODtaE3QN5Rbcvyhhm5S8gN8eHsMPFHVxe2J4TDGUKTKac+hsjB+XSTqRTtaz1XmdvUkyQEIIsdZIICQqNlvx8OHRHEMZB8cLOKeznrG8O22GVqroYmgajhewq61m1qLjyYwKhBmbjONR8kqUPEVHbZRPXLaTLU3xaYGGbejhWmZbGoiYBkGgpgVDHbVRHDdgvOCyuSFWnm0WMTWsuMXhsQJtXkBHbXTaaz3RTtbVWuclhBDrjQRCoiJzFQ/vajPJOT7pgstvD48zlCni+YqIpRMohQrARTGed3F9haFrMxYdT82odA1mGC+46Bpsb01yzVs62dUeZlQmA419/Wl+89oog+kiP3yuh4f29h83tb0vXSRi6TTELcbybjnL5PoB2aJHfczCNnX60sVpNUKLWVpiIXVeS7kIrBBCiMpVRSB06NAh7r77bh555BH6+/vZsGEDH/nIR/jUpz6FbduzPu+SSy7hsccem/bYzTffzFe/+tXl3uWT1nzFwzvbkrw+kiNdcMkUPeK2TqCgPm6jgNpoGCxNbSo4U9HxQjIquq7heD6PHRiakp0yZ8wyTdYIvWVzA4eG84zmS+QcD0PXaa2NsrUpTqrgzthUca6WBpef3krENNjfn644kFnNRWCFEEKEqiIQ2r9/P0EQ8Ld/+7fs2LGDvXv3ctNNN5HL5bjnnnvmfO5NN93EX/zFX5T/HY9X10ystWYhxcOBUtTELN7enMQydWxDx/F9fv3aKLZpoGnatKaCk8+badr7XBmVSqa2T9b6RC2D87Y2TOssXRM1yToeRTeYtbHhTIFZoeTz8EsnFsisxiKwQgghjlcVgdCePXvYs2dP+d/btm3jwIEDfOUrX5k3EIrH47S3ty/3Lq4bCyke1jUdXylaa8MFRgHSBcodlqc2FZz6vEo7LFcytX1qrc/O1mQ5AIO5a32mmhqYdQ1muP+J6YFMzvH49aERXupLce0Fm3nb9uYZs0Mn0m9JhtCEEGJ5VEUgNJNUKkVjY+O8233zm9/kG9/4Bu3t7bzvfe/jM5/5zJxZIcdxcByn/O90Or0k+3uyWEjx8I7WJIPp4rRgaWqH5UTExNT1ch+gE+2wXMnU9sXU+hxrpkBmNOfQPZhjJOeQKrgcGs7znjPb2XNW+6IXgZUhNCGEWD5VGQh1dXXxpS99ad5s0Ic+9CG2bNnChg0beOGFF7j99ts5cOAADzzwwKzP+dznPsdnP/vZpd7lk8ZCAoqrz93Iwy8NTguWJjssp4sl+tNFNjXEiNk6maJbcSAyqdKp7Uu1fMmxgcxozuG5I+MUSj7JqEnEMsg5Hk+/PkpfunjcMFclAVw1DKFJtkoIUc1WNRC64447+MIXvjDnNvv27WP37t3lf/f09LBnzx7+4A/+gJtuumnO537sYx8r//9ZZ51FR0cHl112Gd3d3Wzfvn3G59x555188pOfLP87nU7T2dm5kJezbiwkoNA1bcamgg2JCIau0xC3eX0kv6h11E5kavtSTGufGsgopegezFEo+TQmbDRNI1CKfCncv9Fcac5FYOcK4GKWwY+e71vUkiXLTbJVQohqt6qB0G233cb1118/5zbbtm0r/39vby+XXnopF198MX/3d39X8e+78MILgTCjNFsgFIlEiEQiFf/s9Wa+gGK2YOmibU1cflobMdtYdAbhRIe7Frt8ydRARikYzYdNHycDFdcPMHWdiGnQUXf80h0LDeA0WPSSJcupGrJVQggxn1UNhFpaWmhpaVnQtj09PVx66aWce+653HfffeWGeJV47rnnAOjo6Kj4ueJ48wUUK9FUcKmGuyoxNZBpiFt4QYBlhH9KSimyRY/W2ig1URNfqRlnwy0kgMu7fkXLeyy1uYa8lmKBXSGEWAuqokaop6eHSy65hC1btnDPPfcwNDRU/t7kjLCenh4uu+wyvv71r3PBBRfQ3d3Nt771Ld7znvfQ1NTECy+8wK233so73/lOzj777NV6KevOSiweu9JdnKcGMm+M5VEKHM9H1zSyRY+YbbK9JQwOCo4342y4hQRwR0bzFS/vsVTmG/JaigV2hRBiLaiKQOjhhx+mq6uLrq4uNm3aNO17SikAXNflwIED5PN5AGzb5mc/+xlf/OIXyeVydHZ2cvXVV/PpT396xfdfLL+VCLimmgxkHtrbz1Cmj8G0Q33MorU2yvaWJI0Je97ZcPMFcCe6vMdiLWTIywvUqmarhBBiqWhqMpIQM0qn09TV1ZFKpaitrV3t3RFrTBAoftU9zLd+fZic47GtOUE8Yk4b5lpMrcyxQcmxQ2hLXYcTBIqv/KK73G/p2ODr4GCWszbW8Xtnd/DFnx2kPm7NmK3KFF3G8y63/s4uyQgJIVbFQq/fVZEREieHk3Gata5rvH1nC+110fJQ0mDGWbI6pZWugVrokJeCVclWCSHEUpNASKyIk32a9XLWKa1kDdRCexwVXH/JGlQKIcRqkkBILLv1Ms16OeuUVqoGqpImlZ2N8RWfsSeEEEtNAiGxrGSadXWptEB7pWfsCSHEUpNASCwrmWZdXU6kSeVKz9gTQoilVHlXQiEqcLTmZOaYO2YbOJ4v06zXkMkC7TM31DGedzk0nGM873LWxrqTZhhTCCEmSUZILKtKF0YVa4MMeQkh1gu5+ohltVpNAcXiyZCXEGI9kKExsawma04aEzYHB7Nkii5eEJApuhwczMo0ayGEEKtKAiGx7OaqOfnoRVuJmAb7+9McGc0TBNLoXAghxMqRoTGxImaqOSm4Hg+/tDRNFk/GrtVCCCGWnwRCYsVMrTnpGsxw/69eX5Imiyd712ohhBDLR4bGxIqbbLI4ki3RVhPB8QJyjkcyYrKzNclorsRPXxpY0DDZZNfqvb0p6uMW25qT1Mct9vamuO/xQ3QNZlbgFVWXIFAcGc3LcKQQQiAZIbEKesYLPHtkjLFciUMjObwgwNR1GuM221sTC26yKF2rKyfZMyGEmE4CIbHi9vWleaU/g2Vo1MQsLMPE9QMGM0UyTlhEvZAmi9K1ujLrZc03IYSohAyNiRUVBIrfHBrDCxQ1UYuIaaBrGhHToDFhUyj5HBjIYBv6vE0WpWv1wh2bPauJWhi6Rk3Uqng4UgghTiYSCIkV1TNeYChTpKMuStbxUOrohVfTNBIRg77xIi21kXmbLE7tWj0T6Vp9VCXZMyGEWE8kEBIrKlfycPyAU9tridkmo7kSjucTKIXj+WSLPqahcd7Wxnnreia7VvelitMCKjjatXpHa1K6ViPZMyGEmI0EQmJFTWZxopbOmzvraamJUnQDxvIlim5AfcJiV1sNp7XXzvuzpGv1wkn2TAghZiZnPbGipq49trM1yflbG8gUPUp+gKVr9KeLnL2pfsFZnMmu1ZMzoQbSRSKmwVkb67jiDJkJNUnWfBNCiJlJICRW1GQWpzdV4OBgWLMSjxhoJehLFWlKRirO4shK6fOb6X2P2QaFkk9fqijZMyHEuqWpY4srxDTpdJq6ujpSqRS1tfMP14iFmdrPxvHCYZkdrUnJ4iwzed+FEOvFQq/fEgjNQwKh5SPrg60Oed+FEOvBQq/fMjQmVs3UtcfEypH3XQghjpJZY0IIIYRYtyQQEkIIIcS6JYGQEEIIIdYtCYSEEEIIsW5JICSEEEKIdUsCISGEEEKsWxIICSGEEGLdkkBICCGEEOtW1QRCv//7v8/mzZuJRqN0dHRw3XXX0dvbO+dzisUiH//4x2lqaiKZTHL11VczMDCwQnsshBBCiLWuagKhSy+9lO985zscOHCA73//+3R3d3PNNdfM+Zxbb72Vf/mXf+G73/0ujz32GL29vXzgAx9YoT0WQgghxFpXtWuNPfjgg1x11VU4joNlWcd9P5VK0dLSwre+9a1ywLR//35OO+00nnjiCd761rcu6PfIWmNCCCFE9Vno9btqMkJTjY6O8s1vfpOLL754xiAI4JlnnsF1XS6//PLyY7t372bz5s088cQTs/5sx3FIp9PTvoQQQghxcqqqQOj2228nkUjQ1NTE4cOH+ed//udZt+3v78e2berr66c93tbWRn9//6zP+9znPkddXV35q7Ozc6l2XwghhBBrzKoGQnfccQeaps35tX///vL2f/Znf8azzz7LT3/6UwzD4A//8A9Z6pG9O++8k1QqVf46cuTIkv58IYQQQqwd5mr+8ttuu43rr79+zm22bdtW/v/m5maam5vZtWsXp512Gp2dnTz55JNcdNFFxz2vvb2dUqnE+Pj4tKzQwMAA7e3ts/6+SCRCJBKp+LUIIYQQovqsaiDU0tJCS0vLCT03CAIgrOmZybnnnotlWfz85z/n6quvBuDAgQMcPnx4xsBJCCGEEOvPqgZCC/XUU0/x9NNP8/a3v52Ghga6u7v5zGc+w/bt28tBTU9PD5dddhlf//rXueCCC6irq+PGG2/kk5/8JI2NjdTW1vKJT3yCiy66aMEzxoQQQghxcquKQCgej/PAAw9w1113kcvl6OjoYM+ePXz6058uD2O5rsuBAwfI5/Pl5/31X/81uq5z9dVX4zgOV155JV/+8pdX62VUtSBQ9IwXyJU8ErbJxvoYuq6t9m4JIYQQi1K1fYRWynrsI3Rs0FNwPR5+aZDuoSxFzydqGmxvSXLlmW3saK1Z7d0VQgghjrPQ63dVZITEyukazPCTvQPloKfkBQxlHGqjFjvbksTtGPmSx97eFL2pAje8basEQ0IIIapWVfUREsurazDDfY8fYm9vivq4xSlNCcZyJfrTRcbyJVxfYegaNVGLna1JRnMlfvrSAEEgSUUhhBDVSQIhAYTDYT/ZO8BorsTO1iQ1UYt8ySdX8mmvjVB0fbqHsuW+TZqm0VEXpWswS894YZX3XgghhDgxEggJAHrGC3QPZemoi6JpYRF0yQ/wggDbNEhGTUZzJTJFr/ycmG3geD65kjfbjxVCCCHWNAmEBAC5kkfR84nbR8vGbEPH1HVcP8AydLwgoOQH5e8XSj4R0yBhS6mZEEKI6iSBkAAgYZtETYP8lOxOTdSkMW6TLXqUvABT17GN8COjlKIvVWRHa5KN9bHV2m0hhBBiUSQQWueCQHFkNE/GcWlO2vSOF6fVAW1vTRC1dPrTRRIRg5itkym6HBzM0piwueKMNuknJIQQomrJmMY6NttU+Zzj0V4XxdA1/EDREI9g6Dr1MYt9fRl0Dba3JrnmLZ0ydV4IIURVk0BonZqcKj+SdaiJmtRGLfwgYDTncHAww8HBDAAa0FEX4927W8gWfV4dzuGrgKG0w8MvD6DrSDAkhBCiakkgtA5NTpU/PJLHCwIOjeTx/ABfKfKOh+sHNCYjxCyDVMHl0EiOV/5fhqZkhHM317OhPi5NFYUQQpwUpEZoHeoZL/DskTEGM0WGMg5Ry6A+blEoBWQdH1/BQMohXfBojNtYhobnB4znS+ztTXNoJIdSsKMlIU0VhRBCVDXJCK1DGcfl8Gge31c0JW00TcNxfVw/IGHrpB0fzw9QyuTIWJ50wSVQUPI88qUcA+ki7bVRmhIR2usi5aaKnY3x1X5pQgghREUkEFqHskWPQsmnJhoefsf1yZY8vCDAMHV8P8APoC9VJFDgq7BWSAG6UhRLYdA0mCmSKpZoSkSkqaIQQoiqJIHQOpSMmMQsg0zBJV1wKbgBnh9QcH2Kro8XhEGPmgiAIPw3QBCA0hTposcpTXEGMw4oiFvGKr0aIYQQ4sRJjdA6VBO1aErapIseY3kXTQuXyzA0cDxVDnoUEBzz3IAwQzSeL3FkrIDrKxQaUiEkhBCiGkkgtA511EYxdR3T0KmPmShF2Dna0Kd9IKZmhI7lB5AquBRcn7itU3D9ldh1IYQQYknJ0Ng61JcuErF0mpM2XqCoi+loOhQcHy8o4vrBtOGxY00GRwnbwDYN8qWAmAyNCSGEqEKSEVqHciUP29Q5d0sjrTVRfKXIOh6OHxC1DDbWRTF0MHWYGt/ogK6Fj9umRlttFMvQ0FCzZo6EEEKItUwyQuvQ5AKrUUtne0sCZ2J5DVMDQ9MYK3hYukbUMvB8RaD8sEiaMBgydA3b1Mk6HsmoSVMiQl6GxoQQQlQhCYTWoY31Mba3JHny1RHG8iWKrk/dROPETMHl9dE8Cg3b0ImY4HgBmhZmfUxDR9MgYhpsrI/TXhcBNBK2fJSEEEJUHxkaW4d0XeN3zmglXXQZyjokIgaWoU3UBik21kdpSliUfIVSELcNEhGTzY0x2mojbGyI8fadzZy7pZ6CG7CjNcnG+thqvywhhBCiYnIbv07FLJOWmgimrpEr+eScEoqwx9C2lgR1UZODgzk66mL0pQocGc3jeIqO+iinttUQtQy6hnI0JmyuOKMNXZcqISGEENVHAqF1arJg+q3bmuhNFXh1KEe26JFzPPb1ZaiPWdimzh+9fSs1UYt9/Wl+89ooQxmHVMGl6AactbGOK85okwVXhRBCVC0JhNapyYLpvlSBrsFsuORGzMQydFw/oC9VQNc0RnMlTt9QR2djnMt3t9EzXiBX8kjYJhvrY5IJEkIIUdWkRmid2lgfY1tLgr09afKOR2PCJmIa6FpYJG0aOpap8/yR8fLK8rqu0dkYZ3d7LZ2NcQmChBBCVD0JhNYpXdd4U2d9uXliyQ8IlMLxfEZzJeK2yZkbaukeytEzXljt3RVCCCGWhQyNrWMtNRE6G+OUvIDxgkvW8TB1ndbaKNtbktTGTA4N52RleSGEECctCYTWsYRt0pyMUBczAY2SH2AbOjVRE03TyBRdIqYhPYKEEEKctGRobB2bbKzYn3aoiYZBUW3MQtM0lFL0pYrSI0gIIcRJTQKhdUzXNa48s43GhM3BwSyZoosXBGSKLgcHs9IjSAghxElPAqF1bkdrDTe8bStnbqhjPO9yaDjHeN7lrI113PC2rdIjSAghxElNij8EO1pr2HZJUnoECSGEWHeqJiP0+7//+2zevJloNEpHRwfXXXcdvb29cz7nkksuQdO0aV9//Md/vEJ7XF2kR5AQQoj1qGoCoUsvvZTvfOc7HDhwgO9///t0d3dzzTXXzPu8m266ib6+vvLXX/3VX63A3gohhBCiGlTN0Nitt95a/v8tW7Zwxx13cNVVV+G6LpZlzfq8eDxOe3v7SuyiEEIIIapM1WSEphodHeWb3/wmF1988ZxBEMA3v/lNmpubOfPMM7nzzjvJ5/Nzbu84Dul0etqXEEIIIU5OVRUI3X777SQSCZqamjh8+DD//M//POf2H/rQh/jGN77Bo48+yp133sk//dM/8ZGPfGTO53zuc5+jrq6u/NXZ2bmUL0EIIYQQa4imlFKr9cvvuOMOvvCFL8y5zb59+9i9ezcAw8PDjI6O8vrrr/PZz36Wuro6fvSjH6FpCyvsfeSRR7jsssvo6upi+/btM27jOA6O45T/nU6n6ezsJJVKUVtbu8BXJoQQQojVlE6nqaurm/f6vaqB0NDQECMjI3Nus23bNmzbPu7xN954g87OTn71q19x0UUXLej35XI5kskkDz30EFdeeeWCnrPQN1IIIYQQa8dCr9+rWizd0tJCS0vLCT03CAKAadmb+Tz33HMAdHR0nNDvFEIIIcTJpSpqhJ566in+1//6Xzz33HO8/vrrPPLII1x77bVs3769nA3q6elh9+7d/PrXvwagu7ubu+++m2eeeYZDhw7x4IMP8od/+Ie8853v5Oyzz17NlyOEEEKINaIqAqF4PM4DDzzAZZddxqmnnsqNN97I2WefzWOPPUYkEgHAdV0OHDhQnhVm2zY/+9nPuOKKK9i9eze33XYbV199Nf/yL/+ymi9FCCGEEGvIqtYIVYNUKkV9fT1HjhyRGiEhhBCiSkxOdhofH6eurm7W7aqmoeJqyWQyADKNXgghhKhCmUxmzkBIMkLzCIKA3t5eampqZpymPxlxSsZo7ZJjtPbJMVr75BitfXKMplNKkclk2LBhA7o+eyWQZITmoes6mzZtmne72tpa+eCtcXKM1j45RmufHKO1T47RUXNlgiZVRbG0EEIIIcRykEBICCGEEOuWBEKLFIlEuOuuu8rT+MXaI8do7ZNjtPbJMVr75BidGCmWFkIIIcS6JRkhIYQQQqxbEggJIYQQYt2SQEgIIYQQ65YEQkIIIYRYtyQQOgGjo6N8+MMfpra2lvr6em688Uay2eyCnquU4nd/93fRNI0f/vCHy7uj61ilx2h0dJRPfOITnHrqqcRiMTZv3sx/+S//hVQqtYJ7fXK799572bp1K9FolAsvvJBf//rXc27/3e9+l927dxONRjnrrLP48Y9/vEJ7un5Vcoz+/u//nne84x00NDTQ0NDA5ZdfPu8xFYtX6d/RpG9/+9tomsZVV121vDtYhSQQOgEf/vCHeemll3j44Yf50Y9+xL//+7/zsY99bEHP/eIXvzjjUh1iaVV6jHp7e+nt7eWee+5h7969fO1rX+Ohhx7ixhtvXMG9Pnn93//7f/nkJz/JXXfdxW9/+1ve9KY3ceWVVzI4ODjj9r/61a+49tprufHGG3n22We56qqruOqqq9i7d+8K7/n6Uekx+sUvfsG1117Lo48+yhNPPEFnZydXXHEFPT09K7zn60elx2jSoUOH+K//9b/yjne8Y4X2tMooUZGXX35ZAerpp58uP/Zv//ZvStM01dPTM+dzn332WbVx40bV19enAPWDH/xgmfd2fVrMMZrqO9/5jrJtW7muuxy7ua5ccMEF6uMf/3j5377vqw0bNqjPfe5zM27/wQ9+UL33ve+d9tiFF16obr755mXdz/Ws0mN0LM/zVE1Njbr//vuXaxfXvRM5Rp7nqYsvvlj9wz/8g/roRz+q3v/+96/AnlYXyQhV6IknnqC+vp7zzjuv/Njll1+Orus89dRTsz4vn8/zoQ99iHvvvZf29vaV2NV160SP0bFSqRS1tbWYpizJtxilUolnnnmGyy+/vPyYrutcfvnlPPHEEzM+54knnpi2PcCVV1456/ZicU7kGB0rn8/jui6NjY3LtZvr2okeo7/4i7+gtbVVsttzkDN8hfr7+2ltbZ32mGmaNDY20t/fP+vzbr31Vi6++GLe//73L/curnsneoymGh4e5u67717wkKeY3fDwML7v09bWNu3xtrY29u/fP+Nz+vv7Z9x+ocdPVOZEjtGxbr/9djZs2HBcACuWxokco1/+8pf84z/+I88999wK7GH1kozQhDvuuANN0+b8WugJ4VgPPvggjzzyCF/84heXdqfXmeU8RlOl02ne+973cvrpp/Pnf/7ni99xIU5yn//85/n2t7/ND37wA6LR6GrvjgAymQzXXXcdf//3f09zc/Nq786aJhmhCbfddhvXX3/9nNts27aN9vb24wrTPM9jdHR01iGvRx55hO7uburr66c9fvXVV/OOd7yDX/ziF4vY8/VjOY/RpEwmw549e6ipqeEHP/gBlmUtdrfXvebmZgzDYGBgYNrjAwMDsx6P9vb2irYXi3Mix2jSPffcw+c//3l+9rOfcfbZZy/nbq5rlR6j7u5uDh06xPve977yY0EQAGGG/MCBA2zfvn15d7parHaRUrWZLMT9zW9+U37sJz/5yZyFuH19ferFF1+c9gWo//k//6d69dVXV2rX140TOUZKKZVKpdRb3/pW9a53vUvlcrmV2NV144ILLlC33HJL+d++76uNGzfOWSz9e7/3e9Meu+iii6RYehlVeoyUUuoLX/iCqq2tVU888cRK7OK6V8kxKhQKx1133v/+96t3v/vd6sUXX1SO46zkrq9pEgidgD179qhzzjlHPfXUU+qXv/yl2rlzp7r22mvL33/jjTfUqaeeqp566qlZfwYya2xZVXqMUqmUuvDCC9VZZ52lurq6VF9fX/nL87zVehknjW9/+9sqEomor33ta+rll19WH/vYx1R9fb3q7+9XSil13XXXqTvuuKO8/eOPP65M01T33HOP2rdvn7rrrruUZVnqxRdfXK2XcNKr9Bh9/vOfV7Ztq+9973vT/l4ymcxqvYSTXqXH6Fgya2xmEgidgJGREXXttdeqZDKpamtr1Q033DDtj/+1115TgHr00Udn/RkSCC2vSo/Ro48+qoAZv1577bXVeREnmS996Utq8+bNyrZtdcEFF6gnn3yy/L13vetd6qMf/ei07b/zne+oXbt2Kdu21RlnnKH+9V//dYX3eP2p5Bht2bJlxr+Xu+66a+V3fB2p9O9oKgmEZqYppdRKD8cJIYQQQqwFMmtMCCGEEOuWBEJCCCGEWLckEBJCCCHEuiWBkBBCCCHWLQmEhBBCCLFuSSAkhBBCiHVLAiEhhBBCrFsSCAkhhBBi3ZJASAix5l1//fVomnbc1549e1Z714QQVU5WnxdCVIU9e/Zw3333TXssEoks2+8rlUrYtr1sP18IsTZIRkgIURUikQjt7e3TvhoaGgDQNI1/+Id/4D/8h/9APB5n586dPPjgg9Oev3fvXn73d3+XZDJJW1sb1113HcPDw+XvX3LJJdxyyy386Z/+Kc3NzVx55ZUAPPjgg+zcuZNoNMqll17K/fffj6ZpjI+Pk8vlqK2t5Xvf+9603/XDH/6QRCJBJpNZ5ndFCLFYEggJIU4Kn/3sZ/ngBz/ICy+8wHve8x4+/OEPMzo6CsD4+Djvfve7Oeecc/jNb37DQw89xMDAAB/84Aen/Yz7778f27Z5/PHH+epXv8prr73GNddcw1VXXcXzzz/PzTffzKc+9any9olEgv/0n/7TcZmq++67j2uuuYaamprlf+FCiMVZ7VVfhRBiPh/96EeVYRgqkUhM+/rLv/xLpZRSgPr0pz9d3j6bzSpA/du//ZtSSqm7775bXXHFFdN+5pEjRxSgDhw4oJQKV+4+55xzpm1z++23qzPPPHPaY5/61KcUoMbGxpRSSj311FPKMAzV29urlFJqYGBAmaapfvGLXyzdGyCEWDZSIySEqAqXXnopX/nKV6Y91tjYWP7/s88+u/z/iUSC2tpaBgcHAXj++ed59NFHSSaTx/3c7u5udu3aBcC555477XsHDhzg/PPPn/bYBRdccNy/zzjjDO6//37uuOMOvvGNb7Blyxbe+c53nsCrFEKsNAmEhBBVIZFIsGPHjlm/b1nWtH9rmkYQBABks1ne97738YUvfOG453V0dEz7HSfiP//n/8y9997LHXfcwX333ccNN9yApmkn9LOEECtLAiEhxEnvLW95C9///vfZunUrprnw096pp57Kj3/842mPPf3008dt95GPfIT/9t/+G3/zN3/Dyy+/zEc/+tFF77MQYmVIsbQQoio4jkN/f/+0r6mzvuby8Y9/nNHRUa699lqefvppuru7+clPfsINN9yA7/uzPu/mm29m//793H777bzyyit85zvf4Wtf+xrAtIxPQ0MDH/jAB/izP/szrrjiCjZt2rSo1yqEWDkSCAkhqsJDDz1ER0fHtK+3v/3tC3ruhg0bePzxx/F9nyuuuIKzzjqLP/3TP6W+vh5dn/00eMopp/C9732PBx54gLPPPpuvfOUr5Vljx/YwuvHGGymVSvzRH/3Rib9IIcSK05RSarV3QgghqsVf/uVf8tWvfpUjR45Me/yf/umfuPXWW+nt7ZVGjEJUEakREkKIOXz5y1/m/PPPp6mpiccff5z//t//O7fcckv5+/l8nr6+Pj7/+c9z8803SxAkRJWRoTEhhJjDwYMHef/738/pp5/O3XffzW233caf//mfl7//V3/1V+zevZv29nbuvPPO1dtRIcQJkaExIYQQQqxbkhESQgghxLolgZAQQggh1i0JhIQQQgixbkkgJIQQQoh1SwIhIYQQQqxbEggJIYQQYt2SQEgIIYQQ65YEQkIIIYRYtyQQEkIIIcS69f8DdoNaITErDiQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# x values versus residuals\n", - "plt.scatter(X[:, 1:2], res, alpha=0.5)\n", - "plt.xlabel(\"Energy\")\n", - "plt.ylabel(\"Carbon\")\n", - "plt.title(\"Residual Plot vs. X Values\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 310, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADosklEQVR4nOy9eXxcV333/77r7Nqs1bK8yonj2LFDTExCIIGYhJ0AKSG0D0laKEsphVBo6I8tLM0T2kIeCg2hLSR9gDYQeGhKaVYClBCyb04c2/Iqy9ql2Wfuen5/XM1YsiVbuzTWeb9eer3smTsz587ce873fJfPVxFCCCQSiUQikUiWIOpCD0AikUgkEolkoZCGkEQikUgkkiWLNIQkEolEIpEsWaQhJJFIJBKJZMkiDSGJRCKRSCRLFmkISSQSiUQiWbJIQ0gikUgkEsmSRRpCEolEIpFIlizSEJJIJBKJRLJkkYaQRCLhC1/4AoqiTOpYRVH4whe+MKfjueSSS7jkkksW7fstRa699lpWr1690MOQSGYdaQhJJIuI22+/HUVRyn+6rtPa2sq1115LV1fXQg9v0bF69eox31djYyOvetWr+H//7//Nyvvn83m+8IUv8Ktf/WpW3m8uGRwc5JOf/CRnnnkm4XCYuro6Lr/8cn7+858v9NAkkkWNvtADkEgkJ/LFL36RNWvWUCwW+f3vf8/tt9/Ob3/7W3bu3Ek4HJ71z/vMZz7DDTfcMOvvOx9s3bqVT3ziEwAcPXqU2267jXe84x3ceuutfPCDH5zRe+fzeW688UaARe1R2r17N5deein9/f1cd911bNu2jWQyyQ9+8APe8pa38Jd/+Zf87d/+7UIPUyJZlEhDSCJZhLzhDW9g27ZtALzvfe+jvr6em2++mbvvvpt3vetds/55uq6j65U5HbS2tvJHf/RH5f+/973vpb29na9//eszNoQqAcdxuPLKKxkeHuY3v/kN27dvLz/38Y9/nD/8wz/k7/7u79i2bRtXXXXVhO9TLBYxTRNVnftAgRCCYrFIJBKZ88+SSE6FDI1JJBXAq171KgD27ds35vGXXnqJK6+8krq6OsLhMNu2bePuu+8ec4zjONx4442sX7+ecDjMsmXLuOiii7j//vvLx4yXI2RZFh//+MdpaGggkUjw1re+lSNHjpwwtolyR8Z7z+9973u89rWvpbGxkVAoxMaNG7n11lun9F2ciubmZs466ywOHDhw0uP6+vr4kz/5E5qamgiHw2zZsoU77rij/PzBgwdpaGgA4MYbbyyH3ybKj3riiSdQFGXMe5S49957URSlHKbKZDJ87GMfY/Xq1YRCIRobG3nd617HU089NeXz/clPfsLOnTu54YYbxhhBAJqmcdttt1FTUzNm3L/61a9QFIV///d/5zOf+Qytra1Eo1HS6TQAP/vZz9i0aRPhcJhNmzZNGGr0fZ9bbrmFs88+m3A4TFNTEx/4wAcYHh4ec9zq1at585vfzL333su2bduIRCLcdtttUz5XiWQuqMwtoESyxDh48CAAtbW15cdeeOEFXvnKV9La2soNN9xALBbjRz/6EVdccQU/+clPePvb3w4EBslNN93E+973Ps4//3zS6TRPPPEETz31FK973esm/Mz3ve99fP/73+c973kPF154Ib/85S9505veNKPzuPXWWzn77LN561vfiq7r/Od//icf/vCH8X2fP/uzP5vRe5dwHIfOzk6WLVs24TGFQoFLLrmEjo4OPvKRj7BmzRp+/OMfc+2115JMJvmLv/gLGhoauPXWW/nQhz7E29/+dt7xjncAcM4554z7ntu2bWPt2rX86Ec/4pprrhnz3J133kltbS2XX345AB/84Ae56667+MhHPsLGjRsZHBzkt7/9Lbt27eJlL3vZlM73P//zP4HAEzYe1dXVvO1tb+OOO+6go6OD9vb28nNf+tKXME2Tv/zLv8SyLEzT5L777uOd73wnGzdu5KabbmJwcJDrrruOFStWnPDeH/jAB7j99tu57rrr+OhHP8qBAwf45je/ydNPP83DDz+MYRjlY3fv3s3VV1/NBz7wAd7//vdz5plnTuk8JZI5Q0gkkkXD9773PQGIBx54QPT394vOzk5x1113iYaGBhEKhURnZ2f52EsvvVRs3rxZFIvF8mO+74sLL7xQrF+/vvzYli1bxJve9KaTfu7nP/95MXo6eOaZZwQgPvzhD4857j3veY8AxOc///nyY9dcc41YtWrVKd9TCCHy+fwJx11++eVi7dq1Yx67+OKLxcUXX3zSMQshxKpVq8Rll10m+vv7RX9/v3j22WfFu9/9bgGIP//zP5/w/W655RYBiO9///vlx2zbFhdccIGIx+MinU4LIYTo7+8/4XxPxqc//WlhGIYYGhoqP2ZZlqipqRF//Md/XH6surpa/Nmf/dmk3vNUbN26VVRXV5/0mK997WsCEHfffbcQQoiHHnpIAGLt2rUn/CZbt24VLS0tIplMlh+77777BDDmd/6f//kfAYgf/OAHY15/zz33nPD4qlWrBCDuueeeaZ6lRDJ3yNCYRLII2bFjBw0NDbS1tXHllVcSi8W4++67y7vyoaEhfvnLX/Kud72LTCbDwMAAAwMDDA4Ocvnll7N3795ylVlNTQ0vvPACe/funfTn/+IXvwDgox/96JjHP/axj83ovEbnhKRSKQYGBrj44ovZv38/qVRqWu9533330dDQQENDA1u2bOHHP/4x/+t//S9uvvnmCV/zi1/8gubmZq6++uryY4Zh8NGPfpRsNsuvf/3raY3lqquuwnEcfvrTn44ZXzKZHJOfU1NTw6OPPsrRo0en9TmjyWQyJBKJkx5Ter4U+ipxzTXXjPlNuru7eeaZZ7jmmmuorq4uP/66172OjRs3jnntj3/8Y6qrq3nd615Xvv4GBgY477zziMfjPPTQQ2OOX7NmTdkjJpEsJqQhJJEsQr71rW9x//33c9ddd/HGN76RgYEBQqFQ+fmOjg6EEHz2s58tGwGlv89//vNAkAMDQQVaMpnkjDPOYPPmzXzyk5/kueeeO+nnHzp0CFVVWbdu3ZjHZxrOePjhh9mxYwexWIyamhoaGhr467/+a4BpG0Lbt2/n/vvv54EHHuB3v/sdAwMD/Ou//utJE3EPHTrE+vXrT0gMPuuss8rPT4ctW7awYcMG7rzzzvJjd955J/X19bz2ta8tP/bVr36VnTt30tbWxvnnn88XvvAF9u/fP63PTCQSZDKZkx5Tev54g2nNmjVj/l867/Xr15/wHsf/9nv37iWVStHY2HjCNZjNZsvX30SfJZEsFmSOkESyCDn//PPLVWNXXHEFF110Ee95z3vYvXs38Xgc3/cB+Mu//MsJd9mlXJBXv/rV7Nu3j//4j//gvvvu45//+Z/5+te/zre//W3e9773zXisEwkxep435v/79u3j0ksvZcOGDXzta1+jra0N0zT5xS9+wde//vXyOU2V+vp6duzYMa3XzgVXXXUVX/nKVxgYGCCRSHD33Xdz9dVXj6nKe9e73lXWO7rvvvv427/9W26++WZ++tOf8oY3vGFKn3fWWWfxzDPPcPjwYVauXDnuMSXD93ivzkyqtnzfp7GxkR/84AfjPl9KNJ+Nz5JI5hJpCEkkixxN07jpppt4zWtewze/+U1uuOEG1q5dCwThnMkYAXV1dVx33XVcd911ZLNZXv3qV/OFL3xhQkNo1apV+L7Pvn37xngCdu/efcKxtbW1JJPJEx4/3qvyn//5n1iWxd133z1mwT4+hDIfrFq1iueeew7f98d4hV566aXy8zCxkXcyrrrqKm688UZ+8pOf0NTURDqd5t3vfvcJx7W0tPDhD3+YD3/4w/T19fGyl72Mr3zlK1M2hN785jfzb//2b/zrv/4rn/nMZ054Pp1O8x//8R9s2LBhTKL0eJTOe7ww6vG//bp163jggQd45StfKY0cSUUjQ2MSSQVwySWXcP7553PLLbdQLBZpbGzkkksu4bbbbqO7u/uE4/v7+8v/HhwcHPNcPB6nvb0dy7Im/LzSYvyNb3xjzOO33HLLCceuW7eOVCo1JtzW3d19Qsm1pmlAoCFTIpVK8b3vfW/CccwVb3zjG+np6RkTwnJdl3/4h38gHo9z8cUXAxCNRgHGNfQm4qyzzmLz5s3ceeed3HnnnbS0tPDqV7+6/LzneSeEARsbG1m+fPmY32RgYICXXnqJfD5/0s+78sor2bhxI//7f/9vnnjiiTHP+b7Phz70IYaHh8sh05PR0tLC1q1bueOOO8aM8f777+fFF18cc+y73vUuPM/jS1/60gnv47rulL4ziWQhkR4hiaRC+OQnP8kf/MEfcPvtt/PBD36Qb33rW1x00UVs3ryZ97///axdu5be3l4eeeQRjhw5wrPPPgsE4ZBLLrmE8847j7q6Op544oly6fZEbN26lauvvpp//Md/JJVKceGFF/Lggw/S0dFxwrHvfve7+au/+ive/va389GPfpR8Ps+tt97KGWecMUYX57LLLsM0Td7ylrfwgQ98gGw2yz/90z/R2Ng4rjE3l/zpn/4pt912G9deey1PPvkkq1ev5q677uLhhx/mlltuKefSRCIRNm7cyJ133skZZ5xBXV0dmzZtYtOmTSd9/6uuuorPfe5zhMNh/uRP/mSM1ymTybBixQquvPJKtmzZQjwe54EHHuDxxx/n7//+78vHffOb3+TGG2/koYceOqmqtWma3HXXXVx66aVcdNFFY5Slf/jDH/LUU0/xiU98Ylyv1HjcdNNNvOlNb+Kiiy7ij//4jxkaGuIf/uEfOPvss8lms+XjLr74Yj7wgQ9w00038cwzz3DZZZdhGAZ79+7lxz/+Mf/n//wfrrzyykl9pkSyoCx02ZpEIjlGqXz+8ccfP+E5z/PEunXrxLp164TrukIIIfbt2yfe+973iubmZmEYhmhtbRVvfvObxV133VV+3Ze//GVx/vnni5qaGhGJRMSGDRvEV77yFWHbdvmY8UrdC4WC+OhHPyqWLVsmYrGYeMtb3iI6OzvHLSe/7777xKZNm4RpmuLMM88U3//+98d9z7vvvlucc845IhwOi9WrV4ubb75ZfPe73xWAOHDgQPm4qZTPn0oaYKL36+3tFdddd52or68XpmmKzZs3i+9973snvPZ3v/udOO+884RpmpMupd+7d68ABCB++9vfjnnOsizxyU9+UmzZskUkEgkRi8XEli1bxD/+4z+OOa70/T300EOn/DwhhOjr6xPXX3+9aG9vF6FQSNTU1IgdO3aUS+ZHUyqf//GPfzzue/3kJz8RZ511lgiFQmLjxo3ipz/96YQyCd/5znfEeeedJyKRiEgkEmLz5s3iU5/6lDh69Gj5mMn+ThLJQqAIMcpPLZFIJBKJRLKEkDlCEolEIpFIlizSEJJIJBKJRLJkkYaQRCKRSCSSJYs0hCQSiUQikSxZpCEkkUgkEolkySINIYlEIpFIJEsWKah4Cnzf5+jRoyQSiWnJ7UskEolEIpl/hBBkMhmWL19+QoPl0UhD6BQcPXqUtra2hR6GRCKRSCSSadDZ2cmKFSsmfF4aQqegJLXf2dlJVVXVAo9GIpFIJBLJZEin07S1tZXX8YmQhtApKIXDqqqqpCEkkUgkEkmFcaq0FpksLZFIJBKJZMkiDSGJRCKRSCRLFmkISSQSiUQiWbJIQ0gikUgkEsmSRRpCEolEIpFIlizSEJJIJBKJRLJkkYaQRCKRSCSSJYs0hCQSiUQikSxZpCEkkUgkEolkySKVpSUSiUQiqVB8X9CVLJCzXWKmTmtNBFWVDcKnQsV5hL71rW+xevVqwuEw27dv57HHHpvw2Ntvvx1FUcb8hcPheRytRCKRSCRzQ0dfhlt/tY+v37+Hbzy4l6/fv4dbf7WPjr7MQg+toqgoQ+jOO+/k+uuv5/Of/zxPPfUUW7Zs4fLLL6evr2/C11RVVdHd3V3+O3To0DyOWCKRSCSS2aejL8P3Hj7IzqMpaqIGa+vj1EQNdh5N8b2HD0pjaApUlCH0ta99jfe///1cd911bNy4kW9/+9tEo1G++93vTvgaRVFobm4u/zU1Nc3jiCUSiUQimV18X3Dvzl6GcjbrG+MkwgaaqpAIG6xvjDOUs7nvhV58Xyz0UCuCijGEbNvmySefZMeOHeXHVFVlx44dPPLIIxO+LpvNsmrVKtra2njb297GCy+8MB/DlUgkEolkTuhKFtjXn6WlOnxCZ3VFUWipDtPRl6UrWVigEVYWFWMIDQwM4HneCR6dpqYmenp6xn3NmWeeyXe/+13+4z/+g+9///v4vs+FF17IkSNHJvwcy7JIp9Nj/iQSiUQiWSzkbJei6xE1x693ipgaluuRs915HlllUjGG0HS44IILeO9738vWrVu5+OKL+elPf0pDQwO33XbbhK+56aabqK6uLv+1tbXN44glEolEIjk5MVMnrGvkJzB0CrZHSNeITWAoScZSMYZQfX09mqbR29s75vHe3l6am5sn9R6GYXDuuefS0dEx4TGf/vSnSaVS5b/Ozs4ZjVsikUgkktmktSbCuoY43akiQozNAxJC0J0q0t4Yp7UmskAjrCwqxhAyTZPzzjuPBx98sPyY7/s8+OCDXHDBBZN6D8/zeP7552lpaZnwmFAoRFVV1Zg/iUQikUgWC6qqcPmmJupiJnv7smSKDq7vkyk67O3LUhczuezsJqknNEkqym92/fXXc80117Bt2zbOP/98brnlFnK5HNdddx0A733ve2ltbeWmm24C4Itf/CKveMUraG9vJ5lM8rd/+7ccOnSI973vfQt5GhKJRCKRzIj2xgTXvXI19+7sZV9/lt50kZCusbm1msvObqK9MbHQQ6wYKsoQuuqqq+jv7+dzn/scPT09bN26lXvuuaecQH348GFU9ZiTa3h4mPe///309PRQW1vLeeedx+9+9zs2bty4UKcgkUgkEsms0N6YYO0lcaksPUMUcXyAUTKGdDpNdXU1qVRKhskkEolEIqkQJrt+V0yOkEQikUgkEslsIw0hiUQikUgkSxZpCEkkEolEIlmySENIIpFIJBLJkkUaQhKJRCKRSJYs0hCSSCQSiUSyZJGGkEQikUgkkiWLNIQkEolEIpEsWSpKWVoikQT4vpBqshKJRDILSENIIqkwOvoy5f5CRdcjrGusa4hz+SbZX0gikUimijSEJJIKoqMvw/cePshQzqalOkzUjJC3XXYeTXE0VeC6V66WxpBEIpFMAZkjJJFUCL4vuHdnL0M5m/WNcRJhA01VSIQN1jfGGcrZ3PdCL74v2wdKJBLJZJGGkERSIXQlC+zrz9JSHUZRxuYDKYpCS3WYjr4sXcnCAo1QIpFIKg9pCEkkFULOdim6HlFz/Ih2xNSwXI+c7c7zyCQSiaRykYaQRFIhxEydsK6Rn8DQKdgeIV0jNoGhJJFIJJITkYaQRFIhtNZEWNcQpztVRIixeUBCCLpTRdob47TWRBZohBKJRFJ5SENIIqkQVFXh8k1N1MVM9vZlyRQdXN8nU3TY25elLmZy2dlNUk9IIpFIpoA0hCSSCqK9McF1r1zNpuXVJPMOBwdyJPMOm1urZem8RCKRTAOZTCCRVBjtjQnWXhKXytISiUQyC0hDSCKpQFRVoa0uutDDkEgkkopHhsYkEolEIpEsWaQhJJFIJBKJZMkiDSGJRCKRSCRLFmkISSQSiUQiWbJIQ0gikUgkEsmSRRpCEolEIpFIlizSEJJIJBKJRLJkkYaQRCKRSCSSJYs0hCQSiUQikSxZpCEkkUgkEolkySJbbEhOie8L2ddKIpFIJKcl0hCSnJSOvgz37uxlX3+WousR1jXWNcS5fFOT7HQukUgkkopHGkKSCenoy/C9hw8ylLNpqQ4TNSPkbZedR1McTRW47pWrpTEkkUgkkoqm4nKEvvWtb7F69WrC4TDbt2/nscceO+nxP/7xj9mwYQPhcJjNmzfzi1/8Yp5GWtn4vuDenb0M5WzWN8ZJhA00VSERNljfGGcoZ3PfC734vljooUokEolEMm0qyhC68847uf766/n85z/PU089xZYtW7j88svp6+sb9/jf/e53XH311fzJn/wJTz/9NFdccQVXXHEFO3funOeRVx5dyQL7+rO0VIdRlLH5QIqi0FIdpqMvS1eysEAjlEgkEolk5ihCiIrZ0m/fvp2Xv/zlfPOb3wTA933a2tr48z//c2644YYTjr/qqqvI5XL8/Oc/Lz/2ile8gq1bt/Ltb397Up+ZTqeprq4mlUpRVVU1OydSAbzUk+YbD+5lbX0cbZzEaNf3OTiQ488vXc+G5qXzvUgkEomkMpjs+l0xHiHbtnnyySfZsWNH+TFVVdmxYwePPPLIuK955JFHxhwPcPnll094PIBlWaTT6TF/S5GYqRPWNfK2O+7zBdsjpGvETJlmJpFIJJLKpWIMoYGBATzPo6mpaczjTU1N9PT0jPuanp6eKR0PcNNNN1FdXV3+a2trm/ngK5DWmgjrGuJ0p4oc7zQUQtCdKtLeGKe1JrJAI5RIJBKJZOZUjCE0X3z6058mlUqV/zo7Oxd6SAuCqipcvqmJupjJ3r4smaKD6/tkig57+7LUxUwuO7tJ6glJJBKJpKKpmLhGfX09mqbR29s75vHe3l6am5vHfU1zc/OUjgcIhUKEQqGZD/g0oL0xwXWvXF3WEepNFwnpGptbq7nsbKkjJJFIJJLKp2IMIdM0Oe+883jwwQe54oorgCBZ+sEHH+QjH/nIuK+54IILePDBB/nYxz5Wfuz+++/nggsumIcRnx60NyZYe0lcKktLJBKJ5LSkYgwhgOuvv55rrrmGbdu2cf7553PLLbeQy+W47rrrAHjve99La2srN910EwB/8Rd/wcUXX8zf//3f86Y3vYl///d/54knnuA73/nOQp5GxaGqCm110YUehkQikUgks05FGUJXXXUV/f39fO5zn6Onp4etW7dyzz33lBOiDx8+jKoeS3u68MIL+eEPf8hnPvMZ/vqv/5r169fzs5/9jE2bNi3UKUgkEolEIllEVJSO0EKwVHWEJBKJRCKpZE47HSGJRCKRSCSS2UYaQhKJRCKRSJYs0hCSSCQSiUSyZJGGkEQikUgkkiWLNIQkEolEIpEsWaQhJJFIJBKJZMlSUTpCkqWN7wupcC2RSCSSWUUaQpKKoKMvU+55VnQ9wrrGuoY4l2+SPc8kEolEMn2kISRZ9HT0ZfjewwcZytm0VIeJmhHytsvOoymOpgpc98rV0hiSSCQSybSQOUKSRY3vC+7d2ctQzmZ9Y5xE2EBTFRJhg/WNcYZyNve90IvvS4F0iUQikUwdaQhJFjVdyQL7+rO0VIdRlLH5QIqi0FIdpqMvS1eysEAjlEgkEkklIw0hyaImZ7sUXY+oOX4UN2JqWK5HznbneWQSiUQiOR2QhpBkURMzdcK6Rn4CQ6dge4R0jdgEhpJEIpFIJCdDGkKSRU1rTYR1DXG6U0WEGJsHJISgO1WkvTFOa01kgUYokUgklYHvCzqH8rzUk6ZzKC9zK0eQ22jJokZVFS7f1MTRVIG9fUGuUMTUKNge3akidTGTy85uknpCEolEMg4l/bVdPWmeODBEf8bC8nwpQTIKaQhJFj3tjQmue+Xqso5Qb7pISNfY3FrNZWfLm1gikUjGo6S/9nTnMHt6M7ieoKU6zJnNCcKGJiVIRpCGkKQiaG9MsPaSuFSWlkgkkklQ0l8bzFoM52wMVaU2qpEqODzflWJrWw3rG+Ps7cty3wu9rK2PL9n5VOYISSoGVVVoq4uyobmKtrrokr1pJRKJ5GSM1l9rrgqTsz0SEYOwoVMXMynYHvv6cwBSggTpEZJUGLLfmEQiWSgqZf4Zrb9muT6u52OEg+VeURTiYZ2hnE264OAJQX+2yL7+7KI9n7lGGkKSSbEYJgDZb0wikSwUlTT/HNNfiyCEi66pOJ4gpAdztqGpDOdsnu5MkrVcirbHvz12mBe60ovyfOYaaQhJTslimABkvzGJRLJQVNr8M1p/LRHWqY2a9GeKmDETRVHIFB1ShUCbTQHalkVZXh1ZtOcz18gcIclJKU0AO4+mqIkarK2PUxM12Hk0xfcePkhHX2bOxyD7jUkkkoWiEuef0fprAO2NcSJmEA4r2C69aQsgOI9IcB5VkcV7PnONNIQkE7JYJgDZb0wikSwUlTj/lPTXaqMmzx5Jkik6rKmPURXR6UkXsVyPRFijuTrC1rYa6mIhYPGez1wjQ2OSCZnKBNBWF52zcYyOd49HxNToTRdlvzGJRDLrVPL8E9ZV+jM2e/uyKEBVWGdrWw2DWZuzl1dTEzVOmNsX8/nMFdIQkkzIYpkAxsa7jROel/3GJBLJXFGJ88/onKbta2rxfEgXHYbzNmFDozZmomvKCUYQLM7zmWtkaEwyIYul4ansNyaRSBaKSpt/jk9pqIqY1EQNaqMmrTURknkby/E4mqyM85kPlo7JJ5kypQlg59EU8ZA+ZvdQumE2t1bP+Q0j+41JJJKFotLmn+NTGoZyNh19WYbzNq7nIwAErKpXK+J85gNpCEkmZDFNALLfmEQiWSgqaf4ZndIwlLN5pjNJwXaJhw2MsI7t+vSmi7ieYPWyMMm8s6jPZz6QhpDkpCymCUD2G5NIJAtFpcw/pZSGnOXQ0ZelYLvUjegHASgKVEcMFAWWxUyuvXA1ecdbtOczH0hDSHJKFtMEUOo3JpFIJPNNJcw/pZSGxw4OMpyziIePVYYJIcgWXRqrwqytj7GvP4eiKGxorlrgUS8sMllaMilUVaG1JkLE0NjXn+U3e/s5PJhbUqJbEolEstgppTTEQjrDBQdf+PhCYLkeQzmbiKmxriFGxNQYzlvsPJqicyi/pOdy6RGSTIqOvgw//P1hfn9giGTBRhFQHTV4xdplvGf7yiUXU5ZIJJKFZqIekO2NCd5z/koODuTIWR4F20NTVRqrwqxriAEKj+4foi9jcefjndwf7V20fdPmg4rxCA0NDfGHf/iHVFVVUVNTw5/8yZ+QzWZP+ppLLrkERVHG/H3wgx+cpxGfPnT0Zbjlgb3cv6uXnOXSEA+xLGGSt1zuf7GXWx7YOy+tNiQSiUQS0NGX4dZf7ePr9+/hGw/u5ev37+HWX+0rz8UXrqvnjZtbWFEb4eWr67hg7TK2raoFFJ4+PMyRZIHGqhBnt1TNe9ukxUbFGEJ/+Id/yAsvvMD999/Pz3/+c37zm9/wp3/6p6d83fvf/366u7vLf1/96lfnYbSnD74vuOf5Hvb0ZjB1laaqEGFDI2LoNFaFMTWFPT1BU9al7FqVSCSS+WIyPSBVVeH1m5pZURtlOO+gKOD6Pi8eTdGftWiIm2xsqULX1EXdN20+qIjQ2K5du7jnnnt4/PHH2bZtGwD/8A//wBvf+Eb+7u/+juXLl0/42mg0SnNz83wN9bSjK1ng+a4Uni9IhMfKsStK0LAvU3R5ris55602JBKJZCGYKAS1UGMZLZhYmpMTYYN4SGdvX5b7XuhlbX38hKrf4bxFX8ZiRW2EjS1V5R5jML9tkxYbFWEIPfLII9TU1JSNIIAdO3agqiqPPvoob3/72yd87Q9+8AO+//3v09zczFve8hY++9nPEo1O/ANbloVlWeX/p9Pp2TmJCiVnu+ScQFna0E688Q1NBQR521tSvWkkEsnSoKMvUzYkiq5HWNemnE8zm4bUVHtAjq763Xk0xZ2Pd3L2iCfoeJZinzGoEEOop6eHxsbGMY/puk5dXR09PT0Tvu4973kPq1atYvny5Tz33HP81V/9Fbt37+anP/3phK+56aabuPHGG2dt7JVOzNSJGcFl4niCkD72xnM8H1CImnPXamMx7cYkEsnSYXTPrpbqMFEzQt522Xk0xdFUgeteufqUxtBsGFKjmU4PyNFl//dHeyk4HolxDKGl2GcMFtgQuuGGG7j55ptPesyuXbum/f6jc4g2b95MS0sLl156Kfv27WPdunXjvubTn/40119/ffn/6XSatra2aY+h0mmtibC5tZoDgzkyRQdzlDCXEIJMwUFTVc5prZmTVhuzPYksZqTBJ5EsHqYSgproPp0NQ+p4ZtIEdrG0TVpsLKgh9IlPfIJrr732pMesXbuW5uZm+vr6xjzuui5DQ0NTyv/Zvn07AB0dHRMaQqFQiFAoNO5zSxFVVXj95mZe6s3wbGeS3rRFddQABKm8gy9gy/IEl2+a/VYbHX0Zvvvbg3Ql89RFTepjITRVKU8i11y4ioihnxaGw1Iy+CSSSmCqIajjmQ1DajxmYswsprZJi4kFNYQaGhpoaGg45XEXXHAByWSSJ598kvPOOw+AX/7yl/i+XzZuJsMzzzwDQEtLy7TGu1Rpb0zwsR3ryzpCg9kgh6omYrB9jnSEfF/ww0cP88TBIRQlmJR0VaUuarK2IcqhwTxf+vku6mMmludXtOEwF7tGiUQyM6YTghrNTA2piZipMbOY2iYtFioiEHjWWWfx+te/nve///18+9vfxnEcPvKRj/Dud7+7XDHW1dXFpZdeyr/+679y/vnns2/fPn74wx/yxje+kWXLlvHcc8/x8Y9/nFe/+tWcc845C3xGlUd7Y4LPvHkjncN5DgzkAFhbH2NFbXROdg+/2zfAQy/1IYSgJmZiaCqO59OXKdKfDRoGWq5PS3s9rbXRijUc5mrXKJFIZsZMQlAwc0PqZMzUmFlMbZMWAxVhCEFQ/fWRj3yESy+9FFVVeec738k3vvGN8vOO47B7927y+TwApmnywAMPcMstt5DL5Whra+Od73wnn/nMZxbqFCoeVVVYtSzGqmWxOf0c3xc88GIfecejrTaCpgZJfSFdw4gq7OvPgQK1EQNDV9FUpWINh9KusbkqTKboYns+pqaSCOtLupxVIlloZppPM1ND6lTM1JiphL5p80XFGEJ1dXX88Ic/nPD51atXI8QxEai2tjZ+/etfz8fQJLNMV7JAd6pAPKTj+jC6uMHxBALwPQGKgjnqyUo0HHK2y0DW4miyQLLg4Pp+OQS4rjFGVcRYkuWsEslCM9MQVGtNhLUNMR4/OERrTYSQrpU3OLOVmFwyZkqFFnv6MicYRLII49RUjCEkWTrkbBdVhYZ4iIGsNaZSzRMCIQSO5xMP6STCYy/hStPBGMhYdA7lR4UA9XIIMGM5rG+ML8lyVolkMTCTENT+gSxDWZvDg3l292SIhXQa4iGW14QpOP6sJSafrNACKD9XcFx8H1qqI+zY2MiF6+qlQTSCnF0li46YqRMxdCI1Gjk76JgcD+sYmorrC2xPoGsqaxtiJyQhVpIOhu8LnjmcxNBVPF9gaiqKohDSNcyYymDWYmdXmrdtbV1y5awSyWLh+BBUxNBQgLzj0TmUH9fDMroA4tyVNRxNFunPWhwczNGbLvKaDY2zUmRyskKLXT2BGLDnCyKGynDOoT9r8cyRJL/e03fCGJay52jxrxaSRcdc3zCjY/NbVlSzrz/HcN4ma7loQMTQSIR0VhxnHFSaDkZXssD+gRybllexty83xuBzPB/XB18IzmmrXjITkkSyGCmFoDr6Mvz82e6TylyMVwCxojZKpuhiuR5dyQLLYiZr6+MzGtPJCi1ipsa9L/aCgJevruW5rjSFkVyl2qjBQMbit3sHKDo+f3zRaoAlLd8hDSHJlJgPvZvRsfnBnM2G5jiO59ObthjK2yyvjRA1dTr6cxWtg1GqKllbHycWMujoy5YNPl1Vaa4OE9JVGhJS10oiWWgmK3MxXtm8oihURQzAIGxo7OvPzTiP8WTl+VnLw/ODNIJdPRkKtkvdqBSDmphJwfboSub5t0cPU3B8hvNLV75DGkKSSTOfejejY/NPdw7TOZQnb3tETY3aqElTIgwKJPNOxepgjK4qqYuZvHx17ZjKMRCkCm5FhPkkE7OUQw6nC1ORuZjLsvnRnOxzLNfD8Xwc18P2BPWjjCAIekTmhEtNxOCR/UM0JEy2rKhZsvIdcoaVTIqF0Ltpb0zgb4Q9vRkaEiGWV0doSIQoOIH3pzZq8I6XtVKfCFXkAjNeeW6wawzCfHv7smxuraalKkznUF4upBWIVAw/PZiKOOJcl82XmOhzhnI2u7ozDOVsPM9HVT2EL1gWN4mMfKbteng+ZC2XwWyRM5pOzLesxCrc6SINIcmkmCuV1JPh+4L7X+zF9nxetrL2mPGlqWXj67kjKT548bqKNAwmU557ZnOC236zXy6kFYhUDD99mIqX54zGxLz082qpClMfN3mxO017Q5yqiMFw3uGZziQ5y0FXFLSRxO6s5eL4Ps1VYYQI5nNVVdh1NE266HJwME8ibFAXGxuGr7Qq3OkiDSHJpJgvd+9oFsL4mm9OVp57ZnOCX77UJxfSCsP3BZ3Deb7/+0McGc5zTms16ogo6FILOZwuTMXLMx/9vEqexv0DOQ4P5dnfn6O5KoQnIF1w0FVoqAohROAhchHYjsfRVAHbDfT2lleFyFtBFdxwzuaZziRb22rGGEOVVIU7E07vs5PMGvPl7h3NQhhfC8F4CrEtVWFu+81+2XqjwigtUM8dSfL80RQRQ8NxBesaY+UF5nQx4mdCpeVNTVUccS77eY32NK6si9KYCLO7J03ncJ6s5bIsalITD9NSE8FQFfYP5Dg0mMdyffKOS8TUaK4K4XqCqohBXTxEpuiSt1z29eeojZqzKvpYCUhDSDIpZio3Px0WwvhaKI6Xu+8cyk/oDQOIhzSePDTME4eG2LaqblEvIkuF0QtUxNSIGBqxkFYWxxy92z5djPjpUIl5U9MRR5yLfl7j5WomwlAfr+fQQI5f7+3H9QVZy+WlnjS6qlIbMThvVQ1dwwUODOaImjqKotJYZbKuIQYoPNOZJF0ICk+SeQddUyquCncmVP4KIpkX5sPdezwLYXwtFibyhg3lbDr6sgzmLNIFh9t+vY/HVw4v6kXkdGW0VyNiaNyzs6e8QGWKLoamoioqdTGNoZw9Zrd9OhnxU2Eh86am64WaiTiiqiq01kTKn9uVLMzIGJooXUBRFFQ1EGZNFR1qYyZVIQPH8+nPWkRsjeU1YYbzDttW1VIfD5U9WgBb22rY05vmyIix1BAPVVwV7kxYWnehZEbMpbt3PBbC+FosjOcNGxqJ4xdsF1NXqY4YLIuFZM7QAnC8V8PzgrygDc2JkV26Tm3UpD8TXKfxsM5QziZTdEmE9dPaiJ+Ihag8LTFdL9RMxRFn2/s10QYp2BgW0DUV3/VRFVCPU6k/UHRZFjepj4fK1akl6mImG1uqqImYXL19Jesa4os+XDmbSENIMiXmwt07HqXdm+sLXr+pmWc7k+zvz1WsZtDJGG+nWvKGPd+VorlKYHs+L/VkAs2haFAd0lgVprk6TDPInKF55HivRsQIs7cvQ2+6iOv5REM6y2Ih1jXEGMxZHBkuYOoKvi8Yylv0pE9vI34iFqr4YSZeqJmII453nfRlijyyf4A9fRn+7DXrOKOpakrnMlG6QKbokiw41EUNBnMOmaKHrqljVOoV4Ozl1fSki2O8QRAYUj1piy1tNbx6fcOSui5BGkKSaXB8PstsM94uam19rKI1gybiZDvGDS0J7nuxh+eOJFEUQboQhGAcz6c6YrBuVK+1pZ58O18c7yEoeen60kUKjseR4TzZXR7rG+P0ZS360hZ528XzBYoCHE6y46ymWekzVWksRPHDTL1Q0x3z8Z87nHfY1Z1kOG/jej77+3N8KWfz2Tdt5IzmyV8HE6UL2J6P6/kArK6PBpVgeecElfrXnd3Er3f3LzkP+6mQhpBkUTHR7u2F7jTd6SLXvXI1bXXRoER5KE/GcsgW3ZFO9EZFGUiTaZhYFTbQVYXBrIXnC3K2i6IorGmLjSlzXcrJt/NJV7JAR1+GREjn2SNJXjiaxnI8FMDzBK4f5K71posoioKmKsTMwHhVUHBcn950caFPY0FYiOKHmXqhpjvm0Z9b0vYp2C7xsIER1jF1l319Wb71UAd/fmn7pI3iidIFbNcjb3tURXQ2t1ZTGzXHVak/q7mK1XUx7nqyk339WXwBNRHjtPKwTwdpCEkWDZPdvfk+3P9i0Hrj8FCegu0RMTRWLotyblttRSQOT7Zh4uVnN6EoCkeTBZ48NEzY0LA9n4Gszeplovy6pZp8O9/s6k4Hxo/r0ZMq4vqCkK4SMjTwfHwBAvAEaAiEL8jZgnhIp7U2Qt5y2dub5d6dvay9ZGmFMRei+GGmXqjpjrn0uREjzK7u5Am9vmIhHdv1GMxZUw5pj5eraWoq6xqDPKVSQv54KvUF2+P+F3vpz1h4QqApKg2JMDs2Ni76OXMukbOmZNEwmd3bU4eH2d0TyMf3ZYp4niAR1rFGwhKW61dE4vBkGiaW/l0VMVheE6ErWaQ/UyQe0sqJt1UR47SvoFssdPRl+K/nu8kUHSzXxwcMXcHzBdmig6Io6Co4QYQiMIZUBUUJejtFDA1NVcgUXZ7rSi65MOZCFD/M1As13TGXPrcvU2Q4bxMPG2Puc8fz0TWNlurItELa4+VqFmyPOx45eFKV+jseOeaBbq2NkrddOofz3PG7Q4t+zpxL1IUegERS4tjubfxJKWyodA7lGcgWcX0fb6R/TiJssCweCIS5ns9g1h7xHIl5PoPJc7JztUdi/Qri2L8VhfbGOBFTJ1v0KDouBccjU3TY25dd0vH9+aDkwbMcj+bqMAXHQ4WgjYGm4PrgeALXP+51QqAA6aJDuuhgjIQp8ra3JMOYJW/GpuXVJPMOBwdyJPMOm1ur52QhLnl0ulNFhBg7H5Q2EO2N8ZNuIKYz5tGf63o+hjbWk5QtBh6ihkQIy53etVDK1dzQXEVbXZQzmice5zUXruKlkf5j6xvjJMIGmqqQCBusb4wzmLX48RNHePFois6h/KKeO+cC6RGSLBpOtXvrz1jkbY+aiMm+gdyYXZaiKMTDOsN5hxW10UWfOHyycw1i+iBQyv+GoMR1a1sNLx5N0Zex6E0XqY2aSz6+Px+UPHjLayLomsre3iyu8PFEoMBbWjaON0OFCK5N1xP0pq3yUVFz6YYx56vyFGbPCzXVMZc+d09fhv39OUzdJRbScTyfbDFQd17XEKPozG5Ie/Q4R+dPJvMOHX2ZcT3Qw3mH/ozFC0fT7O7NUBc1F73A5WyzNO9EyYJwKkGzycTjo2Ygbe96PkZ47OVraCo5y0VTFfK2u6h33Cc713goCKEggn+PpjZq0JAIsW11HW/burziEsQrldG5Jg1xqE+YDGRtio6HP8oLpMAYo0gIcH2Brip4vk9vqkhDIsw5rTVLOow515Wno5kt/bOpjrm9McGfvWYdX8ra7OvPYrseuqbRWBVmXUOM2qhZzt2ZzWtBVRUs1+OhXf3lalTL8ekcyrNtde0Jneqf6UySt1w0FZqrwkRNbclpk0lDSDJrnMzQmYyw2Kl2b8viIcKGhicEuqbieIKQPjburo2oqy72xOFTnesZTcF30tGfG/d7+INtK5bEBLVYGOvB02mpjuL5kCk4ZCwXFcqJ0hAYQSXb1vEEug5CKFieYEVdlMs3yTBmifnoOzafXqjRnNFUxWffvJFvPdTBYM6ipTpCQyJE0fHmLKQ9XjVqb7rArm6Xpw4P8/LVddTFQggh6OjLjlSzaVhukMe2FPsZLt6VQlJRnMzQASYtaHay3duOjY3c/0Ifz3clqY0a9GcszNixBoHZoktDImggeM6KxZ84fKqdKjBvKt6SEzm+hcbahhgvHE2zvjHOuoYYQ7lAI0hVFJyRnIqSIWRoQUjMcUuPK5gjjTrffX6b/P1GKM0bHX0Zhgs2mqKyriHOldtapyw2eCpm0ws1FePtjOYEf35pe/lePjSYm7N7eaJq1JbqCKuWRdk/kKOjL8vLVwfl9cN5m3hIJ2u5NFaFSYx42ZdaY2BpCElmzMn0cLqSecKGNiVBs5Pt3lRF4WiqQM7y0FSFwaxNyFCxnEBJVddUlsUrJ3H4VDvVhdjFSsY37GsiQYLpU4eTJPN2uWN3yQgytaBSTCXw/oCgKqIT0lXOWVFDdcTA8wVnNc/uAl+plOaNw4N58rZL1nKxXJ9d3WkePTDIRy9dz6VnNZWPn03P0UzeazptM0r3eedwngMDOQDW1sdYXh2hcyg/a/f3yXqRtTcmGMrZHBrMs6I2iqZC0fFwXI9oSB8j0ApLS5tMGkKSaVGaSDKWw8+e6mIwa3NG04mGzrNHkgxkLM5fs2xKgmYT7d5Ge1Ge7hwORBWLLlFTo60uystW1lacx+RkO9X5zKWQBExk2HenAvmCg4N5cpaLEALPE2hK8DvFTBVT1yi6PoaqYHs+qqKwriHBmU1xnj+aZm19HCEEvi+WtEFb8lwcHswznA9yreJhg6pIIDrZnS7yjQf30lYbVEPNZs+uk73X2vqTbzxm0q5j/0B2jPeraAeVr9VRHVPXZtyHDE6um1QXM3nZqlqeOjTMUM7CFyKovK0KsbGlaoxAKywtbbLT/wwls87oiWQob7GvL0djIkRDwhxzMymKQm3UpKM3W9bFOZ7p7DomqoyQicNzz3zkcywkJxO6tByP33UM4PqCVXVRPAG96SK+HyhKF12BpglMTcX2fIQgaK2hwn27+nDc4LFbHti75Kpyjqek0J23XYqON0ZsMGRoNFeF6M9Y3PVUJ1e+rG2M/s1MOtafSs29MREimXfGNbaOvzaAsnpzUyJET7o4YU7N8d6vgaxFfzZotxEzdS5ct4yaqDHjJOVTVd5GDI2NLVVcvX0l8bDOz57q4vBQgdqoOea4paZNJg0hyZQ4fiIxdZWDA3mS+aD6YGtbzRhjKBHWQYFM0aE2Zp7wftPddZzOnpLFamzMdiftxchEoQXf93nmSBJ7RBMmZGj4QpRbaORsD18IbMcnHjYQgFADQ+jgQI6YqbO1rZpE2CRddHjs4CBdyTx/fNGa0+a7mwo522W4YJO13BPEBgFMXcPUFTp6M9z1ZOesdKw/mZFruz6/3tNPxNB4ZXs9y0MnGlshXRvTNqOjL1vuHaZrKjFT46nDwyd4t4/3fqXyNsMFJ2i7IgTposOv9vTz2g2NrG+MzyhJebJK2NtW1aGqCubLVb7724M8eyRJbdSkKmygqdCTtpaUNpk0hCSTZryJRAgIGxphXSVruezrz5Ul3gF0VaE6YjKUt2mri86KrP5iNRRmg8VqbMwkJFBJjBdaGMrZ7OxKcXAgH3Ty9qAnVaQ2aqAqCgLK/Z6ips6Wthoa4yEyRYenO1M0JoJO9PsH8uzqyQYLp6rQnSoSMTT+vzdtPG2u38kSM3U0RcVyfaoiJ5674/mYukbe8dnXn2XVstiUQuvjMZGRK4RgX38OVVHKlX4lscHRxtYlZzZQdD2KjsbzXakxvcMcT5DMO/RnLXb1pMeMZbT3K11wyNkelhtcA6Uq16Lj8cj+QaojxoySlKejmxTWVfozNnv7sihAdcTgFWuXLanGwNIQkkya8SaSRFinNmrSnykSG6f1Q0/a4oK1dRQcf1Zk9ReroTAbLFZjY6YdvCuJ40MLJZ2VZN5GBVQl0AYKOsoHngDL9QnrKr4IxDCbEkH1zYHBHBFDpaU6zHNd6RMWzuGczS9f6uOSDY28an3DQp/6vFLyXOzqTuO4ftCrbYRSBWh11CBqaHgiCOmkC065iWgiHHg7phJaP97IFUKQKboM5W360kWqIzoFxyurucNYY2vb6lpCmsrunvQJvcNCuoIIa/RnPJ44OMSODcfmtJL3K1N0sH0f1w/yyjQlkFnQVKWsffZid5pXrF2G5U4/SXmyukmj55vta2rx/EABvZSztZSQhpBk0oy3W1YUpVxKPJh1AJ+846IolA2dq7evBGZeCr5YDYXZYLLGxuq6GN0jE/98ecNm2sG7khgdWoiZWllnJWpo9Ps+jhfoAzmej+ML4mbg9cw5Hq7nUx01gKDJZSyk4490ox9v4WxImBwZLvDgrl5eua6+4o3IqaCqCldua+XRA4N0p4s0V4Uwda2svBw2VKKmzvqmBPv6svx+/yA528PxPIRQSIR11tbHqIkakw6tjzZyHU+UQ1s5KygjDxeC5rmW6yHEsYbGJWMrHtZpSIR59MAQjYnQCV6lnOXRUhOmP22NuRdK3q+c7eG4Pqau4ng+gmOim6qqoCkKwzmb/ox1ynM6lVf8VNWoE803tTGTlXXR02pzMxmkISSZNOMl4g3lbPb157Bcn3TBxvIEv+sY4MzmBC9bWTfG0JlJKfjp7pUYbWwAJ+x+W6rDPHloiM8M5enPFPEE1EYM2hsTc+4Nm2kH70pidGjhua4UfZkiuqoE3bp90FTQVRWBQHg+6aJPYyJM3vEIaRpVYYNUwWVzazXnrKjm/z5yiI7+LIlx8mBcXxAL6XSniqeFETlVzmiq4qOXrucbD+4NNMH0QGupOmoQNXVW1kXZtrqW3+8fpCddpCaiU3R88rZHb7rIwcEcNVGTHRsaJxVab62JsLYhxq9295HMOzieoDZq4Psa/Z5gyHIwNJcnDw5ztLrIusYYdbFQOY8xETLYtrqWe3YGjXdRRoxg2yM7Url6RmOcdHGsqn3JuH7uSBLXE0RNJagq9AUg8HzQNQVDU/GFoDtV4MJ19ROe02S94ifLo1xKm5vJIA0hyaQ5PhFvOO/wTGeSVN7G9oJSUFNTKDo+XcNFrnp5fNI35qk43W/ckrFRdDR2dQ+PScKsjZoYmsKzR5KYepCUGdI1MgWHgZw9596wmXbwrjRKoYXvP3KYvT0Ziq6P4/nUxoygsa8v8ITAw8f2BEN5m/aGOH/4ilVsaaspG/kAD7zYxzNHAgHQ0YwWANUU5bQwIqfDpWc10VYb5a4nO9nXn8UXUBMxWN+U4LVnNfDTJ7vQ1CAPsTtloSgQ1jUMVSFjuSTzNj1pi/0D2VNe//sHsgxmLDr6chScQCSz4LhYjofnCzRNwdQViq5Hb6ZIxnLYsqKawZwzJo/xjOYEwzmbobxNuhAYVJoKAsGznSlqYyaRUaG+kvfrf/b2s38gV062dywXe0R+QUFB1xQcT7AsHpowXWC2vOJLaXMzGU6PmUsyL4zeLe/pzdCfsUjmbPKOS9HxCZsaLdVhdFWlO13km7/sYFVdjDOaZ75An+43bszUsV2fJw8N4fliTC7JkaEcfVkLBCyvDhMPGzieT6rgYLlBLH8uvWGTrUQ5ncps2xsT/PFFq9k/kOXAQI5ESCce1inYHv1Zi4LtgqoQQqExEeITl5/JxWc0nvA+OzY28us9fQxkLGpiJoamjmm8ubw6DCinjRE5FUrhHR/BH75iFQqQdzxiZvA93/XkEf57Zw8qgmTexfK8sjSBqigjYTGVrOWc8vovGRBHhvMkwjphQ6XoeAznHICyorInBAXbpz4e5CQ9diBoSVEyTFprIpzbVssj+wcxLJeoqWNqCgXHI1f06M9YRFI6tz98kD98xbFk4zOaqrj+sjP47M92ksw7I94vFc0X+EKgBK0FaW+M82eXtI9rzMymV3ypbW5OhXrqQxYHX/nKV7jwwguJRqPU1NRM6jVCCD73uc/R0tJCJBJhx44d7N27d24HOsf4vqBzKM9LPWk6h/L4E+jzzBWl3fLKuhi96WDXZLs+NdFAwyc6cuNUR3S6UwV+/OThMWOc7vhH37jjUek3bktVGMvxSeYdoqaG5/s4ro+hgu35OK7A0INKFlVRCOkadTFzJFTgsrc3Q1eyMCdjKxnAdbGgSWSm6OD6PpmiM2f9khYDK2qjrK2PY3s+0ZBG0fEZztvYro9ACbwXUZ22mihNVeFx3+PCdfW8ZkMjph4UCCTzNkXHp7EqzJYV1RQcn/bG+GllRE6Gjr4Mt/5qH1+/fw/feHAv/+eBvfzns93oqkLB9vjWQx08fnAQ2/UpuD5518P1BJbroyrQEDdprYlgjHhMS97g8RhtQLTWRAjpKitqI7RUR4iGtJF8JI3WmgjxkI7nB5uMklL96zc3j+mH+LqzG8kUHVIFh6ipjoTCAvmEREgnGtJ4uGOA7/72IB19mfI4XrexmS9fsZk19TFChkYipNNSFWJtQ4z2xgQXrqvnM28+a8KN41S84qeitLnpThURYuwcXNrcLKXrsmJWDdu2+YM/+AMuuOAC/uVf/mVSr/nqV7/KN77xDe644w7WrFnDZz/7WS6//HJefPFFwuHxJ67FzGKpmGpvTHDFuct5titJT6pIzNCIh4P4/dFkgYLjB5oqrseDu/p49RlBVcxMxn+6eyW600VcPwgv7h/IlStJNEUhU3RQ1cB9nio4RAwNU1dRFIV4WCdTdEkWnDn1hs1WB+9KQlWVskfnaLKA5QYhMV1VUIUgamooisqRZIH+jMWG5vHf4z3bVwbh4mR+SWu1lDhZeOfF7hQ9qeLIAu0zlLPL/dtMXcH3IWd5qIoNCmiqSlXYYDBnTXj9jzYghABdU3FH8nJURSFkqhQcn2VK4BkSQrCyNkp1VCdneSyLj9U/ixj6SEgTDg8XKDgeIU0lGtapixqoI8ZcVzJ/godmx8YmVtaNHwo81X00m17x6ZTZn85UjCF04403AnD77bdP6nghBLfccguf+cxneNvb3gbAv/7rv9LU1MTPfvYz3v3ud8/VUOeExVYxlQgbxE0dBYiNGEE96SKO5xMaKSUWItgt/dtjh7Fdn1++1Dft8Z/uN+6u7jRdwwUihoqhBe0ZXF9QGNkJqyN9gbpTRQwt6BJdFzMIGRq2a6MqzLk3bKE6eC8kF66r55IzG7j72W4s18NQFYRQiIcNaqMGectFU1We60xNWPlVCrOVjMjBnHXaG5ETcSpRwwd39ZK1XFbURBjM2fgi6N9Weq2mKqiKwHI9+tIWG5qr0FRO6g0ebUCoCtRGDY4mi4R0pdwl1/V8etIWmaKDD2SPJFFVhbCh8bOnujBfrpZ/p5ztYuoqZy+vJlVwqY+bhPVjmxNfCHLCHeOpGp23eEZzghvecNaYhr6lsGDnUL58Tx1fGRY1tFkNZy3Fzc1EVIwhNFUOHDhAT08PO3bsKD9WXV3N9u3beeSRRyY0hCzLwrKs8v/T6fScj/VUTLW0ej7aTozWAbEdj6GcjeP5RAwVULBcn4ipURXSyRYdbv/dQWKmPm4/ssnGtiv9xp2o5NX3BU8cHMb1BY2JEKauYrs+nhDkLJdDg3lcHzRFIaSrqGqQXGt7HrVRA9sVrJsnN/bprOg9HqqqcOlZTTy0u5+wpxIP6YR0DVWBrOUSDemsb4yzr//kifpL0Ygcj+PDOyUtH8v1eKknCCMJoOB6JAsOCoF2ky+Cx11foIxU76kKNFaZ9KStk3qDjy+bz9seqYKD7Xp4Anwr0A0quh6gENIVTC04XldVdnUHm9DSZq30fhkrkAkphatLOJ5/Sk9V6T7q6Mvw82e7y/3HNEVlXUOc89fUsrsnO8Z7XpIL6E4VZ80rLq/LgNPWEOrp6QGgqalpzONNTU3l58bjpptuKnufFguTiQ0/dXiYr977EvsHchweylOwPSKGxsplUc5tq+V1ZzcSMfRZu9hH64AcHsrjjijBej7YnoeuBuWgyxJhGke0Ny5YO7XGq+NRqTfuycKCIV2jP1OkpTpMquBQp5uEDA0hBENZK6gmcQW6ruD6AlNVCOsqeculy/ZY1xDnype1LfrvoFKpT4RYWRfFdn2SBYeCE3iBGqvCrGuIURUxODiQO2VIYqkZkeMx2jszlLPLWj4F22U475Q1dnpSRRxPoBDoNilQ1t0JzBZB1FQZyNqsWhY7qTe4tGn7/f7Bslhgc3WYTNEhnXfIjPxsIQUMXSGsazgj0gYRU8P1fQazdnmzVnq/xw4OoqtBpVdIL+nz+AznbGqiJnnbxdTUCT00x/cfy1ouluvz3JEkP3nqCKvro2xZUVP2nr/QnS6HzGfTKy6vywU2hG644QZuvvnmkx6za9cuNmzYME8jgk9/+tNcf/315f+n02na2trm7fPHY6LYcGk31ZMu8OLRNIM5i7zl4XmCRFjHcjyODAf9be57sYeGEW/DbOUWqYrCuvoYBwZy5GyPgu1h6Gp5AqmOGKxriAXic54/4Q061YqvSrtxTxXWvPiMBizP58zmKp7vSjGUs4mHAzG+vONjqCq+5hMzNXRdxXGDsJkzomR89faVU67MO53blMw2MVOnPh6iOhKEI45XN84UnYpO1J9PSt6Uo8k8e/tyZbVtTVVI5h2yBRtrRNRYhXJunBACQaDGrGlBSEsAG5dX8a5tbacMq7/u7Ebue7GH/qxVFm8M6Qq265F3PHwBtifwRFBKXxUxaEqEUBToTVskwgbPdibpHM6zalmMyzc10ZXM050qMpyzaUiYZC2XvnTQ1V0I+N2+QdY1xinYJ6o0H99/rOh4xMMGiXAQAk/nbToH85zVXEUiPLbdx/LqMLUxk/39uYrzii9WFvTO/cQnPsG111570mPWrl07rfdubg4yF3t7e2lpaSk/3tvby9atWyd8XSgUIhQKTfj8QjCRkGFHX5ahnEVv2qLouAgEhqbSXBV4juIhnZ5UsVwiqmsKr1izjILjzTi3qLS4F1yfV6yp4/FDwzgjWkKO51MbDbO2Po7nC3pSRYQI5NuPV2SFyq/4OhmTCWs+eWiYkKYSNlS2ttUcU7y1XRzPJx7WqFYNmqrC5KzAKFZQqIkYJMI6W9tqpjSmmSbdLzUjanSi/ujfEE6PRP35pLUmwtr6GHc/dxTPFywbUdsu2h4Fx2W0zeADwgdVCXLkxEiCc1ttlKG8zYXr6vnUZRvQ9VMXP5cSnEsCiHnbJm97ZIsegmPhN00JPC7+SP+vnO2NaAUFBSDfe/gAf/SKVSN5X2sI6xoP7e7j4EAO2xPomsKymAkCoqFAS+iORw6eMM92JQvs7U0HTVgLDnVRA1NTsF0fxwuqz/KOx4vdaS5qr0dRlLL3fDjv8N4LV6OO6E8thXtwrlnQlaehoYGGhrnpsbNmzRqam5t58MEHy4ZPOp3m0Ucf5UMf+tCcfOZcMZGQYcF2MTQV1/OJhYLqoZAe6GNERowK2w/Kq1fURshZHnnboyoyMzXm4xd3gIzlcjRZJB7SGM7bDOdsnikkSRUc8raLoig8cXCY4axNe1O83KH+dF9IJsqJKHkVmqtC9KWLNCRCdA4XWN8Y5+Wra8s9kJ4/ksTzBa21Uc5bWUPW8sqvBUGq4E7JgJxp0v1iqVycL0pG3/rmOHt6M+zpzbK85vRK1J9PVFVh68oafvLUEYQQQVGAJziaKjCO4wTBSLK0AF0NPKAFx6cqbHLFua2TMoLgWILzK9YuI2979GWKPLp/CBQwtKDZqu0Emj6+H+QR5W0PXQsao8ZDGrYnODCQG5Mv9Jk3b+TiDQ3c8sAeuoaLJEIahhZIW6xriFEbNcedZ3d1p3n2SIqBrIWqKORHUhkiZqAuHdZVHD/oR1fq3QjHvOcFx2NDc9Us/SqSitmCHz58mKGhIQ4fPozneTzzzDMAtLe3E48Hi/GGDRu46aabePvb346iKHzsYx/jy1/+MuvXry+Xzy9fvpwrrrhi4U5kGownZJi3XOJhjaGcg6oq1EYNBnMOnufTl7Goj4PnC2zHR1MUVFXFdo81FJyJGvN4OUvtjQmylkcqb1NwfCzHC4w0XwTd6UcEzPb0ZRnK25y3qnZELfb0XkgmyokoqUZXR4Lk2zec00LO7i/H/oPdpIGuqTiex9r6KKqqUhUJJn4hgn5WUzEgZyrIttgqF+ea440+2/WxHJ/DQ3lCuipDEtOkPhGibSTnajhv058pUnQ8dA18r1zIhTLipYHAYxM1NHyCROnXbmjglevqJ/2ZJa96wfFIhHWe6SxSdD0SIZ2i4wVeViUI97sjfcBAARFIVOQsj9qYyeq6KL0Za8x9srY+zuq6GOsbEhi6OiZsCpwwz3b0Zfiv57vJWkEqQNQMzitnuxSc4N52RirkBIxpAns6e88Xkor5Nj/3uc9xxx13lP9/7rnnAvDQQw9xySWXALB7925SqVT5mE996lPkcjn+9E//lGQyyUUXXcQ999xTkRpCpYqpHz1+hBeOptFUsFw1cPdqCoauIYSD5QvyOTuISytBvDmsqwgh0FR1xJMQMF015vFylupiJltWVPPrPf3Yrofj+YBCbcxgWcwkbGhBiIzAI/LkoWE2tlSd9gvJRDkRJdXonpSFqgTdtceriHtVez29GYvBnIOpazPyRMykTcnp3uvteEYbfc1VIeK+TrroYLsWUVPjzecs56yWKhmSmAajc64yRYff73dx/cDbk7EcPD/ovwWBASQERAyVmphJ0fHY0lbD1dtXTul7H+1Vb0qEGM7baGrQ1iKERtET6JpAVYLCBFcABB4iO2ejqiqO7/PowSBX76nDw+X7JGe7WJ5Pa20UbZwxjZ5nS/eR5XisqI2wty/QEtI1Bc0I0h98X1DwPBJhjbB+bM4+3b3nC0nFGEK33377KTWEjlfIVBSFL37xi3zxi1+cw5HNHyUhwz19GZqrwkQMjXhI44lDSY4M5bC9QHNGEQJTVxECsp6LRSDpv6IuWpaSh+nvLiaSZze0oA+Wpoboz9i01ISpix7ruF0XNymMVDlZrs/V21eybVXdab2QTJQTAWBqgbt/tA7Nh8apiNs/kJ0VyYCZCLKd7r3eRjPa6FsWM3mpZ5QXT1XoSVs0xAfZcdbp6cWca0YbJbXRoBmtpioYWmAMFX2fiKGMaGQFnjhfBPPVWS1VfOQ166e8cRrtVe/ozwYl7ooSJEj7gripYegqOcvD4pgHRlUUVDUIn7meDwiSeYf+rMWunjRtddHyfJgb8fBYI2M2R7yGIMrzbOk+Wl4ToT4e4miqSLboEgtp6GqgZJ133ZFWLIFGW8TUyBSd0957vpBUjCEkCUiEDeqiJlFTKxsh6xpi7B/IIkRw4/oEehu+72PoKt5I4t/a+lh5EZvJ7qI0kT3flaK5KnDjmpqK5Xq4vsD1BCFDpSYytuO2oankRBDvzhQdqiLGaX9Dj5cTMbrf1Hg6NCVDopSf4vqCN29pGdOLaTqeiJn0Fzrde72NprRYRQyVZ4+kTvDiDedsfvlSH5dsCBTTJVNjtFFyZDgf9NkS4PiBUa1pCrqmYuoqugoqCoYeFBJ88vVnckbT9LzHo73qBwdy+ELgOD5VkcBrHdJVOocLeMKnaPuBnpChETM0FCXoJ5a1PJZFDfqzHk8cHGLHhiZaqsJoqsIvX+rFG8kvcv1Agbw6YmDoKq9qD7rJ7+nLlO+jRFhh+5plPLp/kLztoio+qgqmrtJSE8EcaR9yaDAnw7BzzKwZQslkctI9wCTTZ7xWE4amBvFzXwTtGBRGdH1U4mENy/VBCUQOXd+fFd2JDS0J7nuxh+eOJDH0oPeVqSmkig6JkI6hBzL2pUicEIKsFQiapQsOIX1ifY3TjdE5EcmCQ846tQ7NyZKSp+txmUmbkqXUpDHI1XAZzjkUbJe6UV68kK7QkDA5MlzgwV29E6pJS05OySi55/ke+tIWQzkb14fqiEHM1MjbHgXHo+h4qIrC2cur+eTlGzijKTGjqsX2xgSfuvxMQPDEoSGyVlAur6rB/Fh0fIQvCBsqChDRtfJ7m7pKwXZJKtBSE6Y/bfHwvgEe2tXH7zoGGMhZeCNzXsTQcD2f/qxFPKTTm7HYP5A94T5aUx+jKqzzYnea4RFRWkVReNX6eq48b8Wsar9JJmZas9bNN9/M6tWrueqqqwB417vexU9+8hOam5v5xS9+wZYtW2Z1kJJjjNdqoiddYDhv47g+uqpSFdGDxL76GI3xMAXH5enDSYZyFnnbnfHuoqMvwy9f6qMqbKCrSlkILFPw0MpdoTX6MxbmSGPQoZxFsuBgairPdCYn1Nc4HZmqDs1cJSXPpE3J6d7rbTQxU8f3oT8b6MccHwp0R8T2ulPF0yIUOBNmapR8+DVxtqys4Z9+s5+9fVl0VSFs6oQMFZEV6JrK2curuOENgRE0G1WLuq7yrpe3kbO9sphhxnLJFl2KjkdV2GBVfZTdPVks1wNFQ1MUhICi41MXUzmzKcGR4QI/fPQQ+/qD3oDVEYNUwSl7haKmhq4qNFeFcD3BfS/08qevWnvCfbQsHuKi9nrSBYeO/mxg9F125qQr4iQzZ1qG0Le//W1+8IMfAHD//fdz//3389///d/86Ec/4pOf/CT33XffrA5SMpbRrSae7hzmxaMpLNcnEdZpTITRNYVs0eXwYH4kjKazsaWKq7evpCpizGh3MTp/4tyVNQDlcnBDVejoz5IpBh4PTVXoThbJ2i6262NoCrGQRiwUXHbj6WucjkxFh2auk5Kn26bkdO/1NprWmqAz+TNHktRGx3q/hBBki+5I003ltAgFTpfZMEpUVeFV6xtoqQ7zw98f5vcHhhjMBi2OaqIm29cu4z3bV9LemJjVDcLo+6CjL0OyYGM5gYG7qbWKmojJQNamYAdisLYI8oYipsam1mpCeqBqbbkaKkEuTy7tURMxAUHB8QkbGk1VIYpuIHDb0ZelO12c8D7qzVisWhbjD7atkEbQPDMtQ6inp6estvzzn/+cd73rXVx22WWsXr2a7du3z+oAJePT3phg9atj3HzvSwznLKoixkhbDRVVVTFjarlcuzpics6K6llJTB4vabakcQFwRlOCw0N51tbH2KcrPNuZCnSNDJXqqElLdeSk+hqnI6qq8LqNTezpzfDU4WFaqiM0JELlJqqjjYjOofycJyUf36ZkoqaP472uknu9TZbRXecHMhY1MXNMXlfE1FheHQaU0yIUOB1m22tZ0uTpHM5zYCAHwNr6GCtqo+V+fLO9QRjvPvjPZ4/ywtE08RqN5qoIfZkicdPEE5ApOrTWRFhRE+G5rhQKguaqCINZm5AW6P9oqoKiqESUoPWGEAqe76GpCnnbJWe7bGiuWhL3USUxrbu4traWzs5O2trauOeee/jyl78MBLslz1sa4Y7FwO8PDPJwxwCWG+xa0oXAxdsYD5GIGJi6yqHBPC9fE5613fpkkmZDusoVL2slW3T59q/3ETY0aiJBuOxk+hqnKx19Ge5/sZec7dKXsTg0mCdiaqysi/KylbVjJr/5SkpWVYXWmgj/09HP3c8cpTtVxNQUaqMm7Y2JCXf1ldrrbapcuK6e12xo5Ld7ByjYHjlxLK9rbX2UwZxz2oQCp8pceS1VVWHVshirlsVOeG6uqhaPb9fz+k3NdKeKdPTnaKkOkS46JAsuIIiHdZqrw3T054iFdIQIcpr0ESNIVZQRdepAodoRPpbroalBwcro8Pd491FLVZjudJGXetKn7X21WJmWIfSOd7yD97znPaxfv57BwUHe8IY3APD000/T3t4+qwOUjE9HX4YfPnaYwZxNU1WIkG4SNR360hY96SJ5xyNsBIbHm85pmbVdxmSTZhOhoCNz2NBYWx8/pb7G6cronfPKuihnNiXoyxTpThWJhXR2bGwc89scX4p7fD7RbCUld/Rl+MdfdvDQnn4KjoemMOLKDzOQs0+6q6+0Xm/TQVUV3rN9JUXHpyuZpzZqUhU20FToSVunVShwqiyElMJ8bRCO93oui5kIAQqCZbEQoLC5tZpzVlTz06e60FSojZr0pQtEDJXciFfeE4EgZNHxWF4TIVN0OWfFWMN59H3U0Zfhtt/sXzKK7YuNac2mX//611m9ejWdnZ189atfLSs7d3d38+EPf3hWByg5kdKOLGe51EYMVEVFVRSqIyaJkE5fxqImarK+Mej1ddYsSrFPJWm2K1lYMpVG4zHRznl5TZSW6kBM7YEX+2hvSJQX1NaaCDVRg9/uHUBRwBMCXVWpi5qsbZgdT0RHX4av37+H3+4dwPYEVSEdFLAcnyPDBWw3yIdYCmHLkxH0kzq2KA7mLBnCYGGkFOazavFkoeOSpwbg2c4UO4+mWNcQG6mItUfaZfh4fqA5FTY0dE1lWXxiw3mpKbYvRqZ11RiGwV/+5V+e8PjHP/7xGQ9IcmpKO7K19TFsV9CfKWKOlPiqqkptLBAu7M9abF+zbFbd91NJmp3IaBJCjKmQaKmqPKXvyTCdnfP+gSx9GYvCSNlwddQABF3JPJ3Deba01czIE+H7gnue7+HF7jSeEFSFdXQteC9dDcqDh3I21RGDvb2Z0z5seSqWSihwKiyElMJ4c0mpb5/lenQlC5y/um7W5rrJeD1L8+BgzmZ9Y4yupMrRZJHhvB2EzaImbeOEv0czbt/GkeKTpkSInnRxyW9I5oNJX6l33333pN/0rW9967QGI5kcpR3Z8lCE9sY4WStYvOJhHUNT8QUk8zbLa8K0NwaT+GxO3pNNmh3PaCo4Hnt6MnSniuUd022/2X9auoCnunMuTYqeL7j4jAb29ecCRWPfJzLSZ6kpEWJtfXzaY+pKFni+K4XjBYmdozquoChgGlq5B1RVxDitw5aTZSmEAqfCQkgpHD+XRAyVrmSBgaxN1nKJGkEoaf9AdtbmkVNJA4wXRquJmLRUh9nSVsOZzQkSYeOkc+/ozdJw3jmhF+Hx7Twkc8OkDaHJNipVFEUmTM8xo3dkdTGTrW015Rsoa7lYjo8vAoGwHz52CE1RWdcQ58ptrZzRNDthssnulI8v9d/Tm8H1BC01Yc5sShA2tNPWBTzVnfPoSTERNqiLmWM61YNgOO+UJ8XpaLjkbJec46IqoKvHkjtLaIoCiBEhO07bsKVk+iyUlEJpLvnh7w/z0O4+Co5HLKSzpj7G8uow3animM7wM2Gy0gAz9RiWNktFR+P5rhNVzI9v5yGZGyY9y/m+f+qDJPNCa02EtQ0xHj84RGtNhJCusW1VDVnLoy9T5KnDSaKmRtHxGczaWK7Pru40jx4Y5KOXrufSs5pmZRyT3SmXSv2/eu9LFB2P9oY4VaPab5yOTTth6jvn4z1IiqKMkSZwfZ++jEXOdqet4RIzdWKGjq4GbQssxydiqOWxeUIgBLg+rGuMT7irn4mQnqTyWSgphbX1ceriJiuXRctzX6mQQAgxK/PIVHN2ZuIxjJk6IU1ld096XBVzEdbozxxr5yHvsblBbvcqkP0DWYayNocH8+zuyRAL6TTEQ7RUh9jbl0UIgakrpAsO8bBBIgw5y6NzOM/f3bub1poIG1pmL4H6VPi+4KnO4aDZYHVkjBEEp1/TzhJT3TlP1oPUn7G4Z2fPtJIrW2sibG6t5sBgDsMTeGog/mbqKipQtFw8YFV1mCtf1jZhcudMhfQkc8d8GakLkT/VlSywvz9XDg/bnk+m6JaNoZnOI3MtaHo8rTURGhJhHj0wRGMidMJmKWd55XYep9PcuNiYtiGUy+X49a9/zeHDh7Fte8xzH/3oR2c8MMn4jN6tnLuyhqPJIv1Zi4ODOY4M5zF1lbqYie361I20t+jJWBQcH88THBzM8dn/eJ6vXHEOZzTP/aJVWjSfOjzMC0fTVEcMjgyHWNcYoy4WKh93upbST2XnPBkP0qblVTzbmZz2RK2qCq/f3MxLvRme7UxiaCqqKrAcD8v1UYC2uhgfvXT9uNeHrHBZ3My3kTrf+VM522Uga3E0WSBZcHB9v1xVua4x6Ns3k3lkvqUBVFVh2+pa7tnZTabogMIJ4p1nNiVIFRxytis9sXPEtAyhp59+mje+8Y3k83lyuRx1dXUMDAwQjUZpbGyUhtAcMd5uZUVttFw5sbs3w1DWxvUF8bARGEHpIo7nE9JVTE3DtwUHB/N866EO/vzS9jldtEYvmnUxg+qIgaYq9GWKZCyHrW01ZWPodC6ln+zOeTIepC1tNfz0qa4ZTdTtjQk+tmN9uaVBMm8R0lWWxUxetqqW97967bi5ZPO9W5ZMjVMZqddcuKrim3gOZCw6h/IIIUYUv3Uczy/PKesb4zOaRxZCGuCslirOaE4wnLPJ2d4JTZkNTaXo+PRnLB58sU96YueAaV0tH//4x3nLW97Ct7/9baqrq/n973+PYRj80R/9EX/xF38x22OUjFDarTRXhcck0SbCOlWKgeMFOjCG51MV1unJWDjesRwQ1xflTvWDOWtOFy3fF9yzs4cjw0HLBlMLPFX9GYvaqMFw3mFff47aqAlwWjXtHI+p5FOdzIPk+mJWJupTtTQYj4UQ0pNMDtf1+dHjnRwazNHeEC97FEtG6tOHk3zp57uoj5lYnl+Ri6jvC545nMTQA6VmUwvmtZCuYcZUBrMWO7vSvG1r67TnkYWSBji3rZbnu1Jsrgphez62G4SrNUXh6EjV738/38NwXnpi54Jp/ZrPPPMMt912G6qqomkalmWxdu1avvrVr3LNNdfwjne8Y7bHKWFit3BtxKC5OoypKxiaguX45CyPghN4gpSRzsm26xM2VCKGRkt1ZE4Xrd/tG+AXz3djuT5dyQK6qhIeGctw3sHQFLpTBV7q0bFcj9aayJJV6j2ek3mQOofyszZRj25pUHK57+nLTOgtWIjdsuTUdPRl+NHjR/jvnT1oKgxk7XKoqC4WYjjvBB6ToktLez2ttdGKXES7kgX2D+TYtLyKvX25MZIhjufj+uALwTlt1dOeRxZaGmBff468HbRKst3AIKqPm0RGil+kJ3ZumLagoqoGAiSNjY0cPnyYs846i+rqajo7O2d1gJJjjOcWzhQddvdm2DXSn8Ydqe47miqAAFPTcH2B7QZKp4amUhcP0ZAIcWgwNyeL1p6eDP/yPwfoTRdpTISIhwwcP4h5KwromkJfxiZnuWSLLo2JEOsapq+NsxiY7dj9RB6kuRCpnGxeyULslk83Zvs6KYXDDg3m0FSFZXETzxflUNGWFdXs688FbVRUsDwfVanMRbRkiK+tjxMLGXT0ZRnKWQy7NgoKtVGDRFinIRE69ZtNwEJKA7x2QyPfeHAv/RkLUw88XcviJqqi8MzhJOeurJGe2DliWjPWueeey+OPP8769eu5+OKL+dznPsfAwAD/9//+XzZt2jTbY5Qwvlu46PgM5RwEwUKYt13WNsQRwP7+HAXXwycIh4UNFUNTqY4YrGuIUXTmZtHa05vmSz/fxe7eNJbr052yiIc86mKBLk5Pqog14pmKGiYvX1NHdcScVQ2Q+WY+E1RnW6RyKsnPC7FbPp2Y7etkdM5We0OcgayN51MOFQ3lbJ48nKQ/Y+G4Pr4Q7OxK0Z+2yt6i2VhE5yuB93j9tHUNMSzXw3Z9xEh3eNsT9GcsNjRP/3MWQhrA9wUvdWdoqY5wblsNzsgcnwjrDGQtDg/lOZoqsqI2+I1Gp0ZETBXL9aQndgZMaxX8m7/5GzKZDABf+cpXeO9738uHPvQh1q9fz3e/+91ZHaAk4Hi38GDWIud4IzeDguUrCBRWLovSVhslYqgcHMxjez5RQyNiaNTFQ6xriFEbNdnbl531RaujL8O3HtpXVlk1NJes5ZK1HGzPoykRwvZ9crZLXdRgRV2QkxLkMlTW7rTEQlRRzZZI5UTJz/GQTlMiREd/lh8/cYRPXnYmuq4u2G75dGAurpPROVvxkE5t1BzTbkfXFI4MFXB9H0MNNKmCXoTHihVmWmU1n5uA0Ya47fo8eyQQIKyOmuhq4DF3PZ//fr6HlurwjD5/vqUBSr/l8prwCd7WkK4RD+n0j0QEetLWCerTtTFTemJnwLS+uW3btpX/3djYyD333DNrA5KMz/Fu4Z1dKfqzWRTAUxTiYR1NVYiawU79zOYqwoaGqigUHI+W6ggNiRBFx2NvX3bWF63SojqYtYiaWqCOqmk4nsDxfCwnEAO0XIHnC0KGxrqGWHnxLbl49/ZmeOLQEFURY9FXtky2imp1XYzukcVmts5pNkQqx0t+HsrZZZXyouNxaDAIxb7r5W20NyYWTEivkpmrarvROVuKooxptxMLaaQLDo7noSiBeOaymEnI0DD1wFu0rz/HmU3Tr7Ka701AyRDvSuZ57OAQluPTkDBxfUEy75KIGGxZUc1gzp6VDdV8SgOcLP8uEdapj5vs68vyfFcK4Jj6tOtzJFnA9QUFW3Z0mC7ShKwQjncLn9USlFvGwhrGSL5W0S21YggSV8OGxtvObWVvT5Z9/VkODebmbNEavagOZG0cTxAxNZqrwgzlLHK2R7oY7Dqjpsam1uoxOkIABcfjxe40t/16HyFDW/SVLZOponrq8DBfvfclBrJ2ece8tj7G1pU11CdCMzKMutNFBrI2ZzQlTthFTiZ34PjJdyhn80xnsizzHwtpDGYtXuxOjwlbykakU2Ouqu2Oz9ka3W6nN10kVXDRRjxBQXhcK39mPKwzmLXYrynTasw8nnEnRlTJa6MGR4bz3Luzh7WXzK53t70xwRs3t/BMZxJPU0gVnDGl5nWxEKauVVzOzMny7xRFYXl1mN09WZIFh9aaMIamBFpDlktD3KQqYvDArl7aGyvHm76YmJYhtGbNmhNu6NHs379/2gOSjM/x+RkhXSNsahiahqkpDOVsGqvCJMLBT1pKXD2ruYodG5rmfNEqLaprlsWojRbLLvqIqbHciFB0PPozRSxXsHpZjLbasRPUUM7mqUPDZIouy2IhGqvCi76y5VRVVAXHY09vhqLjcUZTgqgZ4Wgyz93PHeUnTx2hrS5KfTw0bWMvZ7tBvyVP4+BgUAJfGzWoCgeeoVNVcY2efOMhnY6+7BiZf8v1CBs67Q1xejNj5RZkI9LJM1fVduPlbNXFTF6+upZDAzlSBZuVdVE2tlTzXFfqhMbMqYJDe2N8Wp7h44270Z5E1/MRQH+mh3PaanjV+oYpvfepqE+EWLUsRkM8hCeO5dKU1qRKrF48Vf7dUN6hfsTgydseeds+QWuo0oy/xcS0DKGPfexjY/7vOA5PP/0099xzD5/85CdnY1yS4zg+P6O5KkR1RKcnZaGrEA3p5VDT8Ymr87FolRbVguONcdGXJl7XF4BCY1WIaGjsZSeEoKMvQ7LgsLY+RvPI5DpRrspi4WS7OCEEe3qC3J32hjiJsMFQzmZvXw7PFwghsD2f6ogxbWNvIGOxpyfD7/M2jheoQocMjRW1QRsNQ1NPGvYYPfk2JUIM523iI0aUECKo6KsKUxUxUFVFTrTTZK6q7cbL2QobKv0Zi65UgYips7o+Rn0idEJjZiGgLhbi3eevnNYGY7Rxd7wn0QjrWI7H0VSR236zDwW4cF39rG2+YqZOxNDQNYXasIkQ4oTmxJVWvXiq/LtYSGf5SHucvO2N0ZALNOL8ijP+FhPTulImEk381re+xRNPPDGjAUkm5vj8jJCuoSqgqSrrG4MckUzRWZDE1dGL6vrG+NiJt+iStz3WNyV47wWreWh335ibvS9d5NBgntqoQfuIm/1UuSqLgZPt4tKF4HdoqQkMicDYCzwuy2ImtueTzDsArG+MTzlPpKMvw789dpiBrIXtCRIhDRSwHJ/9/TmyRZeWmggXrJ047DF68u3oz1J0PGIhDcv1yvL+JeO6EnfZsDiaw85ltd3xifOdQ3nytkfEUAnpKi90pYmZGsviYV6+urasQt+VLHD+6jpeua5+WudUMu5ylnOCJ7Fge/RlLSzHY9fRNDfe/QIXttfzuo1Ns2IQHZ80va8/dyx5WFXwgVe111dc9eLo37KjL8OBgUAWoKkqRGtthN/tG6IvU6SlOnJCREZKV8yMWf3W3vCGN/DpT3+a733ve7P5tpJRHJ+f0Z+xeLYzyf7+HAcH5i4H6FSMt6M5d2U1/RmL7lSRZfEQf/aadZzRVMXq+uiYZNui45MI67xsZS11sdCkc1UWmpPt4jr6s+iqwplNCRQlaIA72uNiaCo5K9jFTjVPxPcF9zzfw96+LFURg6LjBeW2ukrU1MhbLj3pYBe546yTG8OlyfdHjx/h0GCewaxF2NDH5FxAZU60i6U57FxX27U3JvA3wp7eDA2JEMurI9THTTr6MjzdmeKeF3p52crakU1GEIauiZqsb0rQNaJaPNXPLhkjjx0cZDhnla/r4JwKgTFmamiqQne6yH89381v9vTzmg2NvGf79LxQJUrf566eNL/e04+qKNREjaDRdN7BE9CTLvK7fQMzzsObb0q/Zapg050q0Dlc4MlDw3h+EG58/ojC2oYY56w41p5ISlfMnFmd1e666y7q6upm8y0l4zA61LWhGV65rn7Bd71wosfKcoPF88J19WMMs+ONuXTB4d8ePUzY0MZ4TiaTq7LQTFRFdfbyasKGVk5QtT0f1/MxRnK4HM9HU9Uxye2T9bh0JQs835XC8wXL4iF8XzCUCxrrCiFQNRUNiId1IqY2qXP41OVnAoIXu9MnVKBV2kTr+4KH9w3wb48dJme5rK2Pszy0sC0J5rLazvcF97/Yi+35vGxlLcN5h4f3DdKVLJC3XCzX59d7+tjTm6G5KoQnQFMUfvjYYWojBu2NiSkbhyVj5IXuFMMFhyZDxfOhL1skb3uYuoLvC1xfoCsKjYkQecvlt3sHKDo+f3zRzL7/tfVxGhMhIoaGokDOcvCFQnXUZFnM4IWjaT7/Hy/QVhehNmpO6xxnynS8kR19Ge545CCHB4My+UzRRQiBNvI6x4c9vVlSBZcL1y0jbGhSumIWmLag4vHu3Z6eHvr7+/nHf/zHWRucZHKcLAdovkMDU2kw2loToStZwBeChkSIw0MFmqsqL1dlvHNuqQpz22/2l8MhpqaiayqOJzA1yud0fHL7ZDwuOdsl5wQGk6EpqLrKciOC7fp4QqAAWctBVZRJh7J0XeVdL2/jew8fpDdjoapKRWoEdfRluOf5Hn6xs4ehnEV1xMBxRVlAcCHVlOeq2m504vJw3uH3+wfpTRfLeXaG5lFwPAbSRQZzNhEj8ByGdI1MwWEgZ0/LOGxvTPCe81dycCBHzvJI+w55yyM+ck3bbqBx5ikKpqZixkwKtkdXMj/j778rWSCZd3hlez3JvM3+gSAc3JcusrsngycEqiKwPY9EyOBIskBXMs8fX7RmXoyh6XgjR0uQOJ5HuuCgqQoRQwMCGZSEoWB7gsGsxROHhjm7pUpKV8wC0zKErrjiijH/V1WVhoYGLrnkEjZs2DAb45LMAgsVGphMcvbxY7PdoLtyX6ZYkbkq453zdJPbT0XM1IkZJc+SIKQrKIqCqavYrk/B8XB9iBjqlEJZla4RVNK1OTKcx3I9mqrCKApjBARnS015upSuk9IG5aXeNNliULWXCBvTMoxKicsRI8yLR4cZzFpoqoKuUg6beh7kPB8cH1M1aIiHcXyfVMHBcgP9mekYJxeuq+eNm1t4/OAQMVPjxaMZEhGNo0kLU1OxPZ9YSMfUVQSQEy61UXPG33/pnMOuRkd/joLtomsKqaKD6wsUIXCAoZzDUM4ZaetjETE0/r83bZxTA3i6+kolgzYR1tnTm0VAuVckgKmruJ6guSpEzvaoj5tcvX0l21bVLfoNymJnWobQ5z//+dkeh2SWWQjF45mOzXJ8BrIWRcc7LXJV5iq5vXWkeuTAYI5M0cGMmSPtViwKjkfR8QIhTdufsshapWoEjda1aa2J0DVcwNRVVEUpt5vY15+jNmouuDFd2gQ83TnM4aE8BdsjYmisXBbl3LbaKW9USonLfZkifRkLAWgK5OygrQZCIEaOFUDGcslYDtURs/zd5G2Xvb2ZKRsnqqrw+k3NdKeKHBnOo2kKlitwfR/PDxbvumjg3bVdD01VqQobDOasGX3/MVMnpKns7klTsF1qowadQ3kcT6Br4HogRpqw1oyUnKfyDg++1MclGxpnvaS/xEzEM0vGXVXYwPGCnpGjD9EUBUf4qKqKoQWh9ZKXXDIzJr2apNPpSb9pVVXVtAYjmR3mSsl2rsd27soadvekiYeDUFLJWKjUXBWYm+R2VVV4/eZmXurN8GxnkiPDBYquj+v7CF+gKgrL4iFQ4I5Hpp5cXokaQaPDQ0JQDkOWvGXxsM5QziYz0vh3oYzp0ibg8GC+7P00NIWi49I5lMdy/SlvVEqJy4/sH8DxgjwxyxP4QqApQV4JCigAAjxfMJyzy3pT8bBOpuiSLDjTMk5KBv89z/fQn+mhL1PE9wWxsEFj3CRsaBRtl6G8Q0MihKrMvLy9tSZCQyLMoweGaEyEcDxBwfVRROD98vxjRoQvIGxq2K5H1nJ5cFcvr5zFcv7RzEQ8s2TQer6PMZI76IvAqAWCsPeIBxkUomZlbAgrgUl/izU1J3a+nQjPk1LfC8lcKdnOx9haa6O4fg5VUejoz45pDTLbuSrzlT81F8nt7Y0JPrZjPT945BA/f76HvO2iKxAxdVpHdIRqoyZ7ejP8+IkjvG3r8mmHXiZiMZSmlxita6MqnNh3Sw2Mjd50gZztcf7qunk3pkfngKSLDv1ZC0TgpVEVyI6UvQ9m9SltVEqJy3v6MuW+c44vUJXAIEAJPsQvjUNAquCSKthEDB3HF+QsB4XwtBfW9sYEH35NnC0ra/jho4fY1Z1BCIEnBIeH82QKDgpBAvWv8zavOaNhRt+/qipsW13LPTu7yRQddE3F8wSuf+w8IShKcDyfsKHhC4jrKt2p4pzNfTMRzywZtM93JWlMmCTzNpbrEzFUQMFyPMK6SrrgYGgqm5dXzoZwsTPpq/6hhx4q//vgwYPccMMNXHvttVxwwQUAPPLII9xxxx3cdNNNsz9Kguau//Vf/8UzzzyDaZokk8lTvubaa6/ljjvuGPPY5Zdfftr3RpsrJdvZYDJqzEeGC9RGDYbyDocG80RMjZV1UV62snbWclUWsrR6tjwu7Y0JrrtoDV2pIhD8rqOVpYdyNv0ZixeOptndm6Euak75HCcydhZLaXqJ40ULR4t6aioM5hxylkuqMER1xGBdQ5z9A9l5HWtpE+D7gv39QQ5IWNcwdAVfQNH2ODiYp6k6MuWNSntjgj97zToGMxZPHR4ua+pomorvKxwLjgUeBtfzOTRUIKQp+D7Yvs+ymEXOmt6cULpOlsVNXrexGUPTePTAIH39geK5pioowHDeRgjBr/b0s+r3B3nthqZpG9BntVRxRnPQaqh3xLtWOksNUJTA6Cs4HooSeMKWJUJoUygimCozEc8cLbOQszyqIkbZiyl8gYvAcgMzry5mMpS35/0aPl2ZtCF08cUXl//9xS9+ka997WtcffXV5cfe+ta3snnzZr7zne9wzTXXzO4oAdu2+YM/+AMuuOAC/uVf/mXSr3v9618/RtcoFAqd5OjTg7lSsp3rsY1us7FlRQ3nrQrRlymWlVV3bGycNSNoLvKnxjMagDn1muQdD11TWFsfL5fYwrG+YXnLRVOhuSpM1Dx5V3rfF3QO5zkwECxeqgLPHUmxvz9H0fUIaSoNiTCttWGeOpTEcn2W1yyO/LPjRQtLfbceOzDIocE8tuejKaCaGlFTY29fdt41qYLQaJE9vRnytoemBouz7qpETJVoSCNdcDmaLNBWG53yYt3ekOD9F6/l7+/dze6eDJo6Eg7zg0rCkueJEQPBcfwgl0YEhkp3yuKvfvIcH710PZee1TTpzx0v5ymkKeV8uFIPMl1TiZiB0deVLPK1+/bwP3sGOHfl1POiIPjNz22r5bkjSTzfJ1MIdLksx8cHFJ/yd5wuutRFTdYsCwoU5mrum6l45ui8wlBn0DZjIGNheYGHLxrSWFEXob0hTnequKh01SqZaV0NjzzyCN/+9rdPeHzbtm28733vm/GgxuPGG28E4Pbbb5/S60KhEM3NzXMwosXLXCrZztXYJmqzsbwmSkt1hL19WR54sY/2hsSMDIlj4Qmb5qoQlusjhEsirE9L4bnEaA9JwXHxfYgYGoau4no+lufPiddkPMOy9F2mCw4hXUF4QYNGy1VoSoToSRdPOMeOvgw//P1hfn9giGTBxnV9HF9QFTY4b1UNNRGT3T1pfr9/kLztETI01tXHaEiYaKqy4Pln44kWOp7HYNbGF4J4SKOlOkLE0MhaLsM5C5hepdR0GchYHBjIkS4GZdG6pqAQ/Dae5RMZ6QyfLjh4NWJKi/Xo6686YhAN6WSLDp7w0BQwR3KlFBi55oPX+T6E9MBDGTN1utNFvvHgXtpqo5zRfOprtLSpODSY52iygO36REyVouORLTqAgqIEhriuKgzmbDw/UEIvOB496SLPd03PgB4dEuzL2FRFdAayNgLKfwhQEWiqytmtVRRdf07nvtKYupIFnj2SpDZqUhU20FToSVuTCu2PzitMFW3+7yOH2NeXZXlNhLqYWfb4CiEWNN/zdGJahlBbWxv/9E//xFe/+tUxj//zP/8zbW1tszKw2eJXv/oVjY2N1NbW8trXvpYvf/nLLFu2bMLjLcvCsqzy/6eSJL5YmGsl27kY23htNkrMZl5TV7LA053DDOdsDg7mcH0fXVWDsFFjbFqfM9rDFDFUhnMOXckCA1kLBYXV9VG2ttUQNk7ukZkO4xmWnUPBd+t6Ppbroyjw6z39RE2NqKkTMzWeOjxcPseOvgy3PLCXZzuTqIpCfcykN2NhWS5Dns+Th5JB+bMQ1ERNMsU8IOjLWmRtt1yWvtD5Z8e3KHj2SJLciDBnYyJEZMSwMPWZVUpNB98XPHM4ORIiUjB1ZURsUKBrCq7nk7M86mIGluvTUh2e9GJ9vIdzeU2E+niI/+noJ11waUyY1MVC2K5Pd6qI7froKggUVEXQVhctV2U2V4Xoz1jc9VQnN7z+rJPOEaVNxaHBHIcGciRHdG/ytoIyEsZRFKXcg1ABXF+Uc16C3CSX5qrQtIVS2xsTvGlzC88eTjKcD+ZtQ1fwvGOhQF1VqArr2K5PS3VkXua+sK7Sn7HZ25dFAaojBq9Yu2zSqtrl8PkQOK7gnBU143alX8j77XRiWobQ17/+dd75znfy3//932zfvh2Axx57jL179/KTn/xkVgc4E17/+tfzjne8gzVr1rBv3z7++q//mje84Q088sgjaNr4irs33XRT2ftUySxmTZjxxnZ8m43jma28pl3dafb0ZDA0hUTEwNB0HM8va81sbq3Gcr1Jf87oKrhlMZNnj6TIWw6O52NowYR8NFlAVRTOXVkzxuu0ui5G98g5TTdsdrxhGTFUnutKkbNcVAS+UNBGEi0RwSLUl3Y4NJTnx0928o5zW/nv57vZ05vB1NWgD5rr43qCRNjAclx6M0WiZuABKro+mqbgeoJ4SCdnueWy9MWg87S2Ps6bt6g8diDE/oEctuvTXB1GU481652NSqmp0pUssH8gx4bmBKmCizvSJNf1QVEEvi9ACf4fM3UuPUVrlBITVWGuXBbjIuDBXb3kbZ+w4aFrKqvqo/Skiliuj6oE4avRnidT1zB1hX2TWFxLm4qjyQLDBYewoaEQhGutES0rEKh4pAsCXVUJGepIk9BALVkAji9mtKBvaE4QDWk4vkFt1ERTAv2kZNHFcjwsN9gQbGypmvNehaON0u1ravF8SBedcs/EqbKY8z1PJ6ZlCL3xjW9kz5493Hrrrbz00ksAvOUtb+GDH/zglDxCN9xwAzfffPNJj9m1a9e0RRrf/e53l/+9efNmzjnnHNatW8evfvUrLr300nFf8+lPf5rrr7++/P90Or3ovFyTZTFrwpyszcZ4zEZek+8Lnjg4jOsL6mImIT34rJCulfVUdvdmWFkbnfTnlBJgm6tCvNQTtAbRVZVUoRjkRgCO7dE5nMfQFF61voGW6jBPHR7mq/e+xEDWnnGy8ejy5V/s7CFVcFAIyqaFEKCIIBnX9chYLohAiPFf/ucAv3iuG9sLQiXL4oFXxxMjpdeqgq5reI6D6/lkLQ9/RLna84NjRpelV0WMBc0/Gx0e6ssW6UkV8HzIWi7VEXPMsYamYrv2CYbAXFFa0NobE/RmLA4P5fE8geX5eL5AVVVUJRDBfO2Ghkk3Qz1ZFebKuijrm+IcGS6ycXkVy2KhIFG50I/l2AgEkZCBqR8zEh3Px9SDCqtTLa6ZosPhwTy2G5R7K4iydpGhBRViPsG15vgeIR0ipooQgep02FAJ60GbmZks6IHvR0FXA8VsRVEImzrVURPL8ejL2MRCOldvX8ma+viU33+yTGSU1sZMVtZFpxXGWsz5nqcT0/722tra+Ju/+ZsZffgnPvEJrr322pMes3bt2hl9xvHvVV9fT0dHx4SGUCgUOq0SqhezJszosfm+4PEDw3Oa19SVLNCfKdJSHSZVcDBHqbYqikIspNGdLHLeqtpJf05pgYv7OsN5G11T6UsXcb1gMVCVkRwQX3BgIMfq+hhhQ2NPb4ai43FGU2JWko3bGxO8dWvgDaqO6OzsSlN0XcyRMdiuj1tKmgB0JcidSBcdUgUHXVWpjuiEdBVNCV4z4qRACEFxpJkmQNH18X2B7XpURcxy89iFzD87PjwUD+kcHS4wlLU5mixiqArR0LGFxHY9bFewrjE+L2MtLWgFx2Nzaw2uJ8gUXUL6sd8nYzmsb4qzfe2ySTdDPZnHQFEUzmyuYiBrM5SzqY+HiJga8ZBGd8onZmplsUOg3M6mOmpQEzFOubhmLZeC4xE2NPK2R8EJjCBdAUVRcVUPf6ScXfjg+j62K/BEUNFmaCp18RCJsE7Wcqe9oBecQGW51FA2HtYxNBXH88nZHrUxg5ip8XDHAIcG86ytj7GiNjrrG8K5kC05VlKforkqkEUwNbXcmqfSdNUWK5O+6p577jk2bdqEqqo899xzJz32nHPOmdR7NjQ00NAwNwqf43HkyBEGBwdpaWmZt8+UTI75yGvK2S6W53NmcxXPd6VOmDSzxaACa9vqyUvWlxa4dNHBcb0RYcMg70NRRip1VIWooZGzPfb1ZUdyQgRNs5isDfBST4YD/VmG8w62543svI95hEajqgqWJ1hmamSLLrbrMZB1iJpBO4SIoZKzPXxfjGjRgK6qGHowdkeB7pQ1EuIIWnvs7csuSP7ZeDtx3/epiZrk7aBNS1eqSFutWm5D0pO2aKkKc+XL2uZlrKNzudY3xjl3ZS0dfVmG8zau55OxXGIhA4TCz57p4p6dPZPyEJ7KYxAxNM5oSrC2PsZA1i63HhnI2jieGCkxFyPXv0vYUImaOuubEqdcXEtNfd2RnmIZKwgHK4oy4jEMjhMjWkmOK8gpLtURHVPXRmQMYsDMFvSYqVMfD1EfN+lOWQznbbJW4JmNhXSSOZvDQ3kOPLAXU1OpiU4tX2eyzEUYS1UVNrQkuO/FHp47ksTQFUK6RiKkEw3prKyLVkQPwMXOpA2hrVu30tPTQ2NjI1u3bh2lcDkWRVHmRFDx8OHDDA0NcfjwYTzP45lnngGgvb2deDxwd27YsIGbbrqJt7/97WSzWW688Ube+c530tzczL59+/jUpz5Fe3s7l19++ayPTzJz5jqvqbRohA2VrW015YWoNGnWxIIcg7OaJ6+MXlrgHjs4iADyI6J4CIHtCYTwMQ2t3AtsOG+TszzCpsYLXWlcIWacrA2BR+S/nu8mVXSwPZ9EyCDl24Gq8PFGkBKUS7u+oGB7JMI6QzmHTNHBckzCpk5dLETRyQehNEAfKYcuOj7RULCIDWRt+tIWLTURXM9fsPyzY+HJMJmiS3/WCvJWcjZ528MTgrwdtG3RtcAQaq4K8+eXrp9UZdRsMJ6hf+7KavozFh19WQoj/fVUVWFZzERX1Ul5CCdTIfqylbX86avWjslH292T4R9+uZf+jIWpK4FhEjWImpNfXBMhg5V1UTqH8uAEx7qewFMEjifKrT5ipoqmaWSLDkIEpfsNiRBnNiUwNHXGBvTo72Dbqhqyloft+fSkCjx9OEmqEDQg1hUFXYFkweH+F3vpy1h8bMf6Oa3gHM10wlgdfRl++VIfVWEDXVXIWi6W69NdLNKQCPHaDbMjKbLUmfQvcuDAgbL35sCBA3M2oIn43Oc+N0Yc8dxzzwUCocdLLrkEgN27d5NKpQDQNI3nnnuOO+64g2QyyfLly7nsssv40pe+dFqFvk435jKv6fhd+ctX15IuOAwXHPAFwwWHc9tqprQrPVYum+fgQI6i4xHSdQxdpegFlTKmpmC5Qcl5phhMZLGQRtjUyt6o6SZrwzGPiOV4NFeH2deXQzeCho2e7Y9R2h2RkcHzBSFdxfUFy2IhspaH6wv6szb1CQUUgaoGXq2wrqCparBYh3XqYya6pgZ6LQKuvXA1r1rfsGD5ZznbZWDE+OnNFBnMBqJ9sZBBY8Ika3kM52yKrk97bZQtbTW887xWzmia31ZAxxv6lhv0hetNF0kVXJJ5m8ODeUKGxoraCJuWVzGYs0/qIZysJ1XX1TGGdVtdlJV1Ue56sjMQeRRQEzFY35SYtDFb0vGxHJ+oGVzbjudRyglWgVhIZ9WyKKoCmaJBeKQtRGtNhFTBoejM3IAeXbL+XFeK2qiJN1Kllyo4qKpCdVhH01Qs10cXPpqhsqcnyClbe8nslJ7PtmzJaE/nuStrAMgUgzC0oSr0pIvs7snwmjMbpUdohkzaEFq1atW4/54vbr/99lNqCI32UEUiEe699945HpVkLpirvKbxKqyCMvfAKxQ1NNobp6443N6Y4I8vWoPj+iPJyi5hQ6M6rOH6wU5QVRXiKjiKStRUWBYLzUqyNhzziCyviRAxdA4N5snZXiCtW1LSG6H0X01ViBganh+ER+piJqoSlJYPZoMy5ERIJ2pobGmrwRNwNFkgb7kUXR/dh5aaCCFd5WWrahc0D20gY9E5lMf3fSw/MOBMTcVyPXzhUxs1iJoatTGTLW01fPKyM9FHJQjPJ6MN/V09ab732wMk80HZedQ0EAgsx2d/f46c5bG5teqUHsLpelLPaE5wwxvOmvamY/T9NJAp4niCgUyRrOXBSD+x4JrUGMrZNFdHOLMpTjLvcPX2lVSN5CHNlgFdKlnf05shU3AoOP6IxpVOaKQIQzOCPC3XF3i+z3NdyVkrPZ/t8P54OUdVkWOepkDhXZbOzwbTSpa+4447qK+v501vehMAn/rUp/jOd77Dxo0b+bd/+7cFMZQklc989K4qLRo//P1hHtrdNxKS0FlTH2N5dXjaaq3tjQluesc5oCg8dmAQzw/CMa7nY+gqcVMHBWoiKjWxEOlZStaGsbkJtuuXF57ReRoQGEE+wU0fNbUgIVoRFGyXiKHz1i3LefOWFg4O5vFFoPHy06e6cPygg3d9azVAOWETBKmCu6AVKyV9HkNXKToCxw36MWmqgq5CwXbpz9hsaK7izOY4/RmL7nRxQRcOVVVorYnwH093cTRZCMr5Q/rItR5UPxVsl8GsxdFksICeykM4XU/qdDcdpXvV9QWv39TMs51JPJFkIBvkjdVEderjYTQ1aPUSMTXWNcSIhnT6MhZVEYMNUwhBn4zjS9ZTeZeH9w9ge3ZwjqO+AmXE2LdcH1NTydtT876eitkM78vS+fljWjPY3/zN33DrrbcCgcr0N7/5TW655RZ+/vOf8/GPf5yf/vSnszpIyenPfPauWl0XQ9MUlsXNWVVr1XWVD1y8lrzt8dThYcKGRmNVGFNTSBccCiP6PGdVh3E8MSvJ2nAsN+FoMs/evtxIVYkRVEZ5AnekPL7Ue0lAkK9B4I2KmjpnNCd4/eZmVtfHcUdc8k8eGuTpzhQF2yWsBxU+LVUR1jXGSIQDFenxXP3Ht+qYqyodOKbPs2l5Fc93pRnM2miqgipKMgCBAdhUHSovwoth4ehKFni+K4UgWJhHp3EpCpiGNiKAWKAqopMuOLzUkz6pgTMfFaK+L/ifjn7ufuYo3akipqZQO9LD7toLV3N4OP//t3fn8XXd5YH/P2e9uzZr874nTkgcgkNShxISnCYpdCAl0HmxtISh8GPK0oYMQ3hBoXSZAMO0M1AKdDqkUKCUNS0UUkICYUscyL7YjuXYsSxbu67uftbv74+jeyPJkm3Zku6V9LxfL0EkXcnn3nN1zvP9fp/v83DHzw4TKoXjB/ihTmdTnK0dKdpSMfIVb163e8+UKO8Giripk7CifJ2SF2IZBtWVKkPTqIRR7aaF6OA+X8v7snV+8ZzVK9jb28u2bdsAuPPOO3nta1/L29/+dl7ykpfU8nWEOFML1ftrtn/r6786xl1P9mPoUHCCWqLyfFRH3tKepqspRiZmTjR6DHHRWdOapDNj8+DhMfpzFS5Z18yhoeI5J2tDlJuwpT3Fvz1+nCBUdDfHqXgho0WHvONTCEIUYOqQsS3Kno8/kcwaQ+PFm9r4o2u2sq0zUzsX+0/keG60hOsFhCp6nSp+OZqpKDp0NsVnTKqd3qpDU9C8QLt04PlR85b2NEppjJVcXF/haQH6ROHEaNnJbKgbR9H1KXo+pq6RtI1akn11htDQNJQKyZaj5O9/3nt0wdq0nKmewTx/d28PP35miLIXoKOwTYO2lM2xbJnj42VufskmRgsuvzoyytqWRLTDKW7WBhnHs2U2rkqRr3j0jpbOedZ3puUj29CJWwZxO6DiT5SOmJiZhehv0g9CTFNn59q55QSeqfkIShu5VdJyc1ZXhHQ6zcjICBs2bOCHP/xhrQBhPB6nXC7P6wGK5W22ImQL0bvq+b5IRQw9mhEKQlVLVK62ijiXKedjYyX6smUuXJPBNKJicdWbAUDvaJkT2QoXr2nmxZtaT0p+3Llu7hdmXdd44YYWvvXwMZRSuEFIzNJZlY7yflBRawNdg+aESWvSIm4ZdDfHCELY2pFiS3v6+ZYJw0WOjZUpuwHpuIlS0W64ihcwWvQIQuhqivPm3VMD1OmtOjrSMRSKXGlhdunA1FHz+rYE2zvTHM9WyMQNzIlq0hU/en0b6caRsk1SVnRzy8QtvEBR9kJsU8fQwA0Ujq/QtKgGFUB7Koaha/MyQJjrMnTPYJ6/ufsZfn5wGDdQJC0jSup3fAqOz2DeYTDvkLAM/vOLN3BivDIxsDEIlKLs+BwcKJCrePih4m9/3DMvQd1My0eZeLTrsewGJO2oXlPJC0hNBGN5x8c2dS5c3cz1Fy3c1vNzXepv5FZJy81ZBUK/9Vu/xR/+4R9y6aWX8swzz/CKV7wCgKeeeopNmzbN5/GJZW4hipDNZHLAta0jzXDBJQinJipXW0Wc7cxBz2CeL99/lCePjRO3dSzDqM02VZ/bed0ZhgoOPUOFqJhizEBzozoqq9Kxs76wtWdirG9L4vph1DbC8TF0nfZMHMNwycRMchWPF6xppjMTr43S8xWPQ0NF+rLl2nPIll2Krk86ZmIa0bFYhlarLdSatGlLWiTs56uAh6Hirif6p7TqqD7neJPBSMGZ9106cPJOwG2dGQpOQNn1Sdoa2ZJLOm7x7HCRda2L02fqTI/74rXNHB4p4gUhXZkYYyWXshfiKlWbiUuYOo4b8HhfljCkFsD2jvr8x5P9Z/VaznUZunpunzqewwuj3JqyF9WpskydIAjx/JDxksc9+we5ekfnSXkyjh+Sq3g0JaIt90nbnJdZ35mWjzRNY1tnmoLjTyRFR1XSC45PECrilsHLd3TWZkEXwnwt9Tdyq6Tl5KwCoc985jN86EMfore3l29961u1JqYPPfQQr3/96+f1AMXyVh3RJaw4uXJUA6daOXU+e1dNDrjSMZPWpM1QvoI9ccOutorIlT0G8s6cZw6qs03HxkrEbWNiKpuTZ5umFbibrwtbtahc88Sukurr6PgBDx4eBQ3ilklnJj5l58n013es7FKo+Bi6hjFpY1VUB8nAm6goPV7xp5yTas5LEEY9yqY3zc0kLPIVf1536cDMo+aL1jbxWG+Ww8NFAqWo+FFfr22dC9deYa50XeOGi7vZP5Dnsd4sfqBoTdmkgyigQClUENVs0nSNfNEjV/Hx/JCDg3mStklftszO9S28dPuZF6U9m2XovmyZ+w+NMFxwcLyQykRBBkMDXdcxjWj3oVIhBcfnnn0DfPh3XsB/nciTyTsedz7ch6nrnNc1v7O+sy0ftaVsLlnXzINHRmlJmHRkYngBrGlN8KpLVvOb2zoWLCCe76X+Rm6VtFycVSDU0tLC3/7t35709eXQrFQsrpQddYV+4NkRim5wUjd4a2Jp6VzzOiZPoU8eMVYTlg1do+L59AwV2LgqNaeZg8mzTTvXNuP6iqF8NHXdlrJrs00tCWvWAnfnemGbPjNSvSHkylH37VzJY01rsrZEVzV99svQdLxQYepRiw1j0iEFE/3Hqstsk89JNecFBWEYUnJDjIkikpoWtVMANe+7dODkUfNwwaHkBrRn4mxpT7G2JYExsTR2NjsCF8q2zgx/cu32Wk7VaHGi/pFtELcMsmWP1qTFiWyFghugMVH7KQhx/IDj2TL/92fPsro5fkbP52yXoe/dP8Bjx7KU3KBWk0oDAkBN7L4CRaA0mkydE+OVWrC7fqLg4nAhCgqqS8GTBzvnMut7quWjkaLLZRtbecXFq2nPxBYlgFiopf5GbpW0HJz13eVnP/sZn//853n22Wf5xje+wdq1a/mnf/onNm/ezG/+5m/O5zGKZazs+QzlHfpzFbqbYmRMu1ZgMFdxaU3F2L1l1TnndUyfQm9L2VOqS1e8gCCEC9c08XuXza1D9eTZJl3XTwqykrFo1uXxvnHWtSZnLHB3rma7IUDU+DJQsKU9edqEy60daZ4+Po41UXyumsBbbZQZM6MAqdqjq5oH0T9eoewGjJZcRorRziddi2oVtaWs2tbwhdilA893nT80VODfHz+BpsHOtc3ok7rOV3e6zVfO2XzY1pnhQ79zIb1jJX7RM8xDz40xlHPYP5DD9QOODBfxgyjwNPWofYWmGfhhFJL0jpbOeLnxbJahnxnI8bUHe3GDEEMHXYE/sfMQFZVj8EKFTrQjcVUmhqFpU4LdyQUvs2XvpMFOU8I6p1nfRlo+WqylfjG/zuqK9K1vfYvf//3f541vfCMPP/wwjhMVYBsfH+d//I//wfe///15PUixPIWh4u6novLxQagoOkFt9iAVM+nPVTB1nWsvOPe8jpmm0NtSdq26dM9QgResaT6rYnvTEzanB1leEFLxAja3p3jTb2xcsAvzbDeEl25rZyDvMFL0sE3jlAmXr71sLXsPj3BsrISuQcmLGmT6QTjRQBbWt8Z47YvW8+xwofZvDeUr9AxErSJsUycTMwlU1NS16HjELZ10zFqQXTqT8zFGSw6HBot0ZmJkyx5tqeeryDfqjUjXo8a8Tx3PUXID2tI26axJqGC0ENXCsS1tUs0pCEPIJEx0OOPlxrnWpQlDxTd/3Ue25NKatBiv+ARBWCvQWQ2G/CCaKWyJmWxeFeXDTQ52qwUvlVK0pGwsw5xSTX17Z/qcZ30bZflIav8sTWf1zvvLv/xLPve5z/EHf/AHfO1rX6t9/SUveQl/+Zd/OW8Ht1wtRuHApaA6etrelcYL1Em9v9a1JmhN2lOScs/WqabQB/IOG1eleN1l686q4vBMCZvVICtf8aMkWDfgLS/ZzMZVqXN+Lqcy2w1hctByqhHzeV1NvGfPdj51z0GOZ8sEYYgzUaHXMDTWNCd4957t6Dq1PIjuphjHs4pUzMQPFY4fEoYemhYFUF6oKDjQlLDZsTozr+/16fkYtqlzZLhEtuTyaG+2lptV1Yg3ounLKfmKj20apGOQLbn4YRRsmFELuygo1TXa0jZBGJ7xcuNc69JU/z5jVpTz5gVl8qFC11StkWq1/lEqZnD55lYqfjhlhnFywctgohCnpmm1TQojBYcn+3K8+oVrzzlAboTlI6n9szSd1dk4cOAAV1111Ulfb25uJpvNnusxLWuLWTiw0U0ePRm6NmU7uW3oJGx9ol3E/Ny0FmoKfbaEzWhrdDSzdcn6Fta3Ls5FeqYbwlxGzHsu6GJ9a9SHqmcwT8kLSVoG27sy3LRrLds6Mnz2J4em3LizZY/OpjirUjaHh4tU/KBWxNHSNeKWQVPC4t79g2xclZyX9/pM+RhKRTur4qZOwfFrOwGr56QRb0TTl1My8SiZ/3i2RMIyKLrRsq03MSun6RotCYukZZB3zrwo4Fzr0hRdn0CFxEwd09BZ15pkIBctb3l+FAIpIGVpXLF5FX7ISTOMkwteHhwsnlRE1A8hVIqd65uXxWBQav8sTWd1Neju7qanp+ekrfI///nP2bJly3wc17K0mIUDZ9JoM1HTR0+apk3Z0TTfVWhhYabQl0q9j7mMmE/Vh6p3tDTlxu0GEwXr4ia2YZCOm4Rl6GqysU0D29QpuwHbO9OMnqaJ6FzMlI9RDSKG8hVSsajVSL7i05SwGvZGNH05pZrMn6945Moe1kSCeszU0YgS0DsyUZVmQz/zooBzfZ+mbJPWhE2+7DNe9mhL2WxclaLbi3YNZidmOjubE6RsY8aGrZMLXqZi1kmzvt3NcWITz2c5WCrXAjHVWd1h3va2t/HHf/zHfOELX0DTNI4fP87999/Prbfeyoc//OH5PsZlYTELB86kEWei6jV6Wogp9EZK2Jwvs71O02/ctqFj6hrFih9tV/cCLEMjHbdI2iaOH2BO7P5b3WzMW47OTPkYk3cEFirRjEbZC9A0GvZGNNvS6qUbWjEmGmv6KsALFE0Jk+aJlhuhgkvWZOZUFHAu79O1LQm2dWYYKrjkHZ8T45WoEW/MoDlhUXJ9Vjcn+JNrz+PCNU0zDigmP7fJy8XVWd9G6Fc335bjtWC5O6t332233UYYhuzZs4dSqcRVV11FLBbjfe97H3/4h38438e4LNRzN0G9Z6Jms9xGT42SsLnQpt+4vSCk6AZkS1Fib8WLdhh5QYhSikLFp7MpKuIYKDVvOTqz5WNUk9WfPj7OYN5hIFehNWk37I3oVLVwrtrejmVoUWkJP3qdi05AS8LiirNsW3Km71Nd19ixOsMPn+5nrOjiBiHZUtTLzTJ11jQneM+e7ey5oGtOz60661vt69doM3TzYaVcC5aLswqENE3jgx/8IO973/vo6emhUChw4YUX8vnPf57NmzfT398/38e55NVrN0G9Z6JOZ0t7mute0MW/PXqc/f15bEOnNWk17E3rdBohYXOhTb65uX7IY8fG0QDbjBqFKqJk2sF8VM+nOWGxtSPaTVR2/Hlb7jzVjGJr0qIjE+OyTW28+oVryMSthr0RnW5AcH53E2++ciMx05i3RrZn8j7tGcxz7/5oV6fZFlUhL7oBrh/SnorxrpdvO2UQdCbPbakNduZiJVwLlos5XY0cx+HP/uzPuPvuu2szQDfeeCN33HEHv/u7v4thGNxyyy0LdaxLWr12EzRyXYvJDTrHSg5hGO086si0cu2FnUsuCFopqje3vmyJB4+M4nghnU1RzsqJbCVK6NXA8QJStsGW9hTjZY/+bJnRkseuja2sborP23HMdpNdlY7xusvWLYn30Zkupyz0rsOqyQOoSze0AJzUF+/gQIE9O9RpgxhZKlrZGi03dSZzuut++MMf5vOf/zzXXnstv/zlL3nd617HW97yFh544AH+1//6X7zuda/DMM59q/NyVK98mEatazG9QWdnJl5r0PnAs6OUvXDeG3TC0vijXAq2dWZ4xcWrebQ3S2BoDOUdim6AZerELJ2yF7VcGCu4/PjAEGU3IAijm+Zg3sEP1bx0o19ON9lGWk6ZaQA1eSODPpG7dKYDqEZ6bmLxNGJu6kzmFAh94xvf4Etf+hKvetWrePLJJ9m5cye+7/PYY4+dNNsgpqrXFHEj1rWoV4POpfJHuVS0Z2JsXBW1QXn6RI4UGq1JC8vUGS44HBsr4wUK3Y/abcQsDV3TGCu5fP+JE/PWjb5aVXq+lo3qqVGWUxZiANUoz00sjp7BPF/4+RH6siXakjbtqRiGrtU9N3Umc7r7HTt2jF27dgFw0UUXEYvFuOWWWyQIOkP1GL02Yl2LejTobNSE8aUsCrJ1jo6WQCm6mmITtXyi7umaimrNGLpGa8LCnOjiWnZ9HC+Yl2BXgtuFUR1AFZ0o0JneH6wR6zGJxhGGiq/uPcqvj4yiaXBsrIRSUY2sze1JRgpOQ7W6mdO7OAgCbNt+/odNk3S6cTo6LwWLPUXciMmKtQadgGVM3Dj9MGrqqWmYhsZ8Nuhs5ITxpbxUt7YlQUcmzt7Do3RmYrXX1Z3Y3VRt2mpoTPTIin7OtqKkascPzinYleB24axtSdCStPj5wWE0LWq4W+0PtqUjyUjRW5a7vcT8+OWhYX68fxClFHHboOJFFdAHchWeGymypiWBP3Hta4RZwjkFQkopbr75ZmKxqPhVpVLhHe94B6nU1AS+b3/72/N3hMvQYk8RN1oeRco2SVnRWy9fieq9lL2AUCl0TcM2omBovhp0nmnCeO9YCX2iYeRiBCVLfTZD1zUu29TKXU+eIF/xQAPL0Cl7AY4XggbGRLVnhSLqWR59DRShOvtgt5GD2+Xg2eECg3mHshegaxrNSQtQ9GVL9I6VuGR9y7Ld7bWSzcfALAwVP3p6kJIX0J62GcpH/RZtQ8PUo0F4X7ZMvuzx1IlxgLoPBOd0l3nzm9885fM3velN83owYuE0UrLi2pYEF69tZn9/nqF8GV2DmGVgaFE/ovGyhzlRp2Q+Rpxnku/QM1jgjl8cJlf2FyUoWS6zGResbuK87gxjRXeixo1PEELcNjB8cAOFpoHG8++zQEVBka6dfbDbyLshl7pqkBmEiped18GhoSJjJRc/DElYBiHQlYmxpV1WA5aTcxmYTQ6gcmWP49kSKdtgpBgFQaYe5aN6YTQAcvxoFeBv7+lhe2caJwjrOhCc0xXojjvuWKjjEIugUZIVdV3juou6+O7jx/GCEMvUoy7WKmrwGc0GmZxpjHa6Uczp8h1OZMv0jpbQNNjakV7woGQ5zWasbUnwwvUt/OrIKGtbE2iaRkvC5EB/nv39eRw/AF2rnUulwPUCAGKmcdbd6OcjmXcpL0supGqQ2T1R4mBze5K1ftTQNmYagGKs5EmQuYycy8BsegDleCFHR4rYpkF/zsHSNQpeiFJg6KBrGhVf4aN4dqjIutaognk9B4KS6SbqImGZrG9LYkxspy65PoqoYea61gRb2lNndLGd/kcYM3Q6MnEu29TKBaujsv9rWxI0Jyx+ciBas1aaRsLUaUvF2Nye4MnjOSxDZ+faZnQ9SuhdyKBkOc1mPDtcYLTgcnSkRNkLojpQ6RjpuEncMnD8EE3TKHoBlq7h+SEhkI6ZnNc9t/YQk53rbsilviy5kIquz3DB4Xg2arDqh2EtP2hrZ4qmhMVg3ln0khtiYZzLwGymAGogV+bxYx4VL6TiBZQnVsVNDTRNJwiiZXPb0lFhtGHnvK5MXQeCEgiJuii6Prapc835nRQdn7GyByqqCNyUsAiU4shw8ZQX2+l/hBXP4EB/jr2HR7nryROc153h0vWtNCVMfnlomIG8A0phmzqOqZOreBweLqDrGldsbkPTNHJlb8qM0UIEJY1a22k2s82cTH79L93QwvFshaGCw5GRIgnL4MqtqwB4rHecoXyFkh8V4+tqivOy8zrOqY7QueyGXC7LkvNl+vkdHHfoHS2hlKIlZWMZJl4QMpivkHc8tnemZcfYMnK2A7PZAqiYaaBrGo7vY2gQEs0EBwpCFbXfsXSdhGkQKEXB8WuNkes1EJR3sqiL6oi+7AU0J22ak/aU75+uFcP0P8KxkscTfeOUXZ/Oic7cYyWXXx4aZl9/Hg1Y3xqn4ASU3IC8E9SW4KyJhqC/PjLG6EQuRHUEvKk9iePPz+616c+9kWo7zWa2mZPfekEndz81OOUiuK41Sb7i4/hRMuTWjjT/31Vb6RuPLrQjBZf2tM3WjvQ51/k5m92QYajoHSvx5Qee49hYadFmABvZTDOqQ3mHEDANHdvQ0TSNmGlgp3RGCg5P9uV49QvXyo6xZeJsB2YzBVBKKQ4NFYmZOumYSa4S/UzM1FCahh9ENcUsU8cPQ1IxE40oXeF0/95Cqv+VVqxI51rfaPIfIUDPYIHyRIdrLcrOJV/2yCmfQsWjOWHRnLBpTkTbu/1Qka94pOMmIwWXvYdH0DWNdNycMgIeKTqsb0vOa1DSiLWdZnKqmZNnBvMUHZ8Nbcna8T/fUNMibhkcGipyIldh46rUgrSG2NaZ4c27N/HNh3o5NFQgVNCSmLlPXfWG//ixLE8cHydhGXi+YmtnirZUrHb8S2lZ8lzNtqzx7HCRmKWjaxqjRXfib0LHC0L8EEKl2Lm+eUUEiivBmQzMbEMnV/bY35+rzQpXA6iEFa/NpDtewFjRoS1lE7d0Kl6I44d4gcIwNGKmjga1xPtM3AQ07IkaY9V/b7EHghIIibo41/pGk0cx+YrPWMklPak4ox8oBvMOjhfVJ8qWXI6OanRmYiRskxhgGhqFikfFD/GCkC3tqdoMQcw0sJIaR8fKdPnhvPTGmq/nvhhOlzfw8NExhvIO53fNvIS0GKO6nsE8dz89wFDemahBFeWHTe9TN/mGn7ANEpZBKmbUlnpeuL6lFgw12rLkdPOV4D3b+bVNg6RtoJQiFYteq7GSR8HxMXWd7uY4MVOnIxOb76cm6mS2gZlSilzZ4/G+LIau89W9R3GDsJaHuak9yXjZ4/5nRyi5AX4Y4geKsaJLzNLxAoWGImEbz2+fN6I8waa4FQXXfkhXc2IiIKrfQFACIVE351LfaPIoxg1C/CDEmvhjqgYUrh+i62Ch1WrW9OcqdDfFSUwsiZW9AFODpoTNWMmbMvotVHxakja2qXMiV5nXGYJGq+003ZnkDTw3UmIo77B6hgvWfI/qpgcAZTfgi/c/P5uxtjVJyfXpHSvxxV8+V8vzmX7Dz1d8LENH13TaUgajRZdDQ0Vak3bDV0yezwTv2c6vbeiYho6uQcULeeG6FjRNq+XNgWK87Dfk6yPOzkwDs/JE5fejoyXKbkAyZhIEIc1Ji8PjDj/vGSIMFRVfoRSsb4vTmrQZKURJ9CU3KonSkoqRiZkcH68QKkXaNrESOtu70jx9Io8bKLqbYgRKUXb8ug0E5d28QjXK1uGzrW80eRTTlYlhGtEIxDZgtOhQ8QIy8WiJq+KFBGG0a8HxQkaLLmssA9cPcH1FJmFxxeY2joyUGCu5tdFvZ1OcjauS5MregswQNFJtp+lOlzfQkYmRtA2Oj5fpnnYzne9R3Ux5LMMFFzS4dH3LKXe5TL/hZ+ImrUmboXx0wU3HTUaLLvmKTyZuNsyy5HTzneA92/mNXh+LvmwZpRRjZY+NE8ufSikODhYa8vUR52bywOyR3jGeGcjj+SGWoRFP2SRtnUNDRcpegKZFf+N+CCjQdTgyXGJ1S4jrhxi6hh8owlDRlrJreZjHJnYhrm5JkLRNrruwCwVkSx5Hhot1HQhKILQCNdrW4bOpbzR5FNOfq5CyDbIlD9vUyJY94pZOZybGYN4lV/FRCvJugA44foBt6hTdgPZ0jLUtCRK2wYs3tZKv+FN2jRUcH8cLF2wE3Ci1naY7Xd5AxQtruVMLubw3Wx7LoaECTQmTsZJbW9aCk/N8pt/wNU1jW2eaguMzWnRJxky8IGCs5HJivEzMMtjWGQVQjRKULkTdqdnO71jJo+QGZEserh/y6NExBsYrrGmJU/bChli2FQtjW2eGTVel+MR/7KfsBWRiBvv784QhDOQcKn5AEEYFUnWinWAACStqoXE8W8E0NGzDwNBDQCMIogKKhqGRiZmECm6+chMv3d5RC6YbYSAogdAKs5y2Dk8fxQwVHHKFAHNii7YXRlsztYm2HdrErgU3UBzPRkm8773uPJ7pL/Dk8XG2d6Ynkn0jjZS4vNjOJKH7RRtaufaCLu5+emGW906Xx+L6IU8fz3F+d4aYadQKZE7O85npht+Wsnnh+hZ6BgsM5itUvJChgoOuafih4s5H+7jryf6GqSs02+6catCejhkcHMjPKcF7pvM7WnR5tDdLyfVJxwyMhImp6xwZKTKQq3DNjs5zKnkgGt+JXIVnh4tU3IAjw9F5D0NQMKlJTpRfqStFoMALFE1xg6IbYGgam9qThErRP16h7AW4E7twuyc2trSmnt8h3CgDwSURCB05coS/+Iu/4N5776W/v581a9bwpje9iQ9+8INTmsBOV6lUuPXWW/na176G4zhcf/31/N3f/R1dXV2LePRzs5BLVsuponHV5OWlff05frxvgJ/3jFB0PIpuSMzSWdMcozzR9E/XwAgVrSmbl2xtY8+OLja3pxo6cbkezjShe1tnpjaDMt/v2dkCgIobkHd8Km7AYM5huOCQsM1awb9qOYTqscwU0LWlbC7b2MLjfeO0JW0CpXB9xZqWOEnbbKjBwfRZrdGiS89gIWp7EYToetTAZF9/7oxvKtPPb3dTjGcGcuTKHqYOq9IxLlnXjGUYtXIIq1K2tNVoYPNx79h3IseB/jx+EFBwgtqsT5Wa+B8/iIIgAMcPCZVCKYWmKYJAYVs67ekYF69tJmYZlByf50aLDOYc/vGXR0jbJls70rz2srWc19U0L8//XCyJQGj//v2EYcjnP/95tm3bxpNPPsnb3vY2isUin/zkJ2f9uVtuuYV///d/5xvf+AbNzc28613v4jWveQ2/+MUvFvHoz9xCL1ktp4rGk1VHFevbkrz8vE4+8R/7efjoGEbRpSluEbOiXTCOFzBa8ujIxNi5tols2acvW274xOV6OdPXZaFGdTMFAI8fy3JkpEiu7NdGqHbFJ2FHu8ByFZfWVIzdW1bVbgSnCujWtiSIW8ZEddvGGhxUb2z94xWCUFF0fPxQ8WhvlrLrk45bWHGTouOTLXn8+2Mn2NKeOuP36+Tz+/ixLMfGysRNnZakzeqWBJYRzbI1ac+XQ1hq14aVYj7uHWGouPvpfsaKDl6oCMIoETpkYils0mP9SZ8oolkhBQQqKjvSnLDoak6wpiXBWMnj4GAhWno2dUYLDsfcEo/1jnHPvgHetHsj117QVdel6CURCN1www3ccMMNtc+3bNnCgQMH+OxnPztrIDQ+Ps7/+3//j69+9au8/OUvB6JeaRdccAEPPPAAv/Ebv7Eox36mFmPJquhGXd7TgclwwanlwUDUBb7s+YyVHPKONx9PqS5MU+f3XryeY9kyvWNl0nGTUCm8IKToBrQkLV6wpolU3GKo4NaSoKszS71jJQ4PFwHY0p5iXevKvujXM6F78rKWFygeeHaE/vEybqAwdQhV9JEreyil6GyKM1RwMXWday94fhbvVAHdRWub+MreoyQto5YwPbkuUr0GB5NvbGXPp3e0zLODBZIxc0q9LKWi5pUbVyVx/HDOQVv1/P704BCfvvdgLeDa35+jZ1pbjUYuK7CSzde945eHhvnV4VE0NMIwypMM9KhBanian1UQVZFWMF72MQ2d7qYYfhjy9PFxToyXCVX0uLzjU3Z8ym7ISNHj9u/v4z+e7Oel2zvqthS9JAKhmYyPj9PW1jbr9x966CE8z+Paa6+tfW3Hjh1s2LCB+++/v6ECocVashrOOzw3UuSZgTygUErDMjQMLdpeXvFDglBx58N92C/Wl+xMyLbODG+4fEPUosMJKLsBxsQusK0dUQG9fMU7aZv0s8OFhkoibxT1WsevLms90ZclW3IZKThomoauKQxTxw8UBtFyWcEJMIouG9oStKViJGxjyu+aKaAruwFf3XuUJ4+NE7d1LMOo3fjrWVdo+o1tjZ0gYRncf2iEvmyZ1S1xFOD6AYWJ2bBtnWksQz+roE3XNUxdY7TgTmqroUtbjSVgvu4dYaj40dODlP2QzuYYvaNlglBh6BoGiuAMjkXTIGZo6JpGezqGUtFSWzTw0FFES2olN6gtpwG4geLR3jG8IKzbUvSSfFf39PTw6U9/+pTLYv39/di2TUtLy5Svd3V10d/fP+vPOY6D4zi1z3O53Dkf7+ksxpJVz2Ce7z9xAj9UlF2fIIR8xcMJQjQ0WhIWCUunsznO0dEyd/ziSN1zI85WGCrWtyW5bFMbz/Tn2dyeJG6ZtdH+TEnQyymJfLmoLms9M5jn2eEifqgwdQ3Hj+brTUMjZRsoNFw/JGkbvGB1M6Mld8bAZXJA1zOY54v3H+HYWIm4bUzkD3FSkcXFris0241tfVsKxw+575khxkseGhqmMTW498PwrIK2MFQ8ejSLaei4foAfhKgwuknFLYPxkssTx8a58dJ1K27TQKObfu+YnERvT8zKnMm9oy9b5sR4mXTMxDZ1kna0m9IPTz8bpBMFQamYSVcmTsXzyMQMrtzWTsWLWhqNFt0or88LcP2AUE38nA5BGAVDR0aKJG2zLkvRdQ2EbrvtNj7+8Y+f8jH79u1jx44dtc/7+vq44YYbeN3rXsfb3va2eT+m22+/nY9+9KPz/ntnUs0BePL4OKMlt9YuYrpzHZVWL65jJY81zXH2jpZwvOjtrSb+N1v2CJTJpS0JNq1KLcnEaZi6pDBccBjIVRgtuly0tolkzJixaNdyTCJfLrZ1Znjlxat59OhYVL02iPIWLFMnZRtYhh41dAyj93P+ND3qYGqwsXNtM66vanWF2lJ2rchiS8Ja9F2D1Rtbd1P8pFIOnZk4XZkYXhCyuT1FMhbV/Gma2A13tkFbX7bMo8eyWIbGUN5nMO9ENyoNDF0jVGAbAasytrz/G8zkPLrpSfSmodOcMImZxmnvHUXXR9ehIx1jKF8hHTPIVRRBGGLqUc2gak5eNT1IIxqMGBPJ+h3pGF4Yki355Cp5/uXXR2lL2AzlHYqOjxdEVf6DiSBI1zWUAk1X6EDZi8pYzHUH5HyoayB06623cvPNN5/yMVu2bKn99/Hjx7nmmmu48sor+fu///tT/lx3dzeu65LNZqfMCg0MDNDd3T3rz33gAx/gve99b+3zXC7H+vXrT/1EzsLkG/ZoyeHQYJF82ePCNU21aflqdB+9sRUJyzjNb51Z9eIaNzUePpoHwLY0XF+hTazbBmG0QfLgQAFNQcqe+5bcejtpSaElwaqUzSO9WR44PMq6lgRrWxInJfsu1yTy5eKC1U2c35XhwECeuKUzXvZx/BBz4qYcqOgSbeoaYyWXKzavOmXgMvl867o+pa5QOm6SjEUDj8f7xlnXmlzUXYNF12e44HB8ovjc5AbAWzqSpOIWzw4VODiQxzT1Kd8bKXpnFbTtO5Hjmf48lqHRmrIYyIWEYUgQKAIdmuLRztyfPjPEZRtbZWa0gVTz6I5nSxwcLE5JovcCRf+4g67BUN5hx+y3PVK2ScIySbRE2+Bd36kFLtVLogbELY1AKXwfYpZGOmZNJEuHDBecWs02XYNDAwWKzXEcP2S87KHrWlSHiGgGSRH1rdP1KD3D0KKWR9kFKmB7KnUNhDo6Oujo6Dijx/b19XHNNdewa9cu7rjjjlpPqNns2rULy7K45557uOmmmwA4cOAAR48eZffu3bP+XCwWIxZb2D4602/Yq5vj5Ms+x7JlHD/g0g2tgBZF90WHsbJHe8rmu48d54aLuud8IYqSpH1OZCsUHZ+muEWoFLnQQ9ejN6TjRaXzc5WorHrc0snErTltya2nmWZ1Rosu/TmHmKFRcEJGCg6XrG85qRfV9N1J06eXE7Y+7x3oxZlb25Jg57oWjoyW8ENFRzpGf65Sq1viBQG6FgUF61pOH7hMP9+T6wqNldyJauQBm9tTvOk3Ni7qjX8479A7WpqUq/N8A+ChQoWSEy0r+CE02Sag6MuW6B0rccn6ljkHbWGo+PWRMfxQ0Zq0GCm6Uedw25jIQwoxDY3mid1pMjPaWNa2JNjSnuLfHj9OECpWVZtOA7YBpg6GrvN47zgv2do+63mbXGbiknXNPHU8x2jJQ9cUYRgFLoau0ZaMkbR1jmWjFkahFW1EcYKA6uXR0CFm6oQK+rIVmuMmuq5R8UKMiX9eKSa22z8/s2QZOn6o0DUWPRdtSeQI9fX1cfXVV7Nx40Y++clPMjQ0VPtedXanr6+PPXv28KUvfYnLL7+c5uZm3vrWt/Le976XtrY2mpqaePe7383u3bvrmig92zLMhWuacfyosNtDR8fQlBYVA0TRnrY5vyvDU8dznBivzDlfJWWbhCEMF90o+U0HQib+KBSer2r1IQwNYmaUczGYc/jag0fntCW3XqbP6lSLw1VHSGtsg6IT8MxAfkovKjh5d9L06eWUbdCasiVRtE50XeOGi7vZ15/n4aNj5MoeXqCoeAHeRDGTlK1x0dpm3vKbp/7bCMOokaTjBQzmKrX2IG0pu1ZZfKzkUnYD3vKSzWxclVqsp1nL1bFMnSBU2IaOpmm1BsA9Q0W8IGR7R5pkLGqGWu3iHQJdmdic6/z0ZcsM5Susbo4zXHAoewExU8eYuGHqGhQcnzUTN1yZGW0suq7xwg0tfOvhY9EOwiCc0isxGTPZ3pnm0NCpz9vkMhMjE5sORooO8YkK/IamRTM3ukYqbrKmBXpHy+Qq0Q5jpaKAxtAnlq1jUTHOsutTdAO6MzGOZSsTjVhBadF7S9eimVxd07DNaBl2a2d60XPRlsSV/e6776anp4eenh7WrVs35XtqIvPc8zwOHDhAqVSqfe9v/uZv0HWdm266aUpBxXqabRmmLWVz6YZWnurLcmioiGXqrErZrErHasmQ1V4/cx2VrW1JsLo5wUNHxyZ2iEXRvalB0Y2S4bSJD13XsAwDpQJMHY6NlvmPJwfYcnVjjwInj/KVioKZyduMQxU11FzbEq2lT34Nq6OhB54dYazkUvGC56eX/ZBj2fJEkvmZ7J0QC6UrE8PUNIZLHoGK8gpStkFHJsaqdIy4depZ4upydM9gnt6xMvtO5NnYlmRbV5q2VKzWi6w/V+GS9S2sX+TSCX3ZMs8OF7loTRMHB4u1pTrL0ClM7LQxdY0tnSnWtyanzFqCYqzkzTlIKbo+ThByXleGkYJDyQ1IWqBZ0Yje9RW6prGmJUEyZjKYd2RmtMG0Z2Ksb0vi+mG0rOT4U3bJNiWsaAftac7b9LpSQRjl82xclWJrR4raKkXJJQihNWnRmrIZGHcoeT6EipgVVX23jOhv0baiCvBoGts7U/SNOxQrXpRvpEXd6I2JYMgLYH1rjNe+aP2i32uWRCB08803nzaXaNOmTbWgqCoej/OZz3yGz3zmMwt4dHNzqmaWrUmLDauSPDdaYntnmvO7MzTFrXOua6LrGtde2MlPDgyQLXmUvYCkZWAYOuHEnoDq286Y6DRtmTptKRsvUDzel234UeDkWR2lYKzkkp702nlBiKFHFYdXNxtTXkNd1/itF3Tyw6f7GSo4dDfFsAwtGlU5Ph1pm6aExY/2DbCts7EDwuWoupQ8UnDoaLInpumh4odk4haXb26jLWmfcpAwfTn6so1tPPTcKM+OFBktueza2ForrFivauLVa8OW9jSpmFW76RQcHz9Q0ZJVzCBpR7sfJ7eD8cPwrIKUlG3i+iHPDOTxVVREL1fxMF2dmKWTsA3ilkFHevF30Ikzk7JN2tMxmifeD5MT7DVNm7FUyGwm11O74xeHOTxcZOfa5loqyos3tZIre/QMFXjBmmZ+5+LVfPTfn6ZvtDQxm2hgGs//3RhatOpQW2revYkv/fI5+nMVgiCM6g/pGoahsaY5wbv3bOe8bqkjtOzN1uywmvHfO1ai6AQM5CpoaFNqmsDZ7yC7cms7L7+gi3v2DZItu+QcHx0tKkwXRtVDDQ3siWnNtmRUkXm0GI0SG30UOHmNuzVp4Qch1kSxSKUUhYpPZ1OcTNwkUOqk1zBhmXRkYpi6RtENKLnulFHV2dZoEedm8lJyd1OcIyMl2tKxqC6JUowWXZ4dKtK20Z51kDDTcnQmDpdvXkXPYJ4jw0UeeHaETatSbO/KcNOutXVZCp58bZi8VOcGIY4X8MjRMdC0iRmgqc42SCl7PkN5h/5cha6MTRhG+XFQXbbQWd2cIB0z6Bkqrsi+e41u8rVvcroFnF2/RF3X2Lgqyo+74xdH6BkqTqnIPpB32LgqxesuW0fMNFiVtBktOCgNHC8acFaPIVDRLk8/jJa8/vNlG9i1oY1vPtRLz2CekheStIza31292m1IILTITtfsUIUh6Xh0QZxe0wTO/oKn6xpvuGIDFS/kmYEcRSeg4Hj4hQBXKeJG1Ki0NWljm9Eb2fEDQCNpN/4ocPIa97GxUi3RU9OoFZ3b2pFC0zTKM2yxLro+tqnzG1tWUXKDk0ZVZ1ujRZybyUvJjh9OCXA1TSMdN6MaJRW/tttr+jk61XL01o40+YrPUL7C6MTW3W/+uo/XXsaiX5RnujZUZ33CMORxI9rZkI5N3T16ts2Bw1Bx91ODNMUtgjAqdNeUsPAChROElL2JBsaZGD1DxRXbd6/RnWlfwLmetzNpsROGiovXNnN4pIgVKAJdUfZCbFNHByqOTwBsbI7XlrzO685w229f0BBd56sa++62DJ2u2WFrysY0dAoVn9akxVjJ49BQkdZktIX1XOqabOvM8F9+c1MtT2Ks5GDqOmNlj0zMpKtpWnfrsoeh6+xc27IkRoHVP9y7nuhnKN/PQC7qeTO56NxsN42kZRCEiuPZMi1Je8ruCzj7AFScm6m5X1Hpfi9QxMzo3FiGTtGJZk00lxnP0WzL0aNFl8eOjTNe8nD8kLGSR7bksb8/z97DI7xnz3b2XLB4DZpPd0M7ryuapZo+Qj/bm101QNzelZ6ySSBhGygXzIktPSUv4JJ1LSu6716jW6h+iadrsVPdyLB/IM9jvVksQ0fXo76Ojh+iERUDfc+0Ja9G6TpfJVf1Opix2aFl0DVxwwaNR3uzjJU8bFNnuOBwYrxCwfHPeVQ2/Y09kKvwj784zL4TeY5nowsqmmK85BEquGRNhusvWjqjwG2dGf7omjSXbGjhnx88StHx2TJRfC5f8Wa8afQM5rnriX56R8uMFh2aExarUrHasuTZjrjFuZu6lGzSmrQZylewJwLVau6XpWuznqOZlqOrCfXjJZeS5xOEipRlkJpIkD+Rq/Cpew6yvjW5qDkL2zozvHn3Jr75UC+HhgqECloSVu2GBszbzW5ygGjo2pSlOEuPZkGfGy3x+ss3cNX2jiVzDVipFqov4OmClm2dGf7k2u189YGjPHB4lGzJITax2edFG1t521VbGqLD/KlIIFQnk5sd/sPPnqUzEyNuGZh6tBxTrWsyUnTIlT1Giw67NrbNy6is+sbuGczz5LFclERsGWSLLuPlaETYkY5xxZZVvOGKDUtuFKjrGi/d3sHq5njtpjGYd2a8aUxOot3RnebAQLSU1pctMV5xOb8rQ9kLZVmgTqbnP0wufpiKmRQqHi0pm/6cw6r0zOdopiWnfMVntOjgBiEVL6QlaZGeWAaNWQbdTTGG8g7ffLiX2264YNHOe89gnrufHmAo7xAohaHpdGTiU2pfzdfNbnqAOD0BO1/x6EjH2dohGwSWinrNtGzrzPCh37lwxqbVS+G9I4FQHdWaHRZdToxX0DRqlWK3dqZ48aZWToyXGS16/H8v28JlG9vm7U01OQDY0Jbk/K4MA7kyh4eLWKbBf9q5mpdu71jS3ddPN0KaKYm2tlun6DBScDmg8rzi4jUrvvFqvcy0XHTR2iae6c9zYryCaWi0Jm12rpt9VmSm31H2fAqOT6HiE7f0k5ZCbdPANjUOLWKC/PSdbWtbk5Rcn96x0pTaV/N1s5spQKySWVAxV9Uk68WsvTVfJBCqo8mNUP1A0ZGx8UNVS5K+ZF0zBSdg18bWeQ2CqgHASMGluymG44coBXHLxDYNnhsp8aX7n+PXR8bY1plZ0kHAqW4aMyXRzlRY73cuWb0k/7iXi+n5D44fsGGiqe6uja1csLrptLMi03/HWMmJmrga2kS+zdRLoReE2KZBqFiUBPl69LtbqCRbIZYaCYTqZHIj1Ms3tfHYsXGyJY903KQlaTGUd3jw8Bgv3tQ27xejvmyZR3rHGCu6HBkp4odhtGvECYhZOi3JaBeJZejLuvv6bEm01SWCZMzgyHCRsieFFOttPvIfJv+O8YrL537yLHufHSEIq+X+n98oUKj4NCctWhLWoiTI16vf3UIl2QqxlEggVCeTu0wDbGhLcGS4RLYUlSw3dQ3T0Lnh4rn3FjudyU0WMwkLUzc4li1TcHxCpdMUt/BUVFRxe3N6yXRfD0M1pxvlbDWdqmSnWGOZjyUhXY/KQty3f5iy6+P6IYeHi7QkTNozcUxDqy2XJW2T7V2ZRVkaOlWhVTj7+mFnYqGSbIVYKuQKXyeTu0wP5CuMlz08P0SfqI3SkrbJxC06MvPbAHZyk8W2lE3MNHC8AM9XpGMmbhAyUnRojlu1XkdLoft6tX3CoaECFT8gbhps7UifclnvVDkSYRhyaKjAlvY0SinCUMmNYRmYnIezcVWKuGWy9/AI2bJPwS3Sno7a2iRtkw1ti9d5vt5BeaNtZxZiMUkgVCfVLtOOH+D4ilBBzDLwJzpfD+ZdxstR1dcd3fP3705usjhejrbnB0oRKoWha9hEO2pWNyfITBSuW8jR6HyYnmSatBOUXP+0y3qz5UicyJZ58ngObyJ36n//6OBpgyrR+GbKjevMxLj+wi6ePpHj2FgZXdOiLfNdmUVdGpLEZSHqRwKhOqh2mTYNjWw56vWVtKLZF9uIOvaWXZ90LM7jveO8ZGv7vI1Kq00Wz+9u4om+cUaLLpapo2vgBoogeL7JYvVi3MhLROeaZDo9R6JnsEDvaAnL0Ll0QwtrWpJnFFSJxjdTblx1l+YL1jSxrTPNaNHjDVdsmNfNCWdCEpeFqJ/Gu7OtANUu01vaUwzlXZSKuvwaMDE7EyVIbu5IcWhofpekqlPwcUuv1SoaLTpRSwovIBUzSNgWHeloSa7Rl4jmI8l0eqNBTWNKo8GF3LkjFs/03DjLMPGCsLZL8+K1zcQtnaaEVZfzK4nLQtSHBEJ1UE2MbE3FaEqYBIGi4oe46vkcIUOP6qPkK968LklNL1BX3So+VHB4ZiDPeMmjLWWTsA2OjhR5pDeLG4SU3YC/ufuZhttOP19JprquoWsaubI/UUBuamPLpZIrJWY2U24cRC057JTOaNHlwECeDa3Jus58ziVxea6bA4QQM5NAqA5StknM0KNeXppGKmHSbupRns7ErEbFj7a0z/eS1ExT8MmYQacWY7zkkbAMWpM2Dx4e4dBQET8IySQsxsseQagYLroNtUQ0H0mm1RvKk8fHGS1FeUYw0W9touWAbegkbB3HDxo2V0rMbqbcuOoMYlRI0+BEtsKuja11z8M5k8Tls9kcIISYmQRCdVD2fIYLLj2DeSp+iF9waIpbrEpHnd9Hiy4dmRj5is/OdfOfIDnbFPzurau49sJOToxX+Kt/34eha2xoTWFbBl4QMl72JjrS0zBLROeaZDr5hjJacjg0WCRf9ljbmmAo7zJWcvGDENPQSdkGrSm7IXOllrtznf2YKTcuHTexDB0vCClUAkxD47JNi5sbdDbOdnOAEGJmckVfZD2Deb74y+cAaEpYmE5AwfXJlqMlsEzcJGmbmIY+a++k+TDbFDzAN3/dR6His64lQcw6eQmh5PocHMg3xBLRuSSZTr+hrG6Oky/7HBkp8uxwkUzcpC0Vw5poxHksW8YPFWVXCiwupvmY/ZgpN26s5FJwfExdpyVl0Zq0uaC7sZtD1qMCtRDLnQRCi2jyRezSDS2MlTx6Bgv058qMlzzKXoDphpzfleRFG1sXPEFypin43tESh4YK2KaOZZ6cJ5OOm+QrzwdujWCmGS7b0NnQlmTXxlZipnFSkvdsN5QLVjdxbKxMtuwSM6NecF4QUnB8OtI2TQmLH+0bYFun3GgWw3zNfsyWG1fttN6fq7BzXUvdl8VOp14VqIVYziQQWkTTL2LP97XK4PgB2ZJLxQt5+zw3WJ2LousTqJCYqeMFipg59RgsQ8f1XXSNhloimjzDta8/x68PjzKYq3Dno33c9WT/STMIs91QLEMnGTNQyqLkhgwXHOKWQWdTnK0dKSxDlxvNIpnP2Y/ZcuM0F06MV1iVji2J7en1rEAtxHLVOHeyFWCmi1i1rxVYtKZsjgwXScfNuu0GSdkmLXGLYcNlpODQlrSIWUbtJuT6Aa6v2NqZbrjRc619woGhSTMI5owzCLPdUNwgxNA01rUlGC26vGBNE52ZOJl4lH/kh6HcaBbJfM9+LIft6fWuQC3EciR/LYvoTC5ijh9y58N9DBfcuuwGKXs+I0WPgVwFxw/JllxSMZP2tI2h6/TnHFY3xXnti9Y33Oh5LjMIs50L29AxDZ2KFxK3TDoz8YlANSI3msWzELMfS72vllSgFmL+6ad/iJgv1YvYifEKSqkp31NKcXCgwFDe4ehomeaESXsqRqgUDx4Z4Qs/P0zPYH5Bj29yIndbyqY5bhG3DAoVnyMjJY6Pl+luivPuPds5r7vxRs9zmUGY7Vxk4iatSYuRoktr0qq1GYHnbzTbGnA2bDmaHKzO5GyD0mpu3I7uJta3JZdMEATPL/G1pWwODhbIVzz8MCRf8Tg4WJAK1EKcBRnWLqJT7XA6ni2Tq3g0JSza0zb7+wvPb93WNU6MV0hYBh985YULcpGbLZF7tOhQsQNKbsDmVSn+/NUXsWN1Y+6smcsMwqnOhanrZOIWpqFTcKJO5EN5p7YL7aK1TTwzmF9yswlLjcx+zGw5LPEJ0UgkEFpks13ENq5K4YeKprjJY8fGo15jcSvauh0oxoou9+4f5Oodnbx0e8e8H9fsidzRzhrXD/ADRSrWuG+ZueZPnKqe0vndGfafyPNI7xi9oyVKboAxEZAeHNhHJm6RiVts7Ujz2svWcl5XYwaHS5n035rdUl/iE6KRNO5dbRmb6SKWr3h8+t6DHM9WKLs+bSkbTdOiZRulSMUMBvMOP3q6f16bsFadOpEb/DDkyHCxoZOEz2YG4VQ3lPWtSZ4ZyNORiZGyDJ4dKZEtuTheAFqFTMxk34kcew+P8J4929lzQVc9nvayttizH0upbcWZVKAWQpyeBEJ1Mv0i1jtaIgxhqOCQiVtomkbZDRgtOpS9ED+MWm788tAIvzg0PO+zQsthN8rZziDMdEMJQ8XdTw/gBiEb25L89OAwIwUHP1QoQNcgYemsbk5wIlfhU/ccZH1rsiFzp5a6xZr9kLYVQqxMkizdINa2JFjdnJiodBsFHv25CkU3wNQ1NCAdi4oZ/vODR+c9cfp0idxLJUm4OoNw0ZpmsiWPI8NFsqWos/hcWg9UlwoTls6vn8syWnRAA13TsHQNFGTLHhU/oLspxlDe4ZsP9xKG6vS/XMzZQic4Vws3Pnl8nJakxZb2NC1JiyePj3PHL44s+EYFIUT9NO7wfoXRdY1rL+zkvmcGGcpVcEI10exTi/7f1GlJWigFRcef9zL6yykfYz5mEIquT9nzGSt6lFwfQ496Uhl6FAzpuobjhYwVPda3JbFNjUNSaHFJkrYVQqxsMiPUQK7c2s41OzrRdZ1ixYdQEYSQipl0NcXxA8WqdIwt7anaNvD5NF+zKY3gXGcQUrZZW6pMx000DUKlqP6WMFRoGpS9qCK4ZeiEiobOoRIzm0vZBSHE8iMzQg1E1zXecMUG+scrPHhklLakRdwy0TUoOD4J22BrR4pkzGQw7yzITXep7kaZ7yTX6lLlo71ZOjI2lqFTcnxCTQOlcPwwCoRcn+PZkJak1XBtR8SZkbYVQqxsctVuMNs6M7zhig0cGSni+CFlL1qWqfa6akvFyFe8BU1cXmq7URYiyVXXNS5Yk+HOR/t4driIBoQKSl6IRpQsbWgQqKgateMrhguudKZfgqZvFFBK1cpG2IYOqIbfKCCEOHvyl92ArtzazisuXs2vjoyytiVBzDRqva5WciG5mcxXd/KZfu9jvVmaExbjZdA1RRCGBD4oQKkoMIpbBk0Ji6aEKZ3pl6jJZRdcP+TQUHFKMdMQeOm2dvl7E2KZkhyhBqTrGjdc1M261iRjJQ9Ni+r4HM+WePjoGLapc+2FnSv+Zjs9yTUTtzB0jUzcYntnmtGiyw+fGpjzTq7q7x0rebx0ezvrWhPELZOEZWFMvOSKKH+kOWGxri3JpRta2d6ZllySJai6UcDQNe57Zojj2TIxUycZM6h4AWU3YCDv8Oxwod6HKoRYAEsiEDpy5Ahvfetb2bx5M4lEgq1bt/KRj3wE13VP+XNXX301mqZN+XjHO96xSEd9biYnLh8dLXHPvkEeeHaUobxD0fG5+6nBBd3SG4aK3tES+/tzEzWOGm9b+EIluU7+vavSMbZ0pAlCheMHaBrYOlhGFASlYyZbJpYsE7aB4weSS7IEbWlP05mJkbAM4pZOyfVxfcWa1iQvO6+dIFRnFVQLIRrfklga279/P2EY8vnPf55t27bx5JNP8ra3vY1iscgnP/nJU/7s2972Nv78z/+89nkyuXRyX7Z1ZggvpFbdeE1zgo5MjLIXnPPSz6kslcJyC5XkOvn3KqUYykc7x9qSFidyFQxdI1TQ1RSn4gU8O1SkLWkviaKTYmZ92TLZksdLtrUD1PKDqkvStmnUguqllD8nhDi9JXHFvuGGG7jhhhtqn2/ZsoUDBw7w2c9+9rSBUDKZpLu7e6EPcUFUqxs7fsi2jjRuEDKQq2CbOl2ZGP25yrzXN1monJuFsFDVsCf/XqVgrOSSiVvYhkbe8ck7PoamYeoa6bjJaNElV/YYyDuSu7VEVYPfNbEExgx/S7JzTIjla0ksjc1kfHyctra20z7uK1/5Cu3t7Vx00UV84AMfoFQqnfLxjuOQy+WmfNRLX7bMI71jDOUr3HdwiLue6ueHTw9w15P93HdwiKG8w8NHx+YtJ2Whcm4WykJVw578ex0/wA9CLCNaWm1N2igFRMWlMXSNiufTM1RYUkUnxVSTg9+ZyGyfEMvXkvyr7unp4dOf/vRpZ4Pe8IY3sHHjRtasWcPjjz/O+9//fg4cOMC3v/3tWX/m9ttv56Mf/eh8H/JZ2XcixzP9eZRSlLyQUIFt6vhBSK7s4QeKoYLDvv7cvEzXzyXnphGWBxaqGvbk33tsrIQC3GrdIC+gqylGKmZS8ULGywFBCBeuaeL3LlvfMLNlYm7OpmFvI1hKTWKFaFSamj6UXkS33XYbH//4x0/5mH379rFjx47a5319fbzsZS/j6quv5h/+4R/m9O/de++97Nmzh56eHrZu3TrjYxzHwXGc2ue5XI7169czPj5OU1PTnP69cxGGio/9YD/ffawPBTh+SMLSJ7bQRzfkmKmhazq/c8lqbrvhgnO+AO7vz/Gpew6ypT094/JAtQP9u/dsZ0f34r0WpzM5p8nxo5H7ts70OXcn7xnMc9cT/Xz/yX5Giw7NCYtV6RhbO1K0Jm1yZY+eoQIvWNPM+647H9NcshOsgpOXhacH1Y20LAxLJ5dPiHrJ5XI0Nzef9v5d1xmhW2+9lZtvvvmUj9myZUvtv48fP84111zDlVdeyd///d/P+d+74oorAE4ZCMViMWKx2Jx/93zry5YZyldYlbY5MlIiZT8/StU0sA2NghOwaVWcoZwzL7M0S7UD/UJVw97WmeGPrklzyYYW/vnBoxQdny3tUWXvguMzkHfYuCrF6y5bJ0HQMlDdqVkNLgZyFWKmwcVrm885qJ5vSymXT4hGV9c7WkdHBx0dHWf02L6+Pq655hp27drFHXfcga7P/cbz6KOPArB69eo5/+xiK7o+ThCyoS3F0dEyjh+AZmBoGoFSuL5C16IK0G4QzksS51JdHoCFq4at6xov3d7B6uZ47QY5mHca9gYpzs1SaDFTzeUbKbh0N8Vw/BClfDJxk+2daWkSK8QcNdbQfhZ9fX1cffXVbNy4kU9+8pMMDQ3VvlfdEdbX18eePXv40pe+xOWXX86hQ4f46le/yite8QpWrVrF448/zi233MJVV13Fzp076/VUzlh1dsbQYVXapuyGeEGIq0J0TSNu68Qtg3TMJAjVvMzSLKcO9PNtKdwgxfxo9BYz1U0UY0WXIyNF/DDE1HXakjZbO1MNl8snRKNbEoHQ3XffTU9PDz09Paxbt27K96opTp7nceDAgdquMNu2+dGPfsT//t//m2KxyPr167npppv40Ic+tOjHfzaqszNP9GXpboozmHdI2zYhoGsaBcenMxMjX/HZuW7+ZmmW0vLAYmv0G6RYGaqbKCxDI5OwsAwTLwgZzFfIOx4Xr22Wwp5CzEFdk6WXgjNNtloI1TyAoyMlBvMV/EARs3QcL8A0okasG9qSC5IPILtRhGg81U0U33v8OJ2ZGDHLqH1PKcVo0aU5abGhNcl7rztfAnexoi2JZGlxapNnZx7pHaN3tES+4pO0Dda3JXnRhtYFm6WR2Q+xkjXqQKC6iWJ1c5zxsodt6pM2UWikYgYnshV2bWxtyFw+IRqRBEINbnJuSt7xKFR80jGTTNxqmIuzEMtJI29Lr26iOL+7iSf6xhktuqTjJpah4wUhhUqAaWhctqlNrg1CnCEJhJYAmZ0RYnE0+rb06iaKuKXzwvUt9AwWGCu5FBwfU9dpSVm0Jm0uaKA6X0I0OgmEhBCCk1vMVJecMnGLdMxsiG3pk0tcbO9M8+JNreQrPm4QYuka/bkKO9e1yLKYEHMgVeCEEIK5tZipl2qJi7aUzcHBAgXHJxkziJk6A3mHVenYii1xIcTZkkBICCF4vgN9cpaaXAnbaIht6dVNFBetaSZb8jgyXCRbirbN13vpToilSJbGhBCCpdViRgp8CjF/6v8XLYQQDWCptZiRTRRCzA9ZGhNCCE7Ov8lXPPwwJF/xODhYWNEtZoRYzmRGSIhz1KjF98TcSYsZIVYeCYSEOEthqPjFoWHu2TfAifEKuqaRsBqn+J44O5J/I8TKIoGQEGehZzDPVx84yo8PDFL2AlIxk450jERLvGGK74mzJ/k3QqwckiMkxBz1DOb5ws8P8/NDw4RK0ZGOYeoaJ8bLPDNQYFXKYrTo8sOnBghD6WksFlYYKnpHS+zvz9E7WpL3nBBzJDNCQsxBtfpwX7aM54c4vuL4eIVQKXQN8o6PZWi19gd92bLMLIgF08h90YRYKiQQEmIOqtWHTV1jpOiiaxCzDAxNJ1CKihtweLjI+rYkQajqXnxPLF+N3hdNiKVClsaEmIOi61P2fEYKLqFSxEwDU9fQNDB1jWTMwAsUBwcK2IbeEMX3xPIzvS9aJm5h6BqZuMX2zrQszQoxBxIICTEHKdskDCFX8UjHTdwgRKnnbzahAsuIZos6mmINU3xPLC9LoS+aEEuFBEJCzMHalgSrmxMU3YBVKRvL0Cl7IX6oCMNoaUzXNeKmzmWb2mTLtVgQS6UvmhBLgQRCQsyBrmtce2EnScugWPFpS1kkbQPXD8lVfDQNupvinNed4YLupnofrlimJvdFm0kj9UUTotFJICTEHF25tZ1rdnRimwZKQcLSaU3abOtMc/X5HWxoS/KiDa2yLCYWTLUv2onxypSlWXi+L9q2zrS8B4U4AzJcEGKOdF3jDVdsoOKF9GVLtCZtmuIWhg79OYdV6Zj0pBILqtoX7fh4mYODUa5QwjYouwEnxivSF02IOdDU9OGEmCKXy9Hc3Mz4+DhNTbLUIZ43uYaL40dLEds609KTSiwaeQ8KMbszvX9LIHQaEgiJU5GGq6Le5D0oxMzO9P4tS2NCnAPpSSXqTd6DQpwbSZYWQgghxIolgZAQQgghViwJhIQQQgixYkkgJIQQQogVSwIhIYQQQqxYEggJIYQQYsWSQEgIIYQQK5YEQkIIIYRYsZZMIPSqV72KDRs2EI/HWb16Nb//+7/P8ePHT/kzlUqFd77znaxatYp0Os1NN93EwMDAIh2xEEIIIRrdkgmErrnmGr7+9a9z4MABvvWtb3Ho0CFe+9rXnvJnbrnlFr773e/yjW98g/vuu4/jx4/zmte8ZpGOWAghhBCNbsn2Gvu3f/s3brzxRhzHwbKsk74/Pj5OR0cHX/3qV2sB0/79+7ngggu4//77+Y3f+I0z+nek15gQQgix9Jzp/XvJzAhNNjo6yle+8hWuvPLKGYMggIceegjP87j22mtrX9uxYwcbNmzg/vvvn/V3O45DLpeb8iGEEEKI5WlJBULvf//7SaVSrFq1iqNHj/Kv//qvsz62v78f27ZpaWmZ8vWuri76+/tn/bnbb7+d5ubm2sf69evn6/CFEEII0WDqGgjddtttaJp2yo/9+/fXHv++972PRx55hB/+8IcYhsEf/MEfMN8rex/4wAcYHx+vffT29s7r7xdCCCFE4zDr+Y/feuut3Hzzzad8zJYtW2r/3d7eTnt7O+eddx4XXHAB69ev54EHHmD37t0n/Vx3dzeu65LNZqfMCg0MDNDd3T3rvxeLxYjFYnN+LkIIIYRYeuoaCHV0dNDR0XFWPxuGIRDl9Mxk165dWJbFPffcw0033QTAgQMHOHr06IyBkxBCCCFWnroGQmdq7969/OpXv+I3f/M3aW1t5dChQ/zpn/4pW7durQU1fX197Nmzhy996UtcfvnlNDc389a3vpX3vve9tLW10dTUxLvf/W527959xjvGhBBCCLG8LYlAKJlM8u1vf5uPfOQjFItFVq9ezQ033MCHPvSh2jKW53kcOHCAUqlU+7m/+Zu/Qdd1brrpJhzH4frrr+fv/u7v6vU0hBBnIAwVfdkyRdcnZZusbUmg61q9D0sIsUwt2TpCi0XqCAmxeHoG8/zHkwP0DOYZK7sYms7WjjSvvWwt53XJ358Q4syd6f17ScwICSGWv57BPHf84ghHR0qUXJ+C4+P4IftO5Nh7eIT37NnOngu66n2YQohlZknVERJCLE9hqPiPJwc4OlJirOQyXvZI2CYdmRidmRj9uQqfuucgz/Tn632oQohlRgIhIUTd9WXL9AzmKbk+FS+gLWUTM3V0TSNmGXQ3xRjKO3zz4V7CUFbzhRDzRwIhIUTdFV2fsbJLwfFJxy00bWpytG0a2KbGocECfdlynY5SCLEcSSAkhKi7lG1iaDqOH2IZJ+8Q84IQ2zQIVRQ0CSHEfJFASAhRd2tbEmztSOP6IZ4fTvmeUopCxScTN2lJWKRs2eMhhJg/EggJIRZVGCp6R0vs78/RO1oiDBW6rvHay9bSkYlxIleh4vmESuH4AaNFl7ilk7RNtndlWNuSqPdTEEIsIzK0EkIsijBU/OLQMPfsG+DEeAVd00hYBls70vzWCzpJWCavedFavvZgL0N5F9vUsE2D5qRF0jbZ0Jbkuhd0SXFFIcS8kkBICLHgegbzfPWBo/z4wCBlLyAVM+lIx0i0xHng2RF++HQ/7WkbPwyxDZ10zCQZM2hJ2LQmLbZ3ZbjuBV1s68zU+6kIIZYZCYSEEAuqZzDPF35+mF8/N0aoYF1rAj9UDBccRopR0+TRosvxbIlQaVS8AH8iOfrFm21u2rWOK7e2y0yQEGJBSCAkhFgw1UKJfdkyOtCasjF0HUMHMwEHB4v4E3WBHD8kZumkYgYog7zj8+vnxkhYJt3NcZkNEkIsCEmWFkIsmL5smUNDBVqTNn6oalvjy27AsbEyBcen6AYU3QA/VLheQNkNQYOmuInvBzx2bIwv33+UoyNFKaYohJh3MiMkhFgwRden4ge0p2KYho4XKMIw5MR4FAQF0+KaUIHjBwQqJGYaBApGCy4/ePIEJ3Jldq5t4fqLJFdICDF/ZEZICLFgUrZJ3DQwdGhN2uTLLgO5CvmKR8ULT3p8qKK6QX6gyFd8QgW6Brqm8PyQB4+M8IWfH6ZnUHqOCSHmhwRCQogFUy2U2J9z2NqRIlAwUnTwA8VMi1wK8EIIQkUQKnQUfqjIOwHPDhUZGK/w6+fG+Oe9R2WZTAgxLyQQEkIsGF3XuP6iLtpSNsMFB10DFCctiU0XqCgoCiYem45ZtGds4raJ44Xcu3+QXxwaXoynIIRY5iQQEkIsqG2dGd7ykk1saEtRdgMsU8PQoiWvuKkRNzVm2xivFKRtg85MtNssZup0ZGzKXsA9+wZkVkgIcc4kEBJCLLhtnRluvHQN53VnWNeawjQ0krYOmoapayQsDXNaNKQBTXGL9kwcXdNQKgp6/FCRipmcGK9IJ3ohxDmTXWNCiEWRiVusSsWImzpDeQc/CNFQ+CFomoaGwtQgaRs4QZRIrREVXhydaMfRmrIouwEdmRiGpkkneiHEOZMZISHEoqgmTmuaxsZVSWxLxzZ00KLkaHSNTNykNRWjIx0FOl6osIyoAGO+4vHcSAlN01jTHCduGdKJXghxzuQqIoRYFNXE6ePjZYpOQEc6RtkLMDRwvADLNOjIxPACRSZusiodo3eshB+EKMA0NBSQsnVKbsjOdc3SiV4Icc4kEBJCLJot7WluuKg7SnRGMZR3KLsBmYTN+rYkWzvSHBoqsKEtiRdEW+jzFZ+4FSVK+4FiMO+ysT0tneiFEPNCAiEhxKLoGczzH08OcGioQNnzSdsm2zaneeGGFs7vzpCJW+QrHn/74x6Stomha1y6oZWewQJjJZeSF6Br0fLZK3eulurSQoh5IYGQEGLB9QzmueMXRxgtuqxujrPGTlByfU5MFEi8eF0z69uS9I6WiJsGJdcnE7doS9m8eFMr+YqPG4S4foAfKC7obqr3UxJCLBOSLC2EWFDVDvSjRZftnWkycQtD18jELbZ3phktuvzwqagmUDWh+sR4pbZdXtM0mhIWq1I2BSdge1dGcoOEEPNGAiEhxIKqdqBf3RxH06bm9GiaxurmOD2DBfqy5SmVqA8OFshXPPwwJF/xODhYoC1lS26QEGJeSSAkhFhQ1Q70yVm2uidsA8cPajWBqpWoL1rTTLbkcWS4SLbkcfHaZt7ykk2SGySEmFeSIySEWFDVDvTVvJ/pym5AzJxaE2hbZ4YtV6fpy5Ypuj4p22RtS0JmgoQQ804CISHEgqrm/Tx5fJx0zJyyPKaU4sR4hYvXnlwTSNc11rclF/twhRArjCyNCSEWlOT9CCEamQRCQogFJ3k/QohGJUtjQohFIXk/QohGtGRmhF71qlexYcMG4vE4q1ev5vd///c5fvz4KX/m6quvjrpaT/p4xzvesUhHLISYrpr3s6O7ifVtSQmChBB1t2QCoWuuuYavf/3rHDhwgG9961scOnSI1772taf9ube97W2cOHGi9vGJT3xiEY5WCCGEEEvBklkau+WWW2r/vXHjRm677TZuvPFGPM/Dsk7ekluVTCbp7u5ejEMUQgghxBKzZGaEJhsdHeUrX/kKV1555SmDIICvfOUrtLe3c9FFF/GBD3yAUql0ysc7jkMul5vyIYQQQojlaUkFQu9///tJpVKsWrWKo0eP8q//+q+nfPwb3vAGvvzlL/PjH/+YD3zgA/zTP/0Tb3rTm075M7fffjvNzc21j/Xr18/nUxBCCCFEA9FUtbNhHdx22218/OMfP+Vj9u3bx44dOwAYHh5mdHSU5557jo9+9KM0Nzfzve9976T+RbO599572bNnDz09PWzdunXGxziOg+M4tc9zuRzr169nfHycpibpeC2EEEIsBblcjubm5tPev+saCA0NDTEyMnLKx2zZsgXbtk/6+rFjx1i/fj2//OUv2b179xn9e8VikXQ6zV133cX1119/Rj9zpi+kEEIIIRrHmd6/65os3dHRQUdHx1n9bBiGAFNmb07n0UcfBWD16tVn9W8KIYQQYnlZEjlCe/fu5W//9m959NFHee6557j33nt5/etfz9atW2uzQX19fezYsYMHH3wQgEOHDvEXf/EXPPTQQxw5coR/+7d/4w/+4A+46qqr2LlzZz2fjhBCCCEaxJIIhJLJJN/+9rfZs2cP559/Pm9961vZuXMn9913H7FYDADP8zhw4EBtV5ht2/zoRz/iuuuuY8eOHdx6663cdNNNfPe7363nUxFCCCFEA6lrjtBSMD4+TktLC729vZIjJIQQQiwR1c1O2WyW5ubmWR+3ZAoq1ks+nweQbfRCCCHEEpTP508ZCMmM0GmEYcjx48fJZDJnvE3/TFQjVZlpqi85D/Un56D+5BzUn5yD+aeUIp/Ps2bNGnR99kwgmRE6DV3XWbdu3YL9/qamJnnTNwA5D/Un56D+5BzUn5yD+XWqmaCqJZEsLYQQQgixECQQEkIIIcSKJYFQncRiMT7ykY/Utv+L+pDzUH9yDupPzkH9yTmoH0mWFkIIIcSKJTNCQgghhFixJBASQgghxIolgZAQQgghViwJhIQQQgixYkkgVCef+cxn2LRpE/F4nCuuuIIHH3yw3oe0bPz0pz/lP/2n/8SaNWvQNI0777xzyveVUnz4wx9m9erVJBIJrr32Wg4ePDjlMaOjo7zxjW+kqamJlpYW3vrWt1IoFBbxWSxtt99+Oy9+8YvJZDJ0dnZy4403cuDAgSmPqVQqvPOd72TVqlWk02luuukmBgYGpjzm6NGjvPKVrySZTNLZ2cn73vc+fN9fzKeyZH32s59l586dtQJ9u3fv5gc/+EHt+/L6L76PfexjaJrGn/zJn9S+Jueh/iQQqoN/+Zd/4b3vfS8f+chHePjhh7nkkku4/vrrGRwcrPehLQvFYpFLLrmEz3zmMzN+/xOf+ASf+tSn+NznPsfevXtJpVJcf/31VCqV2mPe+MY38tRTT3H33Xfzve99j5/+9Ke8/e1vX6ynsOTdd999vPOd7+SBBx7g7rvvxvM8rrvuOorFYu0xt9xyC9/97nf5xje+wX333cfx48d5zWteU/t+EAS88pWvxHVdfvnLX/LFL36Rf/zHf+TDH/5wPZ7SkrNu3To+9rGP8dBDD/HrX/+al7/85bz61a/mqaeeAuT1X2y/+tWv+PznP8/OnTunfF3OQwNQYtFdfvnl6p3vfGft8yAI1Jo1a9Ttt99ex6NangD1ne98p/Z5GIaqu7tb/c//+T9rX8tmsyoWi6l//ud/Vkop9fTTTytA/epXv6o95gc/+IHSNE319fUt2rEvJ4ODgwpQ9913n1Iqes0ty1Lf+MY3ao/Zt2+fAtT999+vlFLq+9//vtJ1XfX399ce89nPflY1NTUpx3EW9wksE62treof/uEf5PVfZPl8Xm3fvl3dfffd6mUve5n64z/+Y6WU/B00CpkRWmSu6/LQQw9x7bXX1r6m6zrXXnst999/fx2PbGU4fPgw/f39U17/5uZmrrjiitrrf//999PS0sJll11We8y1116Lruvs3bt30Y95ORgfHwegra0NgIceegjP86achx07drBhw4Yp5+Hiiy+mq6ur9pjrr7+eXC5Xm9UQZyYIAr72ta9RLBbZvXu3vP6L7J3vfCevfOUrp7zeIH8HjUKari6y4eFhgiCY8qYG6OrqYv/+/XU6qpWjv78fYMbXv/q9/v5+Ojs7p3zfNE3a2tpqjxFnLgxD/uRP/oSXvOQlXHTRRUD0Gtu2TUtLy5THTj8PM52n6vfE6T3xxBPs3r2bSqVCOp3mO9/5DhdeeCGPPvqovP6L5Gtf+xoPP/wwv/rVr076nvwdNAYJhIQQC+qd73wnTz75JD//+c/rfSgrzvnnn8+jjz7K+Pg43/zmN3nzm9/MfffdV+/DWjF6e3v54z/+Y+6++27i8Xi9D0fMQpbGFll7ezuGYZy0K2BgYIDu7u46HdXKUX2NT/X6d3d3n5S47vs+o6Ojco7m6F3vehff+973+PGPf8y6detqX+/u7sZ1XbLZ7JTHTz8PM52n6vfE6dm2zbZt29i1axe33347l1xyCf/n//wfef0XyUMPPcTg4CAvetGLME0T0zS57777+NSnPoVpmnR1dcl5aAASCC0y27bZtWsX99xzT+1rYRhyzz33sHv37joe2cqwefNmuru7p7z+uVyOvXv31l7/3bt3k81meeihh2qPuffeewnDkCuuuGLRj3kpUkrxrne9i+985zvce++9bN68ecr3d+3ahWVZU87DgQMHOHr06JTz8MQTT0wJSu+++26ampq48MILF+eJLDNhGOI4jrz+i2TPnj088cQTPProo7WPyy67jDe+8Y21/5bz0ADqna29En3ta19TsVhM/eM//qN6+umn1dvf/nbV0tIyZVeAOHv5fF498sgj6pFHHlGA+uu//mv1yCOPqOeee04ppdTHPvYx1dLSov71X/9VPf744+rVr3612rx5syqXy7XfccMNN6hLL71U7d27V/385z9X27dvV69//evr9ZSWnP/6X/+ram5uVj/5yU/UiRMnah+lUqn2mHe84x1qw4YN6t5771W//vWv1e7du9Xu3btr3/d9X1100UXquuuuU48++qi66667VEdHh/rABz5Qj6e05Nx2223qvvvuU4cPH1aPP/64uu2225SmaeqHP/yhUkpe/3qZvGtMKTkPjUACoTr59Kc/rTZs2KBs21aXX365euCBB+p9SMvGj3/8YwWc9PHmN79ZKRVtof/TP/1T1dXVpWKxmNqzZ486cODAlN8xMjKiXv/616t0Oq2amprUW97yFpXP5+vwbJammV5/QN1xxx21x5TLZfVHf/RHqrW1VSWTSfW7v/u76sSJE1N+z5EjR9Rv//Zvq0Qiodrb29Wtt96qPM9b5GezNP2X//Jf1MaNG5Vt26qjo0Pt2bOnFgQpJa9/vUwPhOQ81J+mlFL1mYsSQgghhKgvyRESQgghxIolgZAQQgghViwJhIQQQgixYkkgJIQQQogVSwIhIYQQQqxYEggJIYQQYsWSQEgIIYQQK5YEQkKIFUvTNO688856H4YQoo4kEBJCLEk333wzN954Y70PQwixxEkgJIQQQogVSwIhIcSSd/XVV/Oe97yH//7f/zttbW10d3fzZ3/2Z1Mec/DgQa666iri8TgXXnghd99990m/p7e3l9/7vd+jpaWFtrY2Xv3qV3PkyBEA9u/fTzKZ5Ktf/Wrt8V//+tdJJBI8/fTTC/n0hBALSAIhIcSy8MUvfpFUKsXevXv5xCc+wZ//+Z/Xgp0wDHnNa16Dbdvs3buXz33uc7z//e+f8vOe53H99deTyWT42c9+xi9+8QvS6TQ33HADruuyY8cOPvnJT/JHf/RHHD16lGPHjvGOd7yDj3/841x44YX1eMpCiHkgTVeFEEvSzTffTDab5c477+Tqq68mCAJ+9rOf1b5/+eWX8/KXv5yPfexj/PCHP+SVr3wlzz33HGvWrAHgrrvu4rd/+7f5zne+w4033siXv/xl/vIv/5J9+/ahaRoAruvS0tLCnXfeyXXXXQfA7/zO75DL5bBtG8MwuOuuu2qPF0IsPWa9D0AIIebDzp07p3y+evVqBgcHAdi3bx/r16+vBUEAu3fvnvL4xx57jJ6eHjKZzJSvVyoVDh06VPv8C1/4Aueddx66rvPUU09JECTEEieBkBBiWbAsa8rnmqYRhuEZ/3yhUGDXrl185StfOel7HR0dtf9+7LHHKBaL6LrOiRMnWL169dkftBCi7iQQEkIsexdccAG9vb1TApcHHnhgymNe9KIX8S//8i90dnbS1NQ04+8ZHR3l5ptv5oMf/CAnTpzgjW98Iw8//DCJRGLBn4MQYmFIsrQQYtm79tprOe+883jzm9/MY489xs9+9jM++MEPTnnMG9/4Rtrb23n1q1/Nz372Mw4fPsxPfvIT3vOe93Ds2DEA3vGOd7B+/Xo+9KEP8dd//dcEQcB/+2//rR5PSQgxTyQQEkIse7qu853vfIdyuczll1/OH/7hH/JXf/VXUx6TTCb56U9/yoYNG3jNa17DBRdcwFvf+lYqlQpNTU186Utf4vvf/z7/9E//hGmapFIpvvzlL/N//+//5Qc/+EGdnpkQ4lzJrjEhhBBCrFgyIySEEEKIFUsCISGEEEKsWBIICSGEEGLFkkBICCGEECuWBEJCCCGEWLEkEBJCCCHEiiWBkBBCCCFWLAmEhBBCCLFiSSAkhBBCiBVLAiEhhBBCrFgSCAkhhBBixZJASAghhBAr1v8PP5iqBK/wl/8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# residuals versus order\n", - "plt.scatter(range(len(X[:,1:2])), res, alpha=0.5)\n", - "plt.xlabel(\"Index\")\n", - "plt.ylabel(\"Residuals\")\n", - "plt.title(\"Residual Plot vs. Order\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "wafflers", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 2 + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import scraper\n", + "import pandas as pd\n", + "import plotly.express as px\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Get the data\n", + "### Carbon data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
table1...65country
time1995199619971998199920002001200220032004...201420152016201720182019202020212022
0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...416329.05411485.90413749.45419976.61426307.90416848.48398982.10412683.08384901.69EU27_2020
1NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...705507.53680904.05668832.49646120.22672691.73674474.81601207.60615594.09559118.99BE
2NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...371707.83401866.25435213.07426494.22423259.56393891.37391756.15402387.56386451.29BG
3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...314720.03316332.36329274.64336949.27354343.90350563.81330125.94354575.61323965.99CZ
415662060.6817983724.2216436561.9816404974.3215656406.1615526465.8615575519.9915742121.3117348358.8916463321.94...415245.59421010.26481782.63511782.05503125.28487706.80507731.62502221.23479131.26DK
\n", + "

5 rows × 1821 columns

\n", + "
" + ], + "text/plain": [ + "table 1 \\\n", + "time 1995 1996 1997 1998 1999 \n", + "0 NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN NaN \n", + "4 15662060.68 17983724.22 16436561.98 16404974.32 15656406.16 \n", + "\n", + "table ... \\\n", + "time 2000 2001 2002 2003 2004 ... \n", + "0 NaN NaN NaN NaN NaN ... \n", + "1 NaN NaN NaN NaN NaN ... \n", + "2 NaN NaN NaN NaN NaN ... \n", + "3 NaN NaN NaN NaN NaN ... \n", + "4 15526465.86 15575519.99 15742121.31 17348358.89 16463321.94 ... \n", + "\n", + "table 65 \\\n", + "time 2014 2015 2016 2017 2018 2019 \n", + "0 416329.05 411485.90 413749.45 419976.61 426307.90 416848.48 \n", + "1 705507.53 680904.05 668832.49 646120.22 672691.73 674474.81 \n", + "2 371707.83 401866.25 435213.07 426494.22 423259.56 393891.37 \n", + "3 314720.03 316332.36 329274.64 336949.27 354343.90 350563.81 \n", + "4 415245.59 421010.26 481782.63 511782.05 503125.28 487706.80 \n", + "\n", + "table country \n", + "time 2020 2021 2022 \n", + "0 398982.10 412683.08 384901.69 EU27_2020 \n", + "1 601207.60 615594.09 559118.99 BE \n", + "2 391756.15 402387.56 386451.29 BG \n", + "3 330125.94 354575.61 323965.99 CZ \n", + "4 507731.62 502221.23 479131.26 DK \n", + "\n", + "[5 rows x 1821 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_carbon_df, tables = scraper.get_eurostat_dataframe(\"env_ac_ainah_r2\", lambda raw: np.arange(1, 66))\n", + "full_carbon_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countryEU27_2020BEBGCZDKDEEEIEELES...ROSISKFISEISNOCHRSTR
time
1995NaNNaNNaNNaN15662060.68NaNNaNNaNNaNNaN...NaNNaN8862865.42NaNNaN12571199.07NaN5183706.31NaNNaN
1996NaNNaNNaNNaN17983724.22NaNNaNNaNNaNNaN...NaNNaN8821817.28NaNNaN13419521.77NaN5238820.25NaNNaN
1997NaNNaNNaNNaN16436561.98NaNNaNNaNNaNNaN...NaNNaN8693803.51NaNNaN14045761.23NaN5112279.33NaNNaN
1998NaNNaNNaNNaN16404974.32NaNNaNNaNNaNNaN...NaNNaN8542440.41NaNNaN14424047.34NaN5276437.22NaNNaN
1999NaNNaNNaNNaN15656406.16NaNNaNNaNNaNNaN...NaNNaN8310800.34NaNNaN15414605.09NaN5237620.84NaNNaN
\n", + "

5 rows × 33 columns

\n", + "
" + ], + "text/plain": [ + "country EU27_2020 BE BG CZ DK DE EE IE EL ES ... RO SI \\\n", + "time ... \n", + "1995 NaN NaN NaN NaN 15662060.68 NaN NaN NaN NaN NaN ... NaN NaN \n", + "1996 NaN NaN NaN NaN 17983724.22 NaN NaN NaN NaN NaN ... NaN NaN \n", + "1997 NaN NaN NaN NaN 16436561.98 NaN NaN NaN NaN NaN ... NaN NaN \n", + "1998 NaN NaN NaN NaN 16404974.32 NaN NaN NaN NaN NaN ... NaN NaN \n", + "1999 NaN NaN NaN NaN 15656406.16 NaN NaN NaN NaN NaN ... NaN NaN \n", + "\n", + "country SK FI SE IS NO CH RS TR \n", + "time \n", + "1995 8862865.42 NaN NaN 12571199.07 NaN 5183706.31 NaN NaN \n", + "1996 8821817.28 NaN NaN 13419521.77 NaN 5238820.25 NaN NaN \n", + "1997 8693803.51 NaN NaN 14045761.23 NaN 5112279.33 NaN NaN \n", + "1998 8542440.41 NaN NaN 14424047.34 NaN 5276437.22 NaN NaN \n", + "1999 8310800.34 NaN NaN 15414605.09 NaN 5237620.84 NaN NaN \n", + "\n", + "[5 rows x 33 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_carbon_short = full_carbon_df.xs(1, level=\"table\", axis=1).T\n", + "df_carbon_short.columns = full_carbon_df.xs(\"country\", axis=1)\n", + "df_carbon_short.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countryEU27_2020BEBGCZDKDEEEIEELES...PTROSISKFISEISNORSTR
time
20088626928.759840862.328374278.1012088284.2618472875.7910115618.2615495691.7011599639.0111023011.517309667.12...6489677.156792814.408093935.358115433.1512652929.156147808.4317704691.5912308807.83NaNNaN
20097851179.618740690.237277828.0311049662.4217176547.559321295.5012786692.7710448510.0610354690.726435677.13...6178248.195751828.407375583.007304968.3212003558.205514200.8416180654.3411368305.58NaNNaN
20108024312.009243216.527673499.8511228220.1116767331.749667309.7716307459.7512043627.479989268.716098359.65...5739881.605581717.187437534.557305820.3013441161.426147726.6116184246.7311861900.26NaNNaN
20117901995.318519668.048424931.8210997932.4716608386.029668751.2216334728.6811509752.469620522.326223872.41...5697688.645895533.447280437.247294510.5411997445.755607249.3515554875.7812700895.28NaNNaN
20127728876.398149775.007808042.4310544785.7015347310.629767753.1315694048.4911892306.479558049.096157580.45...5624083.125748566.836938559.086765294.9010873832.795236450.8815875505.9912425877.26NaNNaN
\n", + "

5 rows × 32 columns

\n", + "
" + ], + "text/plain": [ + "country EU27_2020 BE BG CZ DK \\\n", + "time \n", + "2008 8626928.75 9840862.32 8374278.10 12088284.26 18472875.79 \n", + "2009 7851179.61 8740690.23 7277828.03 11049662.42 17176547.55 \n", + "2010 8024312.00 9243216.52 7673499.85 11228220.11 16767331.74 \n", + "2011 7901995.31 8519668.04 8424931.82 10997932.47 16608386.02 \n", + "2012 7728876.39 8149775.00 7808042.43 10544785.70 15347310.62 \n", + "\n", + "country DE EE IE EL ES ... \\\n", + "time ... \n", + "2008 10115618.26 15495691.70 11599639.01 11023011.51 7309667.12 ... \n", + "2009 9321295.50 12786692.77 10448510.06 10354690.72 6435677.13 ... \n", + "2010 9667309.77 16307459.75 12043627.47 9989268.71 6098359.65 ... \n", + "2011 9668751.22 16334728.68 11509752.46 9620522.32 6223872.41 ... \n", + "2012 9767753.13 15694048.49 11892306.47 9558049.09 6157580.45 ... \n", + "\n", + "country PT RO SI SK FI \\\n", + "time \n", + "2008 6489677.15 6792814.40 8093935.35 8115433.15 12652929.15 \n", + "2009 6178248.19 5751828.40 7375583.00 7304968.32 12003558.20 \n", + "2010 5739881.60 5581717.18 7437534.55 7305820.30 13441161.42 \n", + "2011 5697688.64 5895533.44 7280437.24 7294510.54 11997445.75 \n", + "2012 5624083.12 5748566.83 6938559.08 6765294.90 10873832.79 \n", + "\n", + "country SE IS NO RS TR \n", + "time \n", + "2008 6147808.43 17704691.59 12308807.83 NaN NaN \n", + "2009 5514200.84 16180654.34 11368305.58 NaN NaN \n", + "2010 6147726.61 16184246.73 11861900.26 NaN NaN \n", + "2011 5607249.35 15554875.78 12700895.28 NaN NaN \n", + "2012 5236450.88 15875505.99 12425877.26 NaN NaN \n", + "\n", + "[5 rows x 32 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Drop the rows until 2008 - when the data really begins\n", + "df_carbon_short.drop([str(i) for i in np.arange(1995, 2008)], inplace=True)\n", + "df_carbon_short = df_carbon_short.drop(\"CH\", axis=1)\n", + "df_carbon_short.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 313, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hovertemplate": "country=EU27_2020
time=%{x}
value=%{y}", + "legendgroup": "EU27_2020", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "EU27_2020", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 8626928.75, + 7851179.61, + 8024312, + 7901995.31, + 7728876.39, + 7493978.46, + 7234802.44, + 7299142.02, + 7269867.78, + 7365308.32, + 7224855.15, + 6878667.56, + 6192649.36, + 6543663.17, + 6481157.74 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=BE
time=%{x}
value=%{y}", + "legendgroup": "BE", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "BE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 9840862.32, + 8740690.23, + 9243216.52, + 8519668.04, + 8149775, + 7916208.46, + 7686154.55, + 7876220.88, + 7799071.79, + 7776925.29, + 7879669.22, + 7840274.31, + 7188131.12, + 7139444.92, + 6821002.24 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=BG
time=%{x}
value=%{y}", + "legendgroup": "BG", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "BG", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 8374278.1, + 7277828.03, + 7673499.85, + 8424931.82, + 7808042.43, + 7144298.7, + 7661685.75, + 8111630.72, + 7823731.5, + 8175206.26, + 7600569.84, + 7453706.39, + 6577156.14, + 7510443.21, + 8466050.23 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=CZ
time=%{x}
value=%{y}", + "legendgroup": "CZ", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "CZ", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 12088284.26, + 11049662.42, + 11228220.11, + 10997932.47, + 10544785.7, + 10067365.75, + 10008261.81, + 9937441.99, + 10111070.44, + 9905885.61, + 9963439.31, + 9416234.22, + 8426277.23, + 9081701.65, + 8901412.74 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=DK
time=%{x}
value=%{y}", + "legendgroup": "DK", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "DK", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 18472875.79, + 17176547.55, + 16767331.74, + 16608386.02, + 15347310.62, + 15031123.9, + 13930938.79, + 13829349.45, + 14258305.52, + 14200191.24, + 14551202.52, + 13944705.74, + 12272409.09, + 13090825.04, + 12372716.58 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=DE
time=%{x}
value=%{y}", + "legendgroup": "DE", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "DE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 10115618.26, + 9321295.5, + 9667309.77, + 9668751.22, + 9767753.13, + 9890300.45, + 9336313.94, + 9357887.22, + 9211878.93, + 9040142.72, + 8728757.68, + 7930781.54, + 7039775.03, + 7528067.39, + 7391810.01 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=EE
time=%{x}
value=%{y}", + "legendgroup": "EE", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "EE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 15495691.7, + 12786692.77, + 16307459.75, + 16334728.68, + 15694048.49, + 17544493.57, + 16865413.94, + 14247370.94, + 15078665.84, + 16135658.92, + 15137532.82, + 10604154.24, + 7963695.24, + 8931589.31, + 10226904.55 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=IE
time=%{x}
value=%{y}", + "legendgroup": "IE", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "IE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 11599639.01, + 10448510.06, + 12043627.47, + 11509752.46, + 11892306.47, + 11896561.49, + 11936396.37, + 12350180.53, + 13161418.86, + 13576578.57, + 13664168.02, + 13104135.84, + 10471640.26, + 10935062.67, + 12040447.43 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=EL
time=%{x}
value=%{y}", + "legendgroup": "EL", + "marker": { + "color": "#FF97FF", + "symbol": "circle" + }, + "mode": "markers", + "name": "EL", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 11023011.51, + 10354690.72, + 9989268.71, + 9620522.32, + 9558049.09, + 8893055.91, + 8668780.43, + 8372383.55, + 8222020.74, + 8770312.65, + 8747679.03, + 8190978.34, + 7159125.08, + 7404625.96, + 7486773.65 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=ES
time=%{x}
value=%{y}", + "legendgroup": "ES", + "marker": { + "color": "#FECB52", + "symbol": "circle" + }, + "mode": "markers", + "name": "ES", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 7309667.12, + 6435677.13, + 6098359.65, + 6223872.41, + 6157580.45, + 5582920.07, + 5644578.55, + 5865209.93, + 5597726.47, + 5877877.61, + 5688642.44, + 5286026.97, + 4559963.59, + 4797265.04, + 4925200.55 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=FR
time=%{x}
value=%{y}", + "legendgroup": "FR", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "FR", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 6653317.15, + 6166276.04, + 6234057.62, + 5933114.42, + 5867591.23, + 5772556.79, + 5396696.3, + 5373290.66, + 5339385.7, + 5473355.17, + 5304094.58, + 5167548.92, + 4650664.25, + 4860548.57, + 4860614.98 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=HR
time=%{x}
value=%{y}", + "legendgroup": "HR", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "HR", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 5743596.96, + 5214613.4, + 5173006.91, + 5157442.84, + 4777320.94, + 4573175.93, + 4448445.46, + 4494552.46, + 4522790.09, + 4768416.87, + 4551690.66, + 4631066.6, + 4481239.73, + 4627936.16, + 4606962.81 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=IT
time=%{x}
value=%{y}", + "legendgroup": "IT", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "IT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 7795851.87, + 6741917.65, + 6928656.17, + 6756489.81, + 6487892.06, + 5859784.44, + 5523957.09, + 5594673.93, + 5569147.23, + 5588750.03, + 5513539.82, + 5442001.72, + 4956810.63, + 5379280.59, + 5432207.73 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=CY
time=%{x}
value=%{y}", + "legendgroup": "CY", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "CY", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 11183735.7, + 10530223.3, + 9810262.08, + 8894269.75, + 8044428.37, + 7322766.43, + 7810898.18, + 7646758, + 8062773.8, + 8306246.6, + 8279133.71, + 7969957.25, + 7682750.74, + 7643435.48, + 7642788.91 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=LV
time=%{x}
value=%{y}", + "legendgroup": "LV", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "LV", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 5303185.14, + 4731464.3, + 5444515.55, + 5177981.7, + 5116481.72, + 5045809.54, + 5059065.91, + 5242554.97, + 5231307.71, + 5348290.65, + 5636546.19, + 5682612.88, + 4941039.01, + 5131370.03, + 4943358.24 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=LT
time=%{x}
value=%{y}", + "legendgroup": "LT", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "LT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 6891628.78, + 5657549.19, + 5995297.31, + 6360230.36, + 6383491.21, + 6060614.6, + 6370309.76, + 6671007.22, + 6636496.74, + 6970335.32, + 7278184.08, + 7430063.51, + 8058967.02, + 7399266.99, + 6965986.46 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=LU
time=%{x}
value=%{y}", + "legendgroup": "LU", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "LU", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 16962222.93, + 16693001.57, + 16565861.78, + 14896888.54, + 14301838.85, + 13676485.86, + 13784926.93, + 14970580.29, + 14410054.83, + 14040314.31, + 13997677.98, + 14722531.52, + 13061280.11, + 12776400.75, + 12090519.69 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=HU
time=%{x}
value=%{y}", + "legendgroup": "HU", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "HU", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 6037923.19, + 5429119.41, + 5527873.99, + 5555349.42, + 5118860.96, + 4985632.75, + 5079385.95, + 5309836.06, + 5290183.46, + 5509981.5, + 5565000.66, + 5421994.89, + 5142940.18, + 5222883.12, + 5102020.49 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=MT
time=%{x}
value=%{y}", + "legendgroup": "MT", + "marker": { + "color": "#FF97FF", + "symbol": "circle" + }, + "mode": "markers", + "name": "MT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 7203973, + 6797318.87, + 6960574.76, + 6971615.72, + 7315305.97, + 6447085.64, + 6374488.39, + 4633918.05, + 3874020.46, + 4131167.13, + 4076519.06, + 4161781.55, + 3669234.4, + 3620338.22, + 3708475.74 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=NL
time=%{x}
value=%{y}", + "legendgroup": "NL", + "marker": { + "color": "#FECB52", + "symbol": "circle" + }, + "mode": "markers", + "name": "NL", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 11551381.97, + 11097074.27, + 11499815.64, + 10936273.75, + 10657360.22, + 10592971.51, + 10521613.19, + 10825105.95, + 10711090.87, + 10491467.76, + 10134114.23, + 9903383.22, + 8766733.99, + 8753795.01, + 8227724.75 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=AT
time=%{x}
value=%{y}", + "legendgroup": "AT", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "AT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 8097291.69, + 7308617.85, + 7700611.64, + 7481448.06, + 7098295.69, + 6888255.9, + 6561107.19, + 6612999.9, + 6464018.01, + 6743435.74, + 6412811.44, + 6733225.11, + 6017717.63, + 6421100.46, + 6063695.21 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=PL
time=%{x}
value=%{y}", + "legendgroup": "PL", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "PL", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 9444706.91, + 8924261.65, + 9288855.03, + 9386433.81, + 9140778.57, + 9097624.14, + 8907491.07, + 8976477.85, + 9279493.13, + 9706232.03, + 9670243.48, + 9237050.64, + 8833756.4, + 9706927.16, + 9587311.38 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=PT
time=%{x}
value=%{y}", + "legendgroup": "PT", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "PT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 6489677.15, + 6178248.19, + 5739881.6, + 5697688.64, + 5624083.12, + 5473356.48, + 5493305.31, + 5910803.61, + 5715542.08, + 6229589.51, + 5908588.02, + 5545680.22, + 4810207.6, + 4695760.73, + 4882367.36 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=RO
time=%{x}
value=%{y}", + "legendgroup": "RO", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "RO", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 6792814.4, + 5751828.4, + 5581717.18, + 5895533.44, + 5748566.83, + 5205389.27, + 5195854.81, + 5160818.36, + 5081315.18, + 5218990.37, + 5256903.6, + 5097506.5, + 4886398.85, + 5009951.1, + 4775516.29 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=SI
time=%{x}
value=%{y}", + "legendgroup": "SI", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "SI", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 8093935.35, + 7375583, + 7437534.55, + 7280437.24, + 6938559.08, + 6798009.72, + 6112706.6, + 6231363.1, + 6484657.21, + 6547457.12, + 6628001.63, + 6513937.75, + 6220980.69, + 6120319.74, + 5858216.81 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=SK
time=%{x}
value=%{y}", + "legendgroup": "SK", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "SK", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 8115433.15, + 7304968.32, + 7305820.3, + 7294510.54, + 6765294.9, + 6676739.8, + 6405492.89, + 6471845.72, + 6515747.89, + 6638407.67, + 6633773.77, + 6145982.57, + 5635453.12, + 6232714.86, + 5658962.65 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=FI
time=%{x}
value=%{y}", + "legendgroup": "FI", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "FI", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 12652929.15, + 12003558.2, + 13441161.42, + 11997445.75, + 10873832.79, + 10968185.92, + 10128634.2, + 9511454.86, + 10038993.36, + 9485754.23, + 9694404.22, + 9199287.59, + 7906406.45, + 7919041.52, + 7738452.67 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=SE
time=%{x}
value=%{y}", + "legendgroup": "SE", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "SE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 6147808.43, + 5514200.84, + 6147726.61, + 5607249.35, + 5236450.88, + 5048942.24, + 4857670.07, + 4842247.01, + 4891026.55, + 4694012.44, + 4593367.1, + 4439328.89, + 3917780.22, + 4090756.83, + 3979034.45 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=IS
time=%{x}
value=%{y}", + "legendgroup": "IS", + "marker": { + "color": "#FF97FF", + "symbol": "circle" + }, + "mode": "markers", + "name": "IS", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 17704691.59, + 16180654.34, + 16184246.73, + 15554875.78, + 15875505.99, + 16678380.61, + 16456133.72, + 17975811.18, + 18999182.56, + 19816074.46, + 23787278.23, + 19303335.98, + 13880628.44, + 13663912.76, + 15608271.37 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=NO
time=%{x}
value=%{y}", + "legendgroup": "NO", + "marker": { + "color": "#FECB52", + "symbol": "circle" + }, + "mode": "markers", + "name": "NO", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 12308807.83, + 11368305.58, + 11861900.26, + 12700895.28, + 12425877.26, + 12341836.36, + 12097582.9, + 13324274.85, + 11533448.95, + 11890017.84, + 12376829.9, + 12337209.38, + 11180613.64, + 11028020.94, + 11043629.85 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=RS
time=%{x}
value=%{y}", + "legendgroup": "RS", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "RS", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=TR
time=%{x}
value=%{y}", + "legendgroup": "TR", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "TR", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "yaxis": "y" + } + ], + "layout": { + "legend": { + "title": { + "text": "country" + }, + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "time" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "value" + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the carbon emissions scatterplot\n", + "fig = px.scatter(df_carbon_short)\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 314, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'
'" + ] + }, + "execution_count": 314, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import plotly\n", + "plotly.offline.plot(fig, include_plotlyjs=False, output_type=\"div\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Energy data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tableAFC...FC_OTH_HH_Ecountry
time1990199119921993199419951996199719981999...201420152016201720182019202020212022
0218484.0178925.0175263.0175606.0169048.0181335.0193531.0194520.0187928.0214365.0...415.685628.687542.327611.261560.179687.3351220.5561316.0171457.559EU27_2020
1146824.0137183.0133881.0141083.0144691.0152598.0152735.0160130.0160913.0181350.0...49.42284.73345.14351.24761.07664.42150.72865.282176.339EA20
24785.04998.05849.07590.09053.09398.09637.09975.07828.09059.0...0.0000.0000.0000.0000.0000.0000.0000.0000.000BE
35387.03083.03289.01630.01173.01961.01803.0785.0564.01670.0...0.0000.0000.0000.0000.0000.0000.0000.0000.000BG
48179.07194.06156.05952.05415.06722.08811.09013.08383.08983.0...1.3071.9612.2884.0474.5205.0123.61011.80823.064CZ
\n", + "

5 rows × 166 columns

\n", + "
" + ], + "text/plain": [ + "table AFC \\\n", + "time 1990 1991 1992 1993 1994 1995 1996 \n", + "0 218484.0 178925.0 175263.0 175606.0 169048.0 181335.0 193531.0 \n", + "1 146824.0 137183.0 133881.0 141083.0 144691.0 152598.0 152735.0 \n", + "2 4785.0 4998.0 5849.0 7590.0 9053.0 9398.0 9637.0 \n", + "3 5387.0 3083.0 3289.0 1630.0 1173.0 1961.0 1803.0 \n", + "4 8179.0 7194.0 6156.0 5952.0 5415.0 6722.0 8811.0 \n", + "\n", + "table ... FC_OTH_HH_E \\\n", + "time 1997 1998 1999 ... 2014 2015 2016 \n", + "0 194520.0 187928.0 214365.0 ... 415.685 628.687 542.327 \n", + "1 160130.0 160913.0 181350.0 ... 49.422 84.733 45.143 \n", + "2 9975.0 7828.0 9059.0 ... 0.000 0.000 0.000 \n", + "3 785.0 564.0 1670.0 ... 0.000 0.000 0.000 \n", + "4 9013.0 8383.0 8983.0 ... 1.307 1.961 2.288 \n", + "\n", + "table country \n", + "time 2017 2018 2019 2020 2021 2022 \n", + "0 611.261 560.179 687.335 1220.556 1316.017 1457.559 EU27_2020 \n", + "1 51.247 61.076 64.421 50.728 65.282 176.339 EA20 \n", + "2 0.000 0.000 0.000 0.000 0.000 0.000 BE \n", + "3 0.000 0.000 0.000 0.000 0.000 0.000 BG \n", + "4 4.047 4.520 5.012 3.610 11.808 23.064 CZ \n", + "\n", + "[5 rows x 166 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_energy_df, energy_tables = scraper.get_eurostat_dataframe(\"nrg_cb_e\", lambda raw: [\"AFC\", \"FC_IND_E\", \"FC_TRA_E\", \"FC_OTH_CP_E\", \"FC_OTH_HH_E\"])\n", + "full_energy_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countryEU27_2020EA20BEBGCZDKDEEEIEEL...BAMEMDMKGEALRSTRUAXK
time
1990218484.0146824.04785.05387.08179.011973.031669.01475.00.01330.0...NaNNaNNaN511.0NaN323.0392.0176.015401.0NaN
1991178925.0137183.04998.03083.07194.03075.030416.02222.00.01498.0...NaNNaNNaN523.0NaN0.0235.0759.018317.0NaN
1992175263.0133881.05849.03289.06156.08647.028418.0254.00.0967.0...NaNNaNNaN483.0NaN0.00.0189.015417.0NaN
1993175606.0141083.07590.01630.05952.06279.033628.0221.00.01093.0...NaNNaNNaN623.0NaN0.00.0213.015773.0NaN
1994169048.0144691.09053.01173.05415.01781.035908.0315.00.0816.0...NaNNaNNaN73.0NaN0.00.031.012378.0NaN
\n", + "

5 rows × 43 columns

\n", + "
" + ], + "text/plain": [ + "country EU27_2020 EA20 BE BG CZ DK DE \\\n", + "time \n", + "1990 218484.0 146824.0 4785.0 5387.0 8179.0 11973.0 31669.0 \n", + "1991 178925.0 137183.0 4998.0 3083.0 7194.0 3075.0 30416.0 \n", + "1992 175263.0 133881.0 5849.0 3289.0 6156.0 8647.0 28418.0 \n", + "1993 175606.0 141083.0 7590.0 1630.0 5952.0 6279.0 33628.0 \n", + "1994 169048.0 144691.0 9053.0 1173.0 5415.0 1781.0 35908.0 \n", + "\n", + "country EE IE EL ... BA ME MD MK GE AL RS TR \\\n", + "time ... \n", + "1990 1475.0 0.0 1330.0 ... NaN NaN NaN 511.0 NaN 323.0 392.0 176.0 \n", + "1991 2222.0 0.0 1498.0 ... NaN NaN NaN 523.0 NaN 0.0 235.0 759.0 \n", + "1992 254.0 0.0 967.0 ... NaN NaN NaN 483.0 NaN 0.0 0.0 189.0 \n", + "1993 221.0 0.0 1093.0 ... NaN NaN NaN 623.0 NaN 0.0 0.0 213.0 \n", + "1994 315.0 0.0 816.0 ... NaN NaN NaN 73.0 NaN 0.0 0.0 31.0 \n", + "\n", + "country UA XK \n", + "time \n", + "1990 15401.0 NaN \n", + "1991 18317.0 NaN \n", + "1992 15417.0 NaN \n", + "1993 15773.0 NaN \n", + "1994 12378.0 NaN \n", + "\n", + "[5 rows x 43 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_energy_short = full_energy_df.xs(\"AFC\", level=\"table\", axis=1).T\n", + "df_energy_short.columns = full_energy_df.xs(\"country\", axis=1)\n", + "df_energy_short.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "full_energy_df.xs(\"FC_OTH_HH_E\", level=\"table\", axis=1).to_clipboard()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countryEU27_2020EA20BEBGCZDKDEEEIEEL...BAMEMDMKGEALRSTRUAXK
time
2008305128.218245213.21817158.03097.08520.012815.041670.01369.0753.0317575.0...NaN1884.0NaN2733.0NaN2434.08875.0789.02101.0708.0
2009292276.753237029.7539486.02662.08586.011208.041859.03025.0939.2177600.0...NaN1227.0NaN1438.0NaN1886.05184.0812.025.0768.0
2010291540.094241227.09412395.01167.06642.010599.042962.01100.0759.8878517.0...NaN732.03033.01420.0NaN1986.05620.01144.023.0819.0
2011321114.673260179.67313189.01449.010457.011694.051003.01690.0731.6227180.0...NaN1993.03146.02749.0NaN3262.06701.04556.032.03135.0
2012349454.141277236.14116848.02353.011587.015920.046268.02710.0783.6055954.0...NaN1440.03279.02741.0NaN2538.05781.05827.089.02773.0
\n", + "

5 rows × 43 columns

\n", + "
" + ], + "text/plain": [ + "country EU27_2020 EA20 BE BG CZ DK DE \\\n", + "time \n", + "2008 305128.218 245213.218 17158.0 3097.0 8520.0 12815.0 41670.0 \n", + "2009 292276.753 237029.753 9486.0 2662.0 8586.0 11208.0 41859.0 \n", + "2010 291540.094 241227.094 12395.0 1167.0 6642.0 10599.0 42962.0 \n", + "2011 321114.673 260179.673 13189.0 1449.0 10457.0 11694.0 51003.0 \n", + "2012 349454.141 277236.141 16848.0 2353.0 11587.0 15920.0 46268.0 \n", + "\n", + "country EE IE EL ... BA ME MD MK GE AL \\\n", + "time ... \n", + "2008 1369.0 753.031 7575.0 ... NaN 1884.0 NaN 2733.0 NaN 2434.0 \n", + "2009 3025.0 939.217 7600.0 ... NaN 1227.0 NaN 1438.0 NaN 1886.0 \n", + "2010 1100.0 759.887 8517.0 ... NaN 732.0 3033.0 1420.0 NaN 1986.0 \n", + "2011 1690.0 731.622 7180.0 ... NaN 1993.0 3146.0 2749.0 NaN 3262.0 \n", + "2012 2710.0 783.605 5954.0 ... NaN 1440.0 3279.0 2741.0 NaN 2538.0 \n", + "\n", + "country RS TR UA XK \n", + "time \n", + "2008 8875.0 789.0 2101.0 708.0 \n", + "2009 5184.0 812.0 25.0 768.0 \n", + "2010 5620.0 1144.0 23.0 819.0 \n", + "2011 6701.0 4556.0 32.0 3135.0 \n", + "2012 5781.0 5827.0 89.0 2773.0 \n", + "\n", + "[5 rows x 43 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Drop the rows until 2008 to match carbon dataset\n", + "df_energy_short = df_energy_short.drop([str(i) for i in np.arange(1990, 2008)])\n", + "df_energy_short.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countryEU27_2020BEBGCZDKDEEEIEELES...PTROSISKFISEISNORSTR
time
2008305128.21817158.03097.08520.012815.041670.01369.0753.0317575.05881.0...10744.0921.06225.09412.016107.012754.00.03412.08875.0789.0
2009292276.7539486.02662.08586.011208.041859.03025.0939.2177600.06751.0...7598.0651.07780.08994.015460.013765.00.05651.05184.0812.0
2010291540.09412395.01167.06642.010599.042962.01100.0759.8878517.05206.0...5814.0767.08625.07334.015719.014931.00.014673.05620.01144.0
2011321114.67313189.01449.010457.011694.051003.01690.0731.6227180.07932.0...6742.03410.07036.011227.017656.012481.00.011254.06701.04556.0
2012349454.14116848.02353.011587.015920.046268.02710.0783.6055954.07787.0...10766.03903.07452.013472.019089.011682.00.04191.05781.05827.0
\n", + "

5 rows × 32 columns

\n", + "
" + ], + "text/plain": [ + "country EU27_2020 BE BG CZ DK DE EE \\\n", + "time \n", + "2008 305128.218 17158.0 3097.0 8520.0 12815.0 41670.0 1369.0 \n", + "2009 292276.753 9486.0 2662.0 8586.0 11208.0 41859.0 3025.0 \n", + "2010 291540.094 12395.0 1167.0 6642.0 10599.0 42962.0 1100.0 \n", + "2011 321114.673 13189.0 1449.0 10457.0 11694.0 51003.0 1690.0 \n", + "2012 349454.141 16848.0 2353.0 11587.0 15920.0 46268.0 2710.0 \n", + "\n", + "country IE EL ES ... PT RO SI SK \\\n", + "time ... \n", + "2008 753.031 7575.0 5881.0 ... 10744.0 921.0 6225.0 9412.0 \n", + "2009 939.217 7600.0 6751.0 ... 7598.0 651.0 7780.0 8994.0 \n", + "2010 759.887 8517.0 5206.0 ... 5814.0 767.0 8625.0 7334.0 \n", + "2011 731.622 7180.0 7932.0 ... 6742.0 3410.0 7036.0 11227.0 \n", + "2012 783.605 5954.0 7787.0 ... 10766.0 3903.0 7452.0 13472.0 \n", + "\n", + "country FI SE IS NO RS TR \n", + "time \n", + "2008 16107.0 12754.0 0.0 3412.0 8875.0 789.0 \n", + "2009 15460.0 13765.0 0.0 5651.0 5184.0 812.0 \n", + "2010 15719.0 14931.0 0.0 14673.0 5620.0 1144.0 \n", + "2011 17656.0 12481.0 0.0 11254.0 6701.0 4556.0 \n", + "2012 19089.0 11682.0 0.0 4191.0 5781.0 5827.0 \n", + "\n", + "[5 rows x 32 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Match countries w/ the carbon dataset\n", + "countries = list(df_carbon_short.columns)\n", + "df_energy_short = df_energy_short[df_energy_short.columns.intersection(countries)]\n", + "df_energy_short.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 316, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hovertemplate": "country=EU27_2020
time=%{x}
value=%{y}", + "legendgroup": "EU27_2020", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "EU27_2020", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 305128.218, + 292276.753, + 291540.094, + 321114.673, + 349454.141, + 332062.258, + 363686.914, + 387638.649, + 362524.588, + 366554.329, + 372348.275, + 369432.448, + 381008.85, + 401425.821, + 422411.977 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=BE
time=%{x}
value=%{y}", + "legendgroup": "BE", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "BE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 17158, + 9486, + 12395, + 13189, + 16848, + 17243, + 21791, + 23714, + 14648, + 14189.4, + 21635.9, + 12734.4, + 13721.9, + 15193.6, + 16349.6 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=BG
time=%{x}
value=%{y}", + "legendgroup": "BG", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "BG", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 3097, + 2662, + 1167, + 1449, + 2353, + 3351, + 4319, + 4251, + 4568, + 3705.423, + 2222.726, + 3044.947, + 3706.736, + 1856.976, + 1470.003 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=CZ
time=%{x}
value=%{y}", + "legendgroup": "CZ", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "CZ", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 8520, + 8586, + 6642, + 10457, + 11587, + 10571, + 11842, + 16146, + 13817, + 15071.999, + 11573.41, + 11026.213, + 13368.051, + 15152.981, + 16726.075 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=DK
time=%{x}
value=%{y}", + "legendgroup": "DK", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "DK", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 12815, + 11208, + 10599, + 11694, + 15920, + 11459, + 12702, + 15644.747, + 14976.458, + 15218.109, + 15633.609, + 15981.899, + 18593.972, + 20119.85, + 18752.207 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=DE
time=%{x}
value=%{y}", + "legendgroup": "DE", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "DE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 41670, + 41859, + 42962, + 51003, + 46268, + 39222, + 40435, + 37008, + 28338, + 27842, + 31727, + 40126, + 47853, + 51731, + 49331 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=EE
time=%{x}
value=%{y}", + "legendgroup": "EE", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "EE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 1369, + 3025, + 1100, + 1690, + 2710, + 2712, + 3730, + 5452, + 3577, + 2281, + 3053, + 4861, + 7367, + 7332.438, + 7183 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=IE
time=%{x}
value=%{y}", + "legendgroup": "IE", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "IE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 753.031, + 939.217, + 759.887, + 731.622, + 783.605, + 2625.164, + 2853.015, + 1751.975, + 871.263, + 1116.408, + 1621.519, + 2179.579, + 1761.112, + 2450.715, + 1581.629 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=EL
time=%{x}
value=%{y}", + "legendgroup": "EL", + "marker": { + "color": "#FF97FF", + "symbol": "circle" + }, + "mode": "markers", + "name": "EL", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 7575, + 7600, + 8517, + 7180, + 5954, + 5788, + 9461, + 11081, + 9833, + 8696, + 8550, + 11067, + 9831, + 7581, + 7751 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=ES
time=%{x}
value=%{y}", + "legendgroup": "ES", + "marker": { + "color": "#FECB52", + "symbol": "circle" + }, + "mode": "markers", + "name": "ES", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 5881, + 6751, + 5206, + 7932, + 7787, + 9887, + 12310, + 14956, + 21845, + 23762, + 24018, + 18720.84, + 17928.364, + 17411.223, + 8031.52 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=FR
time=%{x}
value=%{y}", + "legendgroup": "FR", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "FR", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 10748, + 18517, + 19475, + 9501, + 12213, + 11687, + 7873, + 9961, + 19903, + 21119.18, + 13512.09, + 15631.75, + 19536.102, + 24334.451, + 52437.269 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=HR
time=%{x}
value=%{y}", + "legendgroup": "HR", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "HR", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 12254, + 11892, + 12415, + 13985, + 13174, + 11260, + 10898, + 13158, + 12398, + 12157.9, + 12693.4, + 11400.8, + 10491, + 11504.7, + 11919.7 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=IT
time=%{x}
value=%{y}", + "legendgroup": "IT", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "IT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 43433, + 47070, + 45987, + 47519, + 45407, + 44338, + 46747, + 50849, + 43181, + 42894.881, + 47170.204, + 43974.94, + 39789.94, + 46571.698, + 47391.065 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=CY
time=%{x}
value=%{y}", + "legendgroup": "CY", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "CY", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=LV
time=%{x}
value=%{y}", + "legendgroup": "LV", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "LV", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 4643, + 4259, + 3973, + 4009, + 4935, + 5005, + 5340, + 5246, + 4828, + 4072.912, + 5173.682, + 4610.761, + 4173.365, + 4666.37, + 5308.232 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=LT
time=%{x}
value=%{y}", + "legendgroup": "LT", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "LT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 5649, + 4783, + 8174, + 8086, + 8060, + 8073, + 8521, + 7938, + 11106, + 11926.2, + 12847.5, + 13267.9, + 12013.4, + 12478.9, + 12933.9 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=LU
time=%{x}
value=%{y}", + "legendgroup": "LU", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "LU", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 6829.873, + 6022.472, + 7279.51, + 7096.34, + 6732.098, + 6851.524, + 6961.176, + 7518.755, + 7718.393, + 7566.69, + 7553.012, + 6817.52, + 6543.493, + 6758.47, + 7146.086 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=HU
time=%{x}
value=%{y}", + "legendgroup": "HU", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "HU", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 12774, + 10972, + 9897, + 14664, + 16970, + 16635, + 19079, + 19935, + 17951, + 19803, + 18613, + 19853, + 19176, + 19967, + 21589 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=MT
time=%{x}
value=%{y}", + "legendgroup": "MT", + "marker": { + "color": "#FF97FF", + "symbol": "circle" + }, + "mode": "markers", + "name": "MT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1054, + 1526.688, + 897.066, + 631.293, + 656.756, + 419.81, + 547.25, + 646.139 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=NL
time=%{x}
value=%{y}", + "legendgroup": "NL", + "marker": { + "color": "#FECB52", + "symbol": "circle" + }, + "mode": "markers", + "name": "NL", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 24967, + 15452, + 15583, + 20620, + 32155.723, + 33252, + 32855, + 30760.009, + 24257.626, + 22457.716, + 26754.589, + 20402.855, + 19773.283, + 20885.396, + 18544.448 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=AT
time=%{x}
value=%{y}", + "legendgroup": "AT", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "AT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 19795.314, + 19542.064, + 19908.697, + 24976.711, + 23429.715, + 24959.57, + 26711.723, + 29389.163, + 26366.16, + 29362.427, + 28076.136, + 26046.847, + 24522.492, + 26436.192, + 28595.17 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=PL
time=%{x}
value=%{y}", + "legendgroup": "PL", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "PL", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 9034, + 7403, + 6310, + 6780, + 9803, + 7801, + 13508, + 14459, + 14017, + 13271, + 13815.804, + 17868.327, + 20624.119, + 15099.836, + 15237.63 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=PT
time=%{x}
value=%{y}", + "legendgroup": "PT", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "PT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 10744, + 7598, + 5814, + 6742, + 10766, + 8100, + 7247, + 8077, + 4616, + 5505.732, + 5667.568, + 8099.208, + 7553.113, + 9544.418, + 12314.691 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=RO
time=%{x}
value=%{y}", + "legendgroup": "RO", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "RO", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 921, + 651, + 767, + 3410, + 3903, + 2737, + 2811, + 4492, + 4177, + 4841.754, + 3696.594, + 5492.633, + 8251.648, + 8697.204, + 8653.371 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=SI
time=%{x}
value=%{y}", + "legendgroup": "SI", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "SI", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 6225, + 7780, + 8625, + 7036, + 7452, + 7521, + 7254, + 9045, + 8359, + 9132.532, + 8930.239, + 9021.273, + 7119.95, + 8387.153, + 10198.242 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=SK
time=%{x}
value=%{y}", + "legendgroup": "SK", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "SK", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 9412, + 8994, + 7334, + 11227, + 13472, + 10719, + 12964, + 14999, + 13249, + 15563, + 12428, + 13538, + 13289, + 13884, + 16743 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=FI
time=%{x}
value=%{y}", + "legendgroup": "FI", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "FI", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 16107, + 15460, + 15719, + 17656, + 19089, + 17591, + 21622, + 21459, + 22110, + 22204, + 22548, + 23938, + 21774, + 24492, + 19397 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=SE
time=%{x}
value=%{y}", + "legendgroup": "SE", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "SE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 12754, + 13765, + 14931, + 12481, + 11682, + 12674, + 13852, + 9294, + 14287, + 11896, + 12202, + 9070, + 11827, + 8341, + 6181 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=IS
time=%{x}
value=%{y}", + "legendgroup": "IS", + "marker": { + "color": "#FF97FF", + "symbol": "circle" + }, + "mode": "markers", + "name": "IS", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + null + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=NO
time=%{x}
value=%{y}", + "legendgroup": "NO", + "marker": { + "color": "#FECB52", + "symbol": "circle" + }, + "mode": "markers", + "name": "NO", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 3412, + 5651, + 14673, + 11254, + 4191, + 10135, + 6347, + 7371, + 5740, + 6111, + 8339.724, + 12353, + 4496.145, + 8235.069, + 13271 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=RS
time=%{x}
value=%{y}", + "legendgroup": "RS", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "RS", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 8875, + 5184, + 5620, + 6701, + 5781, + 4077, + 7008, + 6303, + 5068, + 6549.189, + 6400.007, + 5416.609, + 5069.528, + 6984.008, + 8446.83 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=TR
time=%{x}
value=%{y}", + "legendgroup": "TR", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "TR", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + "2008", + "2009", + "2010", + "2011", + "2012", + "2013", + "2014", + "2015", + "2016", + "2017", + "2018", + "2019", + "2020", + "2021", + "2022" + ], + "xaxis": "x", + "y": [ + 789, + 812, + 1144, + 4556, + 5827, + 7429, + 7953, + 7136, + 6330, + 2728.268, + 2476.887, + 2211.506, + 1889.521, + 2334.453, + 6438.816 + ], + "yaxis": "y" + } + ], + "layout": { + "legend": { + "title": { + "text": "country" + }, + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "time" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "value" + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = px.scatter(df_energy_short)\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 317, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'
'" + ] + }, + "execution_count": 317, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plotly.offline.plot(fig, include_plotlyjs=False, output_type=\"div\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Merge Datasets\n", + "And standardize the data" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countrycarbonenergy
0EU27_20208626928.75305128.218
1EU27_20207851179.61292276.753
2EU27_20208024312.00291540.094
3EU27_20207901995.31321114.673
4EU27_20207728876.39349454.141
\n", + "
" + ], + "text/plain": [ + " country carbon energy\n", + "0 EU27_2020 8626928.75 305128.218\n", + "1 EU27_2020 7851179.61 292276.753\n", + "2 EU27_2020 8024312.00 291540.094\n", + "3 EU27_2020 7901995.31 321114.673\n", + "4 EU27_2020 7728876.39 349454.141" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_carbon_long = pd.melt(df_carbon_short)\n", + "df_energy_long = pd.melt(df_energy_short)\n", + "df_merged = pd.concat([df_carbon_long, df_energy_long[\"value\"]], axis=1)\n", + "df_merged.columns = [\"country\", \"carbon\", \"energy\"]\n", + "df_merged.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countrycarbonenergy
0EU27_20208626928.75305128.218
1EU27_20207851179.61292276.753
2EU27_20208024312.00291540.094
3EU27_20207901995.31321114.673
4EU27_20207728876.39349454.141
\n", + "
" + ], + "text/plain": [ + " country carbon energy\n", + "0 EU27_2020 8626928.75 305128.218\n", + "1 EU27_2020 7851179.61 292276.753\n", + "2 EU27_2020 8024312.00 291540.094\n", + "3 EU27_2020 7901995.31 321114.673\n", + "4 EU27_2020 7728876.39 349454.141" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_merged.fillna(0)\n", + "df_merged.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
carbonenergycountry
00.0412994.622992EU27_2020
1-0.1811054.412569EU27_2020
2-0.1314694.400507EU27_2020
3-0.1665364.884745EU27_2020
4-0.2161695.348760EU27_2020
\n", + "
" + ], + "text/plain": [ + " carbon energy country\n", + "0 0.041299 4.622992 EU27_2020\n", + "1 -0.181105 4.412569 EU27_2020\n", + "2 -0.131469 4.400507 EU27_2020\n", + "3 -0.166536 4.884745 EU27_2020\n", + "4 -0.216169 5.348760 EU27_2020" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_merged_s = pd.DataFrame()\n", + "for feat in df_merged.columns:\n", + "\tif feat == \"country\": continue\n", + "\tdf_merged_s[f'{feat}'] = ((df_merged[feat] - df_merged[feat].mean()) / df_merged[feat].std())\n", + "df_merged_s[\"country\"] = df_merged[\"country\"]\n", + "df_merged_s.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
carbonenergy
country
ATcarbon1.000000-0.752501
energy-0.7525011.000000
BEcarbon1.000000-0.201674
energy-0.2016741.000000
BGcarbon1.000000-0.215923
............
SIenergy-0.5667301.000000
SKcarbon1.000000-0.755988
energy-0.7559881.000000
TRcarbonNaNNaN
energyNaN1.000000
\n", + "

64 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " carbon energy\n", + "country \n", + "AT carbon 1.000000 -0.752501\n", + " energy -0.752501 1.000000\n", + "BE carbon 1.000000 -0.201674\n", + " energy -0.201674 1.000000\n", + "BG carbon 1.000000 -0.215923\n", + "... ... ...\n", + "SI energy -0.566730 1.000000\n", + "SK carbon 1.000000 -0.755988\n", + " energy -0.755988 1.000000\n", + "TR carbon NaN NaN\n", + " energy NaN 1.000000\n", + "\n", + "[64 rows x 2 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_merged_s.groupby(\"country\").corr()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "df_merged_s = df_merged_s.drop(df_merged_s[df_merged_s[\"country\"] == \"EU27_2020\"].index, axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 318, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hovertemplate": "country=BE
energy=%{x}
carbon=%{y}", + "legendgroup": "BE", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "BE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.09207599049527926, + -0.21769313971441526, + -0.17006275818698216, + -0.15706223466247826, + -0.09715176164464477, + -0.09068424679303388, + -0.016217771995245763, + 0.015268382586140905, + -0.13317336334981933, + -0.14068222995981616, + -0.018757294915460545, + -0.16450560745119297, + -0.14833682032216577, + -0.12424000612693603, + -0.10531229177639885 + ], + "xaxis": "x", + "y": [ + 0.389329349425087, + 0.0739143177553588, + 0.21798663800047677, + 0.01054812105556511, + -0.09549876559651473, + -0.16246137833748042, + -0.22841693380734776, + -0.17392566099538334, + -0.19604400310460798, + -0.202393317963953, + -0.17293703541562705, + -0.18423140190448803, + -0.3711983017165415, + -0.385156444678411, + -0.4764527145166988 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=BG
energy=%{x}
carbon=%{y}", + "legendgroup": "BG", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "BG", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.3223031457573063, + -0.3294255988217385, + -0.35390391452593667, + -0.34928660012554613, + -0.33448499651578345, + -0.3181442881058907, + -0.3022947833556138, + -0.3034081783174102, + -0.2982177929808009, + -0.3123411589508211, + -0.33661803203421076, + -0.323155433227106, + -0.3123196606039852, + -0.342606623317696, + -0.34894270844344893 + ], + "xaxis": "x", + "y": [ + -0.03113460562545779, + -0.3454825487307274, + -0.23204498676156418, + -0.016612382381283545, + -0.19347215573144147, + -0.383764884952134, + -0.2354320429862401, + -0.10643458135986414, + -0.18897416077601709, + -0.08820772290309299, + -0.2529537351500309, + -0.29505891138012014, + -0.5463624368711715, + -0.27879268717774125, + -0.00482389518892174 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=CZ
energy=%{x}
carbon=%{y}", + "legendgroup": "CZ", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "CZ", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.233509897554051, + -0.23242924950289576, + -0.26425924664601363, + -0.20179451459817685, + -0.18329251008597355, + -0.199927940691636, + -0.1791172789792374, + -0.10864592727965956, + -0.14677970472118299, + -0.1262310346673683, + -0.18351502534377961, + -0.1924745309748098, + -0.15413055111388135, + -0.1249050795086008, + -0.09914809518460085 + ], + "xaxis": "x", + "y": [ + 1.033656422274519, + 0.7358876063463934, + 0.7870793971199834, + 0.7210568321740335, + 0.59114142702084, + 0.4542669961770165, + 0.43732212793653463, + 0.4170183627609024, + 0.4667969597215975, + 0.4079712721397594, + 0.4244716926405289, + 0.2675901353269031, + -0.016226658600780427, + 0.17168095700816785, + 0.11999283223729602 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=DK
energy=%{x}
carbon=%{y}", + "legendgroup": "DK", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "DK", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.16318590695235793, + -0.1894980496524559, + -0.19946948394266104, + -0.18154055036667643, + -0.11234632818210022, + -0.1853883123670019, + -0.16503610740357827, + -0.11685317087944315, + -0.1277953709621474, + -0.12383870911048506, + -0.11703553842480323, + -0.1113328276712145, + -0.06856416711174156, + -0.04358027185415599, + -0.06597331340909691 + ], + "xaxis": "x", + "y": [ + 2.8640938219664425, + 2.4924415899288506, + 2.3751210190435232, + 2.329551903299487, + 1.968006522495548, + 1.8773570275584905, + 1.5619382631057277, + 1.532812996990854, + 1.655793023146555, + 1.6391318865541304, + 1.7397654465253087, + 1.5658851937811331, + 1.0864442902939973, + 1.3210809395369902, + 1.1152020550315676 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=DE
energy=%{x}
carbon=%{y}", + "legendgroup": "DE", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "DE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + 0.3092701463216474, + 0.3123647293772283, + 0.3304246505957772, + 0.46208360482819016, + 0.3845552938854622, + 0.26918792769698047, + 0.28904892900078805, + 0.2329370976173184, + 0.0909792399882896, + 0.08285800614930479, + 0.14646888006957895, + 0.2839895313067431, + 0.4105072205685084, + 0.4740034803015388, + 0.4347071875322575 + ], + "xaxis": "x", + "y": [ + 0.46810080191352976, + 0.24037157593272357, + 0.33957251269728717, + 0.33998577076984987, + 0.3683692308320058, + 0.40350306777458794, + 0.24467730389227374, + 0.2508622788214417, + 0.20900227361589863, + 0.15976617445618552, + 0.07049330237934534, + -0.15828333334660494, + -0.41373141199181396, + -0.2737399037601462, + -0.3128043612378251 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=EE
energy=%{x}
carbon=%{y}", + "legendgroup": "EE", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "EE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.3505964765511888, + -0.3234820345403847, + -0.35500093603241245, + -0.3453405973932974, + -0.3286396729663529, + -0.3286069260557118, + -0.31193874853940834, + -0.283743658477449, + -0.31444388720345, + -0.33566388529886193, + -0.3230235777914098, + -0.29342037057188447, + -0.2523884915386266, + -0.25295439090141486, + -0.2554012073176048 + ], + "xaxis": "x", + "y": [ + 2.0105467973059996, + 1.233887408228778, + 2.2432775196416515, + 2.251095415130665, + 2.0674149125476395, + 2.5979302735683802, + 2.4032408018488085, + 1.65265812186307, + 1.8909871156574716, + 2.1940228941808875, + 1.9078640483935143, + 0.6081621550455674, + -0.14884710439457982, + 0.1286443367325917, + 0.5000061456354896 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=IE
energy=%{x}
carbon=%{y}", + "legendgroup": "IE", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "IE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.3606820174515228, + -0.35763350929921384, + -0.3605697610418452, + -0.3610325567564801, + -0.36018141542855275, + -0.3300287314219257, + -0.32629802325368673, + -0.3443258524998074, + -0.3587461510820654, + -0.35473228037751314, + -0.34646186798710293, + -0.33732449751092575, + -0.34417624823854365, + -0.3328850643291375, + -0.347115005119839 + ], + "xaxis": "x", + "y": [ + 0.89356374186121, + 0.5635395778959246, + 1.0208534953868555, + 0.8677936198297266, + 0.9774703570204796, + 0.9786902545985532, + 0.9901107587641874, + 1.1087410577120838, + 1.341319911397281, + 1.4603445751457, + 1.4854561275989928, + 1.3248970937929572, + 0.5701709156946565, + 0.7030323066127009, + 1.0199417903668606 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=EL
energy=%{x}
carbon=%{y}", + "legendgroup": "EL", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "EL", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.2489828128319555, + -0.24857347644894218, + -0.2335590179200126, + -0.2554503276835664, + -0.27552418390654093, + -0.27824217748974955, + -0.2181024760974286, + -0.1915774784781637, + -0.21201155071819, + -0.23062816941763703, + -0.23301869389443497, + -0.19180670685265117, + -0.21204429762883106, + -0.24888457210003231, + -0.24610108469554154 + ], + "xaxis": "x", + "y": [ + 0.7282468947721913, + 0.5366419403660242, + 0.4318768805134645, + 0.326158733927917, + 0.30824790343324376, + 0.11759696178842055, + 0.05329805958036359, + -0.03167776569439739, + -0.07478619473852921, + 0.08240694961482904, + 0.07591797935827498, + -0.08368592930560452, + -0.37951421984278066, + -0.30913007853980856, + -0.28557865737719285 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=ES
energy=%{x}
carbon=%{y}", + "legendgroup": "ES", + "marker": { + "color": "#FF97FF", + "symbol": "circle" + }, + "mode": "markers", + "name": "ES", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.27671944614493993, + -0.26247454001607545, + -0.2877715284863003, + -0.2431374892825249, + -0.24551164030400233, + -0.21112738413088117, + -0.17145450188922756, + -0.1281303391110949, + -0.015333605407936933, + 0.01605430844152653, + 0.020245913003583207, + -0.06648689958213608, + -0.07946246996073147, + -0.08792985501864768, + -0.24150800300902536 + ], + "xaxis": "x", + "y": [ + -0.3363544062592298, + -0.5869239152302087, + -0.6836315163446423, + -0.647647499362031, + -0.6666531447995993, + -0.8314060262847476, + -0.8137287814258027, + -0.7504746284232158, + -0.8271610893631843, + -0.7468428541538084, + -0.8010958366472803, + -0.9165241158910964, + -1.1246836448216384, + -1.056650248003671, + -1.0199716380797157 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=FR
energy=%{x}
carbon=%{y}", + "legendgroup": "FR", + "marker": { + "color": "#FECB52", + "symbol": "circle" + }, + "mode": "markers", + "name": "FR", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.1970298390999015, + -0.06982446471467371, + -0.05413869451760225, + -0.21744753788460724, + -0.17304272705531934, + -0.18165516455392017, + -0.2441035231464364, + -0.20991574843716165, + -0.04713085564041374, + -0.027217786748686836, + -0.15177213498296696, + -0.11706597667824412, + -0.053138243650607, + 0.025427309313221493, + 0.485567544217317 + ], + "xaxis": "x", + "y": [ + -0.5245273734301886, + -0.664160153184772, + -0.6447274395241989, + -0.7310066769467638, + -0.7497919190346188, + -0.7770379209781103, + -0.8847956521860976, + -0.8915059575546423, + -0.9012263768684616, + -0.862817854231947, + -0.9113442028282714, + -0.9504913090535021, + -1.0986801206399213, + -1.0385071076708507, + -1.0384880681838071 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=HR
energy=%{x}
carbon=%{y}", + "legendgroup": "HR", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "HR", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.17237141538717746, + -0.17829860621321073, + -0.1697352890805715, + -0.1440289642273333, + -0.15730783649228627, + -0.18864662997578813, + -0.1945738208018214, + -0.1575698117774148, + -0.17001363782102058, + -0.17394490444348076, + -0.16517691911933488, + -0.18634124746665698, + -0.2012378171172787, + -0.18464004545885349, + -0.17784506150083193 + ], + "xaxis": "x", + "y": [ + -0.7853405908782347, + -0.9369981068675427, + -0.9489265246853555, + -0.9533886826300821, + -1.0623681434041299, + -1.1208957186622581, + -1.1566554561640792, + -1.1434367597461432, + -1.1353411417590262, + -1.0649209054188793, + -1.1270554614689334, + -1.1042986901815304, + -1.147253467325555, + -1.10519617507568, + -1.1112091524222243 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=IT
energy=%{x}
carbon=%{y}", + "legendgroup": "IT", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "IT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + 0.33813654805174864, + 0.3976868050525304, + 0.3799543529403922, + 0.40503848649145013, + 0.3704577488544825, + 0.3529545251168318, + 0.3923981789839979, + 0.459562092708828, + 0.33401043731097413, + 0.3293256806481183, + 0.39932749076946916, + 0.34700997842815884, + 0.2784870679117245, + 0.38952787951939766, + 0.4029437484850176 + ], + "xaxis": "x", + "y": [ + -0.19696714156449563, + -0.4991259568995677, + -0.44558875418816457, + -0.49494817566909116, + -0.571954099190263, + -0.7520300951685807, + -0.8483104818450061, + -0.8280362406322672, + -0.8353546456000968, + -0.8297345995736471, + -0.8512970723764582, + -0.8718067656164425, + -1.0109091518787772, + -0.8897886680707314, + -0.874614664211673 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=CY
energy=%{x}
carbon=%{y}", + "legendgroup": "CY", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "CY", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997 + ], + "xaxis": "x", + "y": [ + 0.7743258909035522, + 0.5869664439441591, + 0.38055638039921275, + 0.11794496496494354, + -0.12570123204678535, + -0.3325988853584029, + -0.19265342338504024, + -0.239711770477789, + -0.12044166907746418, + -0.05063897037173955, + -0.058412129803558754, + -0.14705181063970363, + -0.229392792810413, + -0.24066432395605725, + -0.2408496930441122 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=LV
energy=%{x}
carbon=%{y}", + "legendgroup": "LV", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "LV", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.2969897838317609, + -0.3032771906748459, + -0.3079599988965186, + -0.30737055450497935, + -0.29220873487816496, + -0.2910625930057276, + -0.28557748547334877, + -0.28711659027347897, + -0.2939606945974621, + -0.3063240942285334, + -0.2883006858153493, + -0.2975176476578396, + -0.30467933152121984, + -0.29660713618092, + -0.28609763740197147 + ], + "xaxis": "x", + "y": [ + -0.9116049357163434, + -1.0755150625900796, + -0.8710860603956235, + -0.9475002718657622, + -0.9651320753951427, + -0.9853935127606994, + -0.9815929633726708, + -0.9289873681235234, + -0.932211913539048, + -0.8986733625611568, + -0.8160316275957892, + -0.8028244878970632, + -1.0154308135960664, + -0.960863655197209, + -1.0147658994335014 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=LT
energy=%{x}
carbon=%{y}", + "legendgroup": "LT", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "LT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.28051808777930376, + -0.2946975000868861, + -0.2391751130949557, + -0.2406159771631627, + -0.24104168700149659, + -0.24082883208232964, + -0.23349352409873045, + -0.24303924855060172, + -0.19116814209515035, + -0.17773863404124846, + -0.1626537696544406, + -0.15577036903768815, + -0.1763108687372979, + -0.16868902528558938, + -0.16123910311474646 + ], + "xaxis": "x", + "y": [ + -0.45620436196048797, + -0.8100101497103074, + -0.7131790857935787, + -0.608554208859025, + -0.6018854142167116, + -0.6944528744297449, + -0.6056644843340084, + -0.5194556996075146, + -0.5293497191350754, + -0.4336395050327734, + -0.3453804705894559, + -0.3018372325280085, + -0.12153305800213665, + -0.31066647426156063, + -0.43488630617151824 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=LU
energy=%{x}
carbon=%{y}", + "legendgroup": "LU", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "LU", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.261183116474579, + -0.2744030606738333, + -0.2538210051446201, + -0.25682013095568224, + -0.26278403106854414, + -0.26082861479343405, + -0.2590332326706269, + -0.24990373782645892, + -0.2466349739531782, + -0.24911887624566917, + -0.24934283236754343, + -0.2613853777681535, + -0.26587214660927344, + -0.262352230304831, + -0.256005617047307 + ], + "xaxis": "x", + "y": [ + 2.430995560330969, + 2.3538108502638675, + 2.317360370149131, + 1.83887227529978, + 1.6682738584499108, + 1.48898760410982, + 1.5200772343951594, + 1.859999411564478, + 1.6992989563133467, + 1.5932957965482397, + 1.581072127633651, + 1.7888848001720121, + 1.3126105237571917, + 1.230936726382045, + 1.034297311305112 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=HU
energy=%{x}
carbon=%{y}", + "legendgroup": "HU", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "HU", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.16385721862049982, + -0.1933621851081019, + -0.21096364957767583, + -0.13291138806469077, + -0.09515420009553964, + -0.10063930762791849, + -0.060622582824533665, + -0.046606905070156655, + -0.07909184042609589, + -0.04876820117246713, + -0.06825261300390245, + -0.047949528406440435, + -0.05903435765844188, + -0.046082954499899575, + -0.019525209969993608 + ], + "xaxis": "x", + "y": [ + -0.7009584128530842, + -0.8755000734666982, + -0.8471875219473893, + -0.8393104237167032, + -0.9644499566004822, + -1.0026459628965982, + -0.9757672874457981, + -0.9096981429868234, + -0.915332466478335, + -0.852317228791707, + -0.8365434509876892, + -0.8775426454623501, + -0.957546538482611, + -0.9346272105146824, + -0.9692780534288457 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=MT
energy=%{x}
carbon=%{y}", + "legendgroup": "MT", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "MT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.355754114977157, + -0.34801457912860445, + -0.3583236668144297, + -0.36267528915533387, + -0.36225837186250714, + -0.36613799660688634, + -0.36405136346083755, + -0.36243220883764526 + ], + "xaxis": "x", + "y": [ + -0.36665649673227946, + -0.48324264398909245, + -0.4364378193778632, + -0.4332724193647941, + -0.334737770037045, + -0.583653140070884, + -0.6044664874699124, + -1.103481190628297, + -1.3213408551246033, + -1.2476179114151196, + -1.2632852991687384, + -1.2388408770387518, + -1.3800522169083937, + -1.3940705603143135, + -1.3688018783373956 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=NL
energy=%{x}
carbon=%{y}", + "legendgroup": "NL", + "marker": { + "color": "#FF97FF", + "symbol": "circle" + }, + "mode": "markers", + "name": "NL", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + 0.03578432210276987, + -0.12000910527211008, + -0.11786418262512013, + -0.035391088175590946, + 0.15348855695496422, + 0.17143839943339312, + 0.16493813767114118, + 0.13063589613572055, + 0.024169418608221464, + -0.005301327357760685, + 0.06505333072574772, + -0.038946502131168285, + -0.049254771144227445, + -0.031045638627342522, + -0.06937504611303569 + ], + "xaxis": "x", + "y": [ + 0.8797286373914293, + 0.7494803981516011, + 0.864944772432592, + 0.7033795185080277, + 0.6234161012411295, + 0.6049561101284453, + 0.584497959110727, + 0.6715081454052486, + 0.6388204682719134, + 0.5758553823315365, + 0.47340352411157477, + 0.4072538467221599, + 0.0813809618011996, + 0.07767140688377379, + -0.07315087739940786 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=AT
energy=%{x}
carbon=%{y}", + "legendgroup": "AT", + "marker": { + "color": "#FECB52", + "symbol": "circle" + }, + "mode": "markers", + "name": "AT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.04889404755006078, + -0.05304062510998599, + -0.04703757606545266, + 0.03594332472738756, + 0.01061365484034293, + 0.035662667329738294, + 0.06435146618997774, + 0.10819041040338798, + 0.05869340584904806, + 0.10775264970193817, + 0.08669162148423329, + 0.05346514871028245, + 0.028506190225149962, + 0.05984007167205568, + 0.09519000149307127 + ], + "xaxis": "x", + "y": [ + -0.1105455251319089, + -0.3366552278609487, + -0.22427214269543902, + -0.2871054831836085, + -0.3969537678441303, + -0.4571713534536262, + -0.5509636080138748, + -0.5360861711866254, + -0.5787986958722554, + -0.4986907264390063, + -0.5934794190473434, + -0.501618074091334, + -0.7067512678120795, + -0.5911029894600314, + -0.6935696756015396 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=PL
energy=%{x}
carbon=%{y}", + "legendgroup": "PL", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "PL", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.22509394151929657, + -0.25179904714708734, + -0.2696952338124309, + -0.26199970981177995, + -0.21250275437780602, + -0.24528241192951486, + -0.15183910241522797, + -0.13626794640540024, + -0.1435050136570762, + -0.1557196113261945, + -0.14679928737374634, + -0.08044548309781037, + -0.03532364591312569, + -0.1257752467916106, + -0.12351908288917295 + ], + "xaxis": "x", + "y": [ + 0.2757531440958969, + 0.1265435252941148, + 0.23107102016927833, + 0.2590464744311601, + 0.18861807872041741, + 0.17624587256388877, + 0.12173546565517257, + 0.14151370543808905, + 0.22838700008566726, + 0.35073137228129764, + 0.3404135958705206, + 0.21621890434030783, + 0.1005960243944813, + 0.35093066333126854, + 0.3166372874314136 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=PT
energy=%{x}
carbon=%{y}", + "legendgroup": "PT", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "PT", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.1970953329211836, + -0.24860622335958324, + -0.2778164676514157, + -0.2626219011139602, + -0.19673511690413187, + -0.24038674878867522, + -0.2543533061770906, + -0.2407633382610475, + -0.2974318671254153, + -0.282863879976166, + -0.2802140654609121, + -0.2403997165652891, + -0.249341178648556, + -0.2167366352015003, + -0.1713776940103189 + ], + "xaxis": "x", + "y": [ + -0.5714423208748509, + -0.6607277846437696, + -0.7864057700467633, + -0.7985023265178873, + -0.8196047409791255, + -0.8628174786600747, + -0.8570982271871312, + -0.7374030988399307, + -0.7933838151557114, + -0.6460084291711494, + -0.7380382998201859, + -0.842082545507414, + -1.0529396667142592, + -1.0857511363503876, + -1.032251745985712 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=RO
energy=%{x}
carbon=%{y}", + "legendgroup": "RO", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "RO", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.357931784534788, + -0.36235261747133213, + -0.3604532966541502, + -0.31717825424197915, + -0.30910614076895593, + -0.32819758967269846, + -0.32698595397897895, + -0.29946217558516147, + -0.30461981401112964, + -0.29373549409298344, + -0.31248572018784604, + -0.2830783558674097, + -0.2379037470362269, + -0.2306084557774311, + -0.23132615344449609 + ], + "xaxis": "x", + "y": [ + -0.4845340579057146, + -0.7829806692515303, + -0.8317508901391337, + -0.7417809968051046, + -0.7839157486033825, + -0.9396426288314438, + -0.9423761211915833, + -0.9524209342592778, + -0.9752141847566106, + -0.9357432467018323, + -0.9248736720690569, + -0.9705721966922026, + -1.0310959335836485, + -0.9956739871437817, + -1.0628855294949757 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=SI
energy=%{x}
carbon=%{y}", + "legendgroup": "SI", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "SI", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.27108697751467625, + -0.24562625449124606, + -0.23179068474539494, + -0.25780810524972325, + -0.2509967478363812, + -0.24986697941926433, + -0.2542386919898469, + -0.2249138335107707, + -0.23614602386065695, + -0.22348063221965375, + -0.2267928676168105, + -0.22530232648516102, + -0.2564335536755645, + -0.23568506197301795, + -0.20603127715000755 + ], + "xaxis": "x", + "y": [ + -0.1115077746717919, + -0.31745658148552736, + -0.2996953146047808, + -0.3447344984372656, + -0.4427496286552922, + -0.48304457999836814, + -0.6795183019395997, + -0.6454999478607218, + -0.5728815180227083, + -0.5548770296507972, + -0.5317852339186653, + -0.5644869018209768, + -0.6484765441666306, + -0.6773356445026107, + -0.7524795285532221 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=SK
energy=%{x}
carbon=%{y}", + "legendgroup": "SK", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "SK", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.21890477540813477, + -0.22574887973211794, + -0.25292881556420416, + -0.18918695400136576, + -0.15242854680676718, + -0.19750466930419697, + -0.1607462621095984, + -0.12742628053231192, + -0.15607982734324624, + -0.11819165173153082, + -0.16952243416140456, + -0.15134789875561194, + -0.15542488913042488, + -0.1456826832147072, + -0.09887097445330083 + ], + "xaxis": "x", + "y": [ + -0.10534443956316383, + -0.33770153382616314, + -0.337457274495169, + -0.34069973841604245, + -0.49242379083289245, + -0.5178121913612281, + -0.5955776186844808, + -0.5765545220561832, + -0.5639679417686213, + -0.528801862984254, + -0.5301303839752333, + -0.6699782115966506, + -0.8163450064860566, + -0.6451124035600752, + -0.8096049162611805 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=FI
energy=%{x}
carbon=%{y}", + "legendgroup": "FI", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "FI", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.10928449203716038, + -0.11987811762954581, + -0.11563739270152754, + -0.08392200974565339, + -0.06045884827132833, + -0.0849862843414881, + -0.01898488594441599, + -0.021653759161663014, + -0.010994639747995453, + -0.009455534947865267, + -0.0038230663176016086, + 0.018936036577940494, + -0.016496120735694838, + 0.02800693082551627, + -0.05541582403260389 + ], + "xaxis": "x", + "y": [ + 1.1955379019814807, + 1.009365792525721, + 1.4215210083200096, + 1.0076133770374045, + 0.6854779396960361, + 0.7125286127294597, + 0.4718324209617017, + 0.29488952008152947, + 0.44613274302540634, + 0.2875212500635347, + 0.34734038545328866, + 0.20539238572566476, + -0.1652715762353174, + -0.16164915112526118, + -0.2134232675200424 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=SE
energy=%{x}
carbon=%{y}", + "legendgroup": "SE", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "SE", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.1641846877269105, + -0.14763112439785075, + -0.12853967549410825, + -0.16865464102941627, + -0.18173703183052284, + -0.16549456415255323, + -0.1462066337849643, + -0.22083684313595775, + -0.13908418072053205, + -0.17823311239192857, + -0.17322283506384523, + -0.22450449712775736, + -0.17936288080904542, + -0.23644074605642657, + -0.27180740954877974 + ], + "xaxis": "x", + "y": [ + -0.6694547446818297, + -0.8511075605299669, + -0.669478202155552, + -0.8244309169437158, + -0.9307373868325645, + -0.9844953799333962, + -1.039332362353199, + -1.0437540932828977, + -1.0297691901083998, + -1.08625236424985, + -1.1151069892599343, + -1.1592691410970148, + -1.308795103226589, + -1.2592033862423198, + -1.2912337552602406 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=IS
energy=%{x}
carbon=%{y}", + "legendgroup": "IS", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "IS", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + -0.3730117368849997, + null + ], + "xaxis": "x", + "y": [ + 2.64385841882039, + 2.206922904964012, + 2.207952829114897, + 2.02751464137078, + 2.119438067497162, + 2.349619078264414, + 2.285901764868609, + 2.7215873439980265, + 3.014983912740825, + 3.2491836228145874, + 4.387712198722648, + 3.102183507671248, + 1.54751448269646, + 1.485382945556187, + 2.0428229480111293 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=NO
energy=%{x}
carbon=%{y}", + "legendgroup": "NO", + "marker": { + "color": "#FF97FF", + "symbol": "circle" + }, + "mode": "markers", + "name": "NO", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.3171455073313381, + -0.2804853408686627, + -0.13276402696680598, + -0.18874487070771134, + -0.3043905856366422, + -0.20706676721138875, + -0.2690894159655711, + -0.2523229977173444, + -0.2790281033451352, + -0.27295355142121713, + -0.23646163858541555, + -0.1707504433104446, + -0.29939430761285785, + -0.23817520255198604, + -0.1557196113261945 + ], + "xaxis": "x", + "y": [ + 1.0968796665721194, + 0.8272413530159188, + 0.9687530156360906, + 1.2092896036930045, + 1.1304430138944526, + 1.106348816835652, + 1.0363223059637567, + 1.388010086243886, + 0.8745873107547625, + 0.9768142157581334, + 1.1163813277743144, + 1.1050222797815854, + 0.7734308085225999, + 0.7296830787441889, + 0.7341580921413929 + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=RS
energy=%{x}
carbon=%{y}", + "legendgroup": "RS", + "marker": { + "color": "#FECB52", + "symbol": "circle" + }, + "mode": "markers", + "name": "RS", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.22769732091526146, + -0.28813174450335205, + -0.28099291798359927, + -0.26329321278210216, + -0.2783567916769933, + -0.30625715954318306, + -0.25826656199869824, + -0.2698098479996746, + -0.29003106532053397, + -0.2657788834077677, + -0.2682215082193956, + -0.28432313143469795, + -0.2900060466808042, + -0.2586593939387485, + -0.23470794327985445 + ], + "xaxis": "x", + "y": [ + null, + null, + null, + null, + null, + null, + null, + null, + null, + null, + null, + null, + null, + null, + null + ], + "yaxis": "y" + }, + { + "hovertemplate": "country=TR
energy=%{x}
carbon=%{y}", + "legendgroup": "TR", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "TR", + "orientation": "v", + "showlegend": true, + "type": "scatter", + "x": [ + -0.3600930806370985, + -0.3597164911647262, + -0.35428050399830896, + -0.2984142744446473, + -0.27760361273224876, + -0.25137333730875344, + -0.2427936467207937, + -0.2561707597176699, + -0.2693677647060202, + -0.32834056268455736, + -0.3324565382564885, + -0.3368017422029071, + -0.3420737492142892, + -0.3347886749916134, + -0.26758607079186103 + ], + "xaxis": "x", + "y": [ + null, + null, + null, + null, + null, + null, + null, + null, + null, + null, + null, + null, + null, + null, + null + ], + "yaxis": "y" + } + ], + "layout": { + "legend": { + "title": { + "text": "country" + }, + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "energy" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "carbon" + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = px.scatter(df_merged_s, x=\"energy\", y=\"carbon\", color=\"country\")\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 319, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'
'" + ] + }, + "execution_count": 319, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plotly.offline.plot(fig, include_plotlyjs=False, output_type=\"div\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(465, 33)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
carbonenergycountry_ATcountry_BEcountry_BGcountry_CYcountry_CZcountry_DEcountry_DKcountry_EE...country_NLcountry_NOcountry_PLcountry_PTcountry_ROcountry_RScountry_SEcountry_SIcountry_SKcountry_TR
150.389329-0.09207601000000...0000000000
160.073914-0.21769301000000...0000000000
170.217987-0.17006301000000...0000000000
180.010548-0.15706201000000...0000000000
19-0.095499-0.09715201000000...0000000000
\n", + "

5 rows × 33 columns

\n", + "
" + ], + "text/plain": [ + " carbon energy country_AT country_BE country_BG country_CY \\\n", + "15 0.389329 -0.092076 0 1 0 0 \n", + "16 0.073914 -0.217693 0 1 0 0 \n", + "17 0.217987 -0.170063 0 1 0 0 \n", + "18 0.010548 -0.157062 0 1 0 0 \n", + "19 -0.095499 -0.097152 0 1 0 0 \n", + "\n", + " country_CZ country_DE country_DK country_EE ... country_NL \\\n", + "15 0 0 0 0 ... 0 \n", + "16 0 0 0 0 ... 0 \n", + "17 0 0 0 0 ... 0 \n", + "18 0 0 0 0 ... 0 \n", + "19 0 0 0 0 ... 0 \n", + "\n", + " country_NO country_PL country_PT country_RO country_RS country_SE \\\n", + "15 0 0 0 0 0 0 \n", + "16 0 0 0 0 0 0 \n", + "17 0 0 0 0 0 0 \n", + "18 0 0 0 0 0 0 \n", + "19 0 0 0 0 0 0 \n", + "\n", + " country_SI country_SK country_TR \n", + "15 0 0 0 \n", + "16 0 0 0 \n", + "17 0 0 0 \n", + "18 0 0 0 \n", + "19 0 0 0 \n", + "\n", + "[5 rows x 33 columns]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dummies = pd.get_dummies(df_merged_s, dtype=int)\n", + "print(df_dummies.shape)\n", + "df_dummies.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO Fix later\n", + "df_dummies = df_dummies.fillna(0)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1. , -0.09207599, 0. , 1. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. ],\n", + " [ 1. , -0.21769314, 0. , 1. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. ]])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = np.pad(df_dummies.iloc[:, 1:].to_numpy(), ((0,0), (1,0)), mode=\"constant\", constant_values=1)\n", + "y = np.array(df_dummies[\"carbon\"])\n", + "X[0:2,]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.5 , -2.63265928, -0.25 , -0.75 , -1. ,\n", + " -1. , 0.5 , 1.75 , 1.5 , 0.75 ,\n", + " -0.75 , -0.75 , 0.75 , -0.25 , -0.75 ,\n", + " -0.75 , 1. , 1.375 , -0.25 , -0.5 ,\n", + " 0.875 , -1.375 , -2. , 0.875 , -0.75 ,\n", + " 0.375 , -1.5 , -2. , -0.875 , -2. ,\n", + " -0.75 , -1.75 , -1. ])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "m = np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, y))\n", + "np.set_printoptions(suppress=True) #this just prevents python from printing it out in inconvenient scientific notation\n", + "m" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-0.60307536 -1.24919755 -0.97973066 -1.15294323 -1.10126625]\n" + ] + }, + { + "data": { + "text/plain": [ + "-738.4" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# get the residuals\n", + "res = y - np.matmul(X, m)\n", + "print(res[0:5])\n", + "round(sum(res), 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADgaElEQVR4nOy9eZxkZX3v/z5r7d3Ve/f09MwwCzPADMMmhEUhQhjFXaOARAFF1AS9atRIfipi4iXmRuUaCXiTCC4hol73eFlFDYssIssAA7NPz/Te1bVXnfX5/XG6i96n9+nleb9eDdNV55x6TlX183ye76oIIQQSiUQikUgkKxD1WA9AIpFIJBKJ5FghhZBEIpFIJJIVixRCEolEIpFIVixSCEkkEolEIlmxSCEkkUgkEolkxSKFkEQikUgkkhWLFEISiUQikUhWLFIISSQSiUQiWbFIISSRSCQSiWTFIoWQRLIM+cIXvoCiKFM6VlEUvvCFL8zreC644AIuuOCCRXs9yeT85je/QVEUfvOb3xzroUgkc44UQhLJPHLHHXegKErlR9d1Wltbueqqqzhy5MixHt6iY926dSPer8bGRl796lfzk5/8ZE6uXywW+cIXvrCoF/R/+7d/Q1EUvv3tb4957tFHH0VVVT75yU9OeP7JJ5/MmjVrmKx70rnnnktTUxOu687JmCWSpYwUQhLJAvDFL36R7373u9x22228/vWv53vf+x7nn38+5XJ5Xl7vs5/9LKVSaV6uPd+ccsopfPe73+W73/0un/zkJ+no6ODtb387t91226yvXSwWufHGGxe1EHr/+9/Peeedxyc/+Un6+/srjzuOw7XXXktbWxs33njjhOdfccUVtLe389///d/jPn/gwAEeffRRLr30UnRdn/PxSyRLDSmEJJIF4PWvfz1/8Rd/wTXXXMO//du/8clPfpK9e/fy85//fF5eT9d1wuHwvFx7vmltbeUv/uIv+Iu/+As+/elP8/DDDxOLxfja1752rIe2ICiKwje/+U0ymcwIy89XvvIVdu7cyTe+8Q1isdiE57/73e9GURTuvPPOcZ//z//8T4QQXHHFFXM+dolkKSKFkERyDHj1q18NwN69e0c8vmvXLv78z/+c2tpawuEwZ5xxxhix5DgON954I5s2bSIcDlNXV8d5553HfffdVzlmvBghy7L4+Mc/TkNDA4lEgje/+c0cPnx4zNiuuuoq1q1bN+bx8a55++2389rXvpbGxkZCoRAnnngit95667Tei6PR3NzMCSecwP79+yc9rqenh/e///00NTURDofZvn37CPfSgQMHaGhoAODGG2+suN8mio968sknJ3RR3XPPPSiKwi9/+UsAcrkcH/vYx1i3bh2hUIjGxkb+7M/+jKeeempG93ziiSfyqU99ijvuuIPf/va37N+/ny9+8Yu8/e1v501vetOk57a1tfGa17yGH/3oRziOM+b5O++8kw0bNnDWWWdx8OBB/vIv/5LNmzcTiUSoq6vjne98JwcOHDjqGNetW8dVV1015vHx4rcsy+KGG25g48aNhEIh2tra+PSnP41lWSOOu++++zjvvPNIJpPE43E2b97M3/7t3x51LBLJbJB2UYnkGDC00NTU1FQee/755zn33HNpbW3lM5/5DLFYjB/84Ae89a1v5f/+3//L2972NiAQJDfddBPXXHMNZ555JtlslieffJKnnnqKP/uzP5vwNa+55hq+973v8e53v5tzzjmHX//617zhDW+Y1X3ceuutnHTSSbz5zW9G13V+8Ytf8Jd/+Zf4vs9f/dVfzeraQziOQ3t7O3V1dRMeUyqVuOCCC9izZw/XXXcdxx13HD/84Q+56qqrSKfT/I//8T9oaGjg1ltv5cMf/jBve9vbePvb3w4EMTXjccYZZ7B+/Xp+8IMfcOWVV4547q677qKmpoYdO3YA8KEPfYgf/ehHXHfddZx44on09/fz0EMP8eKLL3LaaafN6L4/+9nP8v3vf58PfvCDrF27Fl3X+frXvz6lc6+44gquvfZa7rnnHt74xjdWHn/uuefYuXMnn//85wF44okneOSRR7jssstYvXo1Bw4c4NZbb+WCCy7ghRdeIBqNzmjsw/F9nze/+c089NBDXHvttZxwwgk899xzfO1rX+Pll1/mpz/9KRB8/9/4xjdy8skn88UvfpFQKMSePXt4+OGHZz0GiWRShEQimTduv/12AYj7779f9Pb2ivb2dvGjH/1INDQ0iFAoJNrb2yvHXnjhhWLbtm2iXC5XHvN9X5xzzjli06ZNlce2b98u3vCGN0z6ujfccIMY/uf99NNPC0D85V/+5Yjj3v3udwtA3HDDDZXHrrzySrF27dqjXlMIIYrF4pjjduzYIdavXz/isfPPP1+cf/75k45ZCCHWrl0rLr74YtHb2yt6e3vFM888Iy677DIBiI985CMTXu/mm28WgPje975Xecy2bXH22WeLeDwustmsEEKI3t7eMfc7Gddff70wDEOkUqnKY5ZliWQyKd73vvdVHquurhZ/9Vd/NaVrTod77rlHAAIQN99885TPS6VSIhQKicsvv3zE45/5zGcEIF566SUhxPif36OPPioA8Z3vfKfy2IMPPigA8eCDD1YeW7t2rbjyyivHnD/6s/nud78rVFUV//3f/z3iuNtuu00A4uGHHxZCCPG1r31NAKK3t3fK9ymRzAXSNSaRLAAXXXQRDQ0NtLW18ed//ufEYjF+/vOfs3r1agBSqRS//vWvede73kUul6Ovr4++vj76+/vZsWMHu3fvrmSZJZNJnn/+eXbv3j3l1//Vr34FwEc/+tERj3/sYx+b1X1FIpHKvzOZDH19fZx//vns27ePTCYzo2vee++9NDQ00NDQwPbt2/nhD3/Ie97zHr785S9PeM6vfvUrmpubufzyyyuPGYbBRz/6UfL5PL/97W9nNJZLL70Ux3H48Y9/PGJ86XSaSy+9tPJYMpnkscceo6OjY0avMxG1tbWoajBNX3zxxVM+r6amhksuuYSf//znFAoFAIQQfP/73+eMM87g+OOPB0Z+fo7j0N/fz8aNG0kmkzN2643mhz/8ISeccAJbtmypfK/7+vp47WtfC8CDDz4IBO8hwM9+9jN835+T15ZIpoIUQhLJAnDLLbdw33338aMf/YhLLrmEvr4+QqFQ5fk9e/YghOBzn/tcRQQM/dxwww1AEAMDQQZaOp3m+OOPZ9u2bXzqU5/i2WefnfT1Dx48iKqqbNiwYcTjmzdvntV9Pfzww1x00UXEYjGSySQNDQ2VmI6ZCqGzzjqL++67j/vvv59HHnmEvr4+vvOd74xYtEdz8OBBNm3aVBENQ5xwwgmV52fC9u3b2bJlC3fddVflsbvuuov6+vrKQg7wj//4j+zcuZO2tjbOPPNMvvCFL7Bv374ZveYQnudx7bXXsmrVKpLJ5BgRezSuuOIKCoUCP/vZzwB45JFHOHDgwIgg6VKpxOc//3na2toIhULU19fT0NBAOp2e8ec3mt27d/P888+P+V4PibGh7/Wll17KueeeyzXXXENTUxOXXXYZP/jBD6Qoksw7MkZIIlkAzjzzTM444wwA3vrWt3Leeefx7ne/m5deeol4PF6Z7D/5yU9W4k5Gs3HjRgBe85rXsHfvXn72s59x77338m//9m987Wtf47bbbuOaa66Z9VgnKsToed6I3/fu3cuFF17Ili1b+OpXv0pbWxumafKrX/2Kr33tazNewOrr67noootmdO58cOmll/KlL32Jvr4+EokEP//5z7n88stHpJ6/613vqtQ7uvfee/lf/+t/8eUvf5kf//jHvP71r5/R6/7v//2/+eMf/8hPf/pTjhw5wl/91V9x55138u53v3tK57/xjW+kurq6cs6dd96JpmlcdtlllWM+8pGPcPvtt/Oxj32Ms88+m+rqahRF4bLLLjvq5zfZ90TTtMrvvu+zbds2vvrVr457fFtbGxBYp373u9/x4IMP8l//9V/cfffd3HXXXbz2ta/l3nvvHXFNiWROOda+OYlkOTMUI/TEE0+MeHwo5uKmm24SQgjR3d0tAHH99ddP+zVyuZw49dRTRWtra+Wx0fE8//N//k8BiF27do049/HHHx8TM/Pxj39cVFdXj3md97znPSOuORTTcfDgwRHH/e3f/q0AxP79+yuPTSdG6GjxT+Nd7+KLLxbNzc3C87wRx33/+98XgPjFL34hhBCir69vWjFCQgjxwgsvCEDcdttt4ic/+cmYWJnx6O7uFq2treLcc8+d8usM59ChQyIej4u3vOUtQgghPM8TZ555pmhqahLpdHrK13n/+98vDMMQXV1doqGhQfzZn/3ZiOerq6vF1VdfPeKxUqkkNE0bEf8zXozQqaeeWhnfcNra2kZ8NpdccolobW0Vvu9PedxDfOlLXxKAuO+++6Z9rkQyVaRrTCI5BlxwwQWceeaZ3HzzzZTLZRobG7ngggv45je/SWdn55jje3t7K/8eXmQPIB6Ps3HjxjGpyMMZskqMzjq6+eabxxy7YcMGMpnMCHdbZ2fnmOrOQzt0MayCcSaT4fbbb59wHPPFJZdcQldX1wgXluu6/PM//zPxeJzzzz8foJIFlU6np3ztE044gW3btnHXXXdx11130dLSwmte85rK857njXEjNTY2smrVqhGfSV9fH7t27aJYLB71NT/ykY8ghOCf//mfAVBVldtuu42+vr5ppZNfccUVOI7DBz/4QXp7e8fUDtI0bUwF6n/+538eY/0bjw0bNvD73/8e27Yrj/3yl7+kvb19xHHvete7OHLkCP/6r/865hqlUqkSw5RKpcY8f8oppwBM+t2WSGaLdI1JJMeIT33qU7zzne/kjjvu4EMf+hC33HIL5513Htu2beMDH/gA69evp7u7m0cffZTDhw/zzDPPAEGNmQsuuIDTTz+d2tpannzyyUrq9kSccsopXH755fzLv/wLmUyGc845hwceeIA9e/aMOfayyy7jb/7mb3jb297GRz/6UYrFIrfeeivHH3/8iADaiy++GNM0edOb3sQHP/hB8vk8//qv/0pjY+O4Ym4+ufbaa/nmN7/JVVddxR/+8AfWrVvHj370Ix5++GFuvvlmEokEELhfTjzxRO666y6OP/54amtr2bp1K1u3bp30+pdeeimf//znCYfDvP/97x8Ri5TL5Vi9ejV//ud/zvbt24nH49x///088cQTfOUrX6kc941vfIMbb7yRBx98cNI+aT/5yU/42c9+xle+8pWK2wjg1FNP5a/+6q/4xje+wVVXXcWrXvWqo74v559/PqtXr+ZnP/sZkUikUjJgiDe+8Y1897vfpbq6mhNPPJFHH32U+++/f9JSBUNcc801/OhHP+J1r3sd73rXu9i7dy/f+973xsShvec97+EHP/gBH/rQh3jwwQc599xz8TyPXbt28YMf/IB77rmHM844gy9+8Yv87ne/4w1veANr166lp6eHf/mXf2H16tWcd955Rx2PRDJjjrFFSiJZ1kzkGhMicHds2LBBbNiwQbiuK4QQYu/eveK9732vaG5uFoZhiNbWVvHGN75R/OhHP6qc9/d///fizDPPFMlkUkQiEbFlyxbxpS99Sdi2XTlmvFT3UqkkPvrRj4q6ujoRi8XEm970JtHe3j6uq+jee+8VW7duFaZpis2bN4vvfe97417z5z//uTj55JNFOBwW69atE1/+8pfFt771rQV3jQkRuKOuvvpqUV9fL0zTFNu2bRO33377mHMfeeQRcfrppwvTNKfsJtu9e3cljf2hhx4a8ZxlWeJTn/qU2L59u0gkEiIWi4nt27eLf/mXfxlx3ND7N5lbLZfLidWrV4tTTjml8p0YTjabFatWrRKnnXbauM+Px6c+9SkBiHe9611jnhsYGKi8Z/F4XOzYsUPs2rVrTGr8eK4xIYT4yle+IlpbW0UoFBLnnnuuePLJJ8f9bGzbFl/+8pfFSSedJEKhkKipqRGnn366uPHGG0UmkxFCCPHAAw+It7zlLWLVqlXCNE2xatUqcfnll4uXX355SvcpkcwURYhJOvNJJBKJRCKRLGNkjJBEIpFIJJIVixRCEolEIpFIVixSCEkkEolEIlmxSCEkkUgkEolkxSKFkEQikUgkkhWLFEISiUQikUhWLLKg4lHwfZ+Ojg4SicSEvXUkEolEIpEsLoQQ5HI5Vq1aNaYh83CkEDoKHR0dI6q7SiQSiUQiWTq0t7ezevXqCZ+XQugoDJXmb29vp6qq6hiPRiKRSCQSyVTIZrO0tbVV1vGJkELoKAy5w6qqqqQQkkgkEolkiXG0sBYZLC2RSCQSiWTFIoWQRCKRSCSSFYsUQhKJRCKRSFYsUghJJBKJRCJZsUghJJFIJBKJZMUihZBEIpFIJJIVixRCEolEIpFIVixSCEkkEolEIlmxSCEkkUgkEolkxSIrSx8DfF9wJF2iYLvETJ3WZARVlQ1dJRKJRCJZaKQQWmD29OS4Z2c3e3vzlF2PsK6xoSHOjq1NbGycvB+KRCKRSCSSuUUKoQVkT0+O2x8+QKpg01IdJmpGKNouOzsydGRKXH3uOimGJBKJRCJZQGSM0ALh+4J7dnaTKthsaoyTCBtoqkIibLCpMU6qYHPv8934vjjWQ5VIJBKJZMWw5ITQLbfcwrp16wiHw5x11lk8/vjjEx57xx13oCjKiJ9wOLyAo32FI+kSe3vztFSHx3TCVRSFluowe3ryHEmXjsn4JBKJRCJZiSwpIXTXXXfxiU98ghtuuIGnnnqK7du3s2PHDnp6eiY8p6qqis7OzsrPwYMHF3DEr1CwXcquR9Qc3xsZMTUs16Nguws8MolEIpFIVi5LSgh99atf5QMf+ABXX301J554IrfddhvRaJRvfetbE56jKArNzc2Vn6ampgUc8SvETJ2wrlGcQOiUbI+QrhGbQChJJBKJRCKZe5aMELJtmz/84Q9cdNFFlcdUVeWiiy7i0UcfnfC8fD7P2rVraWtr4y1veQvPP//8pK9jWRbZbHbEz1zQmoywoSFOZ6aMECPjgIQQdGbKbGyM05qMzMnrSSQSiUQiOTpLRgj19fXhed4Yi05TUxNdXV3jnrN582a+9a1v8bOf/Yzvfe97+L7POeecw+HDhyd8nZtuuonq6urKT1tb25yMX1UVdmxtojZmsrsnT67s4Po+ubLD7p48tTGTi09qkvWEJBKJRCJZQJaMEJoJZ599Nu9973s55ZRTOP/88/nxj39MQ0MD3/zmNyc85/rrryeTyVR+2tvb52w8GxsTXH3uOrauqiZddDjQVyBddNjWWi1T5yUSiUQiOQYsmYCU+vp6NE2ju7t7xOPd3d00NzdP6RqGYXDqqaeyZ8+eCY8JhUKEQqFZjXUyNjYmWH9BXFaWlkgkEolkEbBkLEKmaXL66afzwAMPVB7zfZ8HHniAs88+e0rX8DyP5557jpaWlvka5pRQVYW22ihbmqtoq41KESSRSCQSyTFiyViEAD7xiU9w5ZVXcsYZZ3DmmWdy8803UygUuPrqqwF473vfS2trKzfddBMAX/ziF/mTP/kTNm7cSDqd5n/9r//FwYMHueaaa47lbUgkEolEIlkkLCkhdOmll9Lb28vnP/95urq6OOWUU7j77rsrAdSHDh1CVV8xcg0MDPCBD3yArq4uampqOP3003nkkUc48cQTj9UtSCQSiUQiWUQoYnQut2QE2WyW6upqMpkMVVVVx3o4EolEIpFIpsBU1+8lEyMkkUgkEolEMtdIISSRSCQSiWTFIoWQRCKRSCSSFYsUQhKJRCKRSFYsUghJJBKJRCJZsUghJJFIJBKJZMUihZBEIpFIJJIVixRCEolEIpFIVixSCEkkEolEIlmxSCEkkUgkEolkxSKFkEQikUgkkhWLFEISiUQikUhWLFIISSQSiUQiWbFIISSRSCQSiWTFIoWQRCKRSCSSFYsUQhKJRCKRSFYsUghJJBKJRCJZsUghJJFIJBKJZMUihZBEIpFIJJIVixRCEolEIpFIVixSCEkkEolEIlmxSCEkkUgkEolkxSKFkEQikUgkkhWLFEISiUQikUhWLFIISSQSiUQiWbFIISSRSCQSiWTFIoWQRCKRSCSSFYsUQhKJRCKRSFYsUghJJBKJRCJZsUghJJFIJBKJZMUihZBEIpFIJJIVixRCEolEIpFIVixSCEkkEolEIlmxSCEkkUgkEolkxSKFkEQikUgkkhXLkhNCt9xyC+vWrSMcDnPWWWfx+OOPT3r8D3/4Q7Zs2UI4HGbbtm386le/WqCRSiQSiUQiWewsKSF011138YlPfIIbbriBp556iu3bt7Njxw56enrGPf6RRx7h8ssv5/3vfz9//OMfeetb38pb3/pWdu7cucAjl0gkEolEshhRhBDiWA9iqpx11lm86lWv4hvf+AYAvu/T1tbGRz7yET7zmc+MOf7SSy+lUCjwy1/+svLYn/zJn3DKKadw2223Tek1s9ks1dXVZDIZqqqq5uZGVji+LziSLlGwXWKmTmsygqoqx3pYEolEIllGTHX91hdwTLPCtm3+8Ic/cP3111ceU1WViy66iEcffXTccx599FE+8YlPjHhsx44d/PSnP53PoUomYU9Pjnt2drO3N0/Z9QjrGhsa4uzY2sTGxsSCjUOKMYlEIpHAEhJCfX19eJ5HU1PTiMebmprYtWvXuOd0dXWNe3xXV9eEr2NZFpZlVX7PZrOzGLVkOHt6ctz+8AFSBZuW6jBRM0LRdtnZkaEjU+Lqc9ctiBhaLGJMIpFIJMeeJRUjtBDcdNNNVFdXV37a2tqO9ZCWBb4vuGdnN6mCzabGOImwgaYqJMIGmxrjpAo29z7fje/Pr6d2SIzt7MiQjBqsr4+TjBrs7Mhw+8MH2NOTm9fXl0gkEsniYskIofr6ejRNo7u7e8Tj3d3dNDc3j3tOc3PztI4HuP7668lkMpWf9vb22Q9ewpF0ib29eVqqwyjKSBeUoii0VIfZ05PnSLo0b2NYLGJMIpFIJIuHJSOETNPk9NNP54EHHqg85vs+DzzwAGefffa455x99tkjjge47777JjweIBQKUVVVNeJHMnsKtkvZ9Yia43tjI6aG5XoUbHfexrAYxJhEIpFIFhdLJkYI4BOf+ARXXnklZ5xxBmeeeSY333wzhUKBq6++GoD3vve9tLa2ctNNNwHwP/7H/+D888/nK1/5Cm94wxv4/ve/z5NPPsn/+T//51jexookZuqEdY2i7ZIIG2OeL9keIV0jNoFQmgteEWORcZ+PmBrd2fIIMSaDqiUSiWR5s6SE0KWXXkpvby+f//zn6erq4pRTTuHuu++uBEQfOnQIVX3FyHXOOedw55138tnPfpa//du/ZdOmTfz0pz9l69atx+oWViytyQgbGuLs7MgQD+kjLDJCCDozZba1VtOaHF+kzAXTFWMyqFoikUiWP0uqjtCxQNYRmjtGZ41FTI2S7dGZKVMbM+c9a8z3Bbf+Zi87OzJsaoyPEWO7e/Jsa63mQ+dvYF9fflSGm07RdhdsrBKJRCKZHVNdv5dMjJBk6bOxMcHV565j66pq0kWHA30F0kWHba3VCyIsVFVhx9YmamMmu3vy5MoOru+TKzvs7slTGzO5+KTAuiiDqiUSiWRlsKRcY5Klz8bGBOsviB+zuJshMTbk8urOlgnpGttaq7n4pMDl1Z4qTjmouq02Oq3XlzFHEolEsriQQkiy4KiqMm0BMZccTYzNJKh6KsiYI4lEIll8SCEkWZFMJsbmI8NtsVTVlkgkEslIZIyQRDKKoQy3zkyZ0bkEQxluGxvjU85wk4UcJRKJZPEihZBEMoqpBlVPNbZHFnKUSCSSxYt0jUmWHXMRkDyVoOqpMl8xRxKJRCKZPVIISZYVcxmQPFcZbouhqrZEIpFIxkfOvJJlw3wEJM9FhttiqKotkUgkkvGRMUKSZcFiDkie65gjiUQikcwdUghJlgWLPSD5WFfVlkgkEsn4SNeYZFmwFAKSj3VVbYlEIpGMRQohyaJjJllfSyUg+VhX1ZZIJBLJSKQQkiwqZpr1JQOSJRKJRDITpBCSLBpmk/U1FJDckSmxuyeIFYqYGiXbozNTlgHJEolEIhkXGSwtWRTMRdaXDEiWSCQSyXSRFiHJomA6WV+TxdjIgGSJRCKRTAcphCSLgrnM+pIByRKJRCKZKtI1JlkUDM/6Go/FkvUlkUgkkuWFFEKSRcFQ1ldnpowQI+OAhrK+NjbGZdaXRCKRSOYUKYQkiwLZhkIikUgkxwIphCSLBpn1JZFIJJKFRgZcSBYVMutLIpFIJAuJFEKSRYfM+pJIJBLJQiFdYxKJRCKRSFYsUghJJBKJRCJZsUghJJFIJBKJZMUihZBEIpFIJJIViwyWluD7Ys6ytObyWkuBlXa/EolEstyQQmiFs6cnxz07u9nbm6fseoR1jQ0NcXZsbZp23Z65vNbRWAwCZCHvVyKRSCTzgxRCK5g9PTluf/gAqYJNS3WYqBmhaLvs7MjQkSlNq4jhXF5rKq91rAXIQt6vRCKRSOYPGSO0QvF9wT07u0kVbDY1xkmEDTRVIRE22NQYJ1Wwuff5bnxfLOi1jsaQANnZkSEZNVhfHycZNdjZkeH2hw+wpyc369c4Ggt5vxKJRCKZX6QQWqEcSZfY25unpTqMoox0KSmKQkt1mD09eY6kSwt6rclYLAJkoe5XIpFIJPOPFEIrlILtUnY9oub43tGIqWG5HgXbXdBrTcZiESALdb8SiUQimX+kEFpB+L6gPVVkV1eWbMkhpKkUJ1isS7ZHSNeITbDYDydm6oR1bU6uNRmLRYAs1P1KJBKJZP6RM/UKYXSAcUhT6cvb9BVsTm1LjrCwCCHozJTZ1lpNazJy1Gu3JiOsr4/xxMEUrckIIV0jEdZRFGXa15qM4QIkETbGPL9QAqQ1GWFDQ5ydHRniIX1W751EIpFIji1LxiKUSqW44oorqKqqIplM8v73v598Pj/pORdccAGKooz4+dCHPrRAI148jBdgXBMzAejMlPlje5pc2cH1fXJlh909eWpjJhef1DSllPR9fXlSRZtD/UUe2NXD73b38tj+ftpThWlfazKGBEhnpowQI+OAhgTIxsb4vAsQVVXYsbWJ2pjJ7p78jN674da59lRRBlZLJBLJMWLJWISuuOIKOjs7ue+++3Ach6uvvpprr72WO++8c9LzPvCBD/DFL36x8ns0uvy7mg+vsRMxNO7e2VUJMB6yXiTCBqeuScKhNAADBZvurE9I19jWWs3FJ00tFX14Gvmpa5J0pMv05i0O9hfpyVq8dksjl5+1Zk5SyYcESEemxO6eIFYoYmqUbI/OTHnOBNdU2NiY4Opz11WsbN3Z8pTfu8WQ/i+RSCSSgCUhhF588UXuvvtunnjiCc444wwA/vmf/5lLLrmEf/qnf2LVqlUTnhuNRmlubl6ooR5zRi+ynidoHyiypTkxboDxpqY4AwWby89aQ1XEmFZxwtFZXIqisLomSq7sYrkeR9IlamMh1tfH5+z+ZiNA5pqNjQnWXxCfVmFHWX9IIpFIFhdLQgg9+uijJJPJiggCuOiii1BVlccee4y3ve1tE577H//xH3zve9+jubmZN73pTXzuc5+b1CpkWRaWZVV+z2azc3MTC8B4i+zhgSL9BZuXunPEQjq1sdCIcyKmRnfWpypisKW5alqvN14Wl6IoVEUMwCBsaOztDbK42mrnzhI3EwEyX6iqMuV7G084QmCdi4d0dvfkuff5btbXx2WbDolEIlkgloQQ6urqorGxccRjuq5TW1tLV1fXhOe9+93vZu3ataxatYpnn32Wv/mbv+Gll17ixz/+8YTn3HTTTdx4441zNvaFYqJFtiZqUhMxKJRd9vYWqImaIyxDswkwfiWLa/yYnEBklecli2s6AmSxMJ30/6V2bxKJRLJUOabB0p/5zGfGBDOP/tm1a9eMr3/ttdeyY8cOtm3bxhVXXMF3vvMdfvKTn7B3794Jz7n++uvJZDKVn/b29hm//kIy0SKbCOvUxEIIFPrzFrnyK6JktgHGKzGNfDZBzosl/V8ikcw9MgFi6XJMV6i//uu/5qqrrpr0mPXr19Pc3ExPT8+Ix13XJZVKTSv+56yzzgJgz549bNiwYdxjQqEQoVBo3OcWMxNZZxRFYWNjnGzZoT9vMVC0iYbmJsB4paWRzzbIebGk/0skkrlFJkAsbY7pjNvQ0EBDQ8NRjzv77LNJp9P84Q9/4PTTTwfg17/+Nb7vV8TNVHj66acBaGlpmdF4FzOTLbK1MZPNTXF2CSg5Hgf6CnMSYLyYsrjmm7kIcl5pwlEiWQnIBIilz5LYep5wwgm87nWv4wMf+AC33XYbjuNw3XXXcdlll1Uyxo4cOcKFF17Id77zHc4880z27t3LnXfeySWXXEJdXR3PPvssH//4x3nNa17DySeffIzvaO452iJbcnzesK2ZN21fRdHx5izAeDFlcU2H4SUGjvZezFWQ81GFY9Rk2+pqXu7JHdMAcIlEMjVkAsTyYEkIIQiyv6677jouvPBCVFXlHe94B1//+tcrzzuOw0svvUSxWATANE3uv/9+br75ZgqFAm1tbbzjHe/gs5/97LG6hQrTWYSnylSsMzu2NrOmLjZHd/EKiymLaypM14w9FH/VXBUiV3axPR9TUyvVs6cT5DyRcGypDoOAnzx1ZNqm9fn4PkkkkqMjEyCWB0tGCNXW1k5aPHHdunUjqg23tbXx29/+diGGNi3m05e80NaZpbgAz8SMXbBd+vIWHekS6ZKD6/nomkpN1GRjY5yqiD6t7LjRwrEvZ/Gr5zoZKDrTNq3L2ASJ5NhxLDNnJXPHkhFCy4GF8CUvlHVmKS7AMzVj9+asIAtEQE3MxAjrOJ6gN1cmb7lsaoxNO8h5KP3f9wUPvNDDQNGZtmldxiZIJMcWmQCxPFgyvcaWOqMX4UTYQFMVEmGDTY1xUgWbe5/vnpOUy6FFdktzFW210XkRQaN7lyWjBjs7Mtz+8AH29OQqxy6mlNLpmLGH8H3BM+1pDE1FV8HUFFRFIaSr1MbMQeGRZUNDbEZBzjMZ09C4Fur7JJFIxmex9D+UzA4pUxeI5eJLno5VZV9fftpWo/l0t83EjH0kXWJfb4GtrVXs7smTKtjEwzqGpuJ4Pq7n4/kKq5KRGQU5z9S0vly+TxLJUmYlZc4uZ6QQWiCWiy/5lcDh8KSBw4/s7eP/DTZ7narbZr7dbTMxYw99buvr48RCOnt7CqSKNgXLRVNVklGDTMnll892ct+L3VMe85Dg68qU8XxBwXIHW5McfUzDx7XUv08SyVJnqWbOSl5BCqEFYrH5kmdqeRkTOOz76KpKbdRkQ2OMqohBV6bM/S/0TCsWZyHiXWZSx2f451YbC1GzzqwIwKLt8nxHFtv1qY0ZNFVNbczDBV/JcWlPldjfW+DM42qoi4ePOqbR41oM3yeJZCWz1DJnJSORs+QCsZiK6c3G8tI3GDgshCAZMzE0Hcfz6cmVyVlBwK8nBJ2ZEq01kUndNocHiiiKQs5y+OlTR+jP2xzfNLFwWlcbo3PQyjGTiWYmZuzxPreqiIEQgn09eTIlh/X1MVqqg3s9WpDzaMG3yowQMTSeODDAb1/u41XramhJRo5qWl9M3yeJRLK4+h8uxYzeY4kUQgvEYvElz8by4vuCpw+lMXQVzxeYmoqiKIR0DTOm0p+32Hkky9kb6+jJliftqbWnJ8+3HjpAtuyQKlrs7SnQmAjRkDCpjb3S4mRIOD11aIB/vOcl+vLWrNxm0zVjT/S59WQtDqaKJKMmGxsTI4TIRDE6E8VXtdXGiJo6jx9I8VJXjrLjEzYmN60vlu+TRCJZXCzFjN5jjRRCC8ix9iXPtgrqkXSJfX0Ftq6qYndPYWzgsA++EGxfneSh3X0Tum060yXaU0UUBTY0xDF1lQN9RdJFm6fb05zSlhwhhsqOx8vdOcqOx/FNiVm7zaZrxh7vcys7HomwzulraqiNmWPOmSjweqIA57p4iHM31NGRLvOuV7WxoSF+1F3csf4+SSSS+Wcq1p2hY17syvJfz3RiuT6rkrKkxlSRQmiB2diYYN1rYjzVPkB/waYuZnJaWw26Pv+VDGabaTQycNhgT0+egaJN3nLRVZXm6jAhXWVLc4LOdHlct43v++w8ksXQVU5urUZVVYSAsKER1lXylsve3gI1URNFURBC8FJXDtcTbGyIV4TVbEvYT9eMPVo8ZUsO//nYIcLG+J/bZIHXEwU4R0M6uqbQXB2e8thkbIJEsnyZinVn6Jg9PTme78ySL7usrY3SkDArJTVku4/JkUJogRnvi/3E/oEFMVvONtNoZOCwyavW1YzIHANBphRYgSZy2+zpyVG0PTY3x8lbHomwQiKsUxM16c2ViYU0UgWbXDnIosqWHDozZVqS4TFZVQuRJj7Rbsz3BY/vS/HEwRStyQghXatkzk0l8HouA5wXU2yCRCKZG6YSxgBUjomHNBQgGTXozVvkbbdiXZclNSZHCqEF5FhXAp7tQjxR4DAEAbq7e/KVxV9VlTFuG8v1yVkutudxoL/IkXS50qZiY2OcvOWSL7t4wqfkeCgK7OnNo2sKm5uqxlixYH7TxCfbjQGkijaH+ovs6soRD+nUx01akxFKjj/lwOshZICzRCIZYiphDPfs7EYIUTmmv2Dj+YKqiEE8BKmCPcK6LktqTIwUQgvEYuhSPNuFeKIA3aLlsq+vQDyks211deX44W6bId+14/lkwy6xkIaqqJU2Fae0JTmlLckLHRl6chbd2UAknbiqKnCbTcMFNRdMJlpf7MoC4PmCU9ck6UiX6c1bHOwv0p0pc+ZxtZx/fAMhXcP3ReXzlAHOEolkKkwljOHZI2kQVLJzTU1F11QcTxDSVeJhfYR1XZbUmBj5jiwQw7/YANmSM6IY4UKYLediIR4doLunJ09f3gIUxGD39GfbMxVXn6oqtCYj/PzpDmzP5+TWamzHpyNTIhE2iJkaecthb2+e09ckaUiEOGNdLW85ZRWJsEFLVZhv/m7fglpRJhOtMVPjnue7QYEdJzahqiqra6Lkyi49uTLPd2TZ2ZElZ3ncvbNrjD9fBjhLJJKjMZUwhqLtIRCV7NzhIQZmzMTQVApWELogLc6TI4XQAjH0xS47Gi92DjBQtEd0MV9XH8VyvXk3Wx5tIV5fH6c9VZw08HbI0vPI3j7ufPwQigLr62PEQsa4rr7hIjBdcim5HpmSQ1/extRVTF3FThUxNIXVNVHeecbqEYJgoa0oo3djQohKLJTleLiehyfg0ECJ2qhJIqzj+oJDqRJCgOX6NMRD6JoyrttTBjhLJJLJmEoYQ9TUQFA5RlGUSohBqhDMrYqiYLs+u3vy0uI8CVIILRAxU8d2ff5wMIXnC+JhY0QX81TBoq02uiBmy4kW4n19eW79zd4p1594pj2DELB9dXJSV99wEfjckQwl26W5Okyu5FKwPfJlFwGcsbZm3DiphbaiDN+NpQp2JTvO9YLYpf68haooPHVogJipUxMxKLkeJdulIWGSLjpkyg7xkE5TIkRX1hrj9pQBzhKJZCKmEsZwcmsSIQTPd2Yrx9TGTE5pS7KnJ8fB/mKwSfN8aXE+ClIILRAtVWEsxyddclhTE0FVg5iXkK5gRA0ODZRocn1aqsJHudLcMHohnm4g93RS8WOmTkhTeakrS2kw40xRFKrCBrYbtKpIl1waEiHW18fHHe9srSjTqbQ6tBvrSBfZ3VOgZLvEwwauCn15C8cTqCpEdJWwodKRKZEpOTRXh8lbLumSw84jGRQFdFUlZmo8dciX2RoSiWRKTCWMYShpozNbHnGMoSlURwxedVwtb9jWwgktVdLifBSkEFogOrNlQoZKTdRgoOiMKESYL7skIwamrtKZLS/4YjmTQO7ppOIf35igIRHmsf0pGhOhyvUVRcHUVfIWtNVG6M1Zk4qFmVpRpltptTUZYX19jJ8/24HnC+oGCyb25QK3pa4p+AIKlksyapIIG/TlbVJ5m7Lro6sKiZCOoQefb7po05u3eLEzK4WQRCKZElO1hI93zMmrk9ICNA2kEFogCraLqauctqaGA33FER3MG6vCrKuLkik5xyS1cSaFFqeTiq+qCmesq+HunZ3kyg4ojBCBEVNjc1NiXu5/JiULVFXhlDVJ/u9ThxFCYHs+vh98hkIE9+75gkzZpcpyMVQFTYWBok3I0GitiRIyNABCuoYIQ2/O4g8HB7joBOmjl0gkU2MqlnAZczh7pBBaIIaEQ9jQOH1tDZ3ZEiXbI2JqtFRFAguL4x+T1MaZFFqcbir+CS1VHN+cYKBgU7C9ESJwQ0MMQ1Pn/P5nU7KgPhGirTaK7QbuzKLt4ng+1RGDulgIXwg60sFnaKugKoGVqCqsow0GWA8FWhcsl5ZkmJ5seU7cY7KhokSycpiKJVzGHM4OKYQWiCHh8Pv9/biuz0DJwfV9dFXlSKqErqucvb7umKQ2zqTQ4nRT8VuTEU5tq+G5Ixm2VYVwBpu2JsLBNYcXY5wrZtNSJGbq1MdDVA8WjEwVbXYezpAI64QMDcv1aEyE2NpaTdn1ebY9Tc5yGSg6FG2fmKlVsskips7xTQmyc2DxWo4NFaWwk0gkxxIphBYIVVXY0pLgJ08fIVdyqIoEMUKu57Ovr0BVxGBzc+KYLAAzLbQ4nWyu4cKpO2dVhFPecuctDX42LUWGvyebGuMkwjq9WYueXBlDU8iXXRqrwoQNjV1dOYqOR9zUiZga1qAVqWC7rKuPsa01iaEpWLO0eB3ryuTzwXIUdhKJZGkhhdAC4fuCXZ05qsM6lu3SmS7jCYGmKNREDarCOi915fjTzY0LLoZmU2hxOv7phU6Dn01LkfHek3X1UfoLFocGSiSjJmtqI7zYmaU3b9GUMDF0jVzJoSkRwhOQKztEDI1kRGdPb2FWFq/FUJl8rlmOwk4imQ3SOnpskEJogTiSLvHH9gFSBZu87aIoCroCoJC3XfSCzVOHBo5ZivVsRMp0/NMLGdg325Yio98Ty/Voq43S6PiEDJXubJmenMXqmggntlQBCk+3pynYLvGwTnXUoCdn8eyRDKtrorOyeM3GzbcYWY7CTiKZDdI6euyQQmiByFkOe3ry9BcsNEUhGtLQFAVPCCzHo69gIXqC444VCyVShoTT0O7n5Z7cvLzWXLUUGf2etFSF6cyW2dmR4a4n2jmppQpdC+pCBcXMggKMjudTdjyOq4/xF3+ydlaT2WzcfIuR5SbsJJLZsByso0vZmiWF0AKRKzmkCjYIiIZ0huZ+XVHQTJ1c2WGgYJMrHTshBAuXfbBQu5+5cMeN954M/X5ftJuS45EYFEK1MZNXrashV3YZKNqUbI+rzz2OtXWxWd3HbNx8i5HpCLulPMFKJEdjOVhHl7o1a2nMmsuAgu0hBARfY4HrgUCgENSgUSAo0md7x3agC8BC737my9I1ketNURQSYZ2ubJmTV1ejALu6srN63dm6+RYbUxV2fTmLB17oWbITrERyNJa6dXQ5WLOkEFogVEUhYqpYjk+q6CAEgAAUFAVCWtCuQVUmXySX+u74WO1+5sPSdTTXm6Yq9Bdsbr5/96wX8blw8y0mpiLsWqrD/Oq5TgaKzpKdYCWSo7GU3d7LwZoFUggtGMfVx0iEDfJWGeH7+CiDOkigCoGDQn3C4Lj6iV0oS938CIt39zNTgTmR621VdZjunFVZ0OdiEV/orLv55KjCLmqCgIGis6QnWInkaCxlt/dinc+ny+J7Z5cprdURkhGD9lQRzwdfiEF7EKgKCHxqogat1ZFxF+V9ffklb36Exbn7mYrAnEwojXa9hXSVOx87RLpos7EhXrF4zMUivpzK6U8m7LatruYnTx1Z8hOsRHI0lrLbezHO5zNBCqEFojNbxvUFQgh8MUwAiSA2SBXgeIJH9/fzbHtmxKK8viFGKm9PaH58uTvHD588zFtOWUUibCzqhXE6u5+FcANOxb8NHFUoDbne9vTk+M/H2rl7ZxeaCn15m9qoyYbGGLWx0Jws4supnP5Ewu7lntyymGAlkqOxlN3eS9maNZzFPbplRKZsc3ighK6pmJrAFYEIUhTQFfBRONhf5M7HDgLBYhkxwvTmLH7zUg9dWYtXra0ZszseKDr05iye78jyUncuWHQXsbtsqrufku1x62/2zqsbcCr+7f987BAlx2egeHRL3JCoOthfQFMV6uImni/oyZXJWQ6ntCWpjYXkIj6K8YTdcplgJZKpsFTd3kvZmjUcOYssEAf6CpRsl7ChETE0PF8MyxpTKNouBcuhM1PmNZsaGCja7OrMkSra5C2HvpzNkwcGiIU06uJhAFIFm6fb0xQtF02F5qowUVNb1O6yqex+Njcn+Paj8+8GPJp/u7kqxKP7UjQkTLavTk4apwJURNXGhjh9eRvPD7rPmzGVVMFmb2+BmqgpF/EpsFwmWIlkqixFt/dStmYNRz3WA1gpKCioioLw/XGf9zwfH6iJmgwUA4HTkysTNlRqoyFCukqqaPHEgQFSBQshBHt68pRsl3hYI2zoRAyNRNhgU2OcVMHm3ue78X2xsDc6BYZ2P1tXVZMuOhzoK5AuOmxrrebKc9YGAnDQSpMIG2iqMi/39Yp/e3xB4vqCTClwbR0tTmW4qKqKGNRETfJlp9KFPh7WSRVssqVA7G5sjC/7Rdz3Be2pIru6srSnitP6zIYm2NqYye6ePLly0KQ4V3bY3ZNfMhOsRDIdhqyjW5qraKuNLonv92Tz+WLcjI+H3JIuEA2JEPGwTsF2SRWDwooVlECR6qpCTcRgb0+Bku1RGwsWYCEE8ZAeNPK0XPb2Fji+UWGgaBMP6eStoAHoUCf3pRBMOtHuZyGzEI7mfsmV3Yr7si9vYWoqifAr1omIqdGVKbO3N0/J8UgNus8URWFjY5y85ZIq2MTDOpqqUHZc9vTmWVsXW/aL+FxkOC5Vd4FEstJYitas4UghtECc1lZDazLCzo4MCIGiqAzVERK+jwvEQwaqqpAqBovnyAJ9RqUoY3e2TF3MpOx4OK5HNKSzoSE2QjgshTiU8WJDFjIL4WjulyPpEo7n80x7GkVV0FV1ROBzZ7rEgf4C//nYISzPY29PgVzJ4cRVVdTGQiPabZQdD8+HE1dV8a4z2pb1Ij6XBdaW+gQrkawUlnIShxRCC4SqKqytjbKrKweAqaloKng+2F5g9WmpDnpYOZ5Xse5AsCi7vs+6+iimpnAkXaYrW8bzBXVVIU5sCRbe4SzVOJSFDJKdzL+9uyfPQMEmauq4PjTEDNxhgc/r6qI83Z4hYmqsSoaJmjq5ksvhdAnL9Th1TQ21sRCvWldDtuSwpzfPSauq+dTFm9H15euRno8Ca0t5gpVIJIufJTMjf+lLX+Kcc84hGo2STCandI4Qgs9//vO0tLQQiUS46KKL2L179/wOdAKOpEugKJy9oZbamIknBCXHxxOCurjJORvraElGiBoaJdunYLn4QmC5HqmCTcTU2daa5KRV1WxdVc2HL9jA67c20xAPUxM1x9z3Uo1DGbLSdGbKCDEypmQu72sofsX1Ba/b2sxJq6oq/u2BwZ5wLdURXr2pnqqIQboY9IBLRg2yJYdH9qYAOHNdLVURE11TOXFVNQ3xEL15mxc6szieT95y6c5ZrK2L8c4zVi9rEQTTK7AmkUhWNrOJI5xLloy5wLZt3vnOd3L22Wfz7//+71M65x//8R/5+te/zre//W2OO+44Pve5z7Fjxw5eeOEFwuHwPI94JEMuny3N1ZzQXEVnpkzR8YgaGi3VYXyCzLI3bV9F2TnE3t48tuujayqNVWE2NMSpiRrs7smzvS3JBcc3sqY2yu0PH1jS0fqjWYgshPHiV9bXx3j7aa3UJ0JkSw7/+dghamImibAxwsXl+j4CcD2fk1pqqIu/YomrjZmcuqaGFzoy9GQtXuzMUhM1V1RMy3iuTSEEubKL7floikLZ8Ra1y1Yikcw/i6lTwpIRQjfeeCMAd9xxx5SOF0Jw880389nPfpa3vOUtAHznO9+hqamJn/70p1x22WXzNdRxGe3yaa0ZFRtTdgjpGietquZzbzqBWx7cS3/eoqU6TEMiRNnxx2TLLNdg0vm8r4niV57vzNKZLXP1ueuoihhYnl/JJhveUd72fDIlmyf2p0jGzDHXr42ZnLW+lhc7s7zrVW1sXVW9omJaRn/PUwWLvT0FUkMiUkBIV+nLWdB8rEcrkUiOBYutUeuSEULTZf/+/XR1dXHRRRdVHquuruass87i0UcfnVAIWZaFZVmV37PZ7JyMZzp1UVRV4SOv3VgRAgf7ixMKgfGCSVuqglij2XY8P5bMR5DsVONX3nByy5g4JUVRqIoE/7ZdD1PXJjTjlh2fmmiIrauqV1xsy/Dvue16PHM4Q8n2iId1dFWjN2ejqYJfPddJc3V4yYp1iUQyMxZjo9ZlK4S6uroAaGpqGvF4U1NT5bnxuOmmmyrWp7lkui6f6QiB4cGke3pyfPN3+xaFuXG2zHWQ7FTiV3Z35+jKJKkKG+ztzXNyazWq+kpcz5CbZ119jGzZpXmwTtDw51dysb+h7/mRdInH96ewXI+GRAjXF6SLDlURg+2rq+kfrAclm6ZKJHPDQrQkmgsWY6PWYyqEPvOZz/DlL3950mNefPFFtmzZskAjguuvv55PfOITld+z2SxtbW1zcu0hl8/dz3Xx3JEMRcclauicvLqaHVubxwiV6QqBxWZuXGwcLTW/5Hi80Jnl//xuH44XBPF1ZspsXVVFSzJSEa118RDv3NLIr3f1LKv4rLliY2OC129r5un2NJ4QpEsOuvpKrFttzMTU1UVd50oiWewMFz69OYtn2tPs6y1Qclx8P0j2uOjERs7ZUL+o5qLF2Kh1VkLItm16enrwR1VLXrNmzZTO/+u//muuuuqqSY9Zv379jMbW3BwEIHR3d9PS0lJ5vLu7m1NOOWXC80KhEKFQaMLn5wRl8Gfw33MRJz8Vc+M9O7swt6sUHW9R7xjmi8lS81MFm6cODpAru9TFQjQkQkQMlV1dOR7fn+K4+hgNifAI9+Tauuiyi8+aKxoSIdbWRWiIh/GEGLcY5WKvcyWRzCVzabEZHmjcl7doTxUxNJU1dRHyZY/evMXTh9P89uUe/nRLI+8+a82imZMWYx/BGb3S7t27ed/73scjjzwy4vGhdgKe503pOg0NDTQ0NMxkCEfluOOOo7m5mQceeKAifLLZLI899hgf/vCH5+U1j8aQxaY/b1EV1qmJmni+z84jGToz5VlZbI5mbowYKv/1XBfPHsmgqcqSdpnNBN8XCCHGdXkF7UpypEsO6+tjmLrKU4fSDBRtDE2l5DjkbZdrTl3Fqzc2zMh9udKImToRQ0fXFGrCY4PKl2qdK4lkJsxlhtRwy39zVYiOdAlfQMl2eepgmnhYpzYWoiZq0JezeGh3H2XH533nLQ6PwGLsIzijWeiqq65C13V++ctf0tLSMmbhnQ8OHTpEKpXi0KFDeJ7H008/DcDGjRuJx4Oml1u2bOGmm27ibW97G4qi8LGPfYy///u/Z9OmTZX0+VWrVvHWt7513sc7miGLzaH+Iq7vc6C/iOsF6fE1UYOC5c0qZmIyc2OqYPNSd55UwWJzU5zWmihF2+W5I2le7snxhm0tnNBSNe+L+LHyYY+3exru8urJljnYX6QmatCQCA0G+LrEwwZGWMfUVbozFj/+wxFak5ERk8mxKva32OMBFuNkJ5EcC+YyZGG05T9XdkmXHJJRg/68heX6RHyBqSkoikIyFjR5PpIuLpqYvMXYqHVGQujpp5/mD3/4w4LG7nz+85/n29/+duX3U089FYAHH3yQCy64AICXXnqJTCZTOebTn/40hUKBa6+9lnQ6zXnnncfdd9+94DWEILDY/LF9gJ5cGdcXhDSVkKEifOjJWeiqwlOHBmYcMzGRuXGoOWu+7FIdMUhGTTRVwfEEmZLDwcMZdnVmObGlio2NiXmzEM10RzTbBX/0JLQqGaE+brLzSJY/HkrTlw+sPomwzqltSQ70lyjZbqXPG0AspGO7Hv0Fa1FMJoup/sZELMbJTiJZaOY6Q2q05d/2fFzPx9QUSo5PxNQoOz626xMyNAxNpSBcaqLmoorJW2ylX2YkhE488UT6+vrmeiyTcscddxy1htDoSsSKovDFL36RL37xi/M4sqmRsxwOpYqUbA/fF6RdB18IVEUhrKuoqkJ7qkjOcmZ0/Yl24Lmyy0DBQkFQFw+RGOyC/nR7mpLtkowaeL7A0NR5C6qe6Y5otgv+RJNQW22M1mSEZ49kOK4+xuu2NnPX4+24vgga2YaNERYMx/PRNY2W6sgxn0yWUkD8YpvsJJKFZq4zpIYs/xEjTLbkkC+7+ALKro8vBGFNxXKDjgUQzF2aqlIVNugvWIsqJm8xhRbMSAh9+ctf5tOf/jT/83/+T7Zt24ZhjAx4qqqqmpPBLSfyZZdsyaHseCiKgqmraIqKJwRFx0MIEbRkKM/sizrRDnygaDNQcqiPm2xoiAGwpydfsXoIIF20MXSVTdXxOa/hMNMd0WQL/pF0kUu2tVCfCE36xzPZJKSqKhsa4qSLDi3Vgbvr0X19uJ6PMarPW77s0lgVFLY82F+Y98lkIivYYqy/cTQW02QnkSw0c50hFTN1bNfn9/v6KdgerueTLTs4ro+igOMHcbqaooyYuzSVRRmTt1j6CM7oXRkqUnjhhReOeHy6wdIriZih43gC2/Wpjuj4QuAKgQKEdYVMyUNXVWLGzL+o4+3AXU9QHzPZ3JSgNha0jxhu9bBdD01VMTV1Xmo4THVH1D5QRFUUCrZL1NC4+7mucRd82/V5/ECKZ9rTrKmLETEmthJNdRIqOR47tjbxck+Ofb0FTN0lFtIrwjRiamxoiFF25j/AdzIrWEjXFl39jamwWCY7iWShmesMqZLt0Zuz6MqWaakKY4R1dE3lyEAR2/FRFI/awYr3QY9KjfX1UbqylozJm4QZzegPPvjgXI9j2VNwXAxNwVYVBkouQgQZ9AJQFDBUFV1TKDizszaM3oFHDI1fPNPB8x1ZhBAVn7IR1kfsGIa63c91WvNUxMienjy3P7yfbCk41vMF7akSW5rjIxb8VMHmmcMZLMfH0xQa4iF0TZnQLTQ0CRWs4F5szx+Rxj18EmpNRnj7aa0cShU4MlDGcjwMXRusfROjJmqyuyc/YjKZ64Dlo7m9zt/cMOF7OWRR7M2X2dubl1YXiWQRMJdJA74vuO+FbqoiBp4fNHSOKzqJsM6qZJj2VAnXB8v1yVkuDYkQq6rD9BccGZN3FGYkhM4///y5HseyJx7WCRkaubILAhREIIYUACXw7xoa8fDYj2S6C+7oHfjrtjbTmSmzuydPPKShqgoFy8V2/Yq1Y+gPdK7TmsfbEQ1vwtmXK3MoVURRYENDnIgRZndPnu5sCXew31ddPFQJ+i7ZLg0Jk0zJwROCmrA5oVuoNRkhGTV4aHcfigKeEOiqSm3UZH1DlP6Cw7bWakqOy62/2cve3jxxM8gSc33YWBdlQ0OcsuON6fM21wHLU3F7PXkgRUhTx+wuUwWbPT15enJlyrbHfz5+iOePZBdV8LREshKZy6SBIev6psY4jhet9PArWC6aqnJCSwIfWF8fJ2+5aEpQsE7G5B2dGa926XSaf//3f+fFF18E4KSTTuJ973sf1dXVcza45UTM1NFVBUWBsKGiqyqKAkKA6/u4vkBTlTECZC4W3OEusz09ORQgXXRYWxdlY2Oc2lhQQHKmac2TCbXhO6KYqXF4oMzevjz5soPjevQXHUxd45zqCI7ns6szR3e2TNnxOJIu8duXejl9bRKhKPRkyyTC+uB7FbjzYGK30L6+PD05i5LjoSoK1VEDEBxJF2kfKLK9Lcnm5gTffuTgiKyyhkSInR1ZXu7KUbI96uOhEZPJfAQsT8WF2Ju1aEiEaR8oVnaXQ4HvRdvF83za6qKsqo4syuBpiWQlMldJA8Ot65qqULPOrGwoTU0lYmoc7C/w/lcfRyJkyJi8aTAjIfTkk0+yY8cOIpEIZ555JgBf/epX+dKXvsS9997LaaedNqeDXA4oBF23q8IGqgIlx8fzg6yxeCiIGQrrKsO/rnO54A65zA4PFHloTx/3vtCNEAJdVXB9f8ZpzUcTakM7ohe7svz8mU5SBQvXF/i+wBMCX4Av4J4XuoiH9Eoqe9k1GSjadOXKPLCrh1hIJ2+5lB0dTVVZXRutuPNgrEtvyMLi+YLzj29gb2+BgcEO6BFDwwca4yYvdmYnzSpbXx/n6nPXsbomOq8By1OLZ/I5Y10NBdtld0+e5qoQL3dnyZYcdBUSEYNNjXGqIgaJ8OIMnpZIViJzkTQw2ro+vBE0QK7sENI1EiFDxuRNkxkJoY9//OO8+c1v5l//9V/R9eASrutyzTXX8LGPfYzf/e53czrI5UDRCSwLihJ0J6+KGBWLkOX6hA2VuliIohMEms/VgjvcWtOXs3j6UJp9fQV8X9CXt+nNWdTHQ2OsHlNhOkJNCEHecnF8gef5CEBVAgtZ1FDJll3yZZfjm+KEDI1YSKcvZwWCyReVUgOpokPY0KiPmyMsJ6NdesMtLImwQW1s5O4psAyVOZIp05qMTJpVpihK5T2er4aBUw2qPKGlivUNMe7Z2c2zh9McHigRNjSaBmOZhqx7izl4WiJZicw2aUAWKZ0/ZmwRGi6CAHRd59Of/jRnnHHGnA1uOREz9UHBYdKVsUgVbbzBGg9NVWGaq0KAMu5CPtMFd9x+NLrK1lVVnLw6ScFy2NdXIBbSeftprdNqzjeZUIuZGs8eyfAfvz/ElWev5e7nushbLnWxwBpmuYFVRgifgZJL2fFRCKxDvXmbNaZO0fIwdBXVF+iaStFyMXQNXdOImRp9eZt1dUGW4niTwGgLy+jdk+v7FAcD06MTxEONFzg+Xw0DpzPJqarC+gvi/G53L//+0D6Oq4uTjBpjvieyn5dEMv9MFhowlwkVskjp/DEjIVRVVcWhQ4fGVJZub28nkZDxCOMxfKE7bU2SrlyZku0RMTWaE2H29hUmXchHc7RFbmQ/mjAd6RJCBNaV3T0FYqHASrJ9tcHunjzPHs5wzob6EdeYrJ7NkwdTPHVogNrYSOtFf97ihc4svTmLXZ059vTm6M87tFSbFGwP2/WDGkqqAmiYmofl+igEFqKS45EruxTtIAAwGdGoiRpkyi4bG+P0ZC1yZZfubJl00UHXlHEngalYWKKGDgrTSm2dr4aB053kVFVhQ0OchngYfbCc/lyNRSKRTM7Q3PhiZ5YnDwzQmytjef6I0ABgzivAyyKl88OMZshLL72U97///fzTP/0T55xzDgAPP/wwn/rUp7j88svndIDLheGxMve+0D1Y+VMAQfGr45sT017IJ1rkJuxHEzMxNZVUwWZvb56aaM2E1qWJYn+2tCTY1ZnjqUMpnu/IUh0xODxQZmNjnEzJ4bF9/RRtF1VR8HyfwwMlBgoO3dkyRdvF8XwMT8VSVSKmStTUsT0H4QuEElg/io6L5fpEQxq1sRCqChFDozZqEjV1DqcK9OQs9vcXaJjApTcVC8vJq6sRwPMd2SmbmufTPD3dSU6ayiWShWdobvxj+wAvd+VwfUFLdZjNzVWEjaBC/4tdWQC8wefmsgK8LFI698xICP3TP/0TiqLw3ve+F9cNLBKGYfDhD3+Yf/iHf5jTAS5LhgoIDYVGD/7P96E9VawUFVxfH+P5zqkv0kOM24/G9zG04DrxwTYbubJLVcQYY12aKPbn9/v6+cnTR2ipDtNSFaY6Eri6OtJFjgwUyZYDoRMLaQA4XpCmX7AcNFUZ8YfqeD6eFbjIoqZGyfEQfvAeCD+weNXFQoQNla5MGYCdRzK4g13kY6bO67c28+pNDeNOAlOxsOzY2gxQKS0wFVPzfJunpzPJSVO5RLKwDM2N/XmbgYKNoSnUxoJyHs8dyXBKW5KNDTHueaEbBOw4qQlVDbJb57ICvCxSOrfMSAiZpsn//t//m5tuuom9e/cCsGHDBqJR+cFMxPAsph0nNpG3vErgbjyk8fThDH/3yxeoj5sVE2syaqCpyrQXudFuNVML0vUdzyeka+iqQslx6c6VB88QFeuS6/r84Il2DvYX2NgQr4iweEjH9X1yZYeGuElTVZiIoXEoVQQhyJZdPAFRM/ijdzxBzNQG9Z6CEGCoCkJTcT2BqStB5WY/EDVtyQiZskvM1DhjbQ2HUgU60hYDBWswuFwnbGh4IgjyDhsaz7ZnaKuNTigYpmphma6peb7N09OZ5KSpXCJZGIZb2purQhzoL5CIGIR0DVN/xdJ+fGMczw96feUtj6qIWrmGTGJYnMwqeCAajZJMJiv/lkzMcCuNqqoj/jhSBYuebJlc2aW5uo7WmjhF26UzU0ZTFVqqwqSLzpQXudFutURYpzZq0pMr4xmC3oJF0fJ44UiWfUYeH3j1xnpKtsc/3vMS/29nF5oKfXmb2qjJhsYYuqoyUHSoi5kMFB0ODxSDXje+QPivlMm2XR/Hc4iHdOJhnd6cTTykUbA8bE9QGzMZKNhYro8QoCpQGzNpqY5wQtSgMRHiUKpIb94hXbKxvSDF33J8Dg8UKbs+qqKgIrjvxW6eOJji+KY4EUMf1/8+FQvLTEzNi8k8vZjGIpEsV4bP4Zb7ipUdGGFpHygGjbMVgkr+o5FJDIuPGQkh13W58cYb+frXv04+nwcgHo/zkY98hBtuuGFME1bJxMHPQgj29hQGqyhrmLqGpiojzKh18RBXnruOkuNNaZEbL3ZkQ2OM3nyZg6kijieojuhURXSyJQdPwJ7eAl//9W7SRRtNVaiLm3i+oCdXJmcFxRddz6c6apAp2uzrKyCEYG1thJ6cTcn1BiOegqBnQ1fRNbVSMdvxgqrOIV2jPhEiV3bxB3vTramNcMa6Oi4+qQnfh1se3MPqmghraqM835HBcj1Sg5NLMqpTEzVJFWyKtofleKyuiRAP6Tx3JD2u/30qFpaZmJoXk3l6MY1FIlmODJ/DhXBHWNkBDE0lb7mVUAeBUin6OhyZxLD4mNEn8ZGPfIQf//jH/OM//iNnn302AI8++ihf+MIX6O/v59Zbb53TQS4HJgp+zpVdUkWbkKHhD7qPsiWn4jZrrgqxtzePqihsaa6a0muNFzuSCAfFCn0hMDUFU1exPcGqmijr6iI8uncAX/icvqaGvpyF5wfdis1YYPLtSJcDl5rt4QuFfNkdNAurNCsKRdutZIRFDA3XE4MFI6Fse/g+tNZGOGNtEnfwPvOWw0DR5YPnr+eMtbUA3Pqbvdiez2lraugv2BxJl8iUHHzfRVMVQppG0fJwPIGmQMnx+OOhNC3VYWpjJgXLm7H/fa57h0kkkuXDyDn8FSu7GQsaVjuej66qJMN6kBUrID4YLzmETGJYnMxICN155518//vf5/Wvf33lsZNPPpm2tjYuv/xyKYTGYaIMH9vzcTwPhEIiorOrK0e65OB6PrqmUh3RCenatM2oo2NHBopB2vnmpgRr6qJETR1TC3Y0L3Rm6c2XEQKePpzGdn2yZYfaWAhdVYiFgsalUVOjI1OmqSoU1PnRgnswdRVDU1HVYAdkD7rLbNfHcjyKjo+hqRRsl5d7CmwcrH7cnbM4fW0NZ6ytRVUV2lPFEUHeBculL29RsAaz0ISgv2CjqUE1an+wLYmqBOKvN2ehqQpPHRqY1P8+nuDZ15ef81RXiUSyfBg+h29qjLOhMUbOckgVbGIhjXzZIxkL5rXjm4I5Y09vQSYxLAFmJIRCoRDr1q0b8/hxxx2HaZqzHdOyZKIMH9v1Kdk+IV2lYHnkyy7xsIER1nE8QVfGQlWgN2expXlqr+X7gvaBIocHSpy4KsHp65L0F2x++ORhTmqpQh8016YKFs8cTpMuOhUx4YvASlVyPAYGqzhHjOD4WEgjEQ6CAwtWUBNIUSBfdqmLm4CC5XjgeBRdj85MCdcTGJpCTUQnamr0ZMukChaNiTBr6qIjJoThpuf9fXl+v6+fguXi+SAUMRiGJLBd0FQG+40pKICuKiRiJv15m/ZUkZzljPvejFcWIBkx6Mlb85LqOvpzkRYniWRpMt4cvq21mpe6cnRmyuiaQk3U5OTVSS4+aWQdIZnEsLiZkRC67rrr+Lu/+ztuv/12QqGgpL9lWXzpS1/iuuuum9MBLifGy/AxNZUNDTEODZTwhaAu9krrCFMDfXDBf7Y9w7lTqPy8pyfHnb8/xO/3p0iXbBQB1VGDk1ZVDWaLeSQ0tRKbVLK9SvsJf7ArvKoGrjOFwJSbLrooCpy7Kc7rTmrhxY4sv9rZRXe2THXEoHGwvQMEXdkP9BUwNQ1dg9U1UVbXROjNWhzJlLE9D9cTNMRN3nP2GkK6xq6uLDFTJ2pohHWNIwNFHtuXomB5xEM6ubKLIGhHUqm+NOheM3WVoVpMiqIQMlRyg+06xntvRpcFKFgOD+3to2R7nH98fcVtOZeprkOvLS1OEsnSZvQcbrkea2qjnL6uhjPW1XJCc9WIDY5MYlgaTFkIvf3tbx/x+/3338/q1avZvn07AM888wy2bXPhhRfO7QiXGeNl+Ozvy3PDz57H83xsL3AjOZ5PvuwSDelsaoyzt/fo6ZZ7enLcfP9unmlPoyoKDfEQAkG26PDo3n5iIR3L9Tm1LVmJTYqHdQxVQVECV5aqKERNFVNXcT2fxkSYXNnB0DXW1MT4082N/OnmRravSfKfjx+iYLmsr48RDemUbI/qiMHW1mqyJYfamImhqXTngiDtfNnFEwJFgec7c3zt3peJmjoDJQdNgfX1MarCOr99uZe8FWSeaYMBiSXHH1Z/KRBFYT2wYMXMIH1VCIHleERNjXho5Fd7opYgoKACmgL7+orUxkKV52ab6jq8+ux/PdeJ5XisSkbmzeIkkUyGtEjODdOt9SWTGBY/UxZC1dXVI35/xzveMeL3tra2uRnRCmD0H0fBdmmrjWK7PumSQ8EK2ksMWVqqIgYH+gqTxgn5vuDu57p4uTuHqasjLEvhKo3+fFCPJ1tyeLk7T9hQcTwPUw/S4qsjJq5nBW04BtPaXT9olFoTM9nUGGd/X6EiCF69qYGW6nBlZ9STswjpGietqmagYPGL9gFe7BRYrosd9JElpA/VIxJkSg6/fbmP1mQYXVOxXI8XO3OEDZVsyUFUCk4KwoaO4zkIwFRVyk6QoVZyfKKmTjJqYA8KR11TaauNjqnGPVHvtqDYpKAqaowoMjnETFNdhyxAe3pyPN+RJW+5rK2L0pAIj8kKHM/iJBctyVwiLZJzixQ4y4spC6Hbb78dCFwl7e3tNDQ0EInIqPe5YKgha/XgAjyUMZYIB0HVubJz1HTLI+kSzx3J4PmCRHhkA05FUUhEDHJll3hYZ01thIOpImXHB1yaqoKMq2cPp/E8QXmwRoYQ0JgIceKqqooYy5WdSvXrmKnzwdesp3NQKDzTnuauxw/xfGcOy32lfoYy+GN7grzloSjB747n05Eps6kxRlUkjO16HB4oUXI8DE3F9nwULxh/TcwEIXA8geV5qAokIwZhU8NyPVxfpSERQtdUTltTMyYjI2c5pIoWpq7iDxY7c/zAgqSrCgoKnu+Nqfsxk1TX4S64REhHUSAZNejNWeQtj1PaktQOCtWjtTcpOS6+Dy3VES46sXFajXElEpi4Ury0SEokAdOOERJCsHHjRp5//nk2bdo0H2NacYzORphJz6iC7VIY7KY+lM01HENTAYGqKLz1tFbips63HjrA/v48J7dWk7c8oqZOWFcRQKpg05AIVRbeXNnBcn1++scO+vIWZdcjpKk0JMKcsa6GVNHm3363j85sGSEEKjAkKQSBhQkC8SMEaKqCQpBi73gQMRXChk5jIsyB/gKmrhAxNKoiJnolFojBeCFBbTTEhoYY1VETTVXw/CC+qS4+NiNjT0+Onz51hL09BXZ35bEGxU7U0IiYGkXbI1sOUmKH1/2YSarraBdcf8HGE4KqkEE8xJg+b5O1N4kYKgMFh968xdOH0/z25R7+dEsj7z5rjVy4JCOYyIIYVIo/PKZS/FzHwEkkS5lpCyFVVdm0aRP9/f1SCM2Q8Sat2faMipk6MSP4OO3Bbu6eEGhKICIczwcUoqZGImTQVhvlL85ew+0PH2BPb4HmqhDVEZ2ujIWuBhaMk1ZVoaoKQgh29+TJlhx0VWFVMkLJVnn2cIbfvtzLj/5wCM8P2mpoqhgMWg6qQQ+JIU8EcTiDxhgUJRBDrgeu/4oVJhbSCOkqrh8UYiw7HvGwjgBs1yNVtFlTG+O6127k5a48e3vzFG2XkK5x8uqxGRnDewMlQjrtA0VURQFFoYRHdDCWKFNyBkWQwPX9cd/7qbirRrvgRrc3Gd3nbbjFabiIqouZPHM4Q2mw7lRN1KAvZ/HQ7j7Kjs/7zpO7+OXMdFyjkzVIfmxf/2CleIW+vE1N1GRjY3xSi6REstKYUdbYP/zDP/CpT32KW2+9la1bt871mJY1k/nqZ9MzqjUZYeuqKnZ2ZOjNWRULjKaqRIwgAyxi6pzcmqxYN0ZnQIR0DVUJztk0WOsnV3boSJfJlhyqwgabGuO82JXjiQMpipaLLwKRA4HQUZSgsrSmqRi6guWKyhiHWmoMZX5BEKStDzYlFEJQsAPLlOv7xEI6qqKQs1xs18Z2BS1VYT5y4SYuPKGJC7dMvliMtM7E6MqWUJSg7pChK9ieIF2yieqBG7IubpIuOpV4p+Hv/VRjLEZXEB9deG2o+qzt+WMsTkMiqrkqxK6uPCXbrSxYAMmYScn2OJIuyl38MmY68TxHa5BcFdbRVAYrxUNvrkzecivuWdnuQSKZoRB673vfS7FYZPv27ZimOSZWKJVKzcnglhtT8dV/+IIN0wqSHdo5Pt+R4fEDKfryFrYbVHQOGSoG0Jd3UBSFk2ui/NmJIy1LozMgenMWz7Sn2ddb4EBfgZCusbo2TG+2RLZs85Onj9CVLuMOthfT1UD8uH4giBQR1PwRIqjt4yiiYgXStSDFHSFwfYEjAvdUPBRYv1IFi/RgBpmha9iuoDqikQgHAcYbGuP8+WltHN8cLAbDAxbH20EPt87kLY+y47MqGSZf9ga73QuKlseq6gin1EURAi4/aw1VEWPEez+dGIvRFcSH2psMFV4zdRVVUbBdj909+REWpyERFfd1Boo28VGxXoamUhAuNVFT7uKXKdP5rk2UCTm8QXJVKChJ4flisFK8OcI9K9s9SCQzFEI333zzHA9j+TPRpDXaV/+h8+NTWtx8X/DI3j7uf6GHZw4PsLcnT9Hxgi7vGng+lG2fsuKjElR/7stb3Pt8F6rKhL24tjTDuRvqK6LimfY0tz+0n909+YrlZwiFQVfXKJ3miyAWKKg4/YpVKKgEDVFTI2d5QaxP3KTk+HRmypQHA5cRAt8X9OUtMiWHM9bV8I7TV09YR2miHfSmpnjFOjNQtHF9n5qoSVXYCJrD+j4Fy2NLc4KamMmBvgJVEWNEK5Opfm5D1pnxKojXxkKc0pZkT3eeg6kiibCO64kx1r4hEZUtB5XFjfDIP0/H89FUlaqwQX/Bkrv4ZcZ0v2sTZULmym6lQXLRDty/2ZJTaQUx5J7Nlhy6c5Zs9yBZ8cxICF155ZVzPY5lz0STFky/Xs2enhx3PnaIB3f1kC055G0Pzw/iglQ1cE3puorj+4AgGTFprgpTdDyeOJiiI1Pikm0t1CdCFcvH0BiHW1QefKmHWx7cS3emxLAG8xV8GO7nGoHni8G+ZK885gpQgZCh0ZKMUrRdLMcjXXRwfZ+IoVJ2fFRVobEqRDyk05ezeKEjS9TsoqU6PGXXwM6ODC/35LBdn6LtjonVCRkauBA2gp5qE+2Mp/u5TVRB3NBUqqMmr6oO84aTW8YUXoNXguYfP9AfWNM8QUgPnhdCkC+7NFaF0VTkLn4ClnLZgel+1yZq5Gx7fqVBcrbksCoZwfF8UoWgbpimKpQdjz29edbWxWS7B8mKZ9YzablcxrbtEY9VVU2tOehKYqJJa4ip+ur39OT41kMHePJACt/30XUVv+wOBkdDSFMRgqB/GQrmoFl8MD6YeEjnyYMDPNOeZk1djIihkYwaICBdcioWlePqojz4cg+pgoWpB32+RmWWjyEINQ5QlMAqNWQwiuhBCv/qmih/8SdredPJq9jXn+f2hw7w4Es9aIqK5QpMQ6W1Okw0FJQSmCwu5mg76Je7gzT+jnSQoj88VgeoCIt4SGNPb2HcnfFMPrfxKohPFMw94v0bFFFH0kU6M2UGCjYNCTOo51R2iZga6+ujdGXlLn48lnqtnOl+1yZq5GxqKrqmUrI9NFWlIR6iJmqwt6dAqmhTdoK2NSetquadZ6xeEu+NRDKfzEgIFQoF/uZv/oYf/OAH9Pf3j3ne87xZD2y5MdGkNcR4Fonhu9uooeEJwfd+f5B9vXkUBNGwQSZdqgQ4e25QHFBXFLxBF5kvghR1y/XxfMGengKW4+NpQeXpvOVw7/NdeL7gxFVVtCajaCo8tLePFztzaCqYuoblCrzxTD+DKICqge+9In5iZpCevr4hxgnNVSTCOnt6C3RmyqiqwvFNVbzn7LV0ZsvEQzovdmRJhPXAWjPIZHExR9tBr0pGOJQqEtLVIDOuOkSmbNOdLQOBi6C5KsSe3sKEmXkz+dxgetVnR5/3vvOOI6xrPPhSD4cHSsRCOg2JEKuqw/QXHNm0cRyWQ62c6X7XJmrknAjr1EQN9vUVWF8fq9Qjq1lnki057OnNc+KqKj518WZ0XR3zOhLJSmNGQujTn/40Dz74ILfeeivvec97uOWWWzhy5Ajf/OY3+Yd/+Ie5HuOyYKJJC8avVzN8d9uXt+jLWxRtl2zJxTRUbMenNmYiBIPWnqDflucLNA0YdEP5IvBplQbjh1Q8GhImmZKDK3z29RYo2B6O5/PH9jRHBkrUxEJBiw0/iNWJmkH2ljIYBD0aFUAJRFBIV6iJGmxurqYubtJSHUZVX5lsh5v3W5MR8paLplBp4GqMmpgni4uZyg46pKu8YXsLuwdT7etioUrV6rpY0Ch2ssy86X5uI96XGVaf3diY4LNvPJE/PaGRB17spjNTRlOUo451pTLcMrixIUbe8hgo2piaysaGGHt6C0siy26637WJ3LAl20NXVRJhA30wS3Ho8e6cxdq6GO86o02KIIlkkBkJoV/84hd85zvf4YILLuDqq6/m1a9+NRs3bmTt2rX8x3/8B1dcccVcj3PJM9mkNbxeje8Lfvr0EX7yxyM4rk9LdYiOdIm+nIU1GOAbclQcXwyKBCWwBvlBl3fPDTKyUAIR5A/G8IR1Dcf3SUQCV4umqvTlLA70FxEENXt8Pyi42Jsr4wvQFKUihjRVAQ90JXDBDddDYvA/qgLrGmM0xMKc1FodnDOKIfP+850ZvvvoQfb05NjfX6BgBRWUdU2hOmIG1z1KXMxUd9AnNFdx0ZamEda1oEWHd1RLzVQ/t7leYFVV4dWbGkYEri+1mJeFYsgyGDFUnjyYDgLjPR9dU6mJmrRUh5ZElt1MvmsTuWHP3lDH5uYEuzpzsvu5RHIUZiSEUqkU69evB4J4oKF0+fPOO48Pf/jDcze6ZcZEk9bQ5HSwv8gXfvY8zx3JUHY9TE1lZ0cQeBzWVaIhjWxZ4BOkxxdtj7ChoqkqvvDx/CBlHQIRZHtg6grr6qO01cbY1ZlFVyFddGlIhOjOWji+T9Xg7rPke2iaQm3YpC9XxtQUHA/Kjlcpbjjk9houhFQVIrpGU8Lk2vM28N+7+yYVJ6mCzc337Q4yWQZ3pZ4vKNoe5QEPTVEwdPWocTHT2UHPpjfQ0T632SwqRwvuncm4l3LA8ERMdk8F26Uvb9FfsLEcj3jYwAjrOJ6gN1cmWw4yqI5llt1UP5OZfNcmc8P+6ebGZfddkEjmmhkJofXr17N//37WrFnDli1b+MEPfsCZZ57JL37xC5LJ5BwPcXkx0aT14Es93PT/dpEu2gigOmLgeoKBogNAxAjcPKauYrs+CVMjJzxs1yce1hBCxfKDIn0hXSViBnE2q2sinLamBtcXCKAvZ5GIGDRXhXn2cAZDVQezvwJrkDbUqNXQMXUX2xM4vkBxfQw1KEI4JIZChsqq6jBr66J4vuCs4+p508mr6EiXJxQnL3fn2N9fRPiCluowhq7ieIHVSQgo2B77+wrUx01WJSOsSkYmjItZSGvNTGN+JmM+gnuXesDweBztniKGRl/epmC5NFWFKt+5kK5gxky6sxZCBH9Di3H8o5nJd20iwSybg0okR2dGQujqq6/mmWee4fzzz+czn/kMb3rTm/jGN76Bbdt87Wtfm+sxLjtGT06u63PHwwfIlR2aEiE6MmX0wf5ZQ+Qtl7BhEjVUXE/giqAeT9Fy0VRwvCCwuCYWZGadvLqaM9fV8tJgbEzZCdpQuIrC9tXVCBQUJQhoLtouKAqxkI4nBB3pMkXboWB71EQMFFUhV3YDwaQE7rHGqhAntFQRM3XSJYfVNVF2bG1C19UJxUlHukRf3sb3BS3VoUpQdEhXqI4Y5CwXQ1PwRdD4NVV0iIcNTltTM+lueCGtNXO1qMxHcO9yCBgezVTuaag1ijJhMH/w3LGwg8z0M5ECRiJZOGYkhD7+8Y9X/n3RRRexa9cu/vCHP7Bp0ya2bds2Z4NbKTzVPsCB/gJ1MRNDCyoPD+/JpQCuL7BdgaaphA0qNXc0VWFNbYxtrVVsb6thS3OCRNio7CBfO6wNRW/O4v8910V/wSYe0lBVhbCpkrMAEcQYdWXK2K6PL4K4oe1tSSDoW3ZSSzWmrrKvJ8cLXXle7MyBCPqSbWiIV+5nSJzc/VwXzx3JUHRcoobO2roo6aJD2XEx9Vd250NBnJ4IXH5xU2NTUxW+EMRCOhed2DjpAr5UrDVDTLdw3rG65tB1j5VrZar3dMHmBurjIfoVKrVyDC2oGZUvu8TDOnWxEEVnYbNZ5+szkUgkc8u0hNCvf/1rrrvuOn7/+9+PqBW0du1akskk55xzDrfddhuvfvWr53ygX/rSl/iv//ovnn76aUzTJJ1OH/Wcq666im9/+9sjHtuxYwd33333nI9vOoxeXHpzFo7nEzE1NEUhYqgUbA9DDfpiDfUk9XwfTygkQjrNVSadGYvamMmnX7eZM9fVjTuZjq4a3VId5p6d3ezpyaEAJdvnuPooCgqH06XBAGMFTVFZUxtl82CV5d09eUKGxkUnNHFHukxjVagiujRVoTNT5lsP7a8UauzLWQjEK1WnFSi7Pp4ISv0PFTYUQpAqWJQdD9/3sVyB6wk6MiUa4yFSBZv7X+hhY0NiRq6BmTDflpWZFNc8miCZy4Kdw9+HY+lmG++ehBDkykGvtnhIY3d3jjPW1VAfD1EfN+nKWKSKgZtMU1Uaq8I0V4UAZcELUA4fP0C25GB7PqYW9LaTDU8lksXBtGaGm2++mQ984APjFkysrq7mgx/8IF/96lfnRQjZts073/lOzj77bP793/99yue97nWv4/bbb6/8HgqF5nxs02G8xSU0GDBcsj0SYYPaWAjbK+N4PoamUhpUQrYniIZU4mGNgZI7GAzZMKEIGo/h1pMXu7L81zOdWK5PIhy0dqgO67h+UItkW2uysgC1VIfZ3Z0jXbQZKNpsX50EqCxKIU3liQNBocbauMnhVAlDV9m6qopNjQmKtsve3jy9OYuoqZEvu5ixIN4pb3nYXmCFEgiqIiaJkE5v3kJTFZ46NLBgi8VsdvFTtZ5Mt3DeVATJXBXsHGIxuNlG31OqYLOnJ1/JClNVBQVIFe1K0Pzpa5OV75OpqZMWy5xvhsZfdlR2deZIDbZ50VWV2qjJuvooluvJVikSyTFmWkLomWee4ctf/vKEz1988cX80z/906wHNR433ngjAHfccce0zguFQjQ3N8/DiKbPRIvLkYEiAN1Zq1KEsLkqTKpgBfEyzmCNHU0J0uC9IJ19e1uSy89aM22z+pD1pK02yvr6GPfs7OapQymKtkd1xKCpOsSGhji1MbNyTsTU2N9nky07rK2LMVC0K5Vqh+obASTCGoauIgYLOe7uKRALGdTGTE5uraZjoESm5BDWFbqzZUw9KPfvCR8hghT5hkQQP2TqKv15i/ZUkVzZmbsPYhJmalmZjvVkOoXzpipIZlr4cTwWi0tn+D05nuDp9jQl261khRUsl3TR4f8928WbT1lFR6bEnt4CLdVhklGDku1NWixzvomZOrbr89ShAVxPDLrsdBzPpydXpr9g0VYbla1S5pDlmDEpmX+m9RfY3d2NYYydZCsX03V6e3tnPai55De/+Q2NjY3U1NTw2te+lr//+7+nrq5uwccxWdG345sS9OVtDvQXOZQqURc3iZgaibBO2fVprgqzrTWwwpVcj6ihc/LqanZsbZ71rnzIQvTkwRpu+81eIoZGddRAVxWEEJVFsGR7qIqKJwRlx+O5IxlKtkcspJErB5YcRQgGij6+gIZECFNTB3fxOTY3Jegr2KBAuhikzSuA4wtsL+iTFjY0WmsiRAcXBkVRCBkaubJL3lqYXfNMLCvTtZ5MNe2/pSrMN3+3b0qCZDaFH0czH262mTB0T88dSZMpOZRsl9qYiaIE303b9VlbF8VyfV7qynHl2eu474W5D5qfKS1VYSzHZ6DosKYmUiksGtI1jKjCoYESTa5PS1V4wce2HDnWrlzJ0mVaQqi1tZWdO3eycePGcZ9/9tlnaWlpmZOBzQWve93rePvb385xxx3H3r17+du//Vte//rX8+ijj6Jp46fSWpaFZVmV37PZ7JyMZWTRtwF6sha272OqKo1VIdbWRYNqzp5PV9YiVbAxNJXj6qO88eRV/OnmxikXAZwuqqqQjBo4nmBXV5qIqWJoGrVRkw2NMWqiJp2ZMhsb43Rny7zUlaNke9TGTGzXp+z4RAwNIcAuOxQsl1XVERRFQVcVdvfkaR8oki25+EKgqtAQN/F8QV/BRiHIgFtbFyUWekVoCyGwHJ+oqREPL8yuebqWlZlYT6aa9t+ZLU9LkMxVKYG5drPNlKH36eWeHAcPZ0hGDQRgu16lxtTGxjiGprKnJ8+btq/iwxdsWDQWgc5smZChkowYDBSdMUHcyaiJqat0ZssyRmiWLAZXrmTpMq3V5ZJLLuFzn/scr3vd6wiHR+5iSqUSN9xwA2984xunfL3PfOYzk7raAF588UW2bNkynWFWuOyyyyr/3rZtGyeffDIbNmzgN7/5DRdeeOG459x0000VN9xcMlT0rSNdIlW0R7SqGCjZ9OQsWpMR/r83nkDR8th5JMvu7hwl2+Wx/Smeac9UdjdzPWnu6cnx7UcOAkFskOsF2Vvd2RL9BYvGqjBraqO84/RWfvTkYR7fn6IhEezMPSHwhUBBwfJ8YiGdshPEPeiqQn/BomR7CIIsNUNRsFwfFIWT26rxfMFDu/tQVYWS46Nr3ojFQtdV2moiJEITWyLnkulaVmZqPRmd9t+VKeH5sCoZ4cITGllfH+flnty0BMlclRKYSzfbbNnYmOAN21p4sSOL5wvSRbsSBL2hIUZtLITr+5X3YTGlnRdsF1NXOX1tLfv7CgwUbfKWiz44/rV1UbIlR8YIzZLF4sqVLF2mNZN99rOf5cc//jHHH3881113HZs3bwZg165d3HLLLXiex//3//1/U77eX//1X3PVVVdNesxQBeu5YP369dTX17Nnz54JhdD111/PJz7xicrv2WyWtra2Wb921NA4MlCiOxfUCNI1tVKh2fWCiVwBqkIGYV1jb2+edMkZ3N3o87a7GT6JnLomyUDRqQSkKkpQP6ipCq48ex3HNyU447ha7n6+i3zZQ1GUSlJY0fYIGRoNCZOuTJlc2R10XwgMTcXzIKSr2J5PMmLg+YLurMXpa2o4Ul/iUKpIVVin5PiVxaIhEUJXVU5bU7Ngga7TLdI4G+vJkFvy4b19lZ5iXZkS3/39Qe5/sZuTVycJaeq0BMlclBKYSzfbXHBCSxUnrarC0FQMXa1kXQ132y6UMJsOQ4IybKi8al1NJbFgaPx5y8Vy/EU37qXGYnHlSpYu0/oLbGpq4pFHHuHDH/4w119/PWLQrKEoCjt27OCWW26hqalpytdraGigoaFheiOeBYcPH6a/v39S910oFJqXzDJPCLLlIOgTwHLdSsNUTVVwvMHnfX9Gu5uZBgmOnkRqYyZnrE3SmSkHdVeEwNReqVR9QnMVxzclGCjYg81aPTQ1KM7YmDDxRRDrAzBQsFFVBVNTK+nxIUOjNhZCVYMsoLzlsrk5QW8+yCbb2BhHGywmmS25hE2NjU3xSpPWhdjRTceyMlvryb6+PHfv7CJVsImZGh3pMr15i2fa0/zmpV7qYiZ9+UCkTlWQzNYqcqz6q01EazLCxsYEOzsybKqOH3NhNlWGC8pNjXGqIiPdvot13EuNxeLKlSxdpr0VWbt2Lb/61a8YGBhgz549CCHYtGkTNTU18zG+CocOHSKVSnHo0CE8z+Ppp58GYOPGjcTjQTG/LVu2cNNNN/G2t72NfD7PjTfeyDve8Q6am5vZu3cvn/70p9m4cSM7duyY17GOx8H+Iu5gGrzl+uiqgqaCL4LfVUXB9XyeOpie9u5mNkGCU01RfrErS1ttlNZkhFPbanjuSJptVWEcX1C0XHZ2ZOnIlIO+ZLqKoWvYnkDxwfEDAWioChFTBwSGplGwgh1y2NA4vinB+vo4fXmLou1iuT6WE9Qd+ukfj3C33rVggY++H9Q6+tMTGnjVcTXEQ/qIIpXDmY31ZLg1ri5m8MzhzGAJBZ2aqEFvzqavYKOXHDgEm5riCyZI5rNi93RZbMJsqizVcS81FpMrV7I0mfE3o6amhle96lVzOZZJ+fznPz+iOOKpp54KwIMPPsgFF1wAwEsvvUQmkwFA0zSeffZZvv3tb5NOp1m1ahUXX3wxf/d3f3dMagn5QuB5PoamgADXDzKmVEUhpCkwKISKM6gxM5sgwammKP/XM52sr4+xsTFRmdy7cxYt1WF8ERRIHBJ4sZCB5/tAEBjdlAhTdn1KjoflenRlg0VAU1WMwWKMp62p4dpXr6czW+bFziz/9VwnuuqxKhmZV9fgaCYTlRMVrJzpYjdkjWuuCo8IQB8SUzUxg7LtkRi0JAwUbLqz/oIJkiE3W/tAkf19BQDW18dYXbPw7oXFJMymw1Id91JisblyJUuPJSOR77jjjqPWEBLDIpAjkQj33HPPPI9q6sRMDRQF3/cHW2gEdXN8BCgqvhBoqkptzJzy7mYuggSnk6I8dK3hk/uenhwvdGaxXZ9tq6poqY4QMTVe7MwOiqugs3xjPET3YAVty/bodsusb4jTlbWoiwdiQddVWpMRfv50B7brc3xTYt4DH4e7FIdakAwUpycqZ7rYDVnj4r5Oqhi0hhg+iRuaSl64tCYjKMDlZ62hKmIsaDbUvr78oklJnkr801RcxAtda2Y+WsBIXkFa3iSzZckIoaXO0ELenS3jC6j8TQooWB6qAjXVJuvr4hxqKE1pdzMXQYLTTVEeutYr9YdSfPO3e6mLhWgeHEe25FByfJqrI/TmbNIlh0TEoDERoq9gkXV9cAVhU+Pk1SPFwkIGPg63/pQcl4P9JVzP58zjaioidKoCbCaL3ZA1Lld2cH0fQxv55+h4QRXiRFgnVbCpihhsaR5b1X2+mKuU5JkKj4nOm+hzn4qLeC5rzUznvhZTNttyRFreJLNBCqEFIh7S0dThombsMaqikIjoU97dzFWQ4HRTlCvjVRWqIgYhQ6Ox6hXhYns+ru9TEzXRVZWOwR5muqZQHTZoToTRVIUPvHo9r9nUMGLxWKjAx9GLfNzTebk7j+f5PHM4wyltCrWxwIU6HVE5ncVuyBr3+IF+NEWp9F+DQPTmyy6NVWF0VVnwGIe5SkmeqfCY7nlTEW3ApMdcefY6IqY2JWEji/ctPqTlTTJTpBBaIPzBisyaqqAKgecHqfMKoKvBYmu5Hr4QU97dDFkUCpYDKCNScxVFoWR7mJpKtuSwqys76cQw0xTl8QIVTU1FV4NaQLqm0JgIsbW1OmiboamAIFNy2dAwdhFdiMDH8Rb5vryFAtQnQqSLDnt7C9REX4nXmY/MkyFr3JF0ic50mYGCTUMihOuLQWuczvr6GF1Za8FjHObCMjdTi9J0z5uKaLtnZxcCJjzmj+1p/u6XL1AfN7E8f1JhI4v3LV6k5U0yE6QQWiAO9Bfx/KBlRRAP9MpzAgazxgQH+ousG4zDOdrupjUZIRkxeGhvHyrg+gJdU6mJmmxoiHGwvwgK/Odjh446uc80RXm8QMVEWKc2atKdLYGi0FQVZlUyUok72t2Tn3Bhn27g40zcLuMt8qamomsqrg/xQVdUruxWUp7nK/NkY2OC9523jrCh8uCuHg4PlIiFdOrjIVqTYfoL9jGJcZitZW6mFqWZnDcV0fbs4Qwowfdr9DEDRZuebFD7qrm6jtaa+ITCRhbvk0iWH1IILRC+EDhekEnliyBtfghVAQ2BO9iBfars68vTkw8qN2sKVEUNFBQ60iX29+Ux9aBtRU3MPGrm1UwDDic6r7k6RPtAERA0V4XwhKBkuUcNXhx9veaqwEKSK7sMFG1ak5HKuTN1T4y3yAcp6ya9uTLJaJD1ZntBuYP5zjzZ2Jjgs284kdduaeT+F3rozJQGhbJyzGIcZmuZm6lFaSbnTUW0FZ1AsEVHjVcIwd6eAq4XtHIxdQ1NVSYUNrJ4n0Sy/JBCaIGImhquL3BcEViAhj0nBDiuQFUE0cHChUdb5Id2pp4vOP/4evb1FkkVbTzfI6Qr5C1BSIdTVldXmj0ebdc604DDic77sxObQEC65HCgrzDl4MWh6935+0P8fn+KTMkGAcmowYaGeOX9mal7YrxFXlEUNjbGyVsuvTkbXVPQFIVc2VmQzBNVVThvUwPnbKhfFDEOs01JnqlFaarn5coO7akiBdslW3KOWoE7auigMOaYbNmhO1tGAAgwhr3X4wkbWbxPIll+SCG0QERNDd8Hf5znxOCPL4LjjrbIX3nOWtJFh6cODVAbM6iNhaiNhSol/C3H44+HBkBRyFseVZFXZNfRdq0zDTic6DxgxunOZdenIWGyuSlOImygDdYc+tZDBwjr6gj3hBACIaAmanB4oMg9O7tZf8H47omJFvnamMn21dU8fiCFoQZxQ2FjfjJPhu47Zznky+6Ioo2LwZIw25TkmVqUpnKe5fr89I8d9OUtyq5HSFPpywfFJ09tG78C98mrqxHA8x3ZymeeKlg8ezhDZ6aIQCGkqzzdnmZrazV18SBQfrSwkcX7JJLlh/xrXSAOpYoEtqCAoUDp4Y4wIQRPHRxgf2+RPT051tfHEIOp9pWgzkNp/u6XL2JoCi90ZKmOGBweCDrD18ZMAPryFigKCqLi3hnO0Xat4wUcTiUWZ6JAxemmO//ZSY3c93wPA0Wb7atHLmyJsM4zh9P05mzOOq6msqDt7SmQKtq4flCfqTfXwfa2as7bNLaFy2SLfH/B5oy1NVyyrYX6RGherDJD9/3H9gEOpYqUbI+IobGmLsqpbTWLJvNoNinJM7UoHe283T15siUHXVUGi20Gm4S+vE1npgyk2dQ4tgL3jq3NAHRmyuzuyRMxVF7qztGbLeN4oCgC1xfs6c3TmS1z1nF1HFcfGyNsJhuf7/vs7c2zvj6OEALfFzJOSLKiWOgaXXOFFEILhOIrFZeYpgYB00O/q2oQKO36gjsfP0Rn2kIg2N2dpzpq0FwVYWNj4BLqyQVBnaesSVIdCawkvbkyecvllLYktTFzMDMLBErl38OZ7q51PlKFX+7OcsuDe+nPB9Wpj6uLUXI8dnZkeLknR8FyWVMbHTcOoyZqsrsnj+dDqmANVsP2iId1DE3Hcj16shZ3Pn6I5urwnBZBnC1D1r5D/UV6cmU8T5AI61iOx+GBIpbrL6rMo5laCOc65qxke3Sky2RLDlVhY0yxzVPXJOFQGpi8AvfV567j7p1d/Oq5TnqyZRxfBG5QVSER0vEF5Msuj+3vJxHSSBWdEYJtovF1pkvs7MjiuIEQv/n+3TKdXrKiWMolJaQQWiCEKtAUBUUTKAqoQhljFQosGTaO5xExgkk5W3LxvCK5soM2KJiipkoyalAXC9GTK1MTNRgoOuztzZOMJPF9v9InLGa+UpcmV3axXI8j6RJnrqubML5juKrvy1n86rlOBorOnKUKv9yV4+9++SJ7e/PoKhzoK5AIG2xuTrCxIcYf29P05iw2N41/3aqwgQJkSg69OWtMawpVUUhGDAqWO+dFECd7r452/lBcV3/ewvV9PF9QFw/GHQ8FmWqu59OftxdV5tFMU5LnOuZsTV0E1/cnFMibmuIMFOxJK3BvbEzwpu0qz7anEQKKtkcirNGTsyi7PqauEjU18mWXh/f2c86GujGCbfT49vTkaU8VMTSVU9ckWZWMynR6yYpiqZeUkEJogVhXHyMW0smVHWxXMDo3bGiaLZQdhKJQcjx0FXyh4ougFlDR8WiImwhUQprGhsYYOcthoOhg6kHhwmzJJlVwEAhUX+HeF7pZWxclV3bpzVsULJeIobOh3mJfX37cGimvVFv2ONhfwPUFZ66rnXa15fHY05Pjlgf38FJ3Luit5nh4nk9npsy+vgLH1UdZWxvloO3Rm7NoGUesaSpURwy6siXSRWdEa4rhhQjX18fmvAjiRO/VVHZAQxlHibDOgf4i8bBRGbeiKMTDOgNFh9U10WBxHSiiKsqCmJmHC7qooSGAkuON+PdMxjCXMWc5y+Ebv94zJvNriMDl6x+1AnfJ8bD9IEOzJmYS0lWaFYVUwaHkuLiewBt8/nUntUxoURzqw3b7w/tRFDi5deqJCRLJcmE5lJSQQmiBqA6b1MdNUgV7jAiCV6xC8bCB4/nYro/rKyB88pZHbcygXPDIFG0aqiIIIaiJmpzSlmRvT4GOTJHurEUhpLOmLsrmpirKjssfDqZ5dF8/YV2jOmqwri7GqmSYzmyZ2x8+MEKpj19tOYfricFqy8lKHNJMUoWH/mDaB4rkyw6uH1jHDF1FCIHj+uzvK+C4Ppqq0JEpVdp2VN4nIejKWvzJ+jo6MyUO9hcJGVqlPMFQIcINDXGiIZ2enDUvGTwz2QENZRxVhQ1cz8cIj/zzMzSVguWiqQrd2TK3P7yfbMmddzPzcEHXl7eCGDMUoqZK0fYAhfq4SX08NKMxzFRsjj6vPVWck0DlmKmjKSqW61MVGSqYqVMDuDkfx3VRFbAcj1/v6mFVzfjuVVVVUBWFbKU46Eg3tEynl6wElkNJCSmEFoimeGhCETSckK6iawqeEHi+QPiCsgOWHViJBAJdt/n9/hQ1UZONjXFOX1tD9iWHQsjjNZsaaK0ZKl5o0jG4o16VDHNaWw1VEWNEYcMhpQ6MX21ZgYaEOVhtOU9NtGbG1ZaPpEvs6clhOV4gggjSlRVFAUVBNcByPXrzFg3xELUxc8L4kneftYbOTJmD/SUKlkvRBr3SFiQIHM+VnXnJ4JnpDmgo48jzfXRNxfEEIf2V5x3PR1NVBgo27akiikIg6ObRzDxc0EUMlf6CRdFysT1BZ8YjYqiog1XPI4bKc0fSx8zUPVddxoeu82JnENMTMjRKtkt3tozj+kFR0IhJ3NTY358fs2EYjkynl6x0lsPfgBRCC8ST7SnSRfuox5XdoLBbPKRTsn0s18PxfFKlIEYoFtJpTIRwfSpB0hvqY6QKNmvqohURBJAru6RLLo2JELYbVLUe7ooZrtSB8astqyquL6ZdbXm82JmC7TIw2OFeHRRjDFvMFAU0RcF2g/imPz99Nc8dzk4YX7K+Ps4lW5t54mCK1mSEkK5V2oLMZRHE0ffiCzGjHdDQAvzckTQ1UYPenIU5GNs05NKrj5vs6ytgaOqMXS1TjVsaLug2NsT4w8E0luPTWBXmyECJ8qDbUlMVBooOmZLDxoYYBcs7JqbuueoyrqoKf35GK4/t76czW6Y5EaK/YGM5wffO1IJU+qbqCCe3VrOntzDh/cp0eslKZzn8DSzekS0zntyfwvFfiQUaYrSFqGi5RAwNQ1PRQgrKoIne1FTWNcXxfL8SF5OMGvTmbP7YPoCmwuamqhELs+0FQdPVUYNsyRmTSj9aqY9Xbbk2atIzWG3ZnWK15fFiZ9bXx2itiVCyXPK2h6EpuD64nkBTg/v0/KDqtqkFzVwbq8J8+IKGCRd1VVV43bZmOrPlQReVNuUK1lNl9L2ENBVVVTiYyhMPJRFCjBFDE+2Ahi/kBSvoO9eftwkZKpbjoWsqnh/EsGxuSpC3PBLhicXreGbmqcYt+b7gyYMpnjqUoi4WIme5pIo28bCO7foUbBdfCEquoDpiENeDXnadmTJhQ+OpQwNHjWGaj1Taucr2O76pio9euImvP7CbzkyZguVgaCohI+izVx0xK+6uyd7zubJSSSRLleXwNyCF0AKRLQeLogJomgKCSl0hd5g+EYPVb4O+V4H7CAXq4mFOXp0ERKVmTuBiCeIUGhNhwsbIGIWh/lkl20NT1TGp9KOV+njVlocCsntzFrqmoipMWm15vNiZjnSRnz/bEcQ9eT6ZkhO8nqHj+wLX9/H9oCBiyFCpiRjUx4MaPkeLL5nPNPjR91J2VF7qytE+UCJvufRkbdpqomxojFU61Y/3vk403j+2D9CeKpIru0RNjdqYieX42K7Hgf5g4a2NmiOuP5mZeapxS0Ni6alDAzw/WIsqbAx99mFKjkfZDboCa4oSZDYOumpDeuDS29OT598f2k++PH4M03ym0s5Vl/ELT2iirSbKN3+3l9/t7iVqaEQMjdrBWKiheLjJ3vO5slJJJEuV5fA3IIXQArGpMYFCUFlaI3ADKQQuEVV5pfdYIqSDANv10VUFoSokQgZnHVdbmZhr1pmVKtKaotCbt2hKhOnMlEco8qB/lsG+vgLr62MkhgXnjqfUx6+2HAqqLe8fQNdU+vMWYUMfV2iMFzuTKtjs7ing+QKEoDZmUnI80kWHonCpDuuE0LE9H0NTiBgaEVPn5NbklHcQc7UwDmf0vQwUbZ47kqFke7RUhWgf8MmWXboyRXKWMxhIHprSDmj4eIcqSw8UbX71XBcDBbviBlOUwbpRw64/kciaatySLwTffuQgqYJNbcyo1KJKF22yJYeoqQWNgQcD2QWCou1VxGpnRqAqgXXo5a4cJ66qGiO4XrulkV/v6pnXVNq56jJ+fHOCj164aTDIXqMmalbcq0MczbR/rGpSSSSLhaX+NyCF0AJx1nG1JMI62bI76A4KLC5DrTUANAVetbaW6qhBruySKdlEQ4HVJDJYDwiC84bidHJlh4ihcdGJjfy/nV1jFLmuqiTCBrqmkrfcMUr9ohMbKwLi5LZqjqTHq7bs8Kp1tbxuWzMNk1RbHp09IERgOSjZLnUxE9vzKTs+p66p4amDKTIll0zJJWIGtVvUwRim45sT7Ng6vR3EXC2M490LwN6ewoh6RY2JMF3ZMq6AbMlhd0+eE5oVurLWlHZAw8fr+4Jbf7MX2/XZvroaxxP05oLPpzYWZBru7S2QjBgTiqypZG7s7s6RLjoVsQRweKBMb65MYyJwj/VkLVZVh1EIXJUKYHlexYVbtDw8AiFv6sqYkgovd+e54+EDxELamKKHizWVtq0mysmrk+zsyIwRQVM17c+HGJdIlhJL+W9ACqEFYk1djAtPaPz/23vzIMmu6l73O2POWZk1d3VXdXf1LDQLjSChyagBY7gIiCsGS7Is9OIBDoOuLyLgBsYKB+Cr94yNZWEbh5CNAQMWXGyMQCCBH0Lz3Gp1q7t6qq55zDnP/P44ldlZ89A1ZFbtL6Kiu7JOVu5TJ3Pv31nrt9fiP1/tx7RdHNe/25bw02Wa4jf9DOkKWcMmqCmcu7mJG/e18OjBgXnzr1ftaKS1LjhNkV+5o4E9rTEO9WWmKfU9rTEefW1wUvoiEdLYVBdkPG9NU/WdjWfe5D3jhWm9xPpTRQqWQ9uEz6jUMb5UL6e0PbwlHuSd57fx9LER+saL6IqMLMkkwxqXdzbwocs7luUO4mw8KpU7ITLFM/6Z8sIeUslbKomwTs6w6R7NUxfSuGBLYtF3QJUiRpblcvPX0Zz/muGAn5p5pSfFlmR4RpG1kJ0bx4ct0kWbrQ1nChKWXmssb5EMawxnDIZypl/t3PZwvDM+tkmv6MHB3gwdDREaJtJ2kiQRC6q81pviis76eY3kmxOhqpg0l9OEXa3bgwWC1aBWPwNCCK0Ssizx8et2cnqswIGeFIbllitLBzSZczfXce/vnUvasBjJmTREdC5uT6KqMrLMgibpuRT5dXuaJz1eMB0eenK6n6QvVSQR0njrrkZCulIex4nRHA/8qmuyaApr5e7yRdvBcTy6x/KENJn2+kjZrF2ql1PaHq4rMvGQxu+c08rB3jQ37GumvT5MZ2OELcnwsiyGZ+tRqdwJYToutuuiKWc+LpbjEtZVLm5P4HgeJ0Zy3HJZB9fsalr0+EsiJqQFSRcsXM9jZ1OUvlSB8YKF5bgULYftjRE+csXWGce/kJ0bsgSO504qSFgf8WtRHR3MMpIz0BSFiK5g267fLmLiOAm/5x0eOBP/z5k2r/emecvOxrLoUWSpfJ1L1cxNx0VXZGJBtey3eb0/zY9f6q2acvy1HtoXCARLRwihVaYlHmQsZ5Ap2tiuhyr7d9FhXeF7z3cznrfKC8Ozx8fKC8NCJ+nZFPlMqZjStums4TCWN9EVmfqwyrMnxnj5dIqO+iCeJ/Ft7RRpw0JX5HKjy97xPI8eHADg0m1JOhuj5AyL4yM5nj0xRlhX0BUFVZbIFW1kWSJTtNicCJW9SkXLTzVdu6d5We8ilqPce+VOiJZYAFWWsRy/f1Vl9ep4SCNr2DRFgxO7jBYmgiqjVemChWE5PHVshJzpYDt+naFkWGNfa8yv7Gw63P6W7WxtiMw73tkihzuaowyljWliqT6ic+m2JH2pAqM5izuv2c4bgxm+9JNDuJaLKoOqyHhQrm1V8rWNTCmp4LgemiIzljM4OZJnLG9WnI9Oa9yvSfWdp07h4tHZGKEtUB3l+Gs5tC8QCJaOEEKrRMnMmspbNEYDuJ5/56wpvj/mtd40J4bzXLY9OakBaeXCsFyTdCkVE9Jknjs5Xl6sHM83xioSKLJMf1oiU7AYyBi4rseulhhNsSCyBP0pA13xCyH2pw22JMPEQzqXbavn128M8czxMc7ZFCunXTzPQ1dlkhGdsbxJMqyvyLbK5Sr3Xpku6U8bRHSF8byJF8RvUzJRvRpY9HlMjVYZlsNrvRksx6U9GUILqhM+IV8wJ8M6V+5ooD05u1hcSHrn/Re3l9OsEV0hazjlaE004H9/ydYkl21rQJb8PnWO60d33ImST7oioyl+RMx1Xb8KekVJhUzRr1t1sC+Drvr+tNL5nB7Lc7A3hSL7adJkWMO0PXY2+zu0qsFDVKuhfYFAsHSEEFolesYLvNg95nccdz3iIQ1N8aMkRwazWI5Htmjy5DGX5liQc9ri7GqOTlsYlmOSzpk2w1ljooicQzSooQYUTo8VyRZtdFXGtP2twtGAiiKBK8HJkTwFy2FLMsRAuuhHFSQmFVpsiAa4dFuSl7tTPHdqnKLl18spRTgyBYtnjo/SFAvQEA2wszla9ossx8K3nOXeJ291dxnKGgxlDFrrAmxOhskULU6N5ticCC14e2hltKo1HiDiKDx/coyi5eB5rr+bK6qjKTKRgEJ/2kCRJW48p3lB/bnmixzKMrzen+Znrw3geB5MJGiVCZN66TyiAZVYUKNgOoR0BVmWkJDKqa9UwcXf9+hvsT9TUkEjpMsMZgy/i/DE7y9aNqmChWm7BFSZLckAsiyXi4KW2rfUQjl+gUCwvhBCaJXIGBanRvM4zpmO4wXTYShjYk54MUwHxnIm43mLnrECl3fWn9XCMJtZOKjK9E0U9WuK6uiKX83ZclwiukyqaOO6HqrkTdRPccCDoukX2usbL+B6HkVbJxnWJxVaBGitC3KgN0VrJMDulkYKpkN/ushY3sJ2/MXesF2CqsKPXurhkQP9y+YPWe5y75WRuNf70jx6cIDXelK8cHIMPEiEtXJkaD4qo1UNEZ1D/VkG00UGMkU0WcbDFxlF0yHn2SiyzJZEiKCu0DteJKTNHwWctDW/aJE1bKJBlYCq4LoV5Tsn/D4lC7S/Td7m2FCOgOpXNt/RFCVTtClYji+IZb/1i+16hDQF0/GLQB4bzhLRVc7fUscF7QkefqGHS7cl6U8ZjOZNskWL8YKNqkjUhwMM50zAr96sl3fF+e1baqEcv0CwFqxEgVKBjxBCq0S2aFMwnUktIEZzph8JwL95loCgpqDK/lb3p4+Ncv3eZgzbWfTCMJtZeO+mGE91jTCQNsomXF2V0VUZ23WRFRnb8Us99qQMXM+jpHE8QPY8DNtFVyS/mJ7lEg+pk4o1DmUMCqbLhVuiNMX87eft9WEyRZuhrMHB3hRFy6U+otMcD87qD6n84Ic0BQnIz9MFfSXKvZcicQXTwbAdwgGFLfVhWuK+d6gvNb2B7UxUpiRfPp2iYNpoqoQqS+iqTNF2KFgO522poynm/116xwucGM7xjd8co3nChzSfYJRlvzfY44eGODqYYaxgoUjQ2RTFtl0c1+Omc1rKqbG8YdOXKnCoL8P/8/PDnLMpzo6mKB0NYcYKJt0jeXKm3wxWkSUCqkTBgnhIZ3Mi5HdJ8WuEkjcdirZDZ2OULclwecfdgdP+1vSSr8iw/UiTJEmT2rdIEou6PmJxEGwEVrJAqUAIoVUjGlAJaYqfigr4bQwKls2ZfTkgySBLEqoiEQ0o5EybV3tS7GqOLmrhns0s/NTxEX74Ug/xgEosoJIzbXKGQ7po+cUd8ch5Z+oalSIIlW1APBdc2cNDBjyKlkMkoBAN+HWOSsbcsK7QFDtTbbm0tfpQfwYJiZAmYThu2aS9sykyqafTseHslI7oJuDRGA3M2QV9KeXeF7KYvjGQ5s/+/SBvDPrel9GcRaZgsbMlOmMKcyZypk3BshnL+f3W/ErSfnd3y/W9OjnTZiBt0BwLcHQwS7pgEdQUOhuiqIq0IENx6fqfGs2TN2yyho1hO7zak8ZyXC7ZmkCWZeIhmdGcydGhHHnTJhLw35+G43KgN42qSGyqCxHWFcZyFtmihe26GLZv8t+SDLGnNUZYV8mbNq/1pjkymMW03bIQjYc0TMdFkkBT5XKTUz8V6JXLKpTGOJa3Fuy3EouDYCOwHJs/BHMjhNAqEQtqdDSEOT2WZzRnTngtPFzHK9dnUSWJ0hqqyDKy5DCQKXLVzoYFG3FnMwtHAyq27ZIpWsQCCroqkzN88aV4UrnPlzeheryKr0ocABcU1wHkieiWv4VeU/zoSEM0QFBTKFgOsYpIUamuEHikig4HTqeQJMo7ijbV+Yv/b7uG+emB/oqO6CY5w0bCYxgI6wpPHhvmjYEMH79uJ7tbJ++aW0xNmJl6iTXFgrx5W5J9m+JsToQ4Npzlyz89xMunx5Ek/7rlcBjPmwznDK7obFhQCjOiq7guDGUNYkGNolVKEzrYjoffX1ViJGtwsDdD3vBbrbTEgyTCfi2m+QzFpet/ajTPWM6gaLlEgyrxkEY6b3JiNM8rp9O0xkPUR3SODmZJFUwcx6NgOxiWy+u9aVrjQVRVZndzlL2tMboGs4wXLCQ8MoZNUFW5qCMxzYz+xkAGw3bpHS+yu8UXoqVWL5btkjVstiRD2I5XrpNUet/1jBdmrZM0FbE4CDYCy7X5QzA3QgitEpsTIS5qT2LYLrbtMpgx/LYFnl+h13ZBkqWJNJmH6fjCRJNl3rytfsFv8tnMwpmi3/m9IeIXACzaDpbrkQypuJ7k3+lbE93uS6mwyc3hJ2HaEIuoNER0sqbNiZEcTdEg522u48Zzmnn0tUFe7UnRGvewXA9dkTFsh7xhM16wUBU/QqRN9K4ayhRJFy0awjq/ODhY3tr/3MlxDMuhJR4gb9p0jxXoGy8QC6p0DWYZzZn8r3fvY3dLvDy2hZYbmN5LTOFwf5qnj4/yyIE+drfGuLA9wbHBLAd707geRHUFRfajZobtMpA2eLUnxVU7GjHsub0tmxMhNtWFeOn0OEFNZihjlusR5Q0Ly/FQFF9UWq5HUFWIh3yvzkIbr/aMFzg66IuoUvqx9NyQ7kcls4bNwb4052+uoz/te8Vcz29+G9RkQrrCUNaYSIPJ/P5V28rNVdMFi+88fYpkxe8tIUkSbYkQp0bzBFS5QojKRHSF0+MFmqI6522u8//+A1kGMkVSBYtkOMClW5PsP2/TvAJGLA6CjcJybv4QzI4QQqtEZaRiJGuypT7EK6clTo7m0FWFkCyjyX4DVsvxjcvxoMq+TTH2tcbnf4EJZjMLl4oC1oU0hrM2MhJBTaFoe+iqf9duWC6yLKHiMdFzs0zZW4vfCqRUCBIJtjVGuOOtnexoipbTSt2jBX5+sJ9XTo+jqRIBVUGTYThnoEgSm+tCBDQ/nRZQJfSIzkDawLQdgprMlvpwub5RNKj5BvLxAqbtp5I8JDRF4lB/mvsf7+KT1++ctIDOV25gei8xa6KXmL/9O1O0GMubPHN8hFdOp9FVmYDqn68kSSgShDSZnOlweqzA4ITYCqoyzxwfmVYUs/QeuPGcZn51eICe0QLexHZ01/NQFL9wpiz5HizPs9jWFmZ3a7zcY67EXIbinOkL3pJJunLy1FWZiK5i5E1GswZjOZNU3i/gGNYVCpZLJKASDagQgJGsQfdonpxhc06bL14O9acxnMlFGaeOLaDKvOuCTRzpz9I1lMWwHZIRHbu8W1KmYDkYjkPWsNEUmZa6wOyqewpicRBsFJZ784dgZoQQWkWmRipa4kHftOy6tMY1YkGNnOn4DSA1meZ4kEu21pfTYgvxssxmFtYVGVX2O9FLEyIiGdEZz5sULF8kAYR1lXhA5XSqgIy/NllOaRO0X1G4ZJpNhFSGcxYt8SBv3dFYXvCPDmZ47NAg8aCGKksT/g+XMcPGdSEa8hurTsc3ZpcW2lJ9I0v2Fz/TcdFUGWeiV5vleriuR/dobsYIwFzlBqb2Eiv1RCtHUCTIGQ7JsEbRcgiqfr2nnOmgaIrfNFeSCCgyWdOPsLQnQ3z+hwc4OZov14ja1hDhtrds44Z9LQBctaORS7fX85NX+3Fdl4Lpm+VVWSIeVFFkmRZdIWfYtNeHp4kgmNvwHdH9cgeG7ZSLHJYo+bSypk3WdBjN+xEpVZEpWH7T2/qJFBxAQFPIFH2P0Xzvr6lj29ca58a9LdOqmT96cIAXu8d4YyCD7Xi014fZ0xIjqPm1tPpSxXnTWmJxEGwUVmLzh2A64q+3ykyNVLzcPc6/PHWS4ay/pVxXFZrjAcK6Skf9Gb/EQo2hs5mFY0GVZEjj2EiOtrqg35B1olJ00bQZyprUxTVCusJgxiCg+DvJHMfD85yJ3mg+suT3RssaDomQhq7K9KWLtNeHJ0VaLupIAJTbLGQLFr/pGoaJnUOxoIqm+BWbs0U/guEv5BID6YKfHnQ9BtOGL4ImatnIMqiyjIJHwXExbY8jA5lFRQCm9hKr7IkGlPuiOa4v/Iq2Q2s4iOl4FCZ22rmu54s8y+X0WIETI3lkCVriAZrjIQqm41do/ukhgLIY2pwM43kenuf7nTTFb0eRLvrRkT0tMXrGC/Sni7QlQotqAlq6/q/3ZSaia+qk59qux+ZEyP//xO5Ay/EjhQ0RvSxQPc/DsFzCukI0qE77/Qsxo88kRDsbI/zFzw5RtBx2NkWJh878zRea1hKLg2CjsJTNH4LFI2aKNaBygdjbGuei9iQ/eL6brqEsrgeJkMaulljZz7IYY+hcZmFVlYkHNSK6iixJjOctVAWGMiau56GpMobtThRVVAjrMrbjUrBdJMk3dauKXN7ivDkRZltjmFTBKt99z5S2KEUmdEUmEdYxbYe6kEbedMgZfr2c5niQ1niAVMEiXbA51J8hpMmMFSwyRcuPRsn+1n5NlVFkKFgekaCK6biMF8xFRQCm9RKr6IkGZ/qi1Ud0Qpq/g09VZFrjQX+rt+HX13EcF03xz812/GMyRYeI7hELakR0hVNjBR767Qk2J0L84vUB/uPlXpyJNhWG7WK7Hs7EDj3LcXn59DjJsC8wF9sEVJYl3n9JO08fH6U/XaQ17m/NL4nNoKaQDOtc0dnAJdsSfPXRNxjMmEiS/1zX88rHqqpMezJELKBN+v1n06C0L11kOGuyuyU2TcQsNK0lFgfBRmG5GgIL5kYIoSpgd2uMe96xb8a011KMobOZha/sPNOJ/sXuMXpTBVJpG31iZ1JAk0nnLUK6QlBT/DYKSOiqREjTqAup2K7fKuO8zXW0J8NkJ0y5pbvvudIWsaBKY1Tn5EiePa1Rgqo6qcXDS90p0kWLeEglHlKxbJeIrpAuWNgeeJaDrsjoijSRypFpjATIGjayJC8qAjCtl5jim7YDqjSpl1hbXZDmeIATww7pgkl9NEBLXMcYdTBt0DSZ1roQQ+ki4YBfT6lg+WmnNs3vJt8Q0XljwK/RYzourueRjOi+kLJdTNst+3dczyVvujgehDSFlliQ8bw1o+F7tlTp7tYYf3TDLv76l0cYyhjlOlF1YY2wptLREOamc1vobIxy9a5mnjo2gu26jOV9b5EqyzRN9Fe7uCM5TVCcTYPS5UhricVBsFJUY10q0RB45RFCqEqYKY3guh7PnRzlhVOjNEQC054z1x30fJ3ou8fy/OWjb/By9zi64kcCTNujLRmmszHMcNZPXYVUhSePjZCZMLW21gXY0RShPhKY8e57rrSFJElsToQYTBv0jhfZ0RQlEfbbOBwZzE6III2L2hOM5U26BnP0p4sEVN/D4np+RAokIgGF+rCOJIFpu+xsji4qAjC5l1hxopeYhRdUyBl+sb8dTREkSaIhEiiXF8gUbSzHL3wYUGSa4kE21QXpTxX91J3km5ILpuO3k9AUgppfJ2c4a7BvU5ye8QJN0QAD6SJZ2/XrNU3ULbBc3y/0prY4rgcN0QC3vmUbhSmFJOdLld6wr4X2+hA/eK5nItLokgjpkyKNQIWB32BLMuRXj3b9nmEN0cCsgmKpve+WK60lFgfBclPNdalEQ+CVRQihKqX0oXzh1Biv9aapC2mcHguwo9kXISXmuoOeqxO9LPlf1+5pBihHZkqVr3XVFwZ/eE0nv3NuK9955hQ5w6azMUI4oFb0lpp89z1f2qJguVy/t5lkROfYUK68gG1tiGC7Hh31YSRJoj4SILlNJ12weLF7nL5UkbxhEdRkohM7myQ8+tMGrfEgN1+yedGTwuReYmMTvcQcNiWC7GmJocoSL58eJx5SedcF2xlKGxzoTTGUMTAsj+2NEXa1RCmYfj81y/UIyH7fLtNzJ3p5+eLJdT3a6kIEVL9yuKpIfukBw/YrQTsemu0S1GVCmkJzLIgkQddQFlmS2Fuxc3ChqdLdLXHueUdszslzqqDImzYBVeH8LYl5BcVSet9tigdpjOoc7EtP8wgtNq0lFgfBclELdalEQ+CVQwihKqTyQ1kf0agLaSiyxGCmSMawJhpU+mJoqcbQUoqiLeBHAUqdw0dyfqXnkK5g2EXylsPVu5rYVBcsL5aDGWPWu++FpC1uubyDzsbJC1imaPE3jx+dtC1bkiTqwjrnb0mQM4bJFG2/35lRZAC/CndbMswf3bBrUh2hxTCpl1h/mueOjzKUMTg9VmA4awB+wchnjo3S2Rjho1dsxXY9vvPMKdrqQsRDGm7IJRHSGMmZaLKEOzE2RZJwXb9oYlhX2doQRlVk6sM6g5kiQc3faq4pvjerKRbAcV1a6kLEgiqO500TuYtNlS5k8lwtQVES98eGc5wazXNsKMemuiB7Wv1dY/OltWZLW4jFQXA2iLpUgpoQQidOnODee+/lscceo7+/n7a2Nj7ykY/wuc99Dl2fvr24RLFY5O677+a73/0uhmFw00038bd/+7e0tLSs4ugXx9QPJcDpsSJDmSLJsMZY3qJrKEcy7J/3Uo2hlSkKy3HpGswxmjexXRdV9gvgJSN6WWAtZrFcaNqicgHrHs3PkTLxdzupMhMVlv2ChoossbMpwtaGs1sIS4tpe32YG/e28NuuYb79zCkkyd/lFAlofguJvjR96SK3XrWV8zcnONDr98+SZZkLOxL85sgw6aKNLPl+KNN26UubxIKaX7DRdompCjuaI2QMi3TBQpKk8rmUtryXUnIFw54mcleqhs5KC4pKcd9RH6Y5FuRwv79dfihrsLslxsUdyVmjUNWcthDUNqIulaAmhNChQ4dwXZe/+7u/Y+fOnRw4cIA777yTXC7HfffdN+vzPvWpT/GTn/yE73//+9TV1fGJT3yC973vfTzxxBOrOPrFMdOHcmdzlKxhM5a30FWZ4axBX6pI1rCXbAwtpbCeOj4yqRWDpqiYtsPp8QK261GwzkQjFrNYziScNsWD9KWLHOpPTxNSs6XUPM/j6ECWguXwprY4e1vj5UrV0YAyqT/Zct2tvdydwvPg/M115aKOlf3QfnFwkN85Z3LUq70+zMVbE7x4KkXRcjBtvxXFnpYYv3/lVg73Z8vnVh8JcGF7gqMDWXJGloxhEQ34f48dzdFZ/VcAGcNiNO8boD2PciqzRLXU0JnaMPeRiZYppTvuWBAao42kCxZHh7LsaIrysas7y7WoKqmFtIWgdhF1qQQ1IYT279/P/v37y993dnZy+PBhHnjggVmFUCqV4h//8R/59re/zfXXXw/Agw8+yL59+3jqqae44oorVmXsi2WmD2V9RPcXzsEsIzmDdMFiNGdwydb6JRtDZVnid85p4ecH+xnKmrTGg+WaPjnDoSkaIB7U+MXBQXY2xZYkMmTZN0eX0k7//OQJ31/juNPu6GdLqQ2mDU6O5kmEdXa1xKkLT44ALvfdWmWH+OdPjk+KktWHdVon+qG9+4K2aVGveFDn9qu20ZYMEdD82kDbGiLUhXQ6GsKTzi0e0ti7KYbl+u1WWuJ+imgu/9XRwQw/eqGHrsEcJ4bz5a3wO5uj5cKL1VBDZ2r0xnE8usfy7G2NTRJtpdTn7pYYQxmjXIuqEpG2EKw0oi6VoGavbCqVor6+ftafP//881iWxY033lh+bO/evXR0dPDkk09WrRCa7UNZH9G5dFuSvlSB0ZzFXW/r5M1bF96DbCZCEx3iVVkiZzp+rZyJmj47mqJoinRWIqO0IFZWEq70hFTe0Xc2RgmoCm/b01T26QykXYqWQyyocklHcsYqy0u5W5vNa+K6Hl1DWU6O5sgULJyJiIumqFiOy2CmSKpo0hAJkDNt9rbGZ0wXHhvOVgiB/rLou35vM4f6MpPShdfvbSmXNJjLf1WKioxkTZpjAcbzJkFVZijjRwYvbE+QCKl0DWXZ3hjB9fxilEt5f5zNFuKZojenx/KM5EwOD2SITETEKpnrGoq0hWClWWpdqmrcai9YGjUphI4ePcrXvva1OdNi/f396LpOIpGY9HhLSwv9/f2zPs8wDAzDKH+fTqfPeryLYa4PJUDWcLhka/KsRRD40Sddlbmis4G86UzbOWa77pJDwmcWbr+nlSbLJMMKqYLf0+vC9gS7mqMcGczy7adPUR/WOTacK3eAb4wG2N4UQVdkfv5aPwF15nOd6W5trglqNq/J3k2+GHm5e4w3+jM4nkd9WCeiK8gTvdL0iMxAuggehCf6pE1NF86Xxrn1ym38nt42Y0mDhfRF290SpSmm81L3OFnDJhJQyBZtnj85imW7fo84D/7qF0eW5KE5Gy/ObNGbZFgnGdLIFe2yv63yfT3XHbdIWwhWmqXUpRKetfXFmgqhe+65h6985StzHvP666+zd+/e8vc9PT3s37+fD3zgA9x5553LPqYvfelLfPGLX1z237tQFvuhPJu7klL0qWBN70sFSw8JVy6IrfEgJ0byxEIaAVUmoCqM5ky6hnK8eatOUJP5+cEBWuMBtjdG2N4QoS9V4NdHhvjF6wNsqQ8xkjU5MZrnsm31NETPRBNmuluba4ICZhQpTx0f5vvPd1Mf0WiJBdBVBdP2G4KajktrPFjRG81v+OpNPWkWlsb5xesD/F9v2zHtGi20L1qptMCF7Ymywb1g2fSnbZrjAS7qSNCWCC/IQzP1vVMwHR56culenNmiN7GgSjISoHfcr1eUKdrl99t8W+ZF2kKwGiymLpXwrK0/1nT2uPvuu7ntttvmPKazs7P8/97eXq677jquuuoq/v7v/37O57W2tmKaJuPj45OiQgMDA7S2ts76vM9+9rN8+tOfLn+fTqdpb2+f+0SWmYV+KM/2rmSlWhVULoiGfaZ9hed5mLaLIkv0p4qcHMnxwskxhrMmEn60K6BmyZsOrufheR6W47GnJcZzJ8f49RtDXLotyaZEaEZhONMElTNsnjkxwoG+FFFdIVN02N1yRqSYtsuJoRxDWZN0wWIk6zd69Qs3gmG5jORMGiWJ3ERH94aJqtBznfdypnFm9o1N1FkqWjx/cgzT8bhiez3Ncf+Y+Tw0U987AUVmOGuCBBe1J+b04pTOdar4ni16I0kSO5ujpIuWHyHMm4QDC6sELdppCFaLheyMFZ619cmaCqGmpiaampoWdGxPTw/XXXcdl1xyCQ8++CCyPH13SSWXXHIJmqbxy1/+kptvvhmAw4cPc+rUKa688spZnxcIBAgEpldxXm3m+1Aux13JSrUqqFwQPa/Uf8smW7QmKkR7GLbDSM7EsP2+ZsmJrufdo3ls12NrfRglqDKet9jXGudtuxt55vgYh/qzfjd4TZ3WbmLqBDWaM+gazDGSMxjJmVi2y46mCE0xnfpIgNGcwbMnRhkr+G1FJMmvXO14HngSQU3GtF1SBYugqtBS5/dDA2neNE6pLlNlunGpaZzZoiKS5DehzZt+77bKBquln7fGA7x8epz/OjLEjqZo2cM09b0zkPZFXDykMpY3J/l4KkXcE13DvNKdmlF8zxW9qY/o7GmJcsiDguVwYji3oErQop2GYDWZb2es8KytT2ointzT08O1117L1q1bue+++xgaGir/rBTd6enp4YYbbuCf/umfuOyyy6irq+OOO+7g05/+NPX19cTjcT75yU9y5ZVXVq1ReiqzfSiX865kJVoVTF4QVQKqzPHhHIosEVBlXBcKrkfR9bu7x4MyQU3BtF0kCSRgrGDRGvcLDJqOS2M0yFt2NtCbKvLBSzvKi3rp/KZOUKM5g5e6xymYDtGgSj06PRNFEl/qHueC9gTHBnPkTQdNkQhONJwNaQqJkF+vSdFltiSDpAo2526poyMZ4uhQbt40Tu94nv6UMWnHWTKsEQ9p2I5LumAtysg8V1TEsP3GtdsaIsSCkz/OozmDIwNZusfyfOM3x2iOBulsijCSNTg9lp/oQg+yxESTXQXLdmf08YR0haODWb7zzCk8j5n9T1dtnbeq+LvOa+XdF7SRn9IyZC5EOw1BtSA8a+uTmhBCjz76KEePHuXo0aNs2bJl0s+8Uo8my+Lw4cPk8/nyz/7yL/8SWZa5+eabJxVUrHbm8/0s913JclcWrly4dzZFKA3R8zxczyNv2n7fMBkc/OKIAI7n9/MKaH6vrrzpoMgy+kSaKhxQUWWJ1om6PZVMjcZ0DeYomA71EX9Bd10PSYLQhBfm9d40OcMXannTwXI9JElClX0PTsFyyRRtIgGVoKagKzJHh3LzpnESYY1HDw6gKxKxkIam+NvhD/WnMSyP5niA7zx9imePjy04hTlXVKRnvEBIU2lLTH4vlIRgumAR1BQ6G6KoisR/vTHEGwMZQprCseEcmizTEgvQWhdEVWRkCUZz5iQfD0DesP0UpgQXbJk5dTZTfaWp0Zubzm2loyGymLcTINppCKoD4Vlbn9TE1brtttvm9RJt27atLIpKBINB7r//fu6///4VHN3yshDfz0rclSxnZeHKhfuVnhSZos2muiAjOZPxvIXjeniAIstoir/IGpaDMtH/TELC9Xwh0l4fLkc65ppkKicoz4PRvEm0otigJEkENYWi5ZAIa4zmTFygORogqFqMFyySYQ1dlctisne8wHjeoj6iYzvuwiIQpbfgxOsWTIehjIlpeygy1IU0EmF90cbK2aIil21rYEejX4PH83wxVxKCecNPS7bEgyTCGmN5k75UgUzRpmC5hDT/XMfzJkPZItGgRqZgI0kepuOeOSXP49hwDgmPzsbonOJ7pvpKyxW9Ee00BGuN8KytT2pCCG0UFur7qYW7ktLC/a0nT3F0IIssg+W4hHWVWFAhU/RrFhm2Q9FyGcgYtMQDBDXZTx15HuFYoNxuYr5JpnKCSoY1bNdFU/zz9zyPnGGzJRnCdjyyRQfLcVBlmZxpoygSAU1GliRMx0VTZFzPI6DKnLu5jg+8uZ19m+LzRiB6xguMF6yJek8GYzmDwYyB6bgkwxrRoIph+wKjVDpgMcbK2aIiJc9PKQpjOx4DmSK2C/GQyo4m3+D86ukUY3kLWZLA86tzy7KEYbsMZkxUxW8Gmyk6mLaL7brlaE4koOJ5EAnM/J6qFN+z1VcS0RtBrSM8a+sTIYSqhMX4fmrlrmRnc4w/eOs2elMFukfzyJJESzw4MU5/0QzrCo7nIQNFy0WRwPEgrKmc0xYnHtJmrbQ8lfPb63itL8WxoRye6xuyZUkiW7QJ6SrnbU7geR4vdY+RNQHJYyxnsq0xQlMswHDGZDRvki1a5E2XXS0x/mT/ngU3dC1F6jobo2xJhukdL/DcyTFCukIsoOIB43kT03GXbKycKSoyNVo0lDUoWA4dyTC7WmLUR3RSeZPT44UJn5aEYZeichIhTSZnOgxnTLY1hmiOB7Edd5Kh+fwtdTz8Qs+CxbeI3ghWmrUqaCg8a+sPIYSqhMX6fmrlrmRLMsy2hjAHelI0xc4YcOsjGoZtkzUcogGVSNCPXKSLFjtbZLbWR0gVrAXtLqpMJ2aLNumCRbpokyrYNEb1cqVsgK6hLKM5k4iu0BQLkipYKLJEYzTAlmTYb/WQKtAQDfDxa3eysylK92h+QZPt1EhdQFNQZaksVk17sudpqcbKmRaAymhR11CW7zx9irZEkHjIr8Y9VrAoThiUbVnGcm1M20WWJRRJQpVlsoY/7s++cx8hTZ30+8HvwVbt4luwMVjrgobCs7a+EEKoSlis76dW7kpkWeLN2+t55LV+skUHSZLQJlIyIV1FllyCup8qG8+b7GmNc8O+Zq7Y3kDfxPnONclUphNb4wGiAZVkWENVJEbzFrGgxp6WKEXb5YWTY2Uv0MUdSYKawpHBLOmCxanRPAHVFylvaqvjkq1JBjJFfn6wn2NDuXknW9f16x7FgxpdQ1nO31yHrsioiozleOgKZIs2zfHgJM+TrvipwJka0c7EfAtAe32YzYkQr/WkOdCbIhb0yxKUvEue5+J6kAhrqLJE0XIxPRfP89AUmd85p3XWCFitiG/B+qZaChqKqOf6QQihKmEpvp9auSvZ1xpnd0uMsZxJzvQrNquyzJZkmM7GCENZgyMDGVRFpj9d5OEXeni5O8VN57awt3X2tFRlOrEhonOoP8tYfqIgoiyhyBKu56e/Xu/PkCnadDZGJpqU+nVyLmpP8MZAlo6GEBdvTfLCiTEG00W+9dRJukfzaIrMuZvjdDZGZ51sK8XJcNagezRPX6rImzbFqAup9KcMVNnf9VbpeToymAUPvvP0qRkb0U5loQvATD6GWFBFV2QyExG4lliwXCfJdj3GcgZ1YZ237myc9e9dK+JbsH4RBQ0FK4EQQlXCUn0/tXBXsjkR4qL2JK/2jHNePIjleuUig6M5g4O9aUK6wo6mCJGAtuC7u8pO8S+fTlEwbaJBDS2oYjkeBctkJGfyjvNayRg2DRF/m/jUDuhtiSDHhnIMpA1M26U1HqAvVcT1wHFdjgxmy81Cp062U4sTtiVCNEZ1DvSkeak7RUNUR5b8HXK7mqNlz9ORwSz9qSKt8SDJiE5YV+c878UuAFNFS9GySUZ07KxBUJWR5YkgkQQF00aW/Z5zW5Jzv5dqRXwL1ieioKFgJRBCqEqo9t0IZ2NMrDy3gYxRPrdM0eKZ42MAXLatvuxnmW1xnzqGjGFRsGzGchYF0y7XDAIIqBJNMZ3TYwVe7UmjqzLN8emTJ0BQUzg1mqc5FuDijqSfpitYJCM6uiKVe6OVigyWJtvusfyM4qS9PsLmRIhXelJsb4xw3d5mXj3tm7hPDOd8j5AHrfEgF3XM3c5itoKRlcy2AEwVLUMZg+8+c4ojA1kyRRtfCkkosswFbTE+dHnHgq7pXIU+hUASrCSrUdBQvI83HkIIVRHVmnqYyZfS2Rjhwo4EjbHAgiaLmc7Ndj1URebSzfFJzVRh+uJu2M60MTRGddIFm6GsccYLU4HtekQCKmM5k5A2e9pxKGNQMJ2yyDCdM/3RJEkiGlQnFRksTbbHh3OzihNZltnRFGU8b9HZGOXqnU3lyTVdsPjO06dIRvQFi5qlLgCVomVvq18R+pED/bzakyJvOoR1hfM3J87aZLrW5lXBxmClS4eI9/HGRAihKqPaUg8z+VJ6x/P8+JVe/u2F07TXh2mMBhY0WUw9t/5UkX999hRtiZlD2KXF/fX+NL8+PDTNG3NqtMBQ1mA8b5IMT54UPc8jW7RpigWITHhi+lLFWdKOBcK6QnPM39pfaXIOqL65OzfRiR7OTLbAgsVJpSA51J/GmKipNN/zSizXArCzOcb/vczvr2oxrwrWPytZOkS8jzcuQghVIdXi+5m5kanJkcGcXx3a8ysQ14W0BU8WlecW0VVCmjrr4p43bCzH5WcH+hnOGpy/ua7cbDcW1Njd4nuMBtMGQ+kiyWgATZGxHHeidpBCW10QkLjxnGZ+eqB/xrRjQzRAUFMoWA6xCe9SMqwzlCmiR3Qsxy1ve6+cbDsbI0sSJ0sRNcu5ACzn+2stzasihbHxWCkLgTBhb2yEEBLMylRfiud5HB3MUjBtGiI6puMynreApVVKnmtxH8kWeeb4GK4HedMipKtYtseO5kh5x5ckSbypLc5IzsR1PQqmQ86zUWTfD9TZGGYkZ3He5jqu2tFIa11wxrTjjftaePTgwKRx7GyOkjVsRnL+LrRNiRDg7/QqTbZtdb4x+mBfmp1NvhG6dA5ziZOliJpq9ZCtlXlVpDA2LithIRAm7I2NEEKCWZnqS8kUbcbyJtEJP05lymgpk8XUxb0lFiBVtOgZL3Bi2K/rs7slyokRj0hAYTBTJGNYXNieKIuhcMCPBER0hdG8SVhXSYZ04iGFgYw5SSDsbI6x7ZoIL3SPMTKx5f7i9iTqxC6qSpERD6nsao5woDeN60roikyqYJcnW4C/+69jHBvOcWo0z7GhHJvqguxpjRHUlDnFyVJFTTV6yNaiG7dIYQgWYyFYSORQdJXf2AghJJiVqSmcShMxMCllBEubLEqL+/2PH+Unr/aRKdpYrosENEZ0JAm/AKMkUx9Rpu3gKpgOuioTDWqcHM1zerQAEtSFdK7srOeWyztmrPdTiiJUdoGfSWS854I2LmifbAqv3DLfUR+mORbkcH+avlSRoazB7pYYF3ck5xQnSxU11eYhW+2+dyKFISixkBTvQiOHtdC/UbByiKsqmJWpKZyFVEpeymRxciTPK6dTeEBTLEC6YCFJkDEcnjsxRmtdkGzR7wJfuYMrFlQ5MpAlXbRQZZnLtzfguB6ZosVo3qRgnemgvtAownwiY6aFOBaExmgj6YLF0aEsO5qifOzqTlRVnvO8lypqqsVDBqvfjVukMAQLZTGRw1rp3yhYGYQQEszK1BROazwwZ6XkpUwWtu3yzSdOkDVstjeEKdouWcMmpPkiIlWwSRUsGiIBRnMm4YCK5TiM5U36UgXSRYt4SGN3y5noQDKi014fLkcHttVHFhVFaK8Pl8PpbwxmJgmU2RZiSZKoC+vsbon5/crSxQWnB6t9wZ4rtbDa3iWRwhAshMVGDqvVg7deqPaNDUIICeZkagonoCozVkpe6mTxQvcYJ0ZyNER0ZFlGkTxkScL1Jjqj6wo5w+G8zUEyRYfBTJGi5VKwHLY1RLBdj4768JzRgRe6xxYVRZgrnG673oZaiBeSWlhN75JIYQgWwlILkFabB289UAsbG8RsUYOstrqeqULxy93j5UrJZzNZjORMLMclpPt1eXRVJqTJ5EyHkCajKRIF028I+uatMV7pSdHZGOX2t2wja9j8zeNH563HM5IzKVg2UUdlOGuU23uUJshK8TJfOH3/ua0bZiFeTGphtbxLIoUhWAhLjRxWmwev1qmVjQ21P1vXIGcjZNZKXU+tUPyWHY3LsmOjIaKjKTIF0yEWlJEkifpIANMplj0+sgQeHkeHcmxJhvnwFR10NEToHs0vSJQUTIeTIwXeGMgiAaoikwzrE81X9fJxIU3hP17umzOc/kp3is7GCK/1pYnoClnDwXRcdEUmGlDWzUK8FFPyaqT5RApDsBDOJnJYC+nqWqCWNjYIIbTKnI2QqSZ1vVw7Ni5uT7KtITLhxVGQZZmQrtAaDzKSLTKcs4gFVHRFYXdLbFLUaSHRgU11QZ49PortuDiOS2MsgO3CUKZI1rC5YEsdIzmT8zbXIcGc4fTWeIBXTo9z7Z4mDNvhkdf6cb0zxyiyVB7jWn+wz5ZqNiWLFIZgPkTkcO2p5jlkKkIIrSJnI2RqSV3Dws9VVWVue8s2vvTTQ5wczRMPauiqjGm7mI7Lprogt79lG9fvbZkWTZo3OhDWwYPxgsVl25O8fDrFeN4iGlRJhDWGMibPnBjlzVv9re55y5k1hTaaM3ljIM3psQLDWYP+tO9VCusKAVXCQ5po574+qHZTskhhCOZCRA7XnmqfQyoRQmiVOFshU0vqerHnesO+FnrHC3zj/ztO73gBx/NQJInmeJA73rqdj165bdbXmis6cN6WOn74Qg+b6oLEghoXtkt0DeYYzZs4rouqSKgSXLqtHtv1ONib5uRwfkoKTSOsK5wcLVA0HQKqjON5aLJEMKShKhK7WmI0RQNEAwpHh3JVJUiXSi2YkmVZYnMiVBZDPeMFIYYEZUTkcG2phTmkxNqPYINwtkKmltT1Ys/1jYE0z50cY0siyPbGMK7n4Xn+sa/3ZTg6mFlUM9dSdOCNwcykv1l9JEBym06m6FfDzhQsXu1J8d1nT+F6fhf6TNEmoMq0JYJkDZvD/RnypoMk+V6lupCG50EioqMrMqM5k9GcSWdjpOoE6dlQC6mFWtiNIlhbRORw7aiFOaSEEEKrxNkKmVpR167r0TWUZSjrd3r3PG+aGKo81zf6M9z7H6/TNZRFlSXylgNAWPfNy/2pIkFN5vPvOmfOyWsmz9JMfzNJkoiHNI4P5/jtsRFyho1hO5i2h+16BDWJguXQM17AtF0sx8F2PRQJQgEV1/N3ukUCKgFVmlTgMR7SqkqQng3VnlqoJr+coLoR5ue1odrnkEljXesBbBQqF2XP80gXLIazBumChed58wqZkrruSxXxvMlmlJK63tkcLatr1/XoHs1zqD9N92ge1115A8vRwQwP/KqL7zx9iq6hHE90DfPciTFGc8ak40rnOpQxuP/xo3QNZQnpMgXLxrJdLMelMBGFMWyHxw8N8tuu4UWPZ7a/2UjW4OljI6QLFmFNIR7UcFwPz/NwXAiqMnnDwbBcJEkGPGRZojkWpCUexPU8RnIGnudv67dd389UeW5rLUiXg1Jq4dy2OsbzFieGc4zn/Sa2ayk0pqZeY0ENRZaIBTV2NUcZzZn8/LWBVXnPCwSC2anWOWQqtT9b1wilRfmpYyPYrstY3sJ23LIPRZVlrtzRMGuYcDHqei1SBpV36G2JIKmCX2RxIF2Y1Ci1JNrObYvzcvc4IzmDkCZTtFxsFyIBFfAoWC7ZokNLXKdnvMgvXx/kqh2Ni7p7mOlvFtRknjo2wnDOQAEs16MvXcSwXGJBBXti8fQ8j9a6IIosMZAq4gGaKhFQZWIBlUzRxrBdJAnUiX5r1RbuXQ4W2nZkNVMPteSXEwg2OrWQnhRCaJWQZYm9m2L88KUeMkWLhohOXVijYDocG84RC2rsaY3N+ebobIzyjnNb+cXBQXrGCigyBDV1kvnvjf4M9z9+lJGcQVtdiO0NEQqWs6Ipg5nM0btaYuRMh7xpky5YHBnMsq9Voj9tUB/RuaA9wcMv9NBWF6IvVSQ/0TzVX9ckdFWmYDnkLZdIQKV3vLCkhW2qYfL0WJ6esQISEA2qBDUV03HJmw4Zw/+QmraL7XoENIWIrpAqWGQNGxl/oW2IBsiZDiNZA0WWaa0LAh5HBrNVFe5dLuZKLayF6K4lv5xgMtXeakGwMlR7elIIoVXCdT0O9WXYVBekKaIzVrBIFywUWaazMYKqyBzuz3DdnuYZJ4bKBadgOSBBczzIDftaeMtEpOSNgXTZbxPSZYazJvVhnR3NEXY1R1dsi/1Md+j1EZ0L2xMcHcwymCnSPZqnLqRxwZYEb3/TmVYV2xsiRAOq7wVSZWzHw8MDD1zXJVu0aUuEUGSWvLCV7ki6x/L8vz8/zJHBLCGUsvDSFYmgKlO0XQzLQZKkcv808KtdR1DJGjaSLCHLUBdSUWW/GnZAlUkV7A23G2WtfDq14pcTTEaY2wXVipgpVomSWNjVHCU6kVopVSSOBf1FdrZw/tQFp21iwelLFXnkQD+b6oIA3P94F11DWRJhjUhAxXJcBjPFcmpqsSmDhd69zXaHXh/RuXRbkrG8yYmRHLdc1sE1u5oAeO7kKIblMJQx2N4Y4dhQltG8NfFMf9cYQF1YZ3MiCEhntbDJsoQsSRQtl2RYI2/5HqCQ5lezDul+WsywPRQFkiFtwkjtUhfS2d4YYShjMJYzGC/4Eb39527iwo4ETbHAhru7Xcu6VrW0G0XgI8ztgmpGCKFVolIslHYuVTJbOH8hC87PDgzgeR4jWYOwrhAJqMiSREBV0CP+Fu+uoRwXticw7IWlDBZz9zbXHbokSWiKTFM0SGdjhCe6hvnl6wP0jhfoHivwel+GpqiOLEu4tosswURACFWWUCSPoazJlZ2z+6fmolLM9aUKFCyLaECjaLmoskTBctFVGVWWCGkKKdsiKMtsToYYyZoossSu5gibEiEaIhrHhiU6m6N86LIOrtrRCLBu69jMJYTX0qdTS7tRBLVXDFaw8VKYQgitEgsN54c1he7RfPkN6HnevAvOKz3j4MGmuiDDWRPL8QioUvmY0hbvoYyxoJTBYu/eFtrq4sHfHOdXbwxRsBwiAZWormKqLl3DORzXI6LJOBMiSFdlGiM6qaJNpmBx477FL2yVYm44a9A3XmAwY6CrMtZECk6TZWzHpeh6WI5HNKBy17U7uH5vM8MZg5dOjXNs+Exz2cu3N5TTX+s51D/fua21T0cUy6sdhLm9tljP89psCCG0SixULPz4pV6ODefKb8B4UGM4a9A2SzQkpCvkTQcPj53NUZLhIkOZInpEL7+GpshkixZ9qQJX7WicM7Ky1Gabc92hK7LEQLrIkcEsrgdbkiFs1yNb9BdJVZZwPfAkiYAig+TXEZJlmS3JEMmwXu5Ov1AqxVxIkxnJGZiOiyRJGLZLQ0QnVbCwHJdIQCGmyEiyxHW7m/i/rtnhn1srXDVLc9n1HOpfyLlVg0+nFnajCIS5vZZYz/PaXAghtEosRCwMZoyyICq9AbuGsnSP5mmM6rTXR6b93oLpENYV8KBgOexsjpI1bEZzJtGgiqbI5AybvOnSEA3MmzJY6t3bbHfo57bVMZI16BrOIgPJiI4iyygy6BGZvlQRWYKOZJii7XBJR5JYUMVyPXRFJqTLnBzJL2qSrBRzO5siPH9yHMNyaYkHiQdtTo4WSBUsNicCpAoO0aBKYzTAlmSID12x1U/TTQkN724+s6NvPYf6F3puH7u6c8E+nZUMs1f7bhSBMLfXCut5XpsP8c5bReYTC33p4rQ34Pmb6+hLFTnQk55YQM7UwCwtOOdvTuB5Hq/1pdnVHC3v1hrLm2SLNnnTF0gfv3bnvGr+bO7eZrpDdz2Pv/rFEZJhnZ6xAppy5gMkSRKxoEqqYIHkoSoSQV2hLqyXj8kUrUVPkpViLms4jOZ9UShJEuGARludx3DOJGd6yDJkijZX72riA2/esqCU13oO9S/03PrSxQX5dI4NZzdcmF0wGWFurw3W87w2H0IIrTJziYXS7q90wZq0o+zctjgvnhrnlZ4UO5qi0xacm85tAaBvIv20qS7IRR11DE1EmBqiAT5+3Q52t8y/8Jzt3dvUO/RD/WmKtkNjJICqyJP8S+CnwDRFIlWwqAtq6Mp0obfYSbJSzI3lTWzXRVPOjDcW0rBdjze11ZWF3XsubCuLoPlCw6Wt/+sx1L8YIby3NT6nTwfYkGF2wWSEub022MgpTCGE1oDZxELRUni9b8xfvMtVp3W2NYZprw+zvTHCeN6a1RhauSgZti9YrtrRuCjz6HLfvZWElSJDMqxP8y/ZrkcsqGJaHn6TCg/bdc9qkqwUc7oio8oyluMSUH2fkTXxt62P6EiSP65YUFtwaPhd529at6H+iK4SUGQG00U0VS6L8dLfYuq5zebTAXjgV10bMswumI4wt1c/GzmFuf7OqAYpVTN+/uQojusRDWpoQRXL8RjKFBnNGbTXh7n9LduRJWlWr8VymEeX++6tUljtaIpM8i+pssRYziSgKrypLUZLLMB4wWJwYnfbUifJytfc2RShPqwzmCmiR/xoU7Zo0xwPEg0oHB3KlYXdQkPDEqzbUH/BshnOmuWinJqilItyJsP6jOc2k0+nezS/YcPsgpkR5vbqZiOnMGtCCJ04cYJ7772Xxx57jP7+ftra2vjIRz7C5z73OXRdn/V51157Lb/+9a8nPXbXXXfx9a9/faWHvCg2xYMYlst4waIjecYHFFAltLDGqbECLbbL5roQqjp3n9zlMI8u591bpbAayZnsao7QM15gOGuSM2xCmsJbdzXyocs76Gxcnkmy8jWPDuVorQuQKpoMpIuAX06gNR7g6FCuLOwAuoayDGaLRAN+2YKpC3gpNJy3nBUL9a9l/Y6jgxke+u1JAGJBFdvxkCUYSBcYyRk0x4N01IcXdG4bOcwumB1hbq9eNnIKsyaE0KFDh3Bdl7/7u79j586dHDhwgDvvvJNcLsd9990353PvvPNO/uzP/qz8fThcfR/CvnSRgOY3Xx3LW+XdXpbjt5hIhDR0VaYvXVy1SWQ5796mCquGiE4ipNOWCHHDvuZJzVSX6/ymv2Zgolq1RENEB6RJXpYHftXFKz3jHB/M0TdepDkWZGdzlPrIGaFdGRr2I3TLG+pfy/odlWnBizoSjOWtsuFekiQyRZuWONx65cJ8PRs5zC4Q1CobNYVZE7PQ/v372b9/f/n7zs5ODh8+zAMPPDCvEAqHw7S2tq70EM+KnGmjqzIXdyQ5MZxnNO9HSxRZpjkeZFtDmFTBWvW75+W8e1uLsPjU1wxrCh5+mYHS6x8bzpYNvW11IVJ5i/5UgcFMkaxhc2F7gvqIPmNoeDnPaa3rd0xNC5bao5RawZi2g+14C67ntJHD7AJBLbMRU5g1IYRmIpVKUV9fP+9x//Iv/8K3vvUtWltbefe7383/+l//a86okGEYGIZR/j6dTi/LeOeidPcc1BTeXLH4VPYhK1puzd89r0VYfK7XnMkcvaslSs60yRs26YLFGwMZztkUoz9tzBgaXo5zqob6HTOlsipbwdiuy4nh3ILF+EYOswsEtc5GS2HW5Mp69OhRvva1r80bDfrQhz7E1q1baWtr45VXXuEzn/kMhw8f5uGHH571OV/60pf44he/uNxDnpOp5t5KxN3z7Jytn2Ymc3R9JMCF7Qm6BnMMZIqcHsuTCGlc0J5YsdBwNdTvWIlU1kYNswsEgtpiTYXQPffcw1e+8pU5j3n99dfZu3dv+fuenh7279/PBz7wAe688845n/uxj32s/P/zzjuPTZs2ccMNN9DV1cWOHTtmfM5nP/tZPv3pT5e/T6fTtLe3L+R0lkzp7vn1/jQ/e20Ax/PwO25JKJLE7taYuHuewnL4aWYz9NZHAiS36YznLY6P5Ljl8g6u2dU059//bERZNRiLVyqVtRHD7AKBoLZYUyF09913c9ttt815TGdnZ/n/vb29XHfddVx11VX8/d///aJf7/LLLwf8iNJsQigQCBAIBBb9u5eNie7r/n/O/CM4w3L5aeaKgkiShKpINEUD7GiaOyV1tqKsGozFK5nK2mhhdoFAUFusqRBqamqiqalpQcf29PRw3XXXcckll/Dggw9OajWxUF566SUANm3atOjnriQlj4jjerx9XzP9aYO85RDWFFrjAbqG82tSfG4tt3LPNabl8tMsRxRkOURZtRiLRSpLIFh/VOM8Xm3UhEeop6eHa6+9lq1bt3LfffcxNDRU/llpR1hPTw833HAD//RP/8Rll11GV1cX3/72t3nnO99JQ0MDr7zyCp/61Ke45pprOP/889fqVGak5BEJaTLPn0pNqizdM66zqS6w6sXn1nIr91wsp5/mbKMgyyXKqslYLFJZAsH6oVrn8WqjJoTQo48+ytGjRzl69ChbtmyZ9DPPLw6DZVkcPnyYfD4PgK7r/OIXv+CrX/0quVyO9vZ2br75Zj7/+c+v+vjnI2faDGcNRnImhuVMqyydLlo0RPRV2z6/1lu552K5/TRnEwVZTlFWLdEYcfcoEKwPqnkerzZqQgjddttt83qJtm3bVhZFAO3t7dOqSlcrIU0pV1puiQfKi2pAldAjOgNpA8/zj1tpqmEr91ys1O6mpURBVkKUrWU0Rtw9CgTrg2qfx6uNmhBC6x3/begh4c1yhP+z1Xi7VsNW7rlYKT/NUgy9KyHKVsNYPFPUp7KwpLh7FAhqm2qfx6sNIYSqgLzl0BgNMCJRbkha2WIjGlRpiATIW86Kj6UatnLPRTX5aarF5LwYZor6dDZGGM2b4u5RIFgnVPs8Xm0IIVQFRHSVxmiAxqhOf8qY1mKjNR4ApFWpLF0NW7nno1r8NNUkyhbCbJ6BZ0+Ocmokz0UdCXH3KBCsA2phHq8mxF+hCqiMLFyyNUHWcMotNqIBhaNDuVWLLNRKlGOt/TSV46gGUTYfc3kGNidCHOrP0JsqsiUZniaGxN2joNbY6Kb/WpnHqwUhhKqAysjC0aEcm+qCJMIaBdPh6FBuwZGF5fjw11KUo1oK9VWLKJuLuTwDAVUhGlAZyhhkina5v1gJcfcoqCWE6b+25vFqQMxsVcLZRhaW88NfK1GOaqJaRNlszOUZiAVVGqM6J0fyGLYDnBFC4u5RUEuILeNnEPP4whFCqIpYamRhJT78tRDlmMpGD4fPxXztRDYnQgymDXrGCwQ1Rdw9CmoOsWV8OrU4j68FQghVGYuNLKzkh7/aoxyViHD43MznGShYLtfvbSYZ0Tk2lBN3j4KaQ2wZn5lamsfXCiGEahzx4Rfh8IWwEM/ALZd30Nko7h4FtYnYMi5YKkII1Tgb/cMvwuELZ6GegfUqmAXrG7FlXLBUxDuixtnoH34REVscwjMgWK+ILeOCpbI+V8cNxEb/8G/0iNhSEJ4BwXpEbBkXLBV5rQcgODtKH/76iM6RwSyZooXtumSKFkcGs+v+w18ZEZuJ9R4REwgEZyilf89tq2M8b3FiOMd43uK8zXXCKyiYFbE6rAM2cr2IjR4REwgEkxHpX8FiEUJonVDLH/6zqf8jwuECgWAqIv0rWAxCCK0jauXDXyl8hjIGL3ePc2wot+T6Pxs5IiYQCASCs0MIIcGqUln4cDhr0D2aR1Nkzt0cp7MxuuT6P7UcERPUNmtR0VxUURcIlg8hhASrRmXhw9Z4gN7xAq4HjutyZDBLJKBSHwksuf5PrUTEBOuHtahoLqqoCwTLi9g1JlgVphY+BInxgkUyotMQDVAwHbqGcnieN63+j0BQjZSE/YHeFImwRmdjlERY40BvigefOMHRwcy6eE2BYL0jhJBgVZha+NB0XGzHRVMkJEkiGlQZzZlkiv42+JCuYNiOqP8jqEqmCvtYUEORJWJBjV3NUUZzJj9/bQDX9Wr6NQWCjYAQQjWI63p0j+Y51J+mezRfExPfmcKHfjZWV2RURcZy/LFriozjupiOC4j6P4LqZjEVzWv5NQWCjYBYZWqMWvUHTG0FEguqJMM6Q5kiekTHclwUWUZXZFH/R1D1rEVFc1FFXSBYGUREqIaoZX9AqfBhX6pY9gHtbI4S0lVGciZjOZNEWAO8DVERW1DbrEVFc1FFXSBYGYQQqhFq3R8wUyuQeEhlV3MERZaQJQldkUkVbFEOX1DVuK6H53nEgxpdQ1lc153081JEc2dzdFkjmlNvJlbjNQWCjYC4dahSptYJ8Tyv5rusz1b48D0XtHFBe4LGWEDURBFUNTPVwepLFTm3Lc6mRGhFK5qLKuoCwcoghFAVMpMPKB7UGM4atM1yt1cr/gBR+FBQq1TWwdpUF6QtEaIxqnOgJ82Lp8YZzpo0RgMrWtFcVFEXCJYfIYSqjKmTbVgPkTdtuoaydI/maYzqtNdHpj2vlvwBovChoNaYmpouRWXb6yNsToR4pSfF9sYIt79lO+3J8IoKe3EzIRAsL9W/am4gZptsY0GN8zfX0ZcqcqAnPTHpnbF3iV1WAsHKMtfWdVmW2dEUZTxvIUvSqggScTMhECwfwixdRcw32Z7bFsdyXF7pSZEpWtiuS6ZoiV1WAsEKM7UO1lREAVCBoHYREaEqYr46IZsSIYazJtsbI4znLeEPEAhWial1sKZSS6lpgUAwGfGprSIWMtk2RgPc/pbtyJIk/AECwSpR2rp+oDdFNKBOitiK1LRAUNsIIVRFLHSyXWkzpkAgmIzYui4QrF+ER6iKmKnooPABCQTVQWnr+rltdYznLU4M5xjPW6IAqEBQ40je1BKlgkmk02nq6upIpVLE4/FVec3KOkKG7XsPdjZHhQ9IIKgCphY7FalpgaA6Wej6LVJjVYioEyIQVC9i67pAsL4QQqhKEZOtQCAQCAQrT814hH7v936Pjo4OgsEgmzZt4qMf/Si9vb1zPqdYLPLxj3+choYGotEoN998MwMDA6s0YoFAIBAIBNVOzQih6667ju9973scPnyYf/u3f6Orq4v3v//9cz7nU5/6FP/+7//O97//fX7961/T29vL+973vlUasUAgEAgEgmqnZs3SP/7xj3nve9+LYRho2vSaO6lUiqamJr797W+XBdOhQ4fYt28fTz75JFdcccWCXmctzNICgUAgEAjOjoWu3zUTEapkdHSUf/mXf+Gqq66aUQQBPP/881iWxY033lh+bO/evXR0dPDkk0/O+rsNwyCdTk/6EggEAoFAsD6pKSH0mc98hkgkQkNDA6dOneL//J//M+ux/f396LpOIpGY9HhLSwv9/f2zPu9LX/oSdXV15a/29vblGr5AIBAIBIIqY02F0D333IMkSXN+HTp0qHz8n/zJn/Diiy/y85//HEVR+P3f/32WO7P32c9+llQqVf7q7u5e1t8v8OuwdI/mOdSfpns0j+vWZHZWIBAIBOuANd0+f/fdd3PbbbfNeUxnZ2f5/42NjTQ2NrJ792727dtHe3s7Tz31FFdeeeW057W2tmKaJuPj45OiQgMDA7S2ts76eoFAgEAgsOhzESyMymKRRdshqCrsaIpy07miWKRAIBAIVp81FUJNTU00NTUt6bmu6wK+p2cmLrnkEjRN45e//CU333wzAIcPH+bUqVMzCifBynN0MMODT5xgNGeyqS5IWA+RN20O9KboTRVEmwKBQCAQrDo14RF6+umn+Zu/+RteeuklTp48yWOPPcYtt9zCjh07yqKmp6eHvXv38swzzwBQV1fHHXfcwac//Wkef/xxnn/+eW6//XauvPLKBe8YEywfruvxswMDjOZMdjVHiQU1FFkiFtTY1RxlNGfy89cGRJpMIBAIBKtKTQihcDjMww8/zA033MCePXu44447OP/88/n1r39dTmNZlsXhw4fJ5/Pl5/3lX/4lv/u7v8vNN9/MNddcQ2trKw8//PBancaGpme8QNeQ37Vbkia3CpEkiU11QY4OZukZL6zRCAUCgUCwEanZOkKrhagjtDwc6k/z1788QmdjFGWGnmm263JiOMcnb9jF3lbxdxYIBALB2bGu6wgJao+IrhJUFfKmPePPC6ZDQFWI6KL9nUAgEAhWDyGEBKvC5kSIHU1R+lLFaSUPPM+jL1VkZ3OUzYnQGo1QIBAIBBsRIYQEq4IsS9x0bgv1EZ0jg1kyRQvbdckULY4MZqmP6Lz9TS3IM6TNBAKBQCBYKYQQEqwaO5tj3P6WbZzbVsd43uLEcI7xvMV5m+vE1nmBQCAQrAnCkCFYVXY2x+i8NkrPeIGcaRPRVTYnQiISJBAIBII1QQghwaojyxLt9eG1HoZAIBAIBCI1JhAIBAKBYOMihJBAIBAIBIINixBCAoFAIBAINixCCAkEAoFAINiwCCEkEAgEAoFgwyKEkEAgEAgEgg2LEEICgUAgEAg2LEIICQQCgUAg2LAIISQQCAQCgWDDIipLz0OpU3o6nV7jkQgEAoFAIFgopXW7tI7PhhBC85DJZABob29f45EIBAKBQCBYLJlMhrq6ull/LnnzSaUNjuu69Pb2EovFkKTpjUHT6TTt7e10d3cTj8fXYISC+RDXqPoR16j6Edeo+hHXaDKe55HJZGhra0OWZ3cCiYjQPMiyzJYtW+Y9Lh6PizdelSOuUfUjrlH1I65R9SOu0RnmigSVEGZpgUAgEAgEGxYhhAQCgUAgEGxYhBA6SwKBAF/4whcIBAJrPRTBLIhrVP2Ia1T9iGtU/YhrtDSEWVogEAgEAsGGRUSEBAKBQCAQbFiEEBIIBAKBQLBhEUJIIBAIBALBhkUIIYFAIBAIBBsWIYSWwOjoKB/+8IeJx+MkEgnuuOMOstnsgp7reR7veMc7kCSJH/3oRys70A3MYq/R6Ogon/zkJ9mzZw+hUIiOjg7+6I/+iFQqtYqjXt/cf//9bNu2jWAwyOWXX84zzzwz5/Hf//732bt3L8FgkPPOO4///M//XKWRblwWc43+4R/+gauvvppkMkkymeTGG2+c95oKzp7Ffo5KfPe730WSJN773veu7ABrECGElsCHP/xhXnvtNR599FH+4z/+g//6r//iYx/72IKe+9WvfnXGVh2C5WWx16i3t5fe3l7uu+8+Dhw4wDe/+U0eeeQR7rjjjlUc9frlX//1X/n0pz/NF77wBV544QUuuOACbrrpJgYHB2c8/re//S233HILd9xxBy+++CLvfe97ee9738uBAwdWeeQbh8Veo1/96lfccsstPP744zz55JO0t7fz9re/nZ6enlUe+cZhsdeoxIkTJ/gf/+N/cPXVV6/SSGsMT7AoDh486AHes88+W37spz/9qSdJktfT0zPnc1988UVv8+bNXl9fnwd4P/zhD1d4tBuTs7lGlXzve9/zdF33LMtaiWFuKC677DLv4x//ePl7x3G8trY270tf+tKMx3/wgx/03vWud0167PLLL/fuuuuuFR3nRmax12gqtm17sVjMe+ihh1ZqiBuepVwj27a9q666yvvGN77h3Xrrrd573vOeVRhpbSEiQovkySefJJFI8OY3v7n82I033ogsyzz99NOzPi+fz/OhD32I+++/n9bW1tUY6oZlqddoKqlUing8jqqKlnxng2maPP/889x4443lx2RZ5sYbb+TJJ5+c8TlPPvnkpOMBbrrpplmPF5wdS7lGU8nn81iWRX19/UoNc0Oz1Gv0Z3/2ZzQ3N4vo9hyIGX6R9Pf309zcPOkxVVWpr6+nv79/1ud96lOf4qqrruI973nPSg9xw7PUa1TJ8PAw995774JTnoLZGR4exnEcWlpaJj3e0tLCoUOHZnxOf3//jMcv9PoJFsdSrtFUPvOZz9DW1jZNwAqWh6Vco9/85jf84z/+Iy+99NIqjLB2ERGhCe655x4kSZrza6ETwlR+/OMf89hjj/HVr351eQe9wVjJa1RJOp3mXe96F+eccw5/+qd/evYDFwjWOV/+8pf57ne/yw9/+EOCweBaD0cAZDIZPvrRj/IP//APNDY2rvVwqhoREZrg7rvv5rbbbpvzmM7OTlpbW6cZ02zbZnR0dNaU12OPPUZXVxeJRGLS4zfffDNXX301v/rVr85i5BuHlbxGJTKZDPv37ycWi/HDH/4QTdPOdtgbnsbGRhRFYWBgYNLjAwMDs16P1tbWRR0vODuWco1K3HfffXz5y1/mF7/4Beeff/5KDnNDs9hr1NXVxYkTJ3j3u99dfsx1XcCPkB8+fJgdO3as7KBrhbU2KdUaJSPuc889V37sZz/72ZxG3L6+Pu/VV1+d9AV4f/VXf+UdO3ZstYa+YVjKNfI8z0ulUt4VV1zhve1tb/NyudxqDHXDcNlll3mf+MQnyt87juNt3rx5TrP07/7u70567MorrxRm6RVksdfI8zzvK1/5ihePx70nn3xyNYa44VnMNSoUCtPWnfe85z3e9ddf77366queYRirOfSqRgihJbB//37voosu8p5++mnvN7/5jbdr1y7vlltuKf/89OnT3p49e7ynn3561t+B2DW2oiz2GqVSKe/yyy/3zjvvPO/o0aNeX19f+cu27bU6jXXDd7/7XS8QCHjf/OY3vYMHD3of+9jHvEQi4fX393ue53kf/ehHvXvuuad8/BNPPOGpqurdd9993uuvv+594Qtf8DRN81599dW1OoV1z2Kv0Ze//GVP13XvBz/4waTPSyaTWatTWPcs9hpNRewamxkhhJbAyMiId8stt3jRaNSLx+Pe7bffPunDf/z4cQ/wHn/88Vl/hxBCK8tir9Hjjz/uATN+HT9+fG1OYp3xta99zevo6PB0Xfcuu+wy76mnnir/7G1ve5t36623Tjr+e9/7nrd7925P13XvTW96k/eTn/xklUe88VjMNdq6deuMn5cvfOELqz/wDcRiP0eVCCE0M5Lned5qp+MEAoFAIBAIqgGxa0wgEAgEAsGGRQghgUAgEAgEGxYhhAQCgUAgEGxYhBASCAQCgUCwYRFCSCAQCAQCwYZFCCGBQCAQCAQbFiGEBAKBQCAQbFiEEBIIBAKBQLBhEUJIIBBUPbfddhuSJE372r9//1oPTSAQ1Dii+7xAIKgJ9u/fz4MPPjjpsUAgsGKvZ5omuq6v2O8XCATVgYgICQSCmiAQCNDa2jrpK5lMAiBJEt/4xjf4b//tvxEOh9m1axc//vGPJz3/wIEDvOMd7yAajdLS0sJHP/pRhoeHyz+/9tpr+cQnPsEf//Ef09jYyE033QTAj3/8Y3bt2kUwGOS6667joYceQpIkxsfHyeVyxONxfvCDH0x6rR/96EdEIhEymcwK/1UEAsHZIoSQQCBYF3zxi1/kgx/8IK+88grvfOc7+fCHP8zo6CgA4+PjXH/99Vx00UU899xzPPLIIwwMDPDBD35w0u946KGH0HWdJ554gq9//escP36c97///bz3ve/l5Zdf5q677uJzn/tc+fhIJMJ//+//fVqk6sEHH+T9738/sVhs5U9cIBCcHWvd9VUgEAjm49Zbb/UURfEikcikrz//8z/3PM/zAO/zn/98+fhsNusB3k9/+lPP8zzv3nvv9d7+9rdP+p3d3d0e4B0+fNjzPL9z90UXXTTpmM985jPeueeeO+mxz33ucx7gjY2NeZ7neU8//bSnKIrX29vreZ7nDQwMeKqqer/61a+W7w8gEAhWDOEREggENcF1113HAw88MOmx+vr68v/PP//88v8jkQjxeJzBwUEAXn75ZR5//HGi0ei039vV1cXu3bsBuOSSSyb97PDhw1x66aWTHrvsssumff+mN72Jhx56iHvuuYdvfetbbN26lWuuuWYJZykQCFYbIYQEAkFNEIlE2Llz56w/1zRt0veSJOG6LgDZbJZ3v/vdfOUrX5n2vE2bNk16jaXwh3/4h9x///3cc889PPjgg9x+++1IkrSk3yUQCFYXIYQEAsG65+KLL+bf/u3f2LZtG6q68Glvz549/Od//uekx5599tlpx33kIx/hf/7P/8lf//Vfc/DgQW699dazHrNAIFgdhFlaIBDUBIZh0N/fP+mrctfXXHz84x9ndHSUW265hWeffZauri5+9rOfcfvtt+M4zqzPu+uuuzh06BCf+cxneOONN/je977HN7/5TYBJEZ9kMsn73vc+/uRP/oS3v/3tbNmy5azOVSAQrB5CCAkEgprgkUceYdOmTZO+3vrWty7ouW1tbTzxxBM4jsPb3/52zjvvPP74j/+YRCKBLM8+DW7fvp0f/OAHPPzww5x//vk88MAD5V1jU2sY3XHHHZimyR/8wR8s/SQFAsGqI3me5631IAQCgaBW+PM//3O+/vWv093dPenxf/7nf+ZTn/oUvb29ohCjQFBDCI+QQCAQzMHf/u3fcumll9LQ0MATTzzB//7f/5tPfOIT5Z/n83n6+vr48pe/zF133SVEkEBQY4jUmEAgEMzBkSNHeM973sM555zDvffey913382f/umfln/+F3/xF+zdu5fW1lY++9nPrt1ABQLBkhCpMYFAIBAIBBsWERESCAQCgUCwYRFCSCAQCAQCwYZFCCGBQCAQCAQbFiGEBAKBQCAQbFiEEBIIBAKBQLBhEUJIIBAIBALBhkUIIYFAIBAIBBsWIYQEAoFAIBBsWIQQEggEAoFAsGH5/wHncCYt5FtJ8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# x values versus residuals\n", + "plt.scatter(X[:, 1:2], res, alpha=0.5)\n", + "plt.xlabel(\"Energy\")\n", + "plt.ylabel(\"Carbon\")\n", + "plt.title(\"Residual Plot vs. X Values\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADqL0lEQVR4nOy9eXxkZZ3v/z5r7dlTSTqk1zR0N93QSAuyKCiNuK+4oHMFZtydccHBC3MVxWW4OndGfo6O4twRcFyGAR0H5zrIIjqjsu8NNPTe6c6+1L6c7fn9cVJFkk660+kkVUk979erldRy6qk65zzP5/muihBCIJFIJBKJRFKDqJUegEQikUgkEkmlkEJIIpFIJBJJzSKFkEQikUgkkppFCiGJRCKRSCQ1ixRCEolEIpFIahYphCQSiUQikdQsUghJJBKJRCKpWaQQkkgkEolEUrNIISSRSCQSiaRmkUJIIpHwpS99CUVRZvVaRVH40pe+tKDjufDCC7nwwgur9ni1yBVXXMHq1asrPQyJZN6RQkgiqSJuueUWFEUp/9N1nc7OTq644goOHz5c6eFVHatXr570e8XjcV75ylfyb//2b/Ny/Fwux5e+9CV++9vfzsvxFpKRkRGuvvpqTjnlFILBIE1NTVxyySX8x3/8R6WHJpFUNXqlByCRSI7ky1/+MmvWrKFQKPDggw9yyy238Pvf/54dO3YQDAbn/fM+//nPc80118z7cReDrVu38tnPfhaA3t5ebrrpJt7xjnfw3e9+l49+9KMndOxcLsf1118PUNUWpRdeeIGLLrqIoaEhrrzySrZt20YikeDHP/4xb37zm/nLv/xL/uZv/qbSw5RIqhIphCSSKuT1r38927ZtA+CDH/wgLS0tfP3rX+fOO+/k3e9+97x/nq7r6PrSnA46Ozv5kz/5k/LfH/jAB+ju7uab3/zmCQuhpYBt21x66aWMjY3xX//1X5x99tnl5z7zmc/w/ve/n//zf/4P27Zt4z3vec+MxykUCpimiaouvKNACEGhUCAUCi34Z0kkx0K6xiSSJcArX/lKAPbs2TPp8Z07d3LppZfS1NREMBhk27Zt3HnnnZNeY9s2119/PevXrycYDNLc3Mz555/PPffcU37NdDFCxWKRz3zmM7S2thKLxXjLW97CoUOHjhjbTLEj0x3z5ptv5jWveQ3xeJxAIMCmTZv47ne/e1y/xbFob29n48aN7Nu376ivGxwc5M/+7M9oa2sjGAxy+umnc+utt5af379/P62trQBcf/31ZffbTPFRjz76KIqiTDpGiV//+tcoilJ2U6XTaT796U+zevVqAoEA8Xiciy++mMcff/y4v+/PfvYzduzYwTXXXDNJBAFomsZNN91EQ0PDpHH/9re/RVEU/uVf/oXPf/7zdHZ2Eg6HSaVSAPziF79g8+bNBINBNm/ePKOr0fM8brzxRk499VSCwSBtbW185CMfYWxsbNLrVq9ezZve9CZ+/etfs23bNkKhEDfddNNxf1eJZCFYmltAiaTG2L9/PwCNjY3lx5599lnOO+88Ojs7ueaaa4hEIvzrv/4rb3vb2/jZz37G29/+dsAXJDfccAMf/OAHOeuss0ilUjz66KM8/vjjXHzxxTN+5gc/+EF+9KMf8b73vY9zzz2X3/zmN7zxjW88oe/x3e9+l1NPPZW3vOUt6LrOL3/5Sz7+8Y/jeR6f+MQnTujYJWzbpqenh+bm5hlfk8/nufDCC9m9ezd//ud/zpo1a7j99tu54oorSCQSfOpTn6K1tZXvfve7fOxjH+Ptb38773jHOwA47bTTpj3mtm3bWLt2Lf/6r//K5ZdfPum52267jcbGRi655BIAPvrRj3LHHXfw53/+52zatImRkRF+//vf8/zzz/Oyl73suL7vL3/5S8C3hE1HfX09b33rW7n11lvZvXs33d3d5ee+8pWvYJomf/mXf0mxWMQ0Te6++27e+c53smnTJm644QZGRka48sorOemkk4449kc+8hFuueUWrrzySj75yU+yb98+vv3tb/PEE0/whz/8AcMwyq994YUXuOyyy/jIRz7Chz70IU455ZTj+p4SyYIhJBJJ1XDzzTcLQNx7771iaGhI9PT0iDvuuEO0traKQCAgenp6yq+96KKLxJYtW0ShUCg/5nmeOPfcc8X69evLj51++unijW9841E/94tf/KKYOB08+eSTAhAf//jHJ73ufe97nwDEF7/4xfJjl19+uVi1atUxjymEELlc7ojXXXLJJWLt2rWTHrvgggvEBRdccNQxCyHEqlWrxGtf+1oxNDQkhoaGxFNPPSXe+973CkD8xV/8xYzHu/HGGwUgfvSjH5UfsyxLnHPOOSIajYpUKiWEEGJoaOiI73s0rr32WmEYhhgdHS0/ViwWRUNDg/jTP/3T8mP19fXiE5/4xKyOeSy2bt0q6uvrj/qav/u7vxOAuPPOO4UQQtx///0CEGvXrj3inGzdulV0dHSIRCJRfuzuu+8WwKTz/N///d8CED/+8Y8nvf+uu+464vFVq1YJQNx1111z/JYSycIhXWMSSRWyfft2Wltb6erq4tJLLyUSiXDnnXeWd+Wjo6P85je/4d3vfjfpdJrh4WGGh4cZGRnhkksuYdeuXeUss4aGBp599ll27do168//1a9+BcAnP/nJSY9/+tOfPqHvNTEmJJlMMjw8zAUXXMDevXtJJpNzOubdd99Na2srra2tnH766dx+++38j//xP/j6178+43t+9atf0d7ezmWXXVZ+zDAMPvnJT5LJZPjd7343p7G85z3vwbZtfv7zn08aXyKRmBSf09DQwEMPPURvb++cPmci6XSaWCx21NeUni+5vkpcfvnlk85JX18fTz75JJdffjn19fXlxy+++GI2bdo06b2333479fX1XHzxxeXrb3h4mDPPPJNoNMr9998/6fVr1qwpW8QkkmpCCiGJpAr5zne+wz333MMdd9zBG97wBoaHhwkEAuXnd+/ejRCCL3zhC2URUPr3xS9+EfBjYMDPQEskEpx88sls2bKFq6++mqeffvqon3/gwAFUVWXdunWTHj9Rd8Yf/vAHtm/fTiQSoaGhgdbWVv7qr/4KYM5C6Oyzz+aee+7h3nvv5Y9//CPDw8P88Ic/PGog7oEDB1i/fv0RgcEbN24sPz8XTj/9dDZs2MBtt91Wfuy2226jpaWF17zmNeXHvvGNb7Bjxw66uro466yz+NKXvsTevXvn9JmxWIx0On3U15SenyqY1qxZM+nv0vdev379EceYeu537dpFMpkkHo8fcQ1mMpny9TfTZ0kk1YKMEZJIqpCzzjqrnDX2tre9jfPPP5/3ve99vPDCC0SjUTzPA+Av//IvZ9xll2JBXvWqV7Fnzx7+/d//nbvvvpv/+3//L9/85jf53ve+xwc/+METHutMhRhd15309549e7jooovYsGEDf/d3f0dXVxemafKrX/2Kb37zm+XvdLy0tLSwffv2Ob13IXjPe97D1772NYaHh4nFYtx5551cdtllk7Ly3v3ud5frHd199938zd/8DV//+tf5+c9/zutf//rj+ryNGzfy5JNPcvDgQVauXDnta0rCd6pV50SytjzPIx6P8+Mf/3ja50uB5vPxWRLJQiKFkERS5Wiaxg033MCrX/1qvv3tb3PNNdewdu1awHfnzEYENDU1ceWVV3LllVeSyWR41atexZe+9KUZhdCqVavwPI89e/ZMsgS88MILR7y2sbGRRCJxxONTrSq//OUvKRaL3HnnnZMW7KkulMVg1apVPP3003ieN8kqtHPnzvLzMLPIOxrvec97uP766/nZz35GW1sbqVSK9773vUe8rqOjg49//ON8/OMfZ3BwkJe97GV87WtfO24h9KY3vYmf/vSn/PCHP+Tzn//8Ec+nUin+/d//nQ0bNkwKlJ6O0veezo069dyvW7eOe++9l/POO0+KHMmSRrrGJJIlwIUXXshZZ53FjTfeSKFQIB6Pc+GFF3LTTTfR19d3xOuHhobK/z0yMjLpuWg0Snd3N8ViccbPKy3G3/rWtyY9fuONNx7x2nXr1pFMJie52/r6+o5IudY0DfBryJRIJpPcfPPNM45joXjDG95Af3//JBeW4zj8/d//PdFolAsuuACAcDgMMK3Qm4mNGzeyZcsWbrvtNm677TY6Ojp41ateVX7edd0j3IDxeJwVK1ZMOifDw8Ps3LmTXC531M+79NJL2bRpE//7f/9vHn300UnPeZ7Hxz72McbGxsou06PR0dHB1q1bufXWWyeN8Z577uG5556b9Np3v/vduK7LV77ylSOO4zjOcf1mEkklkRYhiWSJcPXVV/Oud72LW265hY9+9KN85zvf4fzzz2fLli186EMfYu3atQwMDPDAAw9w6NAhnnrqKcB3h1x44YWceeaZNDU18eijj5ZTt2di69atXHbZZfzDP/wDyWSSc889l/vuu4/du3cf8dr3vve9/M//+T95+9vfzic/+UlyuRzf/e53OfnkkyfVxXnta1+LaZq8+c1v5iMf+QiZTIZ//Md/JB6PTyvmFpIPf/jD3HTTTVxxxRU89thjrF69mjvuuIM//OEP3HjjjeVYmlAoxKZNm7jttts4+eSTaWpqYvPmzWzevPmox3/Pe97DddddRzAY5M/+7M8mWZ3S6TQnnXQSl156KaeffjrRaJR7772XRx55hL/9278tv+7b3/42119/Pffff/9Rq1qbpskdd9zBRRddxPnnnz+psvRPfvITHn/8cT772c9Oa5WajhtuuIE3vvGNnH/++fzpn/4po6Oj/P3f/z2nnnoqmUym/LoLLriAj3zkI9xwww08+eSTvPa1r8UwDHbt2sXtt9/O//f//X9ceumls/pMiaSiVDptTSKRvEQpff6RRx454jnXdcW6devEunXrhOM4Qggh9uzZIz7wgQ+I9vZ2YRiG6OzsFG9605vEHXfcUX7fV7/6VXHWWWeJhoYGEQqFxIYNG8TXvvY1YVlW+TXTpbrn83nxyU9+UjQ3N4tIJCLe/OY3i56enmnTye+++26xefNmYZqmOOWUU8SPfvSjaY955513itNOO00Eg0GxevVq8fWvf1384Ac/EIDYt29f+XXHkz5/rNIAMx1vYGBAXHnllaKlpUWYpim2bNkibr755iPe+8c//lGceeaZwjTNWafS79q1SwACEL///e8nPVcsFsXVV18tTj/9dBGLxUQkEhGnn366+Id/+IdJryv9fvfff/8xP08IIQYHB8VVV10luru7RSAQEA0NDWL79u3llPmJlNLnb7/99mmP9bOf/Uxs3LhRBAIBsWnTJvHzn/98xjIJ3//+98WZZ54pQqGQiMViYsuWLeJzn/uc6O3tLb9mtudJIqkEihAT7NQSiUQikUgkNYSMEZJIJBKJRFKzSCEkkUgkEomkZpFCSCKRSCQSSc0ihZBEIpFIJJKaRQohiUQikUgkNYsUQhKJRCKRSGoWWVDxGHieR29vL7FYbE7l9iUSiUQikSw+QgjS6TQrVqw4osHyRKQQOga9vb10dXVVehgSiUQikUjmQE9PDyeddNKMz0shdAxKpfZ7enqoq6ur8GgkEolEIpHMhlQqRVdXV3kdnwkphI5ByR1WV1cnhZBEIpFIJEuMY4W1yGBpiUQikUgkNYsUQhKJRCKRSGoWKYQkEolEIpHULFIISSQSiUQiqVmkEJJIJBKJRFKzSCEkkUgkEomkZpFCSCKRSCQSSc0ihZBEIpFIJJKaRQohiUQikUgkNYusLC2RSCQSyRLF8wSHE3mylkPE1OlsCKGqskH48SCFkEQikUgkS5Ddg2l+vWOAPUMZCo5LUNdY1xrlks1tdMeP3l9L8hJSCEkkEolEssTYPZjm5j/sZzRr0VEfJGyGyFkOO3qT9CbzXHneaimGZomMEZJIJBKJZAnheYJf7xhgNGuxPh4lFjTQVIVY0GB9PMpo1uLuZwfwPFHpoS4JlpwQ+s53vsPq1asJBoOcffbZPPzwwzO+9pZbbkFRlEn/gsHgIo5WIpFIJJL55XAiz56hDB31wSM6qyuKQkd9kN2DGQ4n8hUa4dJiSQmh2267jauuuoovfvGLPP7445x++ulccsklDA4Ozvieuro6+vr6yv8OHDiwiCOWSCQSiWR+yVoOBcclbE4f3RIyNYqOS9ZyFnlkS5MlJYT+7u/+jg996ENceeWVbNq0ie9973uEw2F+8IMfzPgeRVFob28v/2tra1vEEUskEolEMr9ETJ2grpGbQejkLZeArhGZQShJJrNkhJBlWTz22GNs3769/Jiqqmzfvp0HHnhgxvdlMhlWrVpFV1cXb33rW3n22WeP+jnFYpFUKjXpn0QikUgk1UJnQ4h1rVH6kgWEmBwHJISgL1mgOx6lsyFUoREuLZaMEBoeHsZ13SMsOm1tbfT390/7nlNOOYUf/OAH/Pu//zs/+tGP8DyPc889l0OHDs34OTfccAP19fXlf11dXfP6PSQSiUQiORFUVeGSzW00RUx2DWZIF2wczyNdsNk1mKEpYvLaU9tkPaFZsmSE0Fw455xz+MAHPsDWrVu54IIL+PnPf05rays33XTTjO+59tprSSaT5X89PT2LOGKJRCKRSI5NdzzGleetZvOKehI5m/3DWRI5my2d9TJ1/jhZMg7ElpYWNE1jYGBg0uMDAwO0t7fP6hiGYXDGGWewe/fuGV8TCAQIBAInNFaJRCKRSBaa7niMtRdGZWXpE2TJWIRM0+TMM8/kvvvuKz/meR733Xcf55xzzqyO4bouzzzzDB0dHQs1TIlEIpFIFg1VVehqCrOhvY6uprAUQXNgyViEAK666iouv/xytm3bxllnncWNN95INpvlyiuvBOADH/gAnZ2d3HDDDQB8+ctf5hWveAXd3d0kEgn+5m/+hgMHDvDBD36wkl9DIpFIJBJJlbCkhNB73vMehoaGuO666+jv72fr1q3cdddd5QDqgwcPoqovGbnGxsb40Ic+RH9/P42NjZx55pn88Y9/ZNOmTZX6ChKJRCKRSKoIRUzNvZNMIpVKUV9fTzKZpK6urtLDkUgkEolEMgtmu34vmRghiUQikUgkkvlGCiGJRCKRSCQ1ixRCEolEIpFIahYphCQSiUQikdQsUghJJBKJRCKpWaQQkkgkEolEUrNIISSRSCQSiaRmkUJIIpFIJBJJzSKFkEQikUgkkppFCiGJRCKRSCQ1ixRCEolEIpFIahYphCQSiUQikdQsUghJJBKJRCKpWaQQkkgkEolEUrNIISSRSCQSiaRmkUJIIpFIJBJJzSKFkEQikUgkkppFCiGJRCKRSCQ1ixRCEolEIpFIahYphCQSiUQikdQsUghJJBKJRCKpWaQQkkgkEolEUrNIISSRSCQSiaRmkUJIIpFIJBJJzSKFkEQikUgkkppFCiGJRCKRSCQ1ixRCEolEIpFIahYphCQSiUQikdQsUghJJBKJRCKpWaQQkkgkEolEUrNIISSRSCQSiaRmkUJIIpFIJBJJzSKFkEQikUgkkppFCiGJRCKRSCQ1ixRCEolEIpFIapYlJ4S+853vsHr1aoLBIGeffTYPP/zwUV9/++23s2HDBoLBIFu2bOFXv/rVIo1UIpFIJBJJtbOkhNBtt93GVVddxRe/+EUef/xxTj/9dC655BIGBwenff0f//hHLrvsMv7sz/6MJ554gre97W287W1vY8eOHYs8colEIpFIJNWIIoQQlR7EbDn77LN5+ctfzre//W0APM+jq6uLv/iLv+Caa6454vXvec97yGaz/Md//Ef5sVe84hVs3bqV733ve7P6zFQqRX19Pclkkrq6uvn5IhKJRCKRLDKeJzicyJO1HCKmTmdDCFVVKj2sBWO267e+iGM6ISzL4rHHHuPaa68tP6aqKtu3b+eBBx6Y9j0PPPAAV1111aTHLrnkEn7xi18s5FAlEolEIqkKSuLn+f4Uj+4bZShdpOh6BHWNda1RLtncRnc8VulhVpQlI4SGh4dxXZe2trZJj7e1tbFz585p39Pf3z/t6/v7+2f8nGKxSLFYLP+dSqVOYNQSiUQikVSG3YNpfr1jgCd6xnhxII3jCjrqg5zSHiNoaOzoTdKbzHPleatrWgwtqRihxeCGG26gvr6+/K+rq6vSQ5JIJBKJ5LjYPZjm5j/s55nDCcayFoaq0hozSeZtnjmcxHY91sejjGYt7n52AM9bMlEy886SEUItLS1omsbAwMCkxwcGBmhvb5/2Pe3t7cf1eoBrr72WZDJZ/tfT03Pig5dIJBKJZJHwPMGvdwwwmrVorwuStVxiIYOgodMUMclbLnuGsgB01AfZPZjhcCJf4VFXjiUjhEzT5Mwzz+S+++4rP+Z5Hvfddx/nnHPOtO8555xzJr0e4J577pnx9QCBQIC6urpJ/yQSiUQiWSocTuTZM5Shoz6I7Qkc18PQ/KBoRVGIBnVGsxbpgkPI1Cg6LlnLqfCoK8eSiRECuOqqq7j88svZtm0bZ511FjfeeCPZbJYrr7wSgA984AN0dnZyww03APCpT32KCy64gL/927/ljW98I//yL//Co48+yve///1Kfg2JRCKRSBaMrOVQcFzCZgghHHRNxXYFAd0XQ4amki06FB2XTNGmYHuk8jaeJ5Z1FtlMLCkh9J73vIehoSGuu+46+vv72bp1K3fddVc5IPrgwYOo6ktGrnPPPZef/OQnfP7zn+ev/uqvWL9+Pb/4xS/YvHlzpb6CRCKRSCQLSsTUCeoaOcshFtRpDJsMpQuYERNFUbBdD8cTPN+XYiBVJBbU+elDB3lk31hNZpEtqTpClUDWEZJIJBLJUsLzBN/97R529CZZH48ylrN5sidB3nKIBHRGM0XyjoemKDRGDF62spGgodGXLNAUMZdNFtls1+8lEyMkkUgkEonk2KiqwiWb22iKmOwazGBoCps766gPGQymCqQKDqqisLY1wstXN9EaCxILGjWbRbakXGMSiUQikUiOTXc8xuXnrOaOx3rYM5TBE9DVGOKU9hh7h7KsbArTXh9EUV6KCVIUZVIWWVdTuILfYPGQFiGJRCKRSJYZuwfT3PPcAEPpIq4QqIpCvC7EBae00hQ1iddNFkElajGLTFqEJBKJRCJZRpSKKY5mLTrqg3Q2hslZDj1jOQbSBSzHGw+kNo54b95yCegaEbN25IG0CEkkEolEskyYWExxfTxKLGigqUo5BqhouxQdj95Egam5UkII+pIFuuNROhtCFfoGi48UQhKJRCKRLBMmFlOc6vpSFIUVDSECukpAV9k1mCFdsHE8j3TBZtdghqaIyWtPbaupekK1Y/uSSCQSiWSZM7GYYgkhBOmCg+V6qAqYmsIbT+9gV3+GPUMZBlIFArrGls56Xntq7dURkkJIIpFIJJJlwuRiigajWYvdgxnGchaO6yGAgK4RMjQ+duE6DifyZC2HiKnT2RCqKUtQCSmEJBKJRCJZJnQ2hFjXGmVHbxLL8XjqUJK85RANGugBjeF0EUdR+M9n+umoD9ac9Wc6ZIyQRCKRSCTLhFIxxcawwcP7R0nlbRrCBiBI5GxiIYOz1jQylqu9wokzIYWQRCKRSCTLiO54jDds6UBXFXRNIZn3G6vG64Js7WqgORqcVDix1pGuMYlEIpFIlhktsQCrmiO0RgO4QmBqKrGgXs4kC5kaA6lCTRVOnAkphCQSiUQiWWZETJ2QoaFrCo1B84jnc0UHxxX0Jws1HSgNUghJJBKJRLLsmBg0HQ3ok2oKjWSKPLx/FENVuO2RHkKGxrrWKJdsrr3UeZAxQhKJRCKRLDumdqAvFU7sGc3yuxeHyFsup7THWNcapSFssKM3yc1/2M/uwXSlh77oSCEkkUgkEskypDse48rzVrN5RT2JnM2+oQw7+zOEDI0LTm6hqykyqf3GaLY2M8mka0wikUgkkmVKdzzG2guj5dYbP334ICvqQ9SFJjdcVRRlUiZZV1O4QiNefKRFSCKRSCSSZYyqKnQ1hWmvD6KpCpHA9DaQkKlRdNyayySTQkgikUgkkhpgYvuN6chbLgFdI2LWlrNICiGJRCKRSGqAUiZZX7KAEJPjgIQQ9CULdMejdDaEZjjC8kQKIYlEIpFIaoCZMsnSBZtdgxmaIiavPbWt5uoJSSEkkUgkEkmNMDWTbP9wlkTOZktnPVeet7om6wjVliNQIpFIJJIaZ2ImWdZyZGXpSg9AIpFIJBLJ4lLKJJNI15hEIpFIJJIaRgohiUQikUgkNYsUQhKJRCKRSGoWKYQkEolEIpHULDJYWiKRSCSSZYrnCQ4n8qSLNpmCQzSgEwsaR2SJlV5Xi1lkUghJJBKJZNlTiwv97sE0v94xwBM9YxwczZG3XEKGxsrmMGd0NXLJ5ja647Hy6/YMZSg4LkFdY11rtPz8ckcKIYlEIpEsa2pxod89mObmP+zn4EiOwXQB1xXEgjpF2+XQWI6i49GbzPOaDXF+s3OQ0axFR32QsBkiZzns6E3Sm8zXRJFFKYQkEolEsmwpCYJaWug9T/DrHQOMZIo4nofrCZqjJoqiEA3ojGYtHNdjOF3klj/uJ2LqnNwWRVF8C1ksaBAN6OwazHD3swOsbYkua+uZDJaWSCQSybKkJAhGsxbr41FiQQNNVYgFDdbHo4xmLe5+dgDPE8c+2BLicCLPnqEMsaDOWM4mGjTKIkdRFKLjj2uqwv7hLHVBvfx8CUVR6KgPsnsww+FEvhJfY9GQQkgikUgky5KSIOioD9bUQp+1HAqOi6aqOK6HoU3+7oam4noenhDYrjejtSdkahQdl6zlLMawK4YUQhKJRCJZlpQEQdicPgpkuS70YUPD9QSjmSJCgO14k563XQ9NVVEVBUNTZ7SI5S2XgK4RmeH3Wy5IISSRSCSSZUnE1AnqGrkZhM5yXOh3D6a588leekbzPHUoQTJvc3AsR65oAyCEIJ23CRkqiZxFe32QVN5GiMliSAhBX7JAdzxKZ0OoEl9l0VgyQmh0dJT3v//91NXV0dDQwJ/92Z+RyWSO+p4LL7wQRVEm/fvoRz+6SCOWSCQSSSXpbAixrjVKX7JQ0YXe8wQ9ozl29qfoGc0tWExSKTD82b4UG9qjtMSCmLqK5XjsH80xnCnQl8iTzDscSuQ5NJZHVxX6UgWe6EmQLtg4nke6YLNrMENTxOS1p7Yt60BpWEJZY+9///vp6+vjnnvuwbZtrrzySj784Q/zk5/85Kjv+9CHPsSXv/zl8t/hsOy2u1SpxTogEolk7qiqwiWb2+hN5tk16McKhUyNvOXSlywsykK/WKn7UwPDFUUhEjDYPZihP5lnKFNkIFlE0xQCukZXU4hT2mIEDY1dAxlSeZuDozkCukpA19jSWc9rT12+5QUmsiSE0PPPP89dd93FI488wrZt2wD4+7//e97whjfwf/7P/2HFihUzvjccDtPe3r5YQ5UsELVYB0QikZw43fEYV563ujx/DKQKi7bQL2bq/nSB4U0Rk5evbiRdiDGSKfD0oRQtMZPNK+qpC72USXbGygZeHEizqjnCW7eumLby9HJmSQihBx54gIaGhrIIAti+fTuqqvLQQw/x9re/fcb3/vjHP+ZHP/oR7e3tvPnNb+YLX/jCUa1CxWKRYrFY/juVSs3Pl5DMmVqsAyKRSOaP7niMtRdGF9WiPJ2FBhauRs9LgeGT3XyKolAXMnA8D9vz6GoMUx82j3jNioYQQ+kisaBBV1NteU6WhBDq7+8nHo9PekzXdZqamujv75/xfe973/tYtWoVK1as4Omnn+Z//s//yQsvvMDPf/7zGd9zww03cP3118/b2CUnxmJPJhKJZHmiqsqiLvDHk7o/H+OaGBgeCxpHPJ8uOCCY9jnwM+gGUoVll0E3GyoaLH3NNdccEcw89d/OnTvnfPwPf/jDXHLJJWzZsoX3v//9/PCHP+Tf/u3f2LNnz4zvufbaa0kmk+V/PT09c/785cJiBfpNR63WAVloKnlOJZJaYLFT948VGD6Ws2gI+wUlp2M5ZtDNlop+489+9rNcccUVR33N2rVraW9vZ3BwcNLjjuMwOjp6XPE/Z599NgC7d+9m3bp1074mEAgQCARmfczlTqVjc2Yy95ao5V3MXKn0OZVIaoFjWWjmW3gcKzB8olCKTakkXcqg29JZv+xT5aejokKotbWV1tbWY77unHPOIZFI8Nhjj3HmmWcC8Jvf/AbP88riZjY8+eSTAHR0dMxpvLVGNcTmLPZkstyphnMqkdQCJeGxozdJNLA4wuNYgeEAN/9hf8Uy6KqVJbF6bNy4kde97nV86EMf4nvf+x62bfPnf/7nvPe97y1njB0+fJiLLrqIH/7wh5x11lns2bOHn/zkJ7zhDW+gubmZp59+ms985jO86lWv4rTTTqvwN6p+qiU2pxKTyXKlWs6pRFJpZirFMZ8lOiqVun+swPBKZdBVM0tCCIGf/fXnf/7nXHTRRaiqyjvf+U6+9a1vlZ+3bZsXXniBXC4HgGma3Hvvvdx4441ks1m6urp45zvfyec///lKfYUyS6EezmIH+s1ENdQBWS5UyzmVSCrJTK7hDR0xdval59VlvLYlyus2t3Pf8wMcTuTRFIWgMX/CY6a15GiB4ZXIoKt2lowQampqOmrxxNWrV08KEOvq6uJ3v/vdYgztuFgq8RnVFJtTyTogy4lqOqcSSSWYyTX84N4R/u3Jw3TUB1kfj86Ly3jiXJ+3/YyteF2Q7ZvinLuu5YSFx1zXkqWwEV9slowQWg4spfiMaovNkbuYE6fazqlEspjM5BqOBvRyW4nWqFl2wZ+Iy3jqXL9ifK7vSxb4zx39tNcHT2iun+taslQ24ovNkuk1ttSZehPGgn4aYyxosD4eZTRrcfezA1WTxlwtPXomUjL3bmivo6spLEXQcVKN53ShkWUCJCVmcg2nCw5jOZvmiMlYzvbr7YwzlxIdCz3Xz/X4JfG0ozdJQ9hgbUuUhrDBjt4kN/9hP7sH03Maz3JAbv0WiaUWnyFjc5YftXZO5e5XMpGprmEhBOmCw0C6QMFyaYoapAsOlutNet/xuowXeq6fy/GPlSjx4kCa2x89VJPtNUAKoUVjKcZnyNic5UetnNOl5IaWLA4TXcO2K9g9mGEsZ5G3HEazFqmCXS5yKIQoi4XjdRkv9Fw/2+OnizY9ozmylkMqb7N7MD2teBrL2Qylizzbm+KFgTRNYbPmNgxSCC0SSzU+o9pic2Sg34lTbed0vpFlAiTTUXINP7h3hLGcRcF2iQYNNAVGshZjeZtMweax/WP01hdYF4/QGDaPu0THQs/1szl+0fH4xeOHGc5YFByXou3RM5pj2+rGSe8ZzVo82ZMgV3TQVGivCxI2tZrbMFTXqruMWcr1cBa7R89MLLSro5ZE1sRzuty+91JzQ0sWB1VVuGhjnF8+3ctQukA8FsB2PfpTRVxPYGoqquJbXPpTeUayReJ1QVY2hY/LZbzQc/2xjr9rIEOqYKOrKisafGvoQCrP830Ojx8c4+Wrm2iKBBDCt4rlLYdoUKPoqIQMrSY3DFIILRK1Fp8x3yy0q6NW40mW4/deim5oycKzezDNzx8/TCJn4XqCQ2N5bE+gKgpNEZOIqZEqOuSKLiFDULAd2urg8nOOb25Z6Ln+aMfvTeRJFWzqQgYnt71kDe2oD7GqOcze4Sy7BzO8fLU5HiRuEQ3oZIoO8bogsaAvCWptwyCF0CJSK/EZ881CuzpqNZ7kxf40375/F72JPE2RAG11AXRVXfLfe6m6oSULR+kePzCSJWhodDaESOZtehN5TM0XQmFTpy5kMJwpsmlFPRFTw3EFIVM77s9b6Ll+puOvao7geIKVTeFJliJFUeiOxxjNWhwYyXFSYxhNhYLtYjsu4YDOutbIpPfU0oZBzgSLzHKPz1gIFtLVUavxJC8OpLj258/w4kAGT3ioikLA0DipMcTmFXWMjKfgTv3eS8GNtpTd0JL5Z+I93t0aZThj4Qp/oQ8Y2nhndpuQoeF4gqCh0xYLEg5o7B/OzlkILPRcP93x0wWbb9+/e9qO900Rk5etauTxA2OMZot4QuB6gua6AJs66miKTG42XksbhuX/DauQaom5WSospKujFuNJdg+m+d//uZPn+1JoqkI0YCAQFG2PvUNZskWXLZ11R3zvpeJGm851EDRUhtJF+pIFmqMBtm+KV52AkywME+/xaECnMWwylC4QMTVURUFRFfKWS8F2SeZt6kMGqbzNaLboW4SM47cIlVjouX7q8XtGc0e1hoYMjU0ddVx29kqiQZ1fPH6Yg6N5GsPmpNfV2oZBCiFJ1bOQro5aiyfxPMFdz/SzZzCDoihEA/q4IFDQVZW85TCSKdKb8GMZSt97qbkPJ7oOnugZo2c0R85yCZsaQUPjnmcHUcfdBZLlzcR73HcRRckUHTJFG0NXKFgetutyYCSHJwSJnM3+4SwefhbVL5/q5XWb25fEtTJba+i2VU2oqoL5clV2o0dWlpYsARayIvJEkTUdy808fDiR55nDSQRg6ioTf01FAdPQEEBfMo8rBBFTX3JV0Ut0x2NcvKmNsKkRC+ps7KjjrDVNdDWGZTXdGmLqPd4UMdna1UC8LkTI0LAcj4Lj4XgCVVUQCghAARxP8NC+0RO6VhazunnJGtoUMdk1mCFdsMvtQ3YNZo4QN6UNw+YV9WUBmMjZbOmsr7rNzUKyPGZ3ybJmIbMwai2eJGs5ZG0HXVUImxo5yyVkqOXvrSkKQnhkii4d9UE6G0JL1n3oeYJ/eeQgO/vSKAok8jYHR3M0hU3WtoZnjIOSLC+m3uMAuqqwpiVMR12AB+wRcpaCrioUHI+AphIOGzSGDfKWi+N6jGTmdq0sljt5auze5ees5p7nZheoLeNWpRCSLBEWKguj1soaREydiPFSU0nbFeRtD1NX0RSwXIHtQjSocdFG/3svVffhH/cMc//OQYQQNERMDE3Fdj0G037V3fXxaFUKOMn8MvEef+JggpzlkC46WI5HzvL/v7s1wkDaoj7k3xcB3d8caKrCWM7mpMbwcV8rU93JISPIYLrAA3uHeXEwzSdevY6T2+pO+PvNJLYuPjXOW4wVxxQ3SyEBYqGRQkiyZFionUstlTXobAixpbOefSNZbNejLRbw2wzYHpYQ2I5H0NB47cY2zlvXAizNdHTPE9z73CA526WrMYSm+lEAAV3DjKiMZi16kwWawmbVCTjJ/NMdj/GaDXG+dd8uhtJFTF0hoGuoqk5fosAL/Wk/k8zQsBxBU8QgZOq+lch2SBdsio5LumjP6vOmupPHcjbP9yUYy1k4rp+U8JWsxRfeuImT2xe2C/2G9pnF1lJJgFhoqmfmkkhmwUJlYdSKeVhVFV63pZ2dA2me6knguILGiEnU9UjmbIK6ystWNfK+V6wsf/el6D48nMjTl8wTDeg4HmgToiEVRSEa1BlKF6kPGVUl4CQLg+cJdval6agPcUZXA7YnyBUdnu1NoSjgCAFCQVV8C6jlujSEjHKBxR2HkyiKwi8eP4z5cvWYImGiO3ksZ/NkT2K8grOBEdQxdYc9gxm+c/9u/uKi7jmJjhMt/bHUEiAWEhksLZGMUxJZG9rr6GoKLzsRVKI7HuPT29dz8cY2IgGd0axFuuDQFDF5/ZYOPnPxyZMmwOMNwKwGspaDqkJrNECmYB8RZK+rCtmiU46DkixvSsJkRUOQ+rBJc8Rk30iWoUwBT4DtCCzHI1200VUo2B6HEwXSeYewqWHqKvG6AAdH87MKnC65k0OGVm5j0RQxCegqqqIQCeiETZWRbHHOiQbHE7s3laWaALFQyK2QRFKDdMdjfP5Nm+gZy7FvOAvA2pYIJzVOLwCXmvswYuqEDJ1Qg0bWchnNWkSDejlOaCxrEzL0chyUZHkzNc6tZzTP/uEcQkDE1MgrULQ9XA8SORtVUXA8QTTgi6BIQGdTRx2NYXNWRVZL7uTBdMFvYxE0JokV2/XQNY2O+tCc49ROJHZvqSZALBRSCEkkNYqqKqxqjrCqOTKr1y8l9+FEd97pJ9WzZyjLWM4iU3TQFYWAofLK7pZyHNRCIoNRK8/EOLdoQGfPcAbb9agL6uVzIQTlWlqWJ1AVCBgaLRGTlc0RPAHpgkN7XeCYIqF0/T2wdxjH9TCCLy21QggyBb+3V2sswIGRuVWvPpHYvaWaALFQSCEkkUhmzVKpij4xU2gka7GhPYrjiXKjyc6GEJedvXLBBYkMRq0OJgrjtliATMEp19ESAjzh1xdqiZgMposMposYmn9tHBzNc3AsT9jUCJs69SGdgK4dVSSUrr8XB9PsHcpi6g6RgI7temQKDiFTY11rhII990SDmWL3hBCk8ja7hzKcuqKejrrgEe9digkQC4mMEZJIJMuSicXiknmH0ayFqiicvaaZPz1/zYILkVIw6o7eJA1hg7UtURrChizmWAEmxrntHsrgeh4hQyVvu+QsB0NTaI6YCBSKjocQYGoaQoDtediOR95yAEF/skjPaI6hdPGon9kdj/GJV69jXWuURM5mLFukYHvE64Js7WqgMWyeUDFYgNO66lEUeOpQglTeYjBd4A+7h7n7uQEOjuTYM5Thpv/ae8S1tpBFapcitSH3JBLJUVmu7ptKuPM8T9AzluNHDx7g0FiO0zrrUcfT95d7M99qpiSM//WRQxwYyQGgoKCq0BQ2MXWVQ4k8OctFV0EgcDxBxNQAhbztli1JuqrydE+S89a1HPX8ndxWxxfetInv3L+bkWyRjvoQrbEABds9oUSDiZbGTMFhOGNxaDRHzvZQgI6GIKe0xQga2rRZYLVWP+1YKGKqHJRMIpVKUV9fTzKZpK7uxItfSSTVhnTfzB+l3/LpQwme6U0SMjTaYkHWxSOTununCzaJnM1nLj55SbgalxOO4/GNX+/kub4ULZEAA+kCYzmbvO0wlrFQVd86NJy1QEDQ1NAUBcv1KNgunQ0hTl1RByizPn8T77Gi47uduuPROSUaHJn2rpMpWPz2xWEKtssr1jaxsikyyVW2azDDls56PnrBukniZj7HVY3Mdv2WFiGJZALL1TIyE9PVEskWbR7eP8KzfUned9ZKzj3GrlfiM/G3DJkaIUMjEtDKlay3djWUxVCtBaNWE7qu8u6Xd5XP1Yb2GI4nODSW55likngswNrWCE8fSuK6goLjYQkPRYGArrK+LUZHQ4j9w7MPcp4vy+RMtYMURSWoqyAEg2mLlU0vJUAcLQtsKSVALCRSCFUZtbYQVxO1ZhmZblIdzVrsHswwli0ylrc5MJzl9Vs6lkz37Uox9bdMFxwMTUVVVJoiGqNZiz1DWRrDJoqi1FwwarUxtRxE0XExNZW2WIBT2mPUh0zCZtYXF4ArBK4n8DxBazQwp/M3H4kGM6W9W67fNLYubJTrgtWFXgqCPprwXioJEAuJvAuriFpbiKuJWqyyOnVSHc1akyrgthkq2aLLI/tH6UsWyr+BFOtHMvW3jAV1GsMmQ2k/3iIafKlwZSyoV2U17lpjqjUkZGj88qlenu1N0dmgTTp/AKNZi3hdkGhAY/dQdl7O3/HeSzOlvZuaiq6pKCi4novlepOel8L76MhfpUqoxYV4tiz0wnuipeqXKhMnVSHEpAq4iqLgCd9y0dkQmlBplnJXaynWX2LqAqUoCt3xKJmin60WDujYrstYzqI/VXvBqNXKVGvI6za305cssHsoS0d9gFTBZiBVBATRoO7XEBrKzsv5m8vGd6a095Lw7k3kCRoq5oSeMtXaBqeakEKoCqjVhXg2LIaVrFarrE6cVIXgiAq4tuuhqSoBXaOjXuPxg2O80J/Gcj0p1qcw3QLVGDZY1xJh50CaoVQBTwhylsvWroZlE4y63JjqMmuOmAgBCoLmSABQTqiaemlT93x/iv/3VB9Fx2NFw+zvpZlqBymKwrrWCIfG/GrZIHA8r2azwI4XKYSqgFpdiI/FYlnJarXK6sRJtTFsTKqAO7H6bSyo43gePaM5WmMBXrayUYr1KUxdoMZyNk8fSnA4kSdvOdiuIBLQqAvqbN8Ur3kRVM3u1elcZgqQs90TGmtpU7drIMWThxKkCg7xaICgoRIN6LO6l46W9j6StTi9q4F4LEAiZzOYLlZ1G5xqQgqhKqBWF+KjMRsr2a939GOerp7wBDV1Ny+EX4HYcr1xE7NYlv71iZPqobEcArAcPztmYvVbRVEYShfJWS4r6kNSrE/DxN/yiYMJesZyjGYthBDoqkJAVwmaOg/tG6XgeHx6+/qaXZiWQizkfAcQlzZ1B0dy9CXz9CYKeJ4gmbPZN5JjTUuYl69uoikSOOa9dKy+f2tbZBbY8bK8ZvYliix3fiQlK1l7XXCSKIkFfXNwyFD5f8/08/ThJJqqnNBkOnE3bzleuS+V43roqoIHvLK7ZVn610uT6l3P9DOU7mcgVaA+ZBCvC7Ku1a99U4oxCJsarbHAtMepRbE+le54jMvPXcWX73yOkUwRT/jp1uGATlPYIGhojGSKvNjvC4G1F9ae9awWYyFLm7qSCOpL+h3vzfGMNMv12DucxfXgFWubqAsZx7yXjpX2XoubkROhdlbWKmYmvy/UbqBb1nIYzhTpTeRJ5G0cz0NXVZrCJi0xkz1DWUazRU5pi9LZGD6hybS0m3++P8XvXhxCVRQawgamrpDK2bgCBtJF9g5nlt0kDf6k+vFXRzl9ZQM/ffgg2aLD2pYI4YBOumDTlyzQHA0QNDTytktMO7IzTy2K9ekIGTphU6MpYhIyNYK63728bNEMGaQLDk8fTtSc9axWYyEPJ/LsHkyTLdqMZi00VcHQFBQFVEUhoKhYjsdQusCewSyntEdndS/JtPf5o7ZnrSphJr9vruiwdzhLJKBz2kn1lR7mojKc9vv5CCFoiJgYmt+wcCCVZ89wBk1RqA8ZNIRNNFU54cl0bUuUeCzgxwMokLMcNFVlRWOYtS1hRrL2spykS6iqwivXt9JRHyyb3CfGGGzfFOeeZwelWD8GWcsh57joqp+54wqB5XhlMWSMu1pzlltz1rNajYXMWg5jeYtE3kYAIcMvfGh5AgWBoiioqoLnCfpTeQzd74dX6/fSYiKFUAWZGjB4+Tmry6nJuwczDGcsFARCwM8fP8xTPcmq8qMvFJ4nePJgAkNXcT2BqfmLSEDXEAHBQKqIriqsbo4QC750CZ/IZHo4kSeRszmvuwXgCFecqWvLcpKeytFM7qqiyN5ExyBi6gjPz8AbyVLe9YcMjaaIMf77KITN2rOeLbVYyPkK6I6YOpqiUrD92j6aqhA0NZyiiyMEyniXKwEk8w4bA7q8lxaZ2roTq4iZAgYvPjXOaal6fvrwQRTFt1REAvqy96NP5HAiz97hLJtX1LFrMMto1iIa1DE0lYLj4QqBhkJbfeCIneVcJ9PSJL0iEEKbZgKqtkl6IZnJ5H6sIM3lfE3OlrztkC7YFF0PTVWI6Boe/vVVdFyChkrI0Dmts6HmdvxLKRZyPgO6S6EPzxxOgABPgKGpRAP+dy44HqoCQkBTxOC9Z62U99IiM29XXCKRoKGhYb4Ot6w5WsDg4USOoKEhBJx+UkPN+NEnUhIlvgg0/JYPOYtM0cHzIGzqBAyV8DQT5lwn06U0SVcS2ZtoZjxPcM+zg9SHTDrqXAbTRXK2v4gaqkK66GC5Kqed1Mglm2tvx79UYiHnO6BbVRUu3dbJg3uH2TOcxbUFEUNDURTfrR/QMXSFsKHz1tM7OW9dywJ+O8l0HBn1OAu+/vWvc9ttt5X/fve7301zczOdnZ089dRT8za4iXzta1/j3HPPJRwOz1pwCSG47rrr6OjoIBQKsX37dnbt2rUg45stUwMGY0GjHOOyPu4vMA/tHaG97th+9MUed89ojp39KXpGc3ieWLDPmihKmiImL1/dyDlrmzl7TTOvWt/CquYQCDCmLCSlybQ7Hj3uybQ0SfclCwgx+budyHEXisU8H1MpWYw2tNfR1RSuuQV9JkoxMOvbopyzroU1LREMTfXjhmyXkKHREg3w3rO6anLHX4qFbIqY7BrMkC74SRDpgs2uwUxVuFePNT+/VGH9+O63k9vq+NT2kzmpIYTjCpJ5m4LtWwj9StAap3bW87ot7fJ+qgBz2t5+73vf48c//jEA99xzD/fccw//+Z//yb/+679y9dVXc/fdd8/rIAEsy+Jd73oX55xzDv/0T/80q/d84xvf4Fvf+ha33nora9as4Qtf+AKXXHIJzz33HMFgcN7HOBuOFjAIfrrtYLpIMm+V41MmUgkXzWLX/Zhu51hqICiEIGIatMagP1VEVZV5iVU5WqGyaouBWQp1WGqRiTEwmqpwwcmtpPI2Y3kbBMSCfvPVmUoQ1ALV7l5dyIDuiza20dUY5h//ew+PHRgjW3RRFYXGsMHZa5t539nSJVYp5iSE+vv76erqAuA//uM/ePe7381rX/taVq9ezdlnnz2vAyxx/fXXA3DLLbfM6vVCCG688UY+//nP89a3vhWAH/7wh7S1tfGLX/yC9773vQsyzmMxU8Bgqet3fypPuuDwyL5R+pNF1sX9Wi4lFttFU4m6H8cSJSubw7xmQ5ydfel5nUyrfZKG2qzDslSY6l5VFIX6sEl92G/amS7YBA1duler2L260AHdJ7fH+Po7T6dnLMe+4SwAa1sinNQoLauVZE53ZGNjIz09PXR1dXHXXXfx1a9+FfDFh+u68zrAubJv3z76+/vZvn17+bH6+nrOPvtsHnjggRmFULFYpFgslv9OpVLzOq7pYlEmdv0O6n65dYHCQCpPumiztathUmG7xfKjV7Lux1RR0p/M43qwoiHERRvjnLuuhVefEp/3ybSaJ+larcOyVFgqMTDVQLXWwFmMWEFVVVjVHGFVc+REhiqZR+Z0Nt/xjnfwvve9j/Xr1zMyMsLrX/96AJ544gm6u7vndYBzpb+/H4C2trZJj7e1tZWfm44bbrihbH1aCKZOlkC563dj2GAsZ3NSk+9HztsuqbzvP9/YrtCfKi6qi6bSdT9KouQPe4a57/kB+pIF+lOFBS8lUK2TdCXORzX3hKo2lpJ7VTI9lRCz8h6rPHMSQt/85jdZvXo1PT09fOMb3yAajQLQ19fHxz/+8Vkf55prruHrX//6UV/z/PPPs2HDhrkMc05ce+21XHXVVeW/U6lU2Q04H0ydLKMBjZFsEVNXGcvZhEzfFQMKuwczDKYL9IzmqA8ZnH7S4natroa6H3uHM9y1o5/RrEVnQ4iwWVulBCayGOdj4qQ8lC7yVE+CvUNZCo5LQFNpjQXZtrqRjR11csKehpncq5tX1HF6VwPOeJC7/O2qk8UWszLerzqYkxAyDIO//Mu/POLxz3zmM8d1nM9+9rNcccUVR33N2rVrj+uYJdrb2wEYGBigo6Oj/PjAwABbt26d8X2BQIBAYGGDGSdOlo8fHCOVt4/o7wTw8tWNjOUs9o9kueyslbxqfeuiTp6VTimXrqDJLPT5eLE/zR2P9bBnKEOq4AshU1PZ3FlHQ8jkhf4UD+0b5a4dfZzcHuOMrkY5YU/DVPdqSVD+/PHDcrGbhmqziCxWrODEeL/2ugBRTydVsHl4/wiHEzn+9Pw18vpYJGY9Y955552zPuhb3vKWWb2utbWV1tbWWR/3eFizZg3t7e3cd999ZeGTSqV46KGH+NjHPrYgn3k8lCbLRw+MctPv9tAcCdA+xeVRKsnfGg2yrnXxF/tKxzxU2jVXbSzk+bjv+QG+dd8uhtJFDA2yRQ/HE8SCGs8cTgIKQgjisQDpgs1YzuKZw7VnlZstJffq7sF02aK5HBe7ExUx1WoRWehYwYmbvOaIyc7+zKRGz33JAiFD43+9cVNNbPIqzayF0Nve9rZZvU5RlAUJmD548CCjo6McPHgQ13V58sknAeju7i675jZs2MANN9zA29/+dhRF4dOf/jRf/epXWb9+fTl9fsWKFbP+LguNqipsW9XEwytHeWT/KLrmt5Eopc1XOsCy0jEPlXTNVdsuFRbufLw4kOJb9+2iP1WgvS6AEJAq5BFCkLdcUnkHTVNY1xJBVVVQIFt02bIiwEC6WFNWueNhuS92Jypiqt0ispCxgqVNXshQeepQkrzlEA0aGEEd2xWMZS1+s3OQCzfEeeX6hTEWSF5i1kLI87yFHMcxue6667j11lvLf59xxhkA3H///Vx44YUAvPDCCySTyfJrPve5z5HNZvnwhz9MIpHg/PPP56677qpYDaHp2DucYTRjcXAkxwv9aSIBndZogBUNQfK2V/EAy0qmlFfKNVetu1SY//PheYI7Hj3MULpIR12QgOH/3gBhUyNruViuR1BRsV1BQPXbA2QKfn2cgK7yVE+CnrGczIKZwnJe7E60jMNcRGI1bk7mStZyyNsOY1mb/Hjh2JKFN6ArtMZMDo3lue/5Ac5b17Jkv+dSYckUtLjllluOWUNoakVgRVH48pe/zJe//OUFHNncmTiZnLGygd5EgaFMkf0jWQZSBV69IV4VRbYqlVJeCdfcUqjTM5/no7RYm7qKofuF5jXFb7AqAF1TyNsCz/OzGF0hyBUdknmHHYeSoEDBdrn5D/v4k1esqvhvU00s18VuPmL3jlckVvPmZC5ETB3Pg6FMsVxzaiKOJ4gEdPqShZpx/VeSOQuhbDbL7373Ow4ePIhlWZOe++QnP3nCA1vuTDeZnNQYJl3wmzMeTuRpjpisbYlWeqhAZVLKF9s1t5SCs+frfGQtB1d4BPRxi4+uYOoqIUMla7noqoInBAXHYzBV9IWQ5WJoCi0xE3NcPO0bznLzH/ZXhVCsFpbrYjcfsXvHIxLbYkFufaA6NifzZZXqbAjRXh/ksYNjBHQVhMDU1XJIRKbg0BoLoClKTTR6rjRzEkJPPPEEb3jDG8jlcmSzWZqamhgeHiYcDhOPx6UQmgXTTSYvtZIwCBoae4ayS2qCXAgW0zVXi8HZEVOnMWSSzjsk8zbm+ILUFAlguQUyRRvPA0UFBYHluCgK6KrCSMYiZGqc1BjmtM56dg9lq0YoVgOdDSE66kM8eShBY3iya3cpL3bzEbs3W5HYm8hzx2M9VbE5mU+r1N7hDLmiQ95y2TecJWhohE0/PtRxBSFTY0V9EFCmdf0vJTfhUhjrnITQZz7zGd785jfzve99j/r6eh588EEMw+BP/uRP+NSnPjXfY1yWlCaTkBEklbcpOi6W42HqKgFdI2SqFB23qiZIzxMVKQ2/WK65aqibtNh0NoTojscYzlgUHY/RrEU0qBMwVBpCOmM5C03xe+AVXQ8UhZip+XFCRQdVUVg7HkS9HIXiiaCqCts3xfndi4MMp4s0REwMTcV2PTIF55iLXbUyH7F7sxWJluOxZyjDquZIRTcn8+kyLx0rXXRY1RymP1nAE4JEziZbdFjdEmHzijpGsva0rv+l5CZcKmOd09335JNPctNNN6GqKpqmUSwWWbt2Ld/4xje4/PLLecc73jHf41x2REwdy/F4cO8IozmLZN7GcQW6qlAfNmgKmzRGzKqZIHcPpvnJgwd5cN8oibyFIqA+bPCKBWoWON0uYqEX10rXTaoEE92PADnLIV10sBybnOUQMTU2d9bTEDbZM5ihZyyHJwSOJ6gL6QQNXxTB8hSKJ8q561p49YY4v981TN5yyQoHTVWJ1wVZ2xKecbGrZuYjdm+2IjGZd3CFIGRopPI2luthamo5s3Yxrrn5dJlPPNbJbTFaY0GeODhGuuAQMFQKloOmwHDGpjl6pOt/KcQwltg9mOYHv9/P4USOprBJSySApipVOdY5F1RUVX/yi8fjHDx4kI0bN1JfX09PT8+8DnC5krf9QmuHxnIAeAJMXcVxPZI5m1TewfH89OVKs3swzY337uKpngSqotAaDSAQpHI29zw3wGC6yKe3r5/XQmOV2EVM1/4kXXCwXA9DVehPFTjtpIYltWjNhonux92DaRJ5C1VRaYyYDKTynH5SI5qq0BIxsRwPQ1cI6hq6ppAcX5xg6QnFxTDZq6rC+85eScH2OJzI0Rg2qQsaaCqL3jJnvpiv2L3ZiMTueJQ9gxke3DtC1nKxXRchFGJBnbUtERrCxoJfc/PpMp96rKaIyRkrG9k96GfNqarKYNrizNVNvHtb16T5binFMHqe4CcPHeTR/aMoChway5XP25qWMCOZ6iq7Maer54wzzuCRRx5h/fr1XHDBBVx33XUMDw/zz//8z2zevHm+x7js8DzBPc8OEgvo6KrvYogENHRVRVMU/29Toy5ocO/zA3THK3exeJ7grmf6eXEgjamrNE8IagzWaYxkirzY7wuXtRee+Dhnu+NZiEVs4gT/xMHEBOuIh+V4tMYCvGtbrCpu3PlmOvejEIIb791VtpDVjVc/H0oXMIMqluuhqSqmpla85tXxsphiuzse40/PfynObSRbXLQSFAvFfMTuzUYkblvdyIN7R+hPFWgI6RRsj5zlMpAqsH8kS0PYZPuG+IJec/PpMp/uWE0Rk5evbiRd8APIB1IF3nZG5xG/4VKKYfzjnmHu3zmIEIKgqU06bwdGsqxoCOGMz+GVHivMUQj99V//Nel0GoCvfe1rfOADH+BjH/sY69ev5wc/+MG8DnA5Ur6gG4IcTuZRFAXb9bBdF1VRyi6H9iq4sA8n8jxzOInriSOCGhVFIRYySBccnj6cOOFxznbH43lwz3P+BJy3HTwPOupDbN/kd6U/EaHSHY/xmg3xcpVlU/eLXDZHTcKmzm92DrKqObwkF69jMTUTzfPEES6Q7niUTNFhJOvXfOloCAGCXYOZJWPdqIR7oVIlKBaS+fhORxOJ2zfFuefZQeqCBtmiQ1+yiKJAUNcwVIV00SGRs+hPFdk7nFmwe3I+XeYzHauUKKMo0BgOEAsc+TlLJYbR8wT3PjdIznZpiZoMpS1s189MDeoqOculP1UgU3B4vj+1dIXQtm3byv8dj8e566675m1AtUDpgq4LGmiKwkmNQRxX4AqBpihll4OmKuQsp6IXdtZyyNr+5xvakROcHx/ip1Sf6Dhns+N5/OAYL/SnsVyPkKEylrUZyhR58lCC3704eMK1lzxPsLMvTUd9iDO6GrA9UY5JAKrK/LyQlCxu69oiPNkzxmMHxljREKI1FmB9PMKO3hSep2BqKsm8s2SsG5V0L1SiBMVCMx/faSZBVZoPuuMR0kWb0ZwFAizXQ1WUcbeYSqZoL+g9OZ/1zE7kWEslhvFwIk9fMk/E1BjJ+iIoZKgveRJMjaLtUnA8Htk3woa2GDnbrejmYGk485cZpQva9Tx0TcXxIGBo5eeLjoumqrieqPiFHTF1Iob/+aU6MxOxXQ9QCJsnPs5j7XiChkrPaI7WWIDVzZFyIbZY0KAxbDCcLvL7XcMUbI8/PX9uu/rS5LuiITjtZFNN5ueFouQ2evzgKHuHs6TzNo4He4Yy1IUMVjaFeevpKzi9q4GWWGDJWDc8T/DogVEePzhKc+TIxsrV5l6oJaYTVOmCL34s12U0a9EaNVEVFU1V0NWXNoyNYXNBz9l81jM7nmNNdf931AUr2vtxtmQtB1WFuqDBYLpIxHypZZTr+Rv+ouPRGDb5w64RDo7m0VSlohllc1q51qxZc8SOfSJ79+6d84BqgdKu4JnDfuroULpYrt8yMXU0XXA47aTKXtidDSG2dNazbyRLuvBSnRnwb7503kZTVU7rPPEg4mPteIbSRXKWS0ddkD1D2SMKsTVETPKWy+FEbs47xKVifl4oSm6jnX0pDozmKNh+3SDX9VDQ0SMKkYDOxae2cXJbXaWHO2teEndjPNuboj5kcGgswLp4hKYJomi5n9+lwu7BNL94opedfSmyRYe87aKNZ4lFAwZNEQPHA01VqQsajGSLC3rO5rOe2WyONVMM24aO2IIWmJ2P2MuIqRMydJqjJnuHFYqOi+MpfqylK3A9DwSM5SzSqsop7TE6G8MVzX6bkxD69Kc/Pelv27Z54oknuOuuu7j66qvnY1zLmom7gmzRRRsvThcwVIq2i66p6Jo6bfpkJcb6ui3t7BxI81RPgoFUkfqwAQiSORtPwOkrYlyy+cTHORuzcdjUCBoaYzmL6JSYJUNTyQrnhHaIS8X8vBCU3EYHhrMcGsuTt9xyEL/rCTJFh+F0keZIgHufG6S7dWkEjk+MCWqKGNSHDDRVYTBdIF202drVUBZDy/n8VhszLbql83VgOIvj+qUaVEUBfEuCJ/y6a6VinprKopyz+YzzOtqxjhXD9poNcXb2pee9wOx8JRCU5vGH9o1QHzRIFx3SBReBQFNAVUDXVYqOh9AEKKCpSkWz3+Z05cxUNPE73/kOjz766AkNqFZY2xLldZvbue/5ATwEQ+ki6YJD2NToagrzspWNVRNz0R2P8ent68t1hEYyRQAaQgZnz2MdoWOZjZujAYKGRrro4LgeRnDy5WuPZzGdyA6xEv3NqoXDiXw5fT5rOUQDOvp4XJiuKUQDfhPWsZzFroH0knAfTY0JAjg0VmAoXaAxbDCWs9kzlKUxbAIs6/NbTcy06F58apy7nx2gZzRLuuhg6gqu5wfYChRcz48Pyll+Ysma5jD9qeKinbP5jPOaLjnhwEiWHz14gENjOU7rrC+XqZkoEl7oT/ORV62lb9xyOR+u6floojtR1J3SHuPXz/YxlitScPzyGr47088y9YRACIGmqgwki3Q1hlEUpWLu6XmV0K9//eu59tprufnmm+fzsMuOiZNA3naImjrda6JsXdnAKe0xYkGj6mIuuuMxPv+mTQteWfpoZuNSFsnD+0fQVWVSzFLJpRivC57QDnGx+5tVE1nLYSxvkSk4aKrCeJ3EMpqqoqkemYJNIm8vCffRdAH4pcy3sZyNqasMZ4r0JQtkis6yPr/VwtEW3ccOjnJgJIftegxninieQACeELgC/789l4awgakrHErkOakxvOTPWWlNePpQgmd6k4QMDdsRk1y3E0VCX6owbyLhRBMIpopay/EYShcxdJX2+hAHRrJ4gnHLniAc0hjL2YRNleZogNGcRbrgjLeXqox7el6F0B133EFTU9N8HnLZMXUSWDE+CfQlCzx6YIwtJ9VX7S5bVRVWNUdY1RxZ0M85mtlYVRQOJ3L0JQuMZS1aYyaOJ8rVaNe2nPgOcaoY60/mcT1Y0RDioo3xqmmEO99ETB1NUbE9Md5sFSYmCrpCoKnK+ITGknAfzVS3ZWtXA7sH/XTtVN5mNFvkzFVNVWOFXa4cbdG1HI97nh8gW3Bojpo4rgAECn5wdFBTsRwPxxNomoonYE1LhD95xaolfc4mrgkhUyNkaEQC2rSu24UQCSdSn2jqehYyguW6T61Rk1Pao+QsF8f1sFwP2/UzjEOmX5IkFjRI5KxyUVaojHt6zgUVp7oM+vv7GRoa4h/+4R/mbXDLjaVUGbTSzGSC9uuOrCGoa9z/wiCHxvJEAjqtsQAr6oOMZO152dWXxNgf9gxz3/MD9CUL9KcK/OyxQ/zXi8NsW93Ixo66qrPcnQglt+BzvUkMzffhl9JehQDL8QjovkBaF48uCffRTDFfpSJ2fck8o1mbj1ywlpd1NdKXKrCzP7VkMuGWGlMXXSEE6YJD0XHZ2Z/GN/D6j4lx4V3KoEVRqA/pZCyXWMCvLH3leWsWfGO2kExdE1J52y8R4HhEAjqZolN23SqKsiAiYa4JItOtZ6m8TXY8oSUzXvupLujXxQPI2y6241EfMUjnHazxDGlz3PxcqfCDOf2ab3vb2yb9raoqra2tXHjhhWzYsGE+xrUsWUqVQauZkpvu1RvjZZGiKQqgzGs9m73DGe7a0c9o1iqLrJ39aX6/e4hfPnWYVc0RTjupgUu3dS6pDKqZUFWFS7d18tC+EQ6N5VAVyNkeuqrgjNdusV3oagxw6cu6loRIOFrMF0Cm6HLmqkYaQiY3/dfeqm8OudSZuOiOZq1ya4m85bsqQ4aKByTzNgCuK1DGC80Kx0VFoy6ok7NcVrdG6Gpc2vPkxDVhLGezayBNsmCPCx6VgK7Sl8yTLsSIBfUFEQlzTRCZbj2zXA/H9dADGqauMpopEhkPmG6OmBi6SiJn0dkQZr+TpT9V5KTGECFTI12wKxZ+MCch9MUvfnG+x1ETzFZ5p4s2PaO5ZVOBdiFQVYVXrm/lvHUtC1Ktd+Jupzli8vjBBAdGchQdF08IPOFnUR0czfHQvhE+edF6LtrYNg/frLKc3FbHJy9az7fu20VvIo/reRRtz9+Zawor6kP8xUXrObl9aYiD2cR8ndIe49YHlkYjy6VOadHtTeTYNeiXwIgG/Sy+RM4mlbcpOn5ckKaAooAQ4HoC2wNDExiahqLAttVNS35eLK0JBVvjmcN+XbSWaICRTBHLFeSKbnmeMXV1QUTCXBNEplvPTE3FFYJDYwUs16Vo++4wxxPYrlc+fsjQaAybaKpCY9jkwEi2om1nZi2EUqnUrA9aV7f0d8cLwWyUd9Hx+MXjhxnOWHJnOgsWqlpvabcTMlSe7EnQm8jjeILSFKEIv/BlqxGgP1XgW/ftoqsxvGQEwtG4aGMbXY1h7nish92DaXK2R9jQWN8W451nLj3r12wC8KW7eu4cT+2ZzoYQa1si3Pl0L64nyr0LC5ZL3naY2GPaEaD6HjEAFPCbPsdMmiIBNrYvretwOiKmTkBTeaE/NakumqmpjGaLZIoOti04OJrlbVtPWpB1YDabhe2b4kec49J6li36LjPL9cgW7LJ4CxoqQUOlPmyQKTgUbZe87dIUNnFcj3PWNbN9U5yQoVd80z9rIdTQ0HDUIooTcd3Kd0yvRo6lvHcNZEgVbHRVpaM+QNTTSRVsHt4/wuFEjj89f40UQ4tE1vIbII5lbdIFGz9fReABhqqAplK0PbJFl/a6AEPpInc83sM1r9u4LBbMk9tjXPP6jcumN9ZMAfiHxnI8fThB2NBIFxxiwZfuy2pxVy9Eg+H54nhrz6iqwtaVDfzs8UMIIcZdKYLeZH6SCCp9u5JlyDBUQoZGfVAnGtB52crGJRGjdiw6G0K0xoI8tG+UeCxQvvZCpkaHHmQwXWRFg85JDSHedHrHgsVDTbdZMDWVlU1hVjQEuePRQwylixRdj4Cm0hoL8rJVDWiqwu93D6Mq4HgeybyD7XqYukrB9oiFdMKmhqH5Lr6WSIBPbz+ZTSuqK75y1kLo/vvvL//3/v37ueaaa7jiiis455xzAHjggQe49dZbueGGG+Z/lMuEoynv3kSeVMGmLmTQEjXZ2e/7zh3Xj9HoSxYIGRr/642bKn7xVPPEPF9ETB3Pg6FMkaChM5azcT0xbq4fz6hSFSzXQ6Bg6gp7lll813LrjTX1++weTPOjBw6y41CSoKliaBpNYXNSynKlK03PV5G7hRrbXGrPtMQCdDWFsRyPsZzFULpAwXbRNfAmiiEVPA8cDwwBzdEAqbxNLGgs+XT5EqqqsG11I3ft6PM3XIpfGNZ2PTLjKeVbOutJ5m3y9sIaGCZuFp7vT/HovlF2D6b5zx19OK6gvS5AfdhgX7LI73cP8fPHe/CE33opFtSpCxk4roXnCRwhCBp+Blwi72/uu5rCNIZNNq2oq7p5ZdZC6IILLij/95e//GX+7u/+jssuu6z82Fve8ha2bNnC97//fS6//PL5HeUyYiYz/armCI4nqAvq5R5a0aCBEdSxXcFY1uI3Owe5cEOcV65vrdj4q2FiXgwh1tkQoqM+xJOHEsRjJori1zLRFAUBvkDVlPGKyzbGeDrvUqitI3lpET80liNoauMWWo5IWa5kpekTLXK3kEyXMSSEQAhoDBscGsvx6x39rL3wSJdixNRpiQaoDxmkCzYP7nVwPD++JF30NxyeABVgPEZIAAXbpSkS4L1nzU8B1+P9vgs152zsqOPk9hhjWYus5ZItOmiqSrwuyLrWCIbmW1cW4xpUVb8lxu9eGGIkUySRszFUlZCB39ZovOWOEALH8y13pq6QzPutM8q13RSFrsYgW7say42rQ6bKgZFcVc6Rc/plH3jgAb73ve8d8fi2bdv44Ac/eMKDWu5MZ6ZPF2z+/je76E0UjuihFdB9v/ihsTz3PT/AeetaKrIbqoaJebGEmKoqbN8U53cvDpLK2Ri6X93WEQLP9aui2i5Yrkt/qkBDyFgytXVqnYmL+Gmd9ViOYCjtx0I0RUxGsxZ7hrI0hIyKVZoujXEkY9FeF6Bgu6TyfgHItpgfl1bJ2KWpGUMTM8Ac10MAQ+l+TutqOGLjNjFEoDHst8nRVAVD88VQwfMI6n5POxAUbI9wQCMeC/DqU+Kct65lUb/rQs85nQ0hzuhq5JnDSbbUBcrCITZeOX/XYGbRrsGJ90Z7XZD9w1lAMJjyY1ZdT6AovkgtCdSArvl9xBxBQ9igPmj4rjHHQ1EUWqJ+1fZ0wa7a9jVzGlFXVxf/+I//yDe+8Y1Jj//f//t/6erqmpeBLXemmul7RnNlV0xsQg8tIQSW45G3XUxdpTeRr4j7pRpqIC22EDt3XQsXnhLnty8MYigeCmDZAlX1gzYRfg+koK5RdATDGYu8VTvxcUvVRTpxEVdVtVxpejRrEQ3qhAO+O+zpw8mKVS0+nMjzRM8YY1mLFwZSJPM2tuOXMIgGdRrDBrbrcTixoiJuhqlp8E/2JCZZsS3HYyBV4KcPH6SjPjjpvpwYInBoLFfODLM93+2saX4rBlX161epioIQCp2NYS7Z3L6o52Ix5pyJv8dAulgOmfDr8CxuOnnp3mivC3JgJEtvIk/R8XCFYELNQ3RNQRVikmssU3QICpWi6wtX1/LKhRKFEPQm8qxqjpAu+FnR1TRfzEkIffOb3+Sd73wn//mf/8nZZ58NwMMPP8yuXbv42c9+Nq8DrBUmumIaw35GWd5yGc0WydsuBdsjZGrsH8nxfH9q0Se/StdAqoQQ2zucwW/16E/SMVMjWXTwhH9j66pCLGQQNv3aJnUhg3ufH6A7vvwzjKrBRTpXpqb9Tqw0PZazsF2Pgu1WtGrx830pXuxPI4QgN56C7ApBwXbJ2S5jWYue0Ty/2TnA5eeuWfTxvZQxZLN7MHOEFRsE4fH4qtsfPcTVrz0FXX+pZ0spROCuZ/oZTBUZzVo4HtSHDCKmRs5yx+c9v4bQKW0xPnFh96Kei8Wcc+azu/2JkLUchjNF9gxm2DucJWu5iAkV5sX4/3jipffYrofjaeiqgjpeBXwobaFrCpqikC7Y5UQg2/X4xq93oikq61qjVVODbU5C6A1veAMvvvgi3/3ud9m5cycAb37zm/noRz8qLUJzZKIrZjhdJGhqjGTGS48LCJsqdSGddN7m9kd6QLColY3nWn10vlhsITZxJ/iylQ30JgocTuRIFR1UIGho1IUM6oI6TdFA2Zdf6QyjxaAaXKQnwnRlLEqVptMFZ7zAn1uxqsWeJ3h0/xj2uIvJdj1cz8MTYOgqrisQ453Y/+WRHs5Z27LoZRtK7q2H948wli0SnWDFzhUdDifyqKqC5wl+9UwfQgje/fKuSddFdzzGx18d5fSVDfzjf+1l12DGb6Vh6gQMFZER6JrKqSvquOb1Gzi5bXG/42LPOaWQien6OS4Ww+kiB0ayjGUthBCYmkLReanPWwnH9TNoASxXkMxbaKpKJCDojkfZNZjBUBWGM0Us1/OzoTW/VlS64FeffqpnjPueH+BPzlnF9o1tFbUQzdlZ19XVxV//9V/P51hqnnPXtfDqDXH++8UhhtMWeccloKmEx03hyZx/MT3bm+Lg3S+wqaOO7nhsUXbhc60+Ol8sphCbbicYNnWSeRtDs/CEwNBVWmMB1o5Xt1UUBcfzKpphtBhUg4v0RPA8vxhmXUhnz1BmUodvRVGIBXX6UwVO72qoWNXiw4k8Q+kCzVFzfEH0sxT18YxFRfMXn/qgRjJnV6RsQ8md82xfkrG8TZuh4gl/99+bKACwoi5Qtgo9sn+UgXSRT7x63SQLQKkwakd9kJ88eJAH940ykikC0BA2OXttM+87e/GDo6Eym7+9w5mKWVo9T3Df8wMk8w5Z253UZ/CI10752/HA9TyGMxYHRnNsW9XIG7Z00BQ1+cXjhynYHomcRSpvY3ke+aJD3vIYydrc8Kvn+fWOfl65vrViFuVZr1pPP/00mzdvRlVVnn766aO+9rTTTjvhgdUiqqrwvrNXMpyxeHDvMG2xANGAH4Q7mrXIFB2iQZ2GsI7rCQxNnbQLX9viB2CnizaZgkM0oM9bJ/u5Vh+dLxZTiE0XCPrUoSQ5yyFgaKiKbxpO5Cx2DwqiAb3iGUaLRaVdpCfCRHfecKZIz2iOvkSBzZ11dDSEJhWQq1R6tucJf3zZIi3RIPuH/WrmuqbCeNkGdzxbpyFs4nhexco2dMdjvO+slewfzpItuuSKDom8g64pdNYHURSV3mSBXNFFVy0GUkW+krX4whs3HWHBKrXNmc4aUilBvdibv0pbWv+4Z5jfvjCEoY3HQAKqAooiJrnCpkPFL3zpCsFwushrNrRx/vpWekZzDKWL5C2H1HgJgNx44WBP+Ae1XMGTPb4FtFIW5Vmfwa1bt9Lf3088Hmfr1q3ldMmpKIoiCyqeAN3xGG86rYOdfSkUBfK2U74oo0Gd9rogAn8RNnSV9fW+GfKnDx2kMWLyZE+Cg6M58pZLyNBY2RzmjK7GE1bas6k+upCLx2IKsYk7QSFEOQYiHgv46fKWiyIEsaBB3nIrnmG0mFTaRTpXpi4yKxpCtERNdvSmeOJgguGMRUs0ULES/6Ux/nrHAE8fSrBnKOvHXChKea51XH+x0TUFXVUxdRXVUypatuHcdS28YUsHj+wfpT5k8OzhFLGgjiegL5knZ7nEQgatsQA5y2XPYIbv3L+bv7joyHgfVVVY1RypmiaqiznnVNrS6nmCe58bJGe7tNcHsd0Ctuv69dKOIYQUQFchGtBpiBjkLY+H94/wmg1xspbDWN4iXfAtQQXbxXLccnkERfWFveUK9o9kCZt6RSzKsxZC+/bto7W1tfzfkoVjY0cdp66ow9BUDF2laLvsOJwkaPo348SOvX7fFpXf7BykOWqSLji441H8Rdvl0FiOouNxOJHjDVs6aIkF5pzhU8mAvsUUYhN3gkLAWM4iGjRQVdW3/Nh5LNfD80RVZBgtJpV2kc6FmRaZrqYInQ0hnj6cZG1LlCvPW10xC8REobaiIUgyb9ObyMN4/aqwoWMaKgp+Ec+IqVF0PBrCBg0ho2K/t6oqvG5zO33JAgdGsrjCz6rsTxbIWS5hUyUeNcfjR/y5ayRbrGr3aYnFnHMqbWk9nMjTl8wTDeioiko0oJG1/Cr6jueRKji4nm8hcsdFkQpomlIuMhuvDxILGgym8uw4lOS/dg0RNjVUFLKWi2W7fvbZuAgqZQUqqkDF70w/lrPYNZBedAvnrO+eVatWTfvfkvmnsyFEdzzGjt4k6+ujjGQtHE9gaP7OMFNwiNcFiQY0kjm/fkeqYBML+S6z5qifvREN6Ixmfb/sI8kCT/UkWNkcIWTM3e88U6uCxZjQFkuITa1z4rgexnhNj6ChEjE1IqaGJwTZYuUzjBaTSrtI58LRFhlVVVnbEqE3kWfvcBZFURY9aHM6oba+LUbW8hv8FmzXj9lQFTzhoaoKqupvgMKmzvq22KTfe7HLGpTuy3995BAHRnIMpHx3WCxkEI+ahMZFmu166JpGR32oat2nU1msOafSltas5aCq0BoNMJwp0hg2sdwiBdvFdj08r9RkyLf+GOp4naPxy8p2/VCNdMEmU/TYM5Tln36/l5ZIgHTBIWc5OI7w6xAx3kwXX+Srqp9dpikKmYJNIm8vuoVzTtuIW2+9lZaWFt74xjcC8LnPfY7vf//7bNq0iZ/+9KdSKJ0gU3ci0YCGqipkiw6W46fRt0RNHj2QYCBVYCBVQCDoGc3TVvdSvxpFUdA1hQMjOaIBHc9QaY0G0DXlhPzOlWy9sBhCbGqdEwFYjoeiQKbgUB82OP2kegxNq3iG0WJTaRfpXDjaIjOatXhxIEXPaI7R+4vUBc1FT+udTqhNTOl3PMFIxiJjOYQMjVhQpzkaIGzqrGyabIWsVFmD7niMz11yCiB4ZP8oumrRGgugjQeiT9zAtcYCHBjJVp37dCYWY86ptKU1YuqEDJ1Qg0bWcslbDpGAX8vIdr1ycHR9UMdxBfnx4opBU8PxBKoCRdulN1FAALGgTkskQEPYZChdxBMKecd5qYfceAkSRRl3rWkKhqaWj7XYFk712C85kr/+678mFPInlQceeIBvf/vbfOMb36ClpYXPfOYz8zrAWqW0E9m8oh7H9bX4cMYiYmrE6wLsHcoylC5gaH6lm5ChYjkeIxk/MA38Cy1dcLA9j7qQPm7W9GNb1sejjGYt7n52AO9YkXBVRkmIbWj3e9YsxKJb+v1fvqqJgO7vxvKWS7wuyNauBpqjQd/96HizzjDyPEHPaI6d/anxAppL63cvMfHaTORs9g9nSeRstnTWV2Xq/MRFZiKlQoA9o3nytsdIxmLPUIb/eLqXq29/mvueH1iU8b0k1CZP/qWU/os3tbHlpDpefUqcl61qZE1LlJWNYc5Z2zzp9y6513b0JmkIG6xtidIQNtjRm+TmP+wvC76Fuv50XeXdL+9iZXME2xXkxi1aRcdlNGsRMjXWtUYo2NXnPj0WE+eczoYQhxP5ef0dS5bWvmThiNjbkqW1Ox5dMEtr6fPztsfpJ9XTEvUtOQoQNlQCmkIsoNEdj7KqOYymKKSKDrbjYdku4PntM8aDoUezFv+9e5gnesZY3RJmXUsYU1dxPF8EefhWIVVRyrFwpu7Hu61bwO85E3O6Ent6euju7gbgF7/4BZdeeikf/vCHOe+887jwwgvnc3w1TWkn8oc9w4jH4NEDY/SlChwcy6MArTGTgu1iaCr1IROwsRyPwXSRlii4niBXdDHGd2WluCKo/gyfamBinZOfPnyQbNFhbUuEcMBviXI8FpClXIBwOirpIj1epnPnlYLgEzk/G1PXFOqCBoauYjsefakC37pvF12N4QWv0XM0a4Ci+Dvl1c1RPrV9PaqiTPt7HyvY9omDCb7yH8/TEjEput6CXX/d8RifePU6vjIuKi3HRdc0WmMB2uuCuJ7g4GiGs1Y3VZX7dLYs1H1caUvrxM8fyVqc1BhiIF2gLvhShrKiKIzlbD9ppyFIX7JIMm+Pu2wFlutbeExdJRLQsB2PvUN+RuGWzjoMTeHFwSyZgo3gJY+FNi6GbBe6GgNc+rKuRZ9H5mQRikajjIyMAHD33Xdz8cUXAxAMBsnn8/M3Ogl7hzPctaOfouNx1upGVtSHsF2/5cZAqkhD2GB1S2Q8ct/v7zIynhrcm8yTsRxMDYqOR1PELPevAd/vXHTcJWOirgSlOidXXXwyZ61uJpl3jtsCcqyd+u7B9CJ9m/llMSxz80Fpkm+KmOwazJAu2IzlLAZSedJ5G4DO+uB4aQSFgKHRXhdgKF3kjsd7FtxyN1trQFdjeMbf+2hxUGM5m8F0gT2DGQxNXfDr7+S2Or7wpk28fHUT7fUhVjaGyFkujx4Y4+7nBtg/nGX/SJZ7nx9YUpbRhb6PK21pnfj5YzmbvOVvsjsbw5yzrplXrG2mNRakYHvoqkp90BeBTeOdEFTFtx7VhXSChkYkoKMpMJIp0pso0BwN8sntfrZgLGgQ0lU/Nkj126qc1BjiLy5av+jFQWGOFqGLL76YD37wg5xxxhm8+OKLvOENbwDg2WefZfXq1fM5vppmul1e0NBI5GzCAY1s0d8Zrm2N8tC+UTLFot/+Yfz9ruvXakgXXerDCutaI5MmyWrM8KlW5moBqXRarMRnatDrUKZAtuig6yotUZNwYLIlxtQ1TF1ZlBo982ENSBdsRnMWpq4ihB+jMdHy5biCsOlnoWqqMu/XXylAe2INs0u3ncTPHzvEb18cIj9eoM/QVHIW/PbFIR7aO8rJ7bF5Ke+x0CzWfVxpS2vp8x89MMpNv9tDcyRA+wRxPbX6+hXnrea7v92DO5AmO16yRddKMapgGn5D1r5knvqwwfYN7Zy3tpU7Huth92CanO0RNjTWt8V455mVa7cxpxXwO9/5Dp///Ofp6enhZz/7Gc3NzQA89thjXHbZZfM6wBJf+9rX+H//7//x5JNPYpomiUTimO+54ooruPXWWyc9dskll3DXXXctyBjnm6m7vFIDVmW8AVZj2GQ0Z3OyqhAJaAQM1Q9aG2+SZ+oquqbheB4RU6UxbJaPXa0ZPtXMXILEpzuH6YKD5XqYmkp7XUC6JxeJiYvMnqEM3/+vPfSOFaYNTrVdD1PXFq1Gz4lkJ+0eTPOLJ3rZM5hh/3CGoKHTFDZZF4+gqypj2SKqCo4LRccdD1JV5s09XnIXPdEzNqmGWVPEYP9IDoBVjSEECiNZi5zlEtBVhC4Yy1k8c7j6W7MsZnq7qirlOKSs5bcrKYmhxcgIVFWFbauaeGTlGDt6k7RPeG5q9fX6kIGHIGT6CT05yy/tUvqNNEVBCI9M0aWjPlge7zWv31hVbvU5CaGGhga+/e1vH/H49ddff8IDmgnLsnjXu97FOeecwz/90z/N+n2ve93ruPnmm8t/BwKBhRjeglAKogwZQQ6OZNk7nCWdt0nmbYYzRWJBHV1TGcvbFGyPlY1hxnIWDSGD7rYYAV0lb7k815diMG3RlywQrwtUdYbPcmNql+5SY0/H9dA1lfqQTkDXpHtykSiJ2c6GEH/cPcL+4V5sxyNgaOXXlDKc6he5Rs9crAEld81Ipkg8FiCRswnoCoPpAumiTXPEZDBdpOi4BA2NHYeS9I4VWBeP0BQJnHBadunzD4zk6E3kx7NaVWzX5YWBItmibx0ydZWxnO23NwnqFBwPxxNkCw5bVgQYSFd3baHFTG+fKQ5pQ0eMnX3pRYkznK2VMqBrRAx9XCAZ2K4gb3uYuoqm+IUSbReiQY2LNr601lQy83g65nyH//d//zc33XQTe/fu5fbbb6ezs5N//ud/Zs2aNZx//vnzOUbgJZF1yy23HNf7AoEA7e3tx35hFRIxdSzH4/4XBulNFLA9D0NVMTUFTyiM5RwMFZI5y6/34LjUhQxO62qgKfKS4AuaGo8fGGM0W/TbRFSgq3GtUgqE7U3k2DWYJW85RIMGRlDHdgX9ySKqAkPpIhuq9DJd7Lo0i4GqKly6rZOH9o3QlyrQXhfA1DVs1yNTcAjOUKNnMcY12wViorvm5LYYrbEgT/YkfJd5QGc0U+TQmF/dOWSodNSH0LWXRNLWrgYMTZ2ze7z0+QdGshwYzpIYD5zNWQqqAtmiU37dUMbCdj0CuoqqKpi6StHxKDgetieqPnFjsdLbZ2qz8eDeEf7tycN01AdZH48uSvuN2VgpPU+wpbOefSNZbNejLRbw3Wa2hyUEtuMRNDReu7GN89a1zOv45pM5nbWf/exn/I//8T94//vfz+OPP06x6DfJSyaT/PVf/zW/+tWv5nWQJ8Jvf/tb4vE4jY2NvOY1r+GrX/1q2ZVX7eRth8FUgQOjOTRVoS6g41GqaaNgan7p8wOjOVzXIxY2WdXsm8NL5m+AkKGxqaOOy85eSd34Dnc5LGZLgc6GEGtbItz5dK9f7DJils+LqfnFyTRV5emeJOeta6m6czKXLJmlIJw8TxAydN7xsk7+5eEehtIWpq5g6hr1YWPaGj3VxlR3zcTaQ6PZIumiS8F2aIqYGJpK2NT8eSOilq2T9SGT006am3v8cCLPEz1j9CbyjOVtgoaGAuRsl6Lt4owXn1EVv6KwqigExlccTVEojBfXMzW1aluzlFiMQqIzxSFFAzqO55Eu2LRGzfLnL0ac4bGslKqq8Lot7ewcSPNUTwLHFTRGTKKuRzJnE9RVXraqkfe9YmXV3kcwRyH01a9+le9973t84AMf4F/+5V/Kj5933nl89atfnbfBnSive93reMc73sGaNWvYs2cPf/VXf8XrX/96HnjgATRNm/Y9xWKxLOwAUqnUYg13Ep4nuOfZQQK6hq76ZTg9/AnE1FQyRYeIqbG1q4Fk3iZvewxniuRsh92aVo4RaAyb5Zt026qmqr4YlyOqqrB1ZQM/e/yQH+PlehiaWrY8hAM66+NR9gxV3254Lk0gS8Jp92CasbyFpqiLXqDwWEwVdysagkQDOpqqEDI1GkIG69tiC2IxnU+ROJ27plR7qDeRp+CMEnU1Tl/ZwMGRPKNZi2hQx9D8PmUHRnK8fE1wzmIvXbA5OJLDcvxrWkGQtfwEDV1TcD2BAGwXHNclZGrjvav8TuWu5y+asaBOpuhUdeLGYqS3zxSH5Acn+27OsZxNuuBQF/KtUotRBuVYVsrueIxPb1/PTx48yIP7RhnNWoB/LZ69tpn3nb2y6j0Pc7rqXnjhBV71qlcd8Xh9ff2sgphLXHPNNXz9618/6muef/55NmzYcLxDBOC9731v+b+3bNnCaaedxrp16/jtb3/LRRddNO17brjhhgWNdZotpZuic7yeg+sKCo6HJTxURSmnKAZNnZ0DaVqi/oTiuH5lzoFUnpFskXhdsOp3tsudlliArqYwluP55eOLDpqqEq8Lsq41Ql3I8Dt4V9FueC5ZMiXhdHAkR85yyBQdio7H830pHto3wicvWs9FG9sq+bVmFHe9iTwBQ+ONWzrY2FG3IFas+a5BM5O7RhkvAaDgJ1HEo0GawoFyfFqm6DdyjgV13nhax5wXqUzRIW/7sUc5yyVvj4sgBUDBUQWOB9p4oLYrBAXbw9T83lPRgM6mDl8cL4XEjbUtUV63uZ37nh/gcCKPNp7FO19hBjPFIVmuh+N61IcNUnkby/UmPV8N1rTueIzPv2kTPWM59g1nAVjbEqlY777jZU5CqL29nd27dx+RKv/73/+etWvXzvo4n/3sZ7niiiuO+prjOd6xWLt2LS0tLezevXtGIXTttddy1VVXlf9OpVJ0dXXN2xhmS+mmaIn4pfSDul/yyRXCL0ClKSTGG9Q5ruC0zgZcQXmyUxSFdMGhrQ4uP2dxsjGWgkukEkRMnZZogPrxXVwpY6yU4pwu2FW3Gz7eLJmScDo4kmNsPGYtGjSoCymLXqBwJo4m7k5u88Xd7sEM2zfO/6ZhLta1Y3E0d42hKliOR/P4BklRlHLqs+V6WI6L4wo2ts/dShcN6oRMDcfxxU266GFofjaawK8arCl+kb2Q6af1265HwRZEAzrbVjdi6iq7BjNVn7gxUcTmbQcExOuCbN8U59x5cmnPJGxNTUXX/MQXTVUxVKUsiPwCuaIq5g9VVVjVHFmSrYbm9Mt96EMf4lOf+hQ/+MEPUBSF3t5eHnjgAT772c9y3XXXzfo4ra2t5Y72i8GhQ4cYGRmho6NjxtcEAoGqyCwr3RSa6qfJD6V982tpsis6Lp6AkWyRtlgQy/UI6BrbVjWQKbqTJruQ6bsBF1KoLLfKyfPJxAVr4gIM1VvG4HizZA4n8n5dEMuhYLuTrtWpBQqved3Giix4JXHXXhecVMKgJBQWysWwUDVojuau6U8VaI0FJrXtUBSFupCBEIJdg5kTvuZiAYOVTWF6RnNg++N2XIFQ/Waa4HcnD+kakYBG0RWsqAsSMDXqQ/64SgUDj8eistgbrqkidsW4iO1LFvjPHf201wfnZY6bSdjGgjqNYYO9w1na64K8MJBmLGf7maeqgge8srulquaPpcachNA111yD53lcdNFF5HI5XvWqVxEIBLj66qv54Ac/ON9jBODgwYOMjo5y8OBBXNflySefBKC7u5toNArAhg0buOGGG3j7299OJpPh+uuv553vfCft7e3s2bOHz33uc3R3d3PJJZcsyBjnk4k3xbrWCJmiU/bx66rCWNbCcgRF2yNdtHl4/yi6qpZjg1qiARzPK7tcFlKoLMRudzlR6fL5c+F4s2SylsNY3ne7RIPGEVakxSxQONNCmbUchjNFehN5Enkbx/Mm3TN1IWNBXAwLWYNmpsye005q4F3bYvxm5+CCXXOdDSHO6GqkaHuETY10wcEZj/0BX+QbJaGpKtQZKlecv4a3nLaCvvHf+XiFzGJvuBazIOrR5gld9bP7BtJFAppKQ9jA1BVSORtXwEC6yN7hTE3PsyfCnISQoij8r//1v7j66qvZvXs3mUyGTZs2cdNNN7FmzRr6+/vne5xcd911k4ojnnHGGQDcf//95f5mL7zwAslkEgBN03j66ae59dZbSSQSrFixgte+9rV85StfqQqLz7GY2vtlfTzC4USe4Yzlx5goCiFTxRF+mm8koGO73rSpsUPpInft6F8QoSIrJ8+OEymYVwmON0smYupoikrR9gjoHjnL8wP7db+42mIVKDzaQjmc9lvPCCFoiJgY2uR7Zn08uiAuhoWuQTMxs2diZedY0KCrMcw9zy3MNTdxjhpOF7BdQSJnoQCjORtFgZMaQ0QDOsPpIrqq8Oj+MU47qX5On12JDddiFlKEmeeJV6xtoiVm8uzhFIoCOcuPM1zRGGZtS5iRrC3n2RPguO74YrHIl770Je65556yBehtb3sbN998M29/+9vRNG3Bus/fcsstx6whNLFPTygU4te//vWCjGWxmHpTNEdMGkImHfVBspZLKm+TKtgMpYtEAxDQtSNSY7d01vFUT2LehUpp171nKMPThxOsqA8tykSxlKl0+fzjYbZWLICe0Rzpok1AVxnJFknk/Rg1VVEIGRqNEYO85S54gcKjLZSHEzkCut9iwvUE5ngTydI9M5IpsuNwirdu7Zx3F8Ni1KBRVYWi43L/80NlERjQVFpjQV62qoGXr2ksi6OOuiB9qQI7+1MnfA1OnKNcMUYyb5HI2X6PqoYghq6SyNnEQgann1TPSNaa83xTiQ3XYhZSLDHdPCGE4MZ7d3Fet1+LZ6pb19Q1Oc+eAMd151133XXcdNNNbN++nT/+8Y+8613v4sorr+TBBx/kb//2b3nXu941Y1q6ZG4c7abobAwRd4Nkiu6MqbGndzXw88cPz+uOZuKuezBTYN9glmTOZn1bdFIhR6iOjIZqYKq75uR4rCoF0ESOZcUC+O5v97BnKMNwpsjugXS5xpU/Qfsp1qmCTXw8XmWhChQea6F86lCC4XSRUzvq2D2UnXS/2K6H4/lxLad11c/7eVmMGjRTRWDeUnnmcJLf7x7mP57uZdOKGGd0NXFKe5R/fmA/e4YyuAIaQwbd8dgJuZYmzlH/vXuIm/9733g3cg93PKh4XatfyXquC/ZiW2ZKLFYhxalMTVnf2Z/ySz0EQmjTXJ9ynj0xjuvs3X777fzwhz/kLW95Czt27OC0007DcRyeeuqpIy5Oyfwx000RNv2bolREbbrU2JZYYF53NFMn3GhApy9RoD/pL/Jbp1S1lo1dl3Yg+UxWrL3DmfJ10F4XoDeRx9A1GsMGyYJD1nLRFb/xoif866CrIbRgsVDHWigbwya7BzLEgsYR94uuqrTXBwnoKq2x+XebL3SM2FQRuH8kx0N7R8hZDgqQKdo8dchj/3COsZxf/Tls+m7zdN5mOGudsGupNEe9bGUj/902TGs04Pc7nGC1gLkv2JWwzMDiiNjZUClBVisc16926NAhzjzzTAA2b95MIBDgM5/5jBRBi8zUm6JURG1iaqzteNQFdZ45lCSRsxlI5emYxn11PDfQdLtuIQTxWJDBdIFc0WHPUJbGsFl+rhozohaT5RBIPlWIT70O0gWHRN6mMWJiagH6Ennyjovj+unSIEgXHWxPzPwhJ8ixFspYUIdxC9XK5sik+6WUgpzMOwu2kCxkjNhEETiatXho38h4gULf2uV6MJy2GElboEBT2KA1Gsb2PJJ5m6LjAsyLayli6uUO5I1B84jn57pgV9IyUw2JDtUiyJYrx3XVuK6Lab50ceu6Xs7Ykiwe090UE1NjnziYIGc7fPnO5xjLW2QLDs8cgrWtEU476SWLzfHeQNPtuhVFoTseJVN0SOVtBlIFEjkbXVOqNiNqsViugeRTr4NSwTdjfOcfCeqkkqWA3QC6qpApOPQl89z8h/0LIv6OtVDqqkJ9yGQ0Z9HVFC7fL8C8pZMfi4WKEZvYnPmJg36vsaCuknf8AoelgoYeoAhIFx3SRZv6kFmOKcxZDrsG0ifsWjrWgt2byLOqOUK6YNMzmpv196+kEKhkooPniXKRwsaIgaEpvDiQYUVD9WeeLiWOSwgJIbjiiivKWVeFQoGPfvSjRCKTCyj9/Oc/n78RSo5AVRUu3tTGiwNpHj84Rkd9iNZYgILtsmsgw4HRnF9XSFOJx4Lkgw69iQIvDmRI5h3OXddM0NCO+waaaddd6nH04kCKQ2N59o1kaY0GqjYjarGoVFzDQjP1OigVfLNdgakxnkYtaAwbRAKG3/nc1OlujS5Yl/FjLZT9qSLnrG0ib3sV3dkvRNftkggcTBcYy1moih9MW6ry7AoFgUAdf73rCcayNnXjZQ6iQb1s1TtR19LRLCi7BjKkCjaOJ/j2/buPy0U83XGDhspQukhfskBzNMD2TfEFO3+VSHTYPZgut61I5C0UAUFDpSFs4nh+A9tqzjxdShyXELr88ssn/f0nf/In8zoYyezYPZjmnucGyFoOg+kiB0ZyhEyNrsYQAr+Sa8TUyg0+g4ZGQNM4lMgzkiny6IExTu2oO+4b6Gi77qaIyaaOOhpCJpedvZJ1rdGqzYhaLCoV17DQTL0OSgXfehMFArpf0dxQlXLz30zBIV4XpC5koKrKgoi/2bgwLjt7JcCSKWEwHdPVSCqJwAf2DiPGm5sWHA9NBRQF1/UY73qBEKDgF2S1HI+AoWFoKpbjC6j5cC1NZ0EpOh6pgk1dyC/CGDb143YRTzzuEz1j9IzmyFkuYVMjaGjc8+wgqqIs2HlcCBE7E7sH09x47y6e6kmgKgqt0QACQSrnW93rwwZv3dq5YO1gao3juupvvvnmhRqHZJZMjDlZ2RTmlLYYg+kCfckC6nhcjq76nYlLu2IhBJqq0Bo1yRQdmscXheNtwjrTrlsIQTJn8WxfitUtUVY3hWvi5iwtSlNrt5S++3INcJx6HYzlbHKW68eb2C5F1yNiqhRsl0zRIWRqrGuNoCjKgoq/2bowlkoJg6kcLej+ks1tvDiYZs9gBgVwPH9DJEr+MPygdQDXg4LjkSn65yBnO+Qsl7WtkXlzLU2tbfSLxw+jqyont52Yi7g7HsPbBC8OpGmNBVgxbg3P2+6Sirs7Gp4nuOuZfl4cSGPqanlDCxCs0xjJFDk0mmfXwMK0g6lFltYMXOPMFHOyoiFMR32Ixw+OcXgs7/ej0fzn8pbLaLZYbohoux69yQKJvH3cN9B0u+687fJUT4Ke0RyuJzg4muO53iSvmKbr8HLqRVZalJ7oGePgaI685RIyNFY2hzmjq5FLNrextiW6LAMcJ14HTxxMMJgu4LiC5ojBUEZgex62K+hPFVjdEmFLZ305Lm024u9ErpPZuDAWc2c/E8cS0VOZTdD9J169jtGMxbO9SUDguKBrCoqnoCgCxq1Bmur3fzuUyKGPx3gFdZ2xrM3uoTQnt829/9hESr9zz2iO4YzFioYTdxF7nuCe5wawXI+XrWx8SVRp6pKOu5vI4USeZw4ncT0xaUML/u8VCxmkCw5PH04sObd6tSKF0BJiNjEnewYzmDrYrsDzPPpTBWzX9yd7AjxPIW+5/L+n+ljbEjnundNU8/SzvUmSeQdTU1nRECBgqKRyNvc8N8Bgusint6+nOx5b0inkU5nYZX0wXcB1BbGgTtF2OTSWo+h45cWpGjJOFoLueIzLz13FV375POmCQ9hU0TWNTR0xUnmHdNFBQRA2NBrDfoLFbMTffFwn1SB0jsZsRPTUDcRsgu4/esE6vvCmTXz7N7t45MAomYKD7fm1fMAPGDc1v8o3ChRtgYXA0BSCpsof94ywazDDJy9az0Ub2+bt+04M5p7YLLSUVn88VsLlGnc3kazlkLX936K0oZ2IMZ7lmLPcJedWr1akEFpCzDShRAMamaKLqkDA8AVPKm9hOR626xEyVEChaLtoqsK6lghFx5vzzqk7HmP1qyJ8/a7n2TWQpjVqEo8FUFU/HLNkvn2x35/wvU1w6wNLO4W8RGlRGskUcTwPxxNEAxoeEA0aZIoOjusxkrHKi9NSaq1xPIQMnZaoSUd9C4bud8UGGM5a7BpIU7D95p+HRvN4CMZyFp1HqSU00erRXhcg6umkCjYP7x/hcCLHn56/5pi/V7VbHaeK6ILtYmgKBduhZ3SyiC591+NZ/E9uj/HJ7ev5yYMH+fVz/QyliwR1hWjQJGRqJLIWridQECiqgqJAZ2OI5mgA2/HoSxX41n276GoMc3L7/FybEVPHcjwe3DtC1nKP6PFWagU0GxfxfIqqaiVi6kQM/7ewXUFAn3zO/ZIUCmFz6bnVqxX5Ky4hpptQXE/gugJNUxACCuMNEFNFh1zR32k6nqBouwigLRaguy2KoakntHPqSxU4OJpH11RiQaMsgoQQWI6HrqnkbZcne0ZJ5q1lk0JeWpRiQZ0XBtLkLY9EzsYbD1I1NYV+ITipMVz+fZdSa43jIWs5FF2PzsYwybzNCwN+kULH9XCFKMcI/dfuQVTwg/Z1ld5E/ojzPdHq0Rwx2dn/0rF01S/FEDI0/tcbN834u1WiIefxnNOJIjpVsBnKFMH3WKEqkLFcQobKSEafdE9MF3QvhCjXQVIVKNh+SnzPaA7HE1x+3mrWxSN8/7/2oql+uxNdU1ndEmEoXaTgeFiO/95IQEdVFAKGRntdgKF0kTse7+Ga122cl2s0bzsMpYv0pwq01wWI6Wa5x1uqYNEYCXDO2uZZuYjnU1SdCAspuDsbQmzprGffSJZ0wcacECMkhCCdt9FUldM6G5acW71akUJoCTF1QtE9PwW+YLsEdJVIQKOzMUTI0PFGs+SLLkXbKWeOdTaGyvEajued0M5pOvPtdPFIz/WlSRddNnXULQtTdmlRQsBIxhq3wmloijq++HtkLXe8wvdLDUar3V0zF0rB4L2JHLsGs+Qtv/O8MZ6OPZQq4ngCQ1UoOIJs1ua/Xhzm4X1jvHpDK594dfcRVo+QofLUoeSkY9muYCxr8Zudg1y4Ic4r17ceMZbFLlw5F9FV+o6eJ9g7lEEAQV3D0BU8AQXLZf9Ijrb60KR7YmrQfamXYEkoCgABN/9+P64nyuNpiQb8tjfhAIauYmoqRcdlNOtnl5m6ihCgTbgvTV3D1BX2zNM96XmCe54dpC5o4HqCbNFFURQMTSUS0OlPFdBVddZBv/MpqubKQgtuVVV43ZZ2dg6keaonwUCqSH3YQAiP0YyFI+DUFREuPnXhygXUGlIILRGmTiiZgkPWdnGFIGJqZC0XQ1PZ2F5HU8REVXxf8pqWCKGAn95cNyHw7kQzlqaab48Wj3RwJMfalsi0mVNLzZQdMXUCmsquwTSeEIQMHX18MtIVBXSFrOXRM5pjfTy6rE3XnQ0h1rZEuPPpXlxPlLNb/JR5G1cIPE8wmnMIGn4wqxB+len7dg5iOYLPXOzHkGUth7ztMJa1yVsOTRN2wQFdoTVmcmgsz33PD3DeupYZrUmLYXWcKrpChl9Z/YG9w7w4mOYTr143bcBx1nIYShd4cSBNznLRVL+mj+6ohEyVcEAjlXfoTeTpagyX74mJWXqW400SinpAozeRJ1t0eXDvCC9f3cjalig5y+HgaJahtEXREZzR1YCiKKTy/gbEcQWKIogGDUxdLY/Rdj1MXcMTzMs9WRJ/69ui2K44orXJSY0hGsO+2+5YzLeomguLJbi74zE+Pe7ifHDfKP3JPAXL/76NERNVURa8XEAtoR77JZJqYOKEcsbKRupCJrmii/AEroC6kE444NcEURSFda0RDF2j6HqsagpTH5psXu1LFuiOR+e8cyqZbzVVIZW3GM0Wy/FIquJnpWiqwqrxHeULA2mEOLLFwlJLIe9sCNEaCzKSsYgGdCzXK38vIcBy/Zih0axFa11gWZuuVVVh68oGbMfDdb1yEb900WEsZyGEQFEUPCEIaCq6pmDoKnVBHdf1eO7/b+/NoyM76zvvz11rX7Qv3eq92+3GC16waUPAW7AJZCB2wvsCM4PBQ14Sk4RlMpgDCTOZxSTDCRkYhpDNgQAhIQPOAjhubGjAeN/bvapXtVq7VHvV3d8/blW1pJbUkrqkqpKezzk63VLdqrrr8/ye3/YdSvs5ZK5HRFdxXRjLGURnVcqAXw4eCagMpUsMpoozXpsrh8bzPDJFi4m8STSgVLsmXwzX9RiYLHB4OMPAZAF3lizIbKPLcjyeP5PilcEMw+kSz5yc5L/+yyGODmcv+OzxrMHJ8TyZkq/3pSrlZ8XxS9lN20VXZTJFq7zAUavn+Y4rumgJazx9apJM0SIZ1gDfU+Y//5ofls0YyJJvBO7qihEPamSKFkdHcmRLFiHdzyks2S6yJNEantlmI1eyiQVVkiGtJs/k+bCeWpUC2rutjRu3tpX/bSWgyktKlK6MgR2xICXLZapgYtguG1tCtMcCizKqlsPsax8NqOQNG8N26YoFmMj5zUJn3zPLZUdnjE+/fQ+feOtl7OlNsKs7xlte08XbruxhU2uYA+fSPPj4KfpHL7zXBEujOWYfwYw8AUWWuLwnxlTeJBJU0GR/kkmXkwcBwgE/kTVSXhHXumKp4r49NJzl6VMT5Eo2AfXCfKTXbIgjD2UZSpXIFC0S4fMSLc1YQi7LEtdvaeHhA0N4noclSRQsP4/FdnzjT1MUJAmu37K0Pk3NSHssQF9rGNN2/c7Eho3leOVJ3sN0PKRKF78yiux3orZtt1oCvCEZoicR4sWzKVrCMz2HlQm6IxZAkaQLJs3ZCbRjOYNzqSIFw+9wLcsSEnBoOLNgqGcxIY/pRtdUweKFM1NkS7bv0dEVNFniyHCGB75/iHt/YSs3lb1Xruvx4pkUiiwhIaGrErbroUoequLfO3nDoTWiYdguPYkgPfEgA5OFah7Kna/p4cWBFE75WVdkmURYx8UkEdIBj8m8SbZkEw/5Bs7OrihnJgtsag0xnjMxbIeueJDxnInleGVRXD+MnSv5nruwrrKzK1aTZ3J2WG+6tAn42m9LTZSujIGv29JCpmgxVbTAg1jQX4CslHd59rWfHp5UFZmIrvgtTGoc5j9wNkNIU7hqQ2JNtgtoBIQh1CTMHlACqkJQV9AUPwHVsB0UWS4LSPqelvZogF+5dgMvD6RXrGKpKxYgoChM2n6VmiJLRAIqm9vC1XykXd3+Sr9/LMeurljTl5Bf3hNnV7dviE4WTL96xXbRFH+Qb43otIR1Lu+uTT+WRiaiq7RHAyTKk5vpuBiWw7OnJhnPm+VOxyBNs4SccoNPWZaqJcCyLHH7nk72Hx1lPGuQjOhoilydoEO6Qm8iCEgXTJrTE2gnCyYTOf97IwGN9qiG60GqYC3YMmKxIQ8/hOcQsRWePjXJSMZAljwyJT/PxytXEr48mOKB7x/irVf2cOcV3QRUhRPjeXZ3x0gX/cpCv/EhSJIfQkTyf4/oKrt74nzlJydmGGXxoEZbVGdrW7Sq7G7YDk+fnCzn6UnkDbu6GAI/9BxQZd557QZiAa1qVB0ZzvLFx44xljXQVQldVUiENcK6yqbWcM2eyVpqhM0eA2cbIx4QUBXGsga7uy951y+gYoiVLIVXBi/MY0sVfCP8Ygb3UlgP7QIaAWEINQmzBxRf1kBnLFtCC2tVGYNYUJ0xwLxheztv2N5e8wqH6RPH67e18tzpKRzXxSo3AXtNbxxVlhnPGdiOy85Ov7ngeM5s+hLyDckQ1/S18Mpgmis3JDAdtxrW0BWZ4UyJqzauj4qO6fdlJT/H8zxaIgFGc4bf1VxVUORK+AVM2yWoyajyzBLgm7a3c8vuTn52bJyi6ZD3bBRZpjMeZFt7mIm8NeekWUmgHUoXkSXfwKoYCSMZl5CusLktPG/LiKXkGI1nDU5P5HnxzBRjOQOJ8wnGpu1gOR6y5JEIBSnZLs+cmmQoXeLNuzoo2Q47OmOMZA3OTBZwHA/D8Ss/ZVlGliCkyVy7KcHLA2mmCjONsuNjOc5OFumIBuhr9fUdM0WqOm/gzVgMwfnQcyygzZgo+1rDbGoN8w/PDfgJ3B4kQxo7u2I1fSZrqd5+sVyp8ayBLUn84JVhehLBFRH2DSgyR4Yzc+axeUGFsay/CLh9d20MybUq09NoCEOoSZhrQNnSHmYyb3BmqkgypLGlLUzOsOccYGq5Wpg9cQAMpkqMZUt0hTVGMgY/PTpOWPdDZQXTYXtnlLuu3UgkoDZ9Cfn0azGSNehJBGmJ6NXBvS0aaDov13KZb6Lb0hbi+GgWEz8q5nl+Lptpuyj+H7Bdj82tEXriwepnvefGTZQsl8FUgZawTjyoocgwnDHmnDSnJ9AWTYdz6SJBTUGVZSS8cvWexPaOKLo6d8uIxa66Hz8+zg9eGcJyXLIlB5BQFbAdF9P2E1klPHzPjEMs6N/jk3mT505PESi3lLhyQxLb8cvfA6pf2m7aLjnT5qqNCRJhnaF06QKj7KoNCYbSJQ4MZsrPjlxdEI1mS+B5dCVCxIL+sH4xj8uu7hj3v/XyFW/rUCv19sq9Npgq8PSpSQzLpSOmY7seqYJNLKRx9cYEE3lzxYR9O2JBnjo5SWcscIF3K2849CSDjGWMmnlo1qpMT6Mhzl4TMXtAMWyHvtYwnbZfqZUuWpQsd1EDzKX0wZhr4tjRGSVn2IxkDLKG7VePaUE8zyMe8m+zv3nyNO9/wxZ2r4GQ0exrMZwu4rjQmwxx2+WdbGuP1nsXV41t7VHuvKKbRw+NMJgqopTbNfzini6eO5NiNGuQLlrVpouG7VIwPeIhiRPjOb7ykxP84ms6CWkqtuvx1iu7eWkgxYmxPBN5Y8FJc3oCbSKsMZ4zcF2PousgSxLxkEqwLCw63+p5Mavu4bRfsTZVsHhNb4Lh9GjZ6JFRFDBNDw8PRfJ7Ak0WTCzHpWg59CSCjGZKdMQCDEwV2dnpJ/tOD+uUbJfd3XF+7bpNPPTi4JxGmSzLXNEb5/kzKZ45NUV3Ikg8qNEdD3B2qgBAdzyA43kU51kQzWa12jrUqpfWjs4Yv3TlhblSnfEg2zsitEYC6KqyYsK+lfzAbMmCcmXu9PDtZV0x0kWrZh6aWoYWBfMjDKEmY64BpSceZKg8wC9mgLnUPhhzTRytEZ2rNybYf3QMy3FxXQ/b8ehJhtjeEaElrK+5xL7KtXj8+DiPHhphKF1iOFPiO88P8tJAuinlQ5bK9HupaNngQWc8yO17Orlpezv9ozn+/KfHee70FKmCRc50UCSJDS0hrt/SSkhTePLEBI8cHKYjFkBXZYKqwrb2CHddu4H2WGDBe3r6vdgRxe9wLkkoioQiSTOKCCSTOVfPi1l1Oy4MpUtsSIYwbJdkWCVd8CjaLp7rUakTUhUJtWzsOa7HsZEcV230w6fXb20lb45VPWfXbEqUQ3q+F/E3bt7GcNpgLFciElBIF/2E5umdkwOaXxE1mi1xZqqABCRCGq/b0kIyrJMqWJwazzdk6LlWRld7LMDmtggd0UA1V6pyfmBlw0XT8wPzpkOuZOF6ErGgyrb2CAG1tg0daxlaFMyPMISakLkGlMUOMLXogzHfxKGVKyeCWhDb8bhuSwu9iVB1gFqLiX0nxnM8fGCYybwvHxHW1QvO57b2tddVGi68l3rL99JQusQPDgzTnQiyqzvGH959NfuPjfK5h48ylCkS1RUUSeL0eIH2mM5UwWQsZ6DIsKc7zkjW4EdHRzk6muXDt+5Y8F6ZeS+qtEQCjGVLtAb9/I1KEYFW7k491+p59qobqHZt1mSJ4UyJ3mSI4UyJsK7ieTaRgF9ePpo1yJWsisA7crlHjyLLdCeClCyHIyNZNrWEubw7zrb2yAyPbkBVuGl7O5d1x3j04Bgvn01xZDjLgcEMSjmHKqyrtIZ12mM6R4azmLbLG7a3EdJ9CZKpgklQU/h/b+gjpDV/6PliRHSVkKagKhItQf2C11cyXDQ9P7BPlTk5kSdXssmVLF46m8JxPW7c2loN99aCHZ0x3rd3ywX5XI1m6DYzwhBaR9Sq8dx87lrT8StmPM/3BE03gmDtJfYt5nz+7VNnaInonBjLV71v29ojvHZT8qLejkZmKffSifEcD71wjqmCSXc8SCSgYjkuI5kix8dzBFSZZEjlxHiBk+OFspYSHB3OMjhV5IG7rppX92p2snYlRDuZN4kEVHIli2REZzhj0Bade/U8fdX9wpkUBdMXjTXLMhQdsQC37O4kXbTOG1zlQoWOaICCaSN7Hq4HjusiyzLJkEYipGHYDkOpEtdtbqle59ke3XzJ5sv7jzORN4hoCniSr0Em+/lVYV3xz9VYFtuFXV1RepKhanO9Ta1hjo3m+OHBUT705u1Ndy8tlXqGiyr3yqHhDM+dmUKWJIKaTKpol71D8PjxCf7HDw7xnhs31cRI6R/Nsu/gCGNZw6+4lGQ6Yr7XVRhBtUE0VFxHLKUUcyEqg0FrxA93ZUsWtusnjBZMB02V2d4RueA71lpi38XOZ0iTeezwKM+cmiQZ1sp5Qx7/9PI5fu+hA/yP7x3i8/uO8uUfH2+6pmiLvZcGpgpVfa2wrpzXtVIVIgGFbMkiXbQYTJXIlvw2BL4XxA8BHRrK8tmHD817fmbfi5oiccWGOImQxmimRNFy0GSZzW1h3nfT5nknjh2dMW7d3UmmZDGULmHavmxNTzJIPKTx0kCKZFhjKF0qbx8lpKsULAddVQioEgFVRpFlwppCe1THdFxyJQdVkWb0lKp4dHd3xylaNv/9+4d45tQkpydyPHVqiqLlENRkFEXGtF2yJRtdVUgVbSRge0d0xjlfyrNbKy7WeHIlmX3NKw1dT0/keanch2olw0Xb2qN0xgKENL9f2HC6RMGwiYV0tnVE0GSJnx0b569+dunNDite1wPn0rREdK7oTbK5LczAVIGv/vx0040bjcramJEE8zI9KXo47U8MvbOSQisCjkXLZqpgkDWsi37uXJUguiKzvVxF1hKe6bKurNSu6I3jeR6HhzMX9YY0upL4Qkm2nufve9Fy2JAMVTWijo3mccpeM9NxSYS0FdPDWkkWW9Z7cjxfNZgqTfwCqi+9MpIxMCyXgnm+741p+0nOIV0mGlRJ5U2ODGX4+hNn+MAbt7CxJXzBPTBXEUEyrCHLfp5QUFcYzZQWlCRwXY/DQ1l6EiGu6UtiuedzTwCOjeboTSjVXLeeRJArNsR55WyK8ZyBIkvEA36YWFNkSpaL6kIyos3bU6p/NMuXfnScw8MZJKBguuQNGw/QXL+xITKkixYSvmEdDfqJ3/Od75X2trqux0/7x/inF88xlC6hKxItYZ0dnbFVzYmrXPOKBEW6aIIHybDG9o6VLVQYTBVJFSxu2t7Gy4NpHNejNawR0JSq5EfRdBhMFS4pJ3K1pWPWM8IQWsPMTop2HH8V53kebdEAerni4fhYnqmCSclycFyPh54fRH+dfNFBbVt7lLdfLXNyPF/+PULJcvnqE6fmTOxTZImJvMmf/PDYRZO0V1tJfDkslGSbLdmM5/zwTEBV8DxfZ6lo2rRFfG9BquAbnDs7o003qC22rBegZDtsbYvQEvZbLDiawnB50nZmORI8wLAdHM9FU2Q8SWKqaPGDA0MMZYpctSE55z0wvYjg0HCG7700hKYo9CaDc+ZtzVd91psMznk8lW7ClQal/aNZUkWTjmgAy/HIliyCmuK3CsBvKrq1PUzJcufsKVWZ5AYmChhlFXhZllDK/YQsx6No2mxsCVOyHS7rinF6soBpOzMaJs4+34v1ti5nkdE/muX/PNbPj46OUbQcFAmCmuJ3qs6bdTHmS7ZfQn9ZV5RYUEMp54L91c9O8ktX9qxI+LmyCIh6KgXToS0aIDBNr01TZPKeTUtYv6ScSNFMcfUQhtAaZa6k6MGpPCNZg1MTBVojKuD3NQmoMp2xAJbt0BYPcGayyIOPn1pwUFvIUJmrZ0hvIshIuULmYknaq60kvlwWylUwbF+Bfmt7hFhZjX2qYFZ1tDRFrnYBbsZBbbF5GtvaIwRVhaLlsKMzSrZkcWayQNGysZwLP9dxQZI9LMfDsNxqyb2uSoQ1ZcF7QJYlNiRD/NOL5zAdl11di19Fz+XhqnhKTcc3VEqWL/Nx2+5OBqYKFNIOJcsPXeUNv69QeywAeKQKJs+dNrm6LzlnmGYwVaR/NIvpOFXxXvAlLyQJv0Gj4zFVMGmL6NV+REMlG23WZy01L2Y5i4z+0Syf33eUnx0bx3Q84gEVD4+S6XJ6ouB7sjxv1Yz5iiE5VTC5emMSOJ/gHlBknjk1yUsDKTa1RQhptV1EVRYBmZKF7bhowZnTqOW4KLJMPKgxkTeW7aUTzRRXD2EIrUHmcqlO5k36xwqEdYWiaTOW813JtutLIORNm85YkD098YuWui/GUPmNm7dXV5whTeGfXzrHuTmaxM2enICmcQcvVNo6mCoS1nwDUJIkP5F82qBZGSwrXYCbbVBbbFnvxpbwjGTm7kSQY6M5HAfmyirxAMstS5NJECyvtH3xVl/SZThTuuAeqHg4jo/leHkwdUGifuUz5jM4Z3u4JvPmnPINj7w6zKOHRhnLGmgK5A2/QCCkyzie7xlSZImQpuDi7+9cPaXyps1U0ZeliQZVDMslqEposoTp+v2IpPJ2fa1hYkGVsK7SEQv4wqqytKwy6uUsMlzX4+FXhjk4lMHxPOJB3wgyTBfb87Adl6F0ye8dpsoMpnpX3JifT/erYNikSxae5xHWVS7rjtU8/FxZBDx9agJVlqrhXjivi9cZD6LIc7drWCyimeLqIc7gGmS2S3V6WCYZ0siULEzDxvP85m8efsffCgtNGIuNW3/ozdHq+wYmC5wYyy86SbuZ3MHzdc29YUsr2zuiDKVLeOVeJxUpBF1hhiQKNOegttiOwRWD6ehIlnNTRWQJVBUc25/sfeHPCz9flfz70gVU0+HVc+k5xS2nezhGcyVOjuZJFyx2dkVpjQRmfOZ8Budi5BtytstfP34aSYKNLUE8DzKlot8125UIan6+zO7uWDks6DFVsOa8VyO6iiLJmI5HeyTAaNagZPseMNvypTpcz0PC/8z+sTyb2sLcuruTw0PZZXVoXm7OyWCqyCuDaSzH14hzPZe86eJ6vsGmKTKO65Eu2hwaytZUa2s+5tL9igRUpvKuH+J3/E7Pj/eP050IsbU9XFWHv9RF1PQO10PpElN5s9rhOlu0UBWZlrDKifE8N2xpXXb1mmimuHo0z6grWDSzXaqVsEwkoDKcKWHYLp4LlN3wmuzrPuVLJs+emmJXZ5RYSKVk2RdMGMuJWy/Vxdts7uD5uuaeGM/x4ON+vlR3PEAipDKcNlBlCAfUamVdMw9qi+kYXDGY/v6Zs7w0kAI8HAcUGTRFQqbcgHCaMeThC5B6eAQ0mfaoTiyoXSBuadjODA9HNKAylCoxnPb357V9yRnG0HwG58XkG6JBFceFkaxBS9gXPS6WY3thXaFk+56hgmETUBXiIQ3bdRnNzh0aqUxyh4YyqCGJ7niQybxB0XJRZRnbccp9uVRURZph7NxyWeeyigiWm3OSN23ylu2XGHseOcNvmKoqvjyIV1awBw/LdWuqtTUfc+l+ZYo2qbISvaJIWLZ/r+QMh9MTeXqTIeyy5/BSDbUdnTE+8MatBFWFHx0Z5exUsZzE7mE6Hs+eThEuh+ROjOeW5YUSzRRXD2EIrUFmu1QrYRnX9QcGz3NRFAlJKjeAcz2KlkvRchnJmZyZLBBQZVoi+gVKzsuJWy/Vxbta7uBaVqXN1eRytsckoCrIEiiyzM7OKPGQRrZcrt3Mg9piOgbv6Izxzmt6OTKS4VyqxMBkHlWRsF3fKxlQ/cR9a1oesCxBJKCwqSVEuFyRNV3c8pmTExwdzs7wcHieR2csyGjWL2k+PpanJawvyuBcSL6hKxbghYEUuiJV+wspUtkQAHRVxrB9qYxKMvNC96osS/zq9Rt46uQEQ5kS3fEA3YlguVuxTVdMJxHWuXJDkve/YWa13HI7NC835ySiq3gOpIomJdPBdP2+Kx6gKlBRWPOQ6IrVVmtrPmbrfgFMFXx5FVUG0zmfbxXRFQzbZThTIleya+ax2tEZ49Nv38Mtl3fyf587y7Onp7Adj0hAYUNLiN5EkKF06aL5lhf7jlrotAkWRhhCa5DZLlVdkVFkifG8P1D4yZgyElTVrz3A8fxBJKBKFC0HO2fwracHZig5LyduvVQX72q4g1erKm22x2Qsa1R1tBpVCmGliAU12iIBgqrMWNbAdlwkPGzXn7Dw/HBYWFf88nVVpjcRBEnCsBz0cr5QRdzy9HgBSS6yIXk+H0iSpGpTxUzRYiRTIlWwUBVpUQbnfPIN4zkDy3aRJLBcPzcmrCmENJm86RBU/fCQBOiKvKh7dVdXnN++bSdfePQYY1kDXZXQVYWOmI4iy35i9uWdc7YMWA7LzTk5PJyhfyxL3nDwyl47F7Adzx9PZACJZEDlyg0JMqXaaW3Nx2zdL13zjR3wMGzKOmCS/x8JgrqCYTmU7Np6rGRZ4g3b23lpIMVUwe8uH1CVquSH53mXnNdYK502wfwIQ2gNMtul2h0P+AO24QAecrl1v+d5vo5SJSTh+as7x4VoQCWoyRwb8Q2GbTdHq1U5SzVUluriXWl38GpXpU1fwe/uhjdsb1+Xg1rl3nllMFVtCuc4XtUYR5aI6QrtsSBtEY1DQ1nOTBZQy4Z8QJHRVJlESOOyrhgDZaHR8KyJuzWi89q+JEdHMpydKnJyIk9HNLAog3Mu+YbJvMmhoSyZkoVhu7gejGVKdMWDtEYCmE6JvOVgOy6JsAb4k99i7tXbLu+iryVclU/IlmxyJRtJcslpSk1165bz7B4dyfC/H+vHdj2iQb9c3HP8hZOLn9slO9AS0bhxWyuhsvdlNXLdput+TeQr7T/8/ZI831CTJA/H9dBVP6m5J6HX3GM1mCpyYizP9o7oBQZmrfIaV0scd70iDKE1ymyXqiLLSJ6f7KjJMookYXnnK3cqrm4kf+XeGvEb0mVLNi8PpqoP8VKNmkr4yXY97rzivKr4Qi7elXQHN0KTsvU6qE2/d/KGQ0c0UO1HY1gOmqrQGQ/SGfP/rqsyAfxqLNv1yNo2EU9la1+EoKYQ1lSQmNPD0RrR2dMTJxnSefeNm9jeEV2UwTnbWJgqWLw4kKJgWEQCKqZjokgSmZKN5RTpTQZpCWucTdkEFIV4UCNdtJd0r+7qjnH/Wy/n8ePj/O3TZwjpCtvao0QCF+9/tNzzv9hn9x+eHWQsa9DXEsb1YDhdYLJg4bj+eKGUw5e/sLO9KvWxWrlu03W/WiM64zkDcDEdf2CreK/yhoNh+32pdnZFMR23ph4rUebe/AhDaA0z3aV6fCzHn//0hN+LJFUiY9jISCiyhFweMSRJYkMyTHtUL5cr+5H/gunMeIgXa6jMFX5arKr4SrmDK+eiOx6s9h2Zrl7daFVpa43p984LA1MMTBYomA6xkE5fa5hr+pJM5E3OpYrs6IwymjWI6n4puixJ5Aw/vGjaHldtTOABr57LzOnhGM4YXN2X5E07OxZ930w3Fo6OZBnLGhQMG1Xxu2F7HkiSryuWNSzOTLhEgxrb2yO89/Wbubovuex79eWBNJ4HV29MrpiBvpRFRuVZ0VXfEydLElvao7QUTIazhl9FJvkCoMCivWC1YnqC+zOnJlEkGUmRcD0HuxymVGTJD1lKsKMjTFtEJ120a+qxEmXuzY+4MmucivdhQzLEq4MZXhlMc1lnjJMTeabyJuN5F8v2w2UtYb1qBAFl8Us/jDb7Ib6YoTJf+OnVoQxDmRLvf8OWixoaK+E5yZs24zmDc6kiqaKvkabKMq1hne2dEeIhrWlWb40uQTIf0++drGGRK9lEAyqxoIbnefzJD4/RW06GzRm+ER4NqmiKTMCROT1R4HVbg9xxhZ/FP5Qu1TSMOr3K7dVzGRzXpZD3Cww2REOYti+FUSyXub92U5KP3L6TXV0XymgsltXsIrzYRYbf+dstJ7L7vXIkSSIZCRDQVCbyBqmCSclyKVoOV29Mrnqu2/QE93hIJVUw8TzfAAqX9dos2y0bcWGGM0bNPVbnQ75puuPeBfIszVoRup4QhtA6YfpKdzJvcu2mJJbj8uypKc5MFVAkiY5pRpDn+T0xFFnmqg0XSgRUPnOuQbkRwk/zMZ41qjIjyYiOpvhK6KPZElnDYmdntClWb80gQTIXs4233V3xGffA4eFMNcygyBKv7UtWm+XlDBtZkogFVd52VU/1OFcijDq9ym0q7wvDdsZ0ZNlPhDbL1WGjWYOOqM6Ojks756sdXlnMIiOiq7SEdLJFm3TRQo+cHx9CukIbGpbj8qZdHfz2rTtrltS9VCoJ7roicXg4y1C6RMF0yBkOquKSCGqoisR4zmRzW6TmHitZltjdE+ORg8O8fDaFqviVoSFVIRJU2dkZbdqK0PVCY4/2ZU6dOsV//a//lccee4zh4WF6e3v5t//23/KpT30KXdfnfV+pVOLjH/843/rWtzAMgzvuuIP/83/+D11dXau4943DXOKUG1vDeEC6ZJMpOUiyny2ULli4Hlzd64spLuUhblSNHNf1ePFMCq1c4aMrMlJZCV2PyEzkDA4MZnjHazc09OqtWSRIZrMY4212mKE1ovO6LS3VMKZpO9iON0PEdKXCqLGgRlBVyJtFWiK+EQT+PRzQFJAgEdIYrkHybSOGVzYkQ+zojDGeMzFsl8m8WfXMmbbLSNakNxHi139hO5vaIqu2X7OJ6P5i5uR4Acf12Noepmg6TOYtCpZNwXSIBlX29MZ51/V9NX82+kezPHZ4lHjQNwxHMwZFy8JxPYKawsaWxh1LBD5NYQgdPnwY13X5yle+wo4dOzhw4AAf/OAHyefzfO5zn5v3fR/96Ef53ve+x7e//W0SiQQf/vCHueuuu3j88cdXce8bi7kmjaLp8K2nfRXniZwB+HH/G7e18Z4bNy154GjU5MHBVJET43mu6I1zbDQ/Y2C3HBfb9RvDXdWXqNnqrdbhq0b2ti3EYo23uSqbJEkiHtKqpchzhRlqHUZ1Xb+zc1CTSRctWsK+cVLxBtmuL6fRnQiiSNIl38uN2EV4uhcZ/KT0rGFj2ham7dIdD/Jbt+1kV3d9je6eeBDDcpkqWGxqCSHLMkFNJRnWKVk2Z1MlNrWG+Y+3X4auKzX9btf1ePjAMGenCsRDKiPZEpGAQntMR1NkMkWLVwcz/NXPTvGBNzbmAkXQJIbQnXfeyZ133ln9fdu2bRw5coQvf/nL8xpC6XSav/zLv+Sb3/wmt956KwAPPvggl19+OU8++SSvf/3rV2XfG5G5Jo1Pv30PA1OFGUryy3V1N+LqFs4baH5FjjYj5KLKMt2JIAHV79+yHGYbPUXTYd/B2oavGtXbthBLNd7q3U13uudqKF2iaDr0j+RoieqYtkvBdDBtF03xVeZjQe2S7+VGOO652NEZ4317t/APzw3QP5pFU2XCmsLOrhh3X7fhkvKiasVQpkRAk0mGNKYK1ozFTcF06YgF/dy/nFHzZ+Lnx8f5/itDlCyHVNHCsl3iQQ1dkQnpKooslbUHCw25QBH4NIUhNBfpdJrW1tZ5X3/uueewLIvbb7+9+rfdu3ezadMmnnjiiXVtCE1n9uS9lAqb+ZhrdVtR8jZsX5D0UjR4lst0A212yEUvt8dfbkXJ9MmzaNlkijZjOYNkSOM1vQl6Axd6QLa1z/TM9cSDDJU9ZQslsDait20hlmq8LbV9Qi29brM9Vz2JVnKGzanxPINTRb+fkaqQDGvEgioTeRNNkSmazrLPT4VG7CLcP5pl38ERxrIGLv4ztL0j2jBGEPjPhK7KXLe5lZPj+RmLm854kM1tYTLF2jd57B/N8s2nzzCRN2kJa0hAQFMoWA5WpkR3PEhAU8h7tq8X12ALFMF5mtIQ6u/v54tf/OKCYbHh4WF0XSeZTM74e1dXF8PDw/O+zzAMDMOo/p7JZC55fxuVlUq4nb26DWkyg6ki4zl/gLpUDZ7lMpeBFg+dD3kstwfK9MkzpMlM5kyOjuYomDYjqozpuFy5IUFrJFD1gPztU2doieicGMtTsn0Pg2G5BDQZXZXnvRaN6m1biOUYb4vN+6nlPTyf5+raTS1M5EymCiZhzZdPqJTyd0R14iGNHx4aYUfnpa/2G6mL8GyjcENLmIJpMzBV4Ks/P90wuWiVZyKoyRcsbmJBlWzJYsJ2eeVsmuF06ZK83RUq90resGkJaXiehOtBSJVAkSlaDpMFi/aIhCLLxIMaE/m5decE9Ueu55fff//91RyA+X4OHz484z2Dg4Pceeed/Nqv/Rof/OAHa75PDzzwAIlEovrT19dX8+9oBCqD3IFzaZJhjW3tUZJhjVcGU3zxsX4eeXWYgckC7lyy4Iug4lKPBhSeOjnJ8bE8eB5b2yNcsylZ1eDpH83W+Mjmp2KgtUZ0jo3myJYsLMfhXKrA82em0FWZ2/d0LmmAnD55tkV0jo3mGc6U8Dy/O7fjwqnxPC+cSTGZN5AkiZAm89jhUZ45NUkyrJEM6QxMFjg6muXsVIFkSCMZ1jhwLn3BOaoYcxVV++lUckl2dEYbKtl7uvE2FwsJofa1htndHa8285zOfPfwXOdtMcznudIUmXBAIRnSsFyPTMmmZLt0xoNcs6mFnZ3R6mq/FlzsuFeD2UZhLKihyBKxoMbOziiTeZNHXh1Z9vhQS6Y/EwDxkEZ7NEA8pDGZN3nsyBgvDqT4/L6jfOo7r/Chrz/Hf/vewUsaeyr3yrb2CC2RACXLRpb8TtsVCaOi6Ytdt0Z0FJmGW6AIzlPXq/Lxj3+ce+65Z8Fttm3bVv3/uXPnuOWWW7jpppv4sz/7swXf193djWmapFKpGV6hkZERuru7533fJz/5ST72sY9Vf89kMmvOGKoMchM5k+54wFej92wsxyVdtDh9Ns3hoQx7euLs6Iwta3XdP5rlkVeHeXUwg2G7RHWFRFhnR2eUtkigJho8y2G+hn5hXSGoKex7dRRZkhZ9vOcbNAY4PJyjaNroikzJ8uVMPMB0YGCqgKZIvHGHL69RtBw2JENEAyqHhqZwXI9NLSGmChanJgpcv9mfYGefo0bNJVmIlUgEXomk8fk8V6bjC6xubA0xmTd5TW+czliw2oTTdt26hCNXso9UM+WizfdMDKWK/Pz4BJmSTSSgEg9p6IpEpmix7+AIo1mDj9y+c1lercq90hsIsaMzSrZkkS35vaXCmoLnQclyaY3IbFuh/kWC2lFXQ6ijo4OOjo5FbTs4OMgtt9zCddddx4MPPlgtZZ2P6667Dk3TePTRR7n77rsBOHLkCGfOnGHv3r3zvi8QCBAILC9ZtlkYTBV5YWCKqbzJqYk8tutrPRUMx086DGs4roemyMsqya6s1M9OFTActyyKCZmixUsDKV7bl6Q1EqjbYLqjM4a7B46OZOmIBehNhOgoyzos9XgrA2LUVZkqmKiKLyjqC9hKqJKEVdbSOjmepyMWYDxnEtEVTMfl9GSB0UyJWFBFlmWiQZXJvEm2ZBMPaXOeo7lySXRFZlNrmOs2txBQFVzXaxhjaCWMt5WYqOcLO+qKjKrIlCyXoKbSWU6+rVCPcORK95Fqtly02c/EcLrI4eEs6aKFBFi2w1jWIKQptEQ0CobN0eGZOopLYXa+4TWbWlBkidMTBTKGjSpJBDWZbR1RJvJWQy5QBOdpCj/d4OAgN998M5s3b+Zzn/scY2Nj1dcq3p3BwUFuu+02vva1r3HDDTeQSCS49957+djHPkZrayvxeJzf+q3fYu/eves+UfrQUIajw1k0RSIW0lBlhbOpIjnDxvX8eLbluWiqzM7EhV6JhZheThrRFRzHQ1P8OLkekZnMmxwfy9MS1us2mLqux76DI5iOy7WbWs57ExR5yd6EyoCYKVlYtq9u7bguQVXGKpdgy7JEWFPImw4nx/OkChZhXebA2TR5y2Eqb1KyNNqiup9cafg5DjD/hDM9l+TQcIZnT04yminx0IuDPHxguOGaK9Y6EXglJur5PFexoEpLWOPEeJ5t7ZFqx2CoT2n7avSRqtzXecM/f7OlaBoxF236M/HT/jGeP51CknxRXl3xNevypo3pOLRGdCzHm6GjuBRm3yutEZ037+pgYLLAifE8Q+kiybBerbCrV7K7YHE0zl28APv27aO/v5/+/n42btw447VKnoRlWRw5coRCoVB97fOf/zyyLHP33XfPaKi4nnFdj2dPTWG7Hq0RnYCqYFgOlu0RDaiYjstE3iBRLgFd6uq6Uk5q2C626/f2KNkunTGdkK7O8HhIUn3i5menCrw8mCKsKWRLdnVwh6V7EyoD4tOnJvCAgukQ1BRcz8MxHCzHRVd976UqS4xmDGzXI6DJBHUFXZXJlWxyhkXJdogHNWRJQlP8/VlowpFlCcN22H9kbNqkWFuhzlpSy0TglUgaX8hzpcoysaCGqsjkDLtu4cjV6iO1IRkiGdb42bFxJImyh9OXotnWEWYibzVcqKcSKswaFs+fmqoab7oiIUmgShKKplC0HLIlm6AqX6CjuFjmu1daIjo9lsOW9ghvu7KHy3viTSN9s55pCkPonnvuuWgu0ZYtWy5IHg0Gg3zpS1/iS1/60gruXXMxmCoyli3Rkwj6bfNVf6XklpXpdXzF+Z5EqLryXezqeno5aVc8gK5oGLZLtmjhuA49iVDV42HYDlOF1R9M+0ezfP2JMxw4myaoy2iKUtUZa434IdGleBOmCz+eGs9TspyqJpMqS0hIaLJE3nQIajJ4EA4ohDTFL9lX/MTKTNEhb1hkijaJsMaR4SzbOyILTjjN2FyxVo0PV6oB4Xyeq73b27isO8bhoWxdS9tXK3fnxHiO0axB0XKQJYlEWAM8BlMFBqYKXN2XbKhQz/RQ4WTB4MhQFsf18PAFcsvrimoic8F0UOW5dRQXy3z3ylV10FwTXBpNYQgJakfetDEcl8u647wymGYyb5aVpcF0PBzHQ5YkepOh6kC7mNX17HJSWZJRZJnOaBDHKVIwHUZzBp3RAK7nD+gbW8KrOphOz10K6kp5AqWqM1bJXVqqN2FHZ4wPvHErlu3y/QPDpIs2QU0hFlSJBhRKlu8V6okHOTlR4DU9cQbTJSbzJqoiYdpuedAGGY94UOVcqsjZqeKCE04zJbTWmpVMGl/Ic3XLZZ11LW1fjdydyrPsuB5v3tXB8TG/N4/tuoQ0BRfoigXY1h5d9nfUktmhQl2VOTmWp2g5lEwXsGcYy7IEhuVAUJ1XR3GxNFK7A8HyEYbQOmN6z42KoOVk3vCrmyyHSEAhpGt0RH3vyGJX19PLSU3bYyxbQo/4eUA9iRCjuRL5ks05x6MzqnNZV5zrt6xeYu9078lVGxLVfWyN6LRG9GruUjKkLcubsKMzxgN3XQWSxNMnJ1BkyU/SdCAZ1tnaHmYsaxDWFbZ3RumIBzk2kqV/LIfp+BOM53nYnofteoQXMeE0W0JrrVnJBoQVz1Ul3HJ0NFud5OppVK5GH6npBnZF721249GpgtUQBvZcXlHPg5CuEtIUBqaKGLYHkkNIVfDwys0vJbZ3Ll1HcS5qLe8iWH2EIbTOmB5S2NkZrTYgG8sZHB3Jki74FQ4hXSFbsjiXKhLQFHZ0+que+VY7s8tJc4Zd1fIKaDId0QC247G5LcS29hhj2dVN7J0+uMuyfME+hgO+0fDyYHrZnipVlfn/3rwNTZE5OpIhbzgYtkO6YPL0SYNEyJ9UipafrLm7O8ZY1qA9qhNUfUMoazjl5os6F5twmjGhtdas5Ip8pSuzlsNqaJLNNrCnNx4FsF2X0WxjNAecyyvqJ7frjGVLbGwJMpI1kaC6vxKwpzfG/XfuFuErASAMoXXHXCGFcEChUwqQLlh+eWlY5/SEn++SKdkoksQ3nz5DS0ibt6/Q7HLSirep0u7e8yAR1EiEdHKGveqJvbMH99n7aDkuJctha3uEf/v6zcvejx2dMW67vJNXz6XLOVi+UnlbzF+hZks2x0ZzXNOXxHI9JMnP6ZGAybxJd8KXBKj0p1lowtmQDJEIafz4yCie5+FJEiFVpjUSaNiE1lqzUr10podbuuMBoq5KpmTx9KkJBlMFPvDGrXWZRFejj1QzGdhzeUUlSaoudAqGTSKocMWGJKbtMlkw2ZAM8eFbd7CrSxhBAp/638mCVWehhNDb93QS0lQeOzzCt54eOD+ZqwrZosV43pzTaJmrnLTibTJsh7NTBTwPdEWpS2LvXCGF6fs4VTApmg7vf8NWNrdFlv09rutxeChLTyJUNXYqkwjAC2dSZIoWR0dyxIIKsiz55fK2S0hX2N4RWXRu1o+OjPLz4+OMZA3wPHRVxlBlMiWrIRNaa81KeWxmdws/POwby7bjosoSQ+kSIU3hU2/bU5dzu9KaZM1UMTZfqLCy0Dl4Ls1o1hfKbQn7/X5EIrNgNsIQWqcsFFI4OpLhO88PMlnwV8O6qlS7Thu2Ly4522iZb6UqSTBVsGiJBMgbNr3J+iT2zhdSkCSJWFBlOFPi6r4kfS2X9t0VV31vMjhnDsfOrihnJgtsag0xljWQgFTBYnNbmB2d0Wrl2sXCHEdHMnzh0WOkihZ9LUFyhkPBdMgaDqoikQwrDZXQWmtWspdO5RqGNJmXzqYpmjbRoIYWVLEcj6m8yWOHR7l5dye/sHNxDWFrzUqGBJupYmyhUGFLWKMjFuD6La2847W9xIKaSGQWzIkwhNYxcyX5ua7HPzw7yFjWoKesngx+v59KQ8SCaXNsJHuB0TLfSvWK3jitEZ3vHxjCdjw8z7vAGFrpxN7VkqbIliwmCya6KuN5zOhRBP5xBlSZd167gVhA49Bwhu+95Pdd0hQZ23Uv2CeAgcnCDJX62dcoEfIwbRfb9ciWLNoivs5SIyS01pqVbhuQN22Kls1U3qJYDvVWviOgSnTEdM5OFXn00Ahv2N5et4m1Vkm608OLIU3h4QPDTVMxdrHnui0a4Neu3yg8QIIFEYaQYAaV1bCuymjqTBkTSZKIBlWyJZtU0ZrTaJm9Uh3LGrw0kOLHR8Y4PpbnXKpEVyw4o28PrI5MwUqHFPpHszz0wjmOj+Y4NZ4jqKkX9CiqHGcsoNHXGqavNcy29si8+wTw5R8fnxH+aY8GePlsasY1kiQ/FykAqIpEznDmvUbNyPTJOlO06B/NrljbgIiu4rowljP8/K1Z32G7HpGAylC61PSG5uzwouN4DEwV2N0doy0aaOiKsQor/VwL1j7CEBLMIG/aOJ5LQJWxHI+AOnMS0BQZ0zaRJeY1Wior1f7RLA8fGGYyb9Kb9Bs4DqVLjGSKM/r2rKZMwUqFFCqhmomcQWcsQKpgEVClGT2KWsL6nMc53z6dGM/NGf45OJTmzEQeXVOWfY2aidmTtWG5DEwWuH5Ly5zhx0v1Lm5IhuhJhHjxbIqW8MzP9zyPXMmmIxZAkaSmNjTnCi+enSowkTc5MpIlElBpjQQatmJsOqKfj+BSaP5RUlBTIrpKS0gnW7T9ROlpYQEA03YwbY/tndEFjZa5whc7u2LkTYdCeVV/bDTH5d0SwxljVWUKat33Y/qx7uqK0REL8uJAirzhq17nShYHhzJ0RIO0Rec+ztn7tFD4Z3t7hCPDGSzDDzN2xgIzRIgXe42agbkm65FMkUNDNs+dnmJPb7yqJVWrqiZZlrh9Tyf7j44ynjVIRnQ0RcZyXHIlX16jNxEEpKY1NOe7v1rCOi0hjXzJrmoCTn/+G6libDain49guTTe3SyoKxuSIXZ0xhjPmRi2W+2z43sZXIYzfl7Kr17bt6DRMld/j+kl66PZEgOTBRIhjaubvCX97GOdXZrveDCaMbhucwvvur5vUcc5X9foybzJsZEctgt5w9dxyxo2ndEA0aBK3nAYyfrhx7uu2djUK+L5JuueRIiOWIDjYzkmcgbJsI6q1Laq6abt7dyyu5OfHRunaDrkPdvvlB4Psq29sSqnlsN891csqNISCXAuVWQiZ5At2VWPUD0EZgWC1UAYQoIZyLLEL+7p4uhIlrxpAQoF08G0LUzbpTse5Ldu28mu7oUn8/m6HldK1ifzBkdGsrxxRztv3tXBxkus1qoncx3r9NL8omUzkinxzms2LNrYm+szJ/MmLw6kKJo2nbEAQ65HQPUN1LOpIjJUy/WTYY1HD42iKtKaMTDBn4zPTBQYy/ritXnToT0qoatSTauaZFniPTduomS5DKYKtIR14kENRWbVPZgrwXzPpyRJbO+IMJ4zGM8ZDKaKhHSFkrX6ArMCwWohDCHBDPpHs+w7OELetP2SbMNGU2W640Gu7kty93Ub2NUVv+jnLCQFMFWwODSUZTRr8OjhUV44k6p7x95LYb5jrXTklSRoCQeIBS7MZ1nsZ3qeR/9orlrFZDoubVGdlrDOZM5gOGOgyBLbO6JcuTFBSFMaUoF+KcyerCfzJi8NTNE/lsOwXAA8fIOpJaIvSpZkKfgacueTcCfyxppJwp3vnq1IzZQsB8t2eWUwxamJPJtaw1wrevAI1ijCEBJUmZ6Psak1zGVdMUazpWoZ6mKNIJi/v8dk3uSFM1OM5Qw2toR4TU+couU09aS9ErIHsz+z0vQxWp60ciWbnkSIa/sS/PzEJKbjEVRlrt/SQiKkAzSsAv1imT5ZW47HkycmGEoVsWy/eSRQFawFuLwnTjKs1bSqaa0m4c51z1Y8jgXTRpHg8t44fS1hhjMlIgGV2/d0Nt2zKRAsBvnimwjWA7PzMWJBDVWR6U36K0HTdvnhwVHc8qRzMSr9PVojOsdGc2RLFpbjcPBcmrGcQUdUZ09PHFWRiQU1dnZGmcyb/OuBYc5M5Dk8nGFgsrDo76sncx2r7bpkS35C+HLCCZXPbAnrvHTWX5UXTRvX9fO2Kl2o86bfNbcjFkBRJCzn/PmSJInueICXBlL85NhY05zPCpXJ+lyqyLGRDBM5A1mWUGRfQdzzIKwr6KpMrmQzkjEI6SqG7dS0qqmShLu7O05fa7jpjSC48J7NFE2OjmTIFC3wPGIhjV1dMTa0LO/5FwiaCeEREgDzJ0/C8nuzzO7vMVUwGM36nqA9PfEZfYQkSSKkyXzvlWFeHkyjyFJDiFwulpXqZRJUZcayJuO5EtmSTaZks7ktXBZmDTCeM7AdF12VUGS53OvFZzLvT25np4r85c9O0BENNs35hPOT9dHRLCfG89jl/CfDdrEdD0WRyt3LJUzbZSRbYixrNGxVU6Mx/Z59+WyKs1NFgppCVzzI9o7zva9Wo/O7QFBPxGghAOZPnqyw3N4s00MLB86l+btnBnhN2RM0ncm8yZGRHJN5g8u6omxoCa+IIOtKiXTC8sMoc+3T9B5CN25twXY8nj3thxQt262+V1dkVFkiU7DobQlXNc0qYY5M0SKoKWxti6IqUtOFIHd0xnjblT28eGaKgulgOw6yBEgSEV1BU/wO3uBh2g5D6SI3bW8XVU2LpHLP/uTYGH/5sxNsbYuSDF/YRHKlO78LBPVEGEICYOHkZri0/iHT+3vsC49QtBxi0wyhSiJwrmSTCGkkwzqKLNVckHWlRDqns9ReJnPt07b2CJMF84Ky8eu3tFbzqw4OZbhxaxvg4QKOB9vafdV6/3xmyRRNHNejPRokEdKQZakp84Yu74lzWVeMIyNZQroCHkzkTWzXQ3b9XkquC4bt0RYNiKqmJSKXk+w7okEUWZrRSboRFecFc7OSi7y1jrirBcDKJPwu9juyJZupvIGEP5FVvBpQO7f8Sop0Lpf59umZ05OcmShwzabkjOvQGvHVsw+eSzOaMTg0lKElrPMLO9oZyRpM5C10VWEsZ3BkOEvJdlBlGVUxeLx/nN6WIB3RIN3xQFOFOTYkQ1y1McmpyQKW49EW0dFVhcm8LwxaKouDXtYV476bdzSFp6vRaCbFecGFrMYiby0jDCEBsDqipPN9x1TBZKpo0R7V2d4RqblbfqVFOmu9TxuSIQ4PZzmXLrGxJXyBMXTjtlYODWV41+v6uKI3UQ2l/euBEV4YmOLAYJqC6ZAMq0QDGjnT5uholv6xHG1RnY6oDvhhMqDhV46yLHHnld0cHsny0kCKkYxBPKQSCSgYti8GeuXGBJ/8pcvZ1SUG/eXQTIrzgpk04iKv2RCGkKDKaogXzvUdtuPRHtG5rCs2I4G6wqW65VciEfxSWWifAqpCNKAylp3Z2bdCyXJpCQe4ojdR3d8dnTG2vCnCH/3rYVIF06+mUmTGciaW4xJUFWzXJVO0mMgaWK7Hn/74ONvaI+zojDX8ynFHZ4yP3L6Tbz55hv1Hxzg9nsdyPVRZojMeZGt7FFkSk/RyqBjlzaI43yysRqiqERd5zYgwhAQzWI2+KbO/I6Qp/PNL53j1XAbP82oellupRPBLYaF9igVV2qM6pycKGLYDnDeEFjofQ5kS4zmTKzckeP7MFEdGcjiuh4yvP+Z6HpU8axk4O1VAkSXG82ZTrBy3tUd58+4OToznCQcUeuJBuhJBVFlmKF3iwcdPNfwxNCLTjfJYUKM1opMpWkwVLfBAU/weQ80SSm0EVitU1YiLvGZEGEKCC1gN8cLZ33HnFd0MpUsrEpZbyUTw5bLQPkmSxIZkiNGML3EQ1JRFnY+KcRW0FdJFG9txkSUJWZYwLRdn2rYBzRcRncgZmLb/SiOvHPtHszz8yjDfPzDMZN4gEdLIGQ5dQDykEQuK1e9yqdw3IS1IpmgxljM4lypSMGw/IV2WkIBDwxkxmS6C1QxVNeIirxkRhpCgIVjJsFwlSfuVwTTdca+qx1VJyq6HkOTFktOLlsutuztpieicGMsv6nxEdBVdlnj5bIqi5a9CXc+lZLu407ZTJHA9P8SmqzIly6Vg2hwbyTbkyrEysZyd8j1kXfEgkgSj2RJZw+K1fUlaIwGx+l0mEV3FtF2ePDHBZMFkImfieR6RgEZ7VMP1IFWw+N5LQ9VQqmBuVjtUNZcUz/SqP/BEtd8iEGdH0DCsVFhOliV298R45OAwL59NoakSAVUhFlAJB1Q2tYZXPRF0Mcnp775xE9vaF38+ipbNYKrE8bEcqgRGOQ5W6cLsAeUWPMgS2J5fsdcdD5It2aSKVsOtHKdPLBuSIQaniuiqjCxJ6BG5qo3VEtbX5eq3FnkoRctmLGswlC5WPYh+40qHkYxLSFfY3BbGsF3hcbsIqx2qmr6gMm33fH6X46LKEi7wCztEX62LIQwhQd2YbxCv9Wq+fzTLo4dG0RSJZEijZDuYtstQqURHLMCtu30NpdXuw7FYL9hizkf/aJav/vw0juuhyBIyoCgShuVLIlSEESpGkVNWrrccF9fzc4hkiYZbOU6fWDwPVEXGcjwCqoQkSUSDKpN5k2zJRpJYV6vfWuShuK7HvldHiQc1iqbDubQfilVlGQmPnGEjS36fIV2VhcftIqx2qKqyoDo0nGH/0TFkSSIZ1tBVv8mq48FI1uDEeE548hZgfYwYgoZjtZIJXdfjm0+d4dlTk0gS2K4LSCRCKlvbw5QslyPDWfpawuw7uPp9OLa1R3n71TInx/Pl3yNsbFmantV0r8lVGxNMFU2Kpotj2BjYVSNIkXyDyPNAlyVCmoLjepQsG9P22N4ZbbiV4/SJRZagJawzli2hR3QkSUJTZPKGjWE7TBXWT6+bWuWhVAzNnV1REmGN8ZyB63oUXb+MPh5SCWp+B+/16HFbKvXIR9zWHqUzFiCkKUgSvmiuLNPbEmZbu98DSnjyFkYYQoJVp9bJhAt5cn5+fJwfHR7F8zySER1N0bAcl1zJ5vhYnp2dUb/CajiL6bir2oejVsbgdK9JNKDSHQ8xmi3RElI5mypi2g5WOUnI80CRJcK6P2i6nsdkwWJjMsSvXtvXcAPl7IllR2eUnGEzmTeJBlVcz8P1/HOwsWX1Q5z1oJZ5KNMTpYOqTDykocpS2SskoSoS6aKF6bhI5vryuC2H1WhMO5vBVJFUweINO9oBLugKrquK8ORdBHFHC+ZkpcJEixnE//XAMPrVMgXLueh3zzYmAopMRyzI9VtauKw7xr6DIxQsh76WEIrsy3oEVKWaXzKYKjJVsOiMBbh2U8uq9eGopTE43WsiSRLbOyJM5g2yhk1QU3zFdtvBQyofv4zjehRMB1WW2NwW4rdu28mu7sZznc+eWFojOq/tS9I/mmMqb5AqWrRFdG7Y0tbwvZBqRcXwreR2zZ74lpKHMj1ROmfYZEoWlu0SD2q0RXVsFxRZRpOluhQVNBur0Zh2NpXnvzcQQpnjc4Un7+IIQ0hwASsZtrpYMuFSFOhnGxMlS+HIcIanTk7y8IEhNraEOJcqIQEFwyEalKrfWckvGUqXsByX125MrlofjlpXlkz3mliOx/GxPKbjUjAdDNvFclw8POIBFaecD2S7fjXJTdvb+Pgdu9jVFa/JsdWauSaWeEhld3eUE+MS2zqjvOeGTdy0vX3Ne4Iq5E2b8XKJe6poYbtuVQ5je2eEeEhb9MRXSZQezpTojgfoTYQYSpdIFS2KlkMkoNAZDzKcMWiL1n4SX4usRmPa6TRie5BmQ5wZwQxWugfGQsmES1Ggn21MTBUsXhlMUzRtOmMBJnIGx0azZIp+jkymZNMS8le5ofKAoMoSecMmGlDpiF3Y0RpWZjVV68qSitfkyRMTTBVMSpZDIqTTFtHJGw4DUwVsx0NWJKKajCJrBDWFSEClLao3fEfm+SaWG7e2rcjE0uiMZw0GJgvTwr0qluNW2wns7IwuauKbnijtuB55wyEaVOlJBBnPGUwVLBzX47Iunas2rswkvlZZjca0FeoRjltrCENIUGU1emDMt3pZqgL9dGMCoH80R9G0aY3ofl8cy6VkOQQ0Bdd1cfFIFS1KtkNPIoiqyEzlLUKaysbWMEXLIabIF+zvSqymLlZZEtRkpgrGorXAZFniF1/TySMHhxnLGXTHA2iKhOW4mLZDRFewXY++ZIjdPXG/dUC5h1KzNCFczYmlkXFdjxfPpNDK4U1dkZEkqRruncgZHBjM8I7XbrjoxDc9Udpy/OevIq2RCGm0x3Siusavv3kb129uXXfn+lJYzQrUeoTj1hrCEBJUWY0eGLVSoJ9uTGRLNlMFk2jZsJrMGziehyZLBHSFkgWK53t3cobNULpEezRAQJN54/Y2WqMBXj2XWbXV1EKu7Mm86avLZw3+7pkB9oVHFhWWDGm+V0uVJfKmQ8E0UWSZRFjHBUKaQsFyCajKDO2yZmpCuBodzxudwVSRE+N5ruiNc2w0X00a1xS/FYLt+gnwV/UlFp0oHdb93JLXbWmZkXMU0mVOTxSIhzQxiS6BeijBr3Y4bq0hDCFBldXogVErBfrpxoTpuNiOixb0Ez+Llt9MzJMUWkIaE65H3rBJqCqdegDTdkmGNbZ3RHnP6zcDrJi8x1zMZwxO5k1eODPFWM5gY0uI1/TEKVrOosKSedNGV2Vev62NgulUJzPDdnj65CQhXSFTrv5Z6LwKGpvKM7qtPUokoFW9ODnDRpVluhNBAqo8b6h3OrMNckmSZhjJ2ZIlckuWSD2V4IXXdPmIO1xQZbWS7mqhQD/dmOiKBaqN9hzPw/U8PNcjGtTQFBkPD8f1mMhZSJLfXfn6ra184I1bq4PSaq6m5jIGg5rMwXNpxnIGHVGdPT1xVEUmpsgzQoNbWiMMlQ2X6QNd5doVLWfGZJYp+k0Ii6aDIsvltvvzn1dBYzP9GW2N6Bd4ccAjXbQXdT1FbkltaQQleOE1XR5i9BNUWc2B8VIV6KcbE8OZEhFdIVWw0FU/NyagyoQ1meFMiaLpkozodMb85OGcYeM63oL7s9KrqdnG4FTBYDTre4L29MRnGIOV0ODzZ6b4o389zHjOvMDlvq09Oue1iwVVWsIaJ8bzbGuPzAg5ismu+ZjrGa0Yvp7ncWw0t+jrKXJLaotQgm9eLswObUBOnTrFvffey9atWwmFQmzfvp3PfOYzmKa54PtuvvlmJEma8fOhD31olfa6+agMjK0RnWOjObIlvzQ3W7I4Npqr+cBYWb3s7o6zuS3CnVd0L+m7K8bElRuStER0LNclVbCIB1VCmkKmZFMwHcK6TFcsQEhTq3IBpuPxyKsjuK435/70tS6tu/Ny2NEZ4zdu3s5Hf3EX73rdJrZ3Rnn91jZawjqZosV4ziBTtMoirA5Hh7M8f2YKz/NojwRIhDQOnEvz4OOnODGem/PaVUImsaCGqsjkDHtFr6lgZan1M1p5hq7oTZAqWJwaz5Mqd+heyTDOWuR8asHc/oWQrmDYjghDNyBN4RE6fPgwruvyla98hR07dnDgwAE++MEPks/n+dznPrfgez/4wQ/yB3/wB9Xfw2FhiS9EPZPulvPd0z05h4YzPHtykuNjOQ4NZUgXLWJBlc5YEFmWmMybhHSFHZ1RNKUxdJOmu7L3hUcYShcZShvnhRMVmWRIYyxXYqpgoSoSqaJV7RuzrSPMRN7kkVdH+NCbt895/vZub+Oy7hiHh7IikXINUOtnVOSW1AbRz6d5aYorcuedd3LnnXdWf9+2bRtHjhzhy1/+8kUNoXA4THd390rv4pqingPjcr67Ykz0tYa5fXcXg6ki+w6N8Dc/P4WuSBi2g+3KdMaDbO+I0BoJYLtuQyUJb0iGSIY09h0aQVd9D44WVLEcj9MTeUazBmFdIR7U0MpiqdP7xlSMuoXO3y2XdYrJbo1Q62dU5JZcOiLnqnlpCkNoLtLpNK2trRfd7hvf+AZf//rX6e7u5pd/+Zf5vd/7vQW9QoZhYBhG9fdMJlOT/W026jkwXsp3V977i5d38cpACk2R0VR5hgQBNOjqrDJueh6+PKqE57nkTQcPCGkyujqzb8xk3uRcukRrWK8adfOdPzHZrS3E9WwsRM5V89JAs8Di6e/v54tf/OJFvUHvec972Lx5M729vbz88st84hOf4MiRI3znO9+Z9z0PPPAA/+W//Jda77JgFXFdv3IsEdY4OZ7nqg0JZPl8Olwjrs4qwonXb27h9GSBqbyJB8jSeZFU0wHTdgloCnBeJmQsa5AIaY1l1AkE6xDRz6c5kTzP8y6+2cpw//3384d/+IcLbnPo0CF2795d/X1wcJA3v/nN3HzzzfzFX/zFkr7vscce47bbbqO/v5/t27fPuc1cHqG+vj7S6TTxeGPqMQnOM72Z2XjOlyLQFJkrNsTpSYZmrM4aKRn08HCG//G9Q5i2S6pgUrQdZHwV8JxhYbse6YJFbzJINKBVPUOO63J2qsidV3Tz+29/jVhtCgQNwGp2lhbMTyaTIZFIXHT+rusS8uMf/zj33HPPgtts27at+v9z585xyy23cNNNN/Fnf/ZnS/6+G2+8EWBBQygQCBAIXLwZmaDxmN3MrDcZoj2qc+BchhfOpBjPmbRHAw25OputHxULaViOy1TeJFWwkCQJy/UYTBkEVIuI7stkFC2XkKZy2+XC5S4QNAoibNlc1NUQ6ujooKOjY1HbDg4Ocsstt3Ddddfx4IMPzgh1LJYXX3wRgJ6eniW/V7DyXMoqar5mZhtbwsQCKq8OZeiMB/nwzdvZ1BZpKKNhIf2oWEBlOF3Cdj1aQhoBTaFgOaSKFjnTJhnWuXV3B2/Y3l7vw1hRxApbIBCsFE2RVDA4OMjNN9/M5s2b+dznPsfY2Fj1tUpF2ODgILfddhtf+9rXuOGGGzh+/Djf/OY3+aVf+iXa2tp4+eWX+ehHP8qb3vQmrrrqqnodimAeLlWfZ65mZpN5sypBULIcRjITtIY13vW6vobyBs2nH6XKEuMFEyQJRQZdU2iP6XgelGyXybxJMqjy/7xu05o2Cuqh3SQQCNYPTWEI7du3j/7+fvr7+9m4ceOM1yopTpZlceTIEQqFAgC6rvPDH/6QP/mTPyGfz9PX18fdd9/Npz/96VXff8HC1EKfZ7ZO2mTe5MWBFEXTJhrUiAQUJnIGB4cyPPj4qYbKD5pPP6po2RQMh5awhiRBRyyAYbvYrosqy2xuC9MS1gnpSr0PYcWop3aTQHApCC9m89AUhtA999xz0VyiLVu2MD3vu6+vj/3796/wngkulVrp80xvZhYNqPSP5iiW9Zgkye8lFNRUdnREGckaK675sxTm048ayZY4OJghHlIxHY9r+pJIknSBOnij9EKqNY2g3SQQLAfhxWwumkJiQ7B2WYo+z0JUmpkNpUtkihZTBZNoWVHb8zxyJd/IiIe0RX/majF93ys6a/GQRlfMF2PNFK3qvsdDGu3RAPGQRslyG68XUg2p1b2x1nFdj4HJAoeHMwxMFmbIxghWn4oX88C5NMmwxrb2KMnweTmc/tFsvXdRMIu1OYIKmobZIa3ZhHRlUR2gpzcz6x/LUbIcIgFf2ydXsgnpCts7IkiStOjPXC3ma8QGHi7geLCtPbzuOtXW6t5YywjPQ2MhvJjNifAICerK9LDQXCylA3SlmdmengSO6zGRMyhZLp3xIK/tS1YV3Ruxq/Rc4pfpos0v7Gjn6r4kE3lrxUVwG41a3htrEeF5aDyEF7M5WZ8jiKBhqISFXhlM0x33sMrl47Ggf2su1euxozPGf7rjMsDj4FCGHR1R4iGtOig1sidlPv2oE+O5ddmpVmg3zY/wPDQmwovZnAhDSFBXZFlid0+MRw4O8/LZFJp6vn9OOKCyqTW8ZK+Hqsq863V9PPj4KUayBrIsXVTzp1EqPOZqxLZe1cGFdtP8LMXzIBr7rR5Cgb45EVdDUFf6R7M8dniUeFBDlSVyho1huwyVSnTEAty6u3NZXo+laP40Q57Feu1UK7Sb5kZ4HhoT4cVsToQhJKgb093712xKApAt2ZiOiyZLDGdKHBnOcstlncta9S/Gk9LIfWoaxUtVb9arR2whhOehMRFezOZEPCWCujGXez8eOj+oy7J0ye79hTwpjZxn0QxeqtVkvXrE5kN4HhoX4cVsPoQhJKgb9XbvN2qeRSN7qQSNgfA8NDbCi9lcCENIUDfq7d6vtyE2F43spRI0FsLz0NgIL2bzIAwhQd2ot3u/3obYXDSql0rQmAjPg0Bw6QhDSFA36u3er7chNheN6KUSNDbC8yAQXBqis7SgrszVUTlVsLhyQ2LFc2EqhlhrROfYaK4hOjeLbsoCgUCwuojRVFB36uneb7Q8i0b0UgkEAsFaRhhCgoagnu79RsqzqHipBlNFXjqboiWsEw9qKDIMZwxRDSQQCAQ1RhhCgjXDpTQgbLQ8i6AqM5Y1OTaaQwISIY3Xb2vjPTduEtVAAoFAUEOEISSoK67rMTBV4OR4HoBt7RE2toSX7PFYKw0Ip/cQunFrC44LmZLFVMGkZDn13j2BQCBYcwhDSFA3+kezfPPJMzx5cpJU0UTyIBFeuudjrTQgnK+HUEtEZ1NrWPQQEggEghVAVI0J6kL/aJY/+eEx9h0aIW/YdEQDtMV0CobNvoMj/MkPj9E/mr3o58w2HmJBDUWWiAU1dnZGmcybPPLqCK7rrcJRXRpL6SEkEAgEgtogDCHBquO6Hg+/MszRkSy6KtMVDxDUFEKaSmc8iK5IHB32Q10XM2DWkvFwvofQ3I7akK5g2I7oISQQCAQ1RBhCglVnMFXklcE0jusRC2ozDBhJkoiFNBzP4+XB1EUNmFoYD67rMTBZ4PBwhoHJQt28R6KHkEAgEKw+YkQVrDp50yZv+ZO9plyY66IpMuBRMC/u/bhUmYxGSrIWPYQEAoFg9REeIcGqE9FVIppvmFjOhd4Xy3EBibB+ce9HxXgYSpfwvJmfVTEednRG5zQeKknWB86lSYY1trVHSYY1DpxL8+DjpxaVo1RLGrHTtUAgEKx1hCEkWHU2JENcuSGBIktkSxau62JYDgXTpmQ5ZIoWiiRx1YbkRb0fyzUeGjXJup6SIwKBQLAeEaExwaojyxJ3XtnN4ZEsz56aYiJn4uHheR6266EqMtf2tXDHFYvzfswlk6ErMptaw1y3uYWAquC63ozPamSV90bqdC0QCARrHWEICerCjs4Yv3LNBo6NZMkbFq7nIUkSQVUhFtKIBpd2a043Hg4NZ3j25CSjmRIPvTjIwweGL8j7aXSV90brdC0QCARrFWEICeqC63ocHsqytT3K67e2kirZ4EFLWCMWVOkfyy+5eaAsSxi2w/4jY9OaK6pzNle81CRrgUAgEKwNRI6QoC5UQlO9ySDJSIAtbRG2tEdIhHVkWV5W/5+l5P1cSpK1QCAQCNYOwhAS1IWVaB64lLwfUaElEAgEAhCGkKBOrETzwKUaV6JCSyAQCAQiAUJQF1aieeBy8n5EhZZAIBCsb4QhJKgLldDUuXSRY6N+OCukKxRNh6F0aVmhqeUaV6JCSyAQCNYvIjQmqBu1Dk2JvB+BQCAQLBXJm10yI5hBJpMhkUiQTqeJx+P13p01iet6NQ1NTdcPM2w/HLajM8pbXrP6+mECgUAgqA+Lnb9FaExQd2odmhJ5PwKBQCBYLMIQEqxJRN6PQCAQCBZD0+QI/Zt/82/YtGkTwWCQnp4e/t2/+3ecO3duwfeUSiXuu+8+2traiEaj3H333YyMjKzSHgsEAoFAIGh0msYQuuWWW/j7v/97jhw5wv/9v/+X48eP86u/+qsLvuejH/0o//zP/8y3v/1t9u/fz7lz57jrrrtWaY8FAoFAIBA0Ok2bLP1P//RPvPOd78QwDDTtwp4x6XSajo4OvvnNb1YNpsOHD3P55ZfzxBNP8PrXv35R3yOSpQUCgUAgaD4WO383jUdoOpOTk3zjG9/gpptumtMIAnjuueewLIvbb7+9+rfdu3ezadMmnnjiiXk/2zAMMpnMjB+BQCAQCARrk6YyhD7xiU8QiURoa2vjzJkz/OM//uO82w4PD6PrOslkcsbfu7q6GB4envd9DzzwAIlEovrT19dXq90XCAQCgUDQYNTVELr//vuRJGnBn8OHD1e3/93f/V1eeOEFHnnkERRF4d//+39/gXL4pfLJT36SdDpd/RkYGKjp5wtWBtf1GJgscHg4w8BkAddtyoivQCAQCFaZupbPf/zjH+eee+5ZcJtt27ZV/9/e3k57ezu7du3i8ssvp6+vjyeffJK9e/de8L7u7m5M0ySVSs3wCo2MjNDd3T3v9wUCAQKBwJKPRVA/pjdQLNkOQVVhe0eUO64QDRQFAoFAsDB1NYQ6Ojro6OhY1ntd1wX8nJ65uO6669A0jUcffZS7774bgCNHjnDmzJk5DSdBc9I/muXBx08xmTfpSQQJ6yEKps2Bc2nOpYtCRV4gEAgEC9IUOUJPPfUU//t//29efPFFTp8+zWOPPca73/1utm/fXjVqBgcH2b17N08//TQAiUSCe++9l4997GP86Ec/4rnnnuP9738/e/fuXXTFmKCxcV2Pfz0wwmTeZGdnlFhQQ5ElYkGNnZ1RJvMmj7w6IsJkAoFAIJiXpjCEwuEw3/nOd7jtttu47LLLuPfee7nqqqvYv39/NYxlWRZHjhyhUChU3/f5z3+et7/97dx999286U1voru7m+985zv1OgxBjRlMFTk+5ivXT1eaB5AkiZ5EkP7RHIOpYp32UCAQCASNTtP2EVotRB+hxuXwcIYvPHqMbe1RlDl0xGzX5dR4nt+6bSe7u8W1EwgEgvXEmu4jJBAARHSVoKpQMO05Xy+avvJ8RBeSegKBQCCYG2EICZqWDckQ2zuiDKVLF7RR8DyPoXSJHZ1RNiRDddpDgUAgEDQ6whASNC2yLHHHFV20RnSOjebIlixs1yVbsjg2mqM1ovOW13QhzxE2EwgEAoEAhCEkaHJ2dMZ4/xu2cEVvglTB4tR4nlTB4soNCVE6LxAIBIKLIpInBE3Pjs4Y226OMpgqkjdtIrrKhmRIeIIEAoFAcFGEISRYE8iyRF9ruN67IRAIBIImQ4TGBAKBQCAQrFuEISQQCAQCgWDdIgwhgUAgEAgE6xZhCAkEAoFAIFi3CENIIBAIBALBukUYQgKBQCAQCNYtwhASCAQCgUCwbhGGkEAgEAgEgnWLMIQEAoFAIBCsW0Rn6YtQUTXPZDJ13hOBQCAQCASLpTJvV+bx+RCG0EXIZrMA9PX11XlPBAKBQCAQLJVsNksikZj3dcm7mKm0znFdl3PnzhGLxZCk2ol4ZjIZ+vr6GBgYIB6P1+xzBUtDXIf6I65B/RHXoP6Ia1B7PM8jm83S29uLLM+fCSQ8QhdBlmU2bty4Yp8fj8fFTd8AiOtQf8Q1qD/iGtQfcQ1qy0KeoAoiWVogEAgEAsG6RRhCAoFAIBAI1i3CEKoTgUCAz3zmMwQCgXrvyrpGXIf6I65B/RHXoP6Ia1A/RLK0QCAQCASCdYvwCAkEAoFAIFi3CENIIBAIBALBukUYQgKBQCAQCNYtwhASCAQCgUCwbhGGUJ340pe+xJYtWwgGg9x44408/fTT9d6lNcNPfvITfvmXf5ne3l4kSeKhhx6a8brnefz+7/8+PT09hEIhbr/9do4dOzZjm8nJSd773vcSj8dJJpPce++95HK5VTyK5uaBBx7gda97HbFYjM7OTt75zndy5MiRGduUSiXuu+8+2traiEaj3H333YyMjMzY5syZM7ztbW8jHA7T2dnJ7/7u72Lb9moeStPy5S9/mauuuqraoG/v3r384Ac/qL4uzv/q89nPfhZJkvjIRz5S/Zu4DvVHGEJ14O/+7u/42Mc+xmc+8xmef/55rr76au644w5GR0frvWtrgnw+z9VXX82XvvSlOV//oz/6I77whS/wp3/6pzz11FNEIhHuuOMOSqVSdZv3vve9vPrqq+zbt49/+Zd/4Sc/+Qm//uu/vlqH0PTs37+f++67jyeffJJ9+/ZhWRZvectbyOfz1W0++tGP8s///M98+9vfZv/+/Zw7d4677rqr+rrjOLztbW/DNE1+/vOf89WvfpW//uu/5vd///frcUhNx8aNG/nsZz/Lc889x7PPPsutt97KO97xDl599VVAnP/V5plnnuErX/kKV1111Yy/i+vQAHiCVeeGG27w7rvvvurvjuN4vb293gMPPFDHvVqbAN53v/vd6u+u63rd3d3e//yf/7P6t1Qq5QUCAe9v//ZvPc/zvIMHD3qA98wzz1S3+cEPfuBJkuQNDg6u2r6vJUZHRz3A279/v+d5/jnXNM379re/Xd3m0KFDHuA98cQTnud53ve//31PlmVveHi4us2Xv/xlLx6Pe4ZhrO4BrBFaWlq8v/iLvxDnf5XJZrPezp07vX379nlvfvObvd/5nd/xPE88B42C8AitMqZp8txzz3H77bdX/ybLMrfffjtPPPFEHfdsfXDy5EmGh4dnnP9EIsGNN95YPf9PPPEEyWSS66+/vrrN7bffjizLPPXUU6u+z2uBdDoNQGtrKwDPPfcclmXNuA67d+9m06ZNM67DlVdeSVdXV3WbO+64g0wmU/VqCBaH4zh861vfIp/Ps3fvXnH+V5n77ruPt73tbTPON4jnoFEQoqurzPj4OI7jzLipAbq6ujh8+HCd9mr9MDw8DDDn+a+8Njw8TGdn54zXVVWltbW1uo1g8biuy0c+8hHe8IY3cMUVVwD+OdZ1nWQyOWPb2ddhrutUeU1wcV555RX27t1LqVQiGo3y3e9+lz179vDiiy+K879KfOtb3+L555/nmWeeueA18Rw0BsIQEggEK8p9993HgQMH+NnPflbvXVl3XHbZZbz44ouk02n+4R/+gfe9733s37+/3ru1bhgYGOB3fud32LdvH8FgsN67I5gHERpbZdrb21EU5YKqgJGREbq7u+u0V+uHyjle6Px3d3dfkLhu2zaTk5PiGi2RD3/4w/zLv/wLP/rRj9i4cWP1793d3ZimSSqVmrH97Osw13WqvCa4OLqus2PHDq677joeeOABrr76av7X//pf4vyvEs899xyjo6Nce+21qKqKqqrs37+fL3zhC6iqSldXl7gODYAwhFYZXde57rrrePTRR6t/c12XRx99lL1799Zxz9YHW7dupbu7e8b5z2QyPPXUU9Xzv3fvXlKpFM8991x1m8ceewzXdbnxxhtXfZ+bEc/z+PCHP8x3v/tdHnvsMbZu3Trj9euuuw5N02ZchyNHjnDmzJkZ1+GVV16ZYZTu27ePeDzOnj17VudA1hiu62IYhjj/q8Rtt93GK6+8wosvvlj9uf7663nve99b/b+4Dg1AvbO11yPf+ta3vEAg4P31X/+1d/DgQe/Xf/3XvWQyOaMqQLB8stms98ILL3gvvPCCB3h//Md/7L3wwgve6dOnPc/zvM9+9rNeMpn0/vEf/9F7+eWXvXe84x3e1q1bvWKxWP2MO++807vmmmu8p556yvvZz37m7dy503v3u99dr0NqOn7jN37DSyQS3o9//GNvaGio+lMoFKrbfOhDH/I2bdrkPfbYY96zzz7r7d2719u7d2/1ddu2vSuuuMJ7y1ve4r344oveww8/7HV0dHif/OQn63FITcf999/v7d+/3zt58qT38ssve/fff78nSZL3yCOPeJ4nzn+9mF415nniOjQCwhCqE1/84he9TZs2ebquezfccIP35JNP1nuX1gw/+tGPPOCCn/e9732e5/kl9L/3e7/ndXV1eYFAwLvtttu8I0eOzPiMiYkJ793vfrcXjUa9eDzuvf/97/ey2WwdjqY5mev8A96DDz5Y3aZYLHq/+Zu/6bW0tHjhcNj7lV/5FW9oaGjG55w6dcp761vf6oVCIa+9vd37+Mc/7lmWtcpH05x84AMf8DZv3uzpuu51dHR4t912W9UI8jxx/uvFbENIXIf6I3me59XHFyUQCAQCgUBQX0SOkEAgEAgEgnWLMIQEAoFAIBCsW4QhJBAIBAKBYN0iDCGBQCAQCATrFmEICQQCgUAgWLcIQ0ggEAgEAsG6RRhCAoFAIBAI1i3CEBIIBOsWSZJ46KGH6r0bAoGgjghDSCAQNCX33HMP73znO+u9GwKBoMkRhpBAIBAIBIJ1izCEBAJB03PzzTfz27/92/yn//SfaG1tpbu7m//8n//zjG2OHTvGm970JoLBIHv27GHfvn0XfM7AwADvete7SCaTtLa28o53vINTp04BcPjwYcLhMN/85jer2//93/89oVCIgwcPruThCQSCFUQYQgKBYE3w1a9+lUgkwlNPPcUf/dEf8Qd/8AdVY8d1Xe666y50Xeepp57iT//0T/nEJz4x4/2WZXHHHXcQi8X46U9/yuOPP040GuXOO+/ENE12797N5z73OX7zN3+TM2fOcPbsWT70oQ/xh3/4h+zZs6cehywQCGqAEF0VCARNyT333EMqleKhhx7i5ptvxnEcfvrTn1Zfv+GGG7j11lv57Gc/yyOPPMLb3vY2Tp8+TW9vLwAPP/wwb33rW/nud7/LO9/5Tr7+9a/z3/7bf+PQoUNIkgSAaZokk0keeugh3vKWtwDw9re/nUwmg67rKIrCww8/XN1eIBA0H2q9d0AgEAhqwVVXXTXj956eHkZHRwE4dOgQfX19VSMIYO/evTO2f+mll+jv7ycWi834e6lU4vjx49Xf/+qv/opdu3YhyzKvvvqqMIIEgiZHGEICgWBNoGnajN8lScJ13UW/P5fLcd111/GNb3zjgtc6Ojqq/3/ppZfI5/PIsszQ0BA9PT3L32mBQFB3hCEkEAjWPJdffjkDAwMzDJcnn3xyxjbXXnstf/d3f0dnZyfxeHzOz5mcnOSee+7hU5/6FENDQ7z3ve/l+eefJxQKrfgxCASClUEkSwsEgjXP7bffzq5du3jf+97HSy+9xE9/+lM+9alPzdjmve99L+3t7bzjHe/gpz/9KSdPnuTHP/4xv/3bv83Zs2cB+NCHPkRfXx+f/vSn+eM//mMcx+E//sf/WI9DEggENUIYQgKBYM0jyzLf/e53KRaL3HDDDfyH//Af+O///b/P2CYcDvOTn/yETZs2cdddd3H55Zdz7733UiqViMfjfO1rX+P73/8+f/M3f4OqqkQiEb7+9a/z53/+5/zgBz+o05EJBIJLRVSNCQQCgUAgWLcIj5BAIBAIBIJ1izCEBAKBQCAQrFuEISQQCAQCgWDdIgwhgUAgEAgE6xZhCAkEAoFAIFi3CENIIBAIBALBukUYQgKBQCAQCNYtwhASCAQCgUCwbhGGkEAgEAgEgnWLMIQEAoFAIBCsW4QhJBAIBAKBYN0iDCGBQCAQCATrlv8fgageE+7uTSEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# residuals versus order\n", + "plt.scatter(range(len(X[:,1:2])), res, alpha=0.5)\n", + "plt.xlabel(\"Index\")\n", + "plt.ylabel(\"Residuals\")\n", + "plt.title(\"Residual Plot vs. Order\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "wafflers", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/eda/eda3.ipynb b/eda/eda3.ipynb new file mode 100644 index 0000000..e9f8948 --- /dev/null +++ b/eda/eda3.ipynb @@ -0,0 +1,6082 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/homebrew/Caskroom/miniconda/base/envs/wafflers/lib/python3.11/site-packages/pandasdmx/remote.py:11: RuntimeWarning: optional dependency requests_cache is not installed; cache options to Session() have no effect\n", + " warn(\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import plotly.express as px\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "import pandasdmx as sdmx\n", + "from functools import reduce" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Fetching & Basic Manipulation" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "estat = sdmx.Request(\"ESTAT\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Carbon Data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-06-06 01:29:44,221 pandasdmx.reader.sdmxml - INFO: Use supplied dsd=… argument for non–structure-specific message\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yeargeovalue
01985ATNaN
11986ATNaN
21987ATNaN
31988ATNaN
41989ATNaN
\n", + "
" + ], + "text/plain": [ + " year geo value\n", + "0 1985 AT NaN\n", + "1 1986 AT NaN\n", + "2 1987 AT NaN\n", + "3 1988 AT NaN\n", + "4 1989 AT NaN" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "resp = estat.data(\n", + "\t\"ENV_AIR_GGE\",\n", + "\tkey={\n", + "\t\t\"unit\": \"THS_T\",\n", + "\t\t\"freq\": \"A\",\n", + "\t\t\"src_crf\": \"TOTX4_MEMONIA\",\n", + "\t\t\"airpol\": \"GHG\"\n", + "\t}\n", + ")\n", + "emission_df = resp.to_pandas(datetime={'dim': 'TIME_PERIOD'}).droplevel(level=['unit', 'freq', 'src_crf', 'airpol'], axis=1)\n", + "emission_df.reset_index(inplace=True)\n", + "emission_df[\"year\"] = emission_df[\"TIME_PERIOD\"].dt.year\n", + "emission_df.drop(\"TIME_PERIOD\", inplace=True, axis=1)\n", + "emission_melted_df = pd.melt(emission_df, id_vars=\"year\")\n", + "\n", + "emission_melted_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Energy Data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def get_melted_energy_dfs(code: str) -> pd.DataFrame:\n", + "\t\"\"\"\n", + "\tA quick helper to get, parse, and melt the dataframes for a given energy `nrg_bal`.\n", + "\n", + "\t:param code: The `nrg_bal` code to fetch and melt\n", + "\t:returns: A melted dataframe\n", + "\t\"\"\"\n", + "\tresp = estat.data(\n", + "\t\t\"NRG_D_HHQ\",\n", + "\t\tkey={\n", + "\t\t\t\"siec\": \"TOTAL\",\n", + "\t\t\t\"unit\": \"TJ\",\n", + "\t\t\t\"nrg_bal\": code,\n", + "\t\t\t\"freq\": \"A\",\n", + "\t\t}\n", + "\t)\n", + "\thousehold_energy_df = resp.to_pandas(datetime={'dim': 'TIME_PERIOD', 'freq': 'freq'}).droplevel(level=[\"siec\", \"unit\", \"nrg_bal\"], axis=1)\n", + "\n", + "\thousehold_energy_df.reset_index(inplace=True)\n", + "\thousehold_energy_df[\"year\"] = household_energy_df[\"TIME_PERIOD\"].dt.year\n", + "\thousehold_energy_df.drop(\"TIME_PERIOD\", inplace=True, axis=1)\n", + "\thousehold_energy_melted_df = pd.melt(household_energy_df, id_vars=\"year\")\n", + "\thousehold_energy_melted_df.columns = [\"year\", \"geo\", code]\n", + "\treturn household_energy_melted_df" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-06-06 01:29:45,509 pandasdmx.reader.sdmxml - INFO: Use supplied dsd=… argument for non–structure-specific message\n", + "/opt/homebrew/Caskroom/miniconda/base/envs/wafflers/lib/python3.11/functools.py:909: FutureWarning: 'A' is deprecated and will be removed in a future version, please use 'Y' instead.\n", + " return dispatch(args[0].__class__)(*args, **kw)\n", + "2024-06-06 01:29:45,631 pandasdmx.reader.sdmxml - INFO: Use supplied dsd=… argument for non–structure-specific message\n", + "/opt/homebrew/Caskroom/miniconda/base/envs/wafflers/lib/python3.11/functools.py:909: FutureWarning: 'A' is deprecated and will be removed in a future version, please use 'Y' instead.\n", + " return dispatch(args[0].__class__)(*args, **kw)\n", + "2024-06-06 01:29:45,836 pandasdmx.reader.sdmxml - INFO: Use supplied dsd=… argument for non–structure-specific message\n", + "/opt/homebrew/Caskroom/miniconda/base/envs/wafflers/lib/python3.11/functools.py:909: FutureWarning: 'A' is deprecated and will be removed in a future version, please use 'Y' instead.\n", + " return dispatch(args[0].__class__)(*args, **kw)\n", + "2024-06-06 01:29:45,955 pandasdmx.reader.sdmxml - INFO: Use supplied dsd=… argument for non–structure-specific message\n", + "/opt/homebrew/Caskroom/miniconda/base/envs/wafflers/lib/python3.11/functools.py:909: FutureWarning: 'A' is deprecated and will be removed in a future version, please use 'Y' instead.\n", + " return dispatch(args[0].__class__)(*args, **kw)\n", + "2024-06-06 01:29:46,068 pandasdmx.reader.sdmxml - INFO: Use supplied dsd=… argument for non–structure-specific message\n", + "/opt/homebrew/Caskroom/miniconda/base/envs/wafflers/lib/python3.11/functools.py:909: FutureWarning: 'A' is deprecated and will be removed in a future version, please use 'Y' instead.\n", + " return dispatch(args[0].__class__)(*args, **kw)\n" + ] + } + ], + "source": [ + "codes = [\"FC_OTH_HH_E_SH\", \"FC_OTH_HH_E_SC\", \"FC_OTH_HH_E_WH\", \"FC_OTH_HH_E_CK\", \"FC_OTH_HH_E\"]\n", + "energy_dfs = [get_melted_energy_dfs(code) for code in codes]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-06-06 01:29:47,302 pandasdmx.reader.sdmxml - INFO: Use supplied dsd=… argument for non–structure-specific message\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yeargeovalue
02011AL115.592
12012AL100.745
22013AL109.229
32014AL109.229
42015AL109.229
\n", + "
" + ], + "text/plain": [ + " year geo value\n", + "0 2011 AL 115.592\n", + "1 2012 AL 100.745\n", + "2 2013 AL 109.229\n", + "3 2014 AL 109.229\n", + "4 2015 AL 109.229" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "resp = estat.data(\n", + "\t\"TEN00127\",\n", + "\tkey={\n", + "\t\t\"unit\": \"KTOE\",\n", + "\t\t\"freq\": \"A\",\n", + "\t\t\"siec\": \"O4652XR5210B\",\n", + "\t\t\"nrg_bal\": \"FC_TRA_ROAD_E\"\n", + "\t}\n", + ")\n", + "gas_df = resp.to_pandas(datetime={'dim': 'TIME_PERIOD'}).droplevel(level=['unit', 'freq', 'siec', \"nrg_bal\"], axis=1)\n", + "gas_df.reset_index(inplace=True)\n", + "gas_df[\"year\"] = gas_df[\"TIME_PERIOD\"].dt.year\n", + "gas_df.drop(\"TIME_PERIOD\", inplace=True, axis=1)\n", + "gas_melted_df = pd.melt(gas_df, id_vars=\"year\")\n", + "\n", + "gas_melted_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Merge Datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yeargeocarbonenergy_heatingenergy_coolingenergy_water_heatingenergy_cookinghousehold_totalgas
02011AT84795.76190731.84625.12341343.6126891.695274577.0581632.260
12012AT81981.39195419.27834.21541839.2517026.774279812.5561585.826
22013AT82304.13205494.88531.03541541.8237353.560289591.8631554.830
32014AT78716.82178513.71727.64542495.3917152.047261676.4311524.254
42015AT81081.58193886.97925.71442104.9657179.133278096.4221539.983
\n", + "
" + ], + "text/plain": [ + " year geo carbon energy_heating energy_cooling energy_water_heating \\\n", + "0 2011 AT 84795.76 190731.846 25.123 41343.612 \n", + "1 2012 AT 81981.39 195419.278 34.215 41839.251 \n", + "2 2013 AT 82304.13 205494.885 31.035 41541.823 \n", + "3 2014 AT 78716.82 178513.717 27.645 42495.391 \n", + "4 2015 AT 81081.58 193886.979 25.714 42104.965 \n", + "\n", + " energy_cooking household_total gas \n", + "0 6891.695 274577.058 1632.260 \n", + "1 7026.774 279812.556 1585.826 \n", + "2 7353.560 289591.863 1554.830 \n", + "3 7152.047 261676.431 1524.254 \n", + "4 7179.133 278096.422 1539.983 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "to_merge_dfs = [emission_melted_df, *energy_dfs, gas_melted_df]\n", + "columns = [\"year\", \"geo\", \"carbon\", \"energy_heating\", \"energy_cooling\", \"energy_water_heating\", \"energy_cooking\", \"household_total\", \"gas\"]\n", + "res_carbon_df = reduce(lambda l, r: pd.merge(l, r, left_on=[\"year\", \"geo\"], right_on=[\"year\", \"geo\"]), to_merge_dfs)\n", + "res_carbon_df.columns = columns\n", + "res_carbon_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yeargeocarbonenergy_heatingenergy_coolingenergy_water_heatingenergy_cookinghousehold_totalgas
02011AT84795.76190731.84625.12341343.6126891.695274577.0581632.260
12012AT81981.39195419.27834.21541839.2517026.774279812.5561585.826
22013AT82304.13205494.88531.03541541.8237353.560289591.8631554.830
32014AT78716.82178513.71727.64542495.3917152.047261676.4311524.254
42015AT81081.58193886.97925.71442104.9657179.133278096.4221539.983
\n", + "
" + ], + "text/plain": [ + " year geo carbon energy_heating energy_cooling energy_water_heating \\\n", + "0 2011 AT 84795.76 190731.846 25.123 41343.612 \n", + "1 2012 AT 81981.39 195419.278 34.215 41839.251 \n", + "2 2013 AT 82304.13 205494.885 31.035 41541.823 \n", + "3 2014 AT 78716.82 178513.717 27.645 42495.391 \n", + "4 2015 AT 81081.58 193886.979 25.714 42104.965 \n", + "\n", + " energy_cooking household_total gas \n", + "0 6891.695 274577.058 1632.260 \n", + "1 7026.774 279812.556 1585.826 \n", + "2 7353.560 289591.863 1554.830 \n", + "3 7152.047 261676.431 1524.254 \n", + "4 7179.133 278096.422 1539.983 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res_carbon_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
carbonenergy_heatingenergy_coolingenergy_water_heatingenergy_cookinghousehold_totalgas
carbon1.0000000.9538690.8603130.9537790.9583190.9559140.996808
energy_heating0.9538691.0000000.9271610.9949030.9931740.9993840.957200
energy_cooling0.8603130.9271611.0000000.9275690.9333070.9327790.871504
energy_water_heating0.9537790.9949030.9275691.0000000.9943550.9969310.958940
energy_cooking0.9583190.9931740.9333070.9943551.0000000.9951920.960886
household_total0.9559140.9993840.9327790.9969310.9951921.0000000.959322
gas0.9968080.9572000.8715040.9589400.9608860.9593221.000000
\n", + "
" + ], + "text/plain": [ + " carbon energy_heating energy_cooling \\\n", + "carbon 1.000000 0.953869 0.860313 \n", + "energy_heating 0.953869 1.000000 0.927161 \n", + "energy_cooling 0.860313 0.927161 1.000000 \n", + "energy_water_heating 0.953779 0.994903 0.927569 \n", + "energy_cooking 0.958319 0.993174 0.933307 \n", + "household_total 0.955914 0.999384 0.932779 \n", + "gas 0.996808 0.957200 0.871504 \n", + "\n", + " energy_water_heating energy_cooking household_total \\\n", + "carbon 0.953779 0.958319 0.955914 \n", + "energy_heating 0.994903 0.993174 0.999384 \n", + "energy_cooling 0.927569 0.933307 0.932779 \n", + "energy_water_heating 1.000000 0.994355 0.996931 \n", + "energy_cooking 0.994355 1.000000 0.995192 \n", + "household_total 0.996931 0.995192 1.000000 \n", + "gas 0.958940 0.960886 0.959322 \n", + "\n", + " gas \n", + "carbon 0.996808 \n", + "energy_heating 0.957200 \n", + "energy_cooling 0.871504 \n", + "energy_water_heating 0.958940 \n", + "energy_cooking 0.960886 \n", + "household_total 0.959322 \n", + "gas 1.000000 " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res_carbon_df.iloc[:, 2:].corr()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.cm as cm" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Greenhouse Gas Emissions (ktonne CO2 equivelent)')" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACqtklEQVR4nOzdd3hUVfrA8e+5d1p6IY0eCL0oCIIKKipYsLu7FnBVrKtrWbDh7optbasotlVX96fiYsWyawFB0FURG01Qem9JICF9MuXe8/tjyMiYADMwISS8n+eZB+bcO/e+dzLlnVOV1lojhBBCCNFCGE0dgBBCCCFEPElyI4QQQogWRZIbIYQQQrQoktwIIYQQokWR5EYIIYQQLYokN0IIIYRoUSS5EUIIIUSLIsmNEEIIIVoUSW6EEEII0aJIciPEHuTn53PZZZftdb+qqiquvPJK8vLyUErxpz/9qdFjayrr1q1DKcXLL78cLrv77rtRSjVdUGKffP755yilmDp1alOH0qw19J6IF6UUd999d9yP29JJcnMQefnll1FK7fb2zTffNHWIjabuw+HRRx9tcPujjz6KUop169Yd2MCi9MADD/Dyyy9z7bXX8uqrr/L73/++0c9pWRYvvfQSw4YNIzMzE7fbTX5+PmPGjOGHH35o9PML+PHHHxkzZgydOnXC4/GQnJxMv379uO2221izZk1Th3fIGzZs2G4/T3v06NHU4YlG5GjqAER99957L506dapX3qVLlyaIRkRj9uzZHHXUUdx1110H5Hxer5fzzjuP6dOnc9xxx/HnP/+ZzMxM1q1bx1tvvcUrr7zChg0baNeu3QGJ569//Svjx48/IOc6WLzwwgtce+21ZGVlMXr0aHr06EEwGGTJkiVMnjyZSZMm4fV6MU2zqUM9pLVr144HH3ywXnlaWlrcztGxY0e8Xi9OpzNux6zj9XpxOOSrOlbyjB2ETjvtNAYOHNjUYVBdXU1SUlJTh9EsFBcX06tXr7gdLxgMYts2Lperwe233nor06dP5/HHH6/XBHbXXXfx+OOPxy2WaDgcjkPqA/jrr7/m2muvZciQIXz44YekpKREbJ84cSL333//Xo9TU1NDYmJiY4UpCCUxF198caOeQymFx+NplGM31nFbOmmWaoZ2bcL55z//SUFBAW63myOPPJLvv/++3v7Lli3jt7/9LZmZmXg8HgYOHMh///vfiH3qmsT+97//cd1115GTkxPxq/+ZZ56hc+fOJCQkMGjQIL788kuGDRvGsGHDgFCfk6SkJG666aZ659+0aROmaTb462l//PDDD5xyyilkZWWRkJBAp06duPzyyyP2sW2bSZMm0bt3bzweD7m5uVxzzTXs2LEjYj+tNX/7299o164diYmJnHDCCfz00097jaGuz8LatWv56KOPwlXedc1nxcXFXHHFFeTm5uLxeDj88MN55ZVXIo6x699z0qRJ4b/nzz//3OA5N23axPPPP8+IESMa7Ntjmia33HJLxN9vwYIFnHbaaaSmppKcnMxJJ53UYDPnmjVr+N3vfkdmZiaJiYkcddRRfPTRR3t9Hhrqc6OU4vrrr+f999+nT58+uN1uevfuzfTp0+s9/vPPP2fgwIF4PB4KCgp4/vnno+rHc/3115OcnExNTU29bRdddBF5eXlYlgVE93qJ1j333INSiilTptRLbCD0hXTfffdF1NoMGzaMPn36MG/ePI477jgSExP585//DIDP5+Ouu+6iS5cuuN1u2rdvz2233YbP56t37H//+98MGDCAhIQEMjMzufDCC9m4cWPEPnXn+vnnnznhhBNITEykbdu2/P3vf2/wemzb5v7776ddu3Z4PB5OOukkVq1aVW+/t99+O3zurKwsLr74YjZv3lzv3HWfC7u67LLLyM/Pjyh74403GDBgACkpKaSmptK3b1+eeOKJiH3Kysr405/+RPv27XG73XTp0oWHH34Y27YbvJZ9UfdaW7FiBRdffDFpaWlkZ2dz5513orVm48aNnH322aSmppKXl8fEiRMjHt9Qn5vCwkLGjBlDu3btcLvdtG7dmrPPPjuiaT2a12RDfW6ieT/XfabPmTOHcePGkZ2dTVJSEueeey7btm2L2Dee742DxaHzU6sZKS8vZ/v27RFlSilatWoVUfbaa69RWVnJNddcg1KKv//975x33nmsWbMmXD36008/MWTIENq2bcv48eNJSkrirbfe4pxzzuGdd97h3HPPjTjmddddR3Z2NhMmTKC6uhqAZ599luuvv55jjz2WsWPHsm7dOs455xwyMjLCX6DJycmce+65vPnmmzz22GMRH+qvv/46WmtGjx4dt+eouLiYk08+mezsbMaPH096ejrr1q3j3Xffjdjvmmuu4eWXX2bMmDHceOONrF27lqeffpoFCxYwZ86c8PM0YcIE/va3vzFy5EhGjhzJ/PnzOfnkk/H7/XuMo2fPnrz66quMHTuWdu3acfPNNwOQnZ2N1+tl2LBhrFq1iuuvv55OnTrx9ttvc9lll1FWVlYvEXzppZeora3l6quvxu12k5mZ2eA5p02bRjAYjLpfz08//cSxxx5Lamoqt912G06nk+eff55hw4bxv//9j8GDBwNQVFTEMcccQ01NDTfeeCOtWrXilVde4ayzzmLq1Kn1XivR+Oqrr3j33Xe57rrrSElJ4cknn+Q3v/kNGzZsCL+eFyxYwKmnnkrr1q255557sCyLe++9l+zs7L0e/4ILLuCZZ57ho48+4ne/+124vKamhg8++IDLLrsM0zSjfr1Eo6amhtmzZzNs2LCYm/1KSko47bTTuPDCC7n44ovJzc3Ftm3OOussvvrqK66++mp69uzJ4sWLefzxx1mxYgXvv/9++PH3338/d955J+effz5XXnkl27Zt46mnnuK4445jwYIFpKenh/fdsWMHp556Kueddx7nn38+U6dO5fbbb6dv376cdtppEXE99NBDGIbBLbfcQnl5OX//+98ZPXo03377bXifuvfRkUceyYMPPkhRURFPPPEEc+bMqXfuaMycOZOLLrqIk046iYcffhiApUuXMmfOnPB7o6amhuOPP57NmzdzzTXX0KFDB77++mvuuOMOtm7dyqRJk/Z6Hsuy6n2eAiQkJNSrmb7gggvo2bMnDz30EB999BF/+9vfyMzM5Pnnn+fEE0/k4YcfZsqUKdxyyy0ceeSRHHfccbs9729+8xt++uknbrjhBvLz8ykuLmbmzJls2LAhfH9fXpPRvp/r3HDDDWRkZHDXXXexbt06Jk2axPXXX8+bb74JRP9Z2uxocdB46aWXNNDgze12h/dbu3atBnSrVq10aWlpuPw///mPBvQHH3wQLjvppJN03759dW1tbbjMtm19zDHH6K5du9Y799ChQ3UwGAyX+3w+3apVK33kkUfqQCAQLn/55Zc1oI8//vhw2SeffKIBPW3atIjrOuywwyL2a0jdNT3yyCMNbn/kkUc0oNeuXau11vq9997TgP7+++93e8wvv/xSA3rKlCkR5dOnT48oLy4u1i6XS59++unatu3wfn/+8581oC+99NI9xq611h07dtSnn356RNmkSZM0oP/973+Hy/x+vz766KN1cnKyrqioiLj21NRUXVxcvNdzjR07VgN6wYIFe91Xa63POecc7XK59OrVq8NlW7Zs0SkpKfq4444Ll/3pT3/SgP7yyy/DZZWVlbpTp046Pz9fW5YVEe9LL70U3u+uu+7Sv/44AbTL5dKrVq0Kly1atEgD+qmnngqXnXnmmToxMVFv3rw5XLZy5UrtcDjqHfPXbNvWbdu21b/5zW8iyt966y0N6C+++EJrHd3rJVp11/CnP/2p3raSkhK9bdu28M3n84W3HX/88RrQzz33XMRjXn31VW0YRsTzrrXWzz33nAb0nDlztNZar1u3Tpumqe+///6I/RYvXqwdDkdEed25Jk+eHC7z+Xw6Ly8v4rn67LPPNKB79uwZEesTTzyhAb148WKtdeh1m5OTo/v06aO9Xm94vw8//FADesKECRHnbuj9fumll+qOHTuG79900006NTU14vPm1+677z6dlJSkV6xYEVE+fvx4bZqm3rBhw24fu+vz0NDtmmuuCe9X9/q9+uqrw2XBYFC3a9dOK6X0Qw89FC7fsWOHTkhIiPhc+PV7YseOHXv8PNM6+tckoO+6667w/Wjfz3Wf6cOHD4/4XBs7dqw2TVOXlZXFFEdzI81SB6FnnnmGmTNnRtymTZtWb78LLriAjIyM8P1jjz0WIDxKo7S0lNmzZ3P++edTWVnJ9u3b2b59OyUlJZxyyimsXLmyXpXyVVddFVHr8sMPP1BSUsJVV10V0adi9OjREecGGD58OG3atGHKlCnhsiVLlvDjjz/Gvc277lfihx9+SCAQaHCft99+m7S0NEaMGBG+9u3btzNgwACSk5P57LPPAPj000/x+/3ccMMNEc0g+zuc++OPPyYvL4+LLrooXOZ0Ornxxhupqqrif//7X8T+v/nNb6KqraioqABosDnk1yzLYsaMGZxzzjl07tw5XN66dWtGjRrFV199FT7exx9/zKBBgxg6dGh4v+TkZK6++mrWrVu322ayPRk+fDgFBQXh+4cddhipqanh16hlWXz66aecc845tGnTJrxfly5d6tUuNEQpxe9+9zs+/vhjqqqqwuVvvvkmbdu2DV9LNK+XaNU9X8nJyfW2de7cmezs7PDt182/brebMWPGRJS9/fbb9OzZkx49ekS8Tk888USA8Ov03XffxbZtzj///Ij98vLy6Nq1a3i/OsnJyRHvO5fLxaBBgxocxTVmzJiI/l2//iz54YcfKC4u5rrrrovoA3L66afTo0ePqJoufy09PZ3q6mpmzpy5233efvttjj32WDIyMiKuefjw4ViWxRdffLHX8+Tn59f7PJ05c2aD7+8rr7wy/H/TNBk4cCBaa6644oqIuLt3777H0XAJCQm4XC4+//zzek3gux4HYntNxvJ+rnP11VdHfK4de+yxWJbF+vXr9zmO5uCQTm6++OILzjzzTNq0aYNSKqL6N1paax599FG6deuG2+2mbdu2UXUk3JNBgwYxfPjwiNsJJ5xQb78OHTpE3K9LNureTKtWrUJrzZ133hnxgZudnR0e1VNcXBxxjF+P0qp7A/x6pJbD4ajXfm4YBqNHj+b9998P94GYMmUKHo8noslgf9S9SY8//nh+85vfcM8995CVlcXZZ5/NSy+9FNFHYeXKlZSXl5OTk1Pv+quqqsLXXneNXbt2jThXdnZ2vQQuFuvXr6dr164YRuTbrGfPnhHnrdPQCLmGpKamAlBZWbnXfbdt20ZNTQ3du3evt61nz57Yth3ur7F+/frd7tdQvNH49WsUQq/TutdocXExXq+3wZGA0Y4OvOCCC/B6veFEoqqqio8//pjf/e53Mb1eolWXVO6aTNX5z3/+w8yZM3c7pUHbtm3rdRJfuXIlP/30U73XaLdu3YBf3qMrV65Ea03Xrl3r7bt06dJ67+V27drV67O063O/q719ltT97Rt6ffTo0WOfXhvXXXcd3bp147TTTqNdu3Zcfvnl9fpjrVy5kunTp9e73uHDhwP1P78akpSUVO/zdPjw4Q0OBf/185CWlobH4yErK6te+e6SFgglsQ8//DDTpk0jNzeX4447jr///e8UFhaG99mX12Qs7+fdXdOv/7bxfG8cTA7pPjfV1dUcfvjhXH755Zx33nn7dIybbrqJGTNm8Oijj9K3b19KS0spLS2Nc6QN290QU601QLjD3S233MIpp5zS4L6//gJJSEjYr5guueQSHnnkEd5//30uuugiXnvtNc4444y9Drus+zXo9Xob3F6XLNXtVzfx2DfffMMHH3zAJ598wuWXX87EiRP55ptvSE5OxrZtcnJyImqSdhVNLcmBFO1zX/ehvHjxYvr169eIEe2/vb1G4+Goo44iPz+ft956i1GjRvHBBx/g9Xq54IILwvtE83qJVpcuXXA4HCxZsqTetuOPPx5gtyPHGvob27ZN3759eeyxxxp8TPv27cP7KaWYNm1ag8/rr68hluc+nn8npVSDj6vr2F0nJyeHhQsX8sknnzBt2jSmTZvGSy+9xCWXXBLudG/bNiNGjOC2225r8Fx1CWC8NPQ87Otz86c//YkzzzyT999/n08++YQ777yTBx98kNmzZ9O/f/+4viZjvaZd4z9QcRxoh3Ryc9ppp+2x6tvn8/GXv/yF119/nbKyMvr06cPDDz8cHgmwdOlSnn32WZYsWRLOpKP99X0g1FVbOp3O8C+dWHXs2BEI1QLtWnsUDAZZt24dhx12WMT+ffr0oX///kyZMoV27dqxYcMGnnrqqb2eJzs7m8TERJYvX97g9uXLl5OYmFjvF9RRRx3FUUcdxf33389rr73G6NGjeeONN7jyyispKCjg008/ZciQIXtMHOquceXKlRFVvdu2bdvjr7O96dixIz/++CO2bUfU3ixbtizivLE67bTTME2Tf//733vtVLyn53XZsmUYhhH+8uzYseNu99ufePckJycHj8fT4Michsp25/zzz+eJJ56goqKCN998k/z8fI466qh6++3p9RKtpKSkcOfNzZs307Zt26gf25CCggIWLVrESSedtMfRYQUFBWit6dSpU9y/1Pem7m+/fPnycHNZneXLl0e8NjIyMhpssmmodsflcnHmmWdy5plnYts21113Hc8//zx33nknXbp0oaCggKqqqn3+/GpqBQUF3Hzzzdx8882sXLmSfv36MXHiRP7973+H94nlNRnL+zlW8XhvHEwO6Wapvbn++uuZO3cub7zxBj/++CO/+93vOPXUU1m5ciUAH3zwAZ07d+bDDz+kU6dO5Ofnc+WVVx6wmpu9ycnJYdiwYTz//PNs3bq13vZfDwdsyMCBA2nVqhUvvPACwWAwXD5lypTdfvH//ve/Z8aMGUyaNIlWrVpF1XfCNE1OPvlkPvjgAzZs2BCxbcOGDXzwwQecfPLJ4V8hO3bsqPfLqa4Wo6469fzzz8eyLO6777565wsGg5SVlQGhfiFOp5Onnnoq4pjRjMTYk5EjR1JYWBgelVB33qeeeork5OTwr/xYtW/fnquuuooZM2Y0mDjats3EiRPDQ/BPPvlk/vOf/0QMQS0qKuK1115j6NCh4WaukSNH8t133zF37tzwftXV1fzzn/8kPz8/rvP41DFNk+HDh/P++++zZcuWcPmqVasa7Ge2OxdccAE+n49XXnmF6dOnc/7550dsj+b1ArB69WpWr1691/NNmDABy7K4+OKLG2yeiqXG4/zzz2fz5s288MIL9bZ5vd7wqMXzzjsP0zS555576h1fa01JSUnU54zVwIEDycnJ4bnnnot4vqZNm8bSpUs5/fTTw2UFBQUsW7Ys4vNl0aJFzJkzJ+KYv47XMIzwj6Vd38Nz587lk08+qRdTWVlZxGfSwaSmpoba2tqIsoKCAlJSUsLXFu1rclexvJ+jtS9xNAeHdM3NnmzYsIGXXnqJDRs2hDs63nLLLUyfPp2XXnqJBx54gDVr1rB+/XrefvttJk+ejGVZjB07lt/+9rfMnj17n889bdq08K/lXR1zzDERNQvReOaZZxg6dCh9+/blqquuonPnzhQVFTF37lw2bdrEokWL9vh4l8vF3XffzQ033MCJJ57I+eefz7p163j55ZcpKCho8JfmqFGjuO2223jvvfe49tpro56184EHHuCoo47iiCOO4OqrryY/P59169bxz3/+E6UUDzzwQHjfV155hX/84x+ce+65FBQUUFlZyQsvvEBqaiojR44EQk0E11xzDQ8++CALFy7k5JNPxul0snLlSt5++22eeOIJfvvb35Kdnc0tt9zCgw8+yBlnnMHIkSNZsGAB06ZNq1dTFIurr76a559/nssuu4x58+aRn5/P1KlTmTNnDpMmTYqqQ/DuTJw4kdWrV3PjjTfy7rvvcsYZZ5CRkcGGDRt4++23WbZsGRdeeCEAf/vb35g5cyZDhw7luuuuw+Fw8Pzzz+Pz+SLmPRk/fjyvv/46p512GjfeeCOZmZm88sorrF27lnfeeade36F4ufvuu5kxYwZDhgzh2muvxbIsnn76afr06cPChQujOsYRRxxBly5d+Mtf/oLP54tokoLoXi8AJ510EsBel/k49thjefrpp7nhhhvo2rVreIZiv9/PihUrmDJlCi6Xi7y8vL3G/vvf/5633nqLP/zhD3z22WcMGTIEy7JYtmwZb731Fp988gkDBw6koKCAv/3tb9xxxx3h6RhSUlJYu3Yt7733HldffTW33HJLVM9XrJxOJw8//DBjxozh+OOP56KLLgoPBc/Pz2fs2LHhfS+//HIee+wxTjnlFK644gqKi4t57rnn6N27d0Rn17ofgieeeCLt2rVj/fr1PPXUU/Tr1y/cz+vWW2/lv//9L2eccQaXXXYZAwYMoLq6msWLFzN16lTWrVu31/doeXl5RE3Jrhprcr8VK1Zw0kkncf7559OrVy8cDgfvvfceRUVF4fdltK/JX4v2/RytfY3joHdgB2cdvAD93nvvhe/XDXFMSkqKuDkcDn3++edrrbW+6qqrNKCXL18efty8efM0oJctWxZzDHsaCs4uwwz3NGyaXw0b1Frr1atX60suuUTn5eVpp9Op27Ztq8844ww9derUeufe3XDAJ598Unfs2FG73W49aNAgPWfOHD1gwAB96qmnNrj/yJEjNaC//vrrmJ6DpUuX6gsuuEDn5ORoh8Ohc3Jy9IUXXqiXLl0asd/8+fP1RRddpDt06KDdbrfOycnRZ5xxhv7hhx/qHfOf//ynHjBggE5ISNApKSm6b9+++rbbbtNbtmwJ72NZlr7nnnt069atdUJCgh42bJhesmSJ7tix4z4PBdda66KiIj1mzBidlZWlXS6X7tu3b8QQaq33Pgx+d4LBoH7xxRf1scceq9PS0rTT6dQdO3bUY8aMqTdMfP78+fqUU07RycnJOjExUZ9wwgkN/m1Wr16tf/vb3+r09HTt8Xj0oEGD9IcffthgvNEMBf/jH/9Y7xwNPaezZs3S/fv31y6XSxcUFOgXX3xR33zzzdrj8UT9fPzlL3/RgO7SpUu9bdG+Xjp27BgxXHlvFixYoC+55BLdoUMH7XK5dFJSkj7ssMP0zTffHDEEXuvQsOTevXs3eBy/368ffvhh3bt3b+12u3VGRoYeMGCAvueee3R5eXnEvu+8844eOnRo+DOpR48e+o9//GPE59DuzvXr4dh1Q8HffvvtiP0a+htrrfWbb76p+/fvr91ut87MzNSjR4/WmzZtqneef//737pz587a5XLpfv366U8++aTeuadOnapPPvlknZOTo10ul+7QoYO+5ppr9NatWyOOVVlZqe+44w7dpUsX7XK5dFZWlj7mmGP0o48+qv1+f4PP567Pw54+U+vUvX63bdtW7/lKSkpq8Li7Pr+/fr62b9+u//jHP+oePXropKQknZaWpgcPHqzfeuut8GOifU029Jkezft5d5/pdX/zzz77LKY4mhuldRx79jVjSinee+89zjnnHCA0lHT06NH89NNP9TpkJScnk5eXx1133cUDDzwQMXzO6/WSmJjIjBkzGDFixIG8hAPKtm2ys7M577zzGqxOP/fcc1m8eHFM/SaE2NU555zDTz/9FG4GFkKIaEmfm93o378/lmVRXFxMly5dIm51Vc1DhgwhGAxGtNGvWLECaJzOl02ltra2Xpvs5MmTKS0tbXCa9a1bt/LRRx8dkJWxRcvw61FyK1eu5OOPP27w9SWEEHtzSNfcVFVVhWsW+vfvz2OPPcYJJ5xAZmYmHTp04OKLL2bOnDlMnDiR/v37s23bNmbNmsVhhx3G6aefjm3bHHnkkSQnJzNp0iRs2+aPf/wjqampzJgxo4mvLn4+//xzxo4dy+9+9ztatWrF/Pnz+de//kXPnj2ZN29eeN6OtWvXMmfOHF588UW+//57Vq9eHVWfAyFat27NZZddRufOnVm/fj3PPvssPp+PBQsW1Jt/SAgh9qpJG8WaWF3b469vdf0B/H6/njBhgs7Pz9dOp1O3bt1an3vuufrHH38MH2Pz5s36vPPO08nJyTo3N1dfdtlluqSkpImuqHGsXbtWn3nmmTo3N1c7nU6dm5urx4wZo4uKiiL2q2vj7dChQ702fCH25LLLLgv36UpNTdWnnHKKnjdvXlOHJYRopg7pmhshhBBCtDzS50YIIYQQLUqTJjf7srbT559/zhFHHIHb7aZLly68/PLLjR6nEEIIIZqPJp3EL9a1ndauXcvpp5/OH/7wB6ZMmcKsWbO48sorad269W7XTvo127bZsmULKSkpe5zqXAghhBAHD601lZWVtGnTZq+Tih40fW5+Pc9MQ26//XY++uijiAXrLrzwQsrKyuqtJrs7mzZt2ue1N4QQQgjRtDZu3Ei7du32uE+zWn5h7ty59RZQO+WUU/jTn/6028f4fL6I9THqcrmNGzfGvAaHEEIIIZpGRUUF7du3j2rpmmaV3BQWFpKbmxtRlpubS0VFBV6vt8GVnx988EHuueeeeuWpqamS3AghhBDNTDRdSlr8aKk77riD8vLy8G3jxo1NHZIQQgghGlGzqrnJy8ujqKgooqyoqIjU1NQGa20A3G43brf7QIQnhBBCiIPAPiU3gUCAwsJCampqyM7OJjMzM95xNejoo4/m448/jiibOXMmRx999AE5vxBCCCEOflE3S1VWVvLss89y/PHHk5qaSn5+Pj179iQ7O5uOHTty1VVX8f3338d08qqqKhYuXMjChQuB0FDvhQsXsmHDBiDUpHTJJZeE9//DH/7AmjVruO2221i2bBn/+Mc/eOuttxg7dmxM5xVCCCFEyxVVcvPYY4+Rn5/PSy+9xPDhw3n//fdZuHAhK1asYO7cudx1110Eg0FOPvlkTj31VFauXBnVyX/44Qf69+9P//79ARg3bhz9+/dnwoQJQGh16bpEB6BTp0589NFHzJw5k8MPP5yJEyfy4osvRj3HjRBCCCFavqjmubnooov461//Su/evfe4X21tLS+//DIul4vLL788bkHGU0VFBWlpaZSXl8toKSGEEKKZiOX7+6CZxO9AkeRGCCGEaH5i+f6OeSj45ZdfTmVlZb3y6urqg7a2RgghhBCHjpiTm1deeQWv11uv3Ov1Mnny5LgEJYQQQgixr6IeCl5RUYHWOrxwlcfjCW+zLIuPP/6YnJycRglStAwBS/Nzsc38rRbbqjRpHkW/1iaH5RkkOGURUyGEEPERdXKTnp6OUgqlFN26dau3XSnV4DIHQgD4gpq3lgT5bpOF1pDohI0VmkWFNr1zDC7u5yTNIwmOEEKI/Rd1cvPZZ5+htebEE0/knXfeiZi4z+Vy0bFjR9q0adMoQYrm74t1Qb7eYNE2VZHs+iWJ8QU1i4tsPlwWZHQ/ZxNGKIQQoqWIOrk5/vjjgdBEe+3bt8cwWvyyVCJOagOabzbaJLuISGwA3A5FbjL8WGQxvMokN1leV0IIIfZPzMsvdOzYkbKyMr777juKi4uxbTti+64zCgsBsL1GU+rV5CQ13OyU7oGVJVBYqclNPsDBCSGEaHFiTm4++OADRo8eTVVVFampqRFLjyulJLkR9SgFCrB3M6NSXXkUq9gLIYQQexVzcnPzzTdz+eWX88ADD5CYmNgYMYkWJidJkZei2FqpcZuwrTpUk6NtSPEoTAMyPNA+TZqkhBBC7L+Yk5vNmzdz4403SmIjouY0FUM6OHhpfoAvtlvUBnS4xs9famOj+G1vk4wEqboRQgix/2L+qXzKKafwww8/NEYsogXr31rhUppSL1iE2qlswO2ADDdsLtNsKrf3ehwhhBBib2KuuTn99NO59dZb+fnnn+nbty9OZ+Tw3bPOOituwYmWY2WJxkRxQr5iR62mNghOE3ISTdI9mlUlMH+zRTtpmhJCCLGfYl44c09DwJVSWJa130E1Jlk4s2l88HOA6cttumUryr2aKn+ok3GaB5Lciq0VmvQExfgTXE0dqhBCiINQLN/fMdfc/HrotxB7E7Q1JTWaMp/N9xuhrCZUBgqXCXmpijSPwpKXlhBCiDiIObnZVW1tbcQaU0Lsytaa7zbZzNkQZP4Wm8XFNoaCLA+08kBQgzcIq0ttEhwGo48wmzpkIYQQLUDMHRwsy+K+++6jbdu2JCcns2bNGgDuvPNO/vWvf8U9QNE8aa35ZFWQKT8G2FihSXaGXmy21hT7NMsqNetqbIr8NtsDms01Fk5TRksJIYTYfzEnN/fffz8vv/wyf//733G5fukf0adPH1588cW4Bieary2Vms/WWKS6FfnpBlU+SE8Aw4QaG6qCELDAtsA0QBvw8eoAJTUxdQETQggh6ok5uZk8eTL//Oc/GT16NKb5SzPC4YcfzrJly+IanGi+ftpmU+6DrESoDWq2VNmU+TTenf1qFGBpyEyEDqkGWR4orNJ8tTHYpHELIYRo/mJObjZv3kyXLl3qldu2TSAQiEtQovkr82ocBvgtWLjVpjIQ6mOjFLgMMFQouXGZCo8DQJGZoPhhi0W5zybGQXxCCCFEWMzJTa9evfjyyy/rlU+dOpX+/fvHJSjR/CW5QsnL5grNthpNTqLCUKAJNUOZKpTglNRCuU/jdIBtwDdbLO7+ws9Dc/3MXhek0i9JjhBCiNjEPFpqwoQJXHrppWzevBnbtnn33XdZvnw5kydP5sMPP2yMGEUz1CPLZOYqi1WlFm5TkeKGZB94ayEQBK0g0QE1AY1TQWKCYm25xmVqnCYUVdu8/rPNomKbyw5zkuGRzsZCCCGiE3PNzdlnn80HH3zAp59+SlJSEhMmTGDp0qV88MEHjBgxojFiFM1QpwxF/zYG5T4I2BqtoXUyJDjAIlRzYypwmeB2g1+D09B0yzTJS1J0SDUoSFf8tM3ikzXS3CmEECJ6Mc9Q3NzJDMUHTrXf5o8f1rKxItQEpTUEtKYmqElyQYoLymshQGh7dpLBgNYGSc5famm212gsDbcf7SZTFtYUQohDVqPOUCxEtJJcBhf2dfLWkiBZiQrDCDVFlfs168o1xdU2PhuUAZ3SFN2zIhMbgHQPrC3XbPdqSW6EEEJEJarkJiMjA6Wi+2IpLS3dr4BEyzK4nYMfi2zWlNrkpRikuMHjVGjbJsVp0iNbsaLMpkuGgcdR/zUWsMGhQjchhBAiGlElN5MmTWrkMERLlZGgGNPfyYcrgvxcbFNUFRotlZtkcE5Pk4FtDR79NsC2Gpv2qfUzmOJqTesUg3YNbBNCCCEaElVyc+mllzZ2HKIFy04yuKyfk8IqTalX4zAUHdNVuKZmWAeTN37WFFVrshPBUCq0TEO1JmArju9g4pKlGYQQQkRpn/rcrF69mpdeeonVq1fzxBNPkJOTw7Rp0+jQoQO9e/eOd4yiBVBK0TpF0Tql/rah7U2qA5rZ6y2Wl2oMNDaQ4VGc083k6LayoKYQQojoxZzc/O9//+O0005jyJAhfPHFF9x///3k5OSwaNEi/vWvfzF16tTGiFO0QNtrbNZXhBKZvjkmA/IMlpZoqv2hSQB7ZxlkJcY8W4EQQohDXMzJzfjx4/nb3/7GuHHjSEn55Wf4iSeeyNNPPx3X4ETLVBPQfLg6yHeFFuW1Gg0kuxR9sgzO7eqklYyKEkIIsR9i/lm8ePFizj333HrlOTk5bN++PS5BiZbLsjVvLAvwybogpoKumYrumYpkF3y9xeKVJQGqA4fU1EtCCCHiLObkJj09na1bt9YrX7BgAW3bto1LUKLlWlVmM6/Qol2KIjtRYSiFUop0t6JLuuLnEosFRVZThymEEKIZizm5ufDCC7n99tspLCxEKYVt28yZM4dbbrmFSy65pDFiFC3IzyU2PgtSXPWbnlymwmXC/CK7CSITQgjRUsSc3DzwwAP06NGD9u3bU1VVRa9evTjuuOM45phj+Otf/9oYMYoWpDqgMffwqnObyErgQggh9kvMHYpdLhcvvPACd955J0uWLKGqqor+/fvTtWvXxohPtDCZHkXQBq11g7NeVwehV5J0KBZCCLHvYk5uvvrqK4YOHUqHDh3o0KFDY8QkWrDDsk1mrrPY5oWcxMhtlX6NgWJgrsxrI4QQYt/F3Cx14okn0qlTJ/785z/z888/N0ZMogVrm6wYkW9S4Yc1ZTaVfk11QLOxwmZzleboNgZ9smRuGyGEEPsu5m+RLVu2cPPNN/O///2PPn360K9fPx555BE2bdrUGPGJFkYpxamdHIzp7aRzmkFZrabEq8lKMLioh5OLejpxylILQggh9oPSWu9z7821a9fy2muv8frrr7Ns2TKOO+44Zs+eHc/44q6iooK0tDTKy8tJTU1t6nAOaZat2ebV2BpaJSjcktQIIYTYjVi+v/cruQGwLItp06Zx55138uOPP2JZB/ccJZLcCCGEEM1PLN/f+9y5Yc6cOVx33XW0bt2aUaNG0adPHz766KN9PZwQQgghRFzEPFrqjjvu4I033mDLli2MGDGCJ554grPPPpvExMS9P1gIIYQQopHFnNx88cUX3HrrrZx//vlkZWU1RkxCCCGEEPss5uRmzpw5jRGHEEIIIURcRJXc/Pe//+W0007D6XTy3//+d4/7nnXWWXEJTAghhBBiX0Q1WsowDAoLC8nJycEwdt8HWSklo6WEEEIIEXexfH9HVXNj23aD/xdCCCGEONjIPPeiyWmt8Vua/ZxySQghhAD2oUPxvffeu8ftEyZM2OdgxKGlJqD5rtDi260WO7yaJJdicGuTI/NMMjwyW7EQQoh9E/MMxf3794+4HwgEWLt2LQ6Hg4KCAubPnx/XAONN+twcHCr9mpeXBFhUbOFxQJJTURvUVPqhW6bB5X2d5CRKxaIQQoiQuPe52dWCBQsaPOFll13GueeeG+vhxCHq03VBFhRbdE5TeBx1tTSKoK1ZscPmPyuDXHmYE6WkBkcIIURs4vLTODU1lXvuuYc777wzHocTLVyVX/N9kUWmh10SmxCHoWiTpPipxGZLtfTBEUIIEbu41fuXl5dTXl4er8OJFmy7V1Neq0l3N1wrk+aGar9mW40kN0IIIWIXc7PUk08+GXFfa83WrVt59dVXOe200+IWmGi5HAaYBgR3M6uApUEpMKVFSgghxD6IObl5/PHHI+4bhkF2djaXXnopd9xxR9wCEy1X6yRF+xSDteU2ya76GUxxjSY70aBzunQoFkIIEbuYk5u1a9c2RhziEGIaiuPbO1hb7mdLlU1eksJQCq01JbVQ5YeT8w2SnFJ1I4QQInYxJzdCxMOReQbVASfT1gRZUapRaGwg1aU4rZOD4R3lpSmEEGLfxPwNcu6550Y9PPfdd9+NOSBxaFBKcUIHB4dlmyzZblHph0QH9GxlkJekZAi4EEKIfRZzp4a0tDRmzZrFDz/8EC6bN28es2fPJjU1lbS0tPAtGs888wz5+fl4PB4GDx7Md999t8f9J02aRPfu3UlISKB9+/aMHTuW2traWC9DHCRaJYSaqM4ocHBiRwetkw1JbIQQQuyXmGtucnNzOf/883nuuecwTRMAy7K47rrrSE1N5ZFHHon6WG+++Sbjxo3jueeeY/DgwUyaNIlTTjmF5cuXk5OTU2//1157jfHjx/N///d/HHPMMaxYsYLLLrsMpRSPPfZYrJcihBBCiBYo5uUXsrOz+eqrr+jevXtE+fLlyznmmGMoKSmJ+liDBw/myCOP5OmnnwZCK463b9+eG264gfHjx9fb//rrr2fp0qXMmjUrXHbzzTfz7bff8tVXX0V1Tll+QQghhGh+Yvn+jrlZKhgMsmzZsnrly5Ytw7Z3M3FJA/x+P/PmzWP48OG/BGMYDB8+nLlz5zb4mGOOOYZ58+aFm67WrFnDxx9/zMiRI3d7Hp/PR0VFRcRNCCGEEC1XzM1SY8aM4YorrmD16tUMGjQIgG+//ZaHHnqIMWPGRH2c7du3Y1kWubm5EeW5ubkNJk8Ao0aNYvv27QwdOhStNcFgkD/84Q/8+c9/3u15HnzwQe65556o4xJCCCFE8xZzcvPoo4+Sl5fHxIkT2bp1KwCtW7fm1ltv5eabb457gLv6/PPPeeCBB/jHP/7B4MGDWbVqFTfddBP33Xffbte1uuOOOxg3blz4fkVFBe3bt2/UOIUQQgjRdGLuc7Oruiaefem74vf7SUxMZOrUqZxzzjnh8ksvvZSysjL+85//1HvMsccey1FHHRXRafnf//43V199NVVVVRjG3lvZpM+NEEII0fzE8v29TzOlBYNBPv/8c1avXs2oUaMA2LJlC6mpqSQnJ0d1DJfLxYABA5g1a1Y4ubFtm1mzZnH99dc3+Jiampp6CUzdiK39yNHEQWaHT7O4xKLMZ1PpB29A4w1qEpwGfVsZ9M0ySXTIcHEhhBANizm5Wb9+PaeeeiobNmzA5/MxYsQIUlJSePjhh/H5fDz33HNRH2vcuHFceumlDBw4kEGDBjFp0iSqq6vDfXcuueQS2rZty4MPPgjAmWeeyWOPPUb//v3DzVJ33nknZ555ZjjJEc2X1povt1r8d22A7V6bYq9ma3UoaW2dqGidaDB3q6JHhsVlvZxkJ8jaU0IIIeqLObm56aabGDhwIIsWLaJVq1bh8nPPPZerrroqpmNdcMEFbNu2jQkTJlBYWEi/fv2YPn16uJPxhg0bImpq/vrXv6KU4q9//SubN28mOzubM888k/vvvz/WyxAHoQXbbd5Y6cehIN2tWFOhyXSDoaA8AK0VdE5R/FRq8fpyuP5wF4ZM+CeEEOJXYu5z06pVK77++mu6d+9OSkoKixYtonPnzqxbt45evXpRU1PTWLHGhfS5OTjZWjNpkY9lO2wK0gy+L7IorNG08oSSl6qAxlBwXGsHQRu2eTV/6ueiW4bU2AkhxKGgUee5sW0by7LqlW/atImUlJRYDycEAMVezdoKm+wERcCGMp8mcZd6xUQH1ARD/XGSnYpaCzZWST8rIYQQ9cWc3Jx88slMmjQpfF8pRVVVFXfdddceJ9MTYk+CNlgadtdPuK7YlnxGCCHEXsSc3EycOJE5c+bQq1cvamtrGTVqFPn5+WzevJmHH364MWIUh4BMjyLdrSjza5xGqM+NN/jLdr8NTgWJDkV1QOM2oV2y9LcRQghRX8wditu1a8eiRYt48803WbRoEVVVVVxxxRWMHj2ahISExohRHAISHYqjc02mrg6S6da0TzEo9lpUBzQJpqbCD22SDBJNzaoKTf9sk67pMlpKCCFEffs1iV9zJB2KD17VAc1LS/3M22bhNmFHbagfTk0QMtyK/GQDl6nolqEY09NFTqIkN0IIcaho9En8hGgMSU7F5b1c9C2ymFsUJMVpk5fkIMWhSXIaZHkM+rQyOCzLJMkpTVJCCCEaJsmNOKgkOhTHt3VwXBuTgA0OA5nLRgghREwkuRFNriagWVlm4w1qUl2KrukGTlPhkilshBBC7ANJbkST0Vozd6vF9HVBCqs1ttY4DEWHFMWZBU76Zkl2I4QQInbSI1M0mW+2WkxZGmBHraZTqqJHpkm7ZMWGSs0rP/lZXlp/skghhBBib2JKbv7xj38wfPhwzj//fGbNmhWxbfv27XTu3DmuwYmWy2dpZm4IohR0TA01QwF4HIqCNEW5T/PphqCs9i6EECJmUSc3Tz75JLfeeis9evTA7XYzcuTI8GrdAJZlsX79+kYJUrQ8a8psNlfatE6q31lYKUVeksGKHTZFNZLcCCGEiE3UfW6ef/55XnjhBUaNGgXAtddeyznnnIPX6+Xee+9ttABFy1RrQVAr3GbDI6HcJgRsqA02uFkIIYTYraiTm7Vr13LMMceE7x9zzDHMnj2b4cOHEwgE+NOf/tQY8YkWKtWl8Jih1b6TG5izpioQWjgz1S3DwIUQQsQm6uQmKyuLjRs3kp+fHy7r06cPs2fP5sQTT2TLli2NEZ9ooTqlKQrSDX4useieYaB2mcvGsjXFNZoTOzjI9EhyI4QQIjZR97kZOnQo7777br3yXr16MWvWLKZNmxbXwETLZijF2QVOchINlpbalHg11QFNcY3NslJN5zSDkzvKTAVCCCFiF/W3x/jx45k3b16D23r37s3s2bN555134haYaPkK0g2uOczFZxuDLNluUeWFBAecmm9yYgcH2bJ2lBBCiH0gC2eKg8KOWk1NUJPiVNLPRgghRD2NunDm999/z+uvv86KFSsA6NatG6NGjWLgwIH7Fq0QQIZHkYEkNUIIIfZfTPX+t912G4MHD+bFF19k06ZNbNq0iRdeeIHBgwdz++23N1aMQgghhBBRizq5eeWVV3jqqad48sknKSkpYeHChSxcuJDS0lIef/xxnnzySSZPntyYsQohhBBC7FXUfW4GDRrERRddxNixYxvc/thjj/HGG2/w3XffxTXAeJM+N0IIIUTzE8v3d9Q1Nz/99BNnn332brefc845/PTTT9FHKYQQQgjRCKJObkzTxO/373Z7IBDANM24BCWEEEIIsa+iTm6OOOIIpkyZstvtr776KkcccURcghJCCCGE2FdRDwW/5ZZbOOecc/D5fNx8883k5uYCUFhYyMSJE5k0aRLvvfdeowUqhBBCCBGNmCbxe+qpp7jlllsIBoOkpaUBUF5ejsPh4O9//zs33XRTowUaL9KhWAghhGh+Yvn+jnmG4k2bNvH222+zcuVKIDSJ329+8xvat2+/7xEfQJLcCCGEEM1PoyY3zZ0kN0IIIUTz0yhDwefNm8cJJ5xARUVFvW3l5eWccMIJLFq0KPZohRBCCCHiKOrkZuLEiZx44okNZktpaWmMGDGCRx55JK7BCSGEEELEKurk5ttvv93jJH5nnnkmX3/9dVyCEkIIIYTYV1EnN5s3byYlJWW325OTk9m6dWtcghJCCCGE2FdRJzfZ2dksX758t9uXLVtGVlZWXIISQgghhNhXUSc3w4cP5/77729wm9aa+++/n+HDh8ctMCGEEEKIfRH1DMV//etfGTBgAIMHD+bmm2+me/fuQKjGZuLEiaxYsYKXX365seIUQgghhIhK1MlNQUEBn376KZdddhkXXnghSikgVGvTq1cvZs6cSZcuXRotUCGEEEKIaESd3AAMHDiQJUuWsHDhQlauXInWmm7dutGvX79GCk8IIYQQIjYxJTd1+vXrJwmNEEIIIQ5KUXcoFkIIIYRoDiS5EUIIIUSLIsmNEEIIIVoUSW6EEEII0aLsU3Lz5ZdfcvHFF3P00UezefNmAF599VW++uqruAYnhBBCCBGrmJObd955h1NOOYWEhAQWLFiAz+cDoLy8nAceeCDuAQohhBBCxCLm5OZvf/sbzz33HC+88AJOpzNcPmTIEObPnx/X4IQQQgghYhVzcrN8+XKOO+64euVpaWmUlZXFIyYhhBBCiH0Wc3KTl5fHqlWr6pV/9dVXdO7cOS5BCSGEEELsq5iTm6uuuoqbbrqJb7/9FqUUW7ZsYcqUKdxyyy1ce+21jRGjEEIIIUTUYl5+Yfz48di2zUknnURNTQ3HHXccbrebW265hRtuuKExYhRCCCGEiJrSWut9eaDf72fVqlVUVVXRq1cvkpOT4x1bo6ioqCAtLY3y8nJSU1ObOhwhhBBCRCGW7+99WjgTwOVy0atXr319uBBCCCFEo4g5uamuruahhx5i1qxZFBcXY9t2xPY1a9bELTghhBBCiFjFnNxceeWV/O9//+P3v/89rVu3RinVGHEJIYQQQuyTmJObadOm8dFHHzFkyJDGiEcIIYQQYr/EPBQ8IyODzMzMxohFCCGEEGK/xZzc3HfffUyYMIGamprGiEcIIYQQYr/E3Cw1ceJEVq9eTW5uLvn5+RHrSwGyvpQQQgghmlTMyc0555zTCGEIIYQQQsTHPk/iFy/PPPMMjzzyCIWFhRx++OE89dRTDBo0aLf7l5WV8Ze//IV3332X0tJSOnbsyKRJkxg5cmRU55NJ/IQQQojm54BM4uf3+xuc56ZDhw5RH+PNN99k3LhxPPfccwwePJhJkyZxyimnsHz5cnJycho854gRI8jJyWHq1Km0bduW9evXk56evq+XIYQQQogWJuaamxUrVnDFFVfw9ddfR5RrrVFKYVlW1McaPHgwRx55JE8//TQAtm3Tvn17brjhBsaPH19v/+eee45HHnmEZcuW1evrEy2puRFCCCGan0atuRkzZgwOh4MPP/xwvybx8/v9zJs3jzvuuCNcZhgGw4cPZ+7cuQ0+5r///S9HH300f/zjH/nPf/5DdnY2o0aN4vbbb8c0zX2KQwghhBAtS8zJzcKFC5k3bx49evTYrxNv374dy7LIzc2NKM/NzWXZsmUNPmbNmjXMnj2b0aNH8/HHH7Nq1Squu+46AoEAd911V4OP8fl8+Hy+8P2Kior9ilsIIYQQB7eY57np1asX27dvb4xY9sq2bXJycvjnP//JgAEDuOCCC/jLX/7Cc889t9vHPPjgg6SlpYVv7du3P4ARCyGEEOJAizm5efjhh7ntttv4/PPPKSkpoaKiIuIWraysLEzTpKioKKK8qKiIvLy8Bh/TunVrunXrFtEE1bNnTwoLC/H7/Q0+5o477qC8vDx827hxY9QxCiGEEKL5iblZavjw4QCcdNJJEeWxdih2uVwMGDCAWbNmhefOsW2bWbNmcf311zf4mCFDhvDaa69h2zaGEcrLVqxYQevWrXG5XA0+xu1243a7o4pJCCGEEM1fzMnNZ599FreTjxs3jksvvZSBAwcyaNAgJk2aRHV1NWPGjAHgkksuoW3btjz44IMAXHvttTz99NPcdNNN3HDDDaxcuZIHHniAG2+8MW4xCSGEEKJ5izm5Of744+N28gsuuIBt27YxYcIECgsL6devH9OnTw93Mt6wYUO4hgagffv2fPLJJ4wdO5bDDjuMtm3bctNNN3H77bfHLSYhhBBCNG/7NENxWVkZ//rXv1i6dCkAvXv35vLLLyctLS3uAcabzHMjhBBCND+xfH/H3KH4hx9+oKCggMcff5zS0lJKS0t57LHHKCgokEUzhRBCCNHkYq65OfbYY+nSpQsvvPACDkeoVSsYDHLllVeyZs0avvjii0YJNF6k5kYIIYRofmL5/o45uUlISGDBggX1JvH7+eefGThwIDU1NbFHfABJciOEEEI0P43aLJWamsqGDRvqlW/cuJGUlJRYDyeEEEIIEVcxJzcXXHABV1xxBW+++SYbN25k48aNvPHGG1x55ZVcdNFFjRGjEEIIIUTUYh4K/uijj6KU4pJLLiEYDALgdDq59tpreeihh+IeoBBCCCFELPZpKDhATU0Nq1evBqCgoIDExMS4BtZYpM+NEEII0fw0ap+byy+/nMrKShITE+nbty99+/YlMTGR6upqLr/88n0OWgghhBAiHmJObl555RW8Xm+9cq/Xy+TJk+MSlBBCCCHEvoq6z01FRQVaa7TWVFZW4vF4wtssy+Ljjz8mJyenUYIUQgghhIhW1MlNeno6SimUUnTr1q3edqUU99xzT1yDE0IIIYSIVdTJzWeffYbWmhNPPJF33nmHzMzM8DaXy0XHjh1p06ZNowQphBBCCBGtqJObutXAly1bRpcuXSJW666zfft2srKy4hedEEIIIUSMYu5QfMcdd6CUqldeVFTEsGHD4hGTEEIIIcQ+izm52bBhA1deeWVE2datWxk2bFi99aaEEEIIIQ60mJObjz/+mK+//ppx48YBsGXLFoYNG0bfvn1566234h6gEEIIIUQsYl5+ITs7mxkzZjB06FAAPvzwQ4444gimTJnSYD8cIYQQQogDKebkBqB9+/bMnDmTY489lhEjRvDqq6822A9HCCGEEOJAiyq5ycjIaDB5qamp4YMPPqBVq1bhstLS0vhFJ4QQQggRo6iSm0mTJjVyGEIIIYQQ8RFVcnPppZc2dhxCCCGEEHERVQ/g6urqmA4a6/5CCCGEEPESVXLTpUsXHnroIbZu3brbfbTWzJw5k9NOO40nn3wybgEKIYQQQsQiqmapzz//nD//+c/cfffdHH744QwcOJA2bdrg8XjYsWMHP//8M3PnzsXhcHDHHXdwzTXXNHbcQgghhBANUlprHe3OGzZs4O233+bLL79k/fr1eL1esrKy6N+/P6eccgqnnXYapmk2Zrz7raKigrS0NMrLy0lNTW3qcFokW2vWWF7mBsso0gEStKKdw0OaMnFgkGW46GQk4FYyL5IQQojoxPL9HVNy0xJIctO4LK15x1fMZ8FSqrWNRlOLhVaQjEEnMwEPJnmGi5OdWbQ23E0dshBCiGYglu9v+eks4uqL4A4+CZYQ0JpWyoFDgVMp3FpRrW1KrAB5yslW28/HgW1U6GBThyyEEKKFkeRGxI2lNZ8HdhDQmkzlJIjGj40bhVsZOFFs0wGqsGmn3BTZflZaMrJOCCFEfElyI+KmyPaxxfaRhIFS4MMCQBGa3dqNQRBNse3HUAoXBqttb1OGLIQQogWS5EbETRDQGsydyUy9zlw7V/Cwd941gcCh1eVLCCHEASDJjYibXOUk1XBQs7PGxolCA3pnmhPUGgNIVSZaa7zYtJEOxUIIIeIs5uRm+vTpfPXVV+H7zzzzDP369WPUqFHs2LEjrsGJ5sVtmAwyUwkqqLYtPBg4UATQBLWmFpsU5SBPuSjVQZKUSXczsanDFkII0cLEnNzceuutVFRUALB48WJuvvlmRo4cydq1axk3blzcAxTNyxmuLHobiVRiUaotDK3woalSFi6l6GB42Kx9BLEZaqbTWsWv5sanLVZYVSywylliVVChA3E7thBCiOYjqhmKd7V27Vp69eoFwDvvvMMZZ5zBAw88wPz58xk5cmTcAxTNS7Lh4HpPe2YHdvBdsJxKbZOGJk2ZpBoOUgyTDspDLzOZDoYHpVRczrvKqubLYAmbdC212gYFmTg5xsxgkCMDM07nEUIIcfCLOblxuVzU1NQA8Omnn3LJJZcAkJmZGa7REYe2JMPBme5sTna1olpbOJUimdDM1Rowdkk0LK1ZY9ew1Kpiuw7gwaCbmUQPM4lkFd3Lc4Pt5YNAIRvtWixsNAqtNWUE2Kxr8WEzzJnVGJcqhBDiIBRzcjN06FDGjRvHkCFD+O6773jzzTcBWLFiBe3atYt7gKL5ciuj3hILilBCU6z91NoWP1qVrNQ12FqTgEE5mvW2l5+tKkY6s8kyXHs8h9aa74M7WKe9WNgkK2e4I3MQzQ7tZ1pwG4ebaWQYzsa7WCGEEAeNmPvcPP300zgcDqZOncqzzz5L27ZtAZg2bRqnnnpq3AMULYfWmhVWNW/6t/KGbwsv+jfyUbCYHZafLOUky3CRZ7hprzxssX3MDpZg7WWoeAVBltpVBLRN6s7EBkJJlBNFJk5KtZ95VlnjX6AQQoiDQsw1Nx06dODDDz+sV/7444/HJSDRci2zq5nh304AmwwcFGmNqRVlKshyu5oeRjIeZWAqRQ5ONlm1bHHU0l4l7PaYQa2psIMYqPD8OrtyKAN0qOlKCCHEoSHm5AbAtm1WrVpFcXExtm1HbDvuuOPiEphoWXza5utgGTaatoYHn7bxYZO8c6XwCh2kUPvI35nIJCiTbTpAqR2gvbH75CZZmZhKYe+mgieobQxoMPGxtCaIxomK6AckhBCieYs5ufnmm28YNWoU69ev59cLiiulsCwrbsGJlmOD7aXU9pOnQn1o6lKJUAdjcGuD7bafdoYHx84OwRqN0UBSsiu3MumkEvlW78DSjohRUVprqrFwYZCvfplPp1IH+dmqZJldhQ+LJOWgp5FMTyOFBGXG+9KFEEIcYDEnN3/4wx8YOHAgH330Ea1bt47bUF7Rsnm1jc3OZiJC/WFSlYNSHcC9c7I/PzZBrXEoRRUWicokL4oZjE90ZrHMV0UpARK1iROFhcanbEwUrfHQ3ZEMwA7t5+NgMVvsWhKViRtFqe1nlr2dtUYNpzpySIpylJbYM1vb1FALaBLwYEriKIQ4QGL+FF+5ciVTp06lS5cujRGPaKE8KlQHU5e8KKXIMdyUWUFqtAUaTKVwKIVXW5ToAP3NVLLU3kc4FRiJnOXIZWZwG+UECaIwgERtkqGcDHO0Ile50FozJ1jKFruWdsoTruVJVRDQNqvtGuZZ5RznaNUoz4Ff+6nFh4FBIgkYqmWufqK1ZivFbNZFVOnQqu8JykMbcmlLriQ5QohGF3NyM3jwYFatWiXJjYhJB8NDpuGkxPaTu3NW4gwc5BsJbLC9lBEkEyeb7FpcGPQ2kznemRlVzaBSiuOcrWhtelgUrGCrXYuBoq3poY+ZSlcjEaUU22wf620vrZSz3qR+TmWQhoPldhUDdNoea2+82mK1Xc1620sAm1zlpouRRPZuapl82s8GezNFbCOgAygUqSqFdkZrsmnVomo/tdas0RtZywaUNkjAgwK8upblejXVqobudG6xiZ0Q4uAQc3Jzww03cPPNN1NYWEjfvn1xOiN/WR922GFxC060HB5lcpQjnZn+7WyxfbTaOWw7WYVqV3IMN72NZDINJ+2NBNoZnphmFTaUoruZTFcjCS8WoEjEiEgcKgjixSKLhmuDkjHZpv1U6OBuk5ttto8Z1ja22rWYO2uIVlLFQrucY81W9DFTI/b36wA/2cspYQce7SaRRGxsynQ55VYl3YzOtFV5UV/nwa6SKjbozbhxk6A84XInTvzaz2ZdSApJZJKGB48kOUKIRhFzcvOb3/wGgMsvvzxcplSoA6h0KBZ70ttIxuFSfB8sp9j2Y6HxKIPDHakc48ggey8T9kXDUIqk3bysQ8mIwqLhF34QjYnCsZtOzAFtM8vazla7lra7NGtprSkhwP+CJWQoJ213Gd1VqIspYQdpOmWX5hgTF06qdDXr9EaydCZuFdu1a62xsDFQB1WCsE2XEiBIMkkR5VprAgQo02XM14tIJ5UElUBrlUsblXdQXYMQovnbp7WlhNgXSil6mMl0MZIo0j4C2iZZOWilnAekaSZPuUlXTsoIkEX9ZGKHDtDa8JC5m0RjvfayRdfSWrkjapWUUmThYoMOzaxcl9zY2marLsapHQ32M0kkgXIqKGUHrcmN6hoCOkCR3kahLsKHHwcOclU2eSoHzy41JU3Fu7NPkfrVqLUKXUEZZVgE0Thw4aZGe1nBKqp1NV2NAklwhBBxE3Ny07Fjx8aIQxxCHErRtgm+iD3K5HAjlf9ZJewgQDoOlFLYWlNKqC9MPyNtt81h27QPW2ucRsNfwsnKZIP2YmuNoRQWNn78OHfTDBb6Mlf4dYC9jHgHQk1cS+3lbKcUhzZx4MSHn1WsZbsuoZfRncRdhrw3BScOQuPifhEgQAUVGBg4cODCiUs5ce1sqtqiimhFJlk0TkduIcShZ5/GvK5evZpJkyaxdOlSAHr16sVNN91EQUFBXIMTIt76mWn4sVlol7NR14Ym2gFSlYMhjky6GUl7fPyeF4OIZO78MvfjB+p3NtZao5XGEeXbcKO9iW2UkKZTI2qCbJ1Amapgjb2O3kbPJu2gnKUy2Ki3EtABnDtHutXoGiwsXLiwsEnaJQFzKRc11FBsbyfLlORGCBEfMSc3n3zyCWeddRb9+vVjyJAhAMyZM4fevXvzwQcfMGLEiLgHKUS8mEpxtCOTnjqF9XYNtdgkYpJvJJKyl/ltspQLUykC2sbZQBNKlbY43EgOz3ZsKINclc1q1mFru16zi5daPLjJVOl7jTugAxSxDY9212viMpRBkk6klDKqqCaF5L0eL95CfYAs0nQKeSqLLbqYBO3Bg5sgQWw0PvwkkkAikTNOO7STGiXLYwgh4ifm5Gb8+PGMHTuWhx56qF757bffLsmNaBbSlZN0My2mx+SrRForD5ttL22p36E4AZOeZmRi0VrlsF2XUK4qSNSJuHCi0dTgJagsOqsOEaOKdsdLLX4dqJcY1HHhpEbVUEvtAU1uLG1RrIsp1EV4dS2GMsjUmeSpVuygkh2UU0stNjYZpJGh0jB+tV6vhYVz3yqRhRCiQTF/oixdupS33nqrXvnll1/OpEmT4hGTEAclpzIYbmYxg21stmsxdWixzro1so51tKLdr9bBSlAeehvdWW2vp5QyqlUNhlYkqAQ6qQ60U62jOreBgUJh76ZhTKNRqJ2D0w+MoLZYYa+kSBdhYODCRVBbbGITSSTSU3VGK0WFrmSdvZ5Ukus1wVnawlY2OSrrgMUthGj5Yk5usrOzWbhwIV27do0oX7hwITk5OXELTIiDUbbh5hyVxxq7hnV2DUE0ucpN1z1M4pekEulr9KCKUM2KgUEqKThjWOYhkQRSVDLlugJXAx2UvXhJwEMaKTFfk601NVgoIBEz6j47RbqIIl1EEknh/jUAiTqBcl3ORjbRXx1OtsrEp3wUUkSitnHv7H/kJ0CNqiaDDLKU9LcRQsRPzMnNVVddxdVXX82aNWs45phjgFCfm4cffphx48bFPUAhDjZJykFfM5W+v5qwb0+UUqSQRAp77rC8O4YyaGe0ocKqpEpXk0RieH6pWmoJqAAdVLuIJGNvbK1Zoav42a5gu/ahgFzloZeRSoFKQilFUAeppRaFImGXJSNsbVOoCzEx651TKUWyTqZSV7KDMlqpTLobBThtB8VqO2WUA+DUDnLJocDoFFPcQoiDU62upVSX4NVeTEzSVDppKq1JpnlQ+tdLe++F1ppJkyYxceJEtmzZAkCbNm249dZbufHGGw/6qeQrKipIS0ujvLyc1NTov5yEaGpaa7boQtbrjdRSG26gcuGircojX3WI+kPE1ppvrFJ+0DtQQAoONFBJEEPDYCONHKoppgif9qFQpKgUWhttyFLZ+PHzvTUPB87dTkBYpsvoZnSlrdEmXFajvVRSiQaSSCSZpIP+M0MIsXdFdiHrrLXU4qVubgsDg1Yqiy5mV1wxTlTakFi+v2NObnZVWVkJQEpK7FXhTaXRkhttQ8AHhgmO/f8jCrE7Pu2jRO/ATwAHJpkqg0TVcEfj3dlk1/AfayuJGKT8qtZkh12LwRbaKz/JJODGjcbGixeFIt/oTK6Ry/fWDyiMBicP1FpTRhk9jR60NlrO8hJCiPrK7B38bP2080fLLz9YAjpAFZXkqdZ0N3vs9w+ZWL6/92uIQnNKahqNFYQVX8DKr6GyGJQJrbtDjxNC/woRZ27lps0+rkdVrYNU6ADzrR34bItcs34/oVRqqKQcn04nd5d5f5y4qNHVbLI3kGW0IkNlsFUX4dbueh9aPny4cJGmpHZUiJZMa02hXUiQAGkqI2KbUzlJ0smU6O1UUUXKPvQJ3FdRJTdHHHEEs2bNIiMjg/79++8x+5o/f37cgjvoWUH44kVY8y1YATCdYGtY+RVs/BGOHg1dhzR1lEJQrYP8YJWySlfh1RabdGhemSRtkokr4j1tU4bCwN/AtMkJJFJOGaW6lNZGa0qtUiqpJFknYygDrTV+/Hjx0kG1b/IZk4UQjcsiSJkuw03DU1o4cVJDNZW6ghR1kCU3Z599Nm536BfeOeec05jxNC/L/wer54aapJQCywcoUAbU7IDv3oQ2vSApY6+HEqKx1Oggn1iFrLerSVVOspSbUu1nG37W2NVYhiZn5weT1hqNHxsDs4HkRikFGvzaTxsjje5GN1brtVToCtChIelOnLRTbck38g/wlQohDrTQ9BQaRf318+CXzwwd0/zu+y+q5Oauu+5q8P+HvBVfgL8GHM5QX5vw07lzbZ2KYlg5B/qd0VQRCsEyu5L1uoY2KgHHzg7H2YaHCjuIArboWtJx4VLGzrW2QrP3pDUwginURU+HZ0nOMrJI02mU6h3UUouJSbpKi2h3F0K0XE6cJKokynVZeJqHXQV1EAODRA5sLW7MfW42btyIUop27doB8N133/Haa6/Rq1cvrr766rgHeNCyAlCyIVRrE7QgUAO2BSgwHeB0QdAH29c0daSihbK1JoCNiQonLQ3ts0xXkoAZsU8mTrYpJ+Xaj1/blKsAWdqFF4sKEmmFl9QGfon58eHARYbKDJc5lZNcJXNcCXEoUkqRa+RSbpfh1z5c6pcER2tNFZWkq3TSolhmJp5iHnw+atQoPvvsMwAKCwsZPnw43333HX/5y1+499579ymIZ555hvz8fDweD4MHD+a7776L6nFvvPEGSqkmaipToeTF7wdvFQQDoeTGDkKg9pcyX1UTxCZaMr+2WWyVMzW4hcmBjbwa3MhXwRJKtb/+vth4dRDPr97qDmVQoJJopdwE0GzVtWyilmos8lVrCowcqijHr31orbG1TY2uwYuXPCOPpH2cr0cI0fJkqxzaqLbUqlrKdRk1upoqXUk5O0hWKRSYXQ/4XDcxn23JkiUMGjQIgLfeeou+ffvy9ddfM2XKFF5++eWYA3jzzTcZN24cd911F/Pnz+fwww/nlFNOobi4eI+PW7duHbfccgvHHntszOeMC6XAcIQ6FdsW7Gx3DLMtsCxISG+a+ESL5Nc2n1rFzLS2UaRrMXaWfWuX8t/gVrbatRH7OzFwKRNfXVPpLjzKpCtJtFEejjQyGG7mcJ6jLac72tPX7E22ysVPgHLKqKAcQyk6GvnkG52kyUkIEWYog05GZ3oZvclWOaFRUiqJArMrvc0+JKsDv5hvzM1SgUAg3Ln4008/5ayzzgKgR48ebN26NeYAHnvsMa666irGjBkDwHPPPcdHH33E//3f/zF+/PgGH2NZFqNHj+aee+7hyy+/pKysLObz7jdlwM7+BygV+n/dv/DL/QPciUq0bD/ZFSyzK8nGjWeX1cEztJPNupYvrO38VrUNL+ppKkV3lcxXdgkZ6HB5nXIVJBs3x5vZpO7SxyaBBHqavaimGq8OzW+TqlLjMhGXEKLlMVRowr5WxsGxTlzMNTe9e/fmueee48svv2TmzJmceuqpAGzZsoVWrWJbH8bv9zNv3jyGDx/+S0CGwfDhw5k7d+5uH3fvvfeSk5PDFVdcsddz+Hw+KioqIm5xYVuhSft2/bLYdT5EpUKTNNaUx+d84pAX1DY/25W4MSMSGwi1e2fjplDXhod51+lppNLG8LBZe6nSQbTWBLXNNu2jBovDjfSIxGbXYyarZLKNbLKMLElshBDNRszJzcMPP8zzzz/PsGHDuOiiizj88MMB+O9//xturorW9u3bsSyL3NzciPLc3FwKCwsbfMxXX33Fv/71L1544YWozvHggw+SlpYWvrVv3z6mGHdL61CnYq1+qbGpu4UTHgXesvicTxzyarCo1AGSdjPk0q0MLDQVOhBRnqKcnGLm0cNIoZbQHDdF2keScnC8kcUAQ6YqEEK0LDE3Sw0bNozt27dTUVFBRsYvH4pXX301iYmNO9SrsrKS3//+97zwwgtkZUVX9XXHHXdELOhZUVERpwRHg2mERkvZ7Oxyo0O1NdomPEWIo+GVooXYmypdxXY7NLNnaChlGgYW1m5+k4SGaat6TU8AGcrFqWYepfip0EFMFLnKjVs1nCgJIURzFnNy4/V60VqHE5v169fz3nvv0bNnT0455ZSYjpWVlYVpmhQVFUWUFxUVkZdXf3r51atXs27dOs4888xwmW2HOko6HA6WL19OQUFBxGPcbne4j1BcmU4wnKGEZte+mnVJDoCpwCPTz4vYbbW3stZeix8/JiY2NppiMpXBJt2KFJ1Wr1NvBUGSMGmzm3WmlFK0wk0rJQm3EKJli7lZ6uyzz2by5MkAlJWVMXjwYCZOnMg555zDs88+G9OxXC4XAwYMYNasWeEy27aZNWsWRx99dL39e/ToweLFi1m4cGH4dtZZZ3HCCSewcOHC+DU5RUPbOzsV7/yCUbvc6u5rDW6Zfl7EpkyXscZeg0aTRhopKoU0lUYqqSQRIIViivBi7UyitQ41RVUQoKeRQnoD/WeEEOJQEnNyM3/+/PDw66lTp5Kbm8v69euZPHkyTz75ZMwBjBs3jhdeeIFXXnmFpUuXcu2111JdXR0ePXXJJZdwxx13AODxeOjTp0/ELT09nZSUFPr06YPLdSA7PCrw7+xQbBpg7Ox7o4xQjY3amemUFe31SELsqtguJkCAJBU5y6+hDHJUOnmGTarysYVQ5+GNePFjc4SRztFm5h6OLIQQh4aYm6VqamrCq4HPmDGD8847D8MwOOqoo1i/fn3MAVxwwQVs27aNCRMmUFhYSL9+/Zg+fXq4k/GGDRswjAM7+U9U7ADYO2tvQgtn8MtcNyq0HINthzodCxElrTU79A5cNJyom8okSZt0M5KwVBZVOogDg3aGh1a/WgBTCCEOVTEnN126dOH999/n3HPP5ZNPPmHs2LEAFBcXk5q6b/1Lrr/+eq6//voGt33++ed7fOy+TBwYF4YDnJ6dtTeEkpy67xWtf+lUnJjeNPGJqPhszQq/n02BIADtnA66uVy4jYM7SXApg47GgVthVwghmpOYk5sJEyYwatQoxo4dy0knnRTuGzNjxgz69+8f9wAPWoYJ6XlQXQYYkRP2hSf4A1r3aKIAxd5sCQR5q6ySNYFAuP+KqRSdnU7OT0+hjTPmt8d+U0qRoTLYorc0uNCcpS0USpY/EEKIPYj50/u3v/0tQ4cOZevWreE5bgBOOukkzj333LgGd1DTOpTcFK3+pXkq3CSgQ0svuBMgJbtJwxQNq7RspuyoYH0gQAeHA48Zavr02ZqVfj+vlVXwh1bpJDdBk2iOkUOxVUy1riaRxHBTk61tKqkkTaWRoWRuGiGE2J19+mmal5dXb6h2rBP4NXvaBncytO4K29aHZiu2d/a5MUxIzoRW7UILaYqDzg81XubV+lBoCoNBPIYiz+Egz+GgwOVktT/AklofRyU2PKy6MaWrdAqMAtbaaymnHFPXDQXXpKpUuhpdMWV+GiGE2K2okpvzzjuPl19+mdTUVM4777w97vvuu+/GJbCDnjJCw7zTWkNWPpRsBG8FGAak5kJGWygvDPXLEQeVCstiSnkFW4MBUg0Dp4JyS1Nq+SgOBunjduNQimU+f5MkNwCtjdakqJSISfwyVSaZKlOWQRBCiL2IKrlJS/tlwrC0tLRGDajZUAra9YEfp0NKFnQ4LHJ7dRm4kyC7c5OEJ3bv06oatgYtkpQizfyl2cnSmm2WxZpAgCRl4LebdtHTZJVMsnngV9MVQojmLqrk5qWXXmrw/4e8Nr1g63LYtjbUDOVJCfW/qS4Ffy10GwLJsS0mKuLPa9ss8/tYG/BTadvMrfaSaRpsC1rhkfsQ6kycoBRFgSCtHA7aN0GHYiGEEPtPPr33hzsJ+p0JK76CopWhpillQFImdB0KnQZErhouDrj1fj+vVOxgczCI21AEbM2qoJ9Uw0QpqLQtkgwjNJpfKTxKUWhZtEFxeII0KQohRHMUc3JTUlLChAkT+OyzzyguLg6v7VSntLQ0bsE1C4lp0O/0UG1N9Y5QcpPeWvraNDFLa/5XXc2LFWVsswIkoPAYBsmGQQIGftvGp2wqtKLY1riVwqMNbAtAcUJyYpMMBRdCCLH/Yv70/v3vf8+qVau44ooryM3NlRlR6yRlhm7ioPBpdTVvVVZQagXJNRw4lMKnNduCFlXaxkITQJOoFCYGNdhUYpFgGvR3ejgjVeaREUKI5irm5ObLL7/kq6++ipjjRoiDSVEwyFc1NaA1HqVw7ZxtOEEpnBiU2EGCgJvQMmBtHU601lTZNmXaoqPbxHMwLvkhhBAiKjEnNz169MDr9TZGLELExXK/n3LLwkRTbdtYGjQaj2HgILRabN1gaq/WlFgWGnArRUeHkxpsvLZNgiQ4QgjRLMWc3PzjH/9g/PjxTJgwgT59+uB0OiO27+v6UkLES5VlUWwFqdAW5dqmzLawAKzQC14pRRKQZJqkGSY5pgOnUmSZJiZQYluU2ZYkN0II0UzFnNykp6dTUVHBiSeeGFGutUYphWVZcQtOiH2xORhkm23h0GDZGpvwql/4AbTGNqCVUvRxu0kzf5ntt9K2MJXCgfQlE0KI5irm5Gb06NE4nU5ee+016VAsDjoBrSm2gpgaKmwbrRUojQGgwEaDhoAGn9b1amdKLJsuThetTFneQAghmquYk5slS5awYMECunfv3hjxCLFfioJBqmybTNNku22jAScKCxutQ9MOaRXqd1NoBfm2tpoCp5scwwzV9gBHJSRiSNIuhBDNVsydCgYOHMjGjRsbIxYh9lto6VJNkjIwAYdS2Cg0CqUUJuBU4FIKG01RMMgPtTUs8vtwKYOzklPp43I38VUIIYTYHzHX3Nxwww3cdNNN3HrrrfTt27deh+LDDjtsN48UovG1Mk3SDZNNBDFQJO1MYmoJNU8pjJ21OeDAoKvTRS2aNg4H16VlkumQifuEEKK5i/mT/IILLgDg8ssvD5cppaRDsTgoJBoGAzwJrPD7MdAENDiMUG2OAVhoXDtrclKUQQenC7dSlNkWfpp2oUwhhBDxEXNys3bt2saIQ4i4OTYxkcJggC3BINssC5cNtgKtNCYGSisMBTlOBxmmgV/r0IzFWpIbIYRoCWJObjp27NgYcQgRNx7D4IK0dNo5nDyxo5QtwSAajakVJgpTKXIcJj1dLhSKStsi2TBJlxFSQgjRIkTdofi6666jqqoqfP/111+nuro6fL+srIyRI0fGNzoh9pFLKU5ITmZym7bcntGKfIebJNOglalo41S4HZrlwVp+8nvZGPTT1+kmxZDkRgghWoKok5vnn3+empqa8P1rrrmGoqKi8H2fz8cnn3wS3+iE2E+ppslv0tN4PCePQZ4ELIemAosa22aHHWRl0EeFtnAZoX5jQgghmr+om6V+/cEvXwSiOcl0OEhxKLK1A8u2sVC4lKK1w4FLKb72VVPgctPFKcPAhRCiuZNxr+KQsCxQS5ltcaQ7AYXCQuMg1LEYYHXAx49+ryQ3QgjRAkhyIw4JxcEAaud6USV2kFptY6LIMEwSDYNkw2RdwN/EUQohhIiHmJKbCRMmkJiYCIDf7+f+++8nLS0NIKI/jhAHG0MpKmyLH3xBqmwrPKONWynaOJwkKgPTkCUXhBCiJYg6uTnuuONYvnx5+P4xxxzDmjVr6u0jxMHIgWKLFcCFIs0wMRVoDV5ts8bvI8k0OdqT1NRhCiGEiIOok5vPP/+8EcMQovForSm2Argw0DtXnwKFUuBBUalCSU4nh6upQxVCCBEH0udGtHhV2mZN0E8fl5stVoAdto22bRShNCfNMElUBtXabupQhRBCxIEkN6LFC2iNpSHFMOhnJlBiW5RbQWwg2TDJMk02BYMEZHYDIYRoESS5ES1esmGQYhhU2BbJDpMc00GO+ctLPzRyCjJk+QUhhGgRop6hWIjmyqUMjnAnUK1tamybbVaQjcEAm4IBKi2LLcEA7Rwu6XMjhBAthNTciEPCIHcSC3y1fFlbhV9rDMAm1OemncPJmIRkHEqGggshREsQc83N9OnT+eqrr8L3n3nmGfr168eoUaPYsWNHXIMTIl4qd9bapBsmrQyTZMMg3TBobzpxoPjJXytLigghRAsRc3Jz6623UlFRAcDixYu5+eabGTlyJGvXrmXcuHFxD1CIeJhXW0OJbTHQlchgdxJHuZM4yp1MP3ciHRwuFvlq2WoFmzpMIYQQcRBzs9TatWvp1asXAO+88w5nnHEGDzzwAPPnz2fkyJFxD1CI/RXUmiX+WtIME2Nn05OLX5qgUpVBsQ6yOuCnjcPZVGEKIYSIk5hrblwuV3iphU8//ZSTTz4ZgMzMzHCNjhAHEwtNQGt2l7YopTCAANIsJYQQLUHMNTdDhw5l3LhxDBkyhO+++44333wTgBUrVtCuXbu4ByjE/nKhyDIdrAv6yWxge1CH5i3OMGQouBBCtAQx19w8/fTTOBwOpk6dyrPPPkvbtm0BmDZtGqeeemrcAxRifymlOMKdQBBNjR05C7HWmi1WgFzTQXenu4kiFEIIEU9KH2JDRCoqKkhLS6O8vJzU1NSmDkccIAGtea+6nB9qvbgUpBomltaU2haphsl5yWn0dnmaOkwhhBC7Ecv3937Nc1NbW4vf748ok4RBHIycSnFOUiodHE7m+byUWBYmMNiTyEB3IvlOmcBPCCFaipiTm+rqam6//XbeeustSkpK6m23LCsugQkRby5lcJQniSPdidRoGweKBEMm6RZCiJYm5k/22267jdmzZ/Pss8/idrt58cUXueeee2jTpg2TJ09ujBiFiCtTKVIMUxIbIYRooWKuufnggw+YPHkyw4YNY8yYMRx77LF06dKFjh07MmXKFEaPHt0YcQohhBBCRCXmn66lpaV07twZCPWvKS0tBUJDxL/44ov4RieEEEIIEaOYk5vOnTuzdu1aAHr06MFbb70FhGp00tPT4xqcEEIIIUSsYk5uxowZw6JFiwAYP348zzzzDB6Ph7Fjx3LrrbfGPUAhhBBCiFjs9zw369evZ968eXTp0oXDDjssXnE1GpnnRgghhGh+Dtg8NwAdO3akY8eO+3sYIYQQQoi4iDq58Xq9zJo1izPOOAOAO+64A5/PF95umib33XcfHo/M8iqEEEKIphN1cvPKK6/w0UcfhZObp59+mt69e5OQkADAsmXLaNOmDWPHjm2cSIUQQgghohB1h+IpU6Zw9dVXR5S99tprfPbZZ3z22Wc88sgj4ZFTQgghhBBNJerkZtWqVfTt2zd83+PxYOwyw+ugQYP4+eef4xudEEIIIUSMom6WKisri+hjs23btojttm1HbBdCCCGEaApR19y0a9eOJUuW7Hb7jz/+SLt27eISVEtiB6qwqrdg1WxFW/69P0AIIYQQ+yXqmpuRI0cyYcIETj/99HojorxeL/fccw+nn3563ANsruxgDYGSRQSr1qGDXpRSKGcajrTuODN6opQs2iiEEEI0hqgn8SsqKqJfv364XC6uv/56unXrBsDy5ct5+umnCQaDLFiwgNzc3EYNeH8diEn8tOWjdsvnWDUbwJGM0hrbV4YOlKNsjZFagNOTB74SwEQl5mKmdkQl5krSI4QQQjSgUSbxy83N5euvv+baa69l/Pjx1OVESilGjBjBP/7xj4M+sTlQgpXrsGo2oZwZ2NWbsb3bwPaBbUEwgK7YRBATZTpBK1CKoCMJI7Mnzg4nYyRkNvUlCCGEEM1WTDMUd+rUienTp1NaWsqqVasA6NKlC5mZ8mW8q2DlajQG1GxBe4vBDgIOlNYoW6O0RhMEC5ThAFuDvxJ72zwCtdtxdvktRlJeU1+GEEII0SztUxtIZmYmgwYNYtCgQXFJbJ555hny8/PxeDwMHjyY7777brf7vvDCCxx77LFkZGSQkZHB8OHD97j/gaa1RgeqUTqI7S8HNCgztNHyo7T9y852EG3bKA3K8qECPnTZaoKr3sP2VzdJ/EIIIURz1+QdPN58803GjRvHXXfdxfz58zn88MM55ZRTKC4ubnD/zz//nIsuuojPPvuMuXPn0r59e04++WQ2b958gCNvWKjjcDK2vxKsAGgbMFDBWtAW8EsXJ4XGCPp21uyo0CbLQpetwlr7MdoONNFVCCGEEM3Xfq8Kvr8GDx7MkUceydNPPw2E5stp3749N9xwA+PHj9/r4y3LIiMjg6effppLLrlkr/sfiA7FgfLleNf9F/wVYAcAA+WrQtkWRl3NjdYY9s6nXpkoFGgd+tcwwZWK2e23mDn9GiVGIYQQojmJ5fu7SWtu/H4/8+bNY/jw4eEywzAYPnw4c+fOjeoYNTU1BAKB3TaP+Xw+KioqIm6NzZGcj5nUNpTY2BZYPrQK9R3WhG6qbmcNyrZQdjDUZKV27hSoRq+bga7d0ejxCiGEEC1JkyY327dvx7KseqOscnNzKSwsjOoYt99+O23atIlIkHb14IMPkpaWFr61b99+v+PeG2W6SWh3Kiqxbei+HUChUErBzqHedfVlSimU1jszHgMMJ5hOlDMFfGXYW76hiSvXhBBCiGZln5KbV199lSFDhtCmTRvWr18PwKRJk/jPf/4T1+D25qGHHuKNN97gvffeqzexYJ077riD8vLy8G3jxo0HJDbDk0lip3MxUruAcoBSaMOJbahQHqMIZTj2zmYqwwDTBYSSIwwTnEnoqi3g3bbb8wghhBAiUszJzbPPPsu4ceMYOXIkZWVlWJYFQHp6OpMmTYrpWFlZWZimSVFRUUR5UVEReXl7Hgr96KOP8tBDDzFjxgwOO+yw3e7ndrtJTU2NuB0oZnI7Egp+i5nWDeVMQJkulDMJ3KnYjkRQxs7mKRWqsVEGypEArtRQ52NPFsr2g6/8gMUshBBCNHcxJzdPPfUUL7zwAn/5y18wTTNcPnDgQBYvXhzTsVwuFwMGDGDWrFnhMtu2mTVrFkcfffRuH/f3v/+d++67j+nTpzNw4MBYL+GAMj2tcHc4GTO1K2arw3HmHYOj9VDMtkMgPR8MBzjcKHc6ytMKnCkQrAklQZ4MQP0ylFwIIYQQexXTJH4Aa9eupX///vXK3W431dWxz80ybtw4Lr30UgYOHMigQYOYNGkS1dXVjBkzBoBLLrmEtm3b8uCDDwLw8MMPM2HCBF577TXy8/PDfXOSk5NJTk6O+fwHgpGSjyOrH8GSJdje4lDzkx0MJS+JXlRw52rqli80csqVinKlQXVhKPnxZDTtBQghhBDNSMzJTadOnVi4cCEdO3aMKJ8+fTo9e/aMOYALLriAbdu2MWHCBAoLC+nXrx/Tp08PdzLesGEDhvFLBdOzzz6L3+/nt7/9bcRx7rrrLu6+++6Yz38gKGXgyOqPmdQGq2I9tn8HynBiJncIrTu1fjZYfnAlowJeqC5GVRaFmqYSWqHWTIfc/pDZfWdnHSGEEELsTszJzbhx4/jjH/9IbW0tWmu+++47Xn/9dR588EFefPHFfQri+uuv5/rrr29w2+effx5xf926dft0jqamlEIl5mEkRvYl0lpj2Ba68HsoXY3ybgt1MlYmuJJQzmS0rwK18ctQWWbXJroCIYQQonmIObm58sorSUhI4K9//Ss1NTWMGjWKNm3a8MQTT3DhhRc2RowtmlIqVCNTsQmKF6MMJ3hSwHSHRlPVFENCJtqRhCpeBOmdQk1VQgghhGjQfs1QXFNTQ1VVFTk5OfGMqVEdiBmKY6WrCtHLp6KqtoIzMZS8aB3ql2P5QrfU9ijlhG5nQ3Lrpg5ZCCGEOKAadYZir9dLTU0NAImJiXi9XiZNmsSMGTP2LVqBrtwAVm1oEj9lhGY19pWBdzv4KsBfDTvWhjoY+yubOlwhhBDioBZzcnP22WczefJkAMrKyhg0aBATJ07k7LPP5tlnn417gIeEQHWoGUqZoY7FtWUQqAF2zlhsOEOdiwNVULwotCCnEEIIIRoUc3Izf/58jj32WACmTp1KXl4e69evZ/LkyTz55JNxD/CQ4EwCZaA96Wh/VagZynCGZikOTWUc+jchB2q2Q+WBmWVZCCGEaI5iTm5qampISUkBYMaMGZx33nkYhsFRRx0VXopBxEaldAjV3LjTQss02EHQduhmB0I3Vwqktgc0lG9o6pCFEEKIg1bMyU2XLl14//332bhxI5988gknn3wyAMXFxQdNB91mJykHWvUAywumB+XYuU6W5Q91Kk5oBa16hjobKycEvU0brxBCCHEQizm5mTBhArfccgv5+fkMHjw4vEzCjBkzGpy5WOydUgaqzVHQ5hjwpKKVCiUyCZmQ2Q1y+oWWYwCw/aEaHiGEEEI0aJ+GghcWFrJ161YOP/zw8OzB3333HampqfTo0SPuQcbTwTgUfFe6bC2s/C84PKHZiQ3nLxv9lRCshS5nQPKeFxYVQgghWpJYvr/3aTa4vLy8eqt2Dxo0aF8O1SLsqNQs26gp2qFxmNApT9GlrcLtjH2pBJXWEVoPguKF4N0R6msD4K8IjZjKOwKScuN7AUIIIUQLEnNyc8IJJ4Rm1d2N2bNn71dAzc3itTbTvrcpLLWx7NDce4lu6NrW4NwhJpmpMSY4yoC2g8GTDiVLoXZHqDwpO9TvJrObrC8lhBBC7EHMyU2/fv0i7gcCARYuXMiSJUu49NJL4xVXs7Bxm+adr4Js2qbxWRAIhvIOd61mW4XGb9lceaoDpyPGrk3KgKydiYy/MnRQZ3JoaLgQQggh9ijm5Obxxx9vsPzuu++mqqpqvwNqTr5bZrFsoyYlWEI/eylZwUKqtZOfdD4LVTcWf+dhXqGfi4c4OL6HuccarwYZZqgGRwghhBBR26+1pXa1atUqBg0aRGlpaTwO12ji1aHYtjW3/yuIsXYBI3wfkxPcDHYQraDGSGSx2YM33OdS4sjC44CT+yj+eqZrn/rhCCGEEIe6Ru9Q3JC5c+fi8XjidbiDntYaitdxRvWbtLM2ogG9czLhJKuaE6wSDG3xbNKV+CwH0xZrctMC/PFEZ+w1OEIIIYSIWszJzXnnnRdxX2vN1q1b+eGHH7jzzjvjFthBTyn6Vn1JJ2sNtXgoJxl757B4hw6SocsYGvyWWcHjWerqid+GjxfZnNVP06GVJDdCCCFEY4k5uUlLi5xAzjAMunfvzr333huerfhQoGyL3jXzUNiUk4I2fklYgsrBDtLIs4vpF/yRJY4eaKCoUrF4s02HVjHPnSiEEEKIKMWc3Lz00kuNEUezY9uaNGsHfpy4VQ3puhSP7UOjqDSS2WFkYGhNK0oIuDToUC3Xks0Wpx/WwNOuNXz7CcydBtu3gDsRegyAo0+F9t0O/AUKIYQQzdQ+97mZN28eS5cuBaB3796H3NILtg1VVhIdjWJyLS+mttAoFJpUqskySvGZCZSbKaG+OAqCwCcrbS46yqZDxi61N9WV8Ox4+PkHCPrB3tnHe8WPMPsdOOkCOG00JMuyC0IIIcTexJzcFBcXc+GFF/L555+Tnp4OQFlZGSeccAJvvPEG2dnZ8Y7x4GQ4KFVp9A5WYilFreGEnX1ulG2TYPkwsfjZ2fmXx2jYXqmZMi/ATce5SHQpCAbgxQmweC5YdmgnS4dqcjRQVgofvgzbtsDI30N+96a4WiGEEKLZiLnzxw033EBlZSU//fQTpaWllJaWsmTJEioqKrjxxhsbI8aDkgKcDi+2MrCVgRMbh22FbtgEDQONIsO5PfwYww6tezl3iWbmNxaVZRqWfQ9LvgklNhoI2qH/W3aoesjWUFsDy+fDrKmwY1uTXbMQQgjRHMRcczN9+nQ+/fRTevbsGS7r1asXzzzzzCHVoRg7QI5RxA5nCi4dxKmDKK1BgYVBjSMRA5surEVpUDagQv9uK9RMn6Ep+QpOs2aR5/ej4JekJmLmoZ01OCVFodqbFYtg8PADcokVQZuNfgsNtHOZpMc607IQQgjRBGJObmzbxul01it3Op3Yth2XoJoDpTTaAZUqgVojkWSrGrf2oZWiypFIhSORtt5iDENjWDvzlZ1Ji7YgIS1UbebbuAXbBsO2UdbOHRW/rB9lhxImAn6oKoMNKxo9ufHammk7vHxT6ackGPqbZjgMBie7GJnhIcmUJEcIIcTBK+ZvqRNPPJGbbrqJLVu2hMs2b97M2LFjOemkk+Ia3MHMcLnYnNGRZKuWaqebwsRM1qW0Zn1KHiWeVEBjK4OVro6gwbBA6dATbgYUCV5FWitQCUnYykTbu1TX7DrJ386JAUGFam8sq1GvK6g1r22r4T+ltQS1psBjUuAx0Wg+3FHLq9tq8Nt67wcSDdoRtNniD1JpHTo/BIQQ4kCLuebm6aef5qyzziI/P5/27dsDsHHjRvr06cO///3vuAd4sDKUYmufYXQpWUZWcAfbXOk7pygGA4u2tdvZlJjFTI7HDII2QjdHQJFQo8hJDuWVZZlHkFX+PQl2TejAilBnYqVC/4ZOBqYj1PembX6jXtcyb5BvK310dBsk71JDk+s0STZsfqjyc1SKi35JrkaNY39orfnZG+T7ah+raoNoremX5GJYiptsV9wm5Y7Jel+Q2RW1/Oz149OaBEMxIMnNCSkesp2yIKoQQsRTzJ/07du3Z/78+Xz66acsW7YMgJ49ezJ8+IHpB3IwCQw+gf8UreTM5Z/RqXortaYTQ9s4bYvCxFY8eNileDek4tjZimfakFJm0LHYQXpBKBHaknkimZtn07a2DKzgLwffdckvhzOU9Dhc0K1fo17Tomo/AYhIbOokmQYam/nVgYM2ubG15oMdXj7Y4WVzIIBXa/xaM6vSyxulDm7MTeX41PgsE1IatFhcE2BrwMKpoKvHSQ+PE5cROQP1qtoAL22rojBgkes0SDEMqm3NJ+VeVtYGuCo7hRxJcIQQIm726WesUooRI0YwYsSIeMfTbGitKQ5afD10NKvb9OKoFXPoXL4Jr3LyTXZvPsg9jiJXG1JcNkaZibYgu9SkwwYHbXON8JQ1XlcuXyddzxnOe0nathL0Ls0VameNjeEIlR9xLOS2b9TrKgtq3HtYHcJtwI5A4zaN7Y8fawL8d4eXzcEAtTtrSNKUQVBr1vuDPLC1jAxHJocl7l9yNr/ax9TSGoqDFgZgAzMraunpcXJxVhKtHKFkxdaaD8pq2Ba06elxhNcVSzIh02GwvDbIp+VeRmUl7+eVCyGEqLNPyc2sWbOYNWsWxcXF9ToR/9///V9cAjvY2cAOy6ZbohOjz2A+6jaQsp0jnXw7FL6NJqZp4UKRU+Ygscggt9ogMVXRrmt4Shwqd4A//XBqRz5A0lt/hq3rQxsM85ebtqFVazjv6ka/rlYOhW8P3UFqbWh1kNYyaK35pspHYTBAra3JNA2MncmEUynaOWCLZTN5eyUPtc/EsY8LmK71BXm9pJpaW9Pd7Qifo9bW/Oj189p2uDY3BYdSrPUFWV0bpJ3TqLdgqkMpchwGC2v8nBa0yXAYlAQtFtb4WVzrI6gh3+Wgf6Kbzi6HLLgqhBBRijm5ueeee7j33nsZOHAgrVu3PmQ/cA0gxTTY6rfo6DbJ2vULPw2K3DY/bLPpok16mA7K3Qqfhqw2kJQa6j5TXhpqiRp4ImQO7A6t7oep/4BNq0OT+2lCtTe57eD8PzZ6rQ3A4UkuPqvwUR60SfvV0O9Ky8ZUcMRB2iQV0LCyNtQUlWCocNJRx2EYuC2bNb4gq30Bunv27Tq+rfKxw7Lp4Y5MODyGIt9lsrQ2wMraID0TnJRbNj6tdzvCLMU02BqwqLBsdlgW/y6tZLPfIsFQmISuZ251LWekJjIsJeGQfb8JIUQsYk5unnvuOV5++WV+//vfN0Y8zYZSisHJbqZsr6Zih6ZkiWL7arCDkJgJnsM0fbsYXJLvJtWrMB2h+fdWLYaK0tAxWuVBn0HQ/YjQ8ejcE665G5YvhBULQ3PeFPQO7ZSedUCuq1uCg6EpbmaV+6i0NNnO0Jfy9qBNedDm+DQPvRKbplPu3hgKAloT0JoUo+FkwlQKGyi3funTZO3sl+NSCnMvyYOtNUu8ftLN+jUxAImGgV/brPOFkhuPoTBR+G1dry8OgE9rnCo0JO7N0lC/nG671AYBFAUsPiivoY3Lsc8JmRBCHEpi/pby+/0cc8wxjRFLszMo2cVny/zMWhDAucXEVaHQJmw1Lax5mmFzE+h/s4nD+csX1eFDNRWloAxIawUOx6++8NJawaCTQrcmYCrFBVmJZDkNvqr0s2nnJH5ZDoMRrRIZnu7Z5+acxuZQij4JLr6r8REMJw2/CGiNApJNhUcpKi2bH2pq+bbGR5Vtk2AoBia4GZToIcPRcNObTWjqIb9tszUYSpBSDIMkpXZJdjT2zkmNOrudtHGZbA1YdHRHvt201hQGbPonuigOWmwMBMl3OerVOOU6TVbUBvih2ifJjRBCRCHm5ObKK6/ktdde484772yMeJoVj99A/yGJrL5eSrr7qcnXKBsSSk3af+km+L2Hr5Ri2O2/PMblVmS1brqYo+EyFKdlJHB8qputARutobXLaBaT952Y6ubD8hqKAhZtnWCoUMxBrSmzbBINRYHbQY7T4OXSCpb6/CQqgyRDUW7ZvFdezY+1fi7NSCHHWf/t4bU15TrIIp+fBCPUcuhWihyHg65OJwoVmpEazVpfgGyHyYi0BKZsr2KDL0hrl4lTKWptzaaARZqpODHVwwq/H1tTLyGrk2oarPAF0FpL05QQQuxFVMnNuHHjwv+3bZt//vOffPrppxx22GH1Zit+7LHH4hvhQeybf4J/vUnXjcm0/dbCm2lhWIrkLSYOn4FWMOsxOP7WUE1NBH8tFK+DgA88yZDTMTQy6iCSaBoUNIOEZlddElxcmZ3ME0WVbAjYJCo7XBOSYCg6uB2MSE3k6+pafqr1U+CKHLqd69Cs8gX4uLKGSzNSIhIJv9a8vqOSUjs09NuNItFQ+LRmYyBArW3jsxS20kyvrOGTKi/ppsGABBfnZiTwRZWftT4LG3Aq6OBycGZ6At0TnKz0+9nT1IgajYkkNUIIEY2ovk0XLFgQcb9fv34ALFmyJKL8UPtF+c3/gW2ANsFTbuIp/6UpQ+8cH1zrh+LlkFu3FJfWsGYBLJ0DOwpDyY1hQm4+9BsBrbs0xaW0KGdlJJHnNJlcUs16XwBNqOaji8fByamJ9E1w8ui2arIcZr1+MA6lyHOa/FzrpzBo0XqX2pultX4W1/o5zOMk0zRZVRugxNK4lUJpzTJ/gARD0dvlIs9pYqIos2w+qvQyMMHN2NwUNvgtvLYmxVR09TjDNTUdXA4cSuGzNe5fxaS1ptzSDEpyHXLvMSGE2BdRJTefffZZY8fRLFVsDyU2VoJNdY9aAlkWygLPehcJa12gFNb/t3ff8VVU6ePHP3N7CukhhRZ67wpGFEQidVVcCwo/vujXRVfFhiJWUNHFxboKural7LIiKqIryldEqSJLLwKREqRI6CE9t8zz++OSK5ckkEBCSZ7363WFO3PmzJnnXuc+zJwzR2DvyhOSm22rYNF0OLwP8o6Cx+O/rLNzA+xYC9c/BHVbnmKvqjy6hLvoFOZke5GXYz4Tl2HQ1GUjxGIho8hDjs8kuZTbTgCRFgv7PR4OnZTc/FzoxkQItVpparEQbbXwm8dHltfEjgWbmNS2WWkd8nu/mASLlQjTYG1BEe1CHHQNK/0Bgi2cDpo4bWwp9NDIacNxPIkxRdjt8RFttdCljG2VUkoFu7Dug1xkTAPymhVx+IZDRHXbR0xsAWIaHNwaS9bC2tT+PBKb08exUA87sk1CpIj4Rf/CsmsLRmE+mCZG8b0IdyEUboFPXoK73vKPF1dnxWYYNHeVnOTVZoDVAC+Cs5RbPV78HatP7v+Sa5qBpMMwDOLt1sDUCTuKPBzyeQkt5S5eiMWCzTBZmV9UZnLjsBgMjgln+pFcthV5MAEr4BWobbdyQ1QY9c/T1BFKKXWxqfDZMi8vj5deeqnMh/jt2LGj0hp3wWvhwTPyFzr03IHT6QnMQprUeD+5V+zg8A1xuCK9zE/2gBc6bVhL392bCMnPD8z+XTwJOOCfFHP/TjwLp7C7/xByKcSChTjCiCcca8XnOVWlSLLbqOuw86vbQ0NHyZge8PqobbfS4KRkIt5qZW0Zk4YWiWBiEFbGEPRQw+DwaSY9TbDbuDc+gp8LPWwt9OAVoY7DRrsQR+CJx0oppU7vjEZLLVy4kKFDh9boh/gBGHfvoVlaOvV276NO+q9E7juCabOS2SSZvS0aEHJZAfm4/F1BTaFhZjquwgKCeo6emOAIiNdH4YYF7GgURZHTSW5sLETEkEwkl1CfEEpeiVAVYzMMrgxzscvt4TePlwSb1f/8GxEO+UwKTKF/LRchJyUq7UKcLMkr4KjXV2KouFsEC5BgLT0JKRCTRMvpPzuXxULnUCedQ51nfHxKKVXTVTi5+eabb5gzZw7dunWrivZcNEQER7+NtF2+npYL1xN+8Ch2txcxoM7GDBo02M6q6y9nR906eLFiFR+J+w/6H5JSzDixvuP/MYWwzEwunzYNn81Kfq1a7Gzfji09eiBO4QoaY9FRM2etc4iTAlOYl5PPNrcnsDzKYuEPEaFcGR5SYptGDhvdw0P4LqeAY6ZJrNU/fqn4ikyy3Uopz+nDbQpFAp1Dtc+MUkqdCxVObqKjo4mJiamKtlxUPPho9NsOOv5nGVG7MnHmFGJ4zeOzd1uovXMvzX/dxcaBl/HVJZdhYiGksPD3qzb+h9L+nuCY4n8isYAhYPN4sHq9uPILiJz/A5H79vHfwf+PlvZE4tFJFs+WYRhcGR5C2xAHmws95JgmoYZBC5eDuDJuARmGwR8iwoi3Wfkpr5B9nuKkxsYfI13s9XhZmFtIkXiJt/lvImb5TPb7TNq47HQ8y8k6lVJKlU+Fk5tx48YxZswYpk6dSmhoaFW06aJQIG5aL1xD7c27sOa7/R2D5Xjm4jGh0IvFs5+OK36m7d49fNI5FbfD7p8j4IRH/weSHfn9JVYDd2gocnyIsb2wkJRN6ez572L2d2ukyU0lirJaSQ0rf38Wq2FweVgIXUJdHPb6n94ca/M/mM8jQpTVwo95RWS4vZj4R151D3MxIDK0zP44SimlKleFk5tXX32V7du3k5CQQEpKSomH+K1evbrSGnchK/IU0XTBOmz5bsSU4NtNIv4JL3PcsOsI1rgwblmxlIzoSGIOHcViev3J0O9P64fijtkGeO0O5HhfJjEMvE4n9vwCmq1ax56uOWC7wB9xXAPYDIOEk4aS2w2DPhFhdAsLYbfHi0/8UyfEa2dgpZQ6pyqc3AwcOLAKmnEREgg9cAy8JkbxlZjipAb895asBvyahdGhHlavSbhDyA8PIcybB74ThoGfUKdYDdwhwf09TIsFDIOw7FzCjh6B+Ko/PHXmwq0WWlr1FpRSSp0vFU5uxo4dWxXtuOiEFvgwPD7wmuD2QYEHjvfBwG4Fpw2cVsjzd1YVE2JMN2tbNafVz+mE5BRg8fmO97HxZzliGOSFh/+eIBUTQRDEaiXBrLm3ApVSSqnyOKOngmVlZfHpp5+yfft2Ro0aRUxMDKtXryYhIYE6depUdhsvSBa3ieEzIacQsoqgyANFXig6fovKABwWqBvhv0pjtWDz+fi6d09+i42nzaZ0Yg8dxe72ERoWgRU7ZuZurKbgPekuhtXjRgwDd3wStcPrn5fjVUoppS4WFU5u1q9fT1paGpGRkezcuZPhw4cTExPDrFmz2LVrF9OmTauKdl54IiKQPA/GoXxwm1Do8f/pPeFek9uErUfh7WVw3+VgMUj3xvNzu2uwNutJZGY+tXLDuaNTS9rs3Qn/ehZH9hEMEXw2/0dj9XiweL14wmvhatsTW1jUeTlcpZRS6mJR4eEbI0eO5Pbbb2fr1q24XL8/t6N///4sWrSoUht3IXNaLcixQvAIeLxQdFJiU8wnsOY3+G4beXYnRz1h5Ba5OOYOZ09sAlnJseRYgIbtsPa/GyMqHrvHizO/AGdBAVZT8EVGY17am5h2/c75cSqllFIXmwpfuVmxYgXvvvtuieV16tQhMzOzUhp1MTCLirDke/1vPBI8vLtEYWBuOmv+ZwCGz4AiA8MEwwoOJ9jxdxjmkr5Y67VEVs7Fu3M9pulF4uvhanc1lkbtwRV2To5NKaWUuphVOLlxOp1kZ2eXWP7LL78QH19zhvH4DAOL74Tn2pyGZBUwt3YHjHwLhmmA08QuBokhNhpYT3jUfkIDjAF3YxcB0wcWa8kOxqXwiMkeyScHLxaBupZQogwdsaOUUqrmqXByc9111/H8888zc+ZMwP/U1l27djF69GhuvPHGSm/ghcrldFJks+PwuAmeLKoMJuy0JuCwGXgtPgyLQYTYSHVGEGeUMueQYZBrEbLIxxCDOJw4DSs5ppu1HOWQFGHHQhPCOSSFzJU9HKUAERMDKyE+O62NGK631ifGovMUKaWUqjnO6CF+N910E7Vr16agoIAePXqQmZlJamoqL774YlW08cJks3GsTgqxO385PtfTqRMcsRg43dlk2yOxYBBj2rmpVhw9ndElJh8tEC+rzSNsk2zy8GEAtbBjA9LJJhvP8YcZC1+LGxMTwzCxAP6H4HopxMtK+Y1tZhb30po6Fh1CrpRSqmaocHITGRnJvHnzWLJkCevXryc3N5dOnTqRlpZWFe27cBkGkXf8L+6/PIfDVvT7LaoyuCMiqBOaRJI3go5hoXQPiyKxlAe9ucXHD2Ym2yWXCGwk4EIQdkouGeRiAWrjwm5YOUo+BZgYCBYjaB7O46mWcMzIY4q5hZG0I8RyRiP/lVJKqYvKGf/aXXHFFVxyySU4nc4SVx5qCseQoWxZ8h8aL/gJy/7cUi/eGMf/E9KyGS/WbwrhtU5ZZ4bkkiG5JODCYfgHs5kCxwwPpgi2452PTYRc3GAIFqTEPOEGIMcvKB0kjxUcoDvJlXDUSiml1IWtwkPBTdNk3Lhx1KlTh/DwcDIyMgB45pln+PDDDyu9gReyD3K2sOvFXmx/6BoK6kb6k4mTyPFZwtnxM3RoBLddC3NmQ0F+qXVukxysWAKJDUA+XnLFgw0DAQrFRxFe5HhSYxil3xQrTnBMw2QjhxEpR98gpZRS6iJX4eTmhRdeYMqUKUyYMAGH4/fbKm3atOGDDz6o1MZd6GIi1uKNC2fnHVdw6MaOSO1QxGFBLPhn/7Ya4LBCpAvsNihyw9JF8PhDMOJPsDW9RJ25eHGcdB1GABPBOL7c5Ph0DOVoo3H8VYgPs1xbKKWUUhe3Cic306ZN47333mPIkCFYrb/PE9C+fXu2bNlSqY27kOXk5uIwfFjy8mj5/Tpqp/8GyREYSbUwYkL9CU10CMSGgOuEu38C5OXA+jXwyotw8EBQvbWw4T4pCXFgwYE1kJ4UFsG+AwZy+hHoAFixEIXjeMdnpZRSqnqrcHKzd+9emjRpUmK5aZp4PJ5KadTF4JCZiy03l5Sjx4jY+BuWAo9/Ak2LAWEOiHD4kxqLpeT1Ep8JCKRvhhU/Ba1qYkRgIrhPyFychpV4w4lPIDffJDPTSs4xK+4CK3LCVFYnE8AiBk6sdCa+xvaNUkopVbNUOLlp1aoVixcvLrH8008/pWPHjpXSqItBFCHUycvHkVOINbsQsVkwvKY/oyit703Qy19IvG7kp0XICYlMQyOchkYYBygkS9x4xcQjJmFiozDbiikG1loeLKFefEVWRPz9cKS48hP2Ywi4sNLKiKGpEVWl8VBKKaUuFBUeLTVmzBiGDRvG3r17MU2TWbNmkZ6ezrRp0/jqq6+qoo0XpJDQMBymiYhgGGCGOUu/fFIqwWvmgtuCN3MFRVvewR7VCmdsZ+yOCHpakog0j7CNbA5KEQZwaI+DzO/qYotxE976GLZwL94CO9kHXbiiinDEFGK1Cxb8zbBiEGu4aGfEcbVRj9DSHhSolFJKVUMVTm6uv/56/vOf//D8888TFhbGmDFj6NSpE//5z3+45pprzqgRkyZN4uWXXyYzM5P27dvz1ltv0aVLlzLLf/LJJzzzzDPs3LmTpk2b8te//pX+/fuf0b7P1JEje7F4fVjDHHiTIrEdyUNcdowin38uqVOxWsBuACbeurXwFR7EzFyAN3s7YSk34nJGc7k1ng4SzVHcWIAxsyxkZ1iwArmLE7GEehGvBSm0Ygn1YkvMwxFXyDWXm3RuYCPKCCGZUKINl96OUkopVaNU6LaU1+vl+eefp2HDhsybN48DBw6Qn5/PkiVL6N279xk14OOPP2bkyJGMHTuW1atX0759e/r06cOBAwdKLf/jjz9y2223ceedd7JmzRoGDhzIwIED2bhx4xnt/0wVumthxT/9RGGbJMzIENwNohG71T9aqqyBSZbjV3m8PszoULwt4jAsDrDVwpe/m4J9PwSGbIcaNuoYoSQZoeTl+D8qwwBMC2auAym0AQZmvp38bVFk/ZRI/d31uMJalzaWWGIsIZrYKKWUqnEqlNzYbDYmTJiA1+uttAa89tprDB8+nDvuuINWrVrx97//ndDQUP7xj3+UWv5vf/sbffv2ZdSoUbRs2ZJx48bRqVMnJk6cWGltKo96CbWwHE9C3A1iyOnRFE+jeNxN4xCXDbEa/s7FJzJAnP51ZkQIhWkt8NaPQrz5GBY7Ytjx5mbgKzpSYn9xUcefW1NG0mTi313d2pV6mEoppdRFp8K3pXr16sXChQtJSUk565273W5WrVrFE088EVhmsVhIS0tj2bJlpW6zbNkyRo4cGbSsT58+zJ49+6zbUxGG4TvxDUUtE/HUi8ax8wj2vUexbz+IbV821qxC8HgxvOJ/mF+YA0+TeDypKXibxINhIOIB8WJYXYg3D3EfA1ds0P4GpFpYs83ExN9R+MS8yXv8NljtKOjQVK/UKKWUqtkqnNz069ePxx9/nA0bNtC5c2fCwsKC1l933XXlruvQoUP4fD4SEhKClickJJT5zJzMzMxSy2dmZpZavqioiKKiosD77Ozscrfv1GwIDsAd6EdshjspbJOEu2VtjKubYTEFiylYi4dQeX3+qz3W4gtmxgl/GvgfXGOAxcrJenSw8OUSk3UZ4BV/guPvtePntMHDNxvYbRUeAKeUUkpVKxVObu69917AfzvpZIZh4PP5Siw/n8aPH89zzz1X6fXabDZCwupSlJeB22dgt5q/JzmGgTXwBGHj99HhVot/dFWgFgHD4u9zY1gRXzZWVzy2kMQS+3M5Lfzlbhsv/9vLT5uhwHP8OTZAQhQ8dptB19Y6IkoppZSqcHJjmuV8LG45xMXFYbVa2b9/f9Dy/fv3k5hY8gceIDExsULln3jiiaDbWNnZ2dSrV+8sW+4XVbs3B3+dgoMiBCsenxXDEGx4EEMwLMbxpMWNP5Hxb2ec0G/GMKxgDcH05GAYFhwxHTCszlL3Fxlu4YW7HOw7ZLJ2q4/cAmjXGJo30KRGKaWUKnZe72E4HA46d+7M/PnzA8tM02T+/PmkpqaWuk1qampQeYB58+aVWd7pdBIRERH0qiwhYSnE1rkFi60WFgS71YPN4sWw2bCEJGMLa4BY7JiGEfRsPyme6NKwYBg28BVgGFac8Zfhqn3ZafebFGehX6qdm6+2a2KjlFJKnaTcV24KCgqYP38+f/jDHwD/FZET+7JYrVbGjRuHy+WqUANGjhzJsGHDuOSSS+jSpQtvvPEGeXl53HHHHQD8z//8D3Xq1GH8+PEAPPjgg/To0YNXX32VAQMGMGPGDFauXMl7771Xof1WlrDIVrjCm5OXvRZ3wS4w7NSK7IQzNBmft4CCYxtx52zDW3AQfPlYDCuGNRybMxYLBoZhweKIwBHdttTbUUoppZSqmHInN1OnTmXOnDmB5GbixIm0bt2akJAQALZs2UJycjIPP/xwhRowaNAgDh48yJgxY8jMzKRDhw7MnTs30Gl4165dWCy/X2C6/PLL+fe//83TTz/Nk08+SdOmTZk9ezZt2rSp0H4rk9VqJSK6M0R3Dl5uCyE89lKIvfQ8tUwppZSqeQyRsp6cEuzKK6/kscce49prrwWgVq1arFu3jkaNGgHwr3/9i0mTJpU5hPtCkZ2dTWRkJMeOHavUW1RKKaWUqjoV+f0ud5+bbdu20bZt28B7l8sVdEWlS5cubNq06Qyaq5RSSilVecp9WyorKyuoj83BgweD1pumGbReKaWUUup8KPeVm7p1655y/qb169dTt27dSmmUUkoppdSZKndy079/f8aMGUNhYWGJdQUFBTz33HMMGDCgUhunlFJKKVVR5e5QvH//fjp06IDD4WDEiBE0a9YMgPT0dCZOnIjX62XNmjUlpka40GiHYqWUUuriU5Hf73L3uUlISODHH3/knnvu4fHHH6c4JzIMg2uuuYa33377gk9slFJKKVX9VWj6hYYNGzJ37lyOHDnCtm3bAGjSpAkxMTFV0jillFJKqYqq8NxSADExMXTp0qWy26KUUkopddbO69xSSimllFKV7Yyu3FzMivsKZWdnn+eWKKWUUqq8in+3yzMOqsYlNzk5OQDUq1fvPLdEKaWUUhWVk5NDZGTkKcuUeyh4dWGaJr/99hu1atXCMIxKrTs7O5t69eqxe/duHWZeyTS2VUdjW3U0tlVD41p1LuTYigg5OTkkJycHTf9Umhp35cZisVT5k5QjIiIuuC9FdaGxrToa26qjsa0aGteqc6HG9nRXbIpph2KllFJKVSua3CillFKqWtHkphI5nU7Gjh2L0+k8302pdjS2VUdjW3U0tlVD41p1qktsa1yHYqWUUkpVb3rlRimllFLViiY3SimllKpWNLlRSimlVLWiyY1SSimlqhVNbirJpEmTSElJweVy0bVrV/773/+e7yZdUJ599lkMwwh6tWjRIrC+sLCQ++67j9jYWMLDw7nxxhvZv39/UB27du1iwIABhIaGUrt2bUaNGoXX6w0qs2DBAjp16oTT6aRJkyZMmTLlXBzeObVo0SKuvfZakpOTMQyD2bNnB60XEcaMGUNSUhIhISGkpaWxdevWoDJHjhxhyJAhREREEBUVxZ133klubm5QmfXr13PllVficrmoV68eEyZMKNGWTz75hBYtWuByuWjbti1ff/11pR/vuXS62N5+++0lvsd9+/YNKqOxLd348eO59NJLqVWrFrVr12bgwIGkp6cHlTmX54HqdM4uT2yvuuqqEt/dP//5z0FlqlVsRZ21GTNmiMPhkH/84x/y888/y/DhwyUqKkr2799/vpt2wRg7dqy0bt1a9u3bF3gdPHgwsP7Pf/6z1KtXT+bPny8rV66Uyy67TC6//PLAeq/XK23atJG0tDRZs2aNfP311xIXFydPPPFEoMyOHTskNDRURo4cKZs2bZK33npLrFarzJ0795wea1X7+uuv5amnnpJZs2YJIJ9//nnQ+pdeekkiIyNl9uzZsm7dOrnuuuukYcOGUlBQECjTt29fad++vfz000+yePFiadKkidx2222B9ceOHZOEhAQZMmSIbNy4UT766CMJCQmRd999N1Bm6dKlYrVaZcKECbJp0yZ5+umnxW63y4YNG6o8BlXldLEdNmyY9O3bN+h7fOTIkaAyGtvS9enTRyZPniwbN26UtWvXSv/+/aV+/fqSm5sbKHOuzgPV7Zxdntj26NFDhg8fHvTdPXbsWGB9dYutJjeVoEuXLnLfffcF3vt8PklOTpbx48efx1ZdWMaOHSvt27cvdV1WVpbY7Xb55JNPAss2b94sgCxbtkxE/D86FotFMjMzA2XeeecdiYiIkKKiIhEReeyxx6R169ZBdQ8aNEj69OlTyUdz4Tj5B9g0TUlMTJSXX345sCwrK0ucTqd89NFHIiKyadMmAWTFihWBMt98840YhiF79+4VEZG3335boqOjA7EVERk9erQ0b9488P6WW26RAQMGBLWna9eucvfdd1fqMZ4vZSU3119/fZnbaGzL78CBAwLIwoULReTcngeq+zn75NiK+JObBx98sMxtqlts9bbUWXK73axatYq0tLTAMovFQlpaGsuWLTuPLbvwbN26leTkZBo1asSQIUPYtWsXAKtWrcLj8QTFsEWLFtSvXz8Qw2XLltG2bVsSEhICZfr06UN2djY///xzoMyJdRSXqUmfQ0ZGBpmZmUFxiIyMpGvXrkGxjIqK4pJLLgmUSUtLw2KxsHz58kCZ7t2743A4AmX69OlDeno6R48eDZSpifFesGABtWvXpnnz5txzzz0cPnw4sE5jW37Hjh0DICYmBjh354GacM4+ObbFpk+fTlxcHG3atOGJJ54gPz8/sK66xbbGTZxZ2Q4dOoTP5wv6QgAkJCSwZcuW89SqC0/Xrl2ZMmUKzZs3Z9++fTz33HNceeWVbNy4kczMTBwOB1FRUUHbJCQkkJmZCUBmZmapMS5ed6oy2dnZFBQUEBISUkVHd+EojkVpcTgxTrVr1w5ab7PZiImJCSrTsGHDEnUUr4uOji4z3sV1VEd9+/blj3/8Iw0bNmT79u08+eST9OvXj2XLlmG1WjW25WSaJg899BDdunWjTZs2AOfsPHD06NFqfc4uLbYAgwcPpkGDBiQnJ7N+/XpGjx5Neno6s2bNAqpfbDW5UedEv379An9v164dXbt2pUGDBsycObNGJB2qerj11lsDf2/bti3t2rWjcePGLFiwgF69ep3Hll1c7rvvPjZu3MiSJUvOd1OqnbJie9dddwX+3rZtW5KSkujVqxfbt2+ncePG57qZVU5vS52luLg4rFZriR79+/fvJzEx8Ty16sIXFRVFs2bN2LZtG4mJibjdbrKysoLKnBjDxMTEUmNcvO5UZSIiImpMAlUci1N9HxMTEzlw4EDQeq/Xy5EjRyol3jXpe9+oUSPi4uLYtm0boLEtjxEjRvDVV1/xww8/ULdu3cDyc3UeqM7n7LJiW5quXbsCBH13q1NsNbk5Sw6Hg86dOzN//vzAMtM0mT9/PqmpqeexZRe23Nxctm/fTlJSEp07d8ZutwfFMD09nV27dgVimJqayoYNG4J+OObNm0dERAStWrUKlDmxjuIyNelzaNiwIYmJiUFxyM7OZvny5UGxzMrKYtWqVYEy33//PaZpBk54qampLFq0CI/HEygzb948mjdvTnR0dKBMTY/3nj17OHz4MElJSYDG9lREhBEjRvD555/z/fffl7g1d67OA9XxnH262JZm7dq1AEHf3WoV23PafbmamjFjhjidTpkyZYps2rRJ7rrrLomKigrqdV7TPfLII7JgwQLJyMiQpUuXSlpamsTFxcmBAwdExD8EtH79+vL999/LypUrJTU1VVJTUwPbFw9T7N27t6xdu1bmzp0r8fHxpQ5THDVqlGzevFkmTZpULYeC5+TkyJo1a2TNmjUCyGuvvSZr1qyRX3/9VUT8Q8GjoqLkiy++kPXr18v1119f6lDwjh07yvLly2XJkiXStGnToOHKWVlZkpCQIEOHDpWNGzfKjBkzJDQ0tMRwZZvNJq+88ops3rxZxo4de9EPVz5VbHNycuTRRx+VZcuWSUZGhnz33XfSqVMnadq0qRQWFgbq0NiW7p577pHIyEhZsGBB0HDk/Pz8QJlzdR6obufs08V227Zt8vzzz8vKlSslIyNDvvjiC2nUqJF07949UEd1i60mN5Xkrbfekvr164vD4ZAuXbrITz/9dL6bdEEZNGiQJCUlicPhkDp16sigQYNk27ZtgfUFBQVy7733SnR0tISGhsoNN9wg+/btC6pj586d0q9fPwkJCZG4uDh55JFHxOPxBJX54YcfpEOHDuJwOKRRo0YyefLkc3F459QPP/wgQInXsGHDRMQ/HPyZZ56RhIQEcTqd0qtXL0lPTw+q4/Dhw3LbbbdJeHi4REREyB133CE5OTlBZdatWydXXHGFOJ1OqVOnjrz00ksl2jJz5kxp1qyZOBwOad26tcyZM6fKjvtcOFVs8/PzpXfv3hIfHy92u10aNGggw4cPL3HS1tiWrrS4AkH/j57L80B1OmefLra7du2S7t27S0xMjDidTmnSpImMGjUq6Dk3ItUrtoaIyLm7TqSUUkopVbW0z41SSimlqhVNbpRSSilVrWhyo5RSSqlqRZMbpZRSSlUrmtwopZRSqlrR5EYppZRS1YomN0oppZSqVjS5Ueoi8uyzz9KhQ4ezqmPBggUYhlFiDp8TTZkypcTszDXBli1buOyyy3C5XGcd5/Ppqquu4qGHHgq8T0lJ4Y033jgn+54/fz4tW7bE5/Od0fZut5uUlBRWrlxZyS1TNYkmN6rGu/322xk4cGCJ5eVJAmoywzBKfc2YMeN8N+2MjR07lrCwMNLT00vMoVMZ3G43EyZMoH379oSGhhIXF0e3bt2YPHly0FxTlW3FihVBs0JXpccee4ynn34aq9XKVVddVeb3xDAMrrrqKiA4+XI4HDz66KOMHj36nLRXVU+2890ApdTFa/LkyfTt2zdoWVVf8fF4PNjt9iqpe/v27QwYMIAGDRqccR1utxuHw1Hq8j59+rBu3TrGjRtHt27diIiI4KeffuKVV16hY8eOVXa1KD4+vkrqPdmSJUvYvn07N954IwCzZs3C7XYDsHv3brp06cJ3331H69atAUqNE8CQIUN45JFH+PnnnwNllaoIvXKjVAV89tlntG7dGqfTSUpKCq+++mrQesMwmD17dtCyqKgopkyZAvh/4EaMGEFSUhIul4sGDRowfvz4QNmsrCz+9Kc/ER8fT0REBFdffTXr1q0r0Y5//vOfpKSkEBkZya233kpOTk5gXVFREQ888AC1a9fG5XJxxRVXsGLFilMe15QpU6hfvz6hoaHccMMNHD58uFzxiIqKIjExMejlcrkCdUZFRfF///d/tGzZkvDwcPr27cu+ffuC6vjggw9o2bIlLpeLFi1a8PbbbwfW7dy5E8Mw+Pjjj+nRowcul4vp06fj9Xp54IEHiIqKIjY2ltGjRzNs2LDAFbhp06YRGxtLUVFR0L4GDhzI0KFDSz0WwzBYtWoVzz//PIZh8OyzzwKwYcMGrr76akJCQoiNjeWuu+4iNzc3sF3xlb8XX3yR5ORkmjdvXmr9b7zxBosWLWL+/Pncd999dOjQgUaNGjF48GCWL19O06ZNgfJ9fgsXLqRLly44nU6SkpJ4/PHH8Xq9ZX5OJ9+WMgyDDz74gBtuuIHQ0FCaNm3Kl19+GbTNl19+SdOmTXG5XPTs2ZOpU6ee9krmjBkzuOaaawLfgZiYmMD3ojjBio2NDSyLiYkptZ7o6Gi6det2UV8FVOeXJjdKldOqVau45ZZbuPXWW9mwYQPPPvsszzzzTCBxKY8333yTL7/8kpkzZ5Kens706dNJSUkJrL/55ps5cOAA33zzDatWraJTp0706tWLI0eOBMps376d2bNn89VXX/HVV1+xcOFCXnrppcD6xx57jM8++4ypU6eyevVqmjRpQp8+fYLqONHy5cu58847GTFiBGvXrqVnz5688MILFY5PafLz83nllVf45z//yaJFi9i1axePPvpoYP306dMZM2YML774Ips3b+Yvf/kLzzzzDFOnTg2q5/HHH+fBBx9k8+bN9OnTh7/+9a9Mnz6dyZMns3TpUrKzs4OSyptvvhmfzxf0g33gwAHmzJnD//7v/5ba1n379tG6dWseeeQR9u3bx6OPPkpeXh59+vQhOjqaFStW8Mknn/Ddd98xYsSIoG3nz59Peno68+bN46uvviq1/unTp5OWlkbHjh1LrLPb7YSFhQGn//z27t1L//79ufTSS1m3bh3vvPMOH374YYU/s+eee45bbrmF9evX079/f4YMGRLYR0ZGBjfddBMDBw5k3bp13H333Tz11FOnrXPx4sVccsklFWpHWbp06cLixYsrpS5VA53zqTqVusAMGzZMrFarhIWFBb1cLpcAcvToURERGTx4sFxzzTVB244aNUpatWoVeA/I559/HlQmMjIyMHPu/fffL1dffbWYplmiHYsXL5aIiAgpLCwMWt64cWN59913RURk7NixEhoaKtnZ2UFt6Nq1q4iI5Obmit1ul+nTpwfWu91uSU5OlgkTJojI7zNfFx/XbbfdJv379w/a56BBgyQyMvIUUfMfq8vlKhG3X3/9VUREJk+eLEDQ7O+TJk2ShISEoGP797//HVTvuHHjJDU1VUREMjIyBJA33ngjqExCQoK8/PLLgfder1fq168v119/fWDZPffcI/369Qu8f/XVV6VRo0alxr5Y+/btZezYsYH37733nkRHR0tubm5g2Zw5c8RisQRmAx82bJgkJCRIUVFRmfWKiISEhMgDDzxwyjLl+fyefPJJad68edBxTJo0ScLDw8Xn84mISI8ePeTBBx8MrG/QoIG8/vrrgfeAPP3000H7BeSbb74REZHRo0dLmzZtgtr21FNPBX1vShMZGSnTpk0rdV3xZ7lmzZoS605un4jI3/72N0lJSSlzX0qdil65UQro2bMna9euDXp98MEHQWU2b95Mt27dgpZ169aNrVu3lntkyO23387atWtp3rw5DzzwAN9++21g3bp168jNzSU2Npbw8PDAKyMjg+3btwfKpaSkUKtWrcD7pKQkDhw4APiv6ng8nqB22u12unTpwubNm0tt0+bNm+natWvQstTU1HIdz+uvv14ibsnJyYH1oaGhNG7cuNS25uXlsX37du68886g433hhReCjhcIuhpw7Ngx9u/fT5cuXQLLrFYrnTt3Dtpm+PDhfPvtt+zduxfw3ya7/fbbMQyjXMcG/ti0b98+cFUF/J+5aZqkp6cHlrVt27bM/iPFROS0+yvP57d582ZSU1ODjqNbt27k5uayZ8+ech9bu3btAn8PCwsjIiIi8Nmkp6dz6aWXBpU/Md5lKSgoCNySOlshISHk5+dXSl2q5tEOxUrhP7k3adIkaFlFfiiKGYZR4kfsxFEwnTp1IiMjg2+++YbvvvuOW265hbS0ND799FNyc3NJSkpiwYIFJeo9sZPuyZ1pDcPANM0Kt7UyJCYmlojbiUpra3F8ivutvP/++yWSK6vVGvT+xOSivDp27Ej79u2ZNm0avXv35ueff2bOnDkVrqc8ytO+Zs2asWXLlirZ/5moiu9RXFwcR48ePas6ih05cuScdYRW1Y9euVGqnFq2bMnSpUuDli1dupRmzZoFfozj4+ODOsxu3bq1xL8+IyIiGDRoEO+//z4ff/wxn332GUeOHKFTp05kZmZis9lo0qRJ0CsuLq5cbWzcuDEOhyOonR6PhxUrVtCqVasyj2v58uVBy3766ady7e9sJCQkkJyczI4dO0ocb8OGDcvcLjIykoSEhKBOtj6fj9WrV5co+6c//YkpU6YwefJk0tLSqFevXoXa2LJlS9atW0deXl5g2dKlS7FYLGV2HC7L4MGD+e6771izZk2JdR6Ph7y8vHJ9fi1btmTZsmVBSfTSpUupVasWdevWrVCbytK8efMSz5k5Xad08CeUmzZtqpQ2bNy4sdT+SUqVhyY3SpXTI488wvz58xk3bhy//PILU6dOZeLEiUEdZK+++momTpzImjVrWLlyJX/+85+D/oX82muv8dFHH7FlyxZ++eUXPvnkExITE4mKiiItLY3U1FQGDhzIt99+y86dO/nxxx956qmnyv1As7CwMO655x5GjRrF3Llz2bRpE8OHDyc/P58777yz1G0eeOAB5s6dyyuvvMLWrVuZOHEic+fOLdf+srKyyMzMDHqdmAicznPPPcf48eN58803+eWXX9iwYQOTJ0/mtddeO+V2999/P+PHj+eLL74gPT2dBx98kKNHj5a45TR48GD27NnD+++/X2ZH4lMZMmQILpeLYcOGsXHjRn744Qfuv/9+hg4dSkJCQoXqeuihh+jWrRu9evVi0qRJrFu3jh07djBz5kwuu+wytm7dWq7P795772X37t3cf//9bNmyhS+++IKxY8cycuRILJbKOaXffffdbNmyhdGjR/PLL78wc+bMQMf5U93W69OnD0uWLKmUNixevJjevXtXSl2qBjq/XX6UOv+GDRsW1BG12Mkdb0VEPv30U2nVqpXY7XapX79+UKdWEZG9e/dK7969JSwsTJo2bSpff/11UIfi9957Tzp06CBhYWESEREhvXr1ktWrVwe2z87Olvvvv1+Sk5PFbrdLvXr1ZMiQIbJr1y4R8Xcobt++fdA+X3/9dWnQoEHgfUFBgdx///0SFxcnTqdTunXrJv/9739PeVwffvih1K1bV0JCQuTaa6+VV155pVwdikt7jR8/XkT8HYpPruPzzz+Xk08706dPlw4dOojD4ZDo6Gjp3r27zJo1S0TK7oTq8XhkxIgREhERIdHR0TJ69Gi5+eab5dZbby3RzqFDh0pMTEyJjtqlOblDsYjI+vXrpWfPnuJyuSQmJkaGDx8uOTk5gfVlfX9KU1hYKOPHj5e2bdsG6uvWrZtMmTJFPB6PiJz+8xMRWbBggVx66aXicDgkMTFRRo8eHdhepHwdik/V8V1E5IsvvpAmTZqI0+mUq666St555x0BpKCgoMzjO3z4sLhcLtmyZUuJdafqUFyvXj156623Au9//PFHiYqKkvz8/DL3pdSpGCLl6OWmlFIXMNM0admyJbfccgvjxo0LWterVy9at27Nm2++eZ5aVz28+OKL/P3vf2f37t2nLDdq1Ciys7N59913y1Wvz+cjIiKCqVOnctNNNwEwaNAg2rdvz5NPPnnW7VY1k3YoVkpddH799Ve+/fZbevToQVFRERMnTiQjI4PBgwcHyhw9epQFCxawYMGCoAcDqvJ5++23ufTSS4mNjWXp0qW8/PLLJZ7vU5qnnnqKt99+G9M0T3ubbM+ePUybNg2fz8cVV1wB+B902bZtWx5++OFKOQ5VM+mVG6XURWf37t3ceuutbNy4ERGhTZs2vPTSS3Tv3j1QJiUlhaNHj/LMM88E9YtS5fPwww/z8ccfc+TIEerXr8/QoUN54oknsNkq79/EcXFxxMbG8sILL3DzzTdXWr1KaXKjlFJKqWpFR0sppZRSqlrR5EYppZRS1YomN0oppZSqVjS5UUoppVS1osmNUkoppaoVTW6UUkopVa1ocqOUUkqpakWTG6WUUkpVK5rcKKWUUqpa+f9l58TcKS4ekgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "colors = cm.rainbow(np.linspace(0, 1, len(res_carbon_df)))\n", + "plt.scatter(x=res_carbon_df[\"energy_cooling\"], y=res_carbon_df[\"carbon\"], color=colors, alpha=0.5)\n", + "plt.title(\"Energy Used for Cooling vs. Greenhouse Emissions\")\n", + "plt.xlabel(\"Household Energy for Cooling (TJ)\")\n", + "plt.ylabel(\"Greenhouse Gas Emissions (ktonne CO2 equivelent)\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "res_carbon_df.drop(res_carbon_df[(res_carbon_df.geo == \"EU27_2020\") | (res_carbon_df.geo == \"EU20\")].index, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "res_carbon_df.drop(\"year\", axis=1, inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Missing Data" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geocarbonenergy_heatingenergy_coolingenergy_water_heatingenergy_cookinghousehold_totalgas
0AT84795.76190731.84625.12341343.6126891.695274577.0581632.26
1AT81981.39195419.27834.21541839.2517026.774279812.5561585.826
2AT82304.13205494.88531.03541541.8237353.56289591.8631554.83
3AT78716.82178513.71727.64542495.3917152.047261676.4311524.254
4AT81081.58193886.97925.71442104.9657179.133278096.4221539.983
\n", + "
" + ], + "text/plain": [ + " geo carbon energy_heating energy_cooling energy_water_heating \\\n", + "0 AT 84795.76 190731.846 25.123 41343.612 \n", + "1 AT 81981.39 195419.278 34.215 41839.251 \n", + "2 AT 82304.13 205494.885 31.035 41541.823 \n", + "3 AT 78716.82 178513.717 27.645 42495.391 \n", + "4 AT 81081.58 193886.979 25.714 42104.965 \n", + "\n", + " energy_cooking household_total gas \n", + "0 6891.695 274577.058 1632.26 \n", + "1 7026.774 279812.556 1585.826 \n", + "2 7353.56 289591.863 1554.83 \n", + "3 7152.047 261676.431 1524.254 \n", + "4 7179.133 278096.422 1539.983 " + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "def fill_holes():\n", + "\t\"\"\"\n", + "\t\"\"\"\n", + "\tlin_reg = lambda X, Y: np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, Y))\n", + "\n", + "\tdfs = []\n", + "\n", + "\tfor name, group in res_carbon_df.groupby('geo'):\n", + "\t\tcols = [[name for _ in range(len(group.index))]]\n", + "\t\tfor i in range(1, len(group.columns)):\n", + "\t\t\td = group.iloc[:, i:i+1].to_numpy()\n", + "\n", + "\t\t\tmissing_mask = np.isnan(d) | (d == 0)\n", + "\t\t\tpresent_mask = ~missing_mask\n", + "\n", + "\t\t\tmissing_mask = missing_mask.reshape(1, -1)[0]\n", + "\t\t\tpresent_mask = present_mask.reshape(1, -1)[0]\n", + "\n", + "\t\t\tif not np.any(missing_mask):\n", + "\t\t\t\td = d.reshape(1, -1)[0]\n", + "\t\t\t\tcols.append(d)\n", + "\t\t\t\tcontinue\n", + "\n", + "\t\t\tif not np.any(present_mask):\n", + "\t\t\t\td = d.reshape(1, -1)[0]\n", + "\t\t\t\tcols.append(d)\n", + "\t\t\t\tcontinue\n", + "\n", + "\t\t\tx_present = np.pad(np.arange(len(d))[present_mask].reshape(-1, 1), ((0, 0), (1, 0)), mode=\"constant\", constant_values=1)\n", + "\t\t\ty_present = d[present_mask]\n", + "\n", + "\t\t\tw = lin_reg(x_present, y_present)\n", + "\n", + "\t\t\tx_missing = np.pad(np.arange(len(d))[missing_mask].reshape(-1, 1), ((0, 0), (1, 0)), mode=\"constant\", constant_values=1)\n", + "\t\t\ty_missing_pred = np.matmul(x_missing, w)\n", + "\n", + "\t\t\td[missing_mask] = y_missing_pred\n", + "\t\t\td = d.reshape(1, -1)[0]\n", + "\n", + "\t\t\tcols.append(d)\n", + "\t\t# print(cols)\n", + "\t\tdfs.append(pd.DataFrame(cols).T)\t\n", + "\t\t# print(dfs)\n", + "\tdf = pd.concat(dfs, axis=0)\n", + "\tdf.columns = res_carbon_df.columns\n", + "\treturn df\n", + "\n", + "res_carbon_df = fill_holes()\n", + "res_carbon_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Standardize" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
carbonenergy_heatingenergy_coolingenergy_water_heatingenergy_cookinghousehold_totalgasgeo
0-0.277234-0.150436-0.519111-0.165819-0.442083-0.193489-0.208284AT
1-0.291775-0.137877-0.515819-0.159561-0.438278-0.183995-0.22177AT
2-0.290107-0.110884-0.51697-0.163316-0.429072-0.166262-0.230772AT
3-0.308642-0.183169-0.518198-0.151277-0.434749-0.216883-0.239653AT
4-0.296424-0.141983-0.518897-0.156206-0.433986-0.187107-0.235084AT
\n", + "
" + ], + "text/plain": [ + " carbon energy_heating energy_cooling energy_water_heating energy_cooking \\\n", + "0 -0.277234 -0.150436 -0.519111 -0.165819 -0.442083 \n", + "1 -0.291775 -0.137877 -0.515819 -0.159561 -0.438278 \n", + "2 -0.290107 -0.110884 -0.51697 -0.163316 -0.429072 \n", + "3 -0.308642 -0.183169 -0.518198 -0.151277 -0.434749 \n", + "4 -0.296424 -0.141983 -0.518897 -0.156206 -0.433986 \n", + "\n", + " household_total gas geo \n", + "0 -0.193489 -0.208284 AT \n", + "1 -0.183995 -0.22177 AT \n", + "2 -0.166262 -0.230772 AT \n", + "3 -0.216883 -0.239653 AT \n", + "4 -0.187107 -0.235084 AT " + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_merged_s = pd.DataFrame()\n", + "for feat in res_carbon_df.columns:\n", + "\tif feat == \"geo\": continue\n", + "\tdf_merged_s[f'{feat}'] = ((res_carbon_df[feat] - res_carbon_df[feat].mean()) / res_carbon_df[feat].std())\n", + "df_merged_s[\"geo\"] = res_carbon_df[\"geo\"]\n", + "# df_merged_s[\"year\"] = res_carbon_df[\"year\"]\n", + "df_merged_s.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dummies" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(336, 35)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
carbonenergy_heatingenergy_coolingenergy_water_heatingenergy_cookinghousehold_totalgasgeo_ATgeo_BEgeo_BG...geo_LVgeo_MTgeo_NLgeo_NOgeo_PLgeo_PTgeo_ROgeo_SEgeo_SIgeo_SK
0-0.277234-0.150436-0.519111-0.165819-0.442083-0.193489-0.208284100...0000000000
1-0.291775-0.137877-0.515819-0.159561-0.438278-0.183995-0.22177100...0000000000
2-0.290107-0.110884-0.51697-0.163316-0.429072-0.166262-0.230772100...0000000000
3-0.308642-0.183169-0.518198-0.151277-0.434749-0.216883-0.239653100...0000000000
4-0.296424-0.141983-0.518897-0.156206-0.433986-0.187107-0.235084100...0000000000
\n", + "

5 rows × 35 columns

\n", + "
" + ], + "text/plain": [ + " carbon energy_heating energy_cooling energy_water_heating energy_cooking \\\n", + "0 -0.277234 -0.150436 -0.519111 -0.165819 -0.442083 \n", + "1 -0.291775 -0.137877 -0.515819 -0.159561 -0.438278 \n", + "2 -0.290107 -0.110884 -0.51697 -0.163316 -0.429072 \n", + "3 -0.308642 -0.183169 -0.518198 -0.151277 -0.434749 \n", + "4 -0.296424 -0.141983 -0.518897 -0.156206 -0.433986 \n", + "\n", + " household_total gas geo_AT geo_BE geo_BG ... geo_LV geo_MT \\\n", + "0 -0.193489 -0.208284 1 0 0 ... 0 0 \n", + "1 -0.183995 -0.22177 1 0 0 ... 0 0 \n", + "2 -0.166262 -0.230772 1 0 0 ... 0 0 \n", + "3 -0.216883 -0.239653 1 0 0 ... 0 0 \n", + "4 -0.187107 -0.235084 1 0 0 ... 0 0 \n", + "\n", + " geo_NL geo_NO geo_PL geo_PT geo_RO geo_SE geo_SI geo_SK \n", + "0 0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 0 \n", + "\n", + "[5 rows x 35 columns]" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_dummies = pd.get_dummies(df_merged_s, dtype=int, columns=[\"geo\"])\n", + "print(df_dummies.shape)\n", + "df_dummies.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/jk/vqmr1l1d1dnflmyh1qdjmhk40000gn/T/ipykernel_97545/3693932479.py:1: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " df_dummies = df_dummies.fillna(0)\n" + ] + } + ], + "source": [ + "df_dummies = df_dummies.fillna(0)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "df_dummies.drop([\"energy_cooling\", \"energy_heating\", \"energy_water_heating\", \"energy_cooking\"], axis=1, inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Linear Regression" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1. , -0.15506195, -0.21718148, 0. , 0. ,\n", + " 0. , 0. , 1. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. ],\n", + " [ 1. , -0.14198966, -0.25949037, 0. , 0. ,\n", + " 0. , 0. , 1. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. , 0. , 0. , 0. , 0. ,\n", + " 0. ]])" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = np.pad(df_dummies.iloc[:, 1:].to_numpy(), ((0,0), (1,0)), mode=\"constant\", constant_values=1)\n", + "y = np.array(df_dummies[\"carbon\"])\n", + "X[56:58,]" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 4.88508124, 11.90934986, 4.345609 , -4.94743023,\n", + " -3.93159802, -0.56534299, 1.50409325, -3.03722218,\n", + " -66.98241677, -3.2859403 , 2.73019393, -1.59730943,\n", + " -14.18092016, -5.02689332, -38.15626913, -0.97102755,\n", + " -4.95647721, 1.94370399, -34.24900068, 1.07903285,\n", + " 0.81998587, 2.20177111, 4.81320064, -10.74424902,\n", + " -2.00751748, -17.99937653, 1.31870399, -3.93838325,\n", + " -6.4031752 , 2.67108654, 1.30513352])" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "m = np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, y))\n", + "np.set_printoptions(suppress=True) #this just prevents python from printing it out in inconvenient scientific notation\n", + "m" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[2.99456721 2.92556497 2.75515702 3.37808212 3.01583775]\n" + ] + }, + { + "data": { + "text/plain": [ + "789.7" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# get the residuals\n", + "res = y - np.matmul(X, m)\n", + "print(res[0:5])\n", + "round(sum(res), 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACNZ0lEQVR4nOzdeZxcZZX4/89daq/q6r2TdDprh5CQsAYQohBlc0MZB0EQBQZwVBgUHEb4fWdEHBVxnJEZEUTnKzrjF2UAF2TYEUH2HZJASDoL6XR6X2rf7r3P749KNd3p7qT3peq8X69Wuvp29dOV6nvPfZ7znKMppRRCCCGEEHOcPtMDEEIIIYSYDBLUCCGEEKIoSFAjhBBCiKIgQY0QQgghioIENUIIIYQoChLUCCGEEKIoSFAjhBBCiKIgQY0QQgghioIENUIIIYQoChLUCDFB3/zmN9E0bVTHaprGN7/5zSkdz4YNG9iwYcOsfT5RvMbytyDEVJCgRhSNX/ziF2ia1v9hmib19fVcdNFFtLS0zPTwZp0lS5YMer1qa2v5wAc+wO9+97tJef5kMsk3v/lN/vznP0/K802FXbt2DXoN9v/43ve+N9NDnBIdHR2YpskFF1ww4jGxWAyfz8enPvWpaRyZEBNjzvQAhJhs3/rWt1i6dCnpdJrnn3+eX/ziFzz99NNs2rQJr9c76T/vH//xH7n22msn/Xmnw5FHHsnXvvY1APbu3cvtt9/Opz71KW677Ta++MUvTui5k8kkN9xwA8Csn+k577zz+OhHPzrk8aOOOmoGRjP1amtrOe200/jDH/5AMpnE7/cPOea3v/0t6XT6gIGPELONBDWi6HzkIx9h3bp1AFx66aVUV1dz0003cd9993HOOedM+s8zTRPTnJt/SvX19YMuWp///OdpbGzkhz/84YSDmrnk6KOPnhUXb8uycBwHt9s95T/rs5/9LA899BD33Xcfn/nMZ4Z8/c477yQcDvOxj31syscixGSR5SdR9D7wgQ8AsH379kGPb9myhbPPPpvKykq8Xi/r1q3jvvvuG3RMLpfjhhtuYMWKFXi9Xqqqqnj/+9/Po48+2n/McHkEmUyGq666ipqaGkKhEJ/4xCfYs2fPkLFddNFFLFmyZMjjwz3nHXfcwYc+9CFqa2vxeDysXr2a2267bUyvxcHMmzePVatWsXPnzgMe19HRwSWXXEJdXR1er5cjjjiCX/7yl/1f37VrFzU1NQDccMMN/cs5I+UTvfzyy2iaNug5Ch5++GE0TeP+++8H8ssiX/3qV1myZAkej6d/1uHVV18d5289OkuWLOHjH/84Tz/9NMcddxxer5dly5bxX//1X0OO7evr46tf/SoNDQ14PB4aGxu56aabcByn/5jC0tcPfvADbr75ZpYvX47H4+Gtt94C4M9//jPr1q3D6/WyfPlybr/99iHvi5NPPpkjjjhi2PGuXLmSM844Y8Tf56/+6q8IBALceeedQ77W0dHB448/ztlnn43H4+Evf/kLn/70p1m0aBEej4eGhgauuuoqUqnUAV+zwu/4i1/8YsjXhns/tLS08Dd/8zfU1dXh8Xg47LDD+PnPfz7ke3/0ox9x2GGH4ff7qaioYN26dcP+HqL0zM3bSyHGYNeuXQBUVFT0P7Z582bWr19PfX091157LYFAgP/5n//hrLPO4t577+Wv/uqvgHxwceONN3LppZdy3HHHEY1Gefnll3n11Vc57bTTRvyZl156Kb/61a84//zzOfHEE/nTn/404Tve2267jcMOO4xPfOITmKbJH//4R7785S/jOA6XX375hJ67IJfL0dzcTFVV1YjHpFIpNmzYQFNTE1dccQVLly7l7rvv5qKLLqKvr4+vfOUr1NTUcNttt/GlL32Jv/qrv+rPyzj88MOHfc5169axbNky/ud//ocLL7xw0NfuuusuKioq+i/QX/ziF7nnnnu44oorWL16Nd3d3Tz99NO8/fbbHH300eP6vZPJJF1dXUMeLy8vHzQL19TUxNlnn80ll1zChRdeyM9//nMuuugijjnmGA477LD+5zr55JNpaWnhb//2b1m0aBHPPvss1113Ha2trdx8882DfsYdd9xBOp3mC1/4Ah6Ph8rKSl577TU+/OEPM3/+fG644QZs2+Zb3/pWf6BY8LnPfY7LLruMTZs2sWbNmv7HX3rpJbZu3co//uM/jvg7BwIBPvnJT3LPPffQ09NDZWVl/9fuuusubNvms5/9LAB33303yWSSL33pS1RVVfHiiy/yox/9iD179nD33XeP/oU+gPb2dt73vvehaRpXXHEFNTU1PPjgg1xyySVEo1G++tWvAvCzn/2MK6+8krPPPpuvfOUrpNNp3nzzTV544QXOP//8SRmLmMOUEEXijjvuUIB67LHHVGdnp2publb33HOPqqmpUR6PRzU3N/cfe8opp6i1a9eqdDrd/5jjOOrEE09UK1as6H/siCOOUB/72McO+HOvv/56NfBP6fXXX1eA+vKXvzzouPPPP18B6vrrr+9/7MILL1SLFy8+6HMqpVQymRxy3BlnnKGWLVs26LGTTz5ZnXzyyQccs1JKLV68WJ1++umqs7NTdXZ2qjfeeEN95jOfUYD6u7/7uxGf7+abb1aA+tWvftX/WDabVSeccIIKBoMqGo0qpZTq7Owc8vseyHXXXadcLpfq6enpfyyTyajy8nL1N3/zN/2PhcNhdfnll4/qOQ9m586dChjx47nnnus/dvHixQpQTz31VP9jHR0dyuPxqK997Wv9j/3zP/+zCgQCauvWrYN+1rXXXqsMw1C7d+8e9LPLyspUR0fHoGPPPPNM5ff7VUtLS/9j27ZtU6ZpDnpf9PX1Ka/Xq77+9a8P+v4rr7xSBQIBFY/HD/j7/+///q8C1O233z7o8fe9732qvr5e2batlBr+vXfjjTcqTdPUu+++2//Y/u/bwu94xx13DPn+/d8bl1xyiZo/f77q6uoadNxnPvMZFQ6H+8fwyU9+Uh122GEH/L1E6ZLlJ1F0Tj31VGpqamhoaODss88mEAhw3333sXDhQgB6enr405/+xDnnnEMsFqOrq4uuri66u7s544wz2LZtW/9uqfLycjZv3sy2bdtG/fMfeOABAK688spBjxfuNMfL5/P1/3ckEqGrq4uTTz6ZHTt2EIlExvWcjzzyCDU1NdTU1HDEEUdw991387nPfY6bbrppxO954IEHmDdvHuedd17/Yy6XiyuvvJJ4PM6TTz45rrGce+655HI5fvvb3w4aX19fH+eee27/Y+Xl5bzwwgvs3bt3XD9nOF/4whd49NFHh3ysXr160HGrV6/uX84EqKmpYeXKlezYsaP/sbvvvpsPfOADVFRU9L+3urq6OPXUU7Ftm6eeemrQc/71X//1oBkY27Z57LHHOOuss1iwYEH/442NjXzkIx8Z9L3hcJhPfvKT/PrXv0Yp1f/9d911F2eddRaBQOCAv/fpp59OTU3NoKWbnTt38vzzz3Peeeeh6/lLxMD3XiKRoKurixNPPBGlFK+99toBf8ZoKKW49957OfPMM1FKDXrdzjjjDCKRSP/yYnl5OXv27OGll16a8M8VxUeWn0TR+fGPf8whhxxCJBLh5z//OU899RQej6f/601NTSil+Kd/+if+6Z/+adjn6OjooL6+nm9961t88pOf5JBDDmHNmjV8+MMf5nOf+9yIyygA7777Lrqus3z58kGPr1y5ckK/1zPPPMP111/Pc889RzKZHPS1SCRCOBwe83Mef/zxfPvb30bTNPx+P6tWraK8vPyA3/Puu++yYsWK/gtewapVq/q/Ph5HHHEEhx56KHfddReXXHIJkF8Gqa6u5kMf+lD/cd///ve58MILaWho4JhjjuGjH/0on//851m2bNm4fi7AihUrOPXUUw963KJFi4Y8VlFRQW9vb//n27Zt48033xyyVFTQ0dEx6POlS5cO+XoqlaKxsXHI9w732Oc//3nuuusu/vKXv3DSSSfx2GOP0d7ezuc+97mD/j6maXLuuedy66230tLSQn19fX+AU1h6Ati9ezff+MY3uO+++wb9rsC4A+qBOjs76evr46c//Sk//elPhz2m8Lp9/etf57HHHuO4446jsbGR008/nfPPP5/169dPeBxi7pOgRhSd4447rn/301lnncX73/9+zj//fN555x2CwWB/subf//3fj5hIWbh4nHTSSWzfvp0//OEPPPLII/znf/4nP/zhD/nJT37CpZdeOuGxjlSozLbtQZ9v376dU045hUMPPZR/+7d/o6GhAbfbzQMPPMAPf/jDQQmoY1FdXT2qi/l0Offcc/nOd75DV1cXoVCI++67j/POO29QXss555zTX0/nkUce4V/+5V+46aab+O1vfztkJmOyGYYx7OOFWRIAx3E47bTT+Id/+Idhjz3kkEMGfT5wFmQ8zjjjDOrq6vjVr37FSSedxK9+9SvmzZs36n/XCy64gFtuuYVf//rX/P3f/z2//vWvWb16NUceeSSQfy+edtpp9PT08PWvf51DDz2UQCBAS0sLF1100QHfe6N9fxee44ILLhiSU1VQuJFYtWoV77zzDvfffz8PPfQQ9957L7feeivf+MY3+ksIiNIlQY0oaoZhcOONN/LBD36QW265hWuvvbb/jt7lco3qxF9ZWcnFF1/MxRdfTDwe56STTuKb3/zmiEHN4sWLcRyH7du3D5qdeeedd4YcW1FRQV9f35DH95/t+OMf/0gmk+G+++4bNFvwxBNPHHT8k23x4sW8+eabOI4zaLZmy5Yt/V+HkS9oB3Luuedyww03cO+991JXV0c0Gh12u/H8+fP58pe/zJe//GU6Ojo4+uij+c53vjPlQc1oLF++nHg8Pu5gsba2Fq/XS1NT05CvDfeYYRicf/75/OIXv+Cmm27i97//PZdddtmIAdj+jj/+eJYvX86dd97JaaedxubNm/nOd77T//WNGzeydetWfvnLX/L5z3++//GBOwBHUkjO3/89vv/7u7BL0LbtUb1ugUCAc889l3PPPZdsNsunPvUpvvOd73DddddNSS0qMXdITo0oehs2bOC4447j5ptvJp1OU1tby4YNG7j99ttpbW0dcnxnZ2f/f3d3dw/6WjAYpLGxkUwmM+LPK1xY/+M//mPQ4/vveoH8BTASifDmm2/2P9ba2jqkqm/hAjVwRiASiXDHHXeMOI6p8tGPfpS2tjbuuuuu/scsy+JHP/oRwWCQk08+GaC/oNtwQdtIVq1axdq1a7nrrru46667mD9/PieddFL/123bHrLcUVtby4IFCwb9m3R1dbFly5Yhy3TT4ZxzzuG5557j4YcfHvK1vr4+LMs64PcbhsGpp57K73//+0F5Q01NTTz44IPDfs/nPvc5ent7+du//Vvi8fiYa+589rOf5bXXXuP6669H07RBu4iGe+8ppfj3f//3gz5vWVkZ1dXVQ/KIbr311kGfG4bBX//1X3PvvfeyadOmIc9zoL9Jt9vN6tWrUUqRy+UOOiZR3GSmRpSEa665hk9/+tP84he/4Itf/CI//vGPef/738/atWu57LLLWLZsGe3t7Tz33HPs2bOHN954A8gnhm7YsIFjjjmGyspKXn755f7txCM58sgjOe+887j11luJRCKceOKJPP7448PeZX/mM5/h61//On/1V3/FlVdeSTKZ5LbbbuOQQw4ZVHfl9NNPx+12c+aZZ/ZfuH72s59RW1s7bGA2lb7whS9w++23c9FFF/HKK6+wZMkS7rnnHp555hluvvlmQqEQkF9WWb16NXfddReHHHIIlZWVrFmzZtDW4+Gce+65fOMb38Dr9XLJJZcMmg2KxWIsXLiQs88+myOOOIJgMMhjjz3GSy+9xL/+67/2H3fLLbdwww038MQTT4yqmvGrr77Kr371qyGPL1++nBNOOGGUr0zeNddcw3333cfHP/7x/u3eiUSCjRs3cs8997Br1y6qq6sP+Bzf/OY3eeSRR1i/fj1f+tKXsG2bW265hTVr1vD6668POf6oo45izZo13H333axatWrMW9svuOACvvWtb/GHP/yB9evXD6qddOihh7J8+XL+/u//npaWFsrKyrj33nuH5NaM5NJLL+V73/sel156KevWreOpp55i69atQ4773ve+xxNPPMHxxx/PZZddxurVq+np6eHVV1/lscceo6enB8j/LcybN4/169dTV1fH22+/zS233MLHPvax/veeKGEzte1KiMlW2NL90ksvDfmabdtq+fLlavny5cqyLKWUUtu3b1ef//zn1bx585TL5VL19fXq4x//uLrnnnv6v+/b3/62Ou6441R5ebny+Xzq0EMPVd/5zndUNpvtP2a47depVEpdeeWVqqqqSgUCAXXmmWeq5ubmYbc4P/LII2rNmjXK7XarlStXql/96lfDPud9992nDj/8cOX1etWSJUvUTTfdpH7+858rQO3cubP/uLFs6T7YdvWRnq+9vV1dfPHFqrq6WrndbrV27dpht+0+++yz6phjjlFut3vU27u3bdvWv6X66aefHvS1TCajrrnmGnXEEUeoUCikAoGAOuKII9Stt9466LjC6/fEE08c8GcdbEv3hRde2H/sSK/XcK9PLBZT1113nWpsbFRut1tVV1erE088Uf3gBz/of+8Ufva//Mu/DDu2xx9/XB111FHK7Xar5cuXq//8z/9UX/va15TX6x32+O9///sKUN/97ncP+DuP5Nhjj1XAkNdSKaXeeustdeqpp6pgMKiqq6vVZZddpt54440h27VHKkVwySWXqHA4rEKhkDrnnHNUR0fHsO+H9vZ2dfnll6uGhgblcrnUvHnz1CmnnKJ++tOf9h9z++23q5NOOklVVVUpj8ejli9frq655hoViUTG9XuL4qIpNWBOUQghxKx11llnjVhi4N///d+56qqr2LVr17C7tIQoBZJTI4QQs9D+LQi2bdvGAw88MOxymlKK//t//y8nn3yyBDSipElOjRBCzELLli3joosuYtmyZbz77rvcdtttuN3uQVvFE4kE9913H0888QQbN27kD3/4wwyOWIiZJ8tPQggxC1188cU88cQTtLW14fF4OOGEE/jud787KAl4165dLF26lPLycr785S8P2ootRCmSoEYIIYQQRUFyaoQQQghRFCSoEUIIIURRKKlEYcdx2Lt3L6FQaFwl3IUQQggx/ZRSxGIxFixYMKSZ7kAlFdTs3buXhoaGmR6GEEIIIcahubmZhQsXjvj1kgpqCiW0m5ubKSsrm+HRCCGEEGI0otEoDQ0NB22FUVJBTWHJqaysTIIaIYQQYo45WOqIJAoLIYQQoihIUCOEEEKIoiBBjRBCCCGKggQ1QgghhCgKEtQIIYQQoihIUCOEEEKIoiBBjRBCCCGKggQ1QgghhCgKEtQIIYQQoiiUVEVhIcTc5ziKlr4UiaxFwG1SX+5D16VBrZj95L079SSoEULMGU0dMR7e1M72zjhpy8ZrGiyvCXLGmjoaaw/cE0aIqXagoEXeu9NDghohxJzQ1BHjjmd20ZPIMj/sxe/2kcxabNobYW8kxcXrl8jFQcyYAwUtgLx3p4kENUKIWc9xFA9vaqcnkWVFbbC/qV3I6yLoMdnWEeeRze0sqw7KdL6YdgcKuFv6knhdhrx3p4kkCgshZr2WvhTbO+PMD3uHdOnVNI35YS9NHXFa+lIzNEJRqvYPuENeF4auEfK6WFEbpKUvxQs7uplXJu/d6SBBjRBi1ktkLdKWjd89/OSyz22QsWwSWWuaRyZK3cEC7gq/m75kDttRw36/vHcnlwQ1QohZL+A28ZoGyRFO/Kmsjcc0CIwQ9AgxVQ4WcIe8JmgQS+eG/bq8dyeXBDVCiFmvvtzH8pogrZE0Sg2+41VK0RpJ01gbpL7cN0MjFKXqYAG3qWuEfW56kll5704DCWqEELOermucsaaOyoCbbR1xYukcluMQS+fY1hGnMuDm9MPqJNFSTLuDBdxt0QwnLKukvtwv791pIPNdQog5obE2xMXrl/Rvm22PpvGYBmvrw5x+mNT6EDOjEHDvjaTY1pHPrfG5DVJZm9ZImsqAm/OOXwQg791poKn9Q8siFo1GCYfDRCIRysrKZno4QohxkKqsYjYaWKcmY+XzZBprg4OCFnnvjt9or98yUyOEmFN0XaOh0j/TwxBikMbaEMs2BA8YtMh7d+pJUCOEEEJMAglaZp4kCgshhBCiKEhQI4QQQoiiMKeCmpaWFi644AKqqqrw+XysXbuWl19+eaaHJYQQQkyI4yiae5JsaYvS3JPEGaECsTiwOZNT09vby/r16/ngBz/Igw8+SE1NDdu2baOiomKmhyaEEEKM24E6fMt277GZM0HNTTfdRENDA3fccUf/Y0uXLp3BEQkhhBATc6AO33sjKS5ev0QCmzGYM8tP9913H+vWrePTn/40tbW1HHXUUfzsZz874PdkMhmi0eigDyGEEGI2OFiH755Elkc2t8tS1BjMmaBmx44d3HbbbaxYsYKHH36YL33pS1x55ZX88pe/HPF7brzxRsLhcP9HQ0PDNI5YCCGEGNnBOnzPD3tp6ojT0peaoRHOPXOmorDb7WbdunU8++yz/Y9deeWVvPTSSzz33HPDfk8mkyGTyfR/Ho1GaWhokIrCQgghZtyWtij/8fg2llUHMYapLGw5Dru6EvzdKSs4dF5pX7NGW1F4zszUzJ8/n9WrVw96bNWqVezevXvE7/F4PJSVlQ36EEIIIWaDg3X4TmXz7RYC7jmT/jrj5kxQs379et55551Bj23dupXFixfP0IiEEEKI8TtYh+/WSJrG2iD15b4ZGuHcM2eCmquuuornn3+e7373uzQ1NXHnnXfy05/+lMsvv3ymhyaEEEKMWaHDd2XAzbaOOLF0DstxiKVzbOuIUxlwc/phddL0cgzmTE4NwP333891113Htm3bWLp0KVdffTWXXXbZqL9funQLIYSYbUbT4bvUjfb6PaeCmomSoEYIIcRs5DjqgB2+S91or9+SfSSEEELMMOnwPTnmTE6NEEIIIcSBSFAjhBBCiKIgQY0QQgghioIENUIIIYQoChLUCCGEEKIoSFAjhBBCiKIgW7qFEEKIOULq2RyYBDVCCCHEHDCw8nDasvGaBstrgpyxRioPF0hQI4QQQsxyTR0x7nhmFz2JLPPDXvxuH8msxaa9EfZGUly8fokENkhOjRBCCDGrOY7i4U3t9CSyrKgNEvK6MHSNkNfFitogPYksj2xux3FKpuvRiCSoEUIIIWaxlr4U2zvjzA970bTB+TOapjE/7KWpI05LX2qGRjh7SFAjhBBCzGKJrEXasvG7h88Y8bkNMpZNImtN88hmHwlqhBBCiFks4DbxmgbJEYKWVNbGYxoERgh6SokENUIIIcQsVl/uY3lNkNZIGqUG580opWiNpGmsDVJf7puhEc4eEtQIIYQQs5iua5yxpo7KgJttHXFi6RyW4xBL59jWEafS72btwjBbO2I09yRLOmFYU/uHfUUsGo0SDoeJRCKUlZXN9HCEEEKIURtYpyZj5Zecyv0uUNCXyhV17ZrRXr9lAU4IIYSYAxprQyzbEOyvKNwVy/DAxlZ6kzmpXbOPBDVCCCHEHKHrGg2VfhxH8fhbHfQmc6yoDfZv9Q55XQQ9Jts64jyyuZ1l1cGSaqMgOTVCCCHEHCO1a4YnQY0QQggxx0jtmuFJUCOEEELMMVK7ZngS1AghhBBzjNSuGZ4ENUIIIcQcc9DaNQE3px9WV1JJwiBBjRBCCDEnNdaGuHj9EtYsCNOXzLGrK0FfMsfa+nBJbucG2dIthBBCzFn7164JuE3qy30lN0NTIEGNEEIIMYcVatcIWX4SQgghRJGQmRoxLo6jZLpTCCFmsVI8T0tQU2Sm4008sKlaMTdQE0KIuapUz9MS1BSR6XgTN3XEuOOZXfQkstJATQghZqFSPk9LTk2RKLyJN7ZEMHWNMq8LU9fY2BLhjmd20dQRm/DPcBzFw5va6UlkWVEbJOR1YegaIa+LFbVBehJZHtncjuOogz+ZEEKISVfq52mZqSkChTfx7p4kOctmW3uMrOPg1nVqQm4SWWtSurWOpYGaZOILIcT0K/XztAQ1RaClL8Vrzb009ySJpnMolS+T7SjoTGQIeUzchkZL34IJvYnfa6A2fNltn9ugPZouuQZqQggxW5T6eVqWn4pALJ2jqT1OdzyDUqBrYDuKjOWQyti0R9O88m4fm/dGJvRzpIGaEELMbqV+npagpghE0zl6klkATF0jlXPIOQpTB7epoQHxjMU9r+yZUG7NSA3UlFJEklm2tseoDrmZX+ad6K8khBBiHEq90aUENUUgmbXzb14N0jkbx3FAKWwHHCe/jqqh6EtOLEFsuAZqnbE0zzR18chb+ZyeHZ0Jbn9qx6QkJgshhBibUm90WZzzTyVG1zR8LoOM7RDPWjgO5MOW/P9qgNvQqAx4JpwgVmig9vCmdl5r7mVrewzLVswv97KyrgyvSy+JbYNCCDGdxlKDbOB5entnnPZoGo9psLY+zOmHSZ0aMcstqw5QHfKwpzeJ7bz3eOHtroCco8hZNhlDm3CCWGNtiCUnBfj+w++Qztk01gQp87n6M+2DHpNtHfFJ2XElhBClbjw1yEq10aUENUVgYYWf45ZU0NSeX/LRAX3fwmJ+J1R+Nued9hjHLa2alASx1miarniGQ+pChLyuQV8rhW2DYvqUYql3IQomUkivFBtdSlBTBHRd44iGCn7zUjO6k8+tcRz6p2pMHTymRncii63UpCTy7r9tUClFLG2RtR3cho7PbZCxinfboJgepVrqXQgYWkivMBse8rpkRnwEEtQUCa/bIOhxoXkVfSkLy1aFlBoswMrm16V2deUTeSd6URi4bTBnO2zvSNCTzGI5DqauE3AbVATcRbttUEy9Ui71LgRIIb3xkCtOkagKuPG5DdyGRtaGdNbCUQp7X2CjyNevqfC7J+WiUNg2+PzObnoTGdI5h6DXxGWYZC2bPX0pLEeRyslMjRg7uUMVQgrpjYds6S4SRzdUsLjST1ssgwZU+E3cpo5L1/CYGoYGblMnZzs01gQm3P9D1zVOW11HNJWjM54l4DFxGfnnT2RsaoIeyrwuHnuro2h7jIipM5Y7VCGKVakX0hsPCWqKhGnqnHnkAjQgY9lkbLAVaBpYNpiGzvywl95kjnjGnpSLgs9tUBPysLDcR8Zy6E1mSeccasu8HLWoghV1QbnwiHF57w51+JN1PmfLljtUUdRKvZDeeEh4V0SOaCjn0Hkh2iNpepI5cpaDroHPbTIv7CXsc9GXzJK1Hcr9rglPWyayFm5T533Lqkhm7f4k4ZDXRNM0LMeRqVExLgPvUPffXQdyhypKQ6GQ3t5Iim0d+ZlLn9sglbVpjaSLvpDeeMgZoYgE3CaLKgOsXVBOWyzFm3si+Fw6AbcLB0UiY2FoGm5Dn5SLQuHCk8rZlPnkwiMmT+EOddPeCEGPOWgJqnCHurY+LHeooug11oa48MTF3PNyC9s74zjKodznLolCeuMhy09FpHAhaIulaawJUhPy0JPM0dybZE9vit09SZI5m6xlT8q0pUyNiqlS6qXehSho6ojx6OYOOmNpbKXQNY2akIdTV0lAMxwJaorIwAvB680R+pI5LFuRsx0c28FtaFi2w1PbujB0bcIXBbnwiKlUKPW+ZkGYvmSOXV0J+pI51taHZTu3KAmFsgab9kaoCLhZsyDM4qoAzb0pfvncLumxNwxZFygyhanKf/7j22Qth3KfSTLr4CiFx6XjdRkYuk5dyMOy6uCk/LxS7TEipt5oSr1LxWFRjKSswfhIUFOEfC6T6qCb+eFqkjmblt4kkVSOnKMAjZDH4N2e5KQVbCrVHiNiehyo1LtUHBbFSgrvjY8ENTNsKu4yE1mLjO3gcxu825YgmbXxugx8moZSir5Ujq5Elrdbo5P2x1CKPUbEzJKKw6KYSeG98ZGgZgZN1V1mwG3iMXTeaYsRSeVwHEVfMoezL8nMZWjYSvHKu72cukpyXsTcI1PzothJWYPxkUThSeQ4iuaeJFvaojT3JA9YSbdwl7mxJYKpa5R5XZi6xsaWCHc8M7EEsPpyHzUhD829KeLpHImsjWloeE0dUESSOSxLsa09KoXxxJwkFYdFsZPdpeMjId4kaeqI8dCmNja2REhmLfxuk7X1YT68Zt6QWZfCXebuniS5nM3W9hg5x8Gl69QG3SSy1oTuMnVd4+jFFdz1UjOWowh6DBzHIZ5zyFpOf9XhN/dE2bw3MqnLRpK0KaaDTM2LYieF98ZHgppJ0NQR4+bHtvH23j76UhYZy8HQNN5uifB2a5SrTjtkUGDT0pfiteZe9vQm6UvmsB1FPoUXepNZwj4XHlOfUAJY5b4Gl7ajSFsO6ZyNoxRuQ8fvNrAcRSJrce8re2isDU5K7oEkbYrpIlPzohTI7tKxm7N/8d/73ve47rrr+MpXvsLNN988Y+NwHMWdL+zmya2dxNKD7wojaYvWWBse0+AHnz6iP6KOpXNsa4/TFc9gK4VyVH++i6ZrZC2n/7iRfubBZkOCXpMyn4tcziZlOSil8Jo6ppFfcbRsG59LJ5mzJyX3QJI2xXSSisOiVMju0rGZk0HNSy+9xO23387hhx8+00NhT2+S+15vGRLQFORs+OObLZx1ZD0nrawBIJrO0Z3IkLZslMrP0AA4+wIcDeiKZ4gOE9SMdjYk5HGxqNLPjs448YyF12VgGjq2UmQtB13XKPO5WBD2TXhboCRtiukmU/OilMju0tGbc4nC8Xicz372s/zsZz+joqJipofD220RuhLDz6gU5Gz4xbPb+xOHExmLTM7BdgAFhRQwjfzntoJMziGRGRwoDawuWe53saw6SLnfxaa9Q5OL68t9HNVQQbnPjdvQcRxFKmeTsxw8Rn4HVIXfTXXQPeFux5K0KWaCVBwWQuxvzs3UXH755XzsYx/j1FNP5dvf/vYBj81kMmQymf7Po9HopI/nyXc6R3XcK7v6aO5NsrgqQHcii70vwHHgvahmAFspuhPZ/s/HOhtSuJPd2hGjLZrC7zbIWjZ9qXwAY2oaPS6dF3f2UBFwTyj3QJI2xUyRqXkhxEBzKqj5zW9+w6uvvspLL700quNvvPFGbrjhhikdU2tvelTHJXM2O7sSLK4K8PbeSD6YOQBHQXvkveceT3XJxtoQl39wOdd2J9jUGiVnvZeQjAnxtEUsbWE5ilTWHv0vvR9J2hxKdoFNH5maF0IUzJmrTHNzM1/5yld49NFH8Xq9o/qe6667jquvvrr/82g0SkNDw6SOS43yOlWIQyzL4amto5vdeXNPBMdR6Lo27tmQ5p4UPclcf0BTkLUU3VaOkMfANDQee7udxtrx5bxI0uZgsgtMCCFmxpzJqXnllVfo6Ojg6KOPxjRNTNPkySef5D/+4z8wTRPbHjrT4PF4KCsrG/Qx2Q5fOLqLVMBtsKw6wCu7e2iLZg7+DcA7bTH29Cb3ff97syHDGW42ZGtbjP94fBsd0QwDQxU14COasWmPpNnWHht3zot0637PcHlPYZ/Ji7u6+bdHt/L0ts4DFmUUQggxfnNmpuaUU05h48aNgx67+OKLOfTQQ/n617+OYRgzMq73La/hlj/tPOhy0vuWVbGwws+TWzux7IMdndcVz7C9M86iqsCwsyFKKWJpi4xl09KX4rglVf2zIY6juOeVZlojacA54Pj29KXx7Y1OKOdF6ikMn/fUHc/wVmuUnkSWeMZiV1eCj66dP2xRRjG5ZAlQiNIzZ4KaUCjEmjVrBj0WCASoqqoa8vh0Om5xFYfOD/FW68htDcq8Jl85ZSW6ruF1GYz2Rj2dc+iK5Wd19t/C6nPp7O1L0xnPkMhY+Fwmy6sz7OiK01gb6s/BMXTI2Qf/gc3dcdwTPOGXetLm/nlPO7sSvLCjm2TWytcg0qA1kubJrZ20RtKyQ2cKyRKgKBUSvA82Z4Ka2co0db52+kr+8feb9s2KDBZ0G1xzxkoOXZBf+lq3pAKXoZNzDj5bo2DQDEthNuTOF3bzxJYOUjmbgMdkSVWABeVeWqNp7nhmFxevX4LlKGyVz2mxRjExlLNhU2uUZRM84Zdy0ubAvKfueIYXdnYTz1gEPAaGrpGz8lWc26MpvC5davdMESkEKUqFBO9Dzemg5s9//vNMDwGAU1bVAfDzv+zgnfYYGcvB1DWW1wT42w2NnLZ6Xv+xiysDLK0JsHnvwRtW6hrUhDyDHltWHaTS72ZRlZ/6ch8e0yDkfW85qrC1++OHz6fca2I7w+4YH0LToGOUuT4HU6p3DoW8p0Qmx+a9URIZi6DHRJHfaZazFbZSdMWzWLbCYxgTKnoohpJCkKJUSPA+vDkd1Mwmp6yq4+QVNbza3Et3IktVwM3RDRWY5uBcbF3X+NrpK/mbX7x80OfUNdAZfOJt6UuxoyvB8prgkO3TA7d2K6C2zJdvvwAHzKnRAdPQqC1z09yTHHcw4jiKZ7d38dhbHeztS5KxC8FdkLOPaeCQecX9B1bIe3pxVze9iQyGruEoRSJr4ziqv1WFxzSIpHK81Rrl7daoBDWTqLAEOK/MSyxtkbUd3IbeH/gPV/pAiLlGgveRSVAziUxT57ilVQc9bsMhtRxZX8brLQcpBqjBM9s7OemQmv435mi3dqdyNuuWVPDgplaylkMsM3IdGgcIekx2diT585aucU1jNnXE+pfFomkLta+XldvUeGtvlL9s6+IzxzXwoUPrinbmppD3tLk1QjxrowHJrNVfaNEwNHxuA1PXydkaOdvhlXd7OXVVaewMmw6JrEVXPMPevhR9qfwuPFPXqfS7WV4boMznkkKQYs4bT92yUjFntnQXE13X+NsNjQc9Lmfna9UM3Go9lq3dq+aXsXJeiIYKP+YB/qU1wOMyeLstdtD2C8Np6ojx86d38fS2LjK2g4ZDznZIWzaJjE3WdtjRleDfHtnKDX/cxG1/3n7Q55yrGmtDnH/cImqCbpTKJ3srBW7TIOgxcRk6luPgKKgr89IRTUv7iEnUFcvQ3JOkLZLPW6rwu/G6dDpiaV5v7qO1L1VyhSBF8Xnv5nb497HPbUy4/c1cJUHNDMkOU1dnOLt7koO6dReWOFojaZQanC1TKHTXWBukvtzX3/+ppszDvDIvAbfB/vMBLh0WlntRCuaVeQh5XRi6RsjrYkVtkJ5Elkc2t49YW6UwDdrSl0Qj3ywznnGwHEUmZxPLWESSOXxm/mLeHsmwsWV0wdJcdeLyaj52+ALqK314XQZel4HfZWDqGpatSGRs/B6TNfVhsrZTkieeqeA4itd39+EydQxDx23o6JqGxzSoDLhJZiw2tURZXhMsmUKQojiNp25ZqZCgZobs6k6M6rhExiI+oLHl/oXuIskMzd1J3tzTxws7u6nwufoL3RWODXhMLEexvCbIYQtCzA97KPOazCtzc/IhNfg8Jm5TI7df4DKaZpSFadBKv5tYxiaWzqHIdxovTIvaCtKWg6ZpxDMW88o8Bw2W5jJd1/jwmnmsqA3hdxt49gV0iay9b/u9waHzQthOPt+jFE88U6GQb7ZmQRl+t0lPIkvGsnGUIms7WE6+vMHhDWFZ7hNz2lhubkuNnE1niDZkzmSE4zSNoHfwP1Nha/etTzTxvxvb+nNYPKZOznJ4tzvZnwfTWBvivOMWsasrnwCcsx1ytsJt6rgNg6bOBH3JLOV+F25jaIx7sGaUhWnQqoC7P3/EaxooVH+SstLyDTo1BxylyDmq6Nd8C323euJZmjpiuE0dywHlKNwunZbeFNva4yyvDU6o75Z4T+G9uKw6SMDjoqkjTm8yX/TQ1HXmhb14TH3IjsKZVqq7BcX47V+3bH7Yi89tkMratEbSJVXFfX8S1MyQY5dU4tY1sgeZqXDpGj3x7JDH3+1O8vK7vSSyNqahoZMv7ra1I84Nf3wLeG+r+frl1Xx0zTye3NpJbzKL5oZyvxu3qRNPW7TmHMy0Tc52+qsUF3aNgDrgNGZhGjSds9H3zcwoFEqBUuybsQFt3+eGruE29JLo3H1IXRn/9PHV/PiJJpp7E/Ql87+r16WTydmU+fKv6S+f21Wy2y8n08Ap+cqAm2OXVAx5L0dS1qyaGZM6I2K8pIr78GbPX/ccZ1nOQbdzD3Ts4kqW1wR4uz0+4jEuHSoCbt5o7uPE5dX9UbdlOdz6RBOdsQweQ8c0dDQtHzRYtkNnLM1tf27i5BU1mKaOrmucvqaOR99uJ7Zv+cdt6uRsh6xlU+4zsRzY1NKHz23Sm8zvGjE0DaXg/SuqR5zGLEyDPreji4AnH9xkLYVp5MfqqHxQY+iABmVeFyGvSTxjlcSa7yHzQlz+oeX88x/fpi2Swe/W80nCYR/LawJU+N0lvf1yMg3XSiTkNUdsJTLTpM6ImKhSr+I+nOK+okyTx99u5+d/2cGW9hhZy8Ft6hxaF+JvPrCsf7Zkf6ap8/cfPpS/v/sNepO5IV/XgQUVftbWh9nemRi0TPPy7h62dcTR9i3rZLIWzr51VVPfN2PTHufl3T28b1k1AD6XSU3Ig6lrJLI2yWwWQ9epC/s4LOhm454IW9sTVPhNqkIe3JhEkjkcpeiIvdd+Ycg4902Dbm2PsaMzQXXQTVc8S8bK7/BBA7euYRg6pq6xtCYAUFKdu30uk+qgm/nhalymPqhuClD0S3HTZaytRGaS1BkRk6WUq7gPRxKFJ+jxt9v5+r1v8tzOHroTOWIZm+5Ejud29vD1e9/k8bfbR/zeU1bV8dVTVxD2mZha/h9D18Dv0jlkXoiTVtQwv9w3ZGvetvY46ZyNbSsyloNlK2xHYdmKVM4hnXVIZW22DZgFSmQt3KbO+5ZV8b5llayaX0ZDhY+aoJsKX372RNfBZRokszZZy6G+wsfJh9RgO+qASb35/JFGltcEsRyoDnko8+VPzj5XfibJ0DQWVfkp97lKrnN3ImuRsR1qy7xUB/OvzcDaEqW8/XKyFabk54e9vLa7rz8hf0lVgKMWhftbicz0zrux1BkRQoyezNRMgGU5fPd/36JrmJwXR0FXPMt3//ft/mWg4Xzo0Dpe291HxrJJ52xMQ2dBmY+wP3/hi6VzQ5ZpvKaen5nZNxOi9i3xaFo+h8VS+TvByIAZoEK+QWskxY7OBHv6UqRz+QRVl6FjO4pyn8m6xRV4XMag2QS3qR90JuGQeSH+6cxV/PiJ7XTHM8wr8+JzGeyNpNjemUADyn1uIimr5NZ8B+Z67F8FGkp7++VUGG0rkZmcBRltEU0JdIUYGzmLTsALO7vZ3pU84DHbuxK8sLOb9Stqhv16fbmPFbUhNu2NsLa+fNBdW2Fr3v7LNPWVPgxtX5LxvoDG2a/HkwY098ZxHIWua9SX+yj3u3hgYyvJrI2m5S+2CkUyY5HMOZg6eF0GVcHBu0NGe4I9pK6Mv/tQY3/iWk8yS9jn5tPHVHBEQznVIU9JrvkOl+tRMNK/sRi/0bYSmcnlPgl0hZga8hczAQ9tbh31cSMFNePZmlfudxP2m3TGcijyMzX70zTY1ZUadOJWjiKVtbEd1d852lag6zq6lt/qvaMzQWXAPejCO5YTrCSuDSXbL6fXXJgFkUBXiKkhQc0EvLizZ1KOG+vWvJDHxdKqIN3xXuzhAhoAlb9jLVQjbulLsTeSpsznImerffVq8tuwQ14Tt6mTytq0RVPE0iHKfPm7x/GcYCVxbSjZfjl95sIsiAS6QkwNCWomwLYP1Pt6bMeNZYajvtzH0poAL7/bO+xzaVo+4TiazvUHNYmsRSKXTxauK3Plk4uVwtiXM5PM2uzuSRJJWfQms/g9coKdbDKLNT3myiyIBLpCTD4Jaibg0PllNHUdfHfCofPLRvV8o53h0HWNNfVh7n5lTz6nhnwQU8gdVgrQNGxHkdhXrTbgNgm48v/clpNvYDmQaWiEfS68Lp1UzmZXV0JOsFNAZrGm3lyaBZFAV4jJJUHNBFx+SiP3bxx5y3bBlz60nHe7E+zsym8vXVYdYGGFf0InrgXlPlxGfjeHUgxahtLItyMYuAO7vtzH2vowO7sTxNI53APyZpRSxFI5fC6DTxyxgE8cuYBkzpYTrJiz5tIsiAS6QkweCWomYGVtmJW1Ad7pGLk55ZIqH3e/2MLTTZ30JHOgoDLg5gMrqvns+xaP++Tqdxu4DQPlWOTs/t3daOSr99oOWDb0JvLbzXVd48Nr57GlPcYbzX20RzOE/S5Qiu54BlvB6gVBTj9sHouqAuMakxCzicyCCFF6pPjeBOi6xo8vOIZFFd5hvz6/zE110Ms9r+xhV1eSaDJHJJVjV1eC/3m5mX++/61xFwEr87oIegxyNjjkl580DfR9/6KGnl9S2rgn0l80r7E2xFdPXcFpq/Kdu9siKXZ2JYlnbLwuA12DR99qZ2t7lOaeJFva8v9fjJ20RWkozIIcOq+MhsqJzY4KIWY/mamZoMbaED+/+Dj++Goz929qJ5bOEfK6+PiaWt7ty/DYWx2kcnb/tutCeJDIOry0s5c7n9/NP3589ZhPtt2JLPa+GjW6eu+JHfKzNT6XQUXATWskPWhbd2NtiH/8+Gr+0tTJz5/ZSW88S12Zh3llPkxD5/kd3TzyVhs1oXx/KGmwJ4QQYq6QoGYSNNaG+Mrpqzj7uCX909y27XDJL18inbPZVyNviFTO5vEt7Vy4fgmLx7Dk4ziKN5r78Jo6LkPD1HVyjkLti5x0DQwjX2TM0Bm2HseT73TS2ptG02Bnd5Lm3jReUyeRtYimLUxD431Lq0jlbGmwJ4QQ08BxlCyXTpAENZNk/2S/P7/TQW8ii3WAlRsFtEXTbO+MjymoaenLtzpYNb+MSCqHUvlKwIVO3TnbQUOjwu/C6zKH1ON4dnsXT2zpwFGKgMdE2ZDJWeztzc/+1JV5SKQtklm7v4fTbCgtL8RkkAuHmI2aOmL9ie1py5ZZ8nGSoGYKWc7B69NkLEVnLDOm501kLVI5m5qQh7oyL+3RNI7KN7XUAK9Lx2MaJLI2RzRUDKrH4TiKx97qIJq2MLR8B+6c7WAPaLPQ0pci4DHpjGf6my/OhtLyQkyUXDjEbNTUEeOOZ3bRk8gyP+zF7/aRzFoySz4OEtRMkaXVAbymQTRz8MDGGUXwM1BXLMO73Qm2tsfI2Q6W7ZCxFJoOpq5hOw7JrE1jXXBIPY6WvhTbOmKkczZZK1/DZv82C1lLoWHx1t4IADVBz75O0uMvLS93x2KmyYVDzEaOo3h4Uzs9iSwraoP9pTZCXpklHw8JaqZIQ4Wfhgo/HYnIQY/d3hEf9fM2dcR4YGMrlqOw7HweTSrn5OvUOJBFoWsQcBv49iuwBxBL5+iIprGVg6MYNt9Hka970xHNEEl1URP0EPCYVATc4yotL3fHYqbJhUPMVi19KbZ35otEDqx+DbOnAetcIlu6p4iua6xZGB7VsW+3xUa1bbpwYu5N5jhuSSUKRUtfOt+UkvcqC2ta/o+hLZLmkc3tg547nrGIZyx0NAZsmhrCdhRuM//20DTY05eiM5YhlRvbTE3h7njT3gjlfhfLqoOU+11s2hvhjmd2jXtLuxBjMZYLhxDT6b0GrMPfMOZnye0ZbcA6l0hQM4XW1IdH9QKnsvaoTqYDT8xKKbpimf6qwYUFLA0Ie01sR9EaSbG1LTrouYNeE5epkbUdDhRHOSofIFm2Ip6xqQl6KPO6eOytjlHXrdn/7jjkdWHoGiGvixW1QXoS2SFBlxBTQS4cYrYa2IB1OLOhAetcIkHNFDp2aSUh74HfiBqQsUd3Mi2cmNM5h+d29JCx8qGMoeU/gH2BiobPbRBLW7TFBufBhDwuqgMe9k/jGW7CPZVzUEBNyMNRiypYURcc092s3B2L2UIuHGK2KjRgbY2k+8tyFBQasDbWBme8AetcIUHNFFpUGeD4pZXDBgwFugYtvRnao+mDPl/AbeIxdN5piw4KVOx9vZ8Ky0n5ryks20E52qATdX25j6XVQdDea6sAwy9D+dw6jbVB1i+vojLgHvPdrNwdH5jjKKncPE3kwiFmq0ID1sqAm20dcWLpHJbjEEvn2NYRn1UNWOcCuS2ZQrquccH7lvD09i6S2cFTIxrgNjRcRn630jPbuvlAY80B37j15T5qQl5e2NmD29CG7FoqyFiKXCKHrkF1yD3oRK3rGscsqeB/N7Zi75uusZ33lq8GjV/TOGxBGfq+3gtjvZsdeHcc8rqGfL2U744leXp6zaXO3aL0zKUGrLNd6V1Npllt2MPymiDvtEWxnX1tDbR8MGPoOh5Tw20abO88eHa7rmusW1LBgxv3Ek3lDvhzHQWGlk8G3tEVH/RHsb6xmvoKHx3RdL7i8QjPEUtbRFI5KvxuoqkcTZ1xDlsQZn7Z8L2u9le4O960N0LQYw5agircHa+tD5fc3bFsLZ4ZcuEQs5k0YJ0cEtRMsYDbpDbkoTvhxXYUmZyNIl9Pxuc2CboNHMBRzqiWYVbNL2NRVYDNLX0j7lwq8Ll0HFsN2araUOHn5BU1PPJW2768nH3tFXhvCUsDspbDs01dNPckaY9mMHUNr8vg9qd2jGpGQe6Oh5KtxTNLLhxiNtu/Mr0YOwlqplhhtuLt1hjzQh40TcNWCmPfbE1vMkfY76LcN7oaMPXlPlbUhnhrbxRTt3EcsIc5ztDyeTa6wZAaB7qucf77FvF2W4SWvnT/VnDIBzOGAS5dJ51z6E7kUCRZUh1gZV0Ir8sY04yC3B0PJjUpZp5cOIQoXhLUTDFd1zj7mAZe2NlDWzTNvDIvXpdBznboTebwugz8LpMVdaFRLcPousapq2t5YONe7GHWjTTAZeSXuJRSOA7DJuM21oY4bkkVL+zoxdDzF1RNA5eh43cb+4KiHJmcorE2yPFLq/ovwmOdURju7nh+mZfWaJotbdEpv1ueTdWM30ueHv7f2uc2aI+Ov3KzEEKUMglqpkFjbZDzj1/E/316J62RFD6XgcdlEPa78LtMFlX5x7QMc+Ly6ny14nh2yNc0wHLyScimoaPrjJiMu7DSj2dfnyi3qaGhYej54MayHRxn3w4pTSOWtgh5zX3Bz9hnFAbeHTd1xLj9qR3TkiQ72xJyJXlaCCGmjpw5p9jAi2pdmQflgK0U5T6T+nI/K+pCY16GaeqMEU1n0XhvK3bhvx1AU2A5ihqviWND44Lht6quW1JB0OMinrHwucxBQVXGcsjaCh1o7UvRl8xR6XezvDZAZcAz7hmF6UySnY0JuZI8LYQQU0eCmim0/0V1QbmPxhqLHV1xAh6TTx2zkPXLq8e0FOI4intebiGRdVgQ9tIey2A5alDScD7RVxEOuKkKeUacBVpcGeADjVU8/FY70bSFz23g0jWSOZtYOh+sBDw6NSEvluPQEUsTy+Q4sqEcl6GPeUZhOpNkHUfx0KY29vQmqS/3ofZVSJ7phFxJnhZCiKkjxfemyEgtAsp8Lo5YWI5SsHHPwZtd7q+QaOo2dRZU+FhS5cPv1jEGFNPTNQh4TNYtrjjgbISua3z5Q42sW1KB12WQztn0JrPE0ta+LeFgK43WvhSOo6gMuEllbZo64uztG3uxsumsMPzs9i4e2NjKnt4UL+7q4bkd3by8q5eeRGbGqxkXkqfXLAjTl8yxqytBXzLH2vqwbOcWQogJkJmaKbL/BVwpRSxtkbUd3IbOvDLPuHa5JLIWtnLwmDqxtEU6p/AY+r4GlQq3oaNrsHJeGRevX8riqsABn6+xNsQ/fXw1D77ZypNbO9nelcDJWIR9LsI+F73JHH2pHGnLZn7Yi9vUebc7ybFLvWOeUZiuJNmmjhh3vrib7kSWujIPHjOfmD1wpqnM55rRhFzZWiyEEJNPgpopMvAC3pPI0tQRpzeZxbIdTEMn7DPxmMaYL6oBt0mFz01HNMOe3hS6Bh6Xgc+d3yqeylhkHKiv9NNQMbpgqbE2xJc2BIhlLGyl6ElkqQl5MHQdv9ukJ5GhL5WjNZKmKugh5DX52OHzxzyjMB1JsoUZskTGosLnQtd0dE3LJ0MHdHoSWbZ3JlhZF5zxhFzZWjy9ZtMuOCHE1JCgZooULuB7+5Js60iQyloEvS5cXpOcrWiLZNA16IxlOHTe6J+3kGj6anMfwIBlnHzzJ1uBy9AIjfFi3RpN0xXP0lgbZGNLFMsBXVPoGpT7XXhdBpbt0FgTxGPqrJpXNqbnHzj2qUySLcyQLasOkLUUHbE0al+Bw3wlZ529vfk+Sx9YUSMJuSVitu2CE0JMDcmpmSL15T6WVQfYtDdKMmtRGXDjMfOzBm5Dw9TzNWHebI6MqZGhrmscuagcHQh6DDwuHct2SGTztWiCXpNjl1bQl8qNKV+kMLNUG/JS4XfTk8jQ0puiuTdFS1+anmSWaDpHWzQ96po6w419qhu3FX6PgMdFTchDPG2xoyvBzq4E77RF2dEVZ28kTXNvku54hh1d8XH/LDE3FBL2N+2NUO53saw6SLnfxaa9Ee54ZhdNHbGZHqIQYpJIUDNFCsFHznKwbYes7eAoRcay6Ulk8XtM1tSX9fd8GovqkIeGSj+LKgOEvS5CXpMKv5tD6kKctqqWlfPKxtz9ujCzlMrZ+4IBm75UDk0Dr6mjFCSzDj2JLCvnhcYdeEx1kuzAGbKdXQk8po7HZZCzHCxHYTsKTYMlVX5ao2m5qBW5kRL2Q14XK2qD9CSyPLK5XTqkC1EkZPlpChWCj6zl0JfKEU/ncJRGyGuyrDrAvLCXd7uT48qrqQ56CPvyeSmF5ONCcbxYOjemfBHHUThKUeYzaeqIkbUcgh4Dv1snlXNIWw4526Em5GFhhZ932mJ8cGXthAKbqUqSLcyQ3ffmXmxHUVfmYW9fmqzLwGNqpHMOpqHhKGisCdDUmZBeS0VM2lIIUVokqJlCA4OPvmSWHV0J4mmLRMbi7bYYu3uSVARG1/NpoIG5KQPrvcDYc1MG5hp0xTPs6EwQSeWoLfNQ4feQyNrE0xZ+t8GxSypwm8akXASmKkm2MEN276t7UEqRyNqkLBu3qWM5Cp/bpNLvpjeZI56x5aJW5KQthRClRYKaKVQIPp7f0U1vMks6ZxPyuXAZGjnLYU9fCstRpLLDtaQc2WQVcBuuOKDL0HhhZw9dsQw5W+EydCoDbpbV5CsJ20rN+ovAwBmy9miaTM7B69IJePIBjcel05vMkrUdyv0zu7UbZFfOVJK2FEKUFvlLnkK6rnHKqlr++OZeOmNpakMeTF0jZzvEMxY1QTdlPhePvd1OY+3Ylj8m2v16pOq+iyoD7OnNt0XIWg6mruVnllpjtEcyzAt7puQiMJkX9oEzZAsrfbyyqxef2+jfcZWxbExdx23oM35Rk105U0vaUghRWiSomUJNHTHufXUP3fEMWduhuTeFy0gT8JhUBTwsqw5Q7neNe/ljIrkpIxUHzFg2hqaRyFoola8iHPCY5GyH9miK5t4kp62um9SLwGRf2AdeyBprAswP++iIpcED6axFTzJHTchDwK2zvSs5Yxe12dibqthIWwohSosENVOkqSPGzY9t4809fcQzFoYGjoKk5ZC1FLqm8XabM+4ifAXjzU0ZqThgzrLpTubI2gpDyzfGzORsMvt2D0G+FcNkmYoL+8ALWVNngnlhD+2xNO+0xbAchbHvAvbIWx0cMi80Ixe16eyDVeomOqsphJg7JKiZAo6juPOF3by8q4dEJr+M4wxop207NumcTaXfPe4ifBM1UnFAt6HRk8xh7gto2iJpHJUfvNdlUBvy8G5PclISa6fywj7wQvZacy/JrIWjFB4zn1vjNvXJjc7GSHblTC9pSyFEaZi0oKavr4/y8vLJero5bU9vkie3dtKTyJK196t/ocACoimL+WGFqYOh54vwjbVj90Tsv/W5KuAGIJJ18rVcUCil0PYd6zF1NA3iaYut7THebo1O+GI71Rf2xtoQS04K8P2H3yGds1leHUDTNHJOvkdW0GPM2JZu2ZUz/aQthRDFb1zF92666Sbuuuuu/s/POeccqqqqqK+v54033pi0wc1V2zvj7OlNDg1oBkhbDh2xzISK8E3E/sUBo+l8BeLWSJpExiKVy4+9MEtT6J8U9LqwbMUr7/ZOuGDZexf24WNrn9sYcxHB/eXbP2Q4pC5EecBD2O+mOuihzOdC1/UZ69Y9cFfOcGY6gVkIIeaicQU1P/nJT2hoaADg0Ucf5dFHH+XBBx/kIx/5CNdcc82kDnAuaoumyFgHv+D7XQZHNpQzv9w34Yv3eBS2Pod9+WWwvlQODfC68rMytgPxjM2eQruE3hS9ySzzy710RNMTDgSm48I+HYHTeBSSmVsjaZQa/F4p7MpprA3KrhwhhBiDcV0t2tra+oOa+++/n3POOYfTTz+dJUuWcPzxx0/qAOeiXZ3JUR3nMXUqA54xVwCeLAG3SVXATTxjEfa5CHkNTF2nJ5llT2+KwqVWKQcNg75UDo/LYE29l6ztTDgQmI7ttrO1TonsyhFCiMk3rpmaiooKmpubAXjooYc49dRTgfyFyLbHVkiuGCVzo7vYd8QyOI4zY3fl9eU+akJe2iJpKvwuAh4XblMnaznoWj6PVtch54DtKCr8LoL7cj3chj7hQGA6GlyONCOilCKSzLK1PUZNyMP8Mu+EfpfxmOo+WEIIUWrGdVX61Kc+xfnnn8+KFSvo7u7mIx/5CACvvfYajY2NkzrAghtvvJHf/va3bNmyBZ/Px4knnshNN93EypUrp+TnTcTC8tElI0ZTOZ7d0c3CCj+nrh5/L6Xx0nWNdUsqeGhTK7F0DrT8jqRMzsHQNDRdEfK6sBxFbVm+mF3GcmjtS7NuceWkBGFTvd12uBmRVM5ma1uM1kgaU9fwugxuf2rHjBS8k105YjSk6rQQozOuoOaHP/whS5Ysobm5me9///sEg0EAWltb+fKXvzypAyx48sknufzyyzn22GOxLIv/7//7/zj99NN56623CAQCU/Izx+u0w+r410e3HjBRGCDrsG+WxM2jmzvQNW3aL6qr5pdxyLwQvYksiaxNMmuRcxzC/nxCsL2vrovH1MnaDvF0DtPQOGZxxaSdVKf6wr7/9u6t7TEsWzG/3MvKuhBelzGjBe9kV444EKk6LcToaWr/LMU5orOzk9raWp588klOOumkUX1PNBolHA4TiUQoKyubsrE5juLjP/oLb7XGDnicBrxvWSV1ZV56k1nqy338zfuXTuuJynEUt/15OxtbIswr89CbyrFpT4SQ18RWipbeFLquUe5zYRo6AY9Bhd/N9WceNucuxJbl8P2Ht/BWa5TGmiBlPld/Ho9Sim0dcdbWh/niycvlLljMCkOLU5oks1Z/3pUsU4pSMdrr96hnau67775R//BPfOIToz52vCKRCACVlZVT/rPGStc1zj9+Ef/0+80cLGLc0RmntS+Nx6XTGknjcxn8n4+tnraL6sDlmfZYhrqQm6DXZG8kjYYi7HOxpDpAmc9Fuc+kPZrl8IVzs1dOfnt3lkPqQkOShqXgnZhtpOq0EGM36qDmrLPOGtVxmqZNebKw4zh89atfZf369axZs2bE4zKZDJlMpv/zaDQ6peMa6MRlVZT7TXqTIycNKyCWscjZCrdloGvwpy0dbDi0lg+sqJm2sRaWZ+58fjdPbu2kLZIiZTkoBYaepTuRIexz4XOZM9ZWYDJIwTsxl0jVaSHGbtS7nxzHGdXHdOx+uvzyy9m0aRO/+c1vDnjcjTfeSDgc7v8obEOfao+/3c4//X4T8fTBL44aoGmQyuabScbSFo+/3T7hwnbj0R7LkMzZ+D0mAbeJ28ifSBMZm55EjoztTPuYJpMUvBNzyWytsSTEbDauLd0z6YorruD+++/niSeeYOHChQc89rrrriMSifR/FLahT6XH327nxge3sLk1hjOKGCCVc4inrX1JuDY5y2Fv38QL242F4yge2tjGto4YPpeOx9QxDY3KgCvfpdttYOoa80MeLFvxyOaZCbomSgreiblEgnAhxm7cfw2JRIInn3yS3bt3k81mB33tyiuvnPDA9qeU4u/+7u/43e9+x5///GeWLl160O/xeDx4PJ5JH8tILMvhF8/sojeRJZ7JMao5KwWGruV7EimbtKXoS2an9e6rpS/FxpYItqPwuAwiqRyGpmEr0NDwuQ2ytqIzkaWhKjBnp7yl4J2YS6ajOKUQxWZcQc1rr73GRz/6UZLJJIlEgsrKSrq6uvD7/dTW1k5JUHP55Zdz55138oc//IFQKERbWxsA4XAYn292/FG/2tzLru4E8UwOa5QrNZqWz61xHIXL0HGUoiuewe8ypnSsAyWyFol9BQNzlkMiY5MflYamgann/z9nOxi6RjJrzdkp76muiyPEZJEgXIixG1dQc9VVV3HmmWfyk5/8hHA4zPPPP4/L5eKCCy7gK1/5ymSPEYDbbrsNgA0bNgx6/I477uCiiy6akp85Vt2JLLFUZlR9n/rtOx+5TB2XDhkrXxdmOhd3Am6TgMskaznE0ha2Upi6lh+HgqydTxpWKl9ZeK5PeUvBOzFXSBAuxNiM68r0+uuvc/vtt6PrOoZhkMlkWLZsGd///ve58MIL+dSnPjXZ4xySAzEbVQXcZEY7RUN+BiTgNvCYOpqmEc9YBDwm88t8pHLT126ivtzHmgVlvPxuL1nLxmPqWE4+itH2TSUpAKWIpXIc3lA+56e8peCdmCskCBeToVSqUo8rqHG5XOh6Pse4traW3bt3s2rVKsLh8LQk485WRzdU7HtdRhfYlPtdKKXI2A62owh6TdbWl1HmdU/rTIiuaxy1uILfvNxMxtq3HgbkbIVSDgrwugwytsLjNopqyrtU/tDF3CZBuJiIUqpKPa4r51FHHcVLL73EihUrOPnkk/nGN75BV1cX//3f/33AujHFzjR1FlX4eLs9cdBjfS6dSr+LrO0AGpUBN6vmBelJWjOyA6c65GF5TZC+ZJa9kTTJjIVFvh6Gz52vIuwxdT52+Pyi+SMopT90IURpGlqV2kcya81oa5ipNK6g5rvf/S6xWL4FwHe+8x0+//nP86UvfYkVK1bw85//fFIHONf89dH1fPvBrQc97tB5Icp8Lir8bsq8Lgwd2qKZGUv+C7hNqoP5wOZoFL3JHErlk5c9pk7OdrBsxap5U9deYiqMNBNTan/oQojSU4pVqccV1Kxbt67/v2tra3nooYcmbUBz3fHLajDYesDt3Brw8bULSFsO2zvjdCcyM578N3D76IraIGGfG8jnMkVTOXb3JDlsQZj5Zd5pH9t4jTQTc9rqOh59q7T+0IUQpacUq1LP3S0ss1R5wM1h9WW82TJyS4aQz6Q9nuYfTj+U1n1l+Wc6n2O47aPJrMWmlijt0TQuQ8fr0rn9qR1zYnnmQDMxW9tjJLIWiyr9JfOHLgaTXCpRCkqxNcy4gpqlS5cOuRgMtGPHjnEPaK6rL/fxvmXVNHXESeaGJgwH3ToraoN0RjO0RtOz6qI5cPvo002dvNUaJWs5eMx8d+7eRI7nd3bP+uWZg025vrq7l85YhpV1w4+/GP/QxXskl0qUioFVqfdv4gvFWZV6XL/JV7/61UGf53I5XnvtNR566CGuueaayRjXnKXrGm5TG7FPUiLrkM7ZZG1nVl40G2tDWKsUf3xzb741QqUP0EhbDm3RNOW+/FtmNi/PHHzK1ce73Uk6YmkWlA8NKovxD13kDTeDl8hYvLirm82tEc47bhHrl1fPyve1EGNVilWpx3XWHqnA3o9//GNefvnlCQ1orrMshz+/0zli3ycFvN0aI+SZnRdNx1H89tUWoqkcZV4XeyMZ0jkbpfLVj3sSWTKWw7Z296xdnjnYlGtN0INpaDR1xAm4Tcp8rv4/9mL9QxfDz+D1JDJs70jQncgQSeXY1ZXko2vm8eG182TWRsx5pViVelIbWn7kIx/h3nvvncynnHNe2d3D7u7EASsCOwp2diWpCw7uS+U4iuaeJFvaojT3JGekaWRhlsNyHPb2pUhlbQxdw2PqGLpGzla8252kqTM+K2ea4MCNAHsSGV7Y2U0qa9MeSfPIW+0809RFRyxNLJ1jW0e8KP/QxdAZvJ5Ehteb++iIpfG5DWrLvGQsm5fe7eGOZ3bR1BGb6SELMWGFtII1C8L0JXPs6krQl8yxtj48q9MIxmtSpwruueceKisrJ/Mp55yt7XHSo6gqHM9YvN7Sx3FLq4D8tPhDG9vY2BIhkbMIuEzW1odHvGOcqkTHRNYiZ9vE0xa2o/C6DAozlqamoWuQyir29KbwGrOzyftIU649iQyv7e6lM55lYYWPQ2qDbG2P0xpJ0xnPcEhdiKMXVUj5+SI1cAZPKcX2jgSprE1lwI2maThKkczm3z89ieysXmIVYixKqSr1uIvv7b8219bWRmdnJ7feeuukDW4u8rqMUbV0yOQcOmMZIB/Q3PzYNra2x7BtB8tROAreaY/xdluUq047ZNBFdioTHQNuE+WA5ah9b/h8Y8sCpfJTmpbt0BZLs6QmOKGfNxWGm3L1ugze2hulM56lJuhh9fwwlQE3NSEv0VSOps44y2oCfOEDyzDN2RmsiYkZOIOnFPQkswS97wW9OdvB1HU8psH8sDGndsDJbi5xMKVSlXpcQc1ZZ5016HNd16mpqWHDhg0ceuihkzGuOWvdkgp8Lp1c5sCzNZYC21Y4juLO53fzRnMfkG9NkLVsbEfhKMXTTV14TZ1/+fSR01I0rr7cR2XAg0Jh6vkeUJqWb/7kAJatcJk6bkOnN5kb98+Zavs3AuxJxNnbl6Iq4GZFbYgKf34ngKZphP1uDqkL0RXLzrodaWLyDJzBq/C7sBwHl5E/BSqliKctasu8hLwmtlJzZgec7OYS4j3jCmquv/76yR5H0VhcGWB5TZDX9oxcpwbycx/JnEVzb5Lnd/ZgOypftddRuE0dr6ZhOQ6xtM3jWzr5S1MnH2ismfLqkLquseHQGh7b0o7tONgKbEsN6mblUgrLUaSy09d0czwKU67PbO/i7pebcZQik3N4uy1KWzRNY22QykC+yKBs4y5+A2fw9vQmUQoylo2uacTTFj63yfKa/N9VKmPNiR1wUhlbiMFGPc8ejUZH/VHKdF3jA4fUHvAYDTC0/BLPzq4EfckMzr5AwecyMHUNTQOXoRPyGqRzNve9vpfm3mR/oiNANJWjK54hmsrPmAwsGjcRZx6+gMVVfiwnP61dWEwzNHDpkHPy3btf2tkz65Mpd3TFeWhTG5FUjqDXRcBr4HUZdMbSvN7cR08iC8g27lJRmME7dkklHlOnI5ohnbWpLfNyZEM5lQF3/w64mejBNhb77+YKeV0YukbI62JFbbA/L2gmNhwIMVNGfQYvLy8/YMG9gWx7dt/BT7UTG6v4+TM7SWTsIbugCq+gpmn4XAYAtpO/Y/QMSModyNA1WiMpdnYlSFs26ZzB26299CazWLaDaehU+N0sqfaTsewxzzbsvx4/v8zLynkh3u1Oks7ZmLqGaezLO7AcdF1jXpmH3uTsTqYceNI/vD5MzlJ0xNJUBgwqA256Elm2d8Yp95XLNu4S0lgb4ssbghzZUM6dL+4mkbFYVh3A7zGJpXNzZqtrKZbAF+JgRh3UPPHEE/3/vWvXLq699louuugiTjjhBACee+45fvnLX3LjjTdO/ijnmHWLKjmkLsibe6LY++6SCsGNAnQNPC6D1r4UxyyqIOAxiaZz+NzGoOdRKp9Q7HMbuPftNMpaDq+8m1+uCnpduLwmOVvRGUvTk8jQUOkf02zD1rYYd7+8m817o2QdRaXPxeKqALG0xVGLynn13V5yjsKyFZoGfo9JVdANmkbIa87qk+bAk76u6yyvDRDL5OhJ5BNE/R6T9miaN1siLKzwz/qLmJg8uq7x/hU1zAt7+/NROmIz34NtLEqxBL4QBzPqq9/JJ5/c/9/f+ta3+Ld/+zfOO++8/sc+8YlPsHbtWn76059y4YUXTu4o5xjT1Dnn2EW81bq5P6gpXCuVyv93mdfk9T0RzjyynmMWV/C/b6ZJpC18HhNdyycMZ3L5mZ76oCc/E1PpJ52z6U5kqQt5QCk08jVkXH4Xu3tT1FnOqJtOPv52O99/aAstfSlsR6EBLlNnY0sEBRy9qIIF5T5MQ8N2FKahE/KYKKA3mcXQNZJZa9aeNPc/6VcGPBzZUM72jgQ9ySw52yadc1hWHeSz71s06y9iYvLN5a2ufpeB7ShaepOU+92EvIMrxsqSqihF43q3P/fcc/zkJz8Z8vi6deu49NJLJzyoYnB4fZhKv5vuRCafl7KvIq/XZTAv7MVR+UJ7iYzFZR9Yxpt7+mjpS5HMWORsJx8MaRpe0yCRy9fS2N2bpLUvTday2dWdxG3q+N0GIa+JZSvKfS7cpj6qHTxb26N8/6Et7OxO5iMtAKXI2g6pjAWaxraOGKau4XUZeMz3ZpGylo2p69iOmtUnzeH6nlQGPFQscRNLW/Qms6RyNhevX8KiqsAMj1bMlLm41bVQ16q5J0VPIkPY56Iq4GF5bSC/e1EqY4sSNa6CHA0NDfzsZz8b8vh//ud/0tDQMOFBFYN4xsLQNZZW+WmsCbKwwkdDpZ+l1X4qAm48LoNk1iaesThkXoh/+PCh1Jf7yDn5ujA+t0llwE3Ia+A4iqbOBP/5l53Esxbzw17K921J7kvmaIukCXpNjllcgcfUDzpz4jiKnz65nR2dcXKWQ85W2I5CoeEydOx9dWr29qbwuQ1iaYt0ziaZtUhnLWJpiwq/i1jamtXJlPPLvFQHPWxtjxFJZvvrB2n7ls4ylsMRC8tZWDF7L2izocq0mF0KO542t0Y5dF6QqqCHdM6hpS/Jq7t7ae5JSGVsUbLGdYv9wx/+kL/+67/mwQcf5PjjjwfgxRdfZNu2bSXfJqEg6DXxuQ0SWRvHUaQtB0cpIikLr5lD1zX8boOgN/9P8MGVtTy9rZOs5eQvvhp4TIOqoIelVX5e2tVL1nYo95r43C7CPjdZK78FPJbO4XcZeEx9VDMnz27v4qmtXVjOvp1YOkC+omrOVrjMfDuEjK2Ipi0iyRxtkRS6pqHIzzaV+11UBT2z9qRZqN2xoyvO7u4kOzoTzA97OWReCJ/LmBPJoFJ/pPhMtEjecP2rAh4XTR1xehMZuuNZ3lExPrp2gbxPREkaV1Dz0Y9+lK1bt3LbbbexZcsWAM4880y++MUvykzNPiGPi6qAm7ejUXK2wuc28Bo6OUfRl8phGhoLK3yEPPkZl5a+FJGUxYaV+e3gWdvBbeiEvCaxtIWtFIYGfo+LWDpHZcCN29TBcvC6DNqiaUxD433Lqg84c+I4isfe6uhv5aBp9K/D65qGs6+acf48q8jm7P7t5baTL8inkS/C96FDa2flSXNg7Y5FlX5qQx7eaYvNqXYIUn+k+ExGkDrcjqfKgJtjl1S8t6Satfn4EfNZLEuqogSNOxmioaGB7373u5M5lqIyv8yLqeebQAbcBmlLkbEcNE2j3GeSthxcht6f1FtIal3g8WHsd+eWtR0gn2NTX+FjV5fDnt7UvpkaB0fld0W5DJ2V80IHvPNr6UvRGknhd+nE0/l0mkIjBI18YPNecrNGTcjN4QsryNoOWcvBbeq4dI2d3Qn+sq2TxtogDRX+WTPbMdydbMjrojromTPtEIb7HWByiyyK6TVZQepIO540TaPM58LvMdjVlSCVK+2yGqJ0jTqoefPNN1mzZg26rvPmm28e8NjDDz98wgOb61qjaTwuneqgB8t2KPMb+ZkQlZ/9CPrcg5J6h0tqLchv585fvFy6Ts526ElkydkOmgaGlk/mLfO5+NOWDhZX+Uc8QSayFroOdWVeuhPZfMVgW+UDKQ0UClvlm1d6XDrLaoKE/fmqu0opmnuTbO5M0JfI0tQRp7UvzeELy2fNVPdItTvmUjsEqT9SXCYzSD3QeQJkx5MQo37nH3nkkbS1tVFbW8uRRx6JpmnDNm7UNK3ki+9BPnhwmzrHLK5kZ1eC3mSWjJ3fNVQX9rG4yk80letP6h2pszRA0GNgaBoZy+GdtgidsQxuV77asKMgmbXxuHQOGVBFdKQTZMBt4nOZLKsJsKcvRd++asSOUign399JA/yefIG6urL8HWFPIsPGlgg7uxJkLQcd0HSNaCrLxpa+WbMkUgy1O4rhdxDvmcwg9UDnCdnxJMQYgpqdO3dSU1PT/9/iwAp3VF6X3r/ePTBPJp6xyOSc/juq4TpL+9wGqaxNayTNinlBmtrjdMSzOErhMw3QwLIcgh4Tr8tgZ3eSlXXBA54gB54UT1xezbNNXcQyFo5S+5afIOAxOXpRBYaukcrZ5NI5XtvdR3NPklQu32zT3hfPvvxuHw2VPhZk7FmxJDKeO9nZ1uG48DskMvmgZeD7RtM0uRufIlP1PpjMIPVg54nZnvwuxFQb9Vlx8eLFw/63GN7A4GFFbZAy33sX2JHuqPbvLN0eTfdXOF27MMwvn92FoWns7k2iWTa6rhPwmFT6Xei6Rk8i299yYaQT5MCTYk8iy0mH1LCjK05HNEMqZxPwmJy+uo7zjlvMo2+1s7ElQiSZpSeRJZm1sFU+D0cjn4uTcxS7upL5pSzH4cwjFszokshY72Rn4w6j+nIf5X4XT2/rQtPAVvkE7Uq/m2U1froTObkbn2RT+T6Y7CWjA50nZnPyuxDTYVy3er/85S+prq7mYx/7GAD/8A//wE9/+lNWr17Nr3/9awl6GP8d1UgVTrd2xPoTgaMZC7eRT4D1mDravlydRMYims4d9AS5/0mxvtzHvDIf88o8LKwI4HFrvLGnj8PqQ7zTFuXdniTJrM2+DVODGlxCPshJpC02742weW9kRoOasbzus3WH0Y6ufMn+VC7fQTrsdwGKlr4kzb1Jjmgol7vxSTTV74OpWDKay5WQhZhK4wpqvvvd73LbbbcB+erCt9xyCzfffDP3338/V111Fb/97W8ndZBz1XjvqIarcNoVy/Bud6K/CF7EcsjkHKqCbnxuk5ztoGsavcksxy+tOugJcv+T4uvNffzPS7v57Wst+3ZpQcDtYkWtH03Lz/7sn0E1qA6cBhnL4amtnZy+et6MnlxH87rP1h1GhXHZjuLkQ2rY3pnPx7IcB5/LwAHqQh6WVQenbUzFbDreB1O1ZDQXKyELMdXGFdQ0NzfT2NgIwO9//3vOPvtsvvCFL7B+/Xo2bNgwmeOb8ybjjqqpI8YDG1uxHIXtwPywl7ZIhr5UjrRlMy/sJZ628JgGC8tH35ixcFJ8/O12bn1iO+3RVH/yt+1AXzLLK7uzeE0DWzlDvn9gTGM54DY02iLpWbEr52Cv+2zdYTRwXCGvi8qAe1A+Fih6k7lZ8RoXg+l6H8iSkRDTY1xBTTAYpLu7m0WLFvHII49w9dVXA+D1ekmlUpM6wGIw2jsqx1G825Pg5V29pHM2h9QFOWphBQ9vaqc3meO4JZW8sSdCKmtRE3ITTeXoS+V4tytJTcjD+1dUc/7xY2vMaFkOdzyzk65Yur/wHrzXDsp2IJ4d3W42hSKemT0NLg/0us/WHUb7j6tQf6TAchw6YplZ8xrPddP5PpAlIyGm3riCmtNOO41LL72Uo446iq1bt/LRj34UgM2bN7NkyZLJHF/JaOqIceufmvhLUzfxTA6lwG3qLKr0E/KarJpfRsjr4siGcpo6YnREMxi6RrnPhdc0uOKUFZx1ZP2YT5CvNvfS1BHLzwIpQIGu5ysNA/15NAejk6+XE9/XsmG2m631PmbruIrVdL/esmQkxNQaV0nVH//4x5xwwgl0dnZy7733UlVVBcArr7zCeeedN6kDLAVNHTH++f63ePitduKZHF7TwOfWsR2Hbe0x3tgToT2a6T++UAUYNDwuA9PQCHrNcd3xdSeypHMOlq0Gzc4UPkbL0PNNONH0Ibk3s1EhebM1kh5Sb6mQvDkTzTpn67iKlbzeQhSXcd1+lJeXc8sttwx5/IYbbpjwgEqN4ygefLOVTS3R/loxiWwO5YCmg2ND1rZ59d1uyn0mb7ZESWUtynwuXIZGImPRl8zxv2+0sqw6MOa1+aqAG13LF92D91omFP57IK8J6WFm4V0GuHSNcr+b6qB7TpRon631PmbruIqVvN5CFJdxN7/5y1/+wgUXXMCJJ55IS0sLAP/93//N008/PWmDmwssy+HFnd08uKmVF3d2Y412vWaflr4UL+3qJZGxyFoOqZxD1oacgqwNFvngoj2a5fkd3aSyVr6ZpaGRyVr0JrKUeU16E1ke3tSG44xtnuTohgrqwoPvQvetQg2lwGfquI18kb78klO+2WV1yMOaBSGqg545szRSSN5csyBMXzLHrq4Efcl8DZiZrI48W8dVrOT1FqJ4jOvqc++99/K5z32Oz372s7z66qtkMvmlkUgkwne/+10eeOCBSR3kbPX42+3855NNvNUW79+dsnpekEtPbuSUVXWjeo5E1qIzliZjOQdctnGA3T0pFlX6SGZt2qIpoql8JeBIOkdHLENLJMXhDeV8YEXNqH8H09T5xOHzebs1dtBj3aZB1lZoaHhM8t3HTYP55T6OXVJBTzLH2vq5NVU/W5M3Z+u4ipW83kIUh3HN1Hz729/mJz/5CT/72c9wud5Lrlu/fj2vvvrqpA1uNnv87Xa+dvcbPLerj0jaIpVziKQtntvVx1d+/QqPv90+qufxuwyi6dyo8lAcpehKZNnZGSeStPI7Y/bV07Adxd6+FD/7yw6aOg4eoAz0gZU1+N0HfitoQLnfpMxnooBMLp+DUxXy0FDpY09figq/a05O1ReSNw+dV0ZD5ezpOD5bx1Ws5PUWYu4bV1DzzjvvcNJJJw15PBwO09fXN9ExzXqW5fDNP2yiL5kb9uvxrOKrv3ltVEtRCjBHefLUtXwOjq5p+NwGlX4XPreBy9DxunR0DZp7kjy8qX1My1DJjE2Z10XIY+A2NEw9v6yksW95SQfT0FDolHld1JV5CftdeFw6qazFltYYXbEM3jmw62mucBxFc0+SLW1RmnuSY15WFEKIUjSu5ad58+bR1NQ0ZPv2008/zbJlyyZjXLPaszs7ae5LH/CYWMbm6rtf5z/OO/qAx6VyNmG/G3oP/HyQ342Uytr43SZ+t9F/J6kUZG1Fmc+FDrzZ0jemYmFBj0mZ14VL13CARMbGUYqs5QAKl6HjMnSObign6HORSFu8sruXcr+LIxaGKfO6MXSN1kiaO57ZJXkIEzQb+1EJIcRcMK6Zmssuu4yvfOUrvPDCC2iaxt69e/l//+//8bWvfY0vfelLkz3GWeePr7WM6rgHN7aSHm670AABt0nAY4zqH0KRz63J2vlcGkcpMpZDPGOha1AV8IAGyezIDS2HE/K6WFTlJ+DNd/teUO6lodJHfbkXl5Hfoh3wmJT5XbgNjbfaogCsX17F4qogFQE3ZT4XK2qD9CSyPLJ5bDNF4j2FPkSb9kYo97tYVh2k3O9i094Idzyza8xLi0IIUUrGNVNz7bXX4jgOp5xyCslkkpNOOgmPx8M111zDpZdeOtljnHVaDjJLU5Bz4K5Xd3PhiSPPXtWX+1hQ7kfXehlNHOA2dNyGRjpnk7MVtqMwdA1d0+mOZzANDb97bMXC6st9HNVQQcZysCyH3lQO23ZwmQbLagL0JS0CHpPueAbbyW/fXrOkgqqgd9DzzGR7gWIwW/tRidnPcZQkOQvBOIMaTdP4P//n/3DNNdfQ1NREPB5n9erV3H777SxdupS2trbJHuesUl/hB3pHdWzLQZaVdF3jE0cu4OFNbQdtR2DqUBlwoZRGLJPD1DUCHhO3kS/UF0nlME2dBeXeMe1AGlirozueZWGlH0PXsB1FLG2xZoGbD6+dR03IQ1skzV0vNbOgfPiAZabaCxSD2dqPSsxuslwpxHvGtPyUyWS47rrrWLduHevXr+eBBx5g9erVbN68mZUrV/Lv//7vXHXVVVM11lnjk4fXj+o4Haiv8B70uA801nD4wrIDHqMBPrfJkqrAvmrDCk3XMDQNy3FI5xxMQ8fvMtEZ+x1aoVbH2vrwvmAmh+0oDl8Y5uL3L+EDK2o4dF4Zy2uC+Fz5svLDkTL+4/deH6LhXzuf2yBjjW1pURQ3Wa4UYrAxXXm+8Y1vcPvtt3Pqqafy7LPP8ulPf5qLL76Y559/nn/913/l05/+NIZR/Dtg3re8ivkhk9bYgS8uIZ/JuUcvGtVz1pb5cOm95EbYMKWR3/20oMKHz23gdRmDGht6XQYLK3wsqw6Mu4vzaGp1FMrKb9obIegxB80oFMrKr60Pz6laNbOF9H0SYyHLlUIMNaaz4913381//dd/8YlPfIJNmzZx+OGHY1kWb7zxxpDp8mJmmjrf/tSRfPn/vULGGj4RxtQ1Pn/CErzeg7/ELX0pUlmbeWEffakssfR7y1CFYMZR+WJ3Cyt8JDI2xyyqIJLO5XdDuYz+ZF1bKXZ1JcZ9N3+whntSVn7qSMAoxkKWK4UYakzLT3v27OGYY44BYM2aNXg8Hq666qqSCmgKTllVx62fPYb68NDlpYDb4EsblvO101eO6rkSWQtdhwX7dhsFXBo+Vz4h2GVo6Fq+YWSZz6SlN8WurjjP7ujmrdYozb0pOuNZbKXQNG1a7ualrPzUKASMlQE32zrixNI5LMchls6xrSMuAaMYRJYrhRhqTFc+27Zxu93vfbNpEgwGJ31Qc8Upq+o4eUUNz+7s5H/faCWZtTl6UQXnrVs0qhmagoDbxOcyqfCB44BpGmhAOmdjOwpH5WdrXLrOs9u7cZs6jgM1ITeWo+iIpYllchyxMEx3Ijctd/NSVn5qFALGQuJnezSNxzRYWx/m9MMk8VO8R5YrhRhqTO92pRQXXXQRHo8HgHQ6zRe/+EUCgcCg4377299O3ghnOdPUOWlFHSetGF2vp+EUlh2e29GF16URTdmkcvleUDr5bt0Bj0k0lSVjK45bUklPMkdfMkfQa1Lud9EZy/Dizl6OXVI5bXfzB1uqEuMjAaMYDVmuFGKoMQU1F1544aDPL7jggkkdTKkqLDs8ta2T7niO3L6CNYVTlAYo8jM2mqYRy1gcsTDM9s4EvckslpPf+WQaOh9eO0/u5ouABIziYCS/TYihxhTU3HHHHVM1jpLnKEVvIgMoNGBgmpKuaeQsh5yjqAy4SWQsXIbOsUsqiKUtsraDrkF3PENNyDNTv4IQYprJcqUQg8li6yzgOIp7Xm4hnrFZUO5jT28Kpejv3F2oHKxp+WrBtlJkbSffpduXX0uPpXN4XeaUrJ9LtVIhZi9ZrhTiPRLUzAKFrZkaEE9bOAMCGm3fh1Kga4p42qIq4MZtvLdxbSrXz6VaqRCznyxXCpEnQc0skMhaxNI5Ypkc6ayNruWDmHwuTX4pStPyy1DpnI2tFKCwHGdK188L1Up7Elnmh7343T6SWYtNeyPsjaRk+7YQQohZRYKaWcDvMoilc6BAaRouHWwnn2eja/n/RoHfaxDymhzZUEEkZdERy0zZ+rlUKxVCCDHXSFAzC+RnY3TcpkHaVigUug7KoX8pSgcWlPuoDXm4eP0SQl7XlK6fH6xa6bwyD2/s6eOpbZ0srwnKGr4QQogZJ0HNLJDK2VQH3eRsh3g2h2UrHAcKbaBMLd9HamVdEEPXCXldU75+/l610qE5Oj2JDNva4zT3JvnPp3dQG/RKno0QQogZN6Y2CWJqBNwm1UEPiyq9GHq+WrChg8fU8Ll1PC4dx1HsjaRprA1OSzGtgdVKB+pJZHi9uY/WSAqvy2BZlXQFFkIIMTvMuaDmxz/+MUuWLMHr9XL88cfz4osvzvSQJqy+PN9du7k3TYXPRYXfhc9tEvK4KPeamJqGrSBrOZy6anqKaRWqlbZG0iiV34ullGJ7R4JkxsI0dOrKvJT7XYS8LlbUBulJZHlkczuOM3yTTyGEEGIqzamg5q677uLqq6/m+uuv59VXX+WII47gjDPOoKOjY6aHNiG6rnHkonJyloOpa9SUeQh5TWyliKZtNF1jUaWfmpAHn9uYtjHt31yxL5mjPZbGcsDvNlle814C8f5dgYUQQojpNqeCmn/7t3/jsssu4+KLL2b16tX85Cc/we/38/Of/3ymhzZh1SEPDZV+5oV9QL5Ld4XfTWNtkA+urGXDyho8pj6tHXf378a9sztBKmczP+zlyIZyKgPuQcdLV2Ahpp/jKJp7kmxpi9Lck5SZUlHS5kyicDab5ZVXXuG6667rf0zXdU499VSee+65Yb8nk8mQyWT6P49Go1M+zvEq5NWEfS4cpdjbl8La1xZhQdhHImvNSMfdgdVKt3fG+fULu1lQ7qXM5x5yrHQFFmJ6SXFMIQabM1efrq4ubNumrm5wN+y6ujq2bNky7PfceOON3HDDDdMxvAkr5LD86Z12OiJpImkL21EYukbYa1Ib9nLKoXUz0nG3UK20vtzH5pYom/ZGCHld0hVYiBkkxTGFGGpOLT+N1XXXXUckEun/aG5unukhjUjXNcp8Jtva43TEMxi6RshrYOgaHfH8FuqQNx+DztRU83B5NpbjEEvn2NYRl67AM0yWIUrH/sUxQ17XvnOGJO2L0jZnZmqqq6sxDIP29vZBj7e3tzNv3rxhv8fj8eDxzI2u1Zbl8MjmdlyGRsjjJm0pspZC1zSqA27SlsPvX2+hL5FlZ3dyxqaapSvw7CTLEKXlYMUxBybtS08oUUrmTFDjdrs55phjePzxxznrrLMAcByHxx9/nCuuuGJmBzcJXm3uZVd3grqQF5ehkbbypfe8po7HZdCdyLClNYapaxy2IDyjU83SFXj2cBzFs9u7uPPF3SQyFsuqAyzwyDJEsTtQcUzIJ+23R9OStC9KzpwJagCuvvpqLrzwQtatW8dxxx3HzTffTCKR4OKLL57poU1YdyJLKmtjOw4ZS+3r+6ThcxlUBPJJuJbjUBVwE/K6gJntwyRdgWdeU0eMhza18cDGVroTWSp8LrKWorE2SGXALT26itjA4piF88FAwyXtO46SGxFR9OZUUHPuuefS2dnJN77xDdra2jjyyCN56KGHhiQPz0XprE0qZ5OxwO8xMTQdWykSWYtUziJj2bgMHf9+O4tkqrk0FZJE9/QmyVgOdWUedE2nM5YmnrH6t9zLe6M4FTYWbNobIegxD5q0L8uTolTMuUThK664gnfffZdMJsMLL7zA8ccfP9NDmjDHUezpSeJ1GfkGlo6D5TigwOcyyORsUlmHcl/+IrU/qQ9TWgYmidaX+9A08JgGHlOnMuAmlbXY3hlHKSXvjSI1lqT9QgC8aW+Ecr+LZdXS2kQUrzkX1BSjlr4UO7uTHFIXwFGK7kSOvkSWvmSW3mSWnK3QNI3FVT50feg/mdSHKS0Dk0Q9poGp6+TsfA6WpmkEvSY9iSyxtCXvjSK2f3HMXV0J+pI51taH+/OoZJeUKDVyppsFElmLrniGaNqi3OcilrHIWg62Uli2wmvqlLnzU8xKKakPU+IGJonqGlT63XTE0rgDOpqm4TJ04pn8kmXvvoucvDeK08GS9mWXlCg1EtTMAn6XQVc8QzJj0VDpRylFPJNPDDY1jXgmh9tl9k81zw978bkNUlmb1kha6sOUmP2TRJfXBohlcvQksgS9Zn4JU+UvaAsr/PLeKHIHStqXXVKi1EhQMwvkJ341FPkLj67rlPnyy0xKKZI5B49pcPYxC9m4Jyr1YUrc/kmilQEPRzaUs70jQXciQySVozLg4bgllZyxZp68N0rYeHZJCTGXyTt5FkjlbKqDbjSN/rttl5HPk4inLYJek6qAm9oyL1/aUCPbMktcIUl0byTVP3NX5nOxcl6QHV0ajbVBPnPcItYvr5b3Rokb6y4pIeY6CWpmgUIzy+qgm9ZIht5klnjGwtR1asu8zCvzABoBtyn1YQQwcmXn45dWycyd6DdcACxL16KYSVAzCwy8m1q3uJx4xiZrO7gNnaDHoKkzIXdTYgip7CxGQ1qbiFIiQc0sMPBuqqkzwfywl3K/i1TWpqkzIXdTYkQycydGQwJgUSokqJkl5G5KCDGVhguApXWCKDYS1MwicjclhJgu0jpBFCMJamYZWU4QQky1QuuEnkSW+WEvfrd0dhfFQYIaIYQYoNiXZPZvnVDY5h3yuqSzu5jzJKgRQoh9SmFJRloniGImDS2FEAJKppv1e60Thr+nlc7uYi6ToEYIUfJKqZv1wNYJw5HWCWIuk6BGCFHyxrIkM9cVin22RtIoNThIK7ROaKwNSrFPMSdJUCOEKHmltCRTKPZZGXCzrSNOLJ3Dchxi6RzbOuJS7FPMaRLUCCFKXqktyRSKfa5ZEKYvmWNXV4K+ZI619WHZzi3mtOL4CxVCiAkoxW7WUuxTFCMJaoQQJa9Uu1lLsU9RbGT5SQghkCUZIYqBzNQIIcQ+siQjxNwmQY0QQgwgSzJCzF2y/CSEEEKIoiBBjRBCCCGKggQ1QgghhCgKEtQIIYQQoihIorAQQgghJsRx1KzYNShBjRBCCCHGrakjxsOb2tneGSdt2XhNg+U1Qc5YUzft9Z0kqBFCCCHEuDR1xLjjmV30JLLMD3vxu30ksxab9kbYG0lNe+FKyakRQgghxJg5juLhTe30JLKsqA0S8rowdI2Q18WK2iA9iSyPbG7HcdS0jUmCGiGEEEKMWUtfiu2d+V5pA5vAAmiaxvywl6aOOC19qWkbkwQ1QgghhBizRNYibdn43cNnsvjcBhnLJpG1pm1MEtQIIYQQYswCbhOvaZAcIWhJZW08pkFghKBnKkhQI4QQQogxqy/3sbwmSGskjVKD82aUUrRG0jTWBqkv903bmCSoEUIIIcSY6brGGWvqqAy42dYRJ5bOYTkOsXSObR1xKgNuTj+sblrr1UhQI4QQQohxaawNcfH6JaxZEKYvmWNXV4K+ZI619eFp384NUqdGCCGEEBPQWBti2YagVBQWQgghxNyn6xoNlf6ZHoYsPwkhhBCiOEhQI4QQQoiiIEGNEEIIIYqCBDVCCCGEKAoS1AghhBCiKEhQI4QQQoiiIEGNEEIIIYqCBDVCCCGEKAoS1AghhBCiKEhQI4QQQoiiIEGNEEIIIYqC9H4SQggxKo6jZkXTQiFGIkGNEEKIg2rqiPHwpna2d8ZJWzZe02B5TZAz1tTRWBua6eEJAUhQI4QQ4iCaOmLc8cwuehJZ5oe9+N0+klmLTXsj7I2kuHj9EglsxKwgOTVCCCFG5DiKhze105PIsqI2SMjrwtA1Ql4XK2qD9CSyPLK5HcdRMz1UISSoEUIIMbKWvhTbO+PMD3vRtMH5M5qmMT/spakjTktfaoZGKMR75kRQs2vXLi655BKWLl2Kz+dj+fLlXH/99WSz2ZkemhBCFLVE1iJt2fjdw2cr+NwGGcsmkbWmeWRCDDUncmq2bNmC4zjcfvvtNDY2smnTJi677DISiQQ/+MEPZnp4QghRtAJuE69pkMxahLyuIV9PZW08pkFghKBHiOk0J96FH/7wh/nwhz/c//myZct45513uO222ySoEUKIKVRf7mN5TZBNeyMEPeagJSilFK2RNGvrw9SX+2ZwlELkzYnlp+FEIhEqKytnehhCCFHUdF3jjDV1VAbcbOuIE0vnsByHWDrHto44lQE3px9WJ/VqxKwwJ2Zq9tfU1MSPfvSjg87SZDIZMplM/+fRaHSqhyaEEEWnsTbExeuX9NepaY+m8ZgGa+vDnH6Y1KkRs8eMBjXXXnstN9100wGPefvttzn00EP7P29paeHDH/4wn/70p7nssssO+L033ngjN9xww6SMVQghSlljbYhlG4JSUVjMappSasaKC3R2dtLd3X3AY5YtW4bb7QZg7969bNiwgfe973384he/QNcPvHo23ExNQ0MDkUiEsrKyif8CQggxx0nrAzEXRKNRwuHwQa/fMzpTU1NTQ01NzaiObWlp4YMf/CDHHHMMd9xxx0EDGgCPx4PH45noMIUQoihJ6wNRbOZETk1LSwsbNmxg8eLF/OAHP6Czs7P/a/PmzZvBkQkhxNwkrQ9EMZoTQc2jjz5KU1MTTU1NLFy4cNDXZnD1TAgh5qT9Wx8UtmmHvC6CHpNtHXEe2dzOsuqgLEWJOWVObOm+6KKLUEoN+yGEEGJspPWBKFZzIqgRQggxeaT1gShWEtQIIUSJGdj6YDjS+kDMVRLUCCFEiSm0PmiNpIcs4xdaHzTWBqX1gZhzJKgRQogSI60PRLGSoEYIIUpQofXBmgVh+pI5dnUl6EvmWFsflu3cYs6SBVMhhChR0vpAFBsJaoQQooTpukZDpX+mhyHEpJDlJyGEEEIUBQlqhBBCCFEUJKgRQgghRFGQoEYIIYQQRUGCGiGEEEIUBQlqhBBCCFEUJKgRQgghRFGQoEYIIYQQRUGCGiGEEEIUBQlqhBBCCFEUJKgRQgghRFGQoEYIIYQQRUGCGiGEEEIUBQlqhBBCCFEUJKgRQgghRFGQoEYIIYQQRUGCGiGEEEIUBQlqhBBCCFEUJKgRQgghRFGQoEYIIYQQRUGCGiGEEEIUBQlqhBBCCFEUJKgRQgghRFGQoEYIIYQQRUGCGiGEEEIUBQlqhBBCCFEUJKgRQgghRFGQoEYIIYQQRUGCGiGEEEIUBQlqhBBCCFEUJKgRQgghRFGQoEYIIYQQRUGCGiGEEEIUBQlqhBBCCFEUJKgRQgghRFGQoEYIIYQQRUGCGiGEEEIUBXOmByCEEKI0OI6ipS9FImsRcJvUl/vQdW2mhyWKiAQ1QgghplxTR4yHN7WzvTNO2rLxmgbLa4KcsaaOxtrQTA9PFAkJaoQQQkyppo4Ydzyzi55ElvlhL363j2TWYtPeCHsjKS5ev0QCGzEpJKdGCCHElHEcxcOb2ulJZFlRGyTkdWHoGiGvixW1QXoSWR7Z3I7jqJkeqigCEtQIIYSYMi19KbZ3xpkf9qJpg/NnNE1jfthLU0eclr7UDI1QFBMJaoQQQkyZRNYibdn43cNnO/jcBhnLJpG1pnlkohhJUCOEEGLKBNwmXtMgOULQksraeEyDwAhBjxBjIUGNEEKIKVNf7mN5TZDWSBqlBufNKKVojaRprA1SX+6boRGKYiJBjRBCiCmj6xpnrKmjMuBmW0ecWDqH5TjE0jm2dcSpDLg5/bA6qVcjJoUENUIIIaZUY22Ii9cvYc2CMH3JHLu6EvQlc6ytD8t2bjGpZBFTCCHElGusDbFsQ1AqCospJUGNEEKIaaHrGg2V/pkehihic275KZPJcOSRR6JpGq+//vpMD0cIIYQQs8ScC2r+4R/+gQULFsz0MIQQQggxy8ypoObBBx/kkUce4Qc/+MFMD0UIIYQQs8ycyalpb2/nsssu4/e//z1+/+jWZDOZDJlMpv/zaDQ6VcMTQgghxAybEzM1SikuuugivvjFL7Ju3bpRf9+NN95IOBzu/2hoaJjCUQohhBBiJs1oUHPttdeiadoBP7Zs2cKPfvQjYrEY11133Zie/7rrriMSifR/NDc3T9FvIoQQQoiZpqn961ZPo87OTrq7uw94zLJlyzjnnHP44x//OKjDq23bGIbBZz/7WX75y1+O6udFo1HC4TCRSISysrIJjV0IIYQQ02O01+8ZDWpGa/fu3YPyYfbu3csZZ5zBPffcw/HHH8/ChQtH9TwS1AghhBBzz2iv33MiUXjRokWDPg8GgwAsX7581AGNEEIIIYrbnAhqJkthUkp2QQkhhBBzR+G6fbDFpTkZ1CxZsuSgv9hwYrEYgOyCEkIIIeagWCxGOBwe8etzIqdmsjiOw969ewmFQoOSjsXkiEajNDQ00NzcLDlL00xe+5kjr/3Mkdd+5kz3a6+UIhaLsWDBAnR95I3bc3KmZrx0XZccnGlQVlYmJ5gZIq/9zJHXfubIaz9zpvO1P9AMTcGcKL4nhBBCCHEwEtQIIYQQoihIUCMmjcfj4frrr8fj8cz0UEqOvPYzR177mSOv/cyZra99SSUKCyGEEKJ4yUyNEEIIIYqCBDVCCCGEKAoS1AghhBCiKEhQI4QQQoiiIEGNmBQ//vGPWbJkCV6vl+OPP54XX3xxpodUEp566inOPPNMFixYgKZp/P73v5/pIZWEG2+8kWOPPZZQKERtbS1nnXUW77zzzkwPq2TcdtttHH744f2F30444QQefPDBmR5Wyfne976Hpml89atfnemh9JOgRkzYXXfdxdVXX83111/Pq6++yhFHHMEZZ5xBR0fHTA+t6CUSCY444gh+/OMfz/RQSsqTTz7J5ZdfzvPPP8+jjz5KLpfj9NNPJ5FIzPTQSsLChQv53ve+xyuvvMLLL7/Mhz70IT75yU+yefPmmR5ayXjppZe4/fbbOfzww2d6KIPIlm4xYccffzzHHnsst9xyC5DvsdXQ0MDf/d3fce21187w6EqHpmn87ne/46yzzprpoZSczs5OamtrefLJJznppJNmejglqbKykn/5l3/hkksumemhFL14PM7RRx/Nrbfeyre//W2OPPJIbr755pkeFiAzNWKCstksr7zyCqeeemr/Y7quc+qpp/Lcc8/N4MiEmD6RSATIX1jF9LJtm9/85jckEglOOOGEmR5OSbj88sv52Mc+Nui8P1uUVENLMfm6urqwbZu6urpBj9fV1bFly5YZGpUQ08dxHL761a+yfv161qxZM9PDKRkbN27khBNOIJ1OEwwG+d3vfsfq1atnelhF7ze/+Q2vvvoqL7300kwPZVgS1AghxARcfvnlbNq0iaeffnqmh1JSVq5cyeuvv04kEuGee+7hwgsv5Mknn5TAZgo1Nzfzla98hUcffRSv1zvTwxmWBDViQqqrqzEMg/b29kGPt7e3M2/evBkalRDT44orruD+++/nqaeeYuHChTM9nJLidrtpbGwE4JhjjuGll17i3//937n99ttneGTF65VXXqGjo4Ojjz66/zHbtnnqqae45ZZbyGQyGIYxgyOUnBoxQW63m2OOOYbHH3+8/zHHcXj88cdlfVsULaUUV1xxBb/73e/405/+xNKlS2d6SCXPcRwymcxMD6OonXLKKWzcuJHXX3+9/2PdunV89rOf5fXXX5/xgAZkpkZMgquvvpoLL7yQdevWcdxxx3HzzTeTSCS4+OKLZ3poRS8ej9PU1NT/+c6dO3n99deprKxk0aJFMziy4nb55Zdz55138oc//IFQKERbWxsA4XAYn883w6Mrftdddx0f+chHWLRoEbFYjDvvvJM///nPPPzwwzM9tKIWCoWG5I0FAgGqqqpmTT6ZBDViws4991w6Ozv5xje+QVtbG0ceeSQPPfTQkORhMflefvllPvjBD/Z/fvXVVwNw4YUX8otf/GKGRlX8brvtNgA2bNgw6PE77riDiy66aPoHVGI6Ojr4/Oc/T2trK+FwmMMPP5yHH36Y0047baaHJmaY1KkRQgghRFGQnBohhBBCFAUJaoQQQghRFCSoEUIIIURRkKBGCCGEEEVBghohhBBCFAUJaoQQQghRFCSoEUIIIURRkKBGCDGjvvnNb3Lkkf9/e/ceEsXaxwH8O5q1rJfdElvXyDwp2nbB181Li5VkmlsEKqZrdnFL/SNIi9Lsj+52UcsytSIMdlU2zIoivGQEWbGUWFFELJGmRpYJtWWbZbo+7x9xhiat9D3nvHXW3wcGdn7PZZ5n/pkf88zs/Ocv9dHQ0ACO4/D27dvv1tHr9ZBKpX/pOISQ3xslNYTYIK1Wi5iYmEHx4Vz8RzOO44bcKisrf/XQCCHDQJ9JIISQr+h0OqjVakHsn77D09fXBwcHh3/0GISMBnSnhpBR7vz585gxYwbGjRsHLy8vFBQUCMo5jsPFixcFMalUyn9b6vPnz1i/fj3kcjlEIhGmTJmCAwcO8HXfvn2L1NRUuLm5wcXFBeHh4Xjw4MGgcVRUVMDLywsSiQSJiYl4//49X9bb24uMjAxMnDgRIpEIc+fORVNT0w/npdfr4enpCbFYjNjYWLx+/XpY50MqlcLd3V2wiUQivk+pVIr6+nooFAo4OTlBrVbj5cuXgj5OnToFhUIBkUiEadOm4fjx43xZW1sbOI7DmTNnEBYWBpFIBIPBgP7+fmRkZEAqlcLV1RXZ2dlITk7m77iVl5fD1dV10JeoY2JisGrVqmHNjRBbR0kNIaPY3bt3kZCQgMTERDx8+BC7du3C9u3bR/QxzKKiIly6dAlVVVV4/PgxDAYDvLy8+PL4+Hh0dXWhrq4Od+/ehVKpxMKFC/HmzRu+TktLCy5evIjq6mpUV1fj+vXryM3N5cu3bNmC8+fPo6ysDPfu3YOPjw+ioqIEfXytsbERKSkpWL9+Pe7fv48FCxZg7969Iz4/Q+np6cGhQ4dQUVGBGzdu4NmzZ8jMzOTLDQYDduzYgX379sFkMmH//v3Yvn07ysrKBP1s3boVGzZsgMlkQlRUFPLy8mAwGKDT6WA0GtHd3S1IJuPj42G1WnHp0iU+1tXVhZqaGqxdu/ZvmRsh/3qMEGJzkpOTmb29PXN0dBRsIpGIAWBms5kxxlhSUhKLjIwUtM3KymLTp0/n9wGwCxcuCOpIJBKm0+kYY4ylp6ez8PBwNjAwMGgcN2/eZC4uLuzTp0+CuLe3Nzt58iRjjLGdO3cysVjMuru7BWMICQlhjDFmsViYg4MDMxgMfPnnz5+Zh4cHy8/PZ4wxdu3aNcG8li9fzpYsWSI4pkajYRKJ5Adn7ctcRSLRoPPW3t7OGGNMp9MxAKy5uZlvc+zYMSaTyQRzO336tKDfnJwcplKpGGOMtba2MgCssLBQUEcmk7GDBw/y+/39/czT05NFR0fzsXXr1rHFixfz+wUFBWzq1KlDnntCRiN6poYQG7VgwQKcOHFCEGtsbMTKlSv5fZPJhOjoaEGd0NBQFBYWwmq1wt7e/qfH0Wq1iIyMhJ+fH9RqNZYuXYpFixYBAB48eACLxQJXV1dBm48fP6KlpYXf9/LygrOzM78vl8vR1dUF4MtdnL6+PoSGhvLlDg4OCA4OhslkGnJMJpMJsbGxgphKpcLly5d/Op8jR44gIiJCEPPw8OB/i8VieHt7DznWDx8+oKWlBSkpKUhLS+Pr9Pf3QyKRCPoMDAzkf7979w6vXr1CcHAwH7O3t8fs2bMxMDDAx9LS0hAUFISOjg5MmjQJer0eWq0WHMf9dF6EjAaU1BBioxwdHeHj4yOIPX/+fMT9cBwHxpgg1tfXx/9WKpVobW1FXV0drl69ioSEBERERODcuXOwWCyQy+VoaGgY1O/XD99++5Asx3GCi/n/k7u7+6Dz9rWhxvrn+bFYLACA0tJShISECOp9myA6OjqOeGwBAQHw9/dHeXk5Fi1ahEePHqGmpmbE/RBiqyipIWQUUygUMBqNgpjRaISvry9/EXZzcxM8CPvkyRP09PQI2ri4uECj0UCj0WDZsmVQq9V48+YNlEolOjs7MWbMGMFzNiPh7e2NsWPHwmg0YsqUKQC+JFVNTU3YuHHjd+fV2NgoiN2+fft/Ov5IyGQyeHh44OnTp1ixYsWw20kkEshkMjQ1NWH+/PkAAKvVinv37g36D5/U1FQUFhaio6MDERERmDx58t85BUL+1SipIWQU27x5M4KCgpCTkwONRoNbt26hpKRE8LZOeHg4SkpKoFKpYLVakZ2dLbhbcfjwYcjlcgQEBMDOzg5nz56Fu7s7pFIpIiIioFKpEBMTg/z8fPj6+uLFixeoqalBbGysYAnmexwdHbFu3TpkZWVhwoQJ8PT0RH5+Pnp6epCSkjJkm4yMDISGhuLQoUOIjo5GfX39sJaegC9va3V2dgpizs7Ow76zsnv3bmRkZEAikUCtVqO3txd37tyB2WzGpk2bvtsuPT0dBw4cgI+PD6ZNm4bi4mKYzeZBS0tJSUnIzMxEaWkpysvLhzUmQkYLevuJkFFMqVSiqqoKlZWVmDlzJnbs2IE9e/ZAq9XydQoKCjB58mTMmzePv6CKxWK+3NnZGfn5+QgMDERQUBDa2tpQW1sLOzs7cByH2tpazJ8/H2vWrIGvry8SExPR3t4OmUw27HHm5uYiLi4Oq1atglKpRHNzM+rr6zF+/Pgh68+ZMwelpaU4evQo/P39ceXKFWzbtm1Yx1qzZg3kcrlgKy4uHvZYU1NTcerUKeh0OsyaNQthYWHQ6/X4448/ftguOzsby5cvx+rVq6FSqeDk5ISoqCj+dfI/SSQSxMXFwcnJacg/WCRkNOPYt4vlhBBCfrmBgQEoFAokJCQgJydHULZw4ULMmDEDRUVFv2h0hPyeaPmJEEJ+A+3t7bhy5QrCwsLQ29uLkpIStLa2Iikpia9jNpvR0NCAhoYGwRIhIeQLSmoIIeQ3YGdnB71ej8zMTDDGMHPmTFy9ehUKhYKvExAQALPZjLy8PPj5+f3C0RLye6LlJ0IIIYTYBHpQmBBCCCE2gZIaQgghhNgESmoIIYQQYhMoqSGEEEKITaCkhhBCCCE2gZIaQgghhNgESmoIIYQQYhMoqSGEEEKITaCkhhBCCCE24b+/XzezQIWjWwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# x values versus residuals\n", + "plt.scatter(X[:, 1:2], res, alpha=0.5)\n", + "plt.xlabel(\"Household Energy\")\n", + "plt.ylabel(\"Residuals\")\n", + "plt.title(\"Residual Plot vs. Energy Values\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAHHCAYAAACskBIUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACN5UlEQVR4nOzdeXxc5XX4/89dZp/RaJdtWd4NBmxWgxvMYgKBkoSU5JdAszRAswdCCFkKXULIRkmXkAbikPRbSNukoSEboQQwBGjZglkM2GCQvMra19m3e+/z+2M8g2RLsixL1szovF8v80KjO6NnRqO55z7Pec7RlFIKIYQQQogKoM/2AIQQQgghposENkIIIYSoGBLYCCGEEKJiSGAjhBBCiIohgY0QQgghKoYENkIIIYSoGBLYCCGEEKJiSGAjhBBCiIohgY0QQgghKoYENkKUiK997WtomjapYzVN42tf+9qMjmfDhg1s2LChZB9PzKwDf1+7d+9G0zTuvvvuWRuTEJMhgY0QB7j77rvRNK34zzRNmpubufLKK+no6Jjt4ZWcJUuWjHq9GhsbOfvss/n1r389LY+fTCb52te+xuOPPz4tjzeTotEo3/rWt1i7di3hcBiPx8PixYu5/PLL+Z//+Z/ZHp4Qc4I52wMQolR9/etfZ+nSpaTTaZ599lnuvvtunnzySbZu3YrX6532n/e3f/u33HDDDdP+uEfDySefzBe/+EUAOjs7ufPOO3nf+97Hxo0b+fSnP31Ej51MJrn55psBSnrGp62tjYsuuog9e/bw3ve+l49+9KMEg0Ha29t54IEHePe7382///u/8xd/8RezPdQpWbx4MalUCpfLNdtDEWJCEtgIMY6LL76YtWvXAvDxj3+c+vp6br31Vu677z4uu+yyaf95pmlimuX5J9nc3MxHPvKR4tcf/ehHWbFiBd/97nePOLApB5Zl8d73vpeenh6eeOIJ1q9fP+r7N910Ew8//DC2bc/SCI+cpmkzEtALMd1kKUqISTr77LMB2LFjx6jbt2/fzvvf/35qa2vxer2sXbuW++67b9QxuVyOm2++mZUrV+L1eqmrq+Oss85i06ZNxWPGyrHJZDJ84QtfoKGhgVAoxHve8x727dt30NiuvPJKlixZctDtYz3mXXfdxdvf/nYaGxvxeDwcf/zxbNy48bBei0OZN28exx13HLt27ZrwuN7eXj72sY/R1NSE1+vlpJNO4ic/+Unx+7t376ahoQGAm2++ubjcNV5+0fPPP4+maaMeo+Chhx5C0zTuv/9+AGKxGNdddx1LlizB4/HQ2NjIO97xDl588cXDfr6/+MUv2Lp1K3/3d393UFBTcOGFF3LxxRcXvx4cHORLX/oSa9asIRgMUlVVxcUXX8zLL7980H2///3vc8IJJ+D3+6mpqWHt2rX87Gc/G3XMSy+9xMUXX0xVVRXBYJDzzz+fZ599dtQxhWXWp556iuuvv56GhgYCgQDvfe976evrm/A5jpVjc+WVVxIMBuno6ODSSy8lGAzS0NDAl770pYOCOMdxuO222zjhhBPwer00NTXxqU99iqGhoQl/rhCHqzwvD4WYBbt37wagpqameNu2bdtYv349zc3N3HDDDQQCAf77v/+bSy+9lF/+8pe8973vBfIBxi233MLHP/5xzjjjDKLRKM8//zwvvvgi73jHO8b9mR//+Mf5z//8Tz70oQ9x5pln8oc//IF3vetdR/Q8Nm7cyAknnMB73vMeTNPkd7/7HZ/97GdxHIerr776iB67IJfL0d7eTl1d3bjHpFIpNmzYQFtbG9dccw1Lly7lF7/4BVdeeSXDw8N8/vOfp6GhgY0bN/KZz3yG9773vbzvfe8D4MQTTxzzMdeuXcuyZcv47//+b6644opR37vnnnuoqanhoosuAuDTn/409957L9dccw3HH388AwMDPPnkk7z++uuceuqph/V8f/e73wGMmrU6lJ07d/Kb3/yGD3zgAyxdupSenh7uvPNOzj33XF577TUWLFgAwI9//GOuvfZa3v/+9/P5z3+edDrNK6+8wh//+Ec+9KEPAfn34dlnn01VVRVf+cpXcLlc3HnnnWzYsIEnnniCdevWjfrZn/vc56ipqeGmm25i9+7d3HbbbVxzzTXcc889h/W8AWzb5qKLLmLdunX84z/+I4888gj/9E//xPLly/nMZz5TPO5Tn/oUd999N1dddRXXXnstu3bt4vbbb+ell17iqaeekiUuMX2UEGKUu+66SwHqkUceUX19faq9vV3de++9qqGhQXk8HtXe3l489vzzz1dr1qxR6XS6eJvjOOrMM89UK1euLN520kknqXe9610T/tybbrpJjfyT3LJliwLUZz/72VHHfehDH1KAuummm4q3XXHFFWrx4sWHfEyllEomkwcdd9FFF6lly5aNuu3cc89V55577oRjVkqpxYsXqwsvvFD19fWpvr4+9fLLL6s///M/V4D63Oc+N+7j3XbbbQpQ//mf/1m8LZvNqre97W0qGAyqaDSqlFKqr6/voOc7kRtvvFG5XC41ODhYvC2Tyajq6mr1l3/5l8XbwuGwuvrqqyf1mIdyyimnqOrq6oNuj8fjxdelr69PRSKR4vfS6bSybXvU8bt27VIej0d9/etfL972Z3/2Z+qEE06Y8Odfeumlyu12qx07dhRv6+zsVKFQSJ1zzjnF2wrv7QsuuEA5jlO8/Qtf+IIyDEMNDw8Xbzvw97Vr1y4FqLvuuqt42xVXXKGAUeMtvB6nnXZa8ev/+7//U4D66U9/Ouq4Bx98cMzbhTgSshQlxDguuOACGhoaaGlp4f3vfz+BQID77ruPhQsXAvmlhD/84Q9cdtllxGIx+vv76e/vZ2BggIsuuojW1tbiLqrq6mq2bdtGa2vrpH/+Aw88AMC111476vbrrrvuiJ6Xz+cr/n8kEqG/v59zzz2XnTt3EolEpvSYDz/8MA0NDTQ0NHDSSSfxi1/8gr/4i7/g1ltvHfc+DzzwAPPmzeODH/xg8TaXy8W1115LPB7niSeemNJYLr/8cnK5HL/61a9GjW94eJjLL7+8eFt1dTV//OMf6ezsnNLPGSkajRIMBg+6/W/+5m+Kr0tDQ0NxhgXA4/Gg6/mPYNu2GRgYIBgMcuyxx45aDquurmbfvn1s3rx5zJ9t2zYPP/wwl156KcuWLSvePn/+fD70oQ/x5JNPEo1GR93nk5/85KglyrPPPhvbttmzZ8+Unv+BeVRnn302O3fuLH79i1/8gnA4zDve8Y7i30l/fz+nnXYawWCQxx57bEo/V4ixSGAjxDjuuOMONm3axL333ss73/lO+vv78Xg8xe+3tbWhlOLv/u7vRp28GhoauOmmm4B8Dgnkd1gNDw9zzDHHsGbNGr785S/zyiuvTPjz9+zZg67rLF++fNTtxx577BE9r6eeeooLLriAQCBAdXU1DQ0N/PVf/zXAlAObdevWsWnTJh555BGefvpp+vv7+fd///dRQdSB9uzZw8qVK4sn94Ljjjuu+P2pOOmkk1i1atWoZZV77rmH+vp63v72txdv+853vsPWrVtpaWnhjDPO4Gtf+9qok/HhCIVCxOPxg27/7Gc/y6ZNm9i0aRNNTU2jvuc4Dt/97ndZuXIlHo+H+vp6GhoaeOWVV0b9Hv7qr/6KYDDIGWecwcqVK7n66qt56qmnit/v6+sjmUyO+b447rjjcByH9vb2UbcvWrRo1NeF5dWp5Lt4vd5iHtTIxxv5WK2trUQiERobGw/6W4nH48W/EyGmg+TYCDGOM844o7gr6tJLL+Wss87iQx/6EG+88QbBYBDHcQD40pe+VMzbONCKFSsAOOecc9ixYwe//e1vefjhh/nXf/1Xvvvd7/LDH/6Qj3/840c81vEK+x2YwLljxw7OP/98Vq1axT//8z/T0tKC2+3mgQce4Lvf/W7xOR2u+vp6LrjgginddyZcfvnlfOtb36K/v59QKMR9993HBz/4wVG7zi677LJivZ2HH36Yf/iHf+DWW2/lV7/61agk38lYtWoVW7ZsoaOjg+bm5uLtxxxzDMcccwzAQTuKvv3tb/N3f/d3/OVf/iXf+MY3qK2tRdd1rrvuulG/h+OOO4433niD+++/nwcffJBf/vKX/OAHP+CrX/1qcRv84TIMY8zblVLT9lgjOY5DY2MjP/3pT8f8/oGBkRBHQgIbISbBMAxuueUWzjvvPG6//XZuuOGG4rS/y+Wa1Em9traWq666iquuuop4PM4555zD1772tXEDm8WLF+M4Djt27Bh1Nf7GG28cdGxNTQ3Dw8MH3X7grMfvfvc7MpkM991336ir9tlYCli8eDGvvPIKjuOMmrXZvn178fswftA2kcsvv5ybb76ZX/7ylzQ1NRGNRvnzP//zg46bP38+n/3sZ/nsZz9Lb28vp556Kt/61rcOO7B597vfzc9//nN++tOf8pWvfGVS97n33ns577zz+H//7/+Nun14eJj6+vpRtwUCAS6//HIuv/xystks73vf+/jWt77FjTfeSENDA36/f8z3xfbt29F1nZaWlsN6PtNt+fLlPPLII6xfv37CWTwhpoMsRQkxSRs2bOCMM87gtttuI51O09jYyIYNG7jzzjvp6uo66PiR22cHBgZGfS8YDLJixQoymcy4P69wcv2Xf/mXUbffdtttBx27fPlyIpHIqOWtrq6ug6r/Fq6uR16ZRyIR7rrrrnHHMVPe+c530t3dPWrJyLIsvv/97xMMBjn33HMB8Pv9AGMGbuM57rjjWLNmDffccw/33HMP8+fP55xzzil+37btg5bdGhsbWbBgwajfSX9/P9u3byeZTE748y677DKOP/54vvGNbxy0xbrgwNkQwzAOuu0Xv/jFQdWtD3zvuN1ujj/+eJRS5HI5DMPgwgsv5Le//W1x5x5AT08PP/vZzzjrrLOoqqqacPwz7bLLLsO2bb7xjW8c9D3Lsg7rdyvEociMjRCH4ctf/jIf+MAHuPvuu/n0pz/NHXfcwVlnncWaNWv4xCc+wbJly+jp6eGZZ55h3759xZokxx9/PBs2bOC0006jtraW559/vrjVeDwnn3wyH/zgB/nBD35AJBLhzDPP5NFHH6Wtre2gY//8z/+cv/qrv+K9730v1157Lclkko0bN3LMMceMSkS98MILcbvdXHLJJXzqU58iHo/z4x//mMbGxjGDs5n0yU9+kjvvvJMrr7ySF154gSVLlnDvvffy1FNPcdtttxEKhYB8svPxxx/PPffcwzHHHENtbS2rV69m9erVEz7+5Zdfzle/+lW8Xi8f+9jHRs0KxWIxFi5cyPvf/35OOukkgsEgjzzyCJs3b+af/umfisfdfvvt3HzzzTz22GMTVj12uVz8+te/5qKLLuKss87ife97H2effTaBQICOjg7uu+8+9u7dO2qr/rvf/W6+/vWvc9VVV3HmmWfy6quv8tOf/nRUAjDkf2fz5s1j/fr1NDU18frrr3P77bfzrne9q/gaffOb32TTpk2cddZZfPazn8U0Te68804ymQzf+c53Jv07mSnnnnsun/rUp7jlllvYsmULF154IS6Xi9bWVn7xi1/wve99j/e///2zPUxRKWZzS5YQpaiwJXbz5s0Hfc+2bbV8+XK1fPlyZVmWUkqpHTt2qI9+9KNq3rx5yuVyqebmZvXud79b3XvvvcX7ffOb31RnnHGGqq6uVj6fT61atUp961vfUtlstnjMWFuzU6mUuvbaa1VdXZ0KBALqkksuUe3t7WNuf3744YfV6tWrldvtVscee6z6z//8zzEf87777lMnnnii8nq9asmSJerWW29V//Zv/6YAtWvXruJxh7Pd+1Bb2cd7vJ6eHnXVVVep+vp65Xa71Zo1a0ZtJy54+umn1Wmnnabcbvekt363trYqQAHqySefHPW9TCajvvzlL6uTTjpJhUIhFQgE1EknnaR+8IMfjDqu8Po99thjh/x5Sik1PDysvv71r6tTTjlFBYNB5Xa7VUtLi3r/+9+vfve73406Np1Oqy9+8Ytq/vz5yufzqfXr16tnnnnmoNfpzjvvVOecc46qq6tTHo9HLV++XH35y18etXVcKaVefPFFddFFF6lgMKj8fr8677zz1NNPPz3qmPHe24899thBz3Oy270DgcBBr8NY7zullPrRj36kTjvtNOXz+VQoFFJr1qxRX/nKV1RnZ+d4L6kQh01TagrZYkIIIYQQJUhybIQQQghRMSSwEUIIIUTFkMBGCCGEEBVDAhshhBBCVAwJbIQQQghRMSSwEUIIIUTFmFMF+hzHobOzk1AoNKUy7UIIIYQ4+pRSxGIxFixYcFDj3APNqcCms7Nz1numCCGEEGJq2tvbWbhw4YTHzKnAplB+vL29fdZ7pwghhBBicqLRKC0tLcXz+ETmVGBTWH6qqqqSwEYIIYQoM5NJI5HkYSGEEEJUDAlshBBCCFExJLARQgghRMWQwEYIIYQQFUMCGyGEEEJUDAlshBBCCFExJLARQgghRMWQwEYIIYQQFUMCGyGEEEJUjDlVeViIUuQ4io7hFImsRcBt0lztQ9elSasQc5V8JhwZCWyEmEVtvTEe2trDjr44acvGaxosbwhy0eomVjQeuieKEKKyTPdnwlwMkiSwEWKWtPXGuOup3QwmsswPe/G7fSSzFls7I3RGUly1fokEN0LMIdP9mTBXL5wkx0aIWeA4ioe29jCYyLKyMUjI68LQNUJeFysbgwwmsjy8rQfHUbM9VCHEUTDdnwmFIGlrZ4Rqv4tl9UGq/S62dka466ndtPXGZvgZzR4JbISYBR3DKXb0xZkf9h7UrVbTNOaHvbT1xukYTs3SCIUQR9N0fibM9QsnCWyEmAWJrEXasvG7x14N9rkNMpZNImsd5ZEJIWbDdH4mzPULJwlshJgFAbeJ1zRIjvMhlcraeEyDwDgfckKIyjKdnwlz/cJJAhshZkFztY/lDUG6ImmUGj0drJSiK5JmRWOQ5mrfLI1QCHE0Tednwly/cJLARohZoOsaF61uojbgprU3Tiydw3IcYukcrb1xagNuLjyhqeK3ZQoh8qbzM2GuXzhJYCPELFnRGOKq9UtYvSDMcDLH7v4Ew8kca5rDstVbiDlouj4T5vqFk6YODOcqWDQaJRwOE4lEqKqqmu3hCAHMzQJaQojxTddnwsg6Nhkrv/y0ojHIhSeUXx2bwzl/V+YCmxBlRNc1Wmr9sz0MIUSJmK7PhBWNIZZtCM65CycJbIQQQogKNRcvnCTHRgghhBAVQwIbIYQQQlSMsgpsOjo6+MhHPkJdXR0+n481a9bw/PPPz/awhBBCiHE5jqJ9MMn27ijtg8mKbWVQKsomx2ZoaIj169dz3nnn8fvf/56GhgZaW1upqamZ7aEJIYQQY5qrHbZnU9kENrfeeistLS3cddddxduWLl06iyMSQgghxlfosD2YyDI/7MXv9pHMWmztjNAZSUm9qhlSNktR9913H2vXruUDH/gAjY2NnHLKKfz4xz+e8D6ZTIZoNDrqnxBCCDHT5nqH7dlUNoHNzp072bhxIytXruShhx7iM5/5DNdeey0/+clPxr3PLbfcQjgcLv5raWk5iiMWQggxV831DtuzqWwqD7vdbtauXcvTTz9dvO3aa69l8+bNPPPMM2PeJ5PJkMlkil9Ho1FaWlqk8rAQQogZtb07yr882sqy+iDGGAXxLMdhd3+Cz52/klXz5Hx0KIdTebhsZmzmz5/P8ccfP+q24447jr179457H4/HQ1VV1ah/QgghxEyb6x22Z1PZBDbr16/njTfeGHXbm2++yeLFi2dpREIIIcTY5nqH7dlUNoHNF77wBZ599lm+/e1v09bWxs9+9jN+9KMfcfXVV8/20IQQQohR5nqH7dlUNjk2APfffz833ngjra2tLF26lOuvv55PfOITk76/dPcWQghxNFVSh+3ZdDjn77IKbI6UBDZCCCGONsdRc67D9nQ7nPO3ZC0JIYQQM2gudtieTWWTYyOEEEIIcSgS2AghhBCiYkhgI4QQQoiKIYGNEEIIISqGBDZCCCGEqBgS2AghhBCiYsh2byGEEHOS1JepTBLYCCGEmHNGVgROWzZe02B5Q5CLVktF4HIngY0QQog5pa03xl1P7WYwkWV+2Ivf7SOZtdjaGaEzkuKq9UskuCljkmMjhBBiznAcxUNbexhMZFnZGCTkdWHoGiGvi5WNQQYTWR7e1oPjzJluQxVHAhshhBBzRsdwih19ceaHvWja6HwaTdOYH/bS1hunYzg1SyMUR0oCGyGEEHNGImuRtmz87rEzMXxug4xlk8haR3lkYrpIYCOEEGLOCLhNvKZBcpzAJZW18ZgGgXECH1H6JLARQggxZzRX+1jeEKQrkkap0Xk0Sim6ImlWNAZprvbN0gjFkZKQVAghREWZqD6NrmtctLqJzkiK1t58ro3PbZDK2nRF0tQG3Fx4QpPUsyljEtgIIYSoGJOpT7OiMcRV65cUj+uJpvGYBmuaw1x4gtSxKXcS2AghhKgIh1OfZkVjiGUbglJ5uAJJYCOEEKLsHVifprCVO+R1EfSYtPbGeXhbD8vqg6OWpVpq/bM5bDEDJHlYCCFE2ZP6NKJAAhshhBBlT+rTiAIJbIQQQpQ9qU8jCiSwEUIIUfakPo0okMBGCCFE2SvUp6kNuGntjRNL57Ach1g6R2tvXOrTzCES2AghhKgIhfo0qxeEGU7m2N2fYDiZY01zeNRWb1HZZLFRCCFExZD6NEICGyGEEBVF6tPMbbIUJYQQQoiKITM2omRN1MhOCCFGks8LUSCBTZmq9D/iyTSyE0IIkM8LMZoENmWo0v+ID6eRnRBibpPPC3EgybEpM4U/4q2dEar9LpbWBTB1jWd29vP9R9t4szs220M8Igc2sgt5XRi6RsjrYmVjkMFEloe39eA46tAPJoSoaPJ5IcYigU0ZOfCPOGs7PLNzgM27B9k7mGDz7kG+cf9rvNkTne2hTpk0shNCTJZ8XoixSGBTJhxH8fyeQV7cO0TQY7CrP86mbT282RNjMJklkbGxbIft3VHueGwHbb3lOXMjjeyEEJMlnxdiLJJjUwYKOTUv7h1kW2cUr8ugL5bBUYqq/VOvtlJkcjaOgvaBJA9v62FZfbDsEopHNrILeV0HfV8a2QkhCuTzQoxFZmxK3MicmrqAh7DXJJrKkc7ZACgUmgamruExDRylyDo2rT2xspp+dRxF+2CSWCZHfdBN57A0shNCTEwaX4qxSBhbwg7MqQFo63PRPpxC18BRikTGwmPm41PLgaDHJJNzGE5ly2b69cBdXlnLoS+WIZG1WNkYxOc2SGVtuiJpaWQnhCgqNL7sjKRo7c3n2sjnhZDApoSNlRi3oNrHmz0xFBo5S5FBkcg6aICu52duEhkbXdPLYvp1vK2amZxDNJVj72ASj6njMQ3WNIe58ITK2NIuhJgehcaXhYujnmi6Ij4vKr1W2Uwq/TPfHPZWYtxb06gNQQ9hn4tULo2z/zYdMHRAg1jGIpmzqQu6S3769cAZqULwFvK6OGVRNW/2xFhcF+DPTl5AyOuSP2whxJgqrfFlpdcqm2kS2JSwsRLjgh4TXdNg/3KyBrhMDVPXUEqRsRS6Bn536adPHWqr5oJqH32xDCGvSxralRG50hSzoVIaX0rBwSMngU0Ja672saw+wOY9gzRX+/CYRjFBrnCe0Mjn2uRshULDbeqEfS66hjN0DKdK+g99rBmpkXxug+5Imh19cTlJlgm50hRi6iaaxQ56TFp742W74/VoksCmhO3sjzOYzLJ3IMn27hhBj0nAbZLIWPkJm8L7WoGma1R5TJrCXtI5h2TOKvnk4UNt1ewaTrF7IMF//XEvhqHJSbLEyZWmEEfmcAoOlvJF62wr/fWKOapwkuiKpDllUTVL6wIAtA8liaRzoCDkcVHrd1Plc+F1GWiahr2/dLjfZZZ88vBEWzUH4mk27x7CchQLqr0sqw9S7XextTPCXU/tLtsChJVKStsLceSk4OD0kMCmBB14kmipDXDG0lrOXllPS40Pj2Fg6BooB9PQ8boMAm4Dy1H0RjPoGpy4MFzyycOFrZq1ATetvXFi6RyW4xBNZXlu1xAAZyyppcrnlpNkiZPS9kIcuZGz2GORgoOTI4FNCRrrJKFpGhoaWVsxv9qD29SxHEhkLHK2g+WAZTukczYttX4uWj2vLNZgC1s1Vy8IM5zMsbs/QWckjWnonL6khrqgZ9TxcpIsTXKlKcSRk4KD00PCvhI0XlJt1nawHIdqv5ucrfC5DAYSWVLZfBVit6kT8rr489MXlVUuw4FbNbsjae7ZvJcF1WOvIfvcBj3RtJwkS4iUthfiyEnBwekhnzIlaLyThNvQMTWNaCqHoWmsXhAm6DUYTln7v69h2Yrj5lfN1tCnbORWzYDbxOcy5SRZRgpXmls7IwQ95qjlqMKV5prm0l8eFWK2Harg4LL6IO2DSdkpOgE5M5Sg8U4SOdshkbHoi2fxuw22dkaoDXhY0Rikxu+itTdeEScPOUmWH7nSFGL6jFdwcGd/nI2P75ByCocggU0JGuskkc7ZvLBniGTOwevSCbjzCcS90TSDiQyNIS+L6vwVcfKQk2R5qtTS9kLMhgMLDko5hcnT1IEZShUsGo0SDoeJRCJUVZX+ck2h2Flbb4xtXVHiaYvFdX7qQx46hlIMJbI4yiFnw4rGIH/77uM4pqn0n9dkjSz2lrHyy08rGoNykjyKplJFWCoPCzG9HEex8fEdbO2MjCrcB/lZ7MJs/afPXV6xf2uHc/6WGZsSVpiOfH7PIHc+sZPagAuPqbOzL0kyY+EAuqZTGzBxGzo+V2X9Oiut/0u5mWoV4UopbS9EqZDCfYenss6EJehIr151XaPK58Lj0nEZOi/vi5DM2nhMnaDHRClFMmvxZm+M17uiFfemlpPk7JBpbyFKx2Taz8hO0bdIYDODpqtvTsBt4jF03uiOEUnlcBzFcDKHoxS6puEyNGyleGHPEBccJ7kn4shIvxohSouUUzg8UqBvBjiO4snWPv5505s8t3uAsM9kaV0AU9d4Zmc/33+0jTe7J98SoLnaR33Qze6BJMPJLNG0haGDz2Vg6BBLWygnH0hJ0TpxpKSKsBClRQr3HR4J76ZZW2+MB7d288ArXfTGMwQ9Jn3RDC5dI5a1ydo2b/bEGIhn+Op7jp9Usu/O/ji9sQzRVBZHgWnoKKVwmwpHQcBj4DF09g2liKVzR+FZHn2SkHr0yLS3EKVFdooeHglsplEhL+GN7ijtgwkytsNwIou1P8D2u3Q8poHlOLzYPsRNv93Gze9ZzTHzxl+WKjxmTzSDaeigFApF2lJkbUW1z0VTlRfLcYilLeKZyjvZTNeSnpgcmfYWovRIOYXJK9ulqL//+79H0zSuu+662R4K8FZewvbuKNs6I8SyDlmbYlADkMw5xDM5MjmbdM7hpb3D3PirV3izJzrhYw4msixt8ONzG7hMHb/bJOQx8Jg6LkPDY2pkcg5+t0HQW1knm0Jgt7UzQrXfJV2+jwKZ9haiNK1oDPGZDcv5wjuO4XPnr+QL7ziGT5+7XIKaA5RlYLN582buvPNOTjzxxNkeSlHHcIqX9g7xemeUVG780kA5B7IOKAW2UrzeHeX2P7SNeYIemeuQzjkoR5HOOcQyFomsg+04RFM5emMZTFOnpdZPyHPwFXa5OjCJNeR1SZfvo2C8ruuxdI7W3rhMewsxiwo7RVfNq6Kl1i9/h2Mou8AmHo/z4Q9/mB//+MfU1NTM9nCKYukcrT1RkjlnUsfrgKYUWcthx/5dJgeeoAu5DumcTWtPHDQwDQ1T11BKkc46JHM2XpdBY9DDqYtqKuoqWpJYZ89YXdeHkznWNIdlq7cQoqSV3brF1Vdfzbve9S4uuOACvvnNb054bCaTIZPJFL+ORsde8pkO8YzFUHLyibs24DigaZCxbVp7YgcVVxq5zTuayuE2DZJZB9t20DQwTA3lKOKpLMsbgpy4MDwDz2z2SBLr7JICiUKIclRWgc3Pf/5zXnzxRTZv3jyp42+55RZuvvnmGR5VXtBrYh/miogivySVytgMp7IHnaCbq300hDw82daPo/I7oLwug5SjsBxVnOHpTeRoH0ryyxf28b9v9rN2SQ3Hza8q+5PQoZJYkxkLy1Z0R9Jy0p0hUiBRCFFuyiawaW9v5/Of/zybNm3C6/VO6j433ngj119/ffHraDRKS0vLjIwv5HER9BgksvZh37c/luHYeVUH7TLRdY1Tl9Rwz+Z2LEfhMXWylo0CCgteGvlclKFEhjccxR93DfLg1i6OmRfilJaast45NFGX74F4hud2D+LSNe7Z3I7PJTulhBBClFGOzQsvvEBvby+nnnoqpmlimiZPPPEE//Iv/4Jpmtj2wQGFx+Ohqqpq1L+Z0lzt47TF1VO6b8YBj6mNmR9T63fjcxv4XTrxjEUq55AbkYujAFtBVzRDx3CKxpAHl6ExlMzyakf57xw6qSWMpsHL+4aJprJYjkP7YIIn3uwjlbU5dl6I5Q2yU0oIIURe2czYnH/++bz66qujbrvqqqtYtWoVf/VXf4VhGLM0sjxd17jm7cfw8LbeUVu8J6srmh7z9qDHpMrrYjCRITfBWpft5JdmhpNZfB6TeNpizQIPPbFMWZa/H1m7Jp626I9n6ItmCHgMBhI5TF3jzOW11IfywaCU+58aKXwohKg0ZRPYhEIhVq9ePeq2QCBAXV3dQbfPluMX5NvG3/74jsO+b8dQin1DSRbVBUbdHvK6aKn1smsgzqHipZwDXZE0AY+JpkH//gaG5db19cAGjAuqfXQMJdnSPsxAMotlOVT73ezsT6HrBrUBNyBdbg+XFD4UYnbIBcXMKpvAplx86U9XMZjM8rPn2g/rfllLsbM/cVBg01ztw2OaWJNM3XGUQgE5y6G1J0bIa5Kx7LLZOTSyds2KhgDxjM3ugQStPbH8TjBNI0e+jURfLE08Y3FyS3UxuJGdUpMj3buFmB1yQTHzyjqwefzxx2d7CGP69vtOZNWCELfc/zqpSa5LGRNkO6Wy9iFnawo0TcN2FFU+F5ajeLMnxqIaf9mUvy/UrvG5dF7YM8xgIkNvLEPWdqj2ufDtzzXKOYragJuBRJZtnRFWzQvhMQ1ASbn/Q5Du3ULMDrmgODrk03+GfOSMJezpTfDTzXuYTF9KR2mMdQ7pGE5hOwqvSyc9ieJ/jlK4DI26gBtN0+gaTnPaohqUUmzvjpb8tGcim8+nGUhkyOQc3KaOpuW3uSey+WKFGuR7cNn5yst90TQDiQxeQydr5xOOHZXfDl+qz3M2Tbbw4b6hJJqmyXS5ENNALiiOHglsZoiua1y+bhEPvdbDvuGxE4NHMnR4dV+Es1Y0jHpTJ7IWfo9OfcBNdzSN7TDh7I3b0Jkf9qLrGrFUDoWiN5bhtkday2La0+8y6I9niKRy1Pjd5GwHR4HP1MGAaDqHZStytk1fPINSYOoaOcshkrTI2g5/3GnxjftfK/vt7jNlMoUP23rj/NuTu4mmc2XxvhGi1B1OJXXJDzwyZbPduxytaAhx7LzQpF7kVNbmpb3DB7UHCLhN/G4Xq+aH8LuMcYMaXQOXruEx8zM76ZyDx22ga/mt3+XSQHL3QIK+WIbhZI59Q0l6oxnSOZuMZZOzbTKWg6MUbtPA1HUMHXK2ojeawXIc5lV58LmNitnuPhNGFj4cS9dwivbBJLsG4mXzvhGi1L11QTH2fILPbZRVPmQpk8BmBnUMpzB0Db/n0FvRs5bDjv58w8GRCkXqXIbB6Utr8boO/pVpQH3AzfKGALUBDyc0h1m3pIacpQi4TU5sDpdFA8m23hg/39yOoxQelw6ahqFrOEoRTeWIpiw08rNSCqjymrhNA0PP1/LJWjaRVI5U1mYwkWVelackn+dsm6h7t+M4bO2I4jL1snnfCFEODnVBkcrakh84TSSwmUGJrEXGcib1IjsKYmmLeGb0m35kp+WM5dAU8rC0zkdD0EXIrVPjM2gI5Wcp3KYOmkIDdg8msWyH1c1V6ProEZRiA8nC+nM8nSPsc1HldeE1ddT+ZGAHyDkKr2lgGBqOrUhbDjk7vwvMY2romo6GRjrnMBDPHrTdXeRN1L37lY4IOVuxekF5vG+EKBcTXVAopeiKpFnRGKyoRsazRQKbGRRwm5i6jmke+mVW5LcyB70HR+uFTsvzq7wMJXN0RdMMJ3Mkcg7RjE0klaUvnmH3QJJY2iKVs1lWH6Sl1s+C6rHXaktt2rNjOMVL7UPEMxbRtEVfLEPWsnHpGk1VXuZXedEBWyk0NBQKRylMPd/t3Nifl6Tr4Dbzszydwym8rtJ6ntPJcRTtg0m2d0dpH0we1izKeN27l9YHaKn1lc37RohyMdEFRWtvnNqAmwtPaJLE4Wkgc14zqBChv9oxjEuD3CHPO4rBeHbc75qGTpXXpDduF5OIlYKsozA0haU71Pp9fPiMxSyp93PbI63FBpJKKWLpfHKt29AptW3Rr3dHebMnhkvXqQ96GIhnyFoOKeVgJ7MEPSamoVHjd3FSSzW7+hPsGUjgc5kksvkGoZoGGhpZ2yHkNUlm8gFSKT3P6TIdtTDG6t7tKMX3RrxvDiTT5UJMXeGCovC32xNN4zEN1jSHufAEScyfLvLpNEMsy+HF9iHmhT2EPC6GE1k0Nf6OJr/boMrn5uX2Yc5cXj8qai8s0wwlc/hdOtb+5Rddy5/MHSefY6IcyNqKVzsinLm8rthAMmvZ7OxLMpjM91oyNA2l4KyV9SUx7ek4iud3DWLZihq/gddl4jZ0BhNZklmLZM7GdhQhr8m8sJflDfmtkvuGUuRsG13TyFoObjMf1OS3u3tI5yy6IinOXF4az3O6TGctjAO7dzuOKr5vAm6DeMYuBsNBj0FXJM2a5nBFvZ5CHE1jXVBIKYXpJYHNDHj09R7uenIXO/riJLI2tpOvP6NxcGCjkc8PWVDtY01zFTv6Egdt9ytsEwx5DfoSOTQoJsw6B2z/HkxmeHpHP+85eQEXrW7i9e4oT7zZj65B2O/CjUkkmcNR+W3gO/vjs36V0DGcoi+WYX7YSySVw2Ma+NwGC1xespZDMmcznMxyzsoG3KZOa2+coCffSiGZschlLNBAoeFx5bfGO0qRzDrUBT0VNb0707UwCtPlr3dHeWhbD7ZS5N9hGoamccy8UEW9nkLMhgMvKMT0ksBmmj36eg83/+41eqLpYg2WkQzIRzOArmkEPSaL6/2saa6mymeyuz9xUP5CYZugoWmkcza6ruE46qDH1oB0TvFaV4T/a+3jstNaaAzmE4t1IJm1MXWd5hofy+oDDOzf4TLbBaESWYuM7XDsvBCvdkQYTGQJek1chg4a2LaD12Vw4QnzWNYQ4KGtPbT1xvCYOllLZ9W8ECGfi1jaIpmxSOccklmbFY1Brt6wYtYDt+l0VGthFCNx7a2vhRCixElgM40sy+EHj7XRHUmTtceuEmwDi2u8HNNUhd9tUON3U+VzoWkasXRuzPyFwjbBeMZCobBtxViPXujeEEtZ/NuTu9nVl2DvUJL1y+tgf+6J29AJeU00TcNt6iVREKrw/Lwug5NbqtnRm2AwmSWRsTB0neqAmxq/m+PmV9FS6y9O477eHeV/Xu4iYzksqPbiden0xTJ0RdLUBT1cfd5yjmmqnKAGJldc70h6ZRVmhGxHcdHxTQctRbX1JUoiGBZCiPFIYDONnt87SFtvnNw4QU3BnsE0q5vDLKkPFm8rbPcbK3+hkIT83K4BcNQh+0YZhk46Z/Fi+xB90QyNIQ8NIe9Bx5VKw8jC89vaGWFlY5C1S9zFRGeXrtEdzXDiwrdel8I0bkutn2X1gWIiXsbKJ7aeuby+YhPxRtbCmInk3pEzQrquU+UbvaNPqqMKIUqdBDbTqK03TjI3uYaVj2/voyHoJeA1SWVtuiLpcbf7FfIe3uiJouk66hCBk6lrJHM2C8JeuobTvNEToz7oOWjpolR2uBSeX2ckRWtv/qTq9xhoWfbPvoy/DXKuJeKNDAKDHnPU73Si4HiyZnpGSAghZpoENtPIaxrYk6wlkszlKw1XeV2T2u63ojHEO9fM54k3+knnnAmDJ10Dy1bFvlFdw2miqRxhv7t4zHScBKfTkWyDnEuJeGMFgT63ccjgeLJmekZICCFmmnw6TaO1i2swdY2sfejgRgGnL6nlwhPmTXqWoTbgJuQ1sByHRNYe97hU1qbK58LjMjhmXoi+eIa2vjjHNIWm9SQ43eba7MtUzWQtjJmeERJCiJkmgc00WlQX4NimEK92Rg95rAHMD/tYNa9q0o8f9Jq49rcZMHWwxlmRshS4TR2PaaBpcExTiGX1Afrj2ZIvCDWXZl+OxEwFgTM9IySEEDNNAptppOsa3/yzE/izjc8c8tiwz2TtkprDevyQx0VTyENvNL2/ssjYBf8Kp5yAW2dHf5JTF9XwybOX0bU/N0JmQirDTAWBUh1VCFHOJLCZRpte6+ZHT+zEZ+qkxptOAUwNTl1cg6Hl69FMNsBorvZx4sJq3uyJk7UcxluM0gDLdni1M8rCGj8XntCEaeoyEyImTZYFhRDlSgKbafIfz+zmnze9STydmzCx19CgNugmaytue6T1sPr76LrG+09r4fE3+xhO5sh3fBp71iZjOSytC/CRty0e87EdR8lJS0xIlgWFEOVIAptpsL0zyvceaSWSyqEUxWUieCvo0IAan0ldyMOa5jALqv1T6u9zzLwQl57SzD8//EYxx0YnvxOq8ENNQ8M0dE5bUsOyEbVyCqajgaIQQghRivRDHyIm4jiK7/2hlaFUthjUwOiZFFPb3xPKZXDR8fNoqQ1g6Bohr4uVjUEG97c2cCa5VfyclfUE3CamruE2wLU/kPGYBm5DI2cpEhmLX72wj42P76CtN1a8b6GB4tbOCNV+F8vqg1T7XWztjHDXU7tHHSuEEEJMhuMo2geTbO+O0j6YnPT5bCbIjM0Rah9K8uq+4YOaUY5kqf2JvgoSWXtUNdep9PdJZm18bgMFOEph6hq6lr/dVmDoGroOScvm6Z39vNkT4+rzVrCiMTijDRRF+ZKlSSHEVJXaKoAENkdoV3+C1CSqDStA19WYPaRGVnOdzAlmMJElZyss28FWiqyVD3AU+W3klgPKhpf3DuN16bhNk8FElk+cs/ToNVAUZaPUPpSEEOWjsAowmMjmq8a7fVNKs5hOEthMA21STRTA0HTcRn62RilFNJ1jKJkjtb/YXm80zaOv9U54gmnrjfH7rd3oWn5py1EKpSCetnBg1E4py1Gksg62Y7G9O8pdT+3GdhQLRhRXU0oV+zIVuoeXW7l8mW2YulL8UBJClIdC09xSWwWQwOYILasPYOqTS1XK2oqgx2AwkeHVjgj7hlKksxaWAr/LYHd/nKYqHyubgmOeYJbV55eSMjmbFY1BOoZSOEoRy1hjhla2A0pTODkHXdOIprKkcw6JjEWVz8VgIlPspG05DkqBx9Tpj2Vg3vS+TjNFZhumrlQ/lIQQ5WFk09xSWgWQ5OEjtLDGz/zwwZ2zxxL2udiyL8L/tfazozdOJmejGzoBt0nOVrQPpdg7lKQ3liGRsQh6zFHJxe1DSXb0xVlQ7WNFY4iw343H1An7zDEDGwXYCnKOIpG1aAi6UWjs7I8zEE+zpX2Y3lgar0un2ufCshWWo3jg1a6ySCKWROgjczgfSkIIcaC3muaOPUficxtkrKO/CiCBzRHSdY21S2sndew5x9ShlGIgnsFRCrepU+Vx0RB0o2sKx1F0Dad4qrWPp3f0s3n3EEPJXPEEs6s/UXwT1QbcnNxSTWOVj7GafRe2gBdOV5aTTy6uD7rxe0ye2zVENJWj2p9vdDiczFHlc3HGklqGkrnD2qU1Gw6cbQh5XUe002wuKtUPJSFEeRjZNHcss9U0VwKbafAny+owD/FK6kCVz4XfbVATcLOwxk9LjZ8F1V5spUjmnGICsKPyAVNfLD+rksrZZKx89szIN1FtwM3pS2pYWu8f9YssXnsfcE7fM5iiLuDmHcc1YRo6pqEznMqRzjk0Vnk5uaWauqCnLK7UZbbhyJXqh5IQojwUmuZ2RdIoNfqEU2iau6IxeNSb5son1jRY0RiiLuCmJ5Yd9xiXqbFnIEUiYwEKc38ScTJr0TGUIre/I7iGIoWFZStqA24GE1ne7ImxqMbPsvrAQZ2XNU2jNuDB0MHZP3NTqKGjAdr+hlIaEE3laKzysmpeiMV1PhqC+aDKbeiEvG91ch65S6vUFBKFt3ZGGExmxl0GLOXnUCqkk7cQ4kiUatNcCWymQXPYR0PIQ28se1CuSyG4CPtcdA6n6IqkGUzkiKTyW7sLtWcKFJC18zukfC6DgMekazjN2sW1LKzxj/kmchv6/pPSAREz+do5mpZv5eB16Zy2uIaQ14XPZWIaGjVe90HPp1Sv1EcmCg8ms+zoTRBLWRy/IExtYPTzKNXnUEpK9UNJCFE+SrFprnzqT4OuaJqgx4XPpWM7CgeKUyaGpuFx6Zi6xu6BZL5KsKZh2w6JrMN4rTITWYvOSJIqTz4AOW1xDbqujfkmGkgcHFCNpAHVfhfHLwhz7LwQSimqvC529MU5sTmMPmJXV6leqR+4LXl+2EsslWPfcIqM5XDKoppicFOqz6EUleKHkhCivJRa01wJbKZBImvhdes0VnlJ52wyuXzhPEPTCHgMwj4XHcMpXKbOuqV1bOuMsWcgMWZQU3gb2A5EkzmaqjzMD/s5bn5V8ZiRb6JoMsfXfrcNn8vAtq1xA6Xmaj9L6gL87uVOdvYl6I9naB9M0hVJs3pBFfOrfSV7pT7etuTjF1SRsWz64hle64qwbmkt6ZxTks+hlJXah5IQovyUUtNcCWymQcBtUuNzEwtYDKdyNIUMHPKzNW5TJ5bOkbEcFtb4WVQbQNM0OiMpsrY96nFMDdymjgIs2wE9n0NzSkvNQTMPhTfRc5EBuqNpvKaO7TbI5PJLWxrs7+OQX44aiGfpjqbpjKSZH/ayoNpHfdDN1o4oL+0dpj+epT7oKckr9fEShWsDHk5ZVMNrnVF6oxle74pS4y/N51DqSulDSQghjoQENtOgeX9dmf54lozlkMjaBL0mLkMnYzn0xDK4DZ01zWE0TcPvNqnymmSyNoahoRxFzsnnwhSCGssBHEVfNEt/PM1TO/ppCHkOupoeSGRJ5WwcxyHoNfG7dZJZp1hwD6WwFWQdh3jG4qSF1cXgoKU2QHO1j1c6IiytD3DV+qW01PhL7kr9rW3J+eBuZLVkt5GfBXu9O8plp7ewesFby0/tg0mZgRBCiDlGAptpMDIJE/I7nWIZi6yVI2s5NIW8VPtd+caVSpHJ2Riajq7ngxrT1NEcha5pZC2nmEzsNTWWN/h5qm2Ax9/oo6XWT33QM6qybl3AjalrJCyFV9MwTQOXYWA7CoUiZymyto3tONT63QdtjdZ1neUNQYaTOTQoyeWIkduSc7YzqlqyqesE9m+hX70gTEutX6oRCyHEHCaBzTQZmYTZ1htjOJVF13RWNAZ576kLePS1Pp7dOYDlOAwlsiSzFkopbAecnIPHZaChKMQRhq6xuNZPNG1hOw6OgqzlEPaZo9osnNpSQ0uNj1c7olimjcs00DQwDQ3HgYRt43cbuAydkNc15th9boO23jj/9uRuoulcyQUDhW3Jz+4aYCiRIZ1z9s+ImWQtm33DqXxfrJwlvY+EEGKOk8BmGk2UhNkxlObXWzqIpXPUBdzMC3vJOQ7xjI0DOI6Tr2WjaZiGxrwqLz63STxjURf0kLUdhlM5QGNlY7DYx+fT5y7nU+eu4K9++QqRdI6QR8NlaOQcRSpr4zZ1mqq8KJUPlsbSNZyifTCJpsHyhtF9qjqGU1y8Zt6Yy2BHi65rvOP4Jh5+rZu+eJZ5VV5chk7OdkhkbBqCHqq8LjZt60Upddi9j6SJphBCVA4JbKbZWEmYjqPY3hVjfthLQ8DNUCqH7TjUBz0E3BaxtI2jFJqmCHpNFtXmi/G93hXFbeqkcjYa+dybrO0cVFn3guObuC6ykjseayOSyi8pGbpG2GcyP+zj2HkhvC6Drkh6VCG+/NgctnZEcZn6qK3fIa+LrGXz3K5BtrQPs7jOh89lztosjs9t0BDy5Jfdsvky/6ae34m2vCGIy9B4pWMYFDTX+CbdkE2WrYQQorJIYHMUFHb1rGwMEnDnA4xkzsbvMphX5aUnlmZnXwKlYFmDnwXVfnb2J+iNZ9DIt1hQKr+8lMzYEDy4su5fvG0Jpy+t4SdP7WFnXwJNV8wLeTlmXhUXntAEwF1P7T6oENuOvjg5W3HKotH1bAYTGV7eFyFj2dhK0RD0YhrarC3pJLIWblPnT5bVkczaxcThQqBmOQ7JrI1CTdj7aORrJstWQghReSSwOQoKu3rSOYPXu2IMJbNYtoNp6HQMp1lS76epyktjKB/kDCYytPbEyFoOXpeB19DyvaQcRWtvbH9+iXZQZd1V88J8671rxl1WGasQ29L6AErBguq3ZpmUUuzoTZDK2jSEPAyncthKUeN1T7ikM5MKCcSpnE2V7+BcoVQ2n0uEyidvj5VPNLIa8Xi1cQ61bCUmJst6QojZJoHNURBwm2Qthxf2DGI7iqDXhctrkrMVffsDmZZaPxcc38gDr3bz3K5BMpZN2GsSz9jYuobH1GkKeUjlbNp6Y4R9Lk5cWD1ufZuxjJUD5CjF9x5pHRUMxNIWg4nM/ho8FsoB1/6T03hLOjNtMn2NTmyuRinFtq7ouMesXhDGUYr/be3jlY5hFoR9Bx0XS1t4TJ2X24dpH0qyuC5wVJ5juZNlPSFEKZDA5iiYX+Ulk8sn/y6q8RWXfDymhsvvYu9QiibL4U+W1qGALe3D2Ps7fWtaPr+mNuDC6zawlWLPQJLTl9ZOqbLugYGP46iDAoa+eIbeeAaUImMpfG6D7d0xVjaFqA24Z6XB5GT6Gl20Or/k1hVNj3mMoWsMxDN875FWeuNpdvUmiCRzrGwKUhvwMJjI0tYbZyiZJWc7pHM2dz21i4/8yWI5MR+CLOsJIUqFBDZHQVc0jcelU+N3MZTMFYv35WyHeNqi2ufCbep0RdM0hDyjOm8nMxbdkTRDqRzDySyaphHymrxrzfxpOVEcGDD4XDpvdEdJ52wMTcPvMagLeOiPZ0hkbU5uqR5zGexomGxfo7GOmR/20hvL0BXNV14O7m8u2h3Jz14trQ+wqz9JKmsR9Lpwm/mAcVd/grue2i0n5gnIsp4QopRIYHMUFBJfT11Uw66+BD2xTLG4XFOVh6X1ASKpXHF5aFTn7aCHllp/sdJu1nKwbIfj5ldNWz5DIWB4cGs3D7zaRTRt4Xfll6nmhbz4PWZxG/VEy2BHw2T6Gh14jN9lcN+WTroi6eKJVylFY8hLbyxNIp1jy95hXKZO3f5GmoMJm6YqLyc2h2nrS8iJeQLjtbyA2Vu6FELMXRLYHAWFxNd0zgZtfx8n9VbDy3TuraTWsXJJNE2jyudCKUVrb5w1zWFSWZuNj++YtnyGFY0hLjlJ59V9EY5pCqEBrb0xUrl82weXoeM29SNaBpsuk+lrNPKY9sEkO/sTo068mqaxojFIPGMxGM8QSedYWOMnu38Wzec2WN4QQNd1OTEfwoEtLw40G0uXQoi5SwKbo6C52ke1z8Wm13twmzohnytfRM9W9MYy7BtKceHxTcWZh0Plkhw7L8RPnpn+fIZCELOwxo+hawS9ZrF9QTxt4SiFy9RYt7SWZfXBGXiljtxYs1jjnXhrA25ObqlmS/sQA4ksiUwOcO2vjROgNuAB5MR8KCNbXhxqN5oQQsw0+aSZJodcFir8b74zJaNab++/pWCiXJILjm9k07beGclnOPAEVRvwULPETftQkp19CYYTWXKOwxNv9DGUyB313S6Heo3H25VzYkt43BNvbcDNsU0h+mMZjpufb6B5YBFDOTFPbDI71tY0h2dl6VIIMffIJ/U0KJxQ23pjDKVyGPtbE7z/tBaOmReiYzjFcDLH6Utq6BpOH5Bj42V+2MtwMjdqqWO8XJKR+QwA0VRuVLG6I1k2GesENZTM7xRKZizQNBbVBlhQ7T3qu10OtZV4ol05HcMpqn0uuiJpgp78W76Qs+TSNWJpixVNIfT9idlyYj48k5llnM2lSyHE3CKBzREqnFD3DiZJZCyGk1nSlsOrHVH+uGuQa89fSXONj7RlU+1zj5lj43EZRPcnD480Vi7J6GJ/g/RGM+RsB5eh01jlYUl9gIxlT2nZ5MAT1LwqD609caKpHKahU+UzWdkUosrnJuR1HbXdLofaSnzFmYsPOYs1P+ylxu/ipfZhkpl89/WMZZOzFA0hD+8/bSHbu2NyYp6iye5YE0KImSaBzREobHPdO5ikazhJXzxLznJQgA60ZS2+8+Ab/M27Vo0q0Dcyx6YvlmEwkaWl1j+ppY5Csb9ndvQTSedwHCgsbQ2lsnRH0ixvDE552WTkCeqVjnyBOq/LoGl/T6ba/buGjtZul8lsJf7lCx307t/GPd6unOFkjnXLatnWGaUvli8+6DUN6oMmfpfJ9u4Yb1/VyPaumJyYp2gyO9aEEGKmTVtgMzw8THV19XQ9XFnoGE7R1hujczjJnoEkljP6+xqwqz/Ob1/aRzpnH7JA3/wq7yF/5vwqL4PxDJ2RFG5dw+M2cek6DpDJWnRH09QG3ZN6rPEUTlD/29rHvz65k2V1Qar9roOChqORVDvZrcS2UjTXjB1c+dwG3ZE0r3fmG5Ge0lJNzlHF5TuA1t44b3TH+NQ5y+ja/5zkxHz4JrNjTQghZpJ+6EMOduutt3LPPfcUv77sssuoq6ujubmZl19+edoGV+oSWYt9wyn29B8c1EB+HiVrK55oHUApigX6Mla+m3fGshlK5kYV6DuUp3f2s2sgieUo0la+/H88Y2HZDpquY+gakWSOzkjqiJ6brmssbwjSuL/5ZSGoUEoRTeXoj2fojWZwG/qMJtW+taNp/MaWjnIwtHyPqLGksvlGnl2RFAuqfYT9buqDHqp8ruJ2+kKA1BVN01LrZ9W8Klpq/RLUCCFEmZlSYPPDH/6QlpYWADZt2sSmTZv4/e9/z8UXX8yXv/zlaR1gKfO78jMBlpr4uMF4loxlc+qiGhpDXtI5J5+Lk3NorPJy2uIaPKZ+yJmPtt4Y//bUblJZm5DHxGPqaCjSlkM8Y+M2dRZUe0nlbHb2J474+RWSibsi6f0F+jI8v3uIZ3YO8OzOfp5q66c/niWVm7kZm5E7tcaSyuZzl0aOc6RC8u/8sBddZ8IAaaq5SUIIIUrHlC61u7u7i4HN/fffz2WXXcaFF17IkiVLWLdu3bQOsJQpIGPZhzzOIV8jxusyWLukprgjp7AUEs9YpHPOhDMfhVyTeDqHoYPHNPC7NWxH4SiHrK1w6flWB4nMocc0GSOTiV9qH6Y3msayHTwuA5RGaH+X7Z88vWfGdkdNdivxBcc18ZNndo+b/Hv+cU38+sUOqbUihBAVbkozNjU1NbS3twPw4IMPcsEFFwD5E41tT89JtRykcvltx5NR5c1vNwao8rmKSyEAXZE0KxqDE24nLuSaLK0P4HOb+SrGgGlouE0Dr8sglbMZjGcJ+9wsrZ+ejtQrGkNc8bYloPJbpDVNw1HQFPZyxpJaTllUzWAiy8PbenCcQ0xdTUEhuKoNuGntjRNL57Ach1g6R2tvvLhj6Zh5+aTn1QvCDCdz7O5PMJzMsaY5zFXrl7B+eT3LG4J0DqeIJLP0xzNEUzmUUsUA6VC/AyGEEKVvSpen73vf+/jQhz7EypUrGRgY4OKLLwbgpZdeYsWKFdM6wIJbbrmFX/3qV2zfvh2fz8eZZ57JrbfeyrHHHjsjP28yAm6zmHx6KAuqvXhdJm/2xAh5TQw9P9sSS1vUBT2H3E5cyDVZWhdgYbWPnf0JUrn88pOxv/dROudgGjpvW1ZLyziJtFPhcxvUB93MC9fhNo3iTFNh9mSmd0dNdivxoXblrJof4uHXunllXwS3mW8REfKY+N0mi+r8Zbmle7r6hQkhRKWYUmDz3e9+lyVLltDe3s53vvMdgsF8ef2uri4++9nPTusAC5544gmuvvpqTj/9dCzL4q//+q+58MILee211wgEpmd24nA1V/torvWzrSt2yGMTaYuLVy/gJ0/vZltntFh7Zkl9gA+sajzkMk4h1ySVs1mzMEwiazOQyJDdn7XsOApdgxMWVPHBdYum9eSWyFpkbIfmmiDGGI97NHZHTXYr8Xi7ctp6Y/xhey9VPhemrhHfX8emK23REPLw9kn8DkrNoYoWCiHEXKSpA7Mty0RfXx+NjY088cQTnHPOOZO6TzQaJRwOE4lEqKqqmpZx/PSPu/m732xjolUYQ4PVzWGW1AVI52xMXcNWCkPTsBxFfchzyBwVx1FsfHwHWzsjrGwMFisC90YzZG2bjKU4tinI311yPMc0Tc9zK2gfTPLdTW9S7XeNmZ8SS+cYTub4wjuOKcmtvge+djC68nB3NMOJC8N8+tzlZTPbcXDRQpNk1irmFB2titBCCHE0HM75e9IzNvfdd9+kB/Ce97xn0sdOVSQSAaC2tnbGf9ZEzlrRQGPQTXcsO+4xugb9sXQx6Xcokd8RpWlQ7XeRyFqHrOA7MpG3sJzVUuPHY+oMJ7M0hLx88cJjpz2ogYkTeB3HKeb+OErlZ45KLDgYqxZOIb8J8q9tOXXvnkzRwqNREVoIIUrRpAObSy+9dFLHaZo24wnEjuNw3XXXsX79elavXj3ucZlMhkwmU/w6Go1O+1haavycfUwDv93SSdY+eNpGI9/nsj+RRdd1NA2yliJr2diOoj+eweMysB3FJSctmPDEuqIxxNtXNXL3U7vZ0j5MPGPhOAq/28TnNnn09V5MQ5v2K/XxegF1DafY2hElZyuUgu890lqSSyHjdfcuKLfu3ZMtWlgugZoQQkynSe+KchxnUv+Oxq6oq6++mq1bt/Lzn/98wuNuueUWwuFw8V9hi/p00nWNj61fRtUEScQKyNmKSCpHMmORyVnoulZMYE1lbF7rirKtKzLhzyrkiQD43QbVPhfNNT7CPheDiSzP7hzgrqd209Z76Jyfw1VI4C3sOnp1X4SX9g6DBqcsCnPiwmqq/S62dkZmbAxTNZlaOOW01XsyRQulJo8QYq6a0nbv2XTNNddw//3389hjj7Fw4cIJj73xxhuJRCLFf4Ut6tMt4DVHLW2MpABb5Wdt0lmLtOVgOYpExiKWtkhmbRwU6azNE2/0jrtlurD8MBDPYtkOuqaxoNpHbcBDXdCN7Sgsx2EgnpmxrdcrGkN8ZsNyrrtgJcvqgyyq83PR8U201AYwdI2Q18XKxuCMbv+eigMLDY5Ujlu9Ky1QE0KI6TTlT75EIsETTzzB3r17yWZH55dce+21RzywAyml+NznPsevf/1rHn/8cZYuXXrI+3g8Hjwez7SP5UDRZI7uQ7RDUEDOAc120NAwdA1Nzwc8mZyNrmvs7E2Mu3xQWH6o8prsHkgQ8BhkLaeYhBzwGAwlcyys8c3oMoSu51sQRNM5ljcEi32vCkpxKWS8pbRy7d492aKF5RKoCSHEdJpSYPPSSy/xzne+k2QySSKRoLa2lv7+fvx+P42NjTMS2Fx99dX87Gc/47e//S2hUIju7m4AwuEwPt/sfoA/vbOfZHaMZlEHUIDtKNymhqblgxrbUZiGhq5p9MUzxDK5Me9bWH6o8rpIZi1i6XzdGkcpdE3D68r3iTJ0jWTWmtFliHLMWZlsLZxyUGmBmhBCTKcpBTZf+MIXuOSSS/jhD39IOBzm2WefxeVy8ZGPfITPf/7z0z1GADZu3AjAhg0bRt1+1113ceWVV87Iz5wMx1E83dY36eNduoZSYDkKTWN/UKPjdelkLYd4euxgoLD8MJzIEk1ZKBQ+l4G+vxJwPGOhoTGUyBLwuGZ0GWLkUkg5tSeYbC2cclBJgZoQQkynKZ15tmzZwp133omu6xiGQSaTYdmyZXznO9/hiiuu4H3ve990j/Og3IhS0TGcomM4c+gD93OAkNtE0xRK5evZuAwNj6Hj95gEPWP/SpqrfSyrD/DblzvRNXAU6Fp+5kcnv/tK12Fnf4JLT26e0WWIcl4KGa+AXzmqpEBNCDG95nJV8ikFNi6Xq5hb0djYyN69eznuuOMIh8MzlqBbqhJZC9M4vDdL2rIxdA1TB49Lx63r+NwGLbX+MWdAIH9CPnlRNb98cR9et0EmZ5PKWhiGjm0rDF3HY2pYtuKkluoZfQNX0lJIuf/xV1KgJoSYHnO9KvmUAptTTjmFzZs3s3LlSs4991y++tWv0t/fz3/8x39MWFemEgXcJvUBDzC57c01Phfzwz6GUjlA4TENagNuTEPn1EU1E85y1Ic8tNT6yVoOPbE0kVSOrOXgMjSqfCZNVV7chk59aOYTpithKWSu//ELISrPwVXJfSSzFls7I3RGUnOiKvmUAptvf/vbxGL5E/m3vvUtPvrRj/KZz3yGlStX8m//9m/TOsBS11zt4/SlNTy3Z5B07tAJxM01fhpCXlY0hQ5ohHnoWY6A26Q+6CHsc3Hc/Coylk3WdnCbOh7DABSRlHXUclvKeSlkOv/4y33WRwhRGaQqed6UzoBr164t/n9jYyMPPvjgtA2o3Oi6xsVr5vPYG728uHfiAnu6Bu9cPZ+0lW9DkMxaeEyDExdObpZjZG7LysYgVdpby1ZKKVp740c9t2W8pZBSPtlP5x+/zPoIIUqFVCXPK61tK2VqRWOIL7zjWK756YtExtnVBOA1dVr7Ynz9ktX0xDOHfdI/MLdlXpUHa/+Mz1AyS3O1ryRyW0r9ZD9df/wy5Xt4SjnYFaISlGMpjpkwpcBm6dKlB50QRtq5c+eUB1Su1i+v57K1LfzXc3tIZh3GWpRKWw73vdxJzlJ85rzlrJp3+A0rC7ktP3t2L8/uGiSSyoLKN9Nc3hA88idyhMrhZD8df/wy5Xt4Sj3YFaISlGspjuk2pWd33XXXjfo6l8vx0ksv8eCDD/LlL395OsZVdnRd4/SltTy0rZvGkEYsk2MokcMasUvdUZDMOtz3Sid7h5Lc8r41U/5QT2Yt3EZ+earG52Ze2ENXJM1dT+2eteChXE720/HHL1O+k/dmd4w7HmtjIJFhQdjH0roAqZxdUsGuEJWgnEtxTKcpBTbjFeG74447eP75549oQOXsuPlVHDMvtL+2TWpUUDOSZSu2tA9zx2Nt/NMHTj6sk7zjKH7whzaeaO0nZ9nYCgxdI+xzcXJLdbFP02wED+Vysj/cP/6xllBkyndy3uyJ8o37X2dHXxyfW6c/nqXW72Z5Y4CVjcGSCXaFqASVVIrjSExrE8yLL76YX/7yl9P5kGWludrHyQurSWVtJlipK3b7fmx7L7v744f1M/77hXY2vd5LMmvjdhlUeU3cps5gIstTbQPkbLsYPBxt5dJ1uvDHXxtw09obJ5bOYTkOsXSO1t74qD/+tt4YGx/fwXc3vcm/PNrKdze9ycbHd9Afy0gjykNo641xx2M72NEXp9rvojbgwevS6Y2l2dI+zFAyOyrYFUIcuUK6wuoFYYaTOXb3JxhO5ljTHJ4zs6PT+ql77733UltbO50PWVYKRfR+tnkv9iQqJQ+nLL7z0Bt86aJjJ/VmsyyHezbvJWvb1PhdGPuLJHp0DZeuEU1bbO+Ks6Y5NG7wMJMJnOW0vjuZOjwT5Qt1DCep9rvoiqTn9JTveN7qRp/B7zYIeEx0TcNjGrgD+UB8R1+Ck1uqyVgysyXEdCrnUhzTYcoF+g78IO/u7qavr48f/OAH0za4clQf8rCw2sdwIkPOPnRw07r/5DmZSPrF9iG6I2m8poFi9BtU1zV8boPhVJZExhkzeJjpBM5yW9+d6I9/MvlCC8IGNX73rE/5luJuo5HLkv3xLDlb4THzY9I0jaDXZDCRpS+WKZlgV4hKMperkk/p0+TSSy8d9bWu6zQ0NLBhwwZWrVo1HeMqW4UTS080xZ7B9CGPj2ds9g4kJ5VnMJDIYjsKj0vfP/uhFU+4GmBoipztUBNwHxQ8HI3dSuW4vjveH/+h8oXmVXnYN5Ti3GMb2N2fpC+WpifqHPXqy6W626iwLLm0LkCNP01fLI074C6+li5DJ57O0RVJceby+pIJdoUQ5W9Kgc1NN9003eOoGM3VPlY0htjaOXGxvoJIKsdAIkNrT+yQSbWprE0m52ArRSZnE8+ApoGh5QMcpRSGrrHh2IZRwcPR3K1UCa0WYOIt4YOJLG/2RNk3lCKZs6gPeGgIeVi7tJbj5lUdtRmTUt5aX1iWTOVsVjQGiWcsBhNZgl4Tl6GTyFgksw51QU/JBbtCiPI26cAmGo1O+kGrqg6/PkulKMxaPP5mLxoJDrUYpZSiJ5qhMeSZMM+grTfG5l2DmIZOOpPD0HUc28FxQKEwdYWtoMrn4rgD6uOMN/ugVL64n8fUebl9mPahJIvrAkfy9IHKWN8dL19oMJFlS/sw0VQOr8tgaV0Q09BoH0qRyPaxrD5w1JafSnlr/YFVsk9uqaatN85QMks8bZHM5gOeqzesKJtgVwhRHiYd2FRXV09YlG8k27anPKBKsKIxxJ+f3sIr7cNkDpFn4zY00jmbrDV2Xgy8dRIbTuV427IaHtneR25/80tNy3f0dlCEvCaLa/38ass+LtWaCXlc425NHkxkiyeanO2Qztnc9dQuPvIni6flRFPu67tj5QsppWjrzbfCMHVoqvJS7Xflc0aOcjBR6lvrx1qWPGVRmL5Yhq5Imrqgh6vPW84xTRLUCCGm16QDm8cee6z4/7t37+aGG27gyiuv5G1vexsAzzzzDD/5yU+45ZZbpn+UZejPTmrmP5/dzZb26ISzNjlboYAF1b5x8wxGnsSUgvqAm+H9nb2Vo0ADt6Gzan4VWcvmd1s6eXHvELU+N4vr/CxtDGI7ikTGosrnKs46pLIWQa8L9/6kzl39iVkt8FdKxjox52yH3lga23YI+Vwsbwi8leN0lIOJcqijc+CyZMbK74o7c3l9WS1LCiHKy6QDm3PPPbf4/1//+tf553/+Zz74wQ8Wb3vPe97DmjVr+NGPfsQVV1wxvaMsQ6apc/kZi3mtc+uEszZpSxHw6Lzn5AXjXuWPPIkNJbN4XQarwl4SWRvLdjB0jWTWpnM4RSyVI205ZPscWp04T+8cIOgxCHhc7OpLcPqSanb2p0hlLWoDbgAGEzZNVV5ObA7T1pcYNetQijtujpYDT8x98TTprE1LnZ+VjUFqA55Rxx/NYOJIt9Yfrd9rJSxLCiHKy5SSh5955hl++MMfHnT72rVr+fjHP37Eg6oUJ7dUc8KCKl7dFyE3wbTNvJCHM5fVj/v9kScxt6FjGjqWA1X7T2iZnE1PJEPasnGUwnYUkaQDWr4qcSwNfrdJLGvx0Gu9uAyNhqCXrO0QT1v43AbLGwLouj5q1iFj2SW54+ZoGnli3tEX57+e28uCsI8q3+zW6TmSrfVHeydVuS9LCiHKy5QqD7e0tPDjH//4oNv/9V//lZaWliMeVKUIuE0aqrzUBFyYen5Ltkb+RS/8v6HlEz67ouNvDS+cxPLF4PK1U+LpHEoplFIMJbOkcjY5y8HePzukaeAxDVCQtRw6Iml0IJGx6ItlaB9MEEnlaKzycnJLdXH2oVAd+PWuKHc9tZutnRGq/S6W1Qep9rvY2hnhrqd209Ybm+FXb2ocR9E+mGR7d5T2wSSOc+haQodSODGfs7KBE5ur6Y6mUQcUYCwEEysag+MuKU7n2A6nevJIhZ1U5fZ7FUKIyZrSpeV3v/td/r//7//j97//PevWrQPgueeeo7W1dU63VDhQc7WPeVUekjkHn9vAsR1yjsLan1utyOdmtA8l2dYZGfeqdmS+R1tfgvlhD9F0jp5ohvyeKMjZDo7KBzTKAV3L36Zr+d5UOAq3qbOo1k/7UBKXqeM2dJY1BEYtqaSyNm5D5/ndQyW742Y8Mz0TcSR1emZibIe7tb7Ud1IVxijLVkKIIzGlwOad73wnb775Jhs3bmT79u0AXHLJJXz605+WGZsRdF3jpJYa7n2hAw3wukzsrIWh768/o2u49+fH/PKFfaxoDI57kjvwJFYXcKMUaCgSWQtb5WeCXEZ+l5Smge0oLLU/gAJAI+Q18boMPKaBZTvs7EtQ68/n2kRTOdr64rTU+uiNpkp2x81YjlZNl6nU6ZnJsR1ODkup76Qq1WKDQojyMuVkgJaWFr797W9P51gq0qp5IRqCHiKpLMmcje2AaWiYuo7PpZO1HXyGTjJrHfJqeVl9kHefpLOrPwHAkjo/KPjm/a+zdzCFoYGpa9iOQkND0yC3f8lEI1/t1XIUYZ8Lt6GTzjn0RNPsHkjSMZSkK5LG1DUsRzGYyHLaIhOlIGs7uA2dkDefy1EKO25GOtozEYcTTByNsU02h6WUd1KVcrFBIUR5mXRg88orr7B69Wp0XeeVV16Z8NgTTzzxiAdWKUJeFyuaguzojdMTSxPwGLhNHQ3I2gpD16nymSyo9k14tTze1exJLWE0TRFwG6RyDjnLQUPDOSAHxGVoeE2NeNpiftjHsvoArb0xdvUneG73IDowv9rLsU0hLFuxsy/Bptd7CHlNDE3DNHRq/G5WNAZxGVpJ9feZjZmIyQYTpTRLUqpNSsthiUwIUT4m/Ql28skn093dTWNjIyeffHKxYNmBNE2b8wX6Rmqu9nFKSw2DiSzDqSy6ppGzFbqm4XcbGLrG/LCPhpCHPQPJMa+WD7ya9bm89MbSPL2jj4de66Ivms7/PsgvPaHyeTeF344G+NwmiayN3+NieUOQ2oAbU4fBeJaw38XqBWGqfPlicwPxDChFLJ3D1DUW1viwHOiLpYmlc9T43bxteV3J9Pcp5ZmIUhpbqTYpLaXgTwhR/iYd2OzatYuGhobi/4vJKSScvtkTozvy1oyNciBjO/jdJssbgqRzzphXyyOvZlc0BNg3lOKF/gSD8SzRdI5YxkIp8Lk0XIaO4ygcpVAKdC2/LAUQ9Bg0hX3FoEYpxa6BJG5TZ01zdXH7slL52Rqv28ByFPGMRSJrE/SYBDwG3dEMhq5xwfGNJXP1fDgzEUeanHq49y+lWZJSbVKayFqkchZB26Q/nhm17AmlUWxQCFE+Jv1punjx4jH/XxzaisYQV5+3gm/c/xo7+uIoBaah01TlZXlDkBq/i9be+JhXy4WrWZ9L5/9a+9k9kCRj2fk2Ckqhwf5dUeAyQNfB0A0sW+F16fhcBi6XweJaP8sbAvg9JrF0jq5ImoAnn0MT8Lz1NoilLQaTWWoDbqq8Jl3DaVLFQoA6C2t81Pjd+FylsQwFk5+JSOUsNj6+Y8rJqVNJbi21WZJSbFLaF8uwZyDFmz1xNBi17FkbcM/aEpkQojxN6ZPiJz/5CfX19bzrXe8C4Ctf+Qo/+tGPOP744/mv//ovCXzGcMy8EH93yXHc8dgOBuIZ5oe9NIQ8pHPOhHVHElmL/niG/nia7kgGR+UrDduOg3Lyu6tMPR/c2I7C3J9LY7oNEjmbpQ0BPnrmEtp6Euzoi9MbyxRPZCcuDPOrFztIZPJXwlnbIZ6xsGwHlzf/1mgIeVjdHMbjMnAbOj63wZ6BxKir59neojuZmYhj54X4ydN7ppycOtXk1lKcJSmlasBtvTF+/2o3lu1g2w71IU9x2TOesThpYZiBRHZWlsiEEOVJU2MlyhzCsccey8aNG3n729/OM888w/nnn89tt93G/fffj2ma/OpXv5qJsR6xaDRKOBwmEonMWgfykVf9hd45KxqD414t7x1I8On/fIFIMkvaynfzTubyQUV+1mZ/0T8NCp0bCtu7NQ3CPhcnLKjiyjOXcuy80KgTGcA3/+c1nmztz28PVwrlQCSdoy7gwnagscrL2sU1xZmGWDrHcDLHF95xDC21/pLaojvea3vBcU1seq2n2Gn6wFmTwmzZp89dPu7Opo2P75jy/Sca21zumTTyda0LuHh5X4RU1iboNTF1jb5YFo9LZ+3iGv7yrKVz9nUSQhze+XtKMzbt7e2sWLECgN/85je8//3v55Of/CTr169nw4YNU3nIOeNwr5YLm7WztiKRsXGUM6rAX+GfrsHIEFXt/0/Wsnlp7zB7B1/jpkuO5/zjmorHtPXG6I1lSOVsdE0j7HeBUvQnMuwdTLGwJr+MUjiRH7h0UmpbdMd7bY80OXU6kltLaZakVIx8XUNeFye3aOzoTTCYzGI7Dqah4dI13rlmvgQ1QohJm1JgEwwGGRgYYNGiRTz88MNcf/31AHi9XlKp1LQOsBIdTu+cVM7Ga0I8kyNtKXTAGeM4e4wb87k3Cg1FTzTFDx5v49yVDZimXkxKth3Fucc0sKMvwVAyi+U41PrdDCayZC2FqYPlOActnQAluUV3rNf2SHcmTdfOJumZNNqBr2ttwEPNEjextEXWdjA0jf54hvqQ5xCPJIQQb5lSYPOOd7yDj3/845xyyim8+eabvPOd7wRg27ZtLFmyZDrHN+e9tHeI17rjpPd30RwrqIG3tnYfyHYUxv4u3a93xfj1S/v4k+X1KKVGXS3XBt46obgNneFkhjd6EnTuL9p3YILpnoEEr+wbxuc2iKWtUbtYSm2L7pHuTCqlnU2VZKzXVdO04g69WDqH1yWvqxDi8EzpE+OOO+7gb//2b2lvb+eXv/wldXV1ALzwwgt88IMfnNYBzmWPvt7D9x9tI5PLhzOFHVCHw1aAk8/FSWZt7np6N8/sHKTK66I/nmHB/lybkScUAL/HIGM5XHb6IuaFvaOWTtp6Y/zns3t4tTOS33V1wC4WKK0tuke6M6nUdjZVCnldhRAzYUqBTXV1NbfffvtBt998881HPCCRT6rcO5Dg9j+00h9LF4OZiYIalw65caZz7BF3DPtcVPtd7OiL0z6YpD7opqU2cNB9UlkbrytfY2fkjEshr2bfUBKfyyDgMdA1vbiLJd8pvLS26B7pzqRS3NlUCeR1FULMBH2qd/y///s/PvKRj3DmmWfS0dEBwH/8x3/w5JNPTtvgyoFlOTy3a4Dfb+3iuV0DWNZ4i0WT09YbY+PjO/jqfdvY2hElO4mHC7h1mqoml4dQH3AR8ro4sTmMy9TZ2hHFcUb/kMLV8orGYPFquRBs/cfTe2jrjTG/ykPY6yKRtnAb2v5gxmJHXxzHcQ66/2wr1G9ZvSDMcDLH7v4Ew8kca5rDk0pyPtL7i7HJ6yqEmG5Tupz+5S9/yV/8xV/w4Q9/mBdffJFMJgNAJBLh29/+Ng888MC0DrJUPfp6D//6RBuvdceLuSnHzwvy8XNXjNp9NJ4D67+ksjY/eSa/yyiTs8k5k1t4sh2F2zh0jGpo4Dbzv3Jd11m9oIqX9g7zSkeE5Q3Bca+WC1uVn97ZzyvtERSK1p44vv3ViXORNLVBN36PSU80zSsdERbW+EvuavtIdybJzqaZIa+rEGI6TSmw+eY3v8kPf/hDPvrRj/Lzn/+8ePv69ev55je/OW2DK2WPvt7DF3/xMsPJXPG2VM7hmd3DbOt+ie9efsqEwc2B9V88hk5/PAsanLwwzIO90UmNQwPchsFwMjthDk6+oquG23zrZDG/2kd/PMvS+gDDydyYVWgLS097B/MdwG0n3wbCUop0zsFtamQsh0gqh65BOuewrD7Ih/9kUUlebR/pziTZ2TQz5HUVQkyXKQU2b7zxBuecc85Bt4fDYYaHh490TCXPshy+9tuto4KakaJpm7+692WevfECTPPgmZSx6r/0RPM1Pap8Jq91a/TFxn7sAxk6+Nw6AY9JLJPEUW/VsNE08gX89lcnNnWd3IiEm1TWpj7o4ar1S9E17aCr5cKW8IF4Fsty8j2p3AaGoeHWNFI5B0PT8Xl0qv1uWmp8pC2Hq9YvYVHdwXk75WS2qykLIYSYmikFNvPmzaOtre2grd1PPvkky5Ytm45xlbSnd/XRPpye8Jj+RI47nmjl8+cfO+r2kU0tR9Z/cZsGfrdBIm2xZW+EjGVPaheUx9RxGTpVXhdel4nb0DCN/CyKoyC7P+fHZWi4TR33/kBr5K6Tlhr/mCftQgG1Kq/J7oEENX43tpOvP+Jz5Zt5pnIOIZ+LZMZiOJVj3dI6FtaU95V3KVVTFkIIcXimlDz8iU98gs9//vP88Y9/RNM0Ojs7+elPf8oXv/hFPvOZz0z3GEvOb19on9RxP31mz0HJxONVsXUbOoaukbYc0jkbU9fQDjFBoGv5Dt4uQ2d5YwCf20DTNQIekwXVPlpqfTRXe3EZGgrwu00MXSOWzk3Yn6qgUEBN1zUsx8Fl6tQGXJi6RiJjkbPyzTEt22E4lSPgMUsur+ZwFWbTtnZGqPa7WFYfpNrvYmtnhLue2k1bb2y2hyiEEGICU5qxueGGG3Ach/PPP59kMsk555yDx+Phy1/+Mh//+Mene4wlZ3tPYlLHDSZzvNg+xBlL64q3jVfFNuQ18btNOoZS+WUjQyeRsSd8fA3I2Q4Bj8H8Kh8tNT72DiUJe12krHxTQZdpsKwhwHDSIuAxGYhn8LrMSXVzLhRQcxy1fxkrH6TpukbWdrCyDgroiUJjyMOHzijNvJrJGm82bbarKc8kWXITQlSaKQU2mqbxN3/zN3z5y1+mra2NeDzO8ccfz5133snSpUvp7u6e7nGWlCqfe1LHacBAIjvqtvGq2GqaRnONj9beGJajqPIZDCVzE65F2Qp0J99D6sW9w8wLe+mLZ/B7TFY0+fZ3AVfE0harF7j50zXzaAh5Jn0CKxRQe7UjQo3PRUckRSprYzmKkMckbTm4988GBTwmjZPccl6qpqMnVDmRJTchRCU6rKWoTCbDjTfeyNq1a1m/fj0PPPAAxx9/PNu2bePYY4/le9/7Hl/4whdmaqwl44JjD72VG8DvMakLjA6Cmqt9LGsIsKMvTl8sTTSVo9BgvT7gxucyCPvduAwdY/+5dbzwQwMWVPsI+130xtK09cZprvZxwoLw/oAmh+0oTlwY5qqzlnD2ygZWzauipXbsnJoDFQqo1QXdmIZOMmOTyFgYmkbWUbgMHb/bZH7YR5XXxSOv9eJMcot6KXprNm3seN/nNshYdklUUz5SsuQmhKhUhzVj89WvfpU777yTCy64gKeffpoPfOADXHXVVTz77LP80z/9Ex/4wAcwDGOmxloyPrxuEbc+9Pohi+etXlDFqS01o27b2R9nMJ5l70CSN7pjBDwmDUEPC6q9JLM2C6p9VPlMan1uklmbjGWTsxW2rcjaTrGKsE6+7UGVz4XHNHD5NfYOpWiq8vKldxxDTzwzLcsLhQJq/725ndbeGG5TJ2vnOy9X+fJBzfKGIC5DK/vZjLnSE2ouLrkJIeaOw/qE/sUvfsG///u/8573vIetW7dy4oknYlkWL7/88kFT95XM6zX51IYV3P6HtnFXimr8Lv7yrGWjtnuP3OZ9yqJqOofT9MUz7B5I0BNNc96qRj6wtoU/bO9l31CSgMck7HMRTeWIZSw8uoHtOGjkdz6Zuo4GZCybeNqi2u/Gber0xDPTGlysaAxx6anNvNkbY17Ii+Uo3KaOxzSKzS8txxmzN1Q55XDMld5Fc23JTQgxtxxWYLNv3z5OO+00AFavXo3H4+ELX/jCnApqCr54YX4b9//7v50kRzRp0oCFNT6+9p4TRhXoG1kTZl6Vh5yjWDUvxCpCZG2HjuEUdQE35x3byOI6Pw++2k1frJvBRIaw12R+tY+g12TPQIKg26QrkkbXNZJZG9PQaazysrjOTzSVm5GlkpDHRa3fg99jTno2o9xyOOZK76LxEtgLSqmBqRBCHK7DCmxs28btfitnxDRNgsHgtA+qXHzxwmO5+pzl/Oz5Pby4d5iAy+SSk+bzJ8vqDyrM1zGc4qX2IYYSWXYPJLAcB1PXqfW7WdYQoDHk5cW9Qzy/Z5C1i2v57HkrOGlRNf/13F4SGYtl9QFsBzqGUsQz+SWrlY0h/B4Dt6ET8prEMxaZnDMjSyWHO5sxVhHCZNZia2eEzkiqZPsAFZbeCgHZWNWYy91cWXITQsxNh/XJpZTiyiuvxOPJ735Jp9N8+tOfJhAYXWX2V7/61fSNsMR5vSZ/edZy/vIQx73eFeXN7hguQyPkc+EyTHK2w77hJDv64vjcOumcww8f38GKxh7WLq3luHlVXHf+MWx6bf+sR87GY+oYuuLklmrqgm/tQprppZLDmc0o9xyOSu9dNFeW3IQQc9NhBTZXXHHFqK8/8pGPTOtgKpXjKJ7fPYTlKGoDbjymUbw9lbVJZm0U+crDvbE027tjPLitm2OaQpzSUsM7TmjkPa4FJLIW/bEMD7zaxUAii9vUj+pSyWRnMyohh6OSexfNlSU3IcTcdFiBzV133TVT46hoHcMp+mJp5oe9RFK5YluDwUQOy1EE3AbxTH73k2Urwj6TrKUYSmZ5tWO4uHSzal4VzIN5Ye+sLZVMZjZDcjhK31xYchNCzE2yiH4UJLIWGdvh2HlVvNoRYTCRxW3oJLMWhq6RsvLbum0nn4Scyjm4DA1HKZbUBtgzkOC/n2/nKxeuwjT1cYMLgPbB5IwvnxxqNkNyOMpDpS+5CSHmJjmzHAWFE73XpXNySzVtvXG6IykyVr4eTHZ/52y/28TnMrCVIpGxGEpkizVj9gwkQWlcdvpCVjSGDgouSmkHkuRwlI9KXnITQsxNU2qCKQ5P4UTfFUlT43dx+pIaTltcQ0PQjUvX0AC3qeE1dTQtf/LP2Q6Wo8jYDnUBN4au8VrX2FVhS62KbCGHozbgprU3Tiydw3KcSTffFEIIIaZKApuj4MATfTxj0VjlJeh1Ec/YeF0GHtPEAZSCZMbGVuB1GTi2IpVz8LoMVjQEGUxkeXhbT7F1wYE7kEJeF4auEfK6WNl48PFHSyGHY/WCMMPJHLv7Ewwnc6xpDpfsVm8hhBDlT5aijpIDkzUzVpqg18Tj0gl5XOQch3TOxtR1MraDqWv4XDo5WzGYyNJc7SPkNdH10a0LJrsDad9QEk3TjmouheRwCCGEONoksDmKDjzRR1M57nxiB8PJHIPJLMmsTTJroWvgcRkksjY528F28juknt8zzJJ6/6hGjJPZgdTWG+ffntxNNJ076vk3ksMhhBDiaJLA5igbeaJ3HMXmRUO82jHMmuYw/YkMu/oT7OpLEE/nUCofmCyu9eMyDfpiaQYT+T5QhR1Fh9qB1DWcon0wiabB8oZg2VQAFkIIIaai7HJs7rjjDpYsWYLX62XdunU899xzsz2kKSvk3tQFPfTEMjSGvJyzooGQ14WmaYT9LpbWBQh6XXhMnRq/i+FUjqzlML/KC4xOTFZqdB6N4zhs7YjiMnVObA6XTP6NEEIIMVPKKrC55557uP7667npppt48cUXOemkk7jooovo7e2d7aFN2YFJttt7YmgahH0ugm4TY389m4xlM5TMUe1z4TZ1uqJpYOIdSK90RMjZitULqtD10b/qAysACyGEEJVAUwde5pewdevWcfrpp3P77bcD+RmJlpYWPve5z3HDDTcc8v7RaJRwOEwkEqGqqmqmh3tYHEfRMZxia2eEezbvZX6Vlz0DKQaTWWzHwdB1agNultT5iaRyfO78lflKxPuNrGOTsfIF8Kp8Jjv7Epy4sBpjjIRdy3HY3Z846LGEGE/hfSrJ4EKIo+lwzt9lk2OTzWZ54YUXuPHGG4u36brOBRdcwDPPPDPmfTKZDJlMpvh1NBqd8XFO1cjcm01+Dz63ydolNcTSFlnbwW3oBNwGOwfiDMSztPXGWFEfLHYRH2sHkqMU33ukVSoAi2lRSkUghRBiPGWzFNXf349t2zQ1NY26vampie7u7jHvc8sttxAOh4v/WlpajsZQj8jInBmAKp+L+qCHgUSG327p4LHtfWzrjPL3D2znqrs38+jrPcX7FoKjVfOqaKn101LjHzf/plABeEVjUCoAi0MqtSKQQggxnrIJbKbixhtvJBKJFP+1t7fP9pAOaaycmbbeGE+80UdvPIPXZbCozk+Vz8WbvTFu+f32UcHNoR6rlCsAO46ifTDJ9u4o7YPJaUlqnonHnGtKtQikEEKMpWzWIOrr6zEMg56e0Sfxnp4e5s2bN+Z9PB4PHo/naAxvWo0s5tfaG+OPOwdJWw71ATd1QS8+twFAwG2wdyjFT57ezbkrG4rLUuM9Vil3cZ6JZQ5ZOpkeky0CWSgaKYQQs6lsAhu3281pp53Go48+yqWXXgrkk4cfffRRrrnmmtkd3Awo5Mw8sLWTZ3YO0FLjozbgRtM0lFJkLQdbKaq8Jrv6E7zYPsQZS+smfKxSTfosLHMMJrLMD3unpdbOZB5zWX3pvialZDJFIHui6WLRSCGEmE1lE9gAXH/99VxxxRWsXbuWM844g9tuu41EIsFVV10120ObEbquYeg6GhD252vbpLIWg4kcqZyNoxSgyNmKrR3RcQObwmOV4tX0gcschRmBkNdF0GPS2hvn4W09LKsPTjromMxj/tcf91ITcLOzLzEnZnOOZDfToYpAShK6EKKUlNUn0eWXX05fXx9f/epX6e7u5uSTT+bBBx88KKG4ktQF3LgMnVTWxtQduqNpcrbCbeoYmk4qZ2M7Ds/s6OecY+rL7qQ8E8sch3pMn0vnD9t7WVTnnxPVmI90Sa6Q0L61M0LQY456TQtJ6Guaw5KELoQoCWWXPHzNNdewZ88eMpkMf/zjH1m3bt1sD2lGndpSw5K6AAPxLAPxDDlb4XMZmLqGUg7pnEPY5yKds3hoa/klcL61zDF2jO1zG6N6Yx3pYyqVn7lI5ez9jUUrOxF2OnYzlVsSuhBibiu7wGauMU2dK9cvwec2GEjkgPzJOZGx6E/ksB2FpkFnJMP/vNrJ0zv6Z3nEh2fkMsdYprLMMdFjxtIW/fEsAY+JxzRGfa/SqjFP526mAytk7+5PMJzMsaY5XHEzXEKI8lZWS1Fz1fnHNbFvKMm/PNpG1rIZztlYtoNp6MwLe6kPeshYNr3RDD97bi/zwt6yOdHMxDLHRI+ZsWziGYul9QFC3oPf/pWUCDvdy3ylnoQuhBAggU3ZePuqJl7aM0TGctjRnyCRzjE/7MUw8rMOuqZR7XORyFiHnWw7mwrLHJ2RFK29+ZOwz22Qytp0RdJTWuaY6DE7hlP4XQYLxjjZQ2Ulws7EbqZSTUIXQogCWYoqE83VPlY2VZHM2WhAQ9VbQY1SinjaojboYVl9oOyWUmZimWO8xzxjSS3nrWoklXMqvhrzTCzzCSFEqZNPtDJRmIXY1hUhksrhcRk4SpGzHeJpC5/bzO/w8Zj0xjJlt5QyE8sc4z3mzv44dz21e9pmiEqV7GYSQsxFEtiUkRWNIT54xiJ29ydJZCySWTB1ncYqL8sbgtQG3MTSubK9Cp+JZY6xHrNcqjEfqZlY5hNCiFJXfme/OW798nreuXoem/cM0lztw2MahLxmsSKxXIVPzlxJhJ0rQZwQQhRIYFNmdF3jT9fMoyua3t8uwMBWilTGkqvwwzRXEmHnShAnhBAggU1ZkqtwMZHx2ifMhSBOCCEksClTchUuxiIdzYUQc50ENmVMrsLFSDPRJV0IIcqNBDZCVICZ6JJeqY6k07kQovRJYCNEBZiJLumVSJbqhKh8UnlYiAowE13SK810dDoXQpQ+CWyEqADSPmFi09npXAhR2iSwEaICFNondEXSFd8DayoOZ6lOCFHeJLARogIU2ifUBty09saJpXNYjkMsnaO1Nz7nCzfKUp0Qc4cENkJUiJnokl4pZKlOiLlD/oqFqCBSuHFs0ulciLlDAhshKowUbjyYdDoXYu6QpSghxJwgS3VCzA0yYyOEmDNkqU6IyieBjRBiTpGlOiEqmyxFCSGEEKJiSGAjhBBCiIohgY0QQgghKoYENkIIIYSoGJI8LIQQQlQQx1FzeuefBDZCCCFEhWjrjfHQ1h529MVJWzZe02B5Q5CLVjfNmVpNEtgIIYQQFaCtN8ZdT+1mMJFlftiL3+0jmbXY2hmhM5KaM4UoJcdGCCGEKHOOo3hoaw+DiSwrG4OEvC4MXSPkdbGyMchgIsvD23pwHDXbQ51xEtgIIYQQZa5jOMWOvnwftJFNXgE0TWN+2Etbb5yO4dQsjfDokcBGCCGEKHOJrEXasvG7x84w8bkNMpZNImsd5ZEdfRLYCCGEEGUu4DbxmgbJcQKXVNbGYxoExgl8KokENkIIIUSZa672sbwhSFckjVKj82iUUnRF0qxoDNJc7ZulER49EtgIIYQQZU7XNS5a3URtwE1rb5xYOoflOMTSOVp749QG3Fx4QtOcqGcjgY0QQghRAVY0hrhq/RJWLwgznMyxuz/BcDLHmubwnNnqDVLHRgghhKgYKxpDLNsQlMrDQgghhKgMuq7RUuuf7WHMGlmKEkIIIUTFkMBGCCGEEBVDAhshhBBCVAwJbIQQQghRMSSwEUIIIUTFkMBGCCGEEBVDAhshhBBCVAwJbIQQQghRMSSwEUIIIUTFkMBGCCGEEBVDAhshhBBCVAzpFSVEBXEcNaeb3wkhhAQ2QlSItt4YD23tYUdfnLRl4zUNljcEuWh1EysaQ7M9PCGEOCoksBGiArT1xrjrqd0MJrLMD3vxu30ksxZbOyN0RlJctX6JBDdCiDlBcmyEKHOOo3hoaw+DiSwrG4OEvC4MXSPkdbGyMchgIsvD23pwHDXbQxVCiBkngY0QZa5jOMWOvjjzw140bXQ+jaZpzA97aeuN0zGcmqURCiHE0VMWgc3u3bv52Mc+xtKlS/H5fCxfvpybbrqJbDY720MTYtYlshZpy8bvHntl2ec2yFg2iax1lEcmhBBHX1nk2Gzfvh3HcbjzzjtZsWIFW7du5ROf+ASJRIJ//Md/nO3hCTGrAm4Tr2mQzFqEvK6Dvp/K2nhMg8A4gY8QQlSSsvik+9M//VP+9E//tPj1smXLeOONN9i4caMENmLOa672sbwhyNbOCEGPOWo5SilFVyTNmuYwzdW+WRylEEIcHWWxFDWWSCRCbW3tbA9DiFmn6xoXrW6iNuCmtTdOLJ3Dchxi6RytvXFqA24uPKFJ6tkIIeaEspixOVBbWxvf//73Dzlbk8lkyGQyxa+j0ehMD02IWbGiMcRV65cU69j0RNN4TIM1zWEuPEHq2Agh5o5ZDWxuuOEGbr311gmPef3111m1alXx646ODv70T/+UD3zgA3ziE5+Y8L633HILN99887SMVYhSt6IxxLINQak8LISY0zSl1KwVt+jr62NgYGDCY5YtW4bb7Qags7OTDRs28Cd/8ifcfffd6PrEK2ljzdi0tLQQiUSoqqo68icgxBwkbRuEEEdbNBolHA5P6vw9qzM2DQ0NNDQ0TOrYjo4OzjvvPE477TTuuuuuQwY1AB6PB4/Hc6TDFELsJ20bhBClrixybDo6OtiwYQOLFy/mH//xH+nr6yt+b968ebM4MiHmDmnbIIQoB2UR2GzatIm2tjba2tpYuHDhqO/N4kqaEHPGgW0bClvKQ14XQY9Ja2+ch7f1sKw+KMtSQohZVRbbva+88kqUUmP+E0LMPGnbIIQoF2UR2AghZpe0bRBClAsJbIQQhzSybcNYpG2DEKJUSGAjhDikQtuGrkj6oCXgQtuGFY1BadsghJh1EtgIIQ5J2jYIIcqFBDZCiEkptG1YvSDMcDLH7v4Ew8kca5rDstVbCFEyZEFcCDFp0rZBCFHqJLARQhwWXddoqfXP9jCEEGJMshQlhBBCiIohgY0QQgghKoYENkIIIYSoGBLYCCGEEKJiSGAjhBBCiIohgY0QQgghKoYENkIIIYSoGBLYCCGEEKJiSGAjhBBCiIohgY0QQgghKoYENkIIIYSoGBLYCCGEEKJiSGAjhBBCiIohgY0QQgghKoYENkIIIYSoGBLYCCGEEKJiSGAjhBBCiIohgY0QQgghKoYENkIIIYSoGBLYCCGEEKJiSGAjhBBCiIohgY0QQgghKoYENkIIIYSoGBLYCCGEEKJiSGAjhBBCiIohgY0QQgghKoYENkIIIYSoGBLYCCGEEKJiSGAjhBBCiIohgY0QQgghKoYENkIIIYSoGBLYCCGEEKJiSGAjhBBCiIohgY0QQgghKoYENkIIIYSoGBLYCCGEEKJiSGAjhBBCiIphzvYAhBCHz3EUHcMpElmLgNukudqHrmuzPSwhhJh1EtgIUWbaemM8tLWHHX1x0paN1zRY3hDkotVNrGgMzfbwhBBiVklgI0QZaeuNcddTuxlMZJkf9uJ3+0hmLbZ2RuiMpLhq/RIJboQQc5rk2AhRJhxH8dDWHgYTWVY2Bgl5XRi6RsjrYmVjkMFEloe39eA4araHKoQQs0YCGyHKRMdwih19ceaHvWja6HwaTdOYH/bS1hunYzg1SyMUQojZJ4GNEGUikbVIWzZ+99gryD63QcaySWStozwyIYQoHRLYCFEmAm4Tr2mQHCdwSWVtPKZBYJzARwgh5gIJbIQoE83VPpY3BOmKpFFqdB6NUoquSJoVjUGaq32zNEIhhJh9EtgIUSZ0XeOi1U3UBty09saJpXNYjkMsnaO1N05twM2FJzRJPRshxJwmgY0QZWRFY4ir1i9h9YIww8kcu/sTDCdzrGkOy1ZvIYRA6tgIUXZWNIZYtiEolYeFEGIMEtgIUYZ0XaOl1j/bwxBCiJJTdktRmUyGk08+GU3T2LJly2wPRwghhBAlpOwCm6985SssWLBgtochhBBCiBJUVoHN73//ex5++GH+8R//cbaHIoQQQogSVDY5Nj09PXziE5/gN7/5DX7/5HILMpkMmUym+HU0Gp2p4QkhhBCiBJTFjI1SiiuvvJJPf/rTrF27dtL3u+WWWwiHw8V/LS0tMzhKIYQQQsy2WQ1sbrjhBjRNm/Df9u3b+f73v08sFuPGG288rMe/8cYbiUQixX/t7e0z9EyEEEIIUQo0dWBt9qOor6+PgYGBCY9ZtmwZl112Gb/73e9GdTS2bRvDMPjwhz/MT37yk0n9vGg0SjgcJhKJUFVVdURjF0IIIcTRcTjn71kNbCZr7969o/JjOjs7ueiii7j33ntZt24dCxcunNTjSGAjhBBClJ/DOX+XRfLwokWLRn0dDAYBWL58+aSDGiGEEEJUvrIIbKZLYXJKdkcJIYQQ5aNw3p7MIlNZBjZLliyZ1JM7UCwWA5DdUUIIIUQZisVihMPhCY8pixyb6eI4Dp2dnYRCoVGJyGJ80WiUlpYW2tvbJS/pCMlrOX3ktZw+8lpOH3ktp8+Br6VSilgsxoIFC9D1iTd0l+WMzVTpui45OVNUVVUlf6jTRF7L6SOv5fSR13L6yGs5fUa+loeaqSkoiwJ9QgghhBCTIYGNEEIIISqGBDZiQh6Ph5tuugmPxzPbQyl78lpOH3ktp4+8ltNHXsvpcySv5ZxKHhZCCCFEZZMZGyGEEEJUDAlshBBCCFExJLARQgghRMWQwEYIIYQQFUMCGzGhO+64gyVLluD1elm3bh3PPffcbA+p7Pzv//4vl1xyCQsWLEDTNH7zm9/M9pDK1i233MLpp59OKBSisbGRSy+9lDfeeGO2h1WWNm7cyIknnlgsgPa2t72N3//+97M9rLL393//92iaxnXXXTfbQylLX/va19A0bdS/VatWHdZjSGAjxnXPPfdw/fXXc9NNN/Hiiy9y0kkncdFFF9Hb2zvbQysriUSCk046iTvuuGO2h1L2nnjiCa6++mqeffZZNm3aRC6X48ILLySRSMz20MrOwoUL+fu//3teeOEFnn/+ed7+9rfzZ3/2Z2zbtm22h1a2Nm/ezJ133smJJ54420MpayeccAJdXV3Ff08++eRh3V+2e4txrVu3jtNPP53bb78dyPfaamlp4XOf+xw33HDDLI+uPGmaxq9//WsuvfTS2R5KRejr66OxsZEnnniCc845Z7aHU/Zqa2v5h3/4Bz72sY/N9lDKTjwe59RTT+UHP/gB3/zmNzn55JO57bbbZntYZedrX/sav/nNb9iyZcuUH0NmbMSYstksL7zwAhdccEHxNl3XueCCC3jmmWdmcWRCvCUSiQD5E7KYOtu2+fnPf04ikeBtb3vbbA+nLF199dW8613vGvWZKaamtbWVBQsWsGzZMj784Q+zd+/ew7r/nGqCKSavv78f27ZpamoadXtTUxPbt2+fpVEJ8RbHcbjuuutYv349q1evnu3hlKVXX32Vt73tbaTTaYLBIL/+9a85/vjjZ3tYZefnP/85L774Ips3b57toZS9devWcffdd3PsscfS1dXFzTffzNlnn83WrVsJhUKTegwJbIQQZenqq69m69ath73+Lt5y7LHHsmXLFiKRCPfeey9XXHEFTzzxhAQ3h6G9vZ3Pf/7zbNq0Ca/XO9vDKXsXX3xx8f9PPPFE1q1bx+LFi/nv//7vSS+RSmAjxlRfX49hGPT09Iy6vaenh3nz5s3SqITIu+aaa7j//vv53//9XxYuXDjbwylbbrebFStWAHDaaaexefNmvve973HnnXfO8sjKxwsvvEBvby+nnnpq8Tbbtvnf//1fbr/9djKZDIZhzOIIy1t1dTXHHHMMbW1tk76P5NiIMbndbk477TQeffTR4m2O4/Doo4/KGryYNUoprrnmGn7961/zhz/8gaVLl872kCqK4zhkMpnZHkZZOf/883n11VfZsmVL8d/atWv58Ic/zJYtWySoOULxeJwdO3Ywf/78Sd9HZmzEuK6//nquuOIK1q5dyxlnnMFtt91GIpHgqquumu2hlZV4PD7qamPXrl1s2bKF2tpaFi1aNIsjKz9XX301P/vZz/jtb39LKBSiu7sbgHA4jM/nm+XRlZcbb7yRiy++mEWLFhGLxfjZz37G448/zkMPPTTbQysroVDooByvQCBAXV2d5H5NwZe+9CUuueQSFi9eTGdnJzfddBOGYfDBD35w0o8hgY0Y1+WXX05fXx9f/epX6e7u5uSTT+bBBx88KKFYTOz555/nvPPOK359/fXXA3DFFVdw9913z9KoytPGjRsB2LBhw6jb77rrLq688sqjP6Ay1tvby0c/+lG6uroIh8OceOKJPPTQQ7zjHe+Y7aGJOWzfvn188IMfZGBggIaGBs466yyeffZZGhoaJv0YUsdGCCGEEBVDcmyEEEIIUTEksBFCCCFExZDARgghhBAVQwIbIYQQQlQMCWyEEEIIUTEksBFCCCFExZDARgghhBAVQwIbIcQhbdiwgeuuu6749ZIlS7jttttmbTxz3ZVXXsmll14628MQoiRJYCNECevu7ubzn/88K1aswOv10tTUxPr169m4cSPJZHLWxrV582Y++clPzvjPUUrxox/9iHXr1hEMBqmurmbt2rXcdttts/r8j5bdu3ejaRpbtmwZdfv3vvc9qVotxDikpYIQJWrnzp2sX7+e6upqvv3tb7Pm/2/vzmOiutowgD9DO9CZYTGh48ISxzoBQcW4oJJJ1Lh0jEW0McGiJaYuiQiosYrGYtCIGlTcQSOlxrUhBJBEIzbEaU2wiqgsQRaDaLSYtu6OWh3g+f5ouJ9XBoqRRp2+v+Qmc7Z73/tCmJMz5w6DB8PDwwNVVVXYv38//P39ERUV9U5ie5OvN38bsbGxyM/PR3JyMvbs2QOj0YiKigrs2LEDJpPpP7tq4ePj865DEOL9RSHEe8lqtTIgIIB2u91pe2trq/I6PT2dgwYNol6vZ0BAAOPi4vjkyROl/caNG4yMjGSPHj2o1+sZGhrKkydPKu0///wzw8PD6e7uzt69e3PlypV0OBxK+9ixY7lkyRKl3LdvX27fvl0pA2BWVhanT59OnU5Hs9nMwsJCVbxVVVWcPHkyDQYDe/bsya+//pp//vlnh/efk5NDADx+/LjTe3/48CFJsqWlhevWraO/vz/d3d05ZMgQnjp1Sunb2NhIAMzLy+O4ceOo0+kYFhbGc+fOdSk/Bw4coI+Pj+r6BQUFfPXPZ0pKCocMGcLs7GwGBgbSYDAwLi6Ozc3NTEtLY69evWg0Gpmamqo6DwBmZmZy8uTJ/OSTT9ivXz/m5uaq2l89xo4dS5KcM2cOp02bpvT766+/mJiYSKPRSA8PD1osFpaWlirtNpuNAFhcXMzhw4dTp9MxIiKCtbW1HeZfiA+VfBQlxHvo3r17+OmnnxAfHw+DweC0j0ajUV67ublh165dqK6uxsGDB3HmzBkkJSUp7fHx8Xjx4gXOnj2LqqoqpKWlwdPTEwDw22+/YcqUKQgPD0dFRQX27t2L7OxspKamvlHM69atQ3R0NCorKzFlyhTMnj0b9+/fBwA8fPgQ48ePx9ChQ1FWVoaioiL8/vvviI6O7vB8R48eRXBwMKZNm+b03ttWLXbu3In09HRs3boVlZWVsFqtiIqKwrVr11RjvvvuOyxfvhzl5eUICgpCTEwMmpub/zE/XdXQ0IBTp06hqKgIP/74I7Kzs/HFF1/g9u3b+OWXX5CWlobk5GRcuHBBNW7NmjWYMWMGKioqMHv2bHz11VeoqakBAJSWlgIAiouLcefOHeTn5zu9dlJSEvLy8nDw4EFcvnwZZrMZVqtVyf+rOUhPT0dZWRk+/vhjzJ07943uUYgPwrueWQkh2jt//jwBMD8/X1Xv6+tLg8FAg8HApKSkDsfn5ubS19dXKQ8ePJhr16512nf16tUMDg5WrQBlZGTQ09OTLS0tJLu2YpOcnKyU7XY7ASgrJ+vXr+fnn3+uuu6tW7cIgHV1dU7jCgkJYVRUVIf32MbPz48bNmxQ1YWHh3PRokUk/79i8/333yvt1dXVBMCamhqSneenqys2er2ejx8/VuqsVitNJpOSQ5IMDg7mpk2blDIALly4UHXuUaNGMS4uThX7lStXVH1eXbGx2+3UarU8evSo0v7y5Uv6+flx8+bNJNUrNm1OnjxJAHz+/LnT+xbiQyUrNkJ8QEpLS1FeXo6BAwfixYsXSn1xcTEmTJgAf39/eHl5ITY2Fvfu3VM22C5evBipqamwWCxISUlBZWWlMrampgYRERGqFSCLxQK73Y7bt293ObawsDDltcFggLe3N/744w8AQEVFBWw2Gzw9PZVjwIABAP5e6XCG5D9e8/Hjx2hqaoLFYlHVWywWZdXDWXx9+vQBACW+zvLTVSaTCV5eXkq5V69eCA0NhZubm6qu7ZptIiIi2pVfj70zDQ0NcDgcqhxotVqMHDnyjXIghKuQiY0Q7yGz2QyNRoO6ujpV/WeffQaz2QydTqfU3bhxA5GRkQgLC0NeXh4uXbqEjIwMAMDLly8BAPPnz8f169cRGxuLqqoqjBgxArt37+7WmLVaraqs0WjQ2toKALDb7Zg6dSrKy8tVx7Vr1zBmzBin5wsKCkJtbe2/El/bJK4tvs7y4+bm1m6S5XA4Oj1/2zU6y8m70FkOhHAVMrER4j3k6+uLSZMmYc+ePXj69GmnfS9duoTW1lakp6dj9OjRCAoKQlNTU7t+gYGBWLhwIfLz8/Htt98iKysLABASEoJff/1V9eZdUlICLy8vBAQEdMv9DBs2DNXV1TCZTDCbzaqjoz1Es2bNQn19PQoLC9u1kcSjR4/g7e0NPz8/lJSUqNpLSkoQGhr6RjF2lB+j0YgnT56ofg6vP379Ns6fP9+uHBISAgBwd3cHALS0tHQ4vn///nB3d1flwOFw4OLFi2+cAyFcgUxshHhPZWZmorm5GSNGjEBOTg5qampQV1eHI0eOoLa2Fh999BGAv1d3HA4Hdu/ejevXr+Pw4cPYt2+f6lxLly7F6dOn0djYiMuXL8NmsylvnosWLcKtW7eQmJiI2tpaFBYWIiUlBcuWLVN9jPI24uPjcf/+fcTExODixYtoaGjA6dOn8c0333T4ph0dHY2ZM2ciJiYGGzduRFlZGW7evIkTJ05g4sSJsNlsAIAVK1YgLS0NOTk5qKurw6pVq1BeXo4lS5Z0Ob7O8jNq1Cjo9XqsXr0aDQ0NOHbsWLd+h0xubi5++OEH1NfXIyUlBaWlpUhISAAA9OzZEzqdTtls/ejRo3bjDQYD4uLisGLFChQVFeHq1atYsGABnj17hnnz5nVbnEJ8MN7tFh8hRGeampqYkJDAfv36UavV0tPTkyNHjuSWLVv49OlTpd+2bdvYp08f6nQ6Wq1WHjp0iAD44MEDkmRCQgL79+9PDw8PGo1GxsbG8u7du8r47njcu6CgQBW7j48PDxw4oJTr6+v55ZdfskePHtTpdBwwYACXLl2q2rT8upaWFu7du5fh4eHU6/X09vbm8OHDuXPnTj579kzps3btWvr7+1Or1Xb4uPerG3AfPHhAALTZbF3KT0FBAc1mM3U6HSMjI7l//36nj3u/6vVHsp3lEQAzMjI4adIkenh40GQyMScnRzUmKyuLgYGBdHNz6/Bx7+fPnzMxMZGffvppp497t/0+kOSVK1cIgI2NjR1kX4gPk4bswg49IYQQ3U6j0aCgoOA/+0WDQvwb5KMoIYQQQrgMmdgIIYQQwmXI/4oSQoh3RHYCCNH9ZMVGCCGEEC5DJjZCCCGEcBkysRFCCCGEy5CJjRBCCCFchkxshBBCCOEyZGIjhBBCCJchExshhBBCuAyZ2AghhBDCZcjERgghhBAu43+uPc0PdvioGAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# x values versus residuals\n", + "plt.scatter(X[:, 2:3], res, alpha=0.5)\n", + "plt.xlabel(\"Gasoline Consumption\")\n", + "plt.ylabel(\"Residuals\")\n", + "plt.title(\"Residual Plot vs. Gasonline\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACl5klEQVR4nOy9eXxcZ33v/z7r7NJotWxZXuXEceysJilJSAJZKOulNISltCEtlK0NS5sW+uO20BZy4d6WlAsNKffVQFsoNIG2gUJICCGUhJCEkMVJHFteYtnWLs0+Z39+f5yZsSTLjiRL1oz0vF8vJdbozMxzZs55nu/zXT5fRQghkEgkEolEIllBqEs9AIlEIpFIJJLTjTSAJBKJRCKRrDikASSRSCQSiWTFIQ0giUQikUgkKw5pAEkkEolEIllxSANIIpFIJBLJikMaQBKJRCKRSFYc0gCSSCQSiUSy4pAGkEQikUgkkhWHNIAkkmXEJz/5SRRFmdWxiqLwyU9+clHHc+WVV3LllVfW7eutRN71rnexYcOGpR6GRLLkSANIIlkEvvrVr6IoSu1H13W6u7t517vexZEjR5Z6eHXHhg0bpnxenZ2dvOIVr+Df//3fF+T1S6USn/zkJ/nJT36yIK+3mIyNjXHzzTdz5plnEo1GaW1t5dWvfjXf+973lnpoEsmyQl/qAUgky5m//Mu/ZOPGjViWxSOPPMJXv/pVfvazn7Fr1y6i0eiCv98nPvEJPvaxjy34654OzjvvPP7oj/4IgKNHj3L77bfz5je/mdtuu433ve99p/TapVKJT33qUwB17UF64YUXuOqqqxgZGeHGG29k586dZDIZvv71r/OGN7yBP/7jP+Z//+//vdTDlEiWBdIAkkgWkde85jXs3LkTgHe/+920t7fz2c9+lrvvvpvrr79+wd9P13V0vTFv6+7ubt75znfWfv+d3/kdent7+fznP3/KBlAj4Lou1113HRMTE/z0pz/l4osvrv3tIx/5CL/1W7/F//k//4edO3fy1re+9YSvY1kWpmmiqovv4BdCYFkWsVhs0d9LIlloZAhMIjmNvOIVrwBg3759Ux7fvXs31113Ha2trUSjUXbu3Mndd9895RjXdfnUpz7Fli1biEajtLW1cdlll3HffffVjpkpB8i2bT7ykY/Q0dFBKpXijW98I4cPHz5ubCfKDZnpNe+44w5e9apX0dnZSSQSYdu2bdx2221z+ixeiq6uLs466ywOHDhw0uOGh4f5vd/7PVatWkU0GuXcc8/la1/7Wu3vBw8epKOjA4BPfepTtTDbifKfHn/8cRRFmfIaVX74wx+iKEotHJXP5/nwhz/Mhg0biEQidHZ2cs011/DEE0/M+Xy//e1vs2vXLj72sY9NMX4ANE3j9ttvJ51OTxn3T37yExRF4Zvf/Caf+MQn6O7uJh6Pk8vlAPiP//gPtm/fTjQaZfv27ScMKQZBwK233srZZ59NNBpl1apVvPe972ViYmLKcRs2bOD1r389P/zhD9m5cyexWIzbb799zucqkdQDjblVlEgalIMHDwLQ0tJSe+zZZ5/l0ksvpbu7m4997GMkEgn+7d/+jTe96U18+9vf5jd+4zeA0BC55ZZbePe7381FF11ELpfj8ccf54knnuCaa6454Xu++93v5l/+5V94xzvewSWXXMKPf/xjXve6153Sedx2222cffbZvPGNb0TXdb773e/ygQ98gCAI+OAHP3hKr13FdV36+/tpa2s74THlcpkrr7ySvr4+/uAP/oCNGzdy55138q53vYtMJsOHPvQhOjo6uO2223j/+9/Pb/zGb/DmN78ZgHPOOWfG19y5cyebNm3i3/7t37jhhhum/O1b3/oWLS0tvPrVrwbgfe97H3fddRd/8Ad/wLZt2xgbG+NnP/sZzz//PBdccMGczve73/0uEHq+ZqK5uZn/8T/+B1/72tfo6+ujt7e39re/+qu/wjRN/viP/xjbtjFNk3vvvZff/M3fZNu2bdxyyy2MjY1x4403snbt2uNe+73vfS9f/epXufHGG7nppps4cOAAX/ziF/nVr37FQw89hGEYtWNfeOEF3v72t/Pe976X97znPZx55plzOk+JpG4QEolkwbnjjjsEIH70ox+JkZER0d/fL+666y7R0dEhIpGI6O/vrx171VVXiR07dgjLsmqPBUEgLrnkErFly5baY+eee6543eted9L3/Yu/+Asx+bZ+8sknBSA+8IEPTDnuHe94hwDEX/zFX9Qeu+GGG8T69etf8jWFEKJUKh133Ktf/WqxadOmKY9dccUV4oorrjjpmIUQYv369eLaa68VIyMjYmRkRDz11FPibW97mwDEH/7hH57w9W699VYBiH/5l3+pPeY4jnj5y18uksmkyOVyQgghRkZGjjvfk/Hxj39cGIYhxsfHa4/Zti3S6bT43d/93dpjzc3N4oMf/OCsXvOlOO+880Rzc/NJj/nbv/1bAYi7775bCCHEAw88IACxadOm476T8847T6xevVpkMpnaY/fee68ApnzP//3f/y0A8fWvf33K8++5557jHl+/fr0AxD333DPPs5RI6gcZApNIFpGrr76ajo4Oenp6uO6660gkEtx99921Xfj4+Dg//vGPuf7668nn84yOjjI6OsrY2BivfvWr2bt3b61qLJ1O8+yzz7J3795Zv//3v/99AG666aYpj3/4wx8+pfOanPORzWYZHR3liiuuYP/+/WSz2Xm95r333ktHRwcdHR2ce+653Hnnnfz2b/82n/3sZ0/4nO9///t0dXXx9re/vfaYYRjcdNNNFAoFHnzwwXmN5a1vfSuu6/Kd73xnyvgymcyU/Jt0Os0vfvELjh49Oq/3mUw+nyeVSp30mOrfqyGuKjfccMOU72RgYIAnn3ySG264gebm5trj11xzDdu2bZvy3DvvvJPm5mauueaa2vU3OjrKhRdeSDKZ5IEHHphy/MaNG2seMImkkZEGkESyiHzpS1/ivvvu46677uK1r30to6OjRCKR2t/7+voQQvA//+f/rC3+1Z+/+Iu/AMIcFwgryjKZDGeccQY7duzg5ptv5umnnz7p+7/44ouoqsrmzZunPH6qYYuHHnqIq6++mkQiQTqdpqOjgz/7sz8DmLcBdPHFF3Pffffxox/9iIcffpjR0VH+6Z/+6aQJti+++CJbtmw5LuH3rLPOqv19Ppx77rls3bqVb33rW7XHvvWtb9He3s6rXvWq2mOf+9zn2LVrFz09PVx00UV88pOfZP/+/fN6z1QqRT6fP+kx1b9PN5Q2btw45ffqeW/ZsuW415j+3e/du5dsNktnZ+dx12ChUKhdfyd6L4mkUZE5QBLJInLRRRfVqsDe9KY3cdlll/GOd7yDF154gWQySRAEAPzxH//xCXfV1VyPyy+/nH379vGf//mf3Hvvvfy///f/+PznP8+Xv/xl3v3ud5/yWE8koOj7/pTf9+3bx1VXXcXWrVv527/9W3p6ejBNk+9///t8/vOfr53TXGlvb+fqq6+e13MXg7e+9a18+tOfZnR0lFQqxd13383b3/72KVV2119/fU2v6N577+V//+//zWc/+1m+853v8JrXvGZO73fWWWfx5JNPcujQIdatWzfjMVWDd7oX51SqsIIgoLOzk69//esz/r2aQL4Q7yWR1BPSAJJIThOapnHLLbfwyle+ki9+8Yt87GMfY9OmTUAYtpnN4t/a2sqNN97IjTfeSKFQ4PLLL+eTn/zkCQ2g9evXEwQB+/btm7Lzf+GFF447tqWlhUwmc9zj070o3/3ud7Ftm7vvvnvKQj09VHI6WL9+PU8//TRBEEzxAu3evbv2dzixcXcy3vrWt/KpT32Kb3/726xatYpcLsfb3va2445bvXo1H/jAB/jABz7A8PAwF1xwAZ/+9KfnbAC9/vWv51//9V/5p3/6Jz7xiU8c9/dcLsd//ud/snXr1ikJ0DNRPe+ZwqXTv/vNmzfzox/9iEsvvVQaN5IVhQyBSSSnkSuvvJKLLrqIW2+9Fcuy6Ozs5Morr+T2229nYGDguONHRkZq/x4bG5vyt2QySW9vL7Ztn/D9qovwF77whSmP33rrrccdu3nzZrLZ7JSw2sDAwHGl05qmAaEGTJVsNssdd9xxwnEsFq997WsZHBycEqryPI//+3//L8lkkiuuuAKAeDwOMKOBdyLOOussduzYwbe+9S2+9a1vsXr1ai6//PLa333fPy7c19nZyZo1a6Z8J6Ojo+zevZtSqXTS97vuuuvYtm0b/+t//S8ef/zxKX8LgoD3v//9TExM1EKjJ2P16tWcd955fO1rX5syxvvuu4/nnntuyrHXX389vu/zV3/1V8e9jud5c/rMJJJGQnqAJJLTzM0338xb3vIWvvrVr/K+972PL33pS1x22WXs2LGD97znPWzatImhoSF+/vOfc/jwYZ566ikgDHtceeWVXHjhhbS2tvL444/XSrBPxHnnncfb3/52/v7v/55sNssll1zC/fffT19f33HHvu1tb+NP//RP+Y3f+A1uuukmSqUSt912G2ecccYUXZtrr70W0zR5wxvewHvf+14KhQJf+cpX6OzsnNGIW0x+//d/n9tvv513vetd/PKXv2TDhg3cddddPPTQQ9x66621XJlYLMa2bdv41re+xRlnnEFrayvbt29n+/btJ339t771rfz5n/850WiU3/u935viZcrn86xdu5brrruOc889l2QyyY9+9CMee+wx/uZv/qZ23Be/+EU+9alP8cADD5xUhdo0Te666y6uuuoqLrvssilK0N/4xjd44okn+KM/+qMZvVAzccstt/C6172Oyy67jN/93d9lfHyc//t//y9nn302hUKhdtwVV1zBe9/7Xm655RaefPJJrr32WgzDYO/evdx555383d/9Hdddd92s3lMiaSiWugxNIlmOVMvgH3vsseP+5vu+2Lx5s9i8ebPwPE8IIcS+ffvE7/zO74iuri5hGIbo7u4Wr3/968Vdd91Ve95f//Vfi4suukik02kRi8XE1q1bxac//WnhOE7tmJlK1svlsrjppptEW1ubSCQS4g1veIPo7++fsSz83nvvFdu3bxemaYozzzxT/Mu//MuMr3n33XeLc845R0SjUbFhwwbx2c9+VvzjP/6jAMSBAwdqx82lDP6lSvxP9HpDQ0PixhtvFO3t7cI0TbFjxw5xxx13HPfchx9+WFx44YXCNM1Zl8Tv3btXAAIQP/vZz6b8zbZtcfPNN4tzzz1XpFIpkUgkxLnnniv+/u//fspx1c/vgQceeMn3E0KI4eFh8dGPflT09vaKSCQi0um0uPrqq2ul75OplsHfeeedM77Wt7/9bXHWWWeJSCQitm3bJr7zne+cUO7gH/7hH8SFF14oYrGYSKVSYseOHeJP/uRPxNGjR2vHzPZ7kkgaAUWISX5siUQikUgkkhWAzAGSSCQSiUSy4pAGkEQikUgkkhWHNIAkEolEIpGsOKQBJJFIJBKJZMUhDSCJRCKRSCQrDmkASSQSiUQiWXGsKCHEIAg4evQoqVRqXtL4EolEIpFITj9CCPL5PGvWrDmu+fF8WVEG0NGjR+np6VnqYUgkEolEIpkH/f39rF27dkFea0UZQFVZ/P7+fpqampZ4NBKJRCKRSGZDLpejp6ento4vBCvKAKqGvZqamqQBJJFIJBJJg7GQ6SsyCVoikUgkEsmKQxpAEolEIpFIVhzSAJJIJBKJRLLikAaQRCKRSCSSFYc0gCQSiUQikaw4pAEkkUgkEolkxSENIIlEIpFIJCsOaQBJJBKJRCJZcUgDSCKRSCQSyYpjRSlBSxqHIBAcyZQpOh4JU6c7HUNVZQNbSf0gr1GJpLGRBpCk7tgzmOeuX/azb6SAL6AlZtDbmeLV21fR27lwfWAkkvnSN5znh7uG2DdSwPJ8orrG5o6kvEYlkgZCGkCSuuL+54f4wv17GcnbmLpCRNfIl11Giw5Hs2VuvHSDXGAkS0rfcJ47HjrIeNFhdXOUuBmj5HjsOpqV16hE0kBIA0hSN+wZyvGF+/cymLPoaopg6hquH5Atu9ieD8C9zw6xqT0pQw2SJSEIBD/cNcR40WFLZ7LWmDEVNUhGdPYOF+Q1KpE0CDIJWlIXBIHgrsePMJK3Wd0UJWroqEroAWpNmFhuQMnx2DuU50imvNTDlaxQjmTK7BspsLo5elxXakVRWN0cpW+4IK9RiaQBkAaQpC6oLiymrmLoUy9LRVFIRnXylkem7FJ0vCUapWSlU3Q8LM8nbs7sPI+ZGrbny2tUImkApAEkqQuKjocvAiK6iuuL4/5uaCqO56MqkDjB4iORLDYJUyeqa5ROYOCUHZ+IrslrVCJpAKQBJKkLEqZOS8wkGdEpWC5CTDWCHM/H8QSbO5N0p2NLNErJSqc7HWNzR5KBrHXcNSqEYCBr0SuvUYmkIZAGkKQu6E7H6O1METd1oobGeNHB9nwCIbBcn8GcTWcqwnUX9MjkUsmSoaoKr96+itaEyd7hAnnLxQsC8pbL3uECrQmTa89eJa9RiaQBkH5aSV1QXViOZsPk0ZLjkbc9HM/F8QK6mqL84VVbOKNLlhdLlpbezhQ3XrqhpgM0lLOI6Bo7upu59mypAySRNAqKmO7HXcbkcjmam5vJZrM0NTUt9XAkM1AVmOsbzpMpO6iKSm9nkt+8sJszVsnvTFI/SCVoieT0sRjrt/QASeqK3s4Um65MyoVFUveoqkJPa3yphyGRSOaJNIAkdYdcWCQSiUSy2MgkaIlEIpFIJCsOaQBJJBKJRCJZcTSUAXTkyBHe+c530tbWRiwWY8eOHTz++ONLPSzJaSAIBP3jJXYP5ugfLxEEKyZ3XyKRSCSLQMPkAE1MTHDppZfyyle+kh/84Ad0dHSwd+9eWlpalnpokkWmWhm2b6SA5flEdY3NHUlevV2WHEskEolkfjSMAfTZz36Wnp4e7rjjjtpjGzduXMIRSU4HfcN57njoIONFh9XNUeJmjJLjsetolqPZMjdeukEaQRKJRCKZMw0TArv77rvZuXMnb3nLW+js7OT888/nK1/5ykmfY9s2uVxuyo+kcQgCwQ93DTFedNjSmSQVNdBUhVTUYEtnkvGiw73PDslwmEQikUjmTMMYQPv37+e2225jy5Yt/PCHP+T9738/N910E1/72tdO+JxbbrmF5ubm2k9PT89pHLHkVKl2iF/dHEVRpuoAKYrC6uYofcMFjmTKSzRCiUQikTQqDaMEbZomO3fu5OGHH649dtNNN/HYY4/x85//fMbn2LaNbdu133O5HD09PVIJukHYPZjjC/fvZVN7Em0GIUQvCDg4WuQPr9rC1i75fUokEslyZTGUoBvGA7R69Wq2bds25bGzzjqLQ4cOnfA5kUiEpqamKT+SxiFh6kR1jZLjzfj3suMT0TUSZsOkskkkEomkTmgYA+jSSy/lhRdemPLYnj17WL9+/RKNSLLYdKdjbO5IMpC1mO6oFEIwkLXo7UzSnY4t0QglEolE0qg0jAH0kY98hEceeYTPfOYz9PX18Y1vfIN/+Id/4IMf/OBSD02ySFQ7xLcmTPYOF8hbLl4QkLdc9g4XaE2YXHv2KtknTCKRSCRzpmFygAC+973v8fGPf5y9e/eyceNGPvrRj/Ke97xn1s+X3eAbk8k6QLYXhr16O5Nce7bUAZJIJJKVwGKs3w1lAJ0q0gBqXIJAyA7xEolEskJZjPVbZo9KGgLZIV4ikUgkC0nD5ABJJBKJRCKRLBTSAJJIJBKJRLLikAaQRCKRSCSSFYc0gCQSiUQikaw4pAEkkUgkEolkxSENIIlEIpFIJCsOWQYvaWikPpBEIpFI5oM0gCQNy2SFaMvzieoamzuSvHq7VIiWSCQSycmRBpCkIekbznPHQwcZLzqsbo4SN2OUHI9dR7MczZa58dIN0giSSCQSyQmROUCShiMIBD/cNcR40WFLZ5JU1EBTFVJRgy2dScaLDvc+O0QQrJguLxKJRCKZI9IAkjQcRzJl9o0UWN0cRVGm5vsoisLq5ih9wwWOZMpLNEKJRCKR1DvSAJI0HEXHw/J84ubMEdyYqWF7PkXHO80jk0gkEkmjIA0gScORMHWiukbpBAZO2fGJ6BqJExhIEolEIpFIA0jScHSnY2zuSDKQtRBiap6PEIKBrEVvZ5LudGyJRiiRSCSSekcaQJKG5JyeZhQFnjqcIVd28IKAvOWyd7hAa8Lk2rNXST0giUQikZwQGSOQNBSTtX8KlsdowWEkb9OejNCejLCju5lrz5Y6QBKJRCI5OdIAkjQM07V/1qRjFG2X/aNFEhGdN1/QzSWb26XnRyKRSCQviQyBSRqCE2n/NMVMzl2bRgh4+nB2qYcpkUgkkgZBGkCShkBq/0gkEolkIZEGkKQhkNo/EolEIllIpAEkaQik9o9EIpFIFhJpAEkaAqn9I5FIJJKFRBpAkoZAVRVevX0VrQmTvcMF8pYrtX8kEolEMm+kASRpGHo7U9x46Qa2r2kmU3I5OFokU3LZ0d3MjZdukNo/EolEIpk1MmFC0lD0dqbYdGWSI5kyRccjYep0p2PS8yORSCSSOSENIEnDoaoKPa3xpR6GRCKRSBoYGQKTSCQSiUSy4pAeIElDEgRChsEkkmWCvJ8lS4E0gCQNx+SGqJbnE9U1NnckefV22QR1MnJRkTQC8n6WLBXSAJI0FNMbosbNGCXHY9fRLEezZVkNVkEuKpJGQN7PkqVEGkCShmF6Q9RqT7BU1CAZ0dk7XODeZ4fY1J5ccZ6Oyd6ekbzND54ZZKIkFxVJ/SLvZ8lSIw0gScMwl4aoK6lKrOrt6RvOM16y6R+3EAIu6W0lFTUAuahI6g95P0uWGmkASRqGYw1RZ253ETM1hnLWimqIWg0hHBorUXI8JkoOQzkbgeBHzw1z8aZWNrYngamLSv9ECVVRZH6QZMmQ97NkqZEGkKRhmNwQterZmMxKa4haDSEcGisxUXKwXB9D0zB1FUNVKNgev9g/TlPUoC0ZAcJFpW+4wB0PHSBX9mR+kGTJkPezZKmROkCShkE2RJ3KkUyZvuE8JcfDcn1aEyYxQ0VVFFRVIRnRKDoezw3kap/XQKZM/3iJA6NF0nGDTe1J0nGDXUez3PHQQfqG80t8VpKVwuqmKO1Jkz1DebIlZ8o9vRLvZ8npR5rWkoah2hD1aLbM3uEwdyBmapQdn4GsteIaohYdj4myQ8H2SEYNFEXB0MKfkuOhqwoIwXDOIme5pCI6u47mMDSVc7qbUdVw/yPzgySnm2re2v7RIofGS+wfKbK6OcqZXSmihrYi72fJ6UcaQJK6ZrqWzab2JDdeuqFW4j2Us4joGju6m7n27JUVwkmYOpqiYnsBTTGFsuMzXrQp2D5l1ycIwuO8wOYX+8dJRnVcL+D8dema8VNFJp1KTheTS9/XtcbpTEV5YTDHQNZipGBzxqoUF6xrWXH3s+T0Iw0gSd1yMi2b91+5ecWL/FVDgs8P5MiXXcZLLpbr4wcBqgKC8McNBMN5C19EaEuarEnPbNzIpFPJYjNT6XsqCu3JdnJll76RAps7kvz+Kzah6zJDQ7K4SANIUpdIgbSXRlUVrtvZzSP7R9k3WqQS8SIQAhUFXQdNVVBVlXUtcVJRg7GiTdH2aIrJpNOFQipuz54Tlb4rikJz3OSMVSlG8jYDOUt6ISWLjpzpJHWHFEibPWesauK3fm09t3x/N5bn4fsCVVUw9DAZOqIrpKIGE2WXruYoowXYP1rg3LXp2ucqhKjtvs9e08zqpugSn1XjIBW3T8xMhqEsfZfUE9IAktQdUiBtbpzbk2bH2maGcxb94yV0TcHQVHQtDCFkyy6WGyAAhTAsVk0iL7s+ewbzDGQtdFUhamjc/tP9cgGfBdJLeWJOZBie29MsS98ldYO8yiR1h9wlzo2EqdORjLAqFcHzBYYeJgCNFR28QKCpChFdxdQUiraPXjEiD42X2DOUx/MFq9NRzlwVVuDIBfylkV7KE3Myw/BIpkQ6bjCQtUhG9CkbnGrp+47uZln6LjktSANIUndIgbS5UU2GfuZIhs6mCMM5C9sL8AJBVFexvICEqREIWN8Wx9Q1WuMGmprAcn16O5I0xYzaYrTSF/DZIL2UMzMbw3BNs0ZL3JRSFpIlR6bZS+oOKXg4N6r6SG3JCLqqIoBMyQXAcn1UJTwmbmr0diZZk47yzJEch8ZLnLEqRXPcPC4hdfICLjmeY17KmY3wmKlhe/6K81LOxjCcKLm8ZkcX29c0kym5HBwtkim57Ohull5HyWlFbqEldYcUPJw7vZ2pmj7Sf+8NGM7beH6Aqas0xQxWN8fY3JGgNRHBCwJKbrgwn2wBl2HGEyO9lDMz2/B1RyoipSwkS87KujslDcPkBb1vOM+BUQdVUentTPKbF3bLXeIM9Ham2HRlkpdtbOHLD+4jamikYwYRXSMVDfMtREUZ2vdB1xRZEj9Pql7KXUezMpdlEnMxDFVVWVHhQUn9IWc3Sd3S25ki2AbZskPOcvEri/d9zw6jKoo0gmZAVRV2rm/lwnUT7DqapT0ZqS3O40WHvuE8L46VSEY0dFVlMGtx0cYW2pLHSt9X8gI+W6SXcmakYShpJGQOkKRu6RvO87WfH6R/osz6tgTb1zTTkjBl486XoLo4tybCRNO85TKct3j0wBj7R4s0xXR2bmhl6+oUZdfnwT2j9I8X8YKAvOWyd7iwYhfwuVD1UspclmPMdO3J60pSryhiepbpMiaXy9Hc3Ew2m6WpqWmphyM5CUEguO0n+9h1NDulmgTCneTe4QI7upt53xWb5WR6AqpaLH3DeZ4byJG3PLqaIqxpidORjJCK6owXHR49OI6hKqxvSxA1wkRp2YfpxEwX+FvdFGWgki8lc1lCJusA2V4Y9pLXleRUWIz1W4bAJHWJLDM+dao5QY+/OM7f3rcHQ1MpOT67B3P0qSqtcZPNnQku3dzG0YzF9S/rYXNHUi7gJ+Fkys9bu+Smqkr12pNJzpJ6RhpAkrpEiiEuDKqqkCm5HJkooyCImzpxQ0dVYDhvkbfDkI2uKXQ1R0+bMdmI/bOk8vPckEnOknpHGkCSukSWGS8MQSC477lBMiUHTVXI2z6qohAzNFoSBmXH54WhPOta4qfts2zE/llS+VkiWX7IJGhJXSLFEBeGh/eN8tiBcTRFQQBRXQ3L3x2PwWyZQAQcGisRNdXT0gS1bzjPP/7sII8eHEMIQXsiQnPMqPvE9rmEZE8XQSDoHy+xezBH/3iJIFgx6ZwSyYIgt8+SukSWGZ86QSD40XPDlL2A7tYYI3kHywvFETUFcmWPbNlDUxUOjJYWvQlqEAi+8YtDPH5wHEUJjQpdVWmJGaxqjvDiWJE7Hz/Mzdeeia7X195sKUKyJwsTNpIXrRHDnZKVgTSAJHXLZDHEfSMFhnIWEV1jR3ezrCaZBUcyZQayZZIRHUPT6GqKMl60yds+lusTELqA2xIm61riC5rLMtOi9/C+UR7YPYwQgnTCxNBU8pbLC0N5nh/MkTB1XhwrIYTg+pf11NX3e7pDspMr+CbKDioKq5qiXLm1g7ip8/2nBziaLdMSM4hqGp4f8NO9wzx7NMM7Ll7PJZvb68LIaCRDTbLyaFgD6H/9r//Fxz/+cT70oQ9x6623LvVwJIvEYleTLOfdadHxUFXoSEYYLdi0JkxWN0fxJsoIIYjoCiXHpy0Zoas5ShcsSC7LTIvepvYEe4fz5G2PzlQEBFiOz3jRRQBCgECgKQrPDeS446GDdZVUfDoF/vYM5vnSA330TxRxPEHe9siWXCzX4+5fHcYwdXxfEDdVXF9gewG+CD87RYE9QwXedH43v769a0k/P5k0Lql3GtIAeuyxx7j99ts555xzlnooktPAYlWTLPfdacLUiRk6sbRG0fEZLzoYuopb6RHmeAGGprGpI1Fb0E9VXuBEi96De0bYPZjHDwKOeAGaquD5AhRIRjR8AWU3IGbq9HYkGcrbdZVUfDpCskEgeHDvMP/nnj0czpTwfUEgBAIFVQnze4qeAC9sdJu3QVdBVRSEAFSBpioM5y0e3DPCQNZaMiNDJo1LGoH6CrTPgkKhwG/91m/xla98hZaWlqUeTkMxPWnS84IVm0RZXah3Hc2Sjhtsak+Sjtd/Mu5cqHotym7AuWub6UhFKTs+lhsQBAGaprCxPU5PyzFD51S6mE9f9FJRA01VcH3BRMnB9kKPlFLxVJRdD8cLxyOEwPF8khGdVFQnGdH45YsTPP7ieN1cl4up/Nw3nOeP/+1JPvSvT/LcQI5c2aPo+NhegOP5lN0A2zv+c/AC8AKBrgEoKIqCH4Dt+owVHO59dmhJPr96TBqXSKbTcB6gD37wg7zuda/j6quv5q//+q9Peqxt29i2Xfs9l8st9vDqgpnCOvtHC1O8HY4XYLsBEUPF1NVl5/04GStldzrZazFWdNjalaSrKcLjL04QCEFL3GR7d/OUBepUcllmWvSEEPQNF3D8gKih4Qeh18dyAwIBnidwfRdFAU1ViZkaj7+YYaxokyu7fPknffR2NrFzQwtnrW5actXlxQjJ9g3n+fx9e/jZ3lFsL0BXwRdhWNCfhe0SCPADMLTQqxbRVYqOTyqqL5lYqNTxkjQCDWUAffOb3+SJJ57gsccem9Xxt9xyC5/61KcWeVT1QxAIHto3yv3PD3E0U65MpiqtCZOi41G0PVrjJrqqsm+8QKbs0hI3uGBdC1FDWzGx+ZWkMj09kdz2fFJRA88POK+nmdZEpHbsqeayzLTo5a2w3L5ke9hegFcJ67ieoOqYEAI0VcFQFV4YzFc8QDpRQ2M477B78Cj37BqguyWGrqqYulLJeVHZ3JHkup3dnLHq9KkwL2RINggE9zwzyHMDOXwhSEV08rZL4AsUZXYGEIAfCHRV4AeCiKGiEH6mJcdbEiNjqXS8lnNOn2ThaRgDqL+/nw996EPcd999RKOz0yv5+Mc/zkc/+tHa77lcjp6ensUa4pLSN5znG48c4oEXhslbLr4I45uaCjnbJwgE7UmTmKmRLXsEQrCmOYrlBhwcK7FzfQtbOpPLxvtxMlba7nS612Ikb/ODZwYZKzqYurZguSzTFz0hBM8dzXI4U0YE4YIeCMJQjgBVCQ1OIQQxQ8XQtDBxWwHL8XAD8H1Bc8yoNdMUgUBRFRKmhhcInj6c4b/3jvDRa8/gmm1di/DpLS5HMmWeOZLF9cP8HUMDoxI2VOYQuRKAGwhUVSEVNdA1NTSGlkgsdCm6wi/3nD7JwtMwBtAvf/lLhoeHueCCC2qP+b7PT3/6U774xS9i2zaapk15TiQSIRKJTH+pZUcoLneAx1+cwPYCFEXB9XxcL8APBNXUgeG8zdp0DD8QBIFgOB9WBo0XHfKWR1PMWFbejxOxElWmJ3sttnaFyc4LLS8wedFzvICnD2fYPZgPF3NCg9zQwryVKkIIVAUECtmygxeEydAQGkgl2yNnqfgizHWJGxol28NyfczKIr9/tMj//I9dKChcvW3VKX5Sp5ei41F0Q6NPVxUESiUPS+DN0KdaITR2qv+vIioGZToWXrMtcYO85XHO2oU1MmbL6dbxOlnF2ZFMidfuWE17KiK9QpIpNMwMf9VVV/HMM89MeezGG29k69at/Omf/ulxxs9KoZrPciRTRhGCgLAsNqhMntUwg0qYJzBQWewSpoblBeQtj5ih4fjhorPcvB8zsbopSnvS5LmBHL0dSZpixpSclcXYndYbi5HLUl30nh/M8ZMXhsmWPPxAoFU8P4EADQVdDT9nXQtDWbqq4ng+XjB1USd0FGFVQmdCHFv4bS8gqmtEIyq6CuNFh09//zlMTeWyLadPA+dUQy4JUydh6OiqgqGr2G5AzFBJRXXyloc7LYFZU0BUPgTBsf9rKkQNDVNX0VUFXVNpSy6tWOjp0vGantMHYejV8QMimspjB8d5qj/DurYEMUN6hSTHaBgDKJVKsX379imPJRIJ2trajnt8JVHNZ2mJmxwcLeK4PoEI8ys0FVw/PE6pTJrhbjwgVpksS44fTpxaWBBY796PU11wqm7y/aNFDo2X2D9SZHVzlDO7UkQNbUWpTC+GvMCm9iSdqQiGpuKLAEUJPRMqCiqh4eNzLMyjKgqpiI4vwC06QGgoKZNcHKKSEBwArh+gqSoqoKqhV8ip5BUdmSjzV//1LP/jvNOjgbMQIZfudIwd3c0cGCti+AJfFZTdUKagOaqTs1ycIDT8lErI0NQUVDW8l/0gDJ3FDJ2ooRI3dXpa41ywrqUuxEJPR1f4yTl9EyWXvuECEyWn4j0MN3KpqEZHMoKuKSsm11Hy0tTnKieZNdV8lvZEJAx9VSdFBYRQEJVVpJZMKcJFpOR4JCIajhfUSo/r3ftxqgvOZDf5utY4nakoLwzmGMhajBRszliVqpuFo1E5kikzUXTYsipJ0fFqBrWihKXZlhcgAoFfWdQ1VSEVMRgvOZi6iuUGqAqghH8PRLjAB1R+D0BXwzwg3xeUvQA/CGpJ1Jbj89jB8UXXwFkokT9VVfj1HV3sHsrzVH8GQ1NRVYHthiXwmqqwqTXOr29fxYHREi8M5ijaPqoCyYjOtjVNXHlmJ1tWJSk5VRkBo67CPIvdFb46B1quxjNHspQdj7ipMeEHeEGAAmTLAeMlh80dyWVV6Sk5NRraAPrJT36y1ENYcqr5LKoCiYjGYDYsL1Y1pSKidozKukIgwjJk2wswNJV1rXEKtlfX3o9TXXBmKn1PRaE92U6u7NI3UmBzR5Lff8WmuutD1Ug8P5Dj2aM5vCCgaHsVnRqPZEQjGdWJBqK2gFuej6GpGLqKL8QxLwegoBAgEAFQ+RuETqFqpZPjB6HGjQBDVzE1FU1T6U7HGC86i7bALbSMQm9nig9fvYVvPHKIRw6MkynZRHSVtoTJBetbeM/lmzhjVVOo4zVR4sBoEYBN7QnWtsTr7l49EYtVoZUwdSKayguDOcpOGNIfzllMlNzwulFCD+L+kQKb2hPLrtJTMn8a2gCShC705pjBT14YxnLDnAs3AM8Pk0urqEB1FVEqCaUAmirYdTTL5o4EF6xrrUvvx0IsOCcqfVcUhea4yRmrUozkbQZylpwQ58mewTx3Pt7PRMmhOaaTjplkLRfHC8iVPZJRvVLppICi0Gxo6KpCznIQAuJRHc0JQ7heIPB9ap4fFahEc/ECiCsKlhdAxUOkKgoRQyWqq0R0jdXN2qIscEEgePzFcZ44NE5b4vgCi/kurr2dKT7x+m0nNXBUVWF9W4L1bYkFO5/TxZ7BPHf9sp99IwV8AemoTmdTrKbvdCrGUHc6Rkcqyi8OjNMU1RnK21huGH7VFQUvECiKwpFMmf6JEutaE8sy11FKAMwdaQA1OA+8MMzD+0YZytsgBLoa3vABxxKgNTXcUdcCYsoxT1DC1ClYHkcmLN76smTdGT+wMLo9K630/XSzZyjHX33vefqG83iBYChnh3lmmoqqKNiuT8kJTRhdVdjUkeADr9zMLw9O8OzRLCXHJ1t2cbRQxC+hQt72cX1RS5jWEHh+6AUq2B6KAhFdRVNVIrqKoam0JiOkojq+EAv+fVZDsE8cmuDZozmaYwaHJyJs7kxM0VOa77XUyAbOybj/+SG+cP9eRvI2ph769xzPxw0E9+waYMuqJJs7UvM2hlRVYeeGFn7wzFGG8jaBCMUgbS/ACwSappAwdUqOz/6RIj0t8brPdZwrUgJgfiyPb3+Fsmcoxxfu30um7NLTEqVgh4uML1zcykKhK6GR4wUBjidqonOqqhBRFVY1RzBUlYGcxRd/3Mf61gRndNXXDbMQxstKLH0/XfQN5/nSA/vCZPyEiaooDGQtio6PrinEDBUhwurEloTJ5Vvaa2GdzR1J7njI59BYiZLj41Y0Gwp26AkyNDA1jZip0xwz6GqOsutIjlzZQQCGqhKLaBiaSnPMYHOlr1nZ9ha8O3s1BNuaMGiOGbW+W3nb5byedM0IktfSMapz1GDOoqspElaiZsuUHB9TUxCB4PmBHM8P5Lln1wBndKU4v6dlzgv3WaubWNeW4PmBHAoKnl/NJQs1o1RVwdRVCrZHruwylLfrNtdxrsims/NH3qENShAI7nr8CCN5m9VNUSKGRnNM4FR2PUO5MjnLQ1UUklGdiKYwXgqbKAogooXaKoaqEjE0upoijORt7nqin4/9+ll15TpdCONlKYTZVgLV8ORYwSZuaiQiOqqiVPJwbDJlF9cPaE9FEIHg96/czNt2rqtdX5NLpX/VP0H/eAk3COvhy65PRFdpSZisbo6xuSP0tPS0xPnVoQleHC+hagpNEZ22VLT294X+Pmcqsz48YTGSt2iJG0yUXPaNFGmJmwDyWqowfY4ydZUXx0NDVwhB0Q4Q+GiqwtqWGAowUXJ45sjcF+7udIwtnSn6hgt0NoWGqOsFjBWd0CPu+SQiGp4f0DdSYH1boi5zHefKSmnrs1hIA6hBqYaFTD1MIoUwHBQxNCLAmnSMYKKMAM5d24yhaTzZP0HB9kLdFT8gEdExK881dQ1TV9hXh4mBC2G8qKrCNdtWsWcozxOHJljdHKM9aTJasBnIWrQlI1y9rVNOEnOkeh12NUUZyFjkLTfU5zFU1qRjpGIGZcfnrK4mIrrKK3o7jvuMJ5dK522XguUxnLP4l18cYn1rnLgZNkct2D6jBRtTU7n8jHZ++eIEEUNHVcJ8mXhEJ2+5C57MP1MItrczScH2mCi5mLpau44Ktle3hQSnm+lzVK7skSm5tbwtRRFhdWogmCi5rGqKULR9dqyJMJS357Rwq6rC1ds6eXDPMPmySzphEo0ZCASD2TAsFkoGwLY1TVy/s2dZeEVWUlufxUAaQA1K0fHwRUBEV3F9QUSfevGbukZEV1EUhaLj05kKv2rHC/BVgamrtMaPCQC6foCpawSCusuDWQhV2b7hPPc9N0TBdjmSKbN7IIcnIKqHoZOooXHfs8OoirIsJsZTZbYJlUXHY7RgY7s+WcsNvTZaqEfTmgh3oa7nk7NcLtncfkIjdXqpdP94iR/vHiER0XF9weMvZpgoOXh+gK6pJEyNloTJDZds4On+LPtGCgzn7UUR2pspBNuaMDmvJ03fcKHWuHW8aHPh+vosJFgKJs9RjhcwUbIJAlHJA6okuAvQNYUgEDVRVjcQ81q4L9ncziu3dvKzvaOUHZ8J16mFYSNa+LpdzVHefP7aZfP9yNzGU0MaQA1KwtRpiZnkyx7ZsouZMKfsABzPBxQu6W1jfWuCfcMFtEqCdCKi05mKEKuEjIQQFCyP5rhBOmbUZe7CqajKVmPkYZ6JRxAISm6A5wcoQqd3XZJVzVEZM68wl4TK0bxN/3gJIcJec2MFB8cPyFsuthe2Vyk7AW3JyJy8IlWv3yP7x5goOViuTzJqYER1XC/gcKaMFwhWpaK8/8r2Ra1+OVEItjVh8rINLQxky4wXXd57xSZ2rm9d8Z6fKpPnqNGCXdM1grAsvapirWsqUUObIso6n4VbVRXecfE6LDdgz1AO2wuImxpJU8f2fJr08H3++ZEXl809Hjc0/EBwZKJEOm6Sik71kMt8tJMjP5UGpTsdo7czxWjBwfYCxosOyaiOoYW7rcFcGHd/z2Wb6e0MwwvPDmS59b69TBSdSmNKgesHFCyvpiK7ZVXqJXMXlkqPZC6qslUPRt52+Y8njvDiWIlMyaHseNh+qLSbNDWKjs/jL05wzbZVK6YZ7MmYS0JlEAiePJQJdXwCQVPUwNQ0xos25UrVl+UGnNfTwgev7J3TgqOqCtec3cm9zw0yUrDpaopgaEp4vdoeHUmTppjBj54forczuaju/ZO1ToEwYfvC9S3S+JnG5DnK0EI5BE0NW/JARa2+ol+mquDYx0RZC/NMYu/tTPGuS9fzV999HseziJsqAbCqkkPWEjeXzT3eN5znnmcG6R8vM160aY4ZtCWOVSXK3MaXRhpADcrksBBAyfHI2x6OF040XU1R/vCqLbWKrp7WOD2tcQxVnVKSauoazXGDuKmzrjXOtWeHzST7x0tTjAwI483PD+a479lBnj2SY6LsEFQ8ShdOEmxb7PN+qcVusgdjvGTTN1QIW4Ao0BIzyJRdorqKpiokldCN/NxAjst621d0zHyuCZVHMmX2jxbZvqaJvcPFmhHe1Ryl6Phkii6aqvDuyzfOq7IwZuh0pCLoahjGLTkOmqrS2RQmPBuauujflWydMn8mz1GW6zNedHD9AFeEvd00FSJG2MOxZIeimJs6QgmAU1m4Y4ZOe9JkdXN7TSBzsmdkOdzjkzcqW7uSvDBEKGeSKZG1HM5claLsBvLafAmkAbTAnE4xqslhob7hPJmyg6qo9HYm+c0Lu2c0Rq46axU9LfGaKFkgIB0z6O1MsmNtM48eGOe2n+wjX3axPB/PD3douqYwVrDpGy5ScvxK/yENLwjIWxb/9fQATx/O8ie/vpWrzlq6jtzTPRiWG+rLlJxQfbhoe7i+IBUFTdXQVBVNDZgoOuQtj3hk5cbM55pQWc0/2NSeJBExaj2YvCBAV1XWtcWJ6CqrmqLzGk/R8TB1lV/b1EbJ8XH8YMpi5gUBg9lwzItxv8nWKadOdY6655lBirbHcMEmFQ2XHUVRyFthu5RQAylGOmawd7hwSgt3seLl7W6J10Juk2n0vJiZNiq1+69oM1ZweEHkee2ONVIH6CWQBtACshRiVPNpNnhGV4qPveas2nOGchbffeoo//roIcaKDn4gpvRiqorPTW5HoACW65OKhvosJcfjSKbMF+7fS09LfEm0hI6VZDt0NUUYztvsHsyFYmhqKATpi/Anb3s0KQqKoqCpCgJw/ADFYcXGzOeaUDk5N6aaD1Ptwh021xVky968P8vq65ddn6bY8fIHA5kyB8fK/Oujh9BUZUHvN9k6ZeHo7UzxgVcmOXddmn999BBF22NjWxxfwNFMmX0jYSi9OWaSLXunnMS+3DW/ZtqoTL7/JkoOZcfn9eeuXnaimgtNY14BdchSilHNp9lg9Tn3Pz/E5+7ZzaHxEp4fhJ23CVWixbTniGn/9gUUbR9TV4maOrYbVmUtlZbQkUyZXx2aYDBnsXsgy0TZw/d9NAXcippwEAhMLZQBKNkeRqVkO6qrGKqyomPmc104ZpInqBoqQgj2DhdO6bM8mfzBWMHmsYMTxAyNNc0xEhF9Qe832TplYVFVhVds6WB1c7S2SbQ9n+aYyVsubOHcnjTtqciCePGWu+bXiTYq1fsvHtE4OFqk7PoneAVJFWkALQCNKka1ZyjH3/1oD4cz5bDjdqDgCXGsc/xLoAK+CJtbhomhoKssmZbQj3cP8djBcbwgCNsveAF6teoE8HxQEcTMMGm37AZoqoquKiSiOoM5m7bkyo2Zz3XhWAh5gpNxotcv2R6PHhwH4KKNLTWjayHvN1levDjMx2M9Vxb7ulxqlruH63QifbcLwFxyJ+qFqkrrYM7CrPRSElTKU2dJ9VAvCHD9sG1l1FgaLaE9Qzm++Wg/lhcQMzSihoaihGMLBBVDKDTuPD/A1BV0LWwJoigKLXGTc9Y2L5vy2PlQXThaE2GlTN5yKzle7gnzMqo5HtvXNJMpuRwcLZIpuezoXpjPcqbXP5qxMFSFl21ooS05Nb9ooe63yYvMTMhFZv5Uvc9bu5roaV2c6tHFvi6XkupGZSBrIaZN2NWNSm9nsmE9XKcTefcuAI24W6wabbqq4ip+RZk1/FtoKswOhfBg2w2rOFri5mnXEqoac5mSQ0vcwPYCjIppLwQ4QRCek4CYqYbeqspzX3FGO688c9Upd6ReLsxHb2mxd/XTX38wa/Gtx/pZk57Zw7gQ99tyD6OsBE6Ht2kpWO4ertOJNIAWgEZ0SVZVWqOGStn1UQBDVXCqHeNnYLphVP23L8LntCZM4pHZaQktJEcyZfqG82EirBEqY5cdHz8ItUYQoeqspkIyopMwNZJRg5dtaOXma8+USazTmM/CMZ88tLkw+fUTpk7MWNz7TS4yy4PFvi6XilMRhpUco35W5AamEXeLVZXWXMwlU3JxfEHUULHcAO8k7h+V0BCqptcFAqK6wrqWOG2pSE1L6HQuDM8P5DgwWiRbdslblYouLzhmoSmh5H5UV2lNRBgvOcRNnd+8YK00fk5APS8cp+t+m88is1QioZKVx3L1cJ1OpAG0AMx3t3g6NYOmM1mltTVhMpy3CRRIREIV1moitAKoCrXqMEUBQ4O4qmHoKoamsr4tHnZjXpU67buPvuE8//XMAJYbyui7gUBXoOyEVV8RXcP1gzAhWlMRQrC2JUZL3CRmaqdtnJKF43R6Z+ayyOwZzPOV/97HL1+coGiHulOJiM727mauu3Atl2xul4vTIrGUc+lSUs8blUZAGkALxFx3i0uhGTSZ6UrSpq4ylLOx3HDiVpVQpTWsDhMEFS0dU9doiuls6khwfs/Clq/OlWr1ne36bGhPcGSiDK6P7YVVYIEQeEFoybXETS7e1EpnKkrMVHlxrFRXOVmSuXE6QwCzWWSqchL9E+Vat3MhBBMlh/6JEg/vG+WKMzpOi1r6SmOp59KlYqUafQuJNIAWkJPtFidfrCN5mx88M8hE6fRrBk0f72Ql6c6UiePBmpYYrz+niw1tCQ6OlQiEIGFqFa0Vv9Kvx1jyG66ayL0mHaMjFaVg+1ByEEoo0igE2J5POmZySW8bG9uTAOQtt+5ysiRzp15CAJPlJHRNwVRVio6PW9HVAhgrOPzX0wPsOpLjo9eewTXbuk7rGJcrS6m/tpSsVKNvoZErwAIz025x8sVadj1eHCvj+QEXbWypJXEulWbQSy0iGypGw2Iy353M5Oo7TVU4rydN33CBsYKF6wU4XoCpKVy8ubVm/NRrTpZkfix1CGC6nISpK2ECfsXyCSaFkm0voG84z8e+/TRjBYfrLljLQKVaTe7g506j6q+dKivV6FsMpAF0ipxo8a4+/vxgjv96agDbC1iTjpLwNJ49msP1BY8dnOBlG1tpS0SAmfstnQ6WchE5lZ3M9Oq7yXLwIwWb545msdyAuKHjBYGs4JGcEjPd69PlJKotVUQgCILwebWagkoPmfGiy19+91m++vBB2pImTVGDmCF38HNlrr3rlgMr1ehbLKQBdAqcaPHeujrF7oE8fcN5nh3IUbA81rfGMXWFg2MlxosOuqqQt1zKe0a4fEsHbcnQCKpHzaDF4lR3MtVqoGeOZOlqEriVNhepqE4qqpMtuaCEwocHR4uyTFQyb050r29ZlZwiJ1GVXvCDqc+vFhCghP8uuQF7hvIkMhob2xP0Vqra5A7+GC/lGW5E/bVTZSUafYuJNIDmyYkW70f2j/HvTx5hdXOUrqYICpCOGxzJlNk9lMfQFFQFNFVBV1XGiw6PHRznoo2ttCYidakZtBgsxE5GVRW2rk5x73ODPH04g6GHVV+piE48orOuLc4Nl6wnZugyzCCZNycz1PcM59EUhXTMIFNycX1RExStSFDVUETYjqVKIMB2A14cLREEcF5PM2NFp2F38AuZlPtSnuEgEOTKLpbrs3+0QDpmhPd+9JgswnKcS4uOR9n1Sfo6owW7tuGrnvNyNPoWk+VzZZxGZlq8hQgrpXKWS6bk0JEwMLSw51QqqjNWcCjYHioCRVUpux6RSiuGkuOzb6RIOmasmPyUhdjJ9A3n+fHuYZqiBrqqULA9bC9gwLLoSEV41dZOWXEjOSVeylDfM5TH8QXxSBiCHcqF7QmmGz8QinFOfkyteIMs12e86LB/tMSZq5INuYNfyKTcl/IMv2prJ7sH8jxxaJyn+rOUHI+orpJOmKxuirG5M0FL3FyWc+lo3ubFsSJ7hvKV3osqrXGTzZ2JFbWBXijkpzQPpi/e40WHvuGwFHc4b6EpCntHiqRiBrqmMl50yZRdFAQoKnFDo+z6WJ5AVQLakwpDOYunj2RZ23L6hQSXglN1X09emM5flwYgb3k4foChKgzmLF4YzPPKMzuX/WcpWTxeylBfk45xaLxEwtRRCOUkDk+Ucfxj120l8sXkqFhVX8tQFRwvzE87OlGiKxXF8ryG2sEvZFLuiTaXQkBL3OCFwRy7jmRJRQ1G8hZxQyMQAscLmCg6eH7AWNGmsym6JKKsi0nfcJ7vPzOAFwg8X9CRMvECwXDeIm+7nLu2mbGiu+yMvsVEGkDzYPLiPV50eLI/Q9nxMLRQGNBQFYqOz76RAsmIztGMTVDJT/EF6JpCUtXJWy6BUMiUXKJGmAvwzl9bvyLi/6faPmSmhanaFRzC8Fgj7qQl9cVsDPWIrvK6c1ezd7BQk5MYyFi8OBFWewpxrBpsMlWtqgDI2y5l1+fRg2M0xUxG8jZbG6BSfqGTck+0uZwoObiez3jJxfUCelpj+IFgdTqK5QaMF20yZZei7eMHsKoJbnj58smlqn7OEyWXiza08tThLJmSSzKqk44bjORtHj0wwcs2tC4ro2+xkQbQPKgu3kXbpW+4QNnxaE2YOFUBPiBqqHi+wPFFpWNv2IkcRakkSYpKsq6B4ws2tSe48dKNrG9LLPHZnR5OtZ3BSkyAlJx+Zmuon9XVxNVbV03JgXn+aI6/ve8FDo4VsT0RtpFRasVgCAR25fL0BCACspaLrqr84JlBVjdH634BX+ik3BNtLhMRHYTA8wMc36d/oszalhiKohAzNdYYMVIxg7Ljs211ExFdXVZK75M/51TUqEl+TJQcvCBUudc1lV/f0VX310w9IQ2geVBdvB89OMZE0SYZNVAUBVNXiRkqEyWXdNwgHTMYLYQVX5qm4HoCXQsX+EREpzVu1FzmmzoS9LSsHE/FqbYzaMQGtJLGYy6G+nQ5iZ7WOBvaE9z6oxf48e5hXF+gKgqGBo4vcCsJ0dVudKqqoKCgawr9E6WGSIZe6I3ITJvLmKExVrDJWR4lJxQ49QOf4Yr6t6kptc8Wwo1lwZ4aRmx01eTpn/NkyQ/HD1AVGCvYdKQiSzzSxkKuDvOgung/O5BlouyyylAJhILj+QRCoFfi+oczZXJlF1+EvbQUBTRFJR03aImH8duRvEPM0LnqrJXntjyVdgaN2IBW0nicqqF+RleKL7ztAj7+78/wUN8IedvH94MwH5CqJyjMB2qJm3Q2hYmsJcdj71C+7kO4C70Rmb651DWVoXzYosf1g1qPQgSMlzzKbh5DVVHVStWdgGeP5uhqjtbeczmoJs/0OSuKUgv75y2XqKHLDd8ckZ/WPOntTPGOi9ZxcLRI0fbJllyKTrilM3SFbNnFC8LkPVNToNJfyw8ChnM2ri+IGxoRQ+UVve1curl9ic9oaZhvO4PT2RBTsrI51b5juq7y3is2YWgqe4ZyTBRdjmbKBCJMizZ0ldXNUTqSERRFQVMV8pYX5rTUeQh3oTcikzeX4yUHRVEoV4wf1wtqBmOVshvgqgJdBUNTSUR0RvI2mhoqci8X1eSTfc5BELBvpMCm9mStGlnOe7NDGkCnwCWb23ntjtX85IVhMiWXhKmQjumMFGyql5+pK6xujlG0PbxA4FeEQJKmTnsqwtqWGG+/eN2KvmDnq0R9OhtiSlY2p9p3rLczxe9eFl6rv3xxnImSg+qFO/tVzVHik3buhqbieE7YTb7Od/SLsRGpbi73DOYZyJbxfIFfaTCrViQG/OCYIRQEAg9QlLDQpCmm0xQzuO+5QQQsC9XkE33OA5kyu47mcL0w2f7WH+1tOO/WUlLfd1edo6oK1569ivueGyJve3Q1RRACCnYYCjO1sHu6Fwi6mqJMlByKEJZslh0uO6Od63f2yAv1FKiXhpiS5c+ptoypXquPv9jCl3/Sx3Deoez6xIypybqO5+N4gs2dyYYI4S7GRuTXNrZxbk+aoZyFqYeisZbnoyoKQoAVBEyKhqEqCqqi0J6KcPaaJgxN5enDWVBC78lyUE2e/jn3DRfoHy9haCrnr0uzJh1vSO/WUiINoFMkZuh0pCLoldL3kuPh+gGaqpKKaqiqStnxaU+YrEnHQtGzksPq5hhvOr9bXqALwFI3xFwKGj2pc6Wiqgo717dy4fo2Htk/BiWH8aJDMqpXPD8Bgzmb1U1Rrrugp2G+08kbkbztUrA8khGdiK7NOiQzuX/i4wfGGciUcf0AxxdEtDD/R1HDKlpDD71AVe2lrqYYvgjYujpFayKCFwSU3DB8GD+BF60RK0Wrn3P/RIk7HjqAosA53c2oaphK34jeraVEGkCnSNHxMHWVX9vURskJjZtfvThB3vLQVBVVUXBFgC8EihIqP0d0jdaESSpyfNKgRPJSLIekzpXM5HAGQMnxyNsejufieAFdTVH+8KotnNHVWN+lqirYns8Dz4/M+dqsXtO/6p9gz1Aezxd0NUVYk47RP17G8URFSFIQMXRMTSNneRiaQrSSSxkIlYgWetPKjk/c0EFhWVWKVo3EA6NFBrJWxcBRpxxzKt6tlbaxapxvvk6pZueXXZ+mmEEqqjOUtdgzlMf2AgxNCRMbK4qm+bKLpqqc051uCPe2pL5YLkmdK53J4Yy+4TyZsoOqqPR2JvnNC7sbsoXLfK/N6vPGCjYTRQdDVWmJhwaOqkBTTKdoe/hBuImM6Wqo+K6F4bCormJ7AauaoqSiei35+py1zQjCqrDlUCk6eeMzXLA4MFwkW3LZsipJa2Jq+ft8vFsrcWMlDaBTZKbs/C2rUowVHYZyFlbFMAqEYChnEQg4d02KV2+XFUqSl2byjixmaNyza3BZJHVKllf+2nwVoSc/r6spysGxEqmYQURXiega40WnkmKgkrNcXD+g6PgkIhpRQ6XsBlieIBlV2NAWp2B7teTrV28PpbQHslZDV4oGgeChfaP866OHKNoem9qTJCM6AxmLwWx47ZzXk55iBM3Vu7VSN1bSADpFZsrOb4rp7OhuwvEDsiUXIQRjRYd0zODiTW284+J1y/Jikiws03dkvi/onyixtSu1LJI6Jcsnf22+itCTn2d7AZ4foEc0bNfHFwJTVwkCwcs3tXFwvMiLYyXipoaqKMRNjY3tJrqmEtFVsmUXyw2OS75u5ErRvuE89zwzyPd3DTJetGmOGbieYFNHnM5UlOG8Rcn22DdSpCVu1nqnzcW7tdDtTBoJaQAtACeqgrj+wrXsWNtc6wO0qT3B2pb4sruIJAvPTDuywxMlxooOLwzlQyXxBXB7SyQLwXwVoSc/TwgPXwgOT1i4fkAgBEoooUavEJzfk2ZVKspbL+ohGdFJRsJWQqubogxUXnsmL1qjetqqc8DhiRK257OqKYqiUGt+urE9QcH2yJVdhnIWmZKLrilz9m7NZLwKIWoq08mI1hCinPNBGkALRKPeZJL640Q7spa4SUvMoGhN3fFVacSkznpnpSWFzpf5KkJPfp7rB5Qcn4LlkYhoRFQNxw+wXJ89gzmyzTFevqmNK8/oPO47eKmFudE8bZPngO50jCMTZUw9LKoxEyrjRYfRgsO5a5vZO5zn8ESZA2NFOpKROXu3phuvkxvQen5QadECzw/mGuoznA1yplxAGu0mk9QnRzJl+obzpCI6Y0UHU1NJRjSEEEQMjYLtMZa3yFteTQq/EZM6652VmBQ6X+arCF193jNHMmTLLhFNJTA1XF+gEDY/TUZ0smWPuOly9QppGTTZKyME6JqK64V1cNXQ4HjB5sxVKbatbiIdM3n7xevY3JGcs5E+1QgVtQa0yaiBEQ0T0DMll/96aoBN7Yllde1LA0giqTOeH8jx7NEcihJOdn4g8H2Bpin4viBvh20SDo2X2Lo61XBJnY3ASk0KnS/zVYSuPm/PcJ4XD2dJxw2aYgajRZuC5aFWur23Jkxa4uay6vB+MiZ7ZVQFoobKofESiFD4sRoaHM5XCmt60ly+pWNe9/50I7TseLQmjuUTOV7A+rY4thcsu1wgaQBJJHVE33Ce/3pmgILtkY4bGIrKQDasJowaYc8oQ1MYztu8MJjH9QPa5+H2lpyYlZwUeirMVxG6tzPF63as5vmjOfxA4IqA5qjBmuYYa9JROpJRYqbKi2OlFZPfNt0rU7R9PD+UAYjqKl4QUHZ9fvVihgs2tJzSxmcmI1QQKpIXLI+YqdHbmcTQ1GVXZCENIImkTqguvLbrs74tznDOwvbCZNCmqI7lBWRKLhFD4+w1TZiVkMyNl26QyfULyHwrmiTzz4U8a3VTrYWFoauYmkoqeiyUlrfchshvW6icseleGSEE61vjTJTC9imWGxA3dRJRnVWpCJvak6c07ulGaKbkoFa6za9JR9FVlaihYnv+sjJC6/tqkkhWENWFd006RkcqynjRZShvEzW0WpfwTNmlO6KzZVUKQ1PJlNyawrhkYZhvRZMkZD65kN3pGL2dKXYdzbKlOdmQooULmTM2k1cmamq0qSaZkktrQmX7mmbScYOJkrsgxvhkI7Tk+hzNlCnZHrsH8vRpRRKmRkvCrHsjdC4snzORSBqcyQuvpipsWZVkJG8RBIJy4KMoENFVtqw61u9ILsQLz3wrmiTzZzG6ys/EYlX1LUbOWG9nitduX83T/RlKtkfJ8YnqKt0tcTZ3JGpzwHDeXpA5oGqEPrJ/jImSg+X6YSK0puB6AYczZbxAUHb8U36vekHewRJJnTB94e1IRuhMRVAVJUyADgRBIOhIhvo/ciFeHOZb0dTILLRhMJ/XW4yu8pNZrKq+xcoZ6xvO88sXJ/ACQSAEpqYQj+hsqhg/sLBzgKoqXHN2J/c+N8hIwaarKRIaP35AwfboSJo0xQx+9PwQvZ3LI/9NzpwSSZ3QnY6xqSPBYwfH6U7HMDWVloTJSN6mJRK6ujun9TtabgtxPXC6vBFLzfTu6yN5G9sPTtkwOBVDY7H01Bazqm96zthkEUFTU+lqisw5Z2xyf7TOVIRMySUZ1ciVXZ7qz3BeT5qWuLngc0DM0CutRxSKjk/RtgmEQiqqs6k9QTpuLKv8N2kALRFSYE0ynf2jBcYLDofGSrwwGKo9J00dPxAcmiiTjhnH9TtaDgtxPbLY3ojTxYnmmZm6r69ujnJmV4qooc3bMFgIQ2Oh9dQWu6pvcuh6uoigrqk0x3QiujbrMNXk8Z6xKkVHKsqT/RmKtkciolOwXJ4byNGRjNKWXNg5oOh4mLrKr21q42imzP7RIgXLo2h7PD+Yn/O51DvSAFoCpMCaZDqTF47z16U5mrEYKdgM5S00RWFtOkZLwjxhvyPJwtPo6u6T55my6xEEsLo5xllrUjx5KMORTImRvI3nC5IRjdGCjX044Px1abZ0JudsGNSrfMBiV/VVQ9dHMyX2DheniAi6vmAwa6MqMJK32do19/G2JkzO60nXDCtfwHDO5sL1LVy/s2dB54DquQxky/SNhOeSilXygOZxLvXOghlAmUyGdDq9UC+3bJECa5LpzLRwrG2Jk7c8bM/nSKbMy9a38Mbzuim5fsMtxI1Mo6q7T55nYobKRNFlOG/x+Ivj3PlLH61S1pypNGseL4a/520P44jCK7Z0zNkwqFf5gMWu6utOx9jUnuDup4/iB4K2SSKCIgjwgwBVU3nqUIZLN7e/5H0703hbEyYv29BC3vIoux5DOYs3nd+94GvFic4FwNRAV0FTVZ7uz87qXOoddT5P+uxnP8u3vvWt2u/XX389bW1tdHd389RTTy3Y4JYb0xe6VNRAUxVSUYMtnUnGiw73PjtEUO2eKlkRzLRwKBUNjo5UlM0dSfaPllAUha1dTfS0Ss0fyYmZPM+0JUz2DhfDkmbXx3Z9ik5AzvIYzTv4gUBTFQQC2wtwvIADo0X6J0rETG1Oui/HFu6Z99Vzfb2FYnJxwUycaiKxqiqcty6N6wX4foDjBxRtj0MTJfaNFslZHl4g+P6uQR7aNzrr8RYrjU5HCza5sgtAU8wgbuq0xCOkIsdXKJ4qM51LIAS25zNedIhHdLZ3N7FvJDRkG515GUBf/vKX6enpAeC+++7jvvvu4wc/+AGvec1ruPnmmxd0gMuJueyQJCuHel04JI1JdZ5ZlYrw3ECOkbxF0fYoWh5WpZ8UQAD4AoQAQ1MRlX2X6wv2jxQp2d6cDIPFNjTmS7WqbyBrIcTUzWW1mKC3M3lKicTtqQg9rXG6mmNkyy794yWKVhgKW9caozVhMl60+ddHD9E3nH/J8abjBg/1jfLwvlF+cWCMn+8f4/GDE4wVrAUZ72zPxXIDMiUHyw3obIpyXk+a1enYspmP5nUlDg4O1gyg733ve1x//fVce+21bNiwgYsvvnhBB7ickAJrkpmQujOShaToeIwUbJ4fzPHiaLFWRi0EzORcdnyBqgZoqornCyK6St5y2T9a5OKNbbNeaOtVPuB0VPUlTJ32ZISmqI7jB3i+oDVuEKmImNqeT3PMoGh7L5kHtX+0wHDepuz6qIpCc9wABEcyJfonSpzbk17U4ofquTRXGi1Xq9mqytyNoso9G+blAWppaaG/vx+Ae+65h6uvvhoIL3LfXz4iSQtNve6QJEvLiXaoQgiyJYc9Q3k6UhFWN0WXcJSSRuGp/gzPHM5yYKSA7QW4vsAPKt6eGY4P+z4JhBCVyiWFkuOTjOhzWmirhkZrwmTvcIG85eIFAXnLZe9wYUmrFqtVfdvXNJMpuRwcLZIpuezobl6QvMvqPXxgLPSctSUjRE29lgtUsMLHNrUnTurlr4Yv/UBwxRkdrEnHcLyAkuMTMzRiprYgrS9mcy6DOYtUtGLYxYzauSy2B+p0Mq+V9s1vfjPveMc72LJlC2NjY7zmNa8B4Fe/+hW9vb0LOsAqt9xyC9/5znfYvXs3sViMSy65hM9+9rOceeaZi/J+i0G97pAkS8tMO9Sy67NnMM9A1kJXFaKGxu0/3V83lYJSxqE+2TOU4+uPvIgbhCXYgQgIfDGj4VNFoWIE+QEoCqau0hKP8LaL1s1Lvbhe5QMWs6qveg8/O5BlouyyylAJREVEsNJQdHNHgnhEP6ly8+Q0iVTUoDVhTtEUArFgrS9e6lwmz0dRQ2UkbzOQtWhLRrh6W+eyuN/nZQB9/vOfZ8OGDfT39/O5z32OZDK0RgcGBvjABz6woAOs8uCDD/LBD36Ql73sZXiex5/92Z9x7bXX8txzz5FIJBblPRealSKwJpk7kxeOKdos6Shnrjo1bZaFRso41CdBILjr8SOMFhx60jHGik5o1MyAqhwLhymVn5iusaYlyqqmGBdvbOXSze3zGkc9ywcsZlVfb2eKd1y0joOjRYq2T9kJq+06m6K11hUvFT6aniZRLYaospCtL17qXCbPR/3jJUqOT9zUiBoa9z07jKooDX+/K2J6VliDMDIyQmdnJw8++CCXX375rJ6Ty+Vobm4mm83S1NS0yCM8MZMXENsLw169nckl3yFJlh7PC/jcD3fz3ECO3o5kzfUMoZdw73CBHd3NvO+KzUuyoBwv46BTco4JMy61cbaSOTRW5E+//TT7RoqkY6GHeaJoM1pwmWwGqYCihF4fhbC0WVUVuppjrG2Js641Lr/HeRIEgr//SV9NzT2ia7Xcmdncv/3jJT5/3x7ScWPGfMC85ZIpuXzkmjNOi5TAnsE8X3qgj7GizZrmGB2pCOVKo9SIofG6Has5a3XTaTFwF2P9nrUH6O677571i77xjW+c12DmQjabBaC1tXXR32uhqecdkmRpGchZjBZCBdjpE+BSaqlA/QrdSULD9Iv39/H04SyW6zNRtNEriatdTRGGCzZ+UDF6FIgYapgYHQAKJEyDze1JLljfIjdip4CqKvz69i4GshbjRYeuJpXxos1Qzma85NCdjp00fDS9Hc50A+p0pkkEgeC+54Zw/IAL1rUAkLfCBPuhnMVQzmL3QI5tq5vo7Uw1pAd41gbQm970plkdpyjKoidCB0HAhz/8YS699FK2b99+wuNs28a27drvuVxuUcc1FxpVYG0lUM1vydsuBcsjGdFJRY3TYqTWc6VgvQrdrXT6hvPc+qO9/PLgOIEIq7j8QOD7QdhDKqLT3RxlKO9gewExU6WrKUrU1DBUlfZkhOt2rmXb6ma5EVsAquGjbzxyiAf3jDCSt3ADga4qZEou33y0n3dcPHN+1UztcDqSEdako5Td4LSmSUy+3ydKLn3DBQZzZcYKDkIIYkYoz2Foat2E5+fKrA2gIJg5lrwUfPCDH2TXrl387Gc/O+lxt9xyC5/61KdO06gky4E9g3nu+mU/Tx/OMFRpExAzNNa1xTm/p2XRdzn1XBJfz8bZSiUIBPc8M8ieoTwxU0NTFXKWB0pAECgIEYrymbpK3Ay9CZs6ksRNjXTMYMuqlPT4LBJDeZuS65OMGjTFDExNIVd2ue+5IYbzNh++esuUz/1E7XAOjhUZylm8cmvnCQ2nxaB6v1uuxjNHspRsl7ITOjcMTcXyAizPp+T682qdUg80XL31H/zBH/C9732Pn/70p6xdu/akx3784x/nox/9aO33XC5X0y+SSKpUPT4/3j3ENx/tZ7QQanAAxHQVz/fpG/bJll2OZEq869INxAydvO2SK4eTgqIobGpPsLbl1FSa67lSsJ6Ns5XKkUyZZ45k8QNBU8wkCASOL7Bc8BWB5yv4QVg5tKk9wUevPYOtXU0y9L6IVI3SvcN54qY2pZ1E1NAYK9jsGQzzQDddGRoLs2mH05YwF7X8fToJUyeiqbwwmKPseOiqSrYcSnU4hOrhQsD+kQKb2hMN6QGe90xVLBZ58MEHOXToEI7jTPnbTTfddMoDm44Qgj/8wz/k3//93/nJT37Cxo0bX/I5kUiESCSy4GORLB+qCelPHBrn8YMTlB0PTVPRVAVTU8k7PoEfoKgKE0WHF8eK/OrQBK2JCIczZTJFh0AIYqZGezLCr21qO6VdWj1XCtazcbZSKToeRTf0uBmagqqH4a3xok3J8dGUsBS7NWHyoWu2cM22ZdDBss6ZbJSmolOLGBwvlCcouz5PHZ6oGQsna4cDBlFDY99I8bQaF93pGB2pKL84ME5TNCzf93wRXmdK2BxVURSOZMr0T5RYk441nAd4XgbQr371K1772tdSKpUoFou0trYyOjpKPB6ns7NzUQygD37wg3zjG9/gP//zP0mlUgwODgLQ3NxMLCYnXMncqbqcxwo2L46VKLs+ArDcMNxrqQEKgkCA8MJ+OFg+w3kHUyuiKAq6qqCr4PkBmZO4t+dCvWqp1LNxtlJJmDoJI5zGXV8Q0RVipsYaIxTQK7s+Zddna1eKs1c3L/FoVwbTjVIIvaPjRZuyG/bWcv2AF4YKPD+Yo6c1XpfhZVVV2LmhhR88c7SSDhBU+saBFwg0TSFh6pQcn/0jRdIxo+E8wPMa6Uc+8hHe8IY38OUvf5nm5mYeeeQRDMPgne98Jx/60IcWeowA3HbbbQBceeWVUx6/4447eNe73rUo7ylZvkx2OUcNjaGcTSDCREU/EASEN3l1KZ+uFeH4Ak0RqChEIgauL1AJJ7zp7u35UK+VgvVqnK1UutMxdnQ3c2CsSN5yMSvhFqUiaJi3XKK6xrlrW6Rn7jQx3SgNgoDBnIXrB0R0lUBAECiUHZ//emqATe2Jug0vn7W6iXVtCZ4fyKEqCigCLwgT7eOmNuU6m2vrlHpgXp/mk08+ye23346qqmiahm3bbNq0ic997nPccMMNvPnNb17ocR7XxE6yvDjdysJVl3NXU4RfHsrgBQG6qqIoAqUqjcvMrQOq+CI0hIp22Dag7AY0xQxsL+DpI5lTdlfXa6VgvRpnKxFVVfj1HV3sHsrzVH+GoZxd6x2VLbkEAs5dE5Yoy+/n9DDZKM2VHRwvwPUDYoYKKNiuj6YqbG5PYHsB9z47xO+/YlNdhpe70zG2dKboGy7Q3RLBcn3Giy6BECiVc4kY2rxap9QD8zKADMNAVcM2Yp2dnRw6dIizzjqL5ubmWo8wiWS2LIWycNXlnAx0CpZHRFfxAhHGtefwOmHIzCdiqCCoTFyCkjP3bsmN1F6iXo2zlUhvZ4oPX72FbzxyiEcOjDNWCKU/0jGDi08xJ00ydyYbpb88OE7W8ogZGl4gsCth9lWpCL2rkhiaSt9wgYGcVZfhZVVVuHpbJw/uGSZfdkknTCK6xmjRpmB5qIpSaZRqzKt1ylIzLwPo/PPP57HHHmPLli1cccUV/Pmf/zmjo6P88z//80l1eSSS6RyvLByj5HiLritRdTnnLBcFQSKik7c8NFUhEAJmKWWlKhAEoYs6bmoVT6VC3Jybu1q2l5CcCr2dKT7x+m30T5Q4MFoEWJCqRMn8qBqlX7y/j/t3D2O7HooS9vTrbgk9RK2JCF4Q1HJ7tnY1nfbw8mw2XZdsbueVWzv52d5Ryo5PIATNUYM1zTFWN0co2D4XbZh/65SlZF4G0Gc+8xny+TwAn/70p/md3/kd3v/+97Nlyxb+8R//cUEHKFm+LKWycLWi6dGDYxiaiqFruJXyYQS4M/RQUqvjnvSYEKGyruuLUBvD9dFVlXO607N2V8/FCGwkL5Hk9KKqCuvbEqxva4zeiMud3s4UH732DEpVSQ1ToyVu0DSpMmx6bs/pDC/PdtOlqgrvuHgdlhtwJFOiJW7SFDXQVBjM2axtifPq7V0NOQ/NywDauXNn7d+dnZ3cc889CzYgycphKZWFqxVNRzIlBrIWtuPTkTIZKzrkywExXcELBF4Q9koSgKaAF4AqjuUGBaLSTFIR+JUQ2rY55FzMxQjcP1qQXiKJpIFY2xLn3LVpdh3Nsr41/pK5PadrgzNXz3tvZ4rfveyYd2qsaC+L4ofGqVeTLDuWuvQzvKk3EtU1HnhhmLGCQ9zU6GqK0pYwGcxZDGbD8s+C4+ELMHQFEUAgKuXxAlQVNFUhHTd4xZaOOeVczNYIfGjfKPfsGjztocKVjPS2SU6V6dIRXU0RvECQtzwmKr3Bqrk9pysMXt10jRUcupoi2F6AEB7JiMaqVIS+kQJ3Pn6Ym689E11Xa89bjsUP8zKANm7ceNxkPZn9+/fPe0CSlUM9lH5WcydeeVYn9z8/xEDWQqvE6i9c38oZq5L8Yv8Y9+waZKzkoilgGArxiE5r3KQzZTJRctnYkeIPrtzMurbEnCaE2RiBg9ky9z8vm5CeTmROlmShmNwb7JED42TLDghIxw02d4TKzouVCzmTEX8kU+ZXhyYYzFm8MJgjABQhsP0AVVFQgBfHSgghuP5lPceFw5ZT8cO8VpYPf/jDU353XZdf/epX3HPPPdx8880LMS7JCqBelIVVVeEVWzq4dHP7jLubV21dxeVndvKNRw8xUXBY1RShOWbWYuBbV8e58dINbOiYu0z9bIxAP4CBrEV3OiabkJ4G9gzm+dIDfYwVbdY0x9jYlqDs+tLbJjklLC+gI2VyRmcCVVHxgoBnj2b5mx/uJhk1yVseZ6xauA3OiYz4kuvx2MHxUPpDCxvnWm6AEAJVCTddqqLw+IsTFB1/WV/v8zKATiR2+KUvfYnHH3/8lAYkWTnUm7LwiXY3VQNpdXN0wWPgszEC16RjDOYsYoZGruzi+EGl9DQ8XjYhXTj2DOX4q+89z76RAjFTZbTg0Bo32dyZaNiGj5KlpRpymig59LTE2TdSZDBXJlty8fwATwhUReGMVSk6UiatiWPtm+a7wTmRR+nhfSM8fTiH5fokI2Hz3KLt4QeVXEY1zH1UFShYLofGS8v6el/Q2MJrXvMaPv7xj3PHHXcs5MtKljGNpCy8GDHw2RiBV53VyVcfPsgj+8coOn5NtLG6MBua2nAS9PVI33CeLz2wj30jBdJxg0REx/UDhvMWedvlvJ609LZJ5kw1zy9mqDx1OEu25FB0fALANDR8OwyDD2TKuH7AeT3pKUbQXDc4MxVWCCEYy9s8N5Anb3uoQN72UERYyKEpYWGHEALXh7aEgS+g5HjsHcrPeL0vhxy5BZ0x77rrLlpbWxfyJSUrgEZKrluoGPj0yeOGl2/gvudmNgIDIRjJ2wzmLLqaIqR0s7Yw5yyHlkSEl29qLAn6euNYYqgdajhFdFRFIaJrmAmV8aLDvpEi5/WksT3pbZPMnqLjUXY9JoouJdutFFAI4oZaaVuiYxUcHD+g5PjsGynSEjdPWCr/UkwvrBgvOjx6YIwDo0UcP6xfDSr/qUp6hJWsobq9poTht0REI295ZMrucdf7TOG1Te0JzluXpj0Vqes5fDLzFkKc7qofHBxkZGSEv//7v1+wwUlWDsstue5knCg2f83ZnbzRWDPFCAS47Sf7aIoa+EHYdkNRFAxNJRHRGcxZ6KrK1WctfKhwOezwZsvkRWO04NQai0IYhkhGdcaLDiN5W3rbJHMiYeoEAYwUbExDI1MOledrXd8BQ1ex3ABTCw2WvOXRFDPmlQs5ubBivOjw832j9I+X8Cu9DWsSHpOe4wvQKmOJ6ioJU8PQVBzPQVWYcr1PDq91NUVIBjpHMiXuemKCu544zLrWOO3JSEMUDczrLn7Tm9405XdVVeno6ODKK69k69atCzEuiWRZMptqj61dTbXj+8dL7BspsGVVEtcX9A0XmCg5FGwPTVHoSJlEDY1M2SEIxIIZKCutCqq6aGxsS9AStxjJW7XGogCGplKwXAayZS7Z3C69bZJZ052Osbo5xpOHM7TpJkEl5wfCTYblBsQNDccLmCi5qEpoLIFgMGfPOReyWlhRtF32DuUZydsEhBIerhfKd8AxQ0ip/EdXIRAKiYiOqavYno/jCTZ3JqfoFFXDa20Jk92DBQZzZcYKDkIINFWhOabX8hrrvWhgXgbQX/zFXyz0OCSSZc98lK8n7+Y0VeFlG1rIWx4jBZujmTIF2+NgvsjtD+7jsXUTC2KgLFV7kqWkumiUXZ/eziQF22O86JCM6hiaStH2KDkBbclIwzV8lCwtk/tpZUsOAH4AXuBTdHyEEHiKgusHuKXQL/PYwXHaEia/No9ebtXCil8cGONIpoQXBCiESvaaqhBU+h0qhF4gQSju6gYQ0RXakia2FzCYs1ndFOW6C3pq1/v0fKaS7VJ2fVQ17AlmuwEvjpXY1JFsiKIB9aUPCcnlcrP+kUgkxzM9Ni+EIFd2GS3Y5C2PrqZILcG2yuQyeQjDMV4geHGsRK7soqsKzTGDtkSEXUez3PHQQfqG8/Me43QjLRU10FSFVNRgS2eS8aLDvc8OEVS3kcuE6qIxkLVoiRuc15OmIxXFcgMmig6ZkktvZ5IPXtm77Iw/yeJT7acVN3U0RSFnuRRsPww5VRqlqmqowZM0dc5e3URHKuy+PldUVWHr6hSDOYuhnI3lBni+wPFExUtD7adqkgSAqam0JkyKts9I3qarKcofXrWFM7qOXe/VfKajGYuy45GM6LieIKqrGJpKPBK2FNo/Evajm1w0UI/M2gOUTqdPKn44Gd+f+5cmaXxWUs7IfJgem6+Gszw/1ONojulEdG1KwuH0MnmAvuECZcejJW4wUXLpbIrS1RylC055x7WU7UmWkpmq8c5f18xI3mYga9GWjPDBV27mjFXS+JHMncn9tF4YzLJvpITt+cR0lVKlQ3xEU4kaGjFTw/ICLlyXpm+kOOf7ec9gnrufPIqhKUR0lbLjI5RjeT6JqI4IBJYXoCoCRYG2pMnZq5tCb5Ci0tuZ5Dcv7OaMVU1TXntyPlMqauAHwdSQngBTVynYHnnLIx6pb4mOWRtADzzwQO3fBw8e5GMf+xjvete7ePnLXw7Az3/+c772ta9xyy23LPwoJXXPnsE8d/2yn30jBXwB6ahOZ1OMnRtaOGt1kzSGOObNOZopsXe4GO6gogZGVMf1BYNZO4z/5222doXPmb4wJyMaY0UbU1eZKLnETI3NHYmasXKqBspStydZSqZLMtheWH1zyeb2upNkkDQe1X5a//bYYY5kLEDg+GFOTsxQaYqZtMYNVDVMhC7Y/pzv58k6VlEjDEs5msBQwrY9vhB4gSBlamHoTVXY0Jbgb64/l1TUeMnN6+R8ppa4AUJBVRQCEYaTHC8gbmoogOMHKA51XTQw61FdccUVtX//5V/+JX/7t3/L29/+9tpjb3zjG9mxYwf/8A//wA033LCwo5TUNfc/P8QX7t/LSN7G1BWEAMv1cXzB954+yrY1Kc7vaV22CbSzZXVTlLaEwb3PDQHQmYqgqmEU2tTCJERNVXm6P8ulm9trE9DkhfmJQxPkyi7NMYPOpiibOxKnpBlSpeq9G8xalWqzsAplOqejPclS0kiSDJLGo7czxZvOX8Oe4TyrmiKMFx12D+RpiRtEDQ1FUQhEeP85fkA6bsz6fp5Jx8rUXazxMo4fYKgKiqLguD6ZStuLda0J/vjVZ7JtTfOsxj85n2k0b9McN4gaKnnbg0CgaypRXUVXFQxVOW1q/vNlXrPYz3/+c7785S8f9/jOnTt597vffcqDkjQOe4ZyfOH+vRzJlGmLG1ieYDhv4XgBqgKW6/HcANiuWLYJtLOhWlX13EC+UuER7pbakhF0TaFgecQjOls6k+wbOX7HV12YH39xnNsf3EdbIkLXDGGq+Rgokyu+yq5H/3iZAyNFLtrYQlsyWjvudLYnWUpWkiSD5PSTihq0xk0Spk7c0OkfL6Oqx8riXT9AU1VMTZ31/XwiHavmmInRrnJovIQbBKiEoez2ZISXb27jPZdvOi7M9VJU85l+tne01kLDccNQmAkM5iyaYwb7Roqsa4vXddHAvAygnp4evvKVr/C5z31uyuP/7//9P3p6ehZkYJKZqac8myAQfOWn+9k/UkBTFY5mLUpOGM82NQVBeLPlyi5DuTIo1HVFwGIxuaqqIxWhLRHB9XzytkfR8WlLmqxujrG5I0FTzODgaHHGHZ+qKuxc38pj6ybYdTRLF6FRkre82g5vMGdxztr0rA2U6RVfa8wYMUPjsYMTPLhnlJdtaGF1OrZk7UkkksVkKebTyXl9vR0JWuJmTXYBoGB5dDZFSUY0+kaKs9pwVHP3upqiDGQs8pZLVNcwdZV4RGdDe5xc2WNtSxw/CLjp6i1ctKFtXuc6OZ9pz1AO2wtoSYDnC8pOqFPmBoKc5fKqrZ11veGdlwH0+c9/nt/8zd/kBz/4ARdffDEAjz76KHv37uXb3/72gg5Qcox602Z5eN8oD/eN4QeCqKHi+gGiUhzkBQJDUwkEGKpC2Q1OKqu+XJleVZW3PBIRnWjCRADjxbDX1IXrWlBVhbzlnnTHNzkn6FeHMpQcj7zt4XgBjhfQkYrwlp2pWU1sJyrL72lNEDd1Hj04zguDeSw3IGqcuD1JPRnlEslsWar5dPI93DdSZHVzhJzlMpQLtX+SUT2sCB0pznrDUXQ8Rgs2tuuTtcLS9IimEjd1WhMGEUNDUz0Egsu2dMzb+KnS25niXZeu56+++zyOZ5EwNTRVJdGqsyYdpT0RqXSbz/PKMzvrdj6YlwH02te+lj179nDbbbexe/duAN7whjfwvve9T3qAFol602YJAsGPnhvG9sPFURCWZytKKKkuBDXlUUWHVFQ/oaz6cmZ6VVUqqtd2fK0Jk9ZEWMl1aLxES9yYlQentzPFq7Z2Tsm7iugabUmTuKnz493DrG+Lv+T1cLKKr7ZkhEs3t3E0Y3H9y3rY3JGc0bCpN6NcIpkNSz2fTk+4b0uYCAEKgrZEBFDm1A9xNG/TP15CCEF70mSs0lojb7nYXpjPV15gHauYodOeNFnd3I6hq1MaNENo6NV7xei8Mxl7enr4zGc+s5BjWfGcaCc9HwG9xeZIpsxAtkxTVKfk+pTsUNALqn1llNAAUhSihkbc1BktWMfJqi93Zqqq6mqKMFKwOTxRxq8kPD52MJSOmI0HJwgEuwfyrG6OcX5PGjcQtckHZl8K/1IVX/GIjq4pdDVHZ5zAlnoRkUjmQ73Mp9MT7mNGWD1Vcv05eVKDQPDkoQyGruIHgqaogalpjBdtyq5PyfGx3IDzeloWVMeq6HjYfkB3SxxthnE2QsXorFeip59+mu3bt6OqKk8//fRJjz3nnHNOeWArjZP1h8qUXJ44NF7ZGUxlqbRZio6HqkJnKsrRTBlHDQhE6P0JNfLC8s6ortCRiuD6x8uqrwQmCxlObmVRtFwmSi5+RZgsaqi0JGbnwal6btako6Six1dqzfZ6mDy2mV7nZAmY9bKISCRzpZ60rhYi4f5Ipsz+0SLb1zSxd7hYUzDvao5SdHwyRRdNVXj35RuniBqeKqcyf9QLsx7Zeeedx+DgIJ2dnZx33nk1JdvpKIoihRDnyEzN5bJlhx8+O8B/PnWYuKkzkLVIxwwOT0TY3Lkwpc+nQsLUiRk6sbRWk3N3/ACrIuoVunNhVVMEVQmTc6fLqq8EqgmPj+wfY6LkYLl+WKGhKpi6iuP5xE2dc9amWVeZCF/KeFgorZ7pIovTGxyfrOKrnhYRiWQuLDetq+r5bGpPkogYxwRWgwBdVVnXFieiq6xqir70i82BU5k/6oVZG0AHDhygo6Oj9m/JwnCsfNEhqqs8cSjDeMEhZ7mUHJ9ACOKGhmmoeEHAcN4ib7uc15OuGUFLYWlPvvjPXdvMvpEiWrbMaMHGqyRDx0wN4ISy6isBVVW45uxO7n1ukJGCTVdTBCEEJSeUwU9FjdqEm44ZuIEgGdFOmiy+UDuvmdSPY6Y2q4qv5baIVJEJ3cufhKkT0VSGc9aMuSuN4LmYzOT5oDVh1voFOn6AqamAIFv2Fvx8TmX+qBdm/YmsX79+xn9LTo0jmTK/6p/gaKbM0YyF7fl4vqjJi6sKWJ4PCozkHda1hiXJ+0aKtMTDssmlsLQnX/xjRYetXUl6OxMczZTZN1JECMGqpjBEcyJZ9ZVCzNDpSEXQVYWi41fCYUGlh5eJ4wfsHS4wnLNRFGo9gZ4fzM1oAC3kzmt6MuZQziKin7jiq8pycH9PRyZ0rwzKrsdowQmbepoqhqbRGjfZ3BmWpDeC52IyM80HVRFTIQR7hwuLdj7znT/qhXnNTl/72tdob2/nda97HQB/8id/wj/8wz+wbds2/vVf/1UaSHPg+YEcLwzkKDg+gQjQVAU/CBABBISl5J4foKqhwvLRrEVXKspopRv4SMEmEdE5Z+3slDwXkplaBzTHTN5yYQvn9qRpT0WmJPb1j5dY3RRloOIZWI477Jk8CEXHw9RVfm1TGyXHZ7zksOtwllRUJxAwVnAouz7tSTOUo7c9MiWX/3pqgE3tieMmkYXeec1H/Xg5uL8nIxO6VwZ9w3m+9vCLQFiZ6vkCVYGhXJmxok1nU5R1rfUt3jedpfbENLJ6+rwMoM985jPcdtttQKgK/cUvfpFbb72V733ve3zkIx/hO9/5zoIOcrkSBILHDo5Tcv2wIaaq4vo+mqLgKQJfQOAFKEDRDi8szwvI2x5lx+OJQxPEDA0h4DtPHOGp/uxp362e7OLvG87zvacGajtqxwuw3QBTV8LkX0Vlc0eS63YuD+/QiTwI5/Y0E9U1yq5PU8wgFdUZztkM58rYXoDjB2EjRL3SQ8cLWN8Wx/aCE+YCLfTOa67JmEs96S4kMqF7ZTD5ez5/XZqJklvLl1EUhbzlsaoJbnh54xm7S+2JaVT19HkZQP39/fT29gLwH//xH1x33XX8/u//PpdeeilXXnnlQo5vWfPwvlF+tncE1w9zQlTFJxCgqdQEBcPuvOHvRcdDCFA1Dz8IBbMuXNdKIqIv6W51pot/+o667Kj84sAYY0WnItEeumifH8jxiwNj3HTVFq46a9VpG/NCczIPwpFMiXTcYCBr1bwlvZ1JxosOQ3kbBUjGwltxvOgQMzV6O5MYmnrSROKl3nkt9aS7UMiE7pXB9O95er6MU0k/qOYuNhpLPR80IvMygJLJJGNjY6xbt457772Xj370owBEo1HK5fKCDnC50jec5xuPHmK85NKWNLDdMOE5EDC9iK5aa2eoCq4nKNteqPngC7wgDJvV0251+o56vOjws75Rxgo2XiDwA4Hrh16OdMxgIGfxhfv30tMSb8gk6dl4ENY0a7TEzZq3pCmms7YlypFMCVUBTVWwvGBKg1MvCF4ykXipd17LYdJdrgndkqnM9D1PzpfxgqDWhmZyKHtyGH++Wj2ni6WeDxqNeRlA11xzDe9+97s5//zz2bNnD6997WsBePbZZ9mwYcNCjm9ZUl0wi7ZHSyyUKS8lArIlBz8QNYNHgVpJuaaEz1NV8IVgVdzA8oJaMrSiKHWzW52805oouTx6YJzRgk0gQmVoQ1OwvYDBrEV3OhYKA+Zt7nqin4/9+ll1NaHMhuk7y8n9uUxNpaspwkTJ5Tcu6Obp/mzNW6KrKuta46xrjdOWjDRsNUqjT7rLMaFbcjyz/Z5H8jb3PzfMvpECowWb0YIDCOKmRskJAEF7MkJ7MiKT5Buced3RX/rSl/jEJz5Bf38/3/72t2lrawPgl7/8JW9/+9sXdIDLkeqCuak9geMJRvIWnckIQSAo2F7YYZdjBhCV//uCmjJ0tuwSNwUD2TJ5K1XbxdTDbrW604oZUZ44NMpg3sL1jgklapUqJ9cXjJdcupqimLrCvgYNM0zeWY4XnWM6HH6Arqk0x3QiukZHKsL7r9w8ZWf53aeO8uzRHG0Js+ETiRuV5ZbQLZmZ2XzPa5qj/OCZQSZKDjFDZazoULQ9XM/jyESAaaiV0nJoT5oySb7BmZcBlE6n+eIXv3jc45/61KdOeUArgeqCuSYSo7czSaGS1NyWNFEVcH0HLwiNBV2pdlZX0FUFXVVDFWZFxXIDio7PSMGuGUD1sFut7rT6hvMcHC0hfIGihhLRCmGPMAgNoZLtkSk5lRwnn7ztLtm450v1fI9mSuwdLlJ2PJJRAyOq4/qCwayNqoR6SFu7mqYYeL++vYuBrNXwicSNzHJK6JacmJf6nlviRq1B8aqUyZOHsxQsj2REpb/oU3R8dE8hYWoU7DBMdtGGFg6Ol/j6I4e48dINrG2Jy+ukgZj3Kvnf//3f3H777ezfv58777yT7u5u/vmf/5mNGzdy2WWXLeQYlx3ThavO60nXvAaJiIblhgvntjUpRvI2JcfHCwRRXaXs+kQNDRQwVHBdwdFMmU3tCWBpNIGm052Osak9wZ2/7Mf1A1IRDWELSsFU5fBq3pPl+ph62Dn+P544gvkytaF2U9Xzvfvpo/iBmOLNMVRBEPh4Av7zV0fpScdY15aoTZLLJZG40ZHfQxhi758ocWC0CMCm9sSyW9BP9j2fs7aZrz58kImiw56hPMN5CwUYzAV4gUBXw/C25Qa4Fe2ugayFpirsHsxxNFvmnO60DIk1EPMygL797W/z27/92/zWb/0WTzzxBLZtA5DNZvnMZz7D97///QUd5HJjuit2cjWC7fnsGcrj+mFXYMv1Q5VoQ8XyAkxdJR0LO4gXHZ9ERKNguQxkLQq2Vxe7VVVVOG9dmm8+dggQeAKihoblBfhVz5YKVqXEPxXRSEV1OpsiHBovc8dDBxvKpVw9328/cbjWEsTQVPKWy0DGwvJ8VEXhv545ylP9E7zijA7ecfG62vkth0TiRqaa8OoFgtefu7quk1wXi77hPN945BCPHBgnU3YgCKuhNrYnuGBdC2euTpGM6KSiBqmo0dCfy4nutx89P8SewTyGpmBoKgpguT5uED4vqCQkCMJcTM+DkuMTMVRcX+D5QobEGox5GUB//dd/zZe//GV+53d+h29+85u1xy+99FL++q//esEGt1w5kStWUWCi5HJmVxOv2trJ7oE82XLYMLOqIdOWiKBrCpYbiiPGDI2c5TFetLlwfWvd7FbbUxE2tidQRiFTdtFVhaihY3s+IhD4Qdg0NaaHVRjNcYNtq5tqlVJLXck2V9pTEXpa4zheQKbsMlF0GC+6tUTomKlhuT4Fx+e+54YYztt8+Ootte+q0ROJG5WTqT+vlO+jbzjPrT/ay1P9GVRFIRXRGS3YDI/Z7Bstcf/uEXRVwdQV0nGTtekYG9sTnL22iaiu05owiJsalhugKEpDeI6m329BIHj84AReIGhNmFhugF3ZsGmAz7F8TM+vGkLgBQLcsGz3wGiBV/S2M5S35zR/yfYrS8e8DKAXXniByy+//LjHm5ubyWQypzqmFcFsXO6vPLOTl21s4W/v20PB8vD8IGyVEaisbY2zqT0Uyxsvurz3ik3sXN9aNzdOwtTpSEVpT0Z4biBHyfFJRXRQwpyYTMlFBdpSUda2xmul3zD7bub1RMLUaU9GaI4ZCCF44tAEmVKY6Bw3VXwBhqbRmYpQsFz2DIYL76YrG8fIW25I9edw8b3nmUH2DOUxdZW4oXEkUyZve1QcHwjADQSeIyg7FkNZi8cOTsDjoWYZhOXkhqaSiGi0JyP82qa2KV7OeufwRImDYwXSMYPxooPnh+2HqkwvSKk+phAWpyDg0HiJH78wQmcqwhOHJmY1f8n2K0vLvAygrq4u+vr6jit5/9nPfsamTZsWYlwrgpcKfaiqws71rbyit4NnjmTpaorgBqJWLg1h5/AL17fUlfEDU8N8L9vQyr6RYqUyStAU1bE8n550jJf3ttMUNaZUZNRDJdtcmXy+q1IRCraPqkJEVwEFxwu7wEd0FSVmkLc8nj6SaSgjbzkh1Z9DjmTKPHMkGwqrRnRG81ZNBwdx/MIvCD23VYKgaicI/MBHU0OP70xeznqlbzjPv/z8EM8eyaGqkCmFqQiGpuAroiZKOxMBoAKGBp4PeSss4hjOWyfs5Tf5fVe6Ab7UqPN50nve8x4+9KEP8Ytf/AJFUTh69Chf//rX+aM/+iPe//73L/QYlzVVV2y1Omj6ZFsNl7UlTYbyNhFdJR4JqxD2DhfqIudnJqrjbk2YtWapL9vQwvY1zaxqjtKZinJ2dzPNMfM49d16qGSbK5PPt2+kgOX6CBEKPhZsD1WBlrhR2ylDqP7dSEbecmIu6s/LmaLjUXTDa1AIQdEJagu+qhwzfl6K6ifoeKJiECg1L2cQzPZVTj9VI+TAWIGoqdGaiNCWNBAibEmjKsoUT9BkqlIlhgaBUBBA0fbJlh0yJZf7nhs84blPN8BTUaMmaFsVj7332fr+7JYD81phPvaxjxEEAVdddRWlUonLL7+cSCTCzTffzLvf/e6FHuOKp1ErVGZqlhrRNS7f0sFY0WEgayGEWDa6K9Xz/bfHDrN7ME/RDhcWXVNRFZWJoosCFWNVIW42lpG3nHIVpPpzSMLUSRjhNWh7gkBU/TyzR3CsfU9oRIX5irYX1LWXc7IRck53M44nGM5bxHSNuKnhBQFRXUMApcp14AUCRYArjhk/fqAQCIGmgqqEav66qvLYgQke2jfKK7Z0HPfesv1KfTCv2VdRFP6//+//4+abb6avr49CocC2bdu4/fbb2bhxI4ODgws9zhVPo1YKnWjc+0cL3PHQwWWnu9LbmeLNF3Tz4J5hiraHriokIzoB4aJrez5RQyVm6JzTnW4YI2+55SpI9eeQ7nSMHd3NHBgrUnZDT2U18DUf34Mg1PkKF/X69nJONkJUVaUjFWH/SIGi7eL6oSHj+V6lSMMEIRgrOvgCorqC5wu8IDT6qu1sfBGGvbuaoowVHe5/fohLN7cfN5dJA7w+mFMIzLZtPv7xj7Nz504uvfRSvv/977Nt2zaeffZZzjzzTP7u7/6Oj3zkI4s11hXPS4XL6pWZxl31lmxf00ym5HJwtEim5LKju7mhY99BILj/+WE6U1G60zEURaHk+iDCXm4F2yNneWxZleLV2xvDyKuGCXYdzZKOG2xqT5KOG+w6muWOhw7SN5xf6iHOmWrO1tGMRbbkMFqwyZVdhBA1L2RvZ7JhDNT5oqoKv76jizNWpQgCQRBA1fjxJ1lAs10oFEJDQIgwQFTPXs5jRojOeNHhwGiRiK6SjBlEK1W5bqVv4YXr0rxiSzsdqQiJiEZb0kTXwxjhZOMnZmisSccwdJVERGcga80YRp1sgM/ESjHAl5o5fbp//ud/zu23387VV1/Nww8/zFve8hZuvPFGHnnkEf7mb/6Gt7zlLWhaY3bSlZx+GtWrdTKqu8otq5JsaE/w9OFM7fwgnCBbEiZvu6inIYy85ZosrKoKW1enuPe5QZ4+nMHQFSK6RiqiE4/orGuNN6wXcq70dqb48NVb+MYjh3hwzwhHsgEEAapyLAn6ZKkoCpVkaCWMDiQqkg+6qta1l7NqhBRtl77hAmXHo6s5ClCTs8iWXQxNYd9IkW2rm3jt9tUM5izylouplRnMWcQMFS8I857WpGPEDI3xokNHKoKmKDN6cWT7lfpgTgbQnXfeyT/90z/xxje+kV27dnHOOefgeR5PPfXUcXFMiWQ2LCf9myAQ7BspMFKwSEZ0WuIGV5zRQa7sMlF2QUAqemxybASWa65C33CeH+8epilqoFc8c7YXMGBZdKQivGprZ0MYqAtFb2eKT7x+GzdMlHiob5QHdg+zZzDPeMnB8vyw3EkcS4wWhP+ZXCGmAKYe5sNUlezr2ctZNUIePTjGRNEmOaka1dRVdFVha1eK7nSMiZLL2y9ex871rewfLfDDXUP4wShDeQvLC2iuaLRpqsJ40SFmaqxpjgLKjF4c2X6lPpiTAXT48GEuvPBCALZv304kEuEjH/mINH4kK55qjszThzPsGylyNGOxKhVlc2eob9QcN4GwTDZq6A3j2l6OuQpBILhn1yCHJ0r0tMZqzS3dQGCoCoM5ixcG87zyzM4VtQCpqsL6tgTr2xK87WXr6J8osW+kwFjBwXI9nj2a48BokcMTZbKlUORTVKyganVj1NBoiZtc3AA6QFUj5NmBLBNll1WGSiCUsHLT8oiZGr2dSZpiRk2Ithq+33Rlktefu5rP37eHp/ozmJpS02jrbIqyqT3OWNE9qRenUYtblhNzmoV938c0zWNP1nWSyeSCD0oiaSQm63msSUfJlsPWJEO5Mnnb5byeNK2JSEO6tpdjsvDP9o7yn786guX6HBwrEdNVWhMRNncmaI6bqKrSkF6thWSyMVSlWgWYt11yZZei7TFedBtSCbpKb2eKd1y0joOjRYq2T9nx0dTQiKmKs+Yt97hrvPr5/MGrevnHnx3kSKZES9ykKWqgqTCYs2flxVmOaQCNxJxmLSEE73rXu4hEQve9ZVm8733vI5FITDnuO9/5zsKNUCKpY2bKkdmyKkXR8Sk5Hrmyy97hAmd1KbOeFOuJ5ZKrUF28f7x7iK8+dJCBrIWph14LR1MpuX7NWG2KGQ3n1TodLKdw9WQu2dzOa3es5rGD43SnY2EuWDS81l/qGu/tTPG7lx3z4owV7Tl7cZbr59oIzMkAuuGGG6b8/s53vnNBByORNBoz5ci0JkzO60nTN1xgOG/RP16iOWZw7tp0w7m2l0OuQjU8+cShcR4/OEHZ9VEV0FUNXQubDHuVLN99I0XOXJVsOK+WZP6oqsKvb+9iIGtVVJm1sP+i7c3qGpdenMZFEeJkQt/Li1wuR3NzM9lslqampqUejmQZsHswxxfu38um9iTatAlPCMFEyeHgWJHfu2wTl2/paNhJcbIOUFXQsrczWfcGXTU8OVb4/9u79+CoysNv4N9z9n7LLiHZXCBckiCIXKxY0oxTSyVDwks7UDr1Uv4AanFQGNt6hdqKOu2glnHaOo522hFsvesUHH0FoSiIGrGiKEHgl/CCgdwWiNlsdrPX87x/5JeFhQQi2ezZs+f7mcmMm3M2PufhOdlvnuc5zxPp2+/pdAhGGeiNKVAAeGxGmAwG9Mb61mfKsxhR7LGhauJorPxBhWb/vejb02ob14uR+PzmnzikilxZVfhic2T6J4YWOq2oKNTWY+Ln0+JfuedOdnbbTDjVE0VMUfoWr0Pfgn3fhOJw2/oeYQ5FE4glBCqLXFnfq0Xpp8U2TsPDAEQZl0urCufKHJmh0NpchY+OnsbbB9oQiSs40h7A6UAEQvQ9qm02ypASCmIJgUA4DqvJgISioMBhxs2zs/vpJRo5WmvjNDyXtRkq0eXKtVWFz90EtdHXg0A4hriiIBCOZfVmtbmuyRfAi58040wwCrtZ7ttzDgAkIJYQSCgKTAYZJhkwG2SYDIDDYsQNV3pxXUWB2sUnogxgAKKMydUdkHN1Ww+t6m9nwUgco2wmxJW+0GM1G2CU+3btjibO7lllMkgIRhSMdlrws1njGFaJdIJDYBqlxTk0ubqqMMD5A9mkv52VFzgQjQuc+CaEhCJgMkhIKH2PNvevVmyQJcQSAhaTjJu/W4YrihlWifSCAUiDtDqHJhdXFT4X5w9kh/52VmqxodBlQWNHAMFovK+7W5IA9G3XYDXKyHeYMcphQpHLihumFKlcciLKJAYgjTl31eEStxV2sw2haBwNrX60+nuzesglF1cVpuzT385au0I4djoIm0lGOG5AJK5AgoAi+p76mjHWgyuLXWjvDmPG2OzdtJOIRobm5gA99dRTmDBhAqxWK6qqqvDJJ5+oXaSM0focmv4nptr8YZy//FT/E1OVXic/iGhYxnhsKC9woKG1G6FoHCUeGyaOdiDPaoLVZITNLMNhNiCeUNDeHcFop4UT1Yl0SFMB6JVXXsFdd92FdevW4bPPPsPMmTNRW1sLn8+ndtEy4tvMoclGfGKKMkGWJVw9zoNYXEEioSCaUGA1G1DoMsMoSzDKMuwWI3yBCMaNtmV1rykRjRxNBaAnnngCK1aswPLlyzF16lQ888wzsNvtePbZZ9UuWkacnUMz8BCRzWxAJJ7I6jk0fGJK+xRF4ERnCIfbu3GiM5SVPY4FLgvK8u0odtsQjinoCkUBSJhc7MIPJ3vx/UkFqPQ6sOg7Y9jmiHRKM5MtotEo9u3bh7Vr1ya/J8syampqUF9fP+B7IpEIIpFI8nV3d/eIl3Mk5cocGj4xpV1amICvKAJdoSjiioDLasTYUTaYjXLKJpeBcAyj7Ba4LBfeR0SkD9n9SXmO06dPI5FIoKgo9UmNoqIiHD58eMD3rF+/Hg8//HAmipcRubTqMJ+Y0h4tTMBv8gXw4sfNqP9/Z3DymxBiCQGHxYCyfDumj3EPaYdvItIHTQ2BfVtr166F3+9Pfp04cULtIg0L59BkJy0MCQ2XFibgN/kC+PN/GrHjUAdC0QRKPTbYLX071zf5evDR0TM40RnkvaJzerhfaWg00wNUUFAAg8GAjo6OlO93dHSguLh4wPdYLBZYLJZMFC9j+ufQ9A9DdHSHYTEaMH2Mm7sWq0ALQ0LpkO2LWCqKwLYD7fifjgDMRhmjHWZIkgSL0YDOYARdoRg6/GEcNspYML005/59aGj0cr/S0GgmAJnNZsyaNQs7d+7EokWLAACKomDnzp1YvXq1uoXLMM6hyQ5aGBJKl2xfxLKlqxcHWvxIJAQsRhm9sQQMkgSrSUapxwaXzYRAOI4CpwU/mlmC8aMdqpST1DPY/XqgpQv/4wtgwfQSXFmSx9+lOqKZAAQAd911F5YuXYprr70Ws2fPxp///GcEg0EsX75c7aJlHOfQqOv8IaH+XhGX1QSnxYhGXw+2H+xAeYEzJ36Z2k0GJBSBlm9C8NjNycnE/dSegB+MxnG6J4JvQlEAgAAgSxJsJgPyHX3/JtF4AgJAbyyhShlJPYPdr7GEgL83hq9P+nG4rRtTS/JQ6XWxR0gnNBWAbrrpJpw6dQoPPvgg2tvbcfXVV2Pbtm0XTIwmGmnZPiSUTk2+ALYdaMeJzl50BiNw20wY7bCgwutAvsOSFZOKTwci6OgOIxJPwGY2wmyQkRACwWgc0UQC+Q4zAAl2c/Y/JUnpN9D92hmMYv+JLvRG4/DYTf+7X5yckz24NDDN/SZYvXq17oa8KPtk+5BQupw7bDCl2IkjHUBPOI6WrhD84SgmF7nQG1NUnVSsKAKfN38Dw/8uchiNKzDJEoyyBIPJgN5oHB3+MApdVswYwy0v9Oj8+1UIgSZfD3qjceQ7zBAAukJRmIwyJrmdOdeDSwPTXAAiyga5sibTxQw0bOCwmNDk68E3wQjO9ERxRATwf1SeVPzR0dPY2tAORQBxRSAaVxCJJ+AwG2E0SIgrAgkFGJtvR+00PvmlR+ffr4FwHN+EonBaTZAkCdF4AgZZhtkg51wPLg1Ou7+diVSUS2syDWagYYN8hxnfnTAq+QHSG02oOqm4yRfAi58040wwiqI8C9w2E9q7e9HdG0d3OAazUYbNZITLasTNs8s4pKFT59+v0YSCeEKByWqEEAI94Ti8eVa4rH0fibnSg0sXxwBEdBn612Rq9fei0dcXEmzmvjVn2vzhnFhnZrBhPkmSkGczwW4x4PjpoGqTivt7qIKROEbZTJAlGTaLjPICJ8LROE71ROGxmzG1xAVFAFcW56lSTlLf+fer02KALEsIRuKIxhXYzAZUFDqSQT8XenDp0nJ6IUSikZTr+5qdO2wwELU/JPp7qMoLHBjlsKAnHIMQApIkwWYxochthSIETgejmFTk0nRvHA3fufdrPCEgAegKxVDosuDqMg/yHX1rxvX34FZ6nWwzOY7xlmgYcnlNpmwf5uvvoSq12FDpdaInEkdnMAqn1QiTQYYiAH9vDJVep+Z74yg9zr1fD7V34/9+0YZIXIHJICOuKDnVg0uXxgBENEy5uiZTtg/zndtDle8w4+oyT98E7VAUPZE4hADyHRbcPHuc5nvjKH3679eyfDvKCxxcVV/HGICIaFDZvPXK+T1U507QjsQTaOnqxewJ+biuokC1MlJ2y+UeXLo0BiAiuqhs/ZAYrIdKkoBvQjGMHWVH7bRi1ctJ2S1Xe3Dp0jgJmoguSlFE1oWffrk+EZ2IRg57gIhoUFrYPTtbe6iIKLsxABHRgLS02z2HMYjo22IAIqIL6G23+2we5iOikcEAREQX0Ntu99k+zEdE6cdJ0ER0gbPbYAz8N5LNbEAkntD8Xkn9w3wNrX547CaUFzjhsZvQ0OrHxg+Po8kXULuIRDRCGICI6ALZvg1GOpw/zOeymmCQJbisJkzyOtEZjGL7wQ4oilC7qEQ0AhiAiOgC/YsMtvnDECI1AOTKXknfZpiPiHIPAxARXaB/kcF8hxmNvh4EwjHEFQWBcAyNvh7Vt8FIB70M8xHRwBiAiGhAub7IoB6G+YhocLyziWhQubzIYLbvdk9EI4sBiIguKlcXGcz23e6JaGRxCIyIdCvXh/mIaHDsASIiXcvlYT4iGhwDEBHpXq4O8xHR4DgERkRERLrDAERERES6wwBEREREusMARERERLrDSdCUVRRF8GkcIiIacQxAlDWafAG809CBo6d6EI4nYDUaUFHoRO20Iq7HQkREacUARFmhyRfAxg+PozMYRYnbCrvZhlA0joZWP1r9vVyUjoiI0opzgEh1iiLwTkMHOoNRTPI64bKaYJAluKwmTPI60RmMYvvBDiiKULuoRESUIxiASHUtXb04eqpvL6ZzN6QEAEmSUOK2osnXg5auXpVKSEREuYYBiFQXjMYRjidgNw88ImszGxCJJxCMxjNcMiIiylUMQKQ6h9kIq9GA0CABpzeagMVogGOQgERERPRtMQCR6sZ4bKgodKLNH4YQqfN8hBBo84dR6XVijMemUgmJiCjXMACR6mRZQu20IuQ7zGj09SAQjiGuKAiEY2j09SDfYca8q4q4HhAREaUNAxBlhUqvC8uvm4BppW50hWI4fjqIrlAM08e4+Qg8ERGlHSdVUNao9LpQPsfJlaCJiGjEMQBRVpFlCWX5drWLQUREOY5DYERERKQ7DEBERESkOwxAREREpDsMQERERKQ7DEBERESkOwxAREREpDsMQERERKQ7DEBERESkOwxAREREpDsMQERERKQ7DEBERESkO9wLjIgAAIoiuBEtEekGAxARockXwDsNHTh6qgfheAJWowEVhU7UTitCpdeldvGIiNKOAYhI55p8AWz88Dg6g1GUuK2wm20IReNoaPWj1d+L5ddNYAgiopzDOUBEOqYoAu80dKAzGMUkrxMuqwkGWYLLasIkrxOdwSi2H+yAogi1i0pElFYMQEQ61tLVi6OnelDitkKSUuf7SJKEErcVTb4etHT1qlRCIqKRoYkAdPz4cdx6662YOHEibDYbKioqsG7dOkSjUbWLRqRpwWgc4XgCdvPAo+E2swGReALBaDzDJSMiGlmamAN0+PBhKIqCv/3tb6isrERDQwNWrFiBYDCIDRs2qF08Is1ymI2wGg0IReNwWU0XHO+NJmAxGuAYJCAREWmVJn6r1dXVoa6uLvm6vLwcR44cwdNPP80ARDQMYzw2VBQ60dDqh9NiTBkGE0KgzR/G9DFujPHYVCwlEVH6aWIIbCB+vx/5+flqF4NI02RZQu20IuQ7zGj09SAQjiGuKAiEY2j09SDfYca8q4q4HhAR5RxN9ACdr6mpCU8++eQle38ikQgikUjydXd390gXjUhzKr0uLL9uQnIdoI7uMCxGA6aPcWPeVVwHiIhyk6oBaM2aNXjssccues6hQ4cwZcqU5OuWlhbU1dXhZz/7GVasWHHR965fvx4PP/xwWspKlMsqvS6Uz3FyJWgi0g1JCKHaAh+nTp3CmTNnLnpOeXk5zGYzAKC1tRVz5szB9773PWzatAmyfPERvIF6gMrKyuD3+5GXlzf8CyDSMW6dQUSZ0t3dDbfbndbPb1V7gAoLC1FYWDikc1taWvDDH/4Qs2bNwsaNGy8ZfgDAYrHAYrEMt5hEdB5unUFEWqeJOUAtLS2YM2cOxo8fjw0bNuDUqVPJY8XFxSqWjEh/uHUGEeUCTQSgHTt2oKmpCU1NTRg7dmzKMRVH8Ih05/ytM/ofm3dZTXBajGj09WD7wQ6UFzg5HEZEWU0Tj8EvW7YMQogBv4goc7h1BhHlCk0EICLKDtw6g4hyBQMQEQ3ZuVtnDIRbZxCRVjAAEdGQ9W+d0eYPXzAE3b91RqXXya0ziCjrMQAR0ZBx6wwiyhUMQET0rfRvnTGt1I2uUAzHTwfRFYph+hg3H4EnIs3gQD0RfWvcOoOItI4BiIguiyxLKMu3q10MIqLLwiEwIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h2j2gUgouyiKAItXb0IRuNwmI0Y47FBliW1i0VElFYMQESU1OQL4J2GDhw91YNwPAGr0YCKQidqpxWh0utSu3hERGnDAEREAPrCz8YPj6MzGEWJ2wq72YZQNI6GVj9a/b1Yft0EhiAiyhmcA0REUBSBdxo60BmMYpLXCZfVBIMswWU1YZLXic5gFNsPdkBRhNpFJSJKCwYgIkJLVy+OnupBidsKSUqd7yNJEkrcVjT5etDS1atSCYmI0osBiIgQjMYRjidgNw88Km4zGxCJJxCMxjNcMiKikcEARERwmI2wGg0IDRJweqMJWIwGOAYJSEREWsMAREQY47GhotCJNn8YQqTO8xFCoM0fRqXXiTEem0olJCJKLwYgIoIsS6idVoR8hxmNvh4EwjHEFQWBcAyNvh7kO8yYd1UR1wMiopzBAEREAIBKrwvLr5uAaaVudIViOH46iK5QDNPHuPkIPBHlHA7oE1FSpdeF8jlOrgRNRDmPAYiIUsiyhLJ8u9rFICIaUZobAotEIrj66qshSRL279+vdnGIiIhIgzQXgO677z6UlpaqXQwiIiLSME0FoK1bt2L79u3YsGGD2kUhIiIiDdPMHKCOjg6sWLECW7Zsgd0+tPkJkUgEkUgk+bq7u3ukikdEREQaookeICEEli1bhpUrV+Laa68d8vvWr18Pt9ud/CorKxvBUhIREZFWqBqA1qxZA0mSLvp1+PBhPPnkkwgEAli7du23+vlr166F3+9Pfp04cWKEroSIiIi0RBLnr3ufQadOncKZM2cuek55eTluvPFGvPnmmym7VCcSCRgMBixZsgTPPffckP5/3d3dcLvd8Pv9yMvLG1bZiYiIKDNG4vNb1QA0VM3NzSnzd1pbW1FbW4vXX38dVVVVGDt27JB+DgMQERGR9ozE57cmJkGPGzcu5bXT6QQAVFRUDDn8EBEREfXTRABKl/7OLj4NRkREpB39n9vpHLTSZACaMGHCZVVCIBAAAD4NRkREpEGBQAButzstP0sTc4DSRVEUtLa2wuVypUyoHq7u7m6UlZXhxIkTup9bxLpIxfo4i3VxFusiFevjLNbFWefWhcvlQiAQQGlpKWQ5PQ+wa7IH6HLJsjyic4by8vJ032D7sS5SsT7OYl2cxbpIxfo4i3VxVn9dpKvnp58mFkIkIiIiSicGICIiItIdBqA0sFgsWLduHSwWi9pFUR3rIhXr4yzWxVmsi1Ssj7NYF2eNdF3oahI0EREREcAeICIiItIhBiAiIiLSHQYgIiIi0h0GICIiItIdBqA0eOqppzBhwgRYrVZUVVXhk08+UbtII+6hhx6CJEkpX1OmTEkeD4fDWLVqFUaPHg2n04mf/vSn6OjoULHE6fP+++/jxz/+MUpLSyFJErZs2ZJyXAiBBx98ECUlJbDZbKipqUFjY2PKOZ2dnViyZAny8vLg8Xhw6623oqenJ4NXkR6Xqotly5Zd0E7q6upSzsmVuli/fj2++93vwuVywev1YtGiRThy5EjKOUO5L5qbm7FgwQLY7XZ4vV7ce++9iMfjmbyUtBhKfcyZM+eC9rFy5cqUc3KhPp5++mnMmDEjuaBfdXU1tm7dmjyup3ZxqbrIZJtgABqmV155BXfddRfWrVuHzz77DDNnzkRtbS18Pp/aRRtxV111Fdra2pJfH3zwQfLYb37zG7z55pt47bXXsHv3brS2tmLx4sUqljZ9gsEgZs6ciaeeemrA448//jj++te/4plnnsHevXvhcDhQW1uLcDicPGfJkiU4ePAgduzYgbfeegvvv/8+brvttkxdQtpcqi4AoK6uLqWdvPTSSynHc6Uudu/ejVWrVuHjjz/Gjh07EIvFMG/ePASDweQ5l7ovEokEFixYgGg0io8++gjPPfccNm3ahAcffFCNSxqWodQHAKxYsSKlfTz++OPJY7lSH2PHjsWjjz6Kffv24dNPP8UNN9yAhQsX4uDBgwD01S4uVRdABtuEoGGZPXu2WLVqVfJ1IpEQpaWlYv369SqWauStW7dOzJw5c8BjXV1dwmQyiddeey35vUOHDgkAor6+PkMlzAwAYvPmzcnXiqKI4uJi8ac//Sn5va6uLmGxWMRLL70khBDiq6++EgDEf//73+Q5W7duFZIkiZaWloyVPd3OrwshhFi6dKlYuHDhoO/J1boQQgifzycAiN27dwshhnZfvP3220KWZdHe3p485+mnnxZ5eXkiEolk9gLS7Pz6EEKIH/zgB+JXv/rVoO/J5foYNWqU+Mc//qH7diHE2boQIrNtgj1AwxCNRrFv3z7U1NQkvyfLMmpqalBfX69iyTKjsbERpaWlKC8vx5IlS9Dc3AwA2LdvH2KxWEq9TJkyBePGjcv5ejl27Bja29tTrt3tdqOqqip57fX19fB4PLj22muT59TU1ECWZezduzfjZR5pu3btgtfrxeTJk3H77bfjzJkzyWO5XBd+vx8AkJ+fD2Bo90V9fT2mT5+OoqKi5Dm1tbXo7u5O+QtZi86vj34vvPACCgoKMG3aNKxduxahUCh5LBfrI5FI4OWXX0YwGER1dbWu28X5ddEvU21CV5uhptvp06eRSCRS/iEAoKioCIcPH1apVJlRVVWFTZs2YfLkyWhra8PDDz+M73//+2hoaEB7ezvMZjM8Hk/Ke4qKitDe3q5OgTOk//oGahP9x9rb2+H1elOOG41G5Ofn51z91NXVYfHixZg4cSKOHj2K3/72t5g/fz7q6+thMBhyti4URcGvf/1rXHfddZg2bRoADOm+aG9vH7Dt9B/TqoHqAwB+/vOfY/z48SgtLcWXX36J+++/H0eOHMG///1vALlVHwcOHEB1dTXC4TCcTic2b96MqVOnYv/+/bprF4PVBZDZNsEARJdl/vz5yf+eMWMGqqqqMH78eLz66quw2Wwqloyyyc0335z87+nTp2PGjBmoqKjArl27MHfuXBVLNrJWrVqFhoaGlHlxejZYfZw712v69OkoKSnB3LlzcfToUVRUVGS6mCNq8uTJ2L9/P/x+P15//XUsXboUu3fvVrtYqhisLqZOnZrRNsEhsGEoKCiAwWC4YLZ+R0cHiouLVSqVOjweD6644go0NTWhuLgY0WgUXV1dKefooV76r+9ibaK4uPiCSfLxeBydnZ05Xz/l5eUoKChAU1MTgNysi9WrV+Ott97Ce++9h7Fjxya/P5T7ori4eMC2039Miwarj4FUVVUBQEr7yJX6MJvNqKysxKxZs7B+/XrMnDkTf/nLX3TZLgari4GMZJtgABoGs9mMWbNmYefOncnvKYqCnTt3poxn6kFPTw+OHj2KkpISzJo1CyaTKaVejhw5gubm5pyvl4kTJ6K4uDjl2ru7u7F3797ktVdXV6Orqwv79u1LnvPuu+9CUZTkzZ6rTp48iTNnzqCkpARAbtWFEAKrV6/G5s2b8e6772LixIkpx4dyX1RXV+PAgQMpoXDHjh3Iy8tLDhFoxaXqYyD79+8HgJT2kSv1cT5FURCJRHTXLgbSXxcDGdE2cRkTtukcL7/8srBYLGLTpk3iq6++ErfddpvweDwpM9Rz0d133y127doljh07Jj788ENRU1MjCgoKhM/nE0IIsXLlSjFu3Djx7rvvik8//VRUV1eL6upqlUudHoFAQHz++efi888/FwDEE088IT7//HPx9ddfCyGEePTRR4XH4xFvvPGG+PLLL8XChQvFxIkTRW9vb/Jn1NXVie985zti79694oMPPhCTJk0St9xyi1qXdNkuVheBQEDcc889or6+Xhw7dkz85z//Eddcc42YNGmSCIfDyZ+RK3Vx++23C7fbLXbt2iXa2tqSX6FQKHnOpe6LeDwupk2bJubNmyf2798vtm3bJgoLC8XatWvVuKRhuVR9NDU1iUceeUR8+umn4tixY+KNN94Q5eXl4vrrr0/+jFypjzVr1ojdu3eLY8eOiS+//FKsWbNGSJIktm/fLoTQV7u4WF1kuk0wAKXBk08+KcaNGyfMZrOYPXu2+Pjjj9Uu0oi76aabRElJiTCbzWLMmDHipptuEk1NTcnjvb294o477hCjRo0Sdrtd/OQnPxFtbW0qljh93nvvPQHggq+lS5cKIfoehf/9738vioqKhMViEXPnzhVHjhxJ+RlnzpwRt9xyi3A6nSIvL08sX75cBAIBFa5meC5WF6FQSMybN08UFhYKk8kkxo8fL1asWHHBHwe5UhcD1QMAsXHjxuQ5Q7kvjh8/LubPny9sNpsoKCgQd999t4jFYhm+muG7VH00NzeL66+/XuTn5wuLxSIqKyvFvffeK/x+f8rPyYX6+MUvfiHGjx8vzGazKCwsFHPnzk2GHyH01S4uVheZbhOSEEJ8uz4jIiIiIm3jHCAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIiIi0h0GICIiItIdBiAiIiLSHQYgIsoJkiRhy5YtaheDiDSCAYiIVLds2TIsWrRI7WIQkY4wABEREZHuMAARUVaZM2cO7rzzTtx3333Iz89HcXExHnrooZRzGhsbcf3118NqtWLq1KnYsWPHBT/nxIkTuPHGG+HxeJCfn4+FCxfi+PHjAIDDhw/DbrfjxRdfTJ7/6quvwmaz4auvvhrJyyOiLMEARERZ57nnnoPD4cDevXvx+OOP45FHHkmGHEVRsHjxYpjNZuzduxfPPPMM7r///pT3x2Ix1NbWwuVyYc+ePfjwww/hdDpRV1eHaDSKKVOmYMOGDbjjjjvQ3NyMkydPYuXKlXjssccwdepUNS6ZiDKMm6ESkeqWLVuGrq4ubNmyBXPmzEEikcCePXuSx2fPno0bbrgBjz76KLZv344FCxbg66+/RmlpKQBg27ZtmD9/PjZv3oxFixbh+eefxx/+8AccOnQIkiQBAKLRKDweD7Zs2YJ58+YBAH70ox+hu7sbZrMZBoMB27ZtS55PRLnNqHYBiIjON2PGjJTXJSUl8Pl8AIBDhw6hrKwsGX4AoLq6OuX8L774Ak1NTXC5XCnfD4fDOHr0aPL1s88+iyuuuAKyLOPgwYMMP0Q6wgBERFnHZDKlvJYkCYqiDPn9PT09mDVrFl544YULjhUWFib/+4svvkAwGIQsy2hra0NJScnlF5qINIUBiIg05corr8SJEydSAsvHH3+ccs4111yDV155BV6vF3l5eQP+nM7OTixbtgwPPPAA2trasGTJEnz22Wew2Wwjfg1EpD5OgiYiTampqcEVV1yBpUuX4osvvsCePXvwwAMPpJyzZMkSFBQUYOHChdizZw+OHTuGXbt24c4778TJkycBACtXrkRZWRl+97vf4YknnkAikcA999yjxiURkQoYgIhIU2RZxubNm9Hb24vZs2fjl7/8Jf74xz+mnGO32/H+++9j3LhxWLx4Ma688krceuutCIfDyMvLwz//+U+8/fbb+Ne//gWj0QiHw4Hnn38ef//737F161aVroyIMolPgREREZHusAeIiIiIdIcBiIiIiHSHAYiIiIh0hwGIiIiIdIcBiIiIiHSHAYiIiIh0hwGIiIiIdIcBiIiIiHSHAYiIiIh0hwGIiIiIdIcBiIiIiHSHAYiIiIh05/8DET9A/oef+owAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# residuals versus order\n", + "plt.scatter(range(len(X[:,1:2])), res, alpha=0.5)\n", + "plt.xlabel(\"Index\")\n", + "plt.ylabel(\"Residuals\")\n", + "plt.title(\"Residual Plot vs. Order\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hovertemplate": "geo=AT
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "AT", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "AT", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.1934894003478778, + -0.1839954224540129, + -0.16626176569866338, + -0.21688321456669657, + -0.18710743553450873, + -0.16546114497375647, + -0.16269920965479664, + -0.1950022174777777, + -0.1835491119331727, + -0.16271857298870504, + -0.09930638539780132, + -0.18623912111651328 + ], + "y": [ + -0.277234018744133, + -0.29177478262618195, + -0.2901073095734943, + -0.3086415562012344, + -0.29642375370983703, + -0.2906172543906855, + -0.2789785260138857, + -0.2945082315115228, + -0.2865807337490753, + -0.3274206486738245, + -0.3092604649109743, + -0.3287450585465578 + ], + "z": [ + -0.20828364286260462, + -0.22176981305727322, + -0.2307722106830205, + -0.23965262460110182, + -0.2350843347490119, + -0.24032237324366768, + -0.24524935328377537, + -0.22831104416216028, + -0.23017449051545733, + -0.3074392613884705, + -0.2867029023974562, + -0.2729114824962236 + ] + }, + { + "hovertemplate": "geo=BE
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "BE", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "BE", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.03356971850481728, + -0.039760144245446716, + -0.045950569986076266, + -0.052140995726705705, + -0.058331421467335255, + -0.06331003833140232, + -0.07293353186812225, + -0.0791001825014064, + -0.09418391315383401, + -0.09396666046429532, + -0.04021001256452511, + -0.1379475321253766 + ], + "y": [ + -0.05559045641183317, + -0.07163671999278103, + -0.07229432664254888, + -0.10074666413473658, + -0.07708620627375727, + -0.08533470577371326, + -0.08568577720560927, + -0.08009152239598367, + -0.08555847183280695, + -0.1415667909272685, + -0.12239963406542592, + -0.15284302965488766 + ], + "z": [ + -0.3348763016165351, + -0.343866791308915, + -0.3444639306016797, + -0.31906227566724127, + -0.2962065949742307, + -0.26481960611698285, + -0.2646610272970172, + -0.2147014380728297, + -0.15749746880028073, + -0.24771110067943392, + -0.15235353202296723, + -0.07866782122035297 + ] + }, + { + "hovertemplate": "geo=BG
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "BG", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "BG", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.511141512963769, + -0.5127910902129206, + -0.5212573461938892, + -0.5270307133348169, + -0.524939453325467, + -0.5204391374398029, + -0.5153601030400424, + -0.5221205196630525, + -0.5272330092180176, + -0.510536795937007, + -0.5089934450164768, + -0.5323159405839298 + ], + "y": [ + -0.3774834348621981, + -0.40394796922402987, + -0.4316566242746118, + -0.41621139291842424, + -0.39966732606355165, + -0.4126840421018818, + -0.40297752408712, + -0.42529176896362786, + -0.4322720196867256, + -0.4650968627390841, + -0.43328906768332215, + -0.41008337520034854 + ], + "z": [ + -0.5184460980342357, + -0.5254662604104112, + -0.5538524500590767, + -0.5355389198522277, + -0.5312657143977296, + -0.5392016258935974, + -0.5356945942982013, + -0.5436668104689697, + -0.5450301236208362, + -0.5489731017524385, + -0.5367442350589269, + -0.5300978656155277 + ] + }, + { + "hovertemplate": "geo=CY
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "CY", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "CY", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.6675310911935185, + -0.6671897628372806, + -0.6668484344810428, + -0.6665071061248049, + -0.6661657777685671, + -0.6658244494123294, + -0.6654831210560915, + -0.6659525353817948, + -0.664059585433588, + -0.6637770943753766, + -0.6644615568574632, + -0.6640449078886682 + ], + "y": [ + -0.6634900413759615, + -0.6663977084906406, + -0.6703284168743372, + -0.6684009081311811, + -0.6682900842575363, + -0.6654111951837057, + -0.6639139620674562, + -0.6642375471120427, + -0.6640326391946182, + -0.6696028175822771, + -0.6673704786039208, + -0.6658821320640196 + ], + "z": [ + -0.5640392513987804, + -0.5680345082622396, + -0.5751025928092839, + -0.5775608549561521, + -0.576331723882718, + -0.573565888530092, + -0.5745191040742818, + -0.5773752654580603, + -0.5788890251827149, + -0.5949295923033884, + -0.588510054468768, + -0.5870474117263734 + ] + }, + { + "hovertemplate": "geo=CZ
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "CZ", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "CZ", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.19267387456289178, + -0.18608490240928882, + -0.1794959302556859, + -0.17290695810208304, + -0.17604249248067216, + -0.15323393584525796, + -0.14151630989603117, + -0.14727891821882072, + -0.1550619538869974, + -0.14198965981300443, + -0.09035769987700133, + -0.1405716972691767 + ], + "y": [ + 0.013373612673918464, + -0.007411004415582246, + -0.03598398234831106, + -0.047214703205216396, + -0.03871345294075191, + -0.030544002637381724, + -0.025824197273648746, + -0.03461043797495475, + -0.06498661591424774, + -0.12433246442116251, + -0.09589035682500363, + -0.10309540693002622 + ], + "z": [ + -0.16075704773155455, + -0.19616949894177876, + -0.22523095554359499, + -0.22987011212109087, + -0.22623441675784708, + -0.2125879251188175, + -0.21757822051195175, + -0.2172433461906688, + -0.2171814830246382, + -0.2594903702789768, + -0.24234730279092245, + -0.2226138241393619 + ] + }, + { + "hovertemplate": "geo=DE
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "DE", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "DE", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + 3.5598795528970233, + 3.8009081642500204, + 4.051972462619545, + 3.388452974786385, + 3.470935683435311, + 3.627000660342409, + 3.61682987970821, + 3.5448981479802937, + 3.6904758431437115, + 3.708311051319009, + 3.769153653052868, + 3.6565443241747833 + ], + "y": [ + 4.077388288182616, + 4.139927362568609, + 4.230269021050538, + 4.015562568213134, + 4.058970238707243, + 4.045176567232143, + 3.9824692678892326, + 3.8416882287131036, + 3.556475265799834, + 3.136956736230497, + 3.303878879722297, + 3.301081984815121 + ], + "z": [ + 4.771887392972773, + 4.434489751565525, + 4.426636324291031, + 4.45321744550364, + 4.2336880138156125, + 4.237207534219175, + 4.3093600259913885, + 4.084690433212238, + 4.134551854595494, + 3.6494296197055838, + 3.614819937466762, + 3.774963053264615 + ] + }, + { + "hovertemplate": "geo=DK
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "DK", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "DK", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.33156455501116705, + -0.33503436580367835, + -0.33850417659618964, + -0.34197398738870094, + -0.35776407903528057, + -0.34151799707905706, + -0.3462890297087289, + -0.3566088887921331, + -0.3579839683878182, + -0.3665451406099774, + -0.3483563276377018, + -0.38563965638932174 + ], + "y": [ + -0.395191023224988, + -0.4186971026549879, + -0.40998128290462715, + -0.4306668560007586, + -0.4450616630329023, + -0.4337064784409805, + -0.4452780924998946, + -0.44547349384727214, + -0.4653469268642315, + -0.4902740835178223, + -0.4836645890265547, + -0.486752932638267 + ], + "z": [ + -0.23479709216119848, + -0.28098070475832626, + -0.2943498286811154, + -0.2986035748298667, + -0.27885383168395067, + -0.28219618527399776, + -0.30124800734962504, + -0.30003310770875197, + -0.2996813880183152, + -0.34093976319973057, + -0.33203437166531763, + -0.33425069945864827 + ] + }, + { + "hovertemplate": "geo=EE
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "EE", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "EE", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.6207305788308869, + -0.6179325770811249, + -0.6208181200319008, + -0.6239415810171508, + -0.6258677467536323, + -0.6204198134607911, + -0.6198740224066226, + -0.619960568058815, + -0.6179787186836067, + -0.6197918216268823, + -0.6181692293722888, + -0.6182084021330201 + ], + "y": [ + -0.6058538771593884, + -0.6113743010527256, + -0.6018628227223505, + -0.6061920837220361, + -0.6220050746738435, + -0.6137029457189488, + -0.6071420690668886, + -0.6111795196990468, + -0.6392881740175814, + -0.6563587188549441, + -0.6496776667576168, + -0.6423622577742234 + ], + "z": [ + -0.604520125662525, + -0.6078775819973307, + -0.6124560371583928, + -0.6121507874518287, + -0.6124560371583928, + -0.608488081410459, + -0.6048253753690891, + -0.6032991268362687, + -0.6029938771297045, + -0.6200866989476965, + -0.6243599044021945, + -0.6210024480673887 + ] + }, + { + "hovertemplate": "geo=EL
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "EL", + "marker": { + "color": "#FF97FF", + "symbol": "circle" + }, + "mode": "markers", + "name": "EL", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.39140131631132086, + -0.389231349361013, + -0.4092484021638149, + -0.3848914154603972, + -0.361155268304688, + -0.36944729054819786, + -0.35987443762420745, + -0.39853237449119633, + -0.3823046766405322, + -0.3687989597788032, + -0.3722149743002434, + -0.366497512031114 + ], + "y": [ + -0.10065134010355953, + -0.1190465531443633, + -0.1685081521095519, + -0.18427128523475436, + -0.2040339460442104, + -0.22192355422371413, + -0.20019251675312852, + -0.214702022619534, + -0.24866424411218085, + -0.3165351093086774, + -0.2992509249759666, + -0.2904236613582624 + ], + "z": [ + 0.3334425176330974, + 0.19914281205387246, + 0.12375165284312849, + 0.08529309419004584, + 0.06514806574381232, + 0.054465197326266944, + 0.02943646401240726, + 0.015523060403508569, + -0.001131491379083485, + -0.13617355495067557, + -0.09833798451888695, + -0.059865484870642555 + ] + }, + { + "hovertemplate": "geo=ES
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "ES", + "marker": { + "color": "#FECB52", + "symbol": "circle" + }, + "mode": "markers", + "name": "ES", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + 0.49556181469073624, + 0.48770953307119946, + 0.4389329685465241, + 0.43121800556907475, + 0.46785330457334817, + 0.3966264613055244, + 0.4012066713441513, + 0.4609433108200296, + 0.4055034727513359, + 0.4138957444037665, + 0.42789072545652573, + 0.392727585658425 + ], + "y": [ + 1.1867851050747313, + 1.1477217304275018, + 1.0084535275423727, + 1.0189888221338887, + 1.079434384463895, + 1.0263238642510746, + 1.100214299934514, + 1.0748136230935312, + 0.9800265064595491, + 0.7153551747720265, + 0.8182480890229776, + 0.8826212081020454 + ], + "z": [ + 0.8360563448901073, + 0.6842461685128342, + 0.652593429435314, + 0.6341550111468067, + 0.6421449439989266, + 0.702070021264624, + 0.7315717809636346, + 0.7908822926926147, + 0.8876842065353262, + 0.5607083303237379, + 0.8498181401766209, + 1.0085250430354076 + ] + }, + { + "hovertemplate": "geo=FI
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "FI", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "FI", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.31458094449181395, + -0.30877346957107366, + -0.3029659946503334, + -0.2971585197295931, + -0.3153739311861906, + -0.28570598151569915, + -0.25381739219694033, + -0.25811556452381346, + -0.2636188078979002, + -0.2897755584246578, + -0.23880049206594556, + -0.26299133287895327 + ], + "y": [ + -0.3552715922782609, + -0.38426797424106884, + -0.3815285837494486, + -0.4032978541647882, + -0.4211611642782381, + -0.40641688746458676, + -0.420244090265559, + -0.41392278951190964, + -0.4299424450299545, + -0.4646091343627636, + -0.46510223601780626, + -0.4707446436713653 + ], + "z": [ + -0.27250254663814344, + -0.2886102047980332, + -0.27982941090787905, + -0.29488249087125673, + -0.29698990463988567, + -0.29849524167996333, + -0.3135486120807402, + -0.31896759307510053, + -0.32709635500404016, + -0.35479449845398986, + -0.35238590110238566, + -0.3755680334321022 + ] + }, + { + "hovertemplate": "geo=FR
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "FR", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "FR", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + 2.3278174326560643, + 2.629229804725984, + 2.8035589426000413, + 2.184758766152709, + 2.357892006898474, + 2.5054299123039736, + 2.454306920809446, + 2.3609660241056427, + 2.3503576553364525, + 2.2769982739575974, + 2.5111570326660413, + 2.1310355516475132 + ], + "y": [ + 1.8598255679815, + 1.8655914577133859, + 1.8624284565271205, + 1.6957700686879815, + 1.719757883221881, + 1.728463576408496, + 1.7432436578582482, + 1.6478546823412403, + 1.6004539940967146, + 1.3395995502830327, + 1.458067067908636, + 1.4015890002551168 + ], + "z": [ + 1.435284463429942, + 1.3103072174903883, + 1.2437828216399627, + 1.2544775979908755, + 1.2774291230256234, + 1.32287182981738, + 1.390051452440411, + 1.4548503597021616, + 1.6001184336623502, + 1.268679405937184, + 1.6159455292946083, + 1.8915270555299382 + ] + }, + { + "hovertemplate": "geo=HR
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "HR", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "HR", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.4922723285078426, + -0.49853055512561584, + -0.5033488536569848, + -0.5230717710954359, + -0.5079327539357786, + -0.5093272422000179, + -0.5105007349463624, + -0.5174701352195197, + -0.5220256505698936, + -0.5191872629042791, + -0.5066065233276215, + -0.5178358588740095 + ], + "y": [ + -0.5622172223258881, + -0.570650066618928, + -0.5764875139568737, + -0.5799830384302155, + -0.5775062669361417, + -0.5763293122314188, + -0.5714562134256791, + -0.5765977178368198, + -0.5761982868964243, + -0.5838955603320831, + -0.5811004737398618, + -0.5796755215556539 + ], + "z": [ + -0.49007791550432095, + -0.5036793893464738, + -0.5076975907644701, + -0.521299064606623, + -0.5216083804367759, + -0.5206807233837163, + -0.5271473120770077, + -0.5315564422343335, + -0.538526939815245, + -0.562924552660633, + -0.5485839156375044, + -0.5387976274713038 + ] + }, + { + "hovertemplate": "geo=HU
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "HU", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "HU", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.22838617034686343, + -0.2292818848088931, + -0.23017759927092285, + -0.23107331373295256, + -0.23881015741242725, + -0.2239845350323213, + -0.21353667811000318, + -0.24967364962086058, + -0.2604000589273643, + -0.23734790110628026, + -0.20744051922414553, + -0.2496387310632899 + ], + "y": [ + -0.37660557545096257, + -0.3948159787034084, + -0.41034728585143393, + -0.40840453559651785, + -0.39176560970574226, + -0.3888594409091684, + -0.37617586815161314, + -0.3755784008906204, + -0.3768882925775755, + -0.3898741122632531, + -0.38404580983236347, + -0.40363027411958124 + ], + "z": [ + -0.3206588100506692, + -0.32401655682287417, + -0.3432458361494154, + -0.3212693094637974, + -0.30967069192655977, + -0.30295577925694833, + -0.2937988689348242, + -0.2767063375542315, + -0.24465744186419627, + -0.3023452798438202, + -0.27914804476934496, + -0.2547298108686134 + ] + }, + { + "hovertemplate": "geo=IE
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "IE", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "IE", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.47538980362733374, + -0.47431047780524865, + -0.4732311519831637, + -0.4721518261610786, + -0.47945638553530057, + -0.46782159867762674, + -0.4744931122468634, + -0.4604252385238368, + -0.4657752671156372, + -0.44816866523856935, + -0.45863382548849135, + -0.4835847868672461 + ], + "y": [ + -0.4019000783710405, + -0.39801013457303436, + -0.3977674070399883, + -0.3991820776620259, + -0.38476303920949084, + -0.37266117553975275, + -0.37326980268732235, + -0.3704248582684963, + -0.3835671230308158, + -0.40569273482449036, + -0.38943040343954116, + -0.38648527837223146 + ], + "z": [ + -0.2882884001597144, + -0.3105588494933276, + -0.33839698376969385, + -0.3405621945807645, + -0.3866499628361547, + -0.3912894098510498, + -0.4199323461606121, + -0.4431554301636165, + -0.4557604132890982, + -0.5145760196898338, + -0.504613436022316, + -0.47986090867509984 + ] + }, + { + "hovertemplate": "geo=IT
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "IT", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "IT", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + 1.8870362698240395, + 1.8637731623619236, + 1.840510054899808, + 1.817246947437692, + 1.7756697956355818, + 1.7521806462834455, + 1.8063544635937443, + 1.7309569852379605, + 1.6727071117911272, + 1.6360863307538207, + 1.740146798486156, + 1.5864015790834871 + ], + "y": [ + 1.9631076316106766, + 1.861232488682304, + 1.6749188539420106, + 1.5637000959771896, + 1.6209776455051987, + 1.6068659172626585, + 1.5765145907374563, + 1.5596751485512885, + 1.501039451160107, + 1.262789564272356, + 1.444946709590338, + 1.4518835090883844 + ], + "z": [ + 2.1953274794719917, + 1.8647667344420202, + 1.7570214298346774, + 1.7847971200702144, + 1.6968918846399397, + 1.5393946535488403, + 1.4763627674238504, + 1.5365747968399621, + 1.5574029340491249, + 1.0832147959270726, + 1.4566824388163448, + 1.7117640221036128 + ] + }, + { + "hovertemplate": "geo=LT
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "LT", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "LT", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.5930512253153065, + -0.5911750222961195, + -0.5892988192769325, + -0.5874226162577455, + -0.5855464132385585, + -0.5836702102193716, + -0.5809137741742842, + -0.5768870548260665, + -0.5815060822018017, + -0.582535363626513, + -0.5676799835849127, + -0.5730987394997257 + ], + "y": [ + -0.6058334173673309, + -0.6058456622428805, + -0.6115687724095552, + -0.6119702699956132, + -0.6103997742906325, + -0.609849994878299, + -0.6090460697156351, + -0.6103753878718166, + -0.6092990788108514, + -0.6109166423707927, + -0.6099359156717123, + -0.6158878035132122 + ], + "z": [ + -0.6074724218254403, + -0.6152401700671686, + -0.6214543686605511, + -0.6226971502917479, + -0.6243070447955392, + -0.6197245235108884, + -0.6207111393559865, + -0.6148826416287476, + -0.611925698467445, + -0.6135431443436158, + -0.6134214510733491, + -0.6061939163941413 + ] + }, + { + "hovertemplate": "geo=LU
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "LU", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "LU", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.6552064000642164, + -0.6542170856632304, + -0.6536189766144382, + -0.6559077506085513, + -0.6527988529249139, + -0.6515656399429818, + -0.6507680874669017, + -0.6534321090178916, + -0.6562798755150264, + -0.6536053326994423, + -0.6549479726359885, + -0.6566653813955518 + ], + "y": [ + -0.6468576254190225, + -0.648555013167673, + -0.6512269793445581, + -0.6533041132336701, + -0.6549221417888854, + -0.6553462691449464, + -0.6533774274885429, + -0.6511960829919056, + -0.6505343430508129, + -0.6601310705147612, + -0.6571426492208248, + -0.6629242971258862 + ], + "z": [ + -0.5752222530177562, + -0.5780133564241129, + -0.5873244890052146, + -0.591172494107277, + -0.5973349948436012, + -0.5997311033870395, + -0.595041120264683, + -0.5870082026774808, + -0.5827826289564524, + -0.6063237419115859, + -0.5902529693013951, + -0.5887859699980125 + ] + }, + { + "hovertemplate": "geo=LV
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "LV", + "marker": { + "color": "#FF97FF", + "symbol": "circle" + }, + "mode": "markers", + "name": "LV", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.5909110990135465, + -0.5871492573069592, + -0.5954755724899279, + -0.5976710749837996, + -0.6076775048333216, + -0.6047870711809583, + -0.6007774357406587, + -0.5981575320535626, + -0.601450776727441, + -0.6069717151204711, + -0.6001664371453765, + -0.6070609808514109 + ], + "y": [ + -0.6561818656523863, + -0.6570957880304303, + -0.6574922223346156, + -0.6581327791576688, + -0.6579816556936076, + -0.6577600596124594, + -0.6573003342848639, + -0.6545763919695701, + -0.6552191704367103, + -0.6601437287194433, + -0.6585716830302157, + -0.6607355127048644 + ], + "z": [ + -0.6030481889233559, + -0.6149439239199799, + -0.621349230322039, + -0.6225693578360978, + -0.6228743171052628, + -0.6243994038884862, + -0.6266529076689151, + -0.6289406830624502, + -0.6316649858669897, + -0.6336902058516437, + -0.634188596428679, + -0.6411657740697722 + ] + }, + { + "hovertemplate": "geo=MT
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "MT", + "marker": { + "color": "#FECB52", + "symbol": "circle" + }, + "mode": "markers", + "name": "MT", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.6871718442365206, + -0.6867584164238363, + -0.6863449886111521, + -0.6859315607984678, + -0.6853927060746321, + -0.6854853573969192, + -0.6844873006628398, + -0.6843401897372622, + -0.6836952391190574, + -0.6833607854898452, + -0.6830901285875699, + -0.682717378062983 + ], + "y": [ + -0.6984135114323207, + -0.6975506868682789, + -0.6990195036066708, + -0.6988679668134772, + -0.7023786294662958, + -0.7037885468033098, + -0.7027047978179602, + -0.7024582469904389, + -0.7017152878748149, + -0.7035554808387355, + -0.7032108160083929, + -0.7016612450907437 + ], + "z": [ + -0.6608760177293964, + -0.6611742969383796, + -0.6608760177293964, + -0.6608760177293964, + -0.6596829008934637, + -0.6596829008934637, + -0.6594104706130097, + -0.6592338846742933, + -0.6578848029549877, + -0.6617513960505992, + -0.6600851566913621, + -0.6578731854590195 + ] + }, + { + "hovertemplate": "geo=NL
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "NL", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "NL", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + 0.08915952942072047, + 0.1336358162775723, + 0.1750691818674929, + 0.0007793110502304061, + 0.030543587776089332, + 0.051685495948134444, + 0.03440990589397065, + 0.031926987185969216, + 0.015205032893080925, + -0.0012400210101143208, + 0.07311352920359748, + -0.0410170980099212 + ], + "y": [ + 0.3745225771472465, + 0.3501189535060769, + 0.3484741102233924, + 0.3079547320408776, + 0.3473224719280337, + 0.351858604158523, + 0.33967572797881973, + 0.31347267595942, + 0.28172347030818634, + 0.1688658106669597, + 0.18582093334407865, + 0.12681504804862473 + ], + "z": [ + 0.5092227830041295, + 0.45686679479910436, + 0.4280629561703827, + 0.3940530271609177, + 0.417153837018857, + 0.4527948624622552, + 0.4898029767437098, + 0.5076985675331034, + 0.5312399709256361, + 0.3297228858614835, + 0.3600160874733267, + 0.3846024846281977 + ] + }, + { + "hovertemplate": "geo=NO
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "NO", + "marker": { + "color": "#EF553B", + "symbol": "circle" + }, + "mode": "markers", + "name": "NO", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.3678426217991625, + -0.3487404462780661, + -0.3522790166675401, + -0.37269205797864363, + -0.3586772529919749, + -0.3484251329363051, + -0.34348722891565014, + -0.3417112604874313, + -0.3475152647819816, + -0.3451545972931942, + -0.3261456370573785, + -0.35507424575036567 + ], + "y": [ + -0.4305433222562901, + -0.43274621153395765, + -0.43102572902003006, + -0.428529996052004, + -0.4261441569670747, + -0.43084298587733455, + -0.434061114836644, + -0.4327428015686147, + -0.4422166669479347, + -0.4570064616322999, + -0.4581731864409939, + -0.4556905766729239 + ], + "z": [ + -0.36545267969260276, + -0.38791075158610216, + -0.40881004595807013, + -0.4227821179216081, + -0.43895773843291175, + -0.453962024913223, + -0.4613440722888076, + -0.47087041898272003, + -0.4892797935313066, + -0.5013788347073739, + -0.5151905852265508, + -0.5137018031182279 + ] + }, + { + "hovertemplate": "geo=PL
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "PL", + "marker": { + "color": "#00cc96", + "symbol": "circle" + }, + "mode": "markers", + "name": "PL", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + 0.718608684247193, + 0.7411720300795448, + 0.7637353759118969, + 0.7862987217442486, + 0.7523560423569808, + 0.8171508622955577, + 0.8305560359798612, + 1.0198807957155664, + 0.9010788303852324, + 0.9092054029322509, + 0.988337128702425, + 0.8841051255507475 + ], + "y": [ + 1.3887109044745902, + 1.3489499335840258, + 1.3265508012369358, + 1.2621154244572892, + 1.2756032840404992, + 1.3323553372427082, + 1.4105423292582255, + 1.4133447007764068, + 1.2976420450502126, + 1.2108783702035537, + 1.35702111488615, + 1.2657147462090237 + ], + "z": [ + 0.48326755438680685, + 0.43332132528298284, + 0.38056540477925305, + 0.3444573559979337, + 0.37896306164784105, + 0.4386209365062701, + 0.5429753844778992, + 0.5917909407866194, + 0.6349833386093386, + 0.5453044019821213, + 0.675139213423373, + 0.7557448856994372 + ] + }, + { + "hovertemplate": "geo=PT
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "PT", + "marker": { + "color": "#ab63fa", + "symbol": "circle" + }, + "mode": "markers", + "name": "PT", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.48061838866901685, + -0.4868418381733142, + -0.4914049516103219, + -0.4806305728084184, + -0.4825207827306338, + -0.47737817827716555, + -0.47872561099246413, + -0.47229770404905497, + -0.4719870891899832, + -0.46269252208246126, + -0.4619966062554631, + -0.46632611026273224 + ], + "y": [ + -0.35208136303539345, + -0.3624818089974394, + -0.37202805864108407, + -0.37171930177912516, + -0.34934135255007454, + -0.3577018125787897, + -0.32858907846519, + -0.34605269930753646, + -0.3629817822493096, + -0.4093593258925353, + -0.4140543831744614, + -0.40234048056169275 + ], + "z": [ + -0.30295577925694833, + -0.33897263069491745, + -0.3478242913104775, + -0.3499607488190269, + -0.3630856148890849, + -0.3679690293193118, + -0.3686756635115767, + -0.3721693349866094, + -0.36087480540633915, + -0.4162769010542225, + -0.3931653450125126, + -0.36754818552786434 + ] + }, + { + "hovertemplate": "geo=RO
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "RO", + "marker": { + "color": "#FFA15A", + "symbol": "circle" + }, + "mode": "markers", + "name": "RO", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.1724539021745338, + -0.16259917355617856, + -0.15274444493782324, + -0.142889716319468, + -0.1334321470034531, + -0.12965478815430592, + -0.10807709616617212, + -0.1025281935502349, + -0.10377925206213448, + -0.08484226873674128, + -0.02964054636157722, + -0.09639320826033981 + ], + "y": [ + -0.030136305114336744, + -0.04616381388589851, + -0.10432681774795269, + -0.1026056119080433, + -0.1087469078244997, + -0.11820604835347524, + -0.10218515284803299, + -0.10123692415199359, + -0.11781989561146036, + -0.13917067028016883, + -0.11848158388641139, + -0.147051306852222 + ], + "z": [ + -0.29148582548755836, + -0.2957113992085868, + -0.3141228068189678, + -0.2890711289505709, + -0.3138210423611942, + -0.29722051193485416, + -0.2951775752688487, + -0.2988858799818936, + -0.29829513031191135, + -0.32387772774605433, + -0.2999549800483659, + -0.2905407421905465 + ] + }, + { + "hovertemplate": "geo=SE
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "SE", + "marker": { + "color": "#19d3f3", + "symbol": "circle" + }, + "mode": "markers", + "name": "SE", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.10326854924663863, + -0.10606354716594653, + -0.10885854508525432, + -0.1116535430045622, + -0.12905015272990628, + -0.10632364817659426, + -0.11007257132251827, + -0.12304204460648133, + -0.1310387660342661, + -0.14517842444881704, + -0.09378188914176976, + -0.15536077267123535 + ], + "y": [ + -0.39448020044941395, + -0.410036307345388, + -0.41804419762410194, + -0.4269596036793064, + -0.42841343723664604, + -0.4270319879436311, + -0.4306334280071697, + -0.43435416519156883, + -0.4421411310489749, + -0.47283123246438263, + -0.46361595612356743, + -0.47212464631241646 + ], + "z": [ + 0.18407404847093767, + 0.10837996305282334, + 0.06383906438559696, + 0.032977767220909594, + 0.013373823649394283, + -0.017420672913476147, + -0.04889072686689646, + -0.0900311844642348, + -0.10425709871467763, + -0.15440576268574727, + -0.1282765620663012, + -0.17038417620299098 + ] + }, + { + "hovertemplate": "geo=SI
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "SI", + "marker": { + "color": "#FF6692", + "symbol": "circle" + }, + "mode": "markers", + "name": "SI", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.5925093248027227, + -0.5960982438498073, + -0.5972315338322681, + -0.6108679377840992, + -0.6028795434240525, + -0.6013742373382664, + -0.6036156602015483, + -0.6090652491156536, + -0.6111237140422415, + -0.6086613210484665, + -0.603335243656728, + -0.6120065736279913 + ], + "y": [ + -0.6133690791121921, + -0.6166336559327634, + -0.6202122078955912, + -0.6287961756526922, + -0.6278127623142509, + -0.6233097480805011, + -0.6228481627718094, + -0.6236429430274175, + -0.6263213674719976, + -0.6329029105806816, + -0.6321557148414497, + -0.6343458425821521 + ], + "z": [ + -0.513225195346133, + -0.5296514633329502, + -0.5433397779574652, + -0.5524653210404753, + -0.5555073623597447, + -0.5564199166680458, + -0.5595307916509268, + -0.558728022679525, + -0.5639515393042207, + -0.5888550940990231, + -0.5761002452755518, + -0.5586632551395024 + ] + }, + { + "hovertemplate": "geo=SK
household_total=%{x}
carbon=%{y}
gas=%{z}", + "legendgroup": "SK", + "marker": { + "color": "#B6E880", + "symbol": "circle" + }, + "mode": "markers", + "name": "SK", + "scene": "scene", + "showlegend": true, + "type": "scatter3d", + "x": [ + -0.5909918560791095, + -0.5800673348886285, + -0.5691428136981476, + -0.5582182925076665, + -0.540546347603658, + -0.5373054644456633, + -0.5316226759270173, + -0.5355454465592181, + -0.49075750033305554, + -0.483028864426437, + -0.46616979459067415, + -0.48748748331829245 + ], + "y": [ + -0.48310933300321607, + -0.49543108777143086, + -0.49714015206807377, + -0.5075253048522181, + -0.5035719666985187, + -0.5012683801109519, + -0.49540783800772914, + -0.49625180443010164, + -0.5081720616122586, + -0.522977769468224, + -0.502105474936497, + -0.5232267486043988 + ], + "z": [ + -0.5168359130930451, + -0.5212351683787979, + -0.5189296763039115, + -0.5221503366236918, + -0.5148252149783514, + -0.505386870816398, + -0.5054231754912986, + -0.5165585453768047, + -0.5229586239056783, + -0.5360704202927721, + -0.533341180052446, + -0.5257372385038692 + ] + } + ], + "layout": { + "legend": { + "title": { + "text": "geo" + }, + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "scene": { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "xaxis": { + "title": { + "text": "household_total" + } + }, + "yaxis": { + "title": { + "text": "carbon" + } + }, + "zaxis": { + "title": { + "text": "gas" + } + } + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "px.scatter_3d(df_merged_s, y=\"carbon\", x=\"household_total\", z=\"gas\", color=\"geo\")" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.cm as cm" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Greenhouse Emissions (ktonnes)')" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACcZklEQVR4nOzdd3gc1dX48e+d2b6rbhXLVbaMe8NgQq/GMb2FmsSYEEgCoYYE8r6QQEIIEBLnhQQI/EIJEFooIQSI6T0UY4xx7029raTtM/f3x8jCsmQjrdeWbJ3P8+ixd3Z29sxotXv23nPvVVprjRBCCCFEH2T0dgBCCCGEENsjiYoQQggh+ixJVIQQQgjRZ0miIoQQQog+SxIVIYQQQvRZkqgIIYQQos+SREUIIYQQfZYkKkIIIYTosyRREUIIIUSfJYmK2KMdccQRHHHEEb0dhhB9jlKKSy+9tLfD2OMNHz6c888/P+PHlfeu7pNEZScppbr18+abb/Z2qL3mN7/5Dc8991zaj1+8eDG//OUvWbt2bcZiypTq6mquvfZaJk6cSCgUwufzUV5ezpw5c3j33Xd3aywPPvggSik++eSTLu8/4YQTGD58+G6NaU/Vl36vorNf/vKXO3y/rays7O0QRQa5ejuAPd3f/va3Drcffvhh5s2b12n72LFjd2dYfcpvfvMbzjjjDE455ZS0Hr948WJuvPFGjjjiiE4ftP/5z392PsA0ffTRRxx//PE0Nzdz9tln84Mf/ACv18uaNWt47rnnePDBB3nrrbc47LDDei1G0XPye91z3H333YRCoU7bc3NzM/Ycy5YtwzAy/52+N9+79jSSqOykb3/72x1uf/jhh8ybN6/T9m1FIhECgcCuDK1Xaa2JxWL4/f5d+jwej2eXHn97GhoaOOWUU3C5XCxYsIAxY8Z0uP/Xv/41jz/++C4/f5FZmfq9tra2EgwGd2WoAjjjjDMYMGDALn0Or9e7S47bW+9deyLp+tkNjjjiCCZMmMCnn37KYYcdRiAQ4Oc//zkAzz//PMcffzylpaV4vV5GjhzJr371KyzL6vIYixcv5sgjjyQQCDBo0CBuu+22Ts935513Mn78eAKBAHl5eey333489thj7fdvaTZdunQpZ555JtnZ2RQUFHD55ZcTi8U6HCuVSvGrX/2KkSNH4vV6GT58OD//+c+Jx+Md9hs+fDgnnHACr7zyCvvttx9+v597770XpRStra089NBD7c2yW/p7161bx49+9CNGjx6N3++noKCAb33rWx26eB588EG+9a1vAXDkkUd26krrqp+3urqa733vexQXF+Pz+Zg8eTIPPfRQh33Wrl2LUorf/e53/OUvf2k/v/3335+PP/54x79Q4J577qGiooK5c+d2+jADp0vwnHPOYf/992/f1p3zBUgmk9x4442MGjUKn89HQUEBhxxyCPPmzfvauHrq8ccfZ9q0aWRlZZGdnc3EiRP54x//2H5/fX09P/nJT9q7QLKzs5k1axaff/55p2OtW7eOk046iWAwSFFREVdeeSWvvPJKl12f//3vf/nmN79JTk4OgUCAww8/nPfee2+HsVZVVeFyubjxxhs73bds2TKUUtx1111A+tcwnd/rlr+nxYsXc+6555KXl8chhxzSfv8jjzzCtGnT8Pv95Ofnc/bZZ7Nhw4ZOx+7ONdnyXCtXruT8888nNzeXnJwc5syZQyQS6fKcnnvuOSZMmIDX62X8+PG8/PLLnfb57LPPmDVrFtnZ2YRCIY4++mg+/PDDLp97W1u6HLd+HX/yySfMnDmTAQMG4Pf7KSsr44ILLujwONu2mTt3LuPHj8fn81FcXMzFF19MQ0NDl+eRjjfffBOlFE8++SQ33ngjgwYNIisrizPOOIOmpibi8ThXXHEFRUVFhEIh5syZ0+V729Y1Kt15bVVWVjJnzhwGDx6M1+tl4MCBnHzyyR2u0e547+pOHHsCaVHZTerq6pg1axZnn3023/72tykuLgacP/JQKMRVV11FKBTi9ddf54YbbiAcDnP77bd3OEZDQwPf/OY3Oe200zjzzDN5+umn+dnPfsbEiROZNWsWAPfddx+XXXYZZ5xxRnvisXDhQv773/9y7rnndjjemWeeyfDhw7nlllv48MMP+b//+z8aGhp4+OGH2/e58MILeeihhzjjjDO4+uqr+e9//8stt9zCkiVLePbZZzscb9myZZxzzjlcfPHFfP/732f06NH87W9/48ILL2T69OlcdNFFAIwcORKAjz/+mPfff5+zzz6bwYMHs3btWu6++26OOOIIFi9eTCAQ4LDDDuOyyy7j//7v//j5z3/e3oW2va60aDTKEUccwcqVK7n00kspKyvjqaee4vzzz6exsZHLL7+8w/6PPfYYzc3NXHzxxSiluO222zjttNNYvXo1brd7u7/PF154Ab/fz2mnnbbdfbbVnfMF5wPhlltuab9u4XCYTz75hPnz5zNjxoxuP9/XmTdvHueccw5HH300t956KwBLlizhvffea79Oq1ev5rnnnuNb3/oWZWVlVFVVce+993L44YezePFiSktLAacF4aijjqKiooLLL7+ckpISHnvsMd54441Oz/v6668za9Yspk2bxi9+8QsMw+CBBx7gqKOO4p133mH69OldxltcXMzhhx/Ok08+yS9+8YsO9z3xxBOYptme1KZ7DdP5vW7xrW99i1GjRvGb3/wGrTUAN998M9dffz1nnnkmF154ITU1Ndx5550cdthhfPbZZ+1dFD29JmeeeSZlZWXccsstzJ8/n/vvv5+ioqL23+MW7777Ls888ww/+tGPyMrK4v/+7/84/fTTWb9+PQUFBQB8+eWXHHrooWRnZ/PTn/4Ut9vNvffeyxFHHMFbb73FAQcc0KPrUF1dzbHHHkthYSHXXnstubm5rF27lmeeeabDfhdffDEPPvggc+bM4bLLLmPNmjXcddddfPbZZ7z33ns7/Pvbor6+vtM2l8vVqevnlltuwe/3c+2117Jy5UruvPNO3G43hmHQ0NDAL3/5Sz788EMefPBBysrKuOGGG7b7nN15bZ1++ul8+eWX/PjHP2b48OFUV1czb9481q9fv906sV3x3pVOHH2SFhl1ySWX6G0v6+GHH64Bfc8993TaPxKJdNp28cUX60AgoGOxWKdjPPzww+3b4vG4Likp0aeffnr7tpNPPlmPHz9+hzH+4he/0IA+6aSTOmz/0Y9+pAH9+eefa621XrBggQb0hRde2GG/n/zkJxrQr7/+evu2YcOGaUC//PLLnZ4vGAzq2bNnd+vcP/jgg07n+dRTT2lAv/HGG532P/zww/Xhhx/efnvu3Lka0I888kj7tkQioQ888EAdCoV0OBzWWmu9Zs0aDeiCggJdX1/fvu/zzz+vAf3CCy90eq6t5eXl6SlTpnTaHg6HdU1NTftPS0tLj8938uTJ+vjjj9/h83flgQce0ID++OOPu7z/+OOP18OGDWu/ffnll+vs7GydSqW2e8xYLKYty+qwbc2aNdrr9eqbbrqpfdsdd9yhAf3cc8+1b4tGo3rMmDEdfne2betRo0bpmTNnatu22/eNRCK6rKxMz5gxY4fneO+992pAf/HFFx22jxs3Th911FHtt9O9hun8Xrf8PZ1zzjkdHrN27Vptmqa++eabO2z/4osvtMvlat/ek2uy5bkuuOCCDsc89dRTdUFBQYdtgPZ4PHrlypXt2z7//HMN6DvvvLN92ymnnKI9Ho9etWpV+7bNmzfrrKwsfdhhh3V67m1ted2tWbNGa631s88+u8PXodZav/POOxrQjz76aIftL7/8cpfbt7Ullq5+Ro8e3b7fG2+8oQE9YcIEnUgk2refc845WimlZ82a1eG4Bx54YIe/Ea2d97at37++7rXV0NCgAX377bfv8Bx29XtXd+PYE0jXz27i9XqZM2dOp+1b93U3NzdTW1vLoYceSiQSYenSpR32DYVCHWpfPB4P06dPZ/Xq1e3bcnNz2bhxY7e6Ly655JIOt3/84x8D8O9//7vDv1dddVWH/a6++moAXnzxxQ7by8rKmDlz5tc+7xZbn3symaSuro7y8nJyc3OZP39+t4+ztX//+9+UlJRwzjnntG9zu91cdtlltLS08NZbb3XY/6yzziIvL6/99qGHHgrQ4Zp2JRwOd1nE953vfIfCwsL2n5/97Gft93X3fHNzc/nyyy9ZsWJFN886Pbm5ubS2tu6wO8Tr9bYXElqWRV1dHaFQiNGjR3eI+eWXX2bQoEGcdNJJ7dt8Ph/f//73OxxvwYIFrFixgnPPPZe6ujpqa2upra2ltbWVo48+mrfffhvbtrcbz2mnnYbL5eKJJ55o37Zo0SIWL17MWWed1eHc0rmG6fxet/jBD37Q4fYzzzyDbduceeaZ7edZW1tLSUkJo0aNam9tSueabPtchx56KHV1dYTD4Q7bjznmmPYWTIBJkyaRnZ3d/vq2LIv//Oc/nHLKKYwYMaJ9v4EDB3Luuefy7rvvdjrm19nSmvGvf/2LZDLZ5T5PPfUUOTk5zJgxo8O1mTZtGqFQqMuWuK784x//YN68eR1+HnjggU77ffe73+3QQnPAAQegte7UHXXAAQewYcMGUqnUDs9vR68tv9+Px+PhzTff7FE3Vqbfu9KNoy+SRGU3GTRoUJfFU19++SWnnnoqOTk5ZGdnU1hY2J6MNDU1ddh38ODBnfqI8/LyOrwIf/aznxEKhZg+fTqjRo3ikksu2W7f/6hRozrcHjlyJIZhtPdfrlu3DsMwKC8v77BfSUkJubm5rFu3rsP2srKyHVyBzqLRKDfccANDhgzB6/UyYMAACgsLaWxs7HTu3bVu3TpGjRrVqUp/S1fRtjEPHTq0w+0tf/hf94edlZVFS0tLp+033XRT+xvmtrp7vjfddBONjY3ss88+TJw4kWuuuYaFCxfuMJ7u2vr186Mf/Yh99tmHWbNmMXjwYC644IJO9Qu2bfOHP/yBUaNGdYh54cKFHWJet24dI0eO7PT63Pa1s+XNffbs2R0++AsLC7n//vuJx+M7/N0PGDCAo48+mieffLJ92xNPPIHL5erQXZPuNUzn97rFtq//FStWoLVm1KhRnc51yZIlVFdXp31Nuvu63Xa/Lftu2a+mpoZIJMLo0aM77Td27Fhs2+6ynmZHDj/8cE4//XRuvPFGBgwYwMknn8wDDzzQofZjxYoVNDU1UVRU1OmcW1pa2q/N1znssMM45phjOvwceOCBnfbb9jrk5OQAMGTIkE7bbdve4Wvw615bXq+XW2+9lZdeeoni4mIOO+wwbrvttq8dMp3p96504+iLpEZlN+lqlEBjYyOHH3442dnZ3HTTTYwcORKfz8f8+fP52c9+1ulblGmaXR5bt/WHg/OiXrZsGf/61794+eWX+cc//sGf//xnbrjhhi6LELfWVaHcjrZvq6cjXH784x/zwAMPcMUVV3DggQeSk5ODUoqzzz57h9+qM6k717QrY8aM4fPPPyeZTHb4pjZp0qTtPqa753vYYYexatUqnn/+ef7zn/9w//3384c//IF77rmHCy+8cLvH9/l8gJMQdSUSibTvA1BUVMSCBQt45ZVXeOmll3jppZd44IEH+O53v9tewPeb3/yG66+/ngsuuIBf/epX5OfnYxgGV1xxRVq/oy2Puf3225kyZUqX+3TVorG1s88+mzlz5rBgwQKmTJnCk08+ydFHH91h9Ee61zCd3+sW277+bdtGKcVLL73U5etsy3mmc026+7pN9/Xdle29D2xb+K+U4umnn+bDDz/khRde4JVXXuGCCy7gjjvu4MMPPyQUCmHbNkVFRTz66KNdHrOwsLDH8e3I9q5DOtenO6+tK664ghNPPJHnnnuOV155heuvv55bbrmF119/nalTp+78CXUz9t0Rx+4giUovevPNN6mrq+OZZ57pMCfDmjVrduq4wWCQs846i7POOotEIsFpp53GzTffzHXXXdfhg2rFihUdvgWuXLkS27bbi6yGDRuGbdusWLGiQ/FqVVUVjY2NDBs2rFvxbO8N7umnn2b27Nnccccd7dtisRiNjY3denxXhg0bxsKFC7Ftu8M3ky3daN2N+euccMIJfPjhhzz77LOceeaZ3XpMd88XID8/nzlz5jBnzhxaWlo47LDD+OUvf7nDD9kt57Zs2bL2ZuCtLV++nAkTJnTY5vF4OPHEEznxxBOxbZsf/ehH3HvvvVx//fWUl5fz9NNPc+SRR/L//t//6/C4xsbGDonBsGHDWLx4MVrrDr+vlStXdnjclm6I7OxsjjnmmO2ey46ccsopXHzxxe3dP8uXL+e6667rtF861zCd3+v2jBw5Eq01ZWVl7LPPPjvcD3bumqSrsLCQQCDAsmXLOt23dOlSDMNob3XY8o29sbGxQ7Hqtt/0t/jGN77BN77xDW6++WYee+wxzjvvPB5//HEuvPBCRo4cyauvvsrBBx+8Rw7h785ra+TIkVx99dVcffXVrFixgilTpnDHHXfwyCOPdHnMXfXe1dM4+iLp+ulFWzLirTPgRCLBn//857SPWVdX1+G2x+Nh3LhxaK079Rf/6U9/6nD7zjvvBGgfQXTccccBMHfu3A77/f73vwfg+OOP71ZMwWCwyw9j0zQ7fXO58847O31D2zIfRVfH2NZxxx1HZWVlhxqGVCrFnXfeSSgU4vDDD+9WzF/nhz/8IcXFxVx55ZUsX7680/1dfSPr7vlu+zsMhUKUl5d3Gja5rWnTplFUVNTeXbC15557jk2bNrX/brt6HsMw2lsOtjy+q5ifeuopNm3a1GHbzJkz2bRpE//85z/bt8ViMe67775OMY4cOZLf/e53XXax1NTU7PAcwakRmDlzJk8++SSPP/44Ho+n02SC6V7DdH6v23PaaadhmiY33nhjp8dprdtjzMQ1SZdpmhx77LE8//zzHYasVlVV8dhjj3HIIYeQnZ0NfJVQvf322+37bZl6YGsNDQ2dzndLS9GW63/mmWdiWRa/+tWvOsWUSqW69bfeW77utRWJRDpN8zBy5EiysrJ2+PrL9HtXunH0RdKi0osOOugg8vLymD17NpdddhlKKf72t7+l1Sy7xbHHHktJSQkHH3wwxcXFLFmyhLvuuovjjz+erKysDvuuWbOGk046iW9+85t88MEHPPLII5x77rlMnjwZgMmTJzN79mz+8pe/tHdTffTRRzz00EOccsopHHnkkd2Kadq0abz66qv8/ve/p7S0lLKyMg444ABOOOEE/va3v5GTk8O4ceP44IMPePXVV9uHTW4xZcoUTNPk1ltvpampCa/Xy1FHHUVRUVGn57rooou49957Of/88/n0008ZPnw4Tz/9NO+99x5z587tdA3SlZ+fz7PPPsuJJ57I5MmTOfvss9l///1xu91s2LCBp556CujYj9zd8x03bhxHHHEE06ZNIz8/n08++YSnn376a9dt8Xg8/O53v2P27Nnsv//+nHXWWRQUFPDZZ5/x17/+lUmTJrUPEQdn6Hl9fT1HHXUUgwcPZt26ddx5551MmTKlvQXthBNO4KabbmLOnDkcdNBBfPHFFzz66KMdCi/BGWp61113cc4553D55ZczcOBAHn300fYWvC2tLIZhcP/99zNr1izGjx/PnDlzGDRoEJs2beKNN94gOzubF1544Wuv/1lnncW3v/1t/vznPzNz5sxOw1HTvYbp/F63Z+TIkfz617/muuuuY+3atZxyyilkZWWxZs0ann32WS666CJ+8pOfZOyapOvXv/418+bN45BDDuFHP/oRLpeLe++9l3g83mGepmOPPZahQ4fyve99j2uuuQbTNPnrX/9KYWEh69evb9/voYce4s9//jOnnnoqI0eOpLm5mfvuu4/s7Oz2Lz+HH344F198MbfccgsLFizg2GOPxe12s2LFCp566in++Mc/csYZZ3xt7E8//XSXXYUzZsxonwIi077utbV8+XKOPvpozjzzTMaNG4fL5eLZZ5+lqqqKs88+e7vHzfR7V7px9Em7dYxRP7C94cnbGzL83nvv6W984xva7/fr0tJS/dOf/lS/8sornYbjbu8Ys2fP7jCc7t5779WHHXaYLigo0F6vV48cOVJfc801uqmpqX2fLUP7Fi9erM844wydlZWl8/Ly9KWXXqqj0WiH4yeTSX3jjTfqsrIy7Xa79ZAhQ/R1113XYei01s4Qvu0N2Vu6dKk+7LDDtN/v10D7UL+GhgY9Z84cPWDAAB0KhfTMmTP10qVLOw0H1Frr++67T48YMUKbptnh2mw7xE9rrauqqtqP6/F49MSJE/UDDzzQYZ8tQ/y6GroH6F/84hddnsu2Kioq9DXXXKPHjRun/X6/9nq9esSIEfq73/2ufvvttzvs293z/fWvf62nT5+uc3Nztd/v12PGjNE333xzh+GVO/LSSy/pI488UmdnZ2u3263Lysr0VVddpRsaGjrs9/TTT+tjjz1WFxUVaY/Ho4cOHaovvvhiXVFR0b5PLBbTV199tR44cKD2+/364IMP1h988EGX13316tX6+OOP136/XxcWFuqrr75a/+Mf/9CA/vDDDzvs+9lnn+nTTjut/XU6bNgwfeaZZ+rXXnutW+cYDofbX09bD+fM1DXsye91y99TTU1Nl8f6xz/+oQ855BAdDAZ1MBjUY8aM0ZdccoletmxZj6/J9p5r2yHCWjuv40suuaRTPF39fc2fP1/PnDlTh0IhHQgE9JFHHqnff//9To/99NNP9QEHHND+evn973/f6bnnz5+vzznnHD106FDt9Xp1UVGRPuGEE/Qnn3zS6Xh/+ctf9LRp07Tf79dZWVl64sSJ+qc//anevHlzl9dy2+uwvZ8t7w9bhic/9dRTXV6vbYdQd3V9e/r3WVtbqy+55BI9ZswYHQwGdU5Ojj7ggAP0k08+2eG5dvV7V3fj2BMorXfi67vYI/3yl7/kxhtvpKamZpdPPy36t7lz53LllVeyceNGBg0a1NvhCCH2QFKjIoTIiG1HG8ViMe69915GjRolSYoQIm1SoyKEyIjTTjuNoUOHMmXKFJqamnjkkUdYunTpdoegCiFEd0iiIoTIiJkzZ3L//ffz6KOPYlkW48aN4/HHH+8wY6wQQvSU1KgIIYQQos+SGhUhhBBC9FmSqAghhBCiz9qja1Rs22bz5s1kZWX1aJp1IYQQQvQerTXNzc2UlpZ2WohxW3t0orJ58+ZOq18KIYQQYs+wYcMGBg8evMN99uhEZcuUwhs2bGhfj0IIIYQQfVs4HGbIkCHdWhpgj05UtnT3ZGdnS6IihBBC7GG6U7YhxbRCCCGE6LMkURFCCCFEnyWJihBCCCH6LElUhBBCCNFnSaIihBBCiD5LEhUhhBBC9FmSqAghhBCiz5JERQghhBB9liQqQgghhOiz9uiZaYUQQoi93cYmm/mbLVbU2SgFYwYY7FtqUpLVP9oaJFERQggh+qiPN1o882WShhiEPKCB5bUWH2ywOWuiiwnFZm+HuMtJoiKEEEL0QZvCNs8sTpKwYfQA1b4ujtaatY2apxalKM0yyA98/Xo5e7L+0W4khBBC7GE+q7BoiMLgbNVh8T6lFMNyFVUtmoVVVi9GuHtIoiKEEEL0QavrNAF31ysMG0rhNmFtg+6FyHYvSVSEEEKIPsgwnJqU7dEazL271weQGhUhhBCiTxpbaLCoysa2bZoTipoWTTSpcZuQ71ekbCgv2PvbGyRREUIIIfqgyQNN3lln8d46m1jSImEpTAUpWxO1FCPyFOX5e3+Tyt6figkhhBB7oAEBxYRCg8aopiWhUEqjAcNQDPCDCbyzdu8vppUWFSGEEKIPStmaDY2asQMUPreiMaYxFOT6FEVBRTgGn260ObxMUxDce1tWJFERQggh+qCaVk1FWFOaZRDyKobmdLw/P6BZWQcbmmwKgpmd+C2R0qyo1YRjGp8LRhU6MfQGSVSEEEKIXSye0tS0alBQFFR4ujNcR4OtwdjOrls26wyPUF5UYfPvJSk2hzW2rQHFgKDiiHKDQ0aYGF0Ml96VJFERQgghdpGEpXl7rcX7G1JsaHJqTIbkKI4uc3PgEANze1kIkB9wEoT6iE3A03m/prZp9UuyMpc4rKixefyzJJEEDMkBj8vAsjXVLZrnFlkoBYeO2L2pgxTTCiGEELtAytY8tSjJffOTvL/RYnWTzapGm9fXWtz2XownFyXRO2gO8boU3xhq0ppUtMQ77pewNJUtmvHFRsYSFa0176y2aIrB8HzwuJzjmoZiYLbCY8Jbq2wiid07yZy0qAghhBC7wJIam38uT1ET1bgMyPE63ThxC+pj8NDCJBNKTCYWbb++5KDhBhXNBh+ut6lo0XhdmqaYJmkrJhYrThzn6nLm2nTURWBFrU1xqOvZcItCsK5Bs6ZeM75k93X/SIuKEEIIsQu8v95ic7NTjJrnU7hNhWkoAm5FcQDqopp/Lk3u8BgeU/GtSS7m7GcyIARrmjSbI5okmpoYvLU2RUuGWjjiKU3KAs92mjDcpkJrZ7/dqc8kKr/97W9RSnHFFVf0dihCCCHETltaZ2EBQXfn+1ymwmvCohpNImWTsPR2u4FchqI6oqmNaYbmKQ4eZjKpxEAp+PcKi78tSBJN7nzykONTBD2K5njX90cSzqy4Of5+WEz78ccfc++99zJp0qTeDkUIIYTICJehsG22O0rG0lDVavGLdxIAlGYZHFBqsm+JgWurItuqFpvXVltkeZ35U7YoDkGuDxZW2XxWYXPQ0J0bohzyKqYMVsxbZpPnd1pQttBas6kJ9ilSDM/bvYlKr7eotLS0cN5553HfffeRl5fX2+EIIYQQGTGm0EADSatza0dTXNOYhBZLkbQ0ClhaZ/PgwiRPLUmSsr96zOIam6Y4FAY6P4fX5RS5frQpMzPUHj7CxT6FBqtqNZXNmpa4prZVs7wGBoQUx4117XCk0q7Q64nKJZdcwvHHH88xxxzT26EIIYQQGTOr3EVxECpbNNGkM9+J1tAc12xqcWaZ3bfYaUkZEFCMzFUUBeDtDRafVtrtx2lJOHOmbK9oNuhR1Ec1dgYmVMkLKGbv7+a4cSY+l6Ip5sR86AiDC6a7GNELiyD2atfP448/zvz58/n444+7tX88Hice/6rzLBwO76rQhBBCiJ1SmmVw4VQP932WpDFuYySc1oG4DVrByFwYmtPxYzjbq6iJwn83WUwfaKCUwu/akuToLpOVaFIzOFtlbCK2XL/i+HFujhqlaU2Az0WvzUoLvZiobNiwgcsvv5x58+bh8/m69ZhbbrmFG2+8cRdHJoQQQmTGCaNd5AcU/16ZYl2Tja0haUNWUrN/qYmvi0/hHC9UtNjELPC7YGyhQZYX6qNQsE33T9LSRFOw36DMTqEP4Hcr/F0UAu9uSu9otpld6LnnnuPUU0/FNL+6uJZloZTCMAzi8XiH+6DrFpUhQ4bQ1NREdnb2botdCCGE6IlYSrO+SZOyNUtqbV5Zk2J0vuqyhaSy1cZtKH55qLdtSLDmhWUpXl5pEfJAYUBhGtAYg6oWzdhCg+/t6yarF1s9eiocDpOTk9Otz+9ea1E5+uij+eKLLzpsmzNnDmPGjOFnP/tZpyQFwOv14vV6d1eIQgghREb4XIp9CpxEIuBRvLMxRXMCsrf5SNNa0xiDGWVm+6gbpRTH7eMi4Fa8t95ibaPG1s5jDxtmctw+rj0qSempXktUsrKymDBhQodtwWCQgoKCTtuFEEKIvcWwbMXkIpP320bqZHmcZCRla9aHocCvOGCbrhyXoThmpIsDh5isb3IKZwsDiqJQr4+J2eX6xDwqQgghRH+hlOJbY53ijwXVFptaQKFRCkpDBmeMcTE0u+sEJOhRjC3ce1tPutJrNSqZ0JM+LiGEECITkpZmZaNNOOEUu47KM/C7ep482FqzrkmzssEmZTstKRMKDQLuvT8R2SNqVIQQQog9zZe1Fi+sckbwpLQz6+zAoGJmmYtvtA0n7i5DKcpyFWW5e3/3zc6QREUIIYTohuX1Ng8uStKcgEFZCr9LkbA0Fa02jy5OoPDwjdLMDxPu7ySNE0IIIb6G1prX1qdojGtG5tLe1eMxFcPa6knmrU0R72K6fLFzJFERQgghvkZ1RLO83qYk2PXcJwNDik0tNqsa7S4eLXaGJCpCCCHE14hZkLA03u307HhNhWVDLLV74+oPJFERQgghvka2RxFwK1qSXd/fmtR4XZCzF0+81lskURFCCCG+Rp5PMaXIoKpVY9kd61C01mxs1ozIMSnLkUQl02TUjxBCCNENxwxzsaZJs7TepigAQbfT1VMV0RQFFCeWuzK2grH4irSoCCGEEN1QHDS4aLKbbw430Rpqopq4BQcPMrl4sodRefKRuitIi4oQQgjRTUUBg7PGepg1QhNOaAJuRb5PWlF2JUlUhBBCiB7K9iqypXB2t5B2KiGEEEL0WZKoCCGEEKLPkkRFCCGEEH2WJCpCCCGE6LMkURFCCCFEnyWJihBCCCH6LElUhBBCCNFnSaIihBBC7CStNUlLY2v99TuLHpEJ34QQQog0JSzN/CqbDyssKltsvKZiWonBAQNNioPSFpAJkqgIIYQQaUhYmr8vSfLeJgvTUGR7oDlp8/xKm48rbeZMcDMiV5KVnSVXUAghhEjDhxUW722yGBhSjMxVFAYUpSGD0fmKylabp5YlSVrSFbSzJFERQgghesiyNR9ssnCbkOXpuOaPoRRDsxVrwpplDXYvRbj3kERFCCGE6KGWJFRHNLnbWZjQ71JYtqYmIi0qO0sSFSGEEKKHXAaYCrbXs6O1Rmsw5VN2p8klFEIIIXoo6FaMHWBQF9XoLoYkN8adLqFyKabdaXIFhRBCiDQcMshFtkexNqxJ2U6yorWmKa6pbNXsV2IwMNh115DoPhmeLIQQQqRhVJ7BeePcPLM8xcoGG9BoIOiGwwabnDrKjVKSqOwsSVSEEEKINO1bbDIqz2BRrU19VOM2YZ88g2HZSpKUDJFERQghhNgJWR7FgaVmb4ex15IaFSGEEEL0WZKoCCGEEKLPkkRFCCGEEH2WJCpCCCGE6LMkURFCCCFEn9XjUT9Llizh8ccf55133mHdunVEIhEKCwuZOnUqM2fO5PTTT8fr9e6KWIUQQgjRzyjd1dy/XZg/fz4//elPeffddzn44IOZPn06paWl+P1+6uvrWbRoEe+88w7hcJif/vSnXHHFFbs8YQmHw+Tk5NDU1ER2dvYufS4hhBC7h601yxttFtRY1EQ12R7F5AEm4/INPOb25yaJpjRf1ltURjSmgrJsg1E5BqYh85n0NT35/O52olJWVsY111zDueeeS25u7nb3++CDD/jjH//IpEmT+PnPf96jwHtKEhUhhNi7pGzN0yuTvL3JImZpfKYiYWsUin2LDL47xkPQ3TnxWNlk8eiyJOtb7PaFAr0mjM83+fY+bvJ9UunQl/Tk87vbXT/Lly/H7XZ/7X4HHnggBx54IMlksruHFkIIIQB4Z7PFvPUWJQFFrver5CKS1Py30iLHk+Tc0Z4Oj6mK2DywJEFVRFOWpdpbXVqTmk+qLWwNl0z04JaWlT1St1PMr0tSGhsbe7S/EEIIsbW4pXlnU4qAC3K9HZOKgFtR5Fd8Um1RE7U73PdJdYqNLTblOapD11DQrRiZrfiy3mJJQ8fHiD1HWm1ht956K0888UT77TPPPJOCggIGDRrE559/nrHghBBC9B/VEU1VRFPg67rlo8CnaIzDhuaOFQuf1dpkuRVGF2vr+F2KhA0rG61dErPY9dJKVO655x6GDBkCwLx585g3bx4vvfQSs2bN4pprrslogEIIIcQWXaUwcQtcO/g0M9EkpUFlj5XWooSVlZXticq//vUvzjzzTI499liGDx/OAQcckNEAhRBC9A9FAUVRQFEb1V0WzNbHNDkeGBzqeF9ZtuKdzVAa7HxMS2tsFMUBKabdU6X1m8vLy2PDhg0AvPzyyxxzzDEAaK2xLGleE0II0XNeU3FoqYtIChrjHbt3IilNVVSzb5FJ0TZJx/5FLrwm1MU6PkZrzfpmTbHfGd4s9kxptaicdtppnHvuuYwaNYq6ujpmzZoFwGeffUZ5eXlGAxRCCNF/HDrIpCpi8/Zmi4qIjd9UxC2NUorpxSanjOg8UGNCvsE3h7p4aX2Kurgm1wOWhoY45HkVZ43ykOeVET97qrQSlT/84Q8MHz6cDRs2cNtttxEKhQCoqKjgRz/6UUYDFEII0X+4DcWZo9xMLjQ7Tfg2vsDA28WEb0opTipzMyzL5IOqFGvDNi4Djh1i8o0SFyOypdtnT9btCd/6IpnwTQghxLaStsYAmZG2D+vJ53faaebf/vY3DjnkEEpLS1m3bh0Ac+fO5fnnn0/3kEIIIUQnsZTmi1qLDytSfFlnkbB2/P3abShJUvYiaSUqd999N1dddRWzZs2isbGxvYA2NzeXuXPnZjI+IYQQ/ZTWmv9WpPjtx3Hu/CzB/V8k+L/PEtz2cZwFNTJwo79IK1G58847ue+++/if//kfTPOrSur99tuPL774ImPBCSGE6L8+rbJ5ZEmS2qhmeLZiTL7JkJBiU4vm4S8TfFknyUp/kFaismbNGqZOndppu9frpbW1daeDEkII0b8lLc0r65JYGoZnf7Vqss+lGJGjaEnCq+tS2HtumaXoprQSlbKyMhYsWNBp+8svv8zYsWN3NiYhhBD93JqwzcZmzcBg16N8BgYVqxptNrVIorK3S2t48lVXXcUll1xCLBZDa81HH33E3//+d2655Rbuv//+TMcohBCin4mlnNE7vi6GIwN4TUjYTqGt2LullahceOGF+P1+/vd//5dIJMK5555LaWkpf/zjHzn77LMzHaMQQoh+Jter8LsUzUnI9nS+vzlJl6ssi71PWokKwHnnncd5551HJBKhpaWFoqKiTMYlhBCiHxuSpdgnz2BBjUUoz+iwMrKlNZWtNocNclEoa/js9dJOVLYIBAIEAoFMxCKEEEIATh3KiSPcVEU0S+ttigJOC0skqamOaoZnG3yzbKc/wsQeIK1UtKqqiu985zuUlpbicrkwTbPDjxBCCLGzhucYXDzJwxFDXKRsqI1qbODYYS4unuRhYFBaU/qDtNLR888/n/Xr13P99dczcOBAlEqvj/Duu+/m7rvvZu3atQCMHz+eG264oX2RQyGEEP3bkCyD747z0BjXtCY1WW5FttSl9CtpJSrvvvsu77zzDlOmTNmpJx88eDC//e1vGTVqFFprHnroIU4++WQ+++wzxo8fv1PHFkIIsffI9SopnO2n0kpUhgwZQibWMjzxxBM73L755pu5++67+fDDDyVREUIIIUR6NSpz587l2muvbe+yyQTLsnj88cdpbW3lwAMPzNhxhRBCCLHnSqtF5ayzziISiTBy5EgCgQBut7vD/fX19d0+1hdffMGBBx5ILBYjFArx7LPPMm7cuC73jcfjxOPx9tvhcDid8IUQQgixh0grUcnkCsmjR49mwYIFNDU18fTTTzN79mzeeuutLpOVW265hRtvvDFjzy2EEEKIvk3pTBSbZNAxxxzDyJEjuffeezvd11WLypAhQ2hqaiI7O3t3himEEEKINIXDYXJycrr1+Z32bDm2bbNy5Uqqq6uxbbvDfYcddli6h8W27Q7JyNa8Xi9erzftYwshhBBiz5JWovLhhx9y7rnnsm7duk6jf5RSWJbVreNcd911zJo1i6FDh9Lc3Mxjjz3Gm2++ySuvvJJOWEIIIYTYy6SVqPzgBz9gv/3248UXX9ypCd+qq6v57ne/S0VFBTk5OUyaNIlXXnmFGTNmpHU8IYQQQuxd0qpRCQaDfP7555SXl++KmLqtJ31cQgghhOgbevL5ndY8KgcccAArV65MKzghhBBCiO5Kq+vnxz/+MVdffTWVlZVMnDix0zwqkyZNykhwQgghhOjf0ur6MYzODTFKKbTWPSqm3VnS9SOEEELseXb58OQ1a9akFZgQQgghRE+klagMGzYs03EIIYQQQnSS9oRvq1atYu7cuSxZsgSAcePGcfnllzNy5MiMBSeEEEKI/i2tUT+vvPIK48aN46OPPmLSpElMmjSJ//73v4wfP5558+ZlOkYhhBBC9FNpFdNOnTqVmTNn8tvf/rbD9muvvZb//Oc/zJ8/P2MB7ogU0wohhBB7nl0+j8qSJUv43ve+12n7BRdcwOLFi9M5pBBCCCFEJ2klKoWFhSxYsKDT9gULFlBUVLSzMQkhhBBCAGkW037/+9/noosuYvXq1Rx00EEAvPfee9x6661cddVVGQ1QCCGEEP1XWjUqWmvmzp3LHXfcwebNmwEoLS3lmmuu4bLLLkt7kcKekhoVIYQQYs/Tk8/vtBKVrTU3NwOQlZW1M4dJiyQqQgghxJ5nlxfTHnXUUTQ2NgJOgrIlSQmHwxx11FHpHFIIIYQQopO0EpU333yTRCLRaXssFuOdd97Z6aCEEEIIIaCHxbQLFy5s///ixYuprKxsv21ZFi+//DKDBg3KXHRCCCGE6Nd6lKhMmTIFpRRKqS67ePx+P3feeWfGghNCCCFE/9ajRGXNmjVorRkxYgQfffQRhYWF7fd5PB6KioowTTPjQQohhBCif+pRorJl1eSGhgZycnK63GflypWUl5fvfGRCCCGE6PfSKqY94YQTiMfjnbYvW7aMI444YmdjEkIIIYQA0kxUQqEQp556KqlUqn3bkiVLOOKIIzj99NMzFpwQQggh+re0EpVnnnmGpqYmzjvvPLTWLFq0iCOOOIJzzjmHP/7xj5mOUQghhBD9VFqJit/v58UXX2TZsmWceeaZHH300Xz3u9/l97//fabjE0IIIUQ/1u1i2nA43OG2YRg88cQTzJgxg9NPP53rr7++fR+Zzl4IIYQQmdDttX4Mw+hyscEtD1dKobVGKYVlWZmNcjtkrR8hhBBiz9OTz+9ut6i88cYbOx2YEEIIIURPdDtROfzww3dlHEIIIYQQnXS7mHb9+vU9OvCmTZt6HIwQQgghxNa6najsv//+XHzxxXz88cfb3aepqYn77ruPCRMm8I9//CMjAQohhBCi/+p218/ixYu5+eabmTFjBj6fj2nTplFaWorP56OhoYHFixfz5Zdfsu+++3Lbbbdx3HHH7cq4hRBCCNEPdHvUzxbRaJQXX3yRd999l3Xr1hGNRhkwYABTp05l5syZTJgwYVfF2omM+hFCCCH2PD35/O5xotKXSKIihBBC7Hl68vmd1sy0QgghhBC7gyQqQgghhOizJFERQgghRJ8liYoQQggh+ixJVIQQQgjRZ6WVqDz00EO8+OKL7bd/+tOfkpuby0EHHcS6desyFpwQQggh+re0EpXf/OY3+P1+AD744AP+9Kc/cdtttzFgwACuvPLKjAYohBBCiP6r2zPTbm3Dhg2Ul5cD8Nxzz3H66adz0UUXcfDBB3PEEUdkMj4hhBBC9GNptaiEQiHq6uoA+M9//sOMGTMA8Pl8RKPRzEUnhBBCiH4trRaVGTNmcOGFFzJ16lSWL1/evq7Pl19+yfDhwzMZnxBCCCH6sbRaVP70pz9x4IEHUlNTwz/+8Q8KCgoA+PTTTznnnHMyGqAQQggh+i9Z60cIIYQQu1VPPr/T6voBaGxs5KOPPqK6uhrbttu3K6X4zne+k+5hhRBCCCHapZWovPDCC5x33nm0tLSQnZ2NUqr9PklUhBBCCJEpadWoXH311VxwwQW0tLTQ2NhIQ0ND+099fX2mYxRCCCFEP5VWorJp0yYuu+wyAoFApuMRQgghhGiXVqIyc+ZMPvnkk0zHIoQQQgjRQVo1KscffzzXXHMNixcvZuLEibjd7g73n3TSSRkJTgghhBD9W1rDkw1j+w0xSiksy9qpoLpLhicLIYQQe55dPjx56+HIQgghhBC7Slo1KkIIIYQQu0Paicpbb73FiSeeSHl5OeXl5Zx00km88847mYxNCCGEEP1cWonKI488wjHHHEMgEOCyyy7jsssuw+/3c/TRR/PYY49lOkYhhBBC9FNpFdOOHTuWiy66iCuvvLLD9t///vfcd999LFmyJGMB7ogU0wohhBB7np58fqfVorJ69WpOPPHETttPOukk1qxZk84hhRBCCCE6SStRGTJkCK+99lqn7a+++ipDhgzZ6aCEEEIIISDN4clXX301l112GQsWLOCggw4C4L333uPBBx/kj3/8Y7ePc8stt/DMM8+wdOlS/H4/Bx10ELfeeiujR49OJywhhBBC7GXSSlR++MMfUlJSwh133MGTTz4JOHUrTzzxBCeffHK3j/PWW29xySWXsP/++5NKpfj5z3/Osccey+LFiwkGg+mEJoToZ2xtU0+YKHEUijyyCCp/b4clhMiQtIppd5WamhqKiop46623OOyww752fymmFaJ/a9ItLNVraaQZGxsNePFQSiGj1BBcyuztEIUQXdjlM9PuKk1NTQDk5+d3eX88Hicej7ffDofDuyUuIUTf06qjLNQraCFKFgHcuNBoYsRZwyZsbTOOMpRSvR2qEGIndDtRyc/PZ/ny5QwYMIC8vLwd/vHX19f3OBDbtrniiis4+OCDmTBhQpf73HLLLdx44409PrYQYu+zWdcQppUCclA470cKhR8fCkUFNQyhmGykG1mIPVm3E5U//OEPZGVltf8/099SLrnkEhYtWsS777673X2uu+46rrrqqvbb4XBYRhkJ0Q/Z2qaCWrx42pOUrXnx0EqMepokURFiD9ftRGX27Nnt/z///PMzGsSll17Kv/71L95++20GDx683f28Xi9erzejzy2E2PNoNBY25nZmWFBt6YuFLKAqxJ4urXlU5s+fzxdffNF++/nnn+eUU07h5z//OYlEotvH0Vpz6aWX8uyzz/L6669TVlaWTjhCiH7GwCCAjwTJLu+32xIUH57dGZYQYhdIK1G5+OKLWb58OeDMUnvWWWcRCAR46qmn+OlPf9rt41xyySU88sgjPPbYY2RlZVFZWUllZSXRaDSdsITYY0W0xSKrhXeTDbyfamStFSVip/gi1cIziWoeiVfwUqKW1VYUu4uBepbWrLWiLEy1sDjVSrNO9cJZfKVVR9mgK1mjN1Gha0jorhOKdCmlGKSKsNEk6XiuGk0zEYL4KSQvo88rhNj90hqenJOTw/z58xk5ciS33norr7/+Oq+88grvvfceZ599Nhs2bOjek2+nzuWBBx7oVveSDE8We4M1VoTXUvXU2gk0sOUPMqpt3Cg8ysCD4dxWin3NbI5052G2/f1stGK8kWxgsx1v/8jOVi6mmiEOdOe077c7WNpmld7ARqqIk4C2LpggfkapoZSoARl8LotFehWbqMGNiRcPNpoocTy4GKdGMDCDzyeEyJxdPjxZa41tO02rr776KieccALgTK1fW1vbo+MI0Z/V2AleStbRSopByteWVGi+SLWwSccZrLyUGX6MtmSjRaf42GpigOFmiiuLajvBC4la6nWKYuXBpwxsrWnQKd5ONWIDh3lyd9v5rNEbWc1GfHjJbxuNY2PTTIQv9SpcuBigMhOPqUzGM5Jcstika4gSQ6EoZQCDVTEFKicjzyOE6F1pJSr77bcfv/71rznmmGN46623uPvuuwFYs2YNxcXFGQ1QiL3Zl1YLjTrJMOVrb2Fs0RYtWOThJkyKMClycQMQUi7C2mJhqoWJZojPUy3Utj1+SzJjKEWBcqNs+MxqZrIdIsfY9VMmxXSCjVTjxUMAX/t2A4NsgjQQZoOudIYTZ6iVx6VMhjGQwRSTIImBwoNb5k4RYi+SVo3K3LlzmT9/Ppdeein/8z//Q3l5OQBPP/10+9o/Qogd01qzwo4QwuzwwRrRNimt8SsDCydx2VqOclGnE9TaCZZZreTgak9StparXDTrFOvs2K4+FQAa26ax92+VpGyhUATw0UCYGPEuHr1zTGXgV168yiNJihB7mbS+Zk2aNKnDqJ8tbr/9dkxTpqwWojs0ThFsV0nG1my67iJNoklpjVd1/X3DUAqlFYndNER3y0gbo4t5TZztBjbJ7Z6PEEJ0Ja0WlQ0bNrBx48b22x999BFXXHEFDz/8MG63O2PBCbE3M5RioOGldZsWk5AycStFTFsowE/H5L9Rpyg2vBQqD1mGi4juOhFJaY0CQuyeLw8+fJgYnUbhbBEniRcPXuQ9QgjRfWklKueeey5vvPEGAJWVlcyYMYOPPvqI//mf/+Gmm27KaIBC7M3GmSFMpQhvNZw4oAzycdOIhQeDXOU0fGqtabCTaGCyGcJrGEwwQ0SwSGyTrGitqdIJCg03ZebuWUk4lxB5ZBGmBb1Nq0kKizgJSinEpfrUEmNCiD4urURl0aJFTJ8+HYAnn3ySCRMm8P777/Poo4/y4IMPZjI+IfZqIw0/081sWrBYb8eo10lq7SSmoSg03GQpN5vtBBvtOGt1nASaQ1y5jDYCbLSjKGWRYxis1hGq7DgRbRHWKdbpOF4Uh7vztts1lGmGMthHDSdEkDqaaCFClDhhWmiimWIKGKJKdkssQoi9R1pfbZLJZPtU9q+++ionnXQSAGPGjKGioiJz0QmxlzOU4hBXHgMNH4utFirsOC7DYLKRxWgjSAsWi1MtVOg4fmVQbgYYoXz806pivR0loW0sp9qFWixS2otPmUw0g0x1ZTHU7FzYuivlqBD7MoaNuooq6rCwCeKnVBVRSiFuaU0RQvRQWu8a48eP55577uH4449n3rx5/OpXvwJg8+bNFBQUZDRAIfZ2hlKMMgOMMgMkbJtVdoRldisvJqtp0Ali2JhK4dKKzcko/ySBG4ORRgC/YaK1JmraVOo4pcrkOHcx+ar3hugGlZ/RajjleggWNi5MjN3UqiOE2PuklajceuutnHrqqdx+++3Mnj2byZMnA/DPf/6zvUtICNEzSW3zQrKKRXYLBoqUbVGBs3bWANzs4wrSQIJ6O0kQkzg2/rahzQFMBuOjigR1OkGB0ftr3JjKxNxNhbxCiL1XWonKEUccQW1tLeFwmLy8r9bSuOiiiwgEAhkLToj+otFO8kSigk+sJtxaYShFBAsfilzldupO7Cig8WNiAxV2nBzT3T4Y2KMM0LDWjrKPGerFsxFCiMxJu8PYNM0OSQrA8OHDdzYeIfqdsE7xXKKKz6wwHq3IVm4ipIhjYaHwaJOAMmm0U3gNhQm4lUGzThHTNv6tulVMDfFdOG9KSqeopp4qXUeCJAF8FKsCBpAn3TtCiF2i24nKvvvuy2uvvUZeXh5Tp07dYf/3/PnzMxKcEP3BwlSYtXYUj1b4lIGhwNAKFwqFIkySYrxEsQlog5QCLwob3WHyNK01STS5uIi3LWj4dZPJ9URcJ/hSr6RG16MwcGHQSJgKaiiliLGMwFTS1SOEyKxuJyonn3xy+0ifU045ZVfFI0S/ktQ2S+xWQpg0KtWedphtqw6bODPQxrQFaHKUi4i2aCWFV5lOd0+bSp2gRadYaIdZkmwmS7kZb2Qx2ghlZIjySr2eKl1HLlm4tkpIEjrJRioJ4qdMDd7p5xFCiK0pvQcvYdyTZaKF6ItadIoH45vwaFin4zTrJFnKhdaaWpLEsbDRhHARUCYTjRCVOs4qHaFAuSk3gmigWsep0nFCymSw8uNRioi2SKAZbYQ41lWIN43WDq01cRI06Ra+0Mvw4MGvvJ32a9ateJWHA9QkmdBNCPG1evL5vdPvKC0tLdh2xz5xSRqE6B4PBl5lENcWxcpDs04R1RY+DHJwUYcmrlPElE0JXprbOnummDnkKxeNOoXWGgtNgfKwjwpiGk53T7ZyE9c2S+0WSiwv+5m5RIiSwsKLB18XCcfWwrqZ9bqCOt1AK1EaCJNHNi5t4FYdp8H34SWiY0RUjGykkFcIkTlpJSpr1qzh0ksv5c033yQW+2plVq01Siksy9rBo4UQW3iUwRgjyLt2A4PxMlT52KRjNOGs84MGHwYlhpc85SakTPY3c5joysaPQRSLTXaMf6eqyFduzG1qUrzKIIDBl3YVptpEM83Y2salXOSTjyKfjbZFBIsc5aLcCDFI+QjTzCK9jIiOEcCPFy8KCNNMggRFekCnZAVo67ASQojMSStR+fa3v43Wmr/+9a8UFxfLsupC7ISJZhar7Sgb7RgFhptcHaJGJ2nUSUKGydGuARziyiOlND4M3FvVmwRxkcTGAnxbde1oNJokoAkQIUYFVdpDLkEMTGI6wad6Dc16I3FdggsvCWy+sJqZZGYRUpVEiZNHDkopXNrEgwdwuoIaCVPIV5M7RokRUn4C7N6ZcIUQe7+0EpXPP/+cTz/9lNGjR2c6HiH6nVzDzYnuQt5PNbLGjhDFxqMMxplZTHNlM94I7fDLgIlCo7G1RimwCWPRgE0UjcYigoFBFvm4caHRVGmbJu0mQIIcI4IHp7u2RaeYb1UxzFVPKVntz+tSLrJ0kAaaMDGcLiSdwkbTSpQESUYxTEb9CCEyLq1EZf/992fDhg2SqAiRIfmGh+PdhTToJGGdwqUMipWnQ+vJ9pQaPkLKRZgUQZpIUY0zfsgDJNHKmXK/ms0YmFhAEzZ+5cXAhUUYzQAULkLKRUTbNNpxhhgd50nKIxsLizCtJImzjgqSOKs+B/GzWVfj1m5KGCCtrEKIjEkrUbn//vv5wQ9+wKZNm5gwYQJud8e+6kmTJmUkOCH6E6UU+cpDPj2b/j5buZlgZPFfqwpTVePCQOFFAzGdwFAKU9m0EMGPDxsTW8fxqCTgw8aFxkK1vR2ElJsomlaSZG0Vi6EMCnU+LkyqqUOjySWLbEK4cNFChEX2CizDYjCySrIQIjPSSlRqampYtWoVc+bMad+mlJJiWiF6yQFmHmGq2WiniOJDtbV0+BS4lIWJiW7rIjJwgbLRaCCKQRC11Zo8Cj9ae4kS6ZCobNFKBDduhjGoQ1ePhyyadSur9UaKKMDTRbGtEEL0VFqJygUXXMDUqVP5+9//LsW0QvQBbmVQrjwow48mgIXGg4GBQVV7gmJiYePXCgPQgMJqm//2q7eCsLbJUgPwECasmwkSwFQmKZ2imVaSpMghu8t6lCB+GnQzdaqRgRTuvgsghNhrpZWorFu3jn/+85+Ul5dnOh4hRJrcyo0HRd5WI2/qtdP6kcIipVO4MEjQipskFhbO3LdfzfnYolMksJlsDqbESLBWb6SZVqe1FEWoLQkK0vXio0bbwogJkrv4bIUQ/UVaicpRRx3F559/LomKEH1InsrBtF0kSOBRX3XZmJi4tIsWmklhY2PhQgEuUlpj0UKLriVKEDcG+5o5TDJyMJWikAIaCZNSKTy4ydJB/stCkjoFXXQL2dqZ/NG983NJCiEEkGaicuKJJ3LllVfyxRdfMHHixE7FtCeddFJGghNCdF8O2RSrQjZTiaVtfHjx4QU0SZK4ceHFi6ut3FZhEFYRNG4C1DFM5TPayGOkEWxfzNClTAaw1egfBSV2IStYR0D7Oq2Y3EqUgPJRQO7uO3EhxF4trbV+DGP7QyZ3ZzGtrPUjREcpnWK5tYoqqkmRQmHQQitRHcGFSZAgABqbOAlcuFBkU08zcYoxyKNMBRlvZlOinC6kqI5Sp+uI6xgu5cJHgNV6M020EMSHBzc2Nq3E0EozRpUxRA3szcsghOjjdvlaP9uu7SOE6H0tuoVN9kaadB0GKUxsslSIfSjjCxYTIUqMr5a8cOOhBS+NJHBj4yGFBXxuN7FWt3KMUYRbNbLeWkecGLRNj29ikq1y8asCGggTIY6BIksFGKpKpYhWCJFR0pEs9jzahmQcDBe4ZAgsQItuZom1mIiO4MNPiCxSpIjoZqqUJpccfHgxlQvQuHHTpKGRKEFcKAzcuHApN9m4qCDOu/YahlKPiUkOee2j+xI6Qb2uZbAawihjEjHiGBhkE5SZaYUQGdejROW4447j73//Ozk5OQD89re/5Qc/+AG5ubkA1NXVceihh7J48eKMByr6IW1D7TqoXAotdWC6wHBDpAniLU6iUjwKhk6G7KLejrbXaK1ZZ60jols7JBQuXHi1lybdiNn2p57dNi2+rTWrCLelKDYaA9U2kkcpxQDbTTMbaVEpStWADs/nUR5sHaDGrqbUGESByt1hfE06SUSn8CiDfDwynYEQokd6lKi88sorxOPx9tu/+c1vOPPMM9sTlVQqxbJlyzIaoOhHtIbmaoiHAQVVq2DjQrBTYHigbh1EGsEXguJ9wLZg9X+hegVMOh4GDOvtM+gVEVpp0o0ECHZKApRSBHSAKDG8ykuYJkI6CwtFEhs3NpoEJjkYbfUrAG5lYeooWgfpakFkL16aaKRZhwmorocq1+o4n1oNrNOtJLSNSxkMUn6mGrkMNrp+jBBCbKtHicq2dbdp1OEK0bWWGlj9LjRsgFQCWhuhqRbyhsCA4dBY6WwPDoBkKzTXwMCxEMyDho2w5HU48Nv9sisooZOkSOHfztwmLtxAlGHGUKp0Nc26GQuNIoKNgYcc3AzskOQ4f9sak64L55VSoGmb3bazOh3nZauSGjtOnnKTrdwksVltt1ClYxxLCUMlWRFCdIPUqIjeF2mAL/8NLdVOIhL0QmMNaAtaKp3ko6kWDBPcHucb/pbuH18WZBdDUyXUroXcEoi1gMsDwXzoB90MLmViYGBhYXSRWGzZnqtyGKgG0qAbiBIlbjWxQtuEVC5qm2HGzYCJF4/qegRfUicxMbfbmjLfaqTajjFEBdqHOrsx8GOymRgf2fUMUn7MfvD7EULsnB4lKkqpLpuWhegxrSFSD7WrYcN8qFsDhSPB7YdUHJIx8Oc4yUrTZkgkneQDwHRDIgLxiJOouDxOce3i1yDR9ljTBQVDYeT+TovMHkRrTRKNgm6tnhwkRJbKokmHySGn07GiqpUccgkSdBYWbKs58apCqlKVVJKgUDsrNWutaSJFi7IZTykmVSR1AvdWE8jZ2qaVFgrUALLoPKywWSdZq1vJU572JGULpRQDtIdKO0qlEWOQ8qdxhYQQ/UmPu37OP/98vF4vALFYjB/84AcEg07f9tb1K0J0ojXEm8FKOgWyGz+DcBU0bnTui7VA7iDILsFpNtHg9kG0ESzbKZ7d2pbPwHgU6jdCJOwkJVkFkEpCxTJo2ARTjoeSUbv1VNNha80q3coSu5lqO44ChhoBxhlZDDK2/4FuKIPBxlBaraWEdRNBgpjKhaVTtNKKS7sZbA7pNDlbsfIxwyziXbuOGh3H1k5HTgiT6SqfaUY267RBpa4Aori1CwsbixTZKocR5sguv6hEsUhom5DqehVorzJJoYkii5cKIb5ejxKV2bNnd7j97W9/u9M+3/3ud3cuIrF3ql0DGz93kpLWeghXOEvMaAVbEtxkA0TDzmgfX8gpnHV5QZng80Os1UlcrITTquINOY+rXuXUrxSPch4HzuO8QSdRWfYOFA53HtNH2VrzoVXPJ3YjGk0QFzbwhd3EKruFI1yFjDGytvv4AqOAfRjNensdrboFW9sYGIRUiKHGMPKNgi4fN8QIcIbysVFHaSaFC8Ug5SenbeXjcj2KPJ1PjV1NRLXix02hUcgAVYhXebs8phcTt1IksPF00RWV0DamVni3U/8ihBBb61Gi8sADD+yqOMTebPOXsOw1p0vHlw3RJmhtckbt+ELg8YKtQRmQjELVSigd7+wXjzitLTmFzv6RRsCG3FKnm6i51klGggXg8XV8XqWcYctNlVC3AYpG9MbZd8t6HeVTu5EgJtnqq4QqR7uoIcG7qTpK3b4O921rgDGAPJVHWIdJkcSNm2yV06klZVtuZVCmgl3e53QVFVJodH8St2xcDFEBltrNBDE7tbrUkaDQ8DJQ+bZzBCGE+Ip8pRG7VrwFVr3rJBt5Q5zum0Srk0R4/E5LiHI5tSiGAZ4AJKJOUlMwzElcUklAfdWCYnqcx1QsharlzjHiLbBugTOEOZX46vldHrBtp1upD1tut5BCd0pElFIMwEMTSVbbka89jqlM8ow8Co0ico28r01SdgWlFFPNPHKVm006RlRbaK2Ja4sKHcWFYpqRh6sXYhNC7Hlk1I/YtWpXOzUmOaXOpG0tNU4tiW2DywfYTlePy+skJ1tmNm2pg4JBMHAk5AwDT9Dp9sktdVpfqlfA2k/BnwvJpJMAacuZIC4ahoFjnK4eK+UkRW6v8zy25ezbx4rAq3UcP13P6moohaEVDTrR5f19UYnyMdMs4SO7ns06Sq22caEoMnzsa+QxcjstOEIIsS1JVMSuk4w7RbP1m6BmtZM0GG6nmHbLwpUut5M8ZBdBvNUptkU7k7zlD4PBU2HAyI7HTSVg1QdOt1HuICfxqN8MwVwn4WltcLp78odASy14A1C7Eb58w2mdCeXCkIkwaNxXI4kyxNY2jTRSa9cSJ44XLwOMAeSSu8PWDTeK1HbmJAFnvhJ3VzOv9WGlhp+TVCnVxIlqCw8GxcorLSlCiB6RREXsGpEGWPQSbFjgzDaLcuZBMS0nmbAiTuKiLafoVbnAm+0kLe4QjJnhzDbb1Yda7TpnwrfcgU7LSN5AZ4K4aJNzLJcHGiuc1plE1Elklr/rdB253FC3EarXQvUamHp8xpIVS1ustFdSqSvRaExMLCwqrUqKVTHlRvl218IpN0JssGqwte40pDeuLUyMHY786asMpSjB1+XstkII0R2SqIjMsy1Y/B+oXw+BPGekj+kF03RaU8D5v207LStaQ6KlLUkJOMOTh03rOkkBpx4F/dUoHl8WlI5xJnyLhJ0uJNuCYv9XycqA4U4NDDiz2SaisOELyBsE5dMzctob7A1s1psJEcK9Va1JUifZrDfjtb0MN4d3+dhRRpDFdpjNOkax9rbPnxLVFtXEKVdBhsicI0KIfijtNti//e1vHHzwwZSWlrJu3ToA5s6dy/PPP5+x4MQeqn491G+AnBInYXB5Qaec/29JLtx+JxFRhlM7YrjBm+PMMjvqMMgZ+NXx4q3OPCkNm52uG9PtJDe2/dU+gWynO2foJCgqg4GjYdxRTmKUU/JVkrKFx+/EsH7hV8nTTkjqJFVU4cXbIUkBcCs3XrxUUUViO3Um2crNsWYRpcpHNXE26AgbdIQmkow2QhzjKpIuEyFEv5RWi8rdd9/NDTfcwBVXXMHNN9+M1VZvkJuby9y5czn55JMzGqTYwzRXOTUmrrYCVk8Q0E7CkYrjFNBqKBgMqZTTJVQwwunKGTQBikY5XTqJCKz6L2z60plDRSlnMreBY5xhzpF6CG21sq9S4A9Bax2MmOZ0LVmpzsOWt/BlOVPxx1qd+pad0EorMR0jRKjrp8JHs24mQgQPXXc1FRs+TlelrNdR6nUChaJEOcN4t+0OEkKI/iKtROXOO+/kvvvu45RTTuG3v/1t+/b99tuPn/zkJxkLTuyhtq4J9QahWYMvx6kRScWdH8MFg/d1uoWGTYPyQ9paWdo+kJNxWPBvqFjiTKWfU+S0oLQ2wNK3nFaSpirQNc6aPobpTJ3fVAWhAhg6FRqr2uKxu+5GslNYymBpIsV6uxWAwW4Xo70ePGkmBmonizFcymCECjICGRUjhBCQZqKyZs0apk6d2mm71+ultbV1p4MSe7jQACdxSCWcJKJps1NX4g05rStWytkn1uhsGzTRmT9la5XLoHJ528RubTOgmjgJSmuDUzxbth9Ur3RWTwYn+RkwDMYc4YwiMt1tM9yGu2wxibTU81HeCJ6JWFg486yYSjHC7eas3CwGurv/5xEkiE/5iOkYgS5WMY4Rw6d8Xd4nhBBi+9JKVMrKyliwYAHDhg3rsP3ll19m7NixGQlM7MEKhjk1Jo2bnOHDBWXOfCqxpq9qS+yU8/9t61G22LTYqStxdzFNeyDXGfnjy4KDZ0PDBqd2xZ8NeYPQbYvrGcE8p25l+fvOsXxZTouNbZForGaVdvFe0WiGuN14DaclJG5rViQSPNoY5gcFuYS2rW3ZDrdyU0wxa1iDW7s7FdPGiVNGGZ7trH8jhBCia2klKldddRWXXHIJsVgMrTUfffQRf//737nlllu4//77Mx2j2NOYbhg7A758yWntMN2QVQjNdWDFIW8wDNsPBo5z/t+VSJNT8NoVpZzhrvFWZ46UktEANFkWn0XjzI/GaLFtBpgm+w3bn6mpBO6NXzrPrxRoqPNmMW/IgfiLR+LaqpvHayhGetysTiT5MhbngED3R9oMMYYQt+PO8GT91fBkA4NSVcoQY0i3jyWEEMKRVqJy4YUX4vf7+d///V8ikQjnnnsupaWl/PGPf+Tss8/OdIxiT5RdDPue4cwgW7PK6e4p+wYU7+PMUvt1NSD+LKhv6vo+rZ2frRKZmlSKRxrDrEokCRgKn1KsSiRZltB8Oewgzhk+FV/tOmeEjz+L1zxFrNcuRnQRh0spTBRL44keJSqmMhlljKKQwh5P+CaEEKJrac+jct5553HeeecRiURoaWmhqKgok3GJvYE3BEOmOj89VTq2bTbbZOdVj2Nhp6albZFBrTUvNLeyKpFkpMfd3kJSCERtm09jcQZnZTFj1DfaD9FS14gZ3/6U9KaChL39mWK3x1AG+eSTb+b3+LFCCCE6S+srXjQaJRJxFkgLBAJEo1Hmzp3Lf/7zn4wGJ/qxgWOgcKSz6nGkyRm5Y6WcGWlbG2HoFKfVBtiUSrEsHmegy+zQjWNrTau2CdtJ/h5u4qWWMBWpJFprhrhdRLVG687JiNaamNYM7kExrRBCiF0jrUTl5JNP5uGHHwagsbGR6dOnc8cdd3DyySdz9913ZzRA0U95/DD1BCjb30lQ6jY40+K7/c5EbmMOb+8+WpNIUmNZJLUm2ZZ4JLTNomSMhckoDVhsspL8s6WZexrreSfaygSvmyylqEimOj11Rcoi1zCZ7N/O/CtCCCF2m7S+Ms6fP58//OEPADz99NOUlJTw2Wef8Y9//IMbbriBH/7whxkNUvRTviyYPAtGHeispqwMZ3hyW21Kq20zr7WV11pbWZNMUGMlCRgmpYZJRNlUWUmylYmtIG7YjHC7qbMs/l9jA8VuN1HDpiJpsSmWYrDpwlCKJssmaBicmB2kVFpUhBCi16X1ThyJRMjKygLgP//5D6eddhqGYfCNb3yjfTp9ITImkOv8bCVm2zweDvN5LEaWYZBvGNhAUmuWJBPYyqbANHArRYNlkWeaJDRssFLUWCkSaMZ5vNgKalMWFbZmmOnlkECA/QJeyr0yjFgIIfqCtLp+ysvLee6559iwYQOvvPIKxx57LADV1dVkZ2dnNEAhurIoHmdRLMYwl4tBLhdDPG6S2sm8XUrTom1sDS22jQIGuUyWJ+NEbZsBbUlNyDCZ4PWyn99HodvghJwAZ+dlSZIihBB9SFqJyg033MBPfvIThg8fzgEHHMCBBx4IOK0rXc1YK0SmLYjFMJXCaxi02jaFpovBbhdJrWm1bOK2zfpUgrBtUew2MRQ02zbZhoHRNrnbljLakGFgKpgfj2F3UVwrhBCi96TV9XPGGWdwyCGHUFFRweTJk9u3H3300Zx66qkZC06I7Wm0LKK25tNojEbLIqY1BuBWOImIBqUUHqWoSqWotlKk0JhK0WLZZJsmvq1GCGUbJtVWirjW+GUBQCGE6DPSrhYsKSmhpKSkw7bp06fvdEBCdEeL1ixPJDCBmNYkbJskmiQaA41bQcBQFJgGWikqUkniWhPEwgYGuVwd5pyz0BgoTElShBCiT0krUTnyyCNRO3hDf/3117t1nLfffpvbb7+dTz/9lIqKCp599llOOeWUdEIS/UizZVOXskhpTVxrLMBnGChtYaOwNKQAtzJotG1MBT5l0GQnabAVY7xeSraaRE5rTYNlc6g/gBuoSiVZk0yQBHINk1FuD75urvkjhBAis9JKVKZMmdLhdjKZZMGCBSxatIjZs2d3+zitra1MnjyZCy64gNNOOy2dUEQ/tCwRR2vIUorNtk1AKdCaJAAaBbhR+GxFmc9Ds7ZJ2DZR2yRgGAw0XSg0oEhpzeZUilzDYJLXxwutzcyPR9qLcBWKgS4Xxwez2cfTxQKJQgghdqm0EpUtc6hs65e//CUtLS3dPs6sWbOYNWtWOiGIfixs2xgoPMogV2mSChJaY+OsVehXCjeKpFJ4MJjqdRKMJfE42aYibNtUWRYGTkFtscvFCcEsFifivB1tocBwUexyoZQiqTWbrCRPtTTynaw8hrplRJAQQuxOGZ3R6tvf/jbTp0/nd7/7XSYP2y4ejxOPx9tvh8PhXfI8om/zKQMbZ/r7PNOFW0ESTaOVIorGRGHiJC1W29geSzt1KycHsylxu1idTJLSmnzTZIzHS6tt81RLIwWGizzTbH8ut1IMM92sSiX4JBaRREUIIXazjHa8f/DBB/h8u27a8VtuuYWcnJz2nyFDhuyy5xJ91yiPm1zTBKVIaI1LKfzKIM90YWhn+vygYaBwkhqtNeuTSUpcbsb5fAx1ezgiEOSYYIh9fX4ChsHqVIJm2ya3i1oUpRR5hsmShDMPixBCiN0nrRaVbetJtNZUVFTwySefcP3112cksK5cd911XHXVVe23w+GwJCv9UKHLxcEBP+uSSSqSKfzKaflQGrZUn7TaNlmGQQKbFUmLItPFqVlZhLZTFJtqmz9le0XibqWIaU0KmWdFCCF2p7QSlZycnA63DcNg9OjR3HTTTe2z1O4KXq8Xr1cKGgXMCAVRWvO3pmY2pVKYgM9QFJouPG0Tug32uBjocjHW42WKz0eha/sv9zzDxGxrofF0kayEbZti08SvZPSPEELsTmklKg888ECm4xCiR1xK8c3sLPYL+Pl3cytfxGMkNGQrxSifl4MCfso93a8nKfd4GGS62GQlGW66O7SsRG2bmLaZ5svC1bY9bFt8kYixKBElqjUlhotJXj+j3V6Zi0UIITJop4ppP/30U5YsWQLA+PHjezx9fktLCytXrmy/vWbNGhYsWEB+fj5Dhw7dmdBEPzHA5eK7eTkkdDYtto0LyDKMHc7z0xWPMjg+mM0TLU2sTCXINUzcKJq1RULDvl4/03zOqs1VbaOA1qcS+JSBW0FlKsnCZIxveAMcF8huT2iEEELsHKV1zxc3qa6u5uyzz+bNN98kNzcXgMbGRo488kgef/xxCgsLu3WcN998kyOPPLLT9tmzZ/Pggw9+7ePD4TA5OTk0NTXJYogiIzanknwci7A4HiOF0yW0n8/PVJ8frzKwtObB5nqWJuOMcLk7tJ402xY1lsXpoVz29wZ67ySEEKKP68nnd1qJyllnncXq1at5+OGHGTt2LACLFy9m9uzZlJeX8/e//z29yHtIEhWxq8S1TUqDT3WcVn91Ms5fm+sZYDiTx21rQyrBIJeH72cVSBeQEEJsR08+v9Pq+nn55Zd59dVX25MUgHHjxvGnP/1plxbTCrEraK3ZbKXYkEpgAYWmixEuD16jc6JRY6VIaN1lkgKQY5jUpFK0aJscZXa5jxBCiO5LK1GxbRu3291pu9vtxpZ5JsQepMW2+HckzOJEjEhb46ILGOb2cEIgh0Gujq9zQykUTnLTVR2MDSiV4QmKhBCiH0vr/fSoo47i8ssvZ/Pmze3bNm3axJVXXsnRRx+dseCE2JUsrXm+NcxH8Qghw2Cky02520OJy8XqZIKnWhppsFIdHjPEdBNQirDuOiGvtyyGuTyEZBizEEJkRFrvpnfddRfhcJjhw4czcuRIRo4cSVlZGeFwmDvvvDPTMQqxS6xNJViSjDLYdJNtmO0tJD5lUOZys8lKsDAR7fCYYtPFOI+PaitFZKvWQ601VVYSj1Ls7w30eNSREEKIrqXV9TNkyBDmz5/Pq6++ytKlSwEYO3YsxxxzTEaDE2JXWpNKENd0WW9iKEVAGXyRiHG4P6t9u1KK4wI5JDV8mYiSsJy1hSw0uYbJ8YEsRrtlUkIhhMiUtOdRUUoxY8YMZsyYkcl4hNhtEraNsYMp8d1KEe9iUFzQMDgzlMvaVIDVyTixLYsbun0MMDO6zqcQQvR7ab+rvvbaa7z22mtUV1d3KqD961//utOBCbGr5ZkuNGBrjdFFV02rbTPC03XriEspyt1eyqX1RAghdqm0EpUbb7yRm266if3224+BAwdKf7zYpbTWVFgp1qcS2ECh4aLM7dnp2V/Hun28abiotFKUbjO6p9m2UAome3fdauBCCCG+XlqJyj333MODDz7Id77znUzHI0QHrbbNi5EwXyZitNo2CoVLwTCXmxODnYcP90SuaTIzkMULrU2sSibIMwxMpWi0LWwNB/qCjHFLoiKEEL0prUQlkUhw0EEHZToWITqwtOafrU18Eo9SYjorISuliGmbVckkT7Y0cn5WHnk7UReyrzdAtmHyaSzCqlSclNYMd3nY1xtgsscvs8sKIUQvS+sd/sILL+Sxxx7j+uuvz3Q8QrRbl0qwKBFjkOkmuNXIHJ8yGOFysyqV4PN4jCMCoZ16nnK3l5EuD1GtsdEElNFlzYoQQojdr9uJylVXXdX+f9u2+ctf/sKrr77KpEmTOs1S+/vf/z5zEYp+a3UyQUzrDknKFoZSBJXBwkR0pxMVcEaxBSQ5EUKIPqfbicpnn33W4faUKVMAWLRoUYftUlgrMiWpNeYOXk6utuHD25vOXgghxJ6v24nKG2+8sSvjEKKTXNPE1tsfPtyibYa7fZKkCCHEXkwWJBF91li3j3zDpGKb9XbAGT5sAFM8/t0fmBBCiN0mrWLa1tZWfvvb3253wrfVq1dnJDjRv+WaJrOC2Tzf2sSqVII85QwfbrItUsCB3gBjtzMhmxBCiL1D2qN+3nrrLb7zne/IhG9il5rq9RMyDD6JRViVTJDSmqEuD/t6/Uz1+nd60jchhBB9W1qJyksvvcSLL77IwQcfnOl4hOhklNtLuctDZKvhwzK/iRBC9A9pJSp5eXnk5+dnOhYhtkspRVCSEyGE6HfSKqb91a9+xQ033EAkEsl0PEIIIYQQ7dJqUbnjjjtYtWoVxcXFDB8+vNOEb/Pnz89IcEIIIYTo39JKVE455ZQMhyGEEEII0ZnSWuveDiJd4XCYnJwcmpqayM7O7u1whBBCCNENPfn8TnvCt8bGRu6//36uu+466uvrAafLZ9OmTekeUgghhBCig7S6fhYuXMgxxxxDTk4Oa9eu5fvf/z75+fk888wzrF+/nocffjjTcQohhBCiH0qrReWqq67i/PPPZ8WKFfh8vvbtxx13HG+//XbGghNCCCFE/5ZWovLxxx9z8cUXd9o+aNAgKisrdzooIYQQQghIM1Hxer2Ew+FO25cvX05hYeFOByWEEEIIAWkmKieddBI33XQTyWQScGYNXb9+PT/72c84/fTTMxqgEEIIIfqvtBKVO+64g5aWFoqKiohGoxx++OGUl5eTlZXFzTffnOkYhRBCCNFPpTXqJycnh3nz5vHuu++ycOFCWlpa2HfffTnmmGMyHZ/op+xkKzrRBEpheAtQpqe3QxJCCNEL0kpUtjjkkEPYb7/98Hq9KFkwTmSATkVJ1H1OqmUNOhVFKYVyZ+PKGY07byxKmb0dohBCiN0orUTFtm1uvvlm7rnnHqqqqli+fDkjRozg+uuvZ/jw4Xzve9/LdJxiL2MnmrGalmO1VkG8AZ2KAAo72Yw2DAgUY/iLQNvoZJhkzX/RVgzPgGmSFAshRD+SVo3Kr3/9ax588EFuu+02PJ6vmuQnTJjA/fffn7HgxN5H2ymSFe8T+/JeEiufxlr3ElbF+1i1C7BqPofGlaiGlajqz6FxNSrRguHJA3cWqcal2PH63j4FIYQQu1FaicrDDz/MX/7yF8477zxM86um+MmTJ7N06dKMBSf2LlprktUfk9z0BjreCFYKtAZlojBQ2nJuaxsVD6PDG6B+OYTXo8wA2ophRWSJBiGE6E/S6vrZtGkT5eXlnbbbtt0+ZFmIbdmxWlKVH2DHm5zuGysGygBlgp0CNEprwETZNkaiFSwbkk63EG43OhXr5bMQQgixO6XVojJu3DjeeeedTtuffvpppk6dutNBib2PTraSXPcyunUz2Em0lQDbAm2D/ipJUVpj2BYKnNYVgGQcVb8SFQtjuHw7eBYhhBB7m7RaVG644QZmz57Npk2bsG2bZ555hmXLlvHwww/zr3/9K9Mxij2c0+XzEXakEgwTlIGyLVA4P9oGrVEolNZoaCuYtVF2AmVrtJXEbKpADfP37skIIYTYrdJqUTn55JN54YUXePXVVwkGg9xwww0sWbKEF154gRkzZmQ6RrGH07E6rJYNKF8uKJfTUmK4APVVq4nWX/0fjbItlK3Btp2aFTRGKg7rXkdHqnvpTIQQQuxuPW5RSaVS/OY3v+GCCy5g3rx5uyImsZex43VgxcFXiIrWglWH1hpltNWmaFDt9SkKA1DaRivjq6HIrhDK9EKsEXvzBxgjTnAeL4QQYq/W4xYVl8vFbbfdRiqV2hXxiL1RW0OJMlwYocHgDoK20IaJ8xJ0unu0oq1lBTBcKHcIDDeYfpQ3B5QCXy66tQpaK3rtdIQQQuw+aXX9HH300bz11luZjkXspQxfPhgesGIoXz5m3hiM4ECU6Ue7vGjTDaYXbfqcBEWZToKCjVIuJ0kBMNwoX77T2pLovHq3EEKIvU9axbSzZs3i2muv5YsvvmDatGkEg8EO95900kkZCU7sHZRvAGZwEFbzajCKUZ5sjLwsZ/RPPIy2Y3gGHYXy5mOveBrqloPpAlcATK/TPWQlUMGBaMODQjvDmoUQQuz1lNbtFYzdZhjb/5BQSmFZ1k4F1V3hcJicnByamprIzs7eLc8p0mDF0fUrSdV8jBVvBE8Q7fKAlQDDgyt/PK7CfVHKwG6twl76OLplM5geUMqpTfEPQAVK0MkWlJ3CKD/ZKc4VQgixx+nJ53faa/0I8XV0ohWqF0DtErDiuNCYqSR2shE7ayAqbwJm9nBUoKS9aNYIFsM+p2Ov/KdTgOvNRXmz0cqFTkVQiSYYMEmSFCGE6Cd2avVkIbqirQS6egFUfIxqWutUyXqCEChCZQ/DFW+CRBz8xRAc2OnxRtZgVNlM7Ir/QrwJInEUGm16oWA8xsDpu/2chBBC9I4eJSrRaJTXXnuNE044AYDrrruOeDzefr9pmvzqV7/C55PZQ/srbafQG9+G2qUQqXVqTNxBp5uneSNYCXTOMFRrFVR/DjnDu6w3UbkjMYID0c3rIdEKhgsjVOp0AcnqyUII0W/0KFF56KGHePHFF9sTlbvuuovx48fj9zuzhS5dupTS0lKuvPLKzEcq9gzNG6FhJbgDKG07BbHKAJfP+belwvnX9EFrtZPMBIu6PJRyB1D5Y3bzCQghhOhLejR04tFHH+Wiiy7qsO2xxx7jjTfe4I033uD222/nySefzGiAYs+im9Z8NfOstr9qLUlFIdYEyWZoWgPhtdC0FhpWbDUjrRBCCNFRjxKVlStXMnHixPbbPp+vwwig6dOns3jx4sxFJ/Y8iRZnDhTD4yQrdhJSMYg1Ov/H9dX9WkPV59C4qrejFkII0Uf1qOunsbGxQ01KTU1Nh/tt2+5wv+iHPCGn+8flQ3uzIVKLspNOUmK2DUlWpvNvsNhZpHBLrYohtd1CCCE66lGLyuDBg1m0aNF271+4cCGDBw/e6aDEnkvllDlT3VtxCA10kpNkxLnTTjndQXbKGQUUGgi+fKdOJVKz4wMLIYTol3qUqBx33HHccMMNxGKxTvdFo1FuvPFGjj/++IwFJ/ZAWYMhbx+Iti1EmFXqjPzRttOK4vJB9hDIHQkuv9MNZFtt3UJCCCFERz2ambaqqoopU6bg8Xi49NJL2WeffQBYtmwZd911F6lUis8++4zi4uJdFvDWZGbavql9HpX6FRBrQIU3ODUpwUIIljgzzW6RjEAqAvucDP4BvRazEEKI3WeXzUxbXFzM+++/zw9/+EOuvfZatuQ4SilmzJjBn//8592WpIi+S5ke1MDp6MKJEGuATf+F8HpU1pCOc6ZoDbF6p3XFV9B7AQshhOiz0lrrB6C+vp6VK1cCUF5eTn5+fkYD647+2qKSsjSrNmtWV2jiSSjIhjFDDQpz+uhEaLEGWDPPmTfFm+10BVkJSDSBvwCGHwOBwt6OUgghxG7Sk8/vtBOVvqC/JSopS7N8k+aVTyw21YLL0LgMRcqGnCAcva/J/vuovjlza6wRahZB42qnHsVwQU4ZFE4A/+5PcoUQQvSeXb4oYab96U9/4vbbb6eyspLJkydz5513Mn26rOeyhdaaz9fYvL3I4uNlNg0timw/FOYqyoog6IXqRnjpI4vcoMk+g/tgouLLhSGHQMk0sGJtU+sHejsqIYQQfVyvJypPPPEEV111Fffccw8HHHAAc+fOZebMmSxbtoyioq6nVt8rWSmoWAMbl0G0BUJ5MHQMzdlD+NMrSf79hSbWNro3163BgMp6aI3BpGGK4jzFmkrN/BU2owb10VYVALff+RFCCCG6ode7fg444AD2339/7rrrLsCZNG7IkCH8+Mc/5tprr93hY/eGrh+tIdUcw/zwGYxlHzhJijLB5aLFW8CfKg/gcesoUuqrnNJQ4DWgPASppGJ4kWKfUoOGFo1lw2Wnugh4+2iiIoQQot/bY7p+EokEn376Kdddd137NsMwOOaYY/jggw867R+PxzvMfBsOh3dLnLuCbcHa+bDyQyhY8zzlyedwezWegIHLDSmtqFjXwsGEWeXN4wP3/l89VkPMhtUtMDKgqW5SlBVpDAUp7bS6CCGEEHuDHk34lmm1tbVYltVpSHNxcTGVlZWd9r/lllvIyclp/xkyZMjuCjWjbAv+/Xt45Gr45OEqSupfxIolqWvIo6o6n4bWfDa0ZKGsJAPtKg5PvodLJUHR/qM1RG1oTjlFtkkLmloVJfkKv/frIhBCCCH2DL2aqPTUddddR1NTU/vPhg0bejuktLz0B3jrQWiqhvLcjwi66mmIDCAWM4m2QN1mTX3EoEHlYGIxyl5DoVWLZqteOuW0rNSEoblWsWGtJpnU7FtuYBh9q9tnDx5YJoQQopf1atfPgAEDME2TqqqqDturqqooKSnptL/X68Xr3bObCypXwvt/d2png3kwILQRZSfJM9cTIIyLJBpFpNVHnW8AKZdJtg5jeWxShkbZGtNWKK1AQRKwkpqNawwmDFQMy+3tM3TUJC0+ak7wSUuSqK0Z7DE5IMvD1JAbV18t9BVCCNHn9GqLisfjYdq0abz22mvt22zb5rXXXuPAAw/sxch2nfn/hFgr+EKgrRRFrsUE7VryrAo8yRbMRBxXIkZWvImhzWsoiVaQxKTGzEcbYLsg5dbYhtNK4bGhzGUwvcAkq9Jg/qu7LgmI2ZpPWxI8UdvKozWtvNkUozHVuSBmXSzF/21u4fHaKNVJi7it+aw1yT2Vrfy9JkLSlhYWIYQQ3dPrw5OvuuoqZs+ezX777cf06dOZO3cura2tzJkzp7dD2yUqljuLC6M1E7P+yTDP5xiJJFiarVMMZWsM2yIQayHl0cTxtN+nFVgujRGHoZtcZMddNLghEIRVC2HfozS5hZlNWCoTFg/VtLI8msLWoJTGRjGwMcbZAwJMDjrxpbTm77URNsQtxvpdmG2tJyVAOGXzelOC4V4Xh+bs2S1jQgghdo9eT1TOOussampquOGGG6isrGTKlCm8/PLLe+2aQS4PmB6wEnH2L3gen92MsrVTHQtf/YuzhpJOWuTFGyi2aqhydZxXxp3UFGqDUC4kE9BUDy1h2LAS6qo12ob8IsgrYqfmVUnYmodrWlkcSVLuc+Ftq4GxtGZt3OJvNRHyXQZDvC6WRVOsjFoM936VpGyR7TKoSdm815zgoGxPp/uFEEKIbfV6ogJw6aWXcumll/Z2GLvFsCmw7H0oC35MiWslpk45yYnWoHFG9Wz519YoBQXxOgZZVe2JitLgToHbMsixFEqBx+sconoTvPgwBHOc24EgDB8L3zhWE+rBWkC1SYuKpI0JNFk2y6IpRm6VpACYSjHCa7I4avFRS4IhXhdVCZukBr/Z9XPluwwqEhYtlibHJYmKEEKIHesTiUp/MvUE+PSfMKxlASZJlKZDKwrA1n1AGvCmYqCdBEVpMGxwpSAYV/gDzs5aQ2MdJFOQSkDpcKeLqTUMiz+C1ib45nkar3/7yUFd0mJ93OKd5hiroimabaeIKWzZhFM25T6z02OUUuSYioWtSU4vcCajA43WustWHEtrTLbsJ4QQQuyYJCq7WU4RnPKzJC23V5HChae9y4cOCQo4t5UGrRUNOsdJahS44+CLKwbGDcy232BLE0QjEMgCrx+MtjLpUI5ze/0KWL0Yxk5ztltaU5uycXqdNK+F43zSHGdhJEmjZVPoMhgbcFNoGnzcarEpabMkkmJ8wNUpATEUWG2nMdJnEjIVjZYmr4sWk5qUzUFZXkKSqQghhOgGSVR6wcjJceKHu2j5uBj/lhqVHWhRIfzJJIYXVBICrYqgqchvNggnAA3xOHgD4PODb5u1/tweMF2wahGM3lfzbkuc15qiVCYtIpbNqphF1NZ4UEQsTYHbIKZhYWuSSUE3Q70uNiUs1sZTDPKanRKQppRmao7zUhrsMZkW8vBGUxyXgizTyZhsrdmQsAgZBodme/ruWkRCCCH6FElUeoPHizc/iDGxjNQXVbitpu3umlImi/1j0F4wTQilFNkegwOyTUoDBqkEmG5oaoCaCnB7IbeLtRw9Xmhqtbm1opmXw1ESttM9U2fZxG0wAbWlSceCQpeJrWF5NMX0kIcCl0FF0qY6YZHn+mpUe1XCImAqpoecUT9KKc4c4Cdpw/zWBOvjFgZgoyh2G5xW4GdswJ3BiymEEGJvJolKb3C5YfRU3DWbsA85BvvtFzESsU67JQ0PKwPjqfcNptVbzDBTMSxlMmWYSXKTASbkFTv1KbVVTm1K0WgIdrG+U2tM89moZj5tjOBREDIUaxMW8a16nlJoTKVIaU1tyqLEZdJia8KWZnLQQ31TjDXxFD5TYaIIW5qgqTg5z8cY/1cvpZBp8P2SACtjXpZGkyRtyHcbTAm6OyQ5QgghxNeRRKW3jNsf1i7F2LgSxk6FdcshFkGnklhaUWsWszQwkQAxNuVMY7qZR0GNSfkYxYxzYN1SWPop1LUtiTRiHPhDkJXbudQl2goVBXEWFUeJagutDKpTFkmtnRn/2rphlAYLSKKdtYTaRiIltKbEbTDC52J8wN2ezEzPcrF/yMM+vq7qVhT7+F3s45eXmBBCiPTJp0hvCeXAN8+FT9+AZQucCVCaG1AeHypvIKohQEmzZo3rG6SSR1MWczFsPzhwFvhDijH7wT5TNS1tC0gHs51Dffw6xCKQU+DkH82NEI7ZLD2xmTozhQZitk2ibeizhrZRRwoDJ1GxAIUmamv8ysCtFHUpmyK3yflFQYZ65WUjhBBi95BPnN6UnQ9Hng7TjoLGWqjeCHVVmC1hCry5NDVMILJsFP5NLswqaFgLb3+oyBsGQw6C0v0U2XlfHW6/ozRZefDlR1Bf5RSw+go05vQIDblJArYirttaXJTT56M02Kr9Ji7AxllDKG5rct2KqG3TrBXH5/kY4uk8RFkIIYTYVSRR6Quy85yfoaMAaK6G9+6GpS9DzWpIJNr2U+B1QWkZbPwvlB0FUy9wimkBEmiscUkKyy3qG1NUpVI0eyy+TCSxkxq3gqR2prnf0nqi2pIUW2sUiixDEbM1cQ22UmSZioEeF4dnezks2yujdYQQQuxWkqj0IeFqWP8pfPgQrP8Iok1Or0x7aqAhnoR1K5wEw54HOSM0/sNSfBqN82k0TnXKYn0iSZOtCSnFQNuk1XJWXo5a4DMUCcs5nEHb/CfKOZ5LQ8rWWEChy+DSohCHZvsY4u04I60QQgixu0ii0huaaqCxrQo2pxidXcjCFxQfPwlNFVC3FmIt0DauF0M7/90y24qNs55P44Q4H9REaaiIsyaZxFQQUoqY1hSbBhGt2Zx0hgeXmCbrbYu41mSbirqUJgXtU/Z7FOQZBkkUuYbiF4Ny+Wauf3dfGSGEEKIDSVR2p1grfP4qrP0CWhpBaVK+ApatGMtr/zmG5pYs4hGnGFYrnCTCANsGUlslKxoqxsf5fN9mXF4bO2HhNxQeBRtTFm4UBaYiz1DUpmySaOJaM9htUpmyCGCAS9Fk2aTQeJRimOnCMhT5psm5BQFm5vh68UIJIYQQDklUdpdUEt59Cr580xnhE4+gtcZKuSmJfslRo5ZQGR2DsiPUeIMs95SxPjocd4WPwAovoFCptkN5bTYd3gopyIuaVOskOaaBDbiwSGqbJsumwGWSbRrEtSaqnYQkxzQo97gIGib1KYvKpMUgl4shHjcjvS72C3kZ5e083FgIIYToDZKoZEAyoYlFndlfvT7nAz6lLWpoopkoMZLkrl1KyWf/xmyqx0ilnGYSbePRkO9uJKdkEyXGEtbmDiHLbzPM/JgvPaOY5z+Mpgo/hY/nE1jtAw3hkUmihRYDKl24y51pZU2c1hYDhQk02zZ5GJiA31AUmia1SYtmrWmybCytyDINZmQHOC03iEdqUIQQQvRBkqjshNaw5stPNcsWQJQYRm6M4vFRcse0UJFVSStx4qSwgUM+/zcDG2pQKWcuE9U2mRoAGgwrRb65gcgA2DB4MKA5qPFTfMNjfHzoJOxDK7D+30DMl4tIBm1QEPApCgcpqpQi0VZn4jecGWNt7RTKptpaUsb5PFSYKRosm0ODfkrcLsb7PYzwuDCk9UQIIUQfJYlKmlqaNE//VbN0VRzv/hsITanGM7CZ1f4k+FLOQoPOtK8oS1OyfhOG5fTdKNvuuFqydtbZcSVTFFfXkgz42FRaQjzoZp/GNSwfM5haXzbRSzbgGduK6+WBmApKD9AMLFFsjjozzeabBjmmQdi222aX1bTamiFuk5jW2ArOycvi+Jxgz05Wa2f55SXzYdMaMEwYOd6ZUbewNINXVQghhOhIEpU0JJM2v79Js2xzjOEXLcQ/uh4VSmKZGsNltY+kUVqR3dhM6fI1ZNc2opIW2Fu1pGxJVJQCw9nfE0uQ29hI3YB8on4/ueEwxfEmrBwPFU0+kkc0QoOPceODMMpCKRflXjetbQsM+pXC19ZCsjllETAMUIq41szICjAjO9D5hMINUFsJ2oZIK6xdCvU1EMyCUZOcwt+P34B4DELZTrfV+y/D4k9gxrdg5Lhdf9GFEEL0S5Ko9JDWmj/8WvPZUpvyHy0hZ2ItdkqBVtiWxvBocsLNDKmpYdiaTQxYuQl3axR3LIGytkpSOh7U+UeBYdn4I3HcyRSW12jPZdxuiwEFLURjWbi/28j0UC4fp+KsT6QodplM8XpYnkiyORZjRFMd5W6D/KwsxjfUUNTaxNBwHTnadop641FIJiFc70xhG485CyU21TkLA+XkQ+kwqN4ECz9wEpmyMTBs1FcxDyiBivXwxrNQMrjrlRCFEEKInSSJSg+9+i+b9z+C0PgG8ibVkmhx4w6mcMUs9mlYx8T1qyhqbMQVT6I2N6ESFiTahuts25KyNVuDodqHH9uGIhSJ0hIM0JwTAjS+gE1oWJJwq4tEC5wzMMQbzVE2JlO4Wpv51rsvMnHxxxRFwvjRuFJJcLsgGoF4xHl+bTvjn20bthTQ+nzgD4K2nISjNeyMTBoxFlY2Q2P9/2/vzuOjKu/Fj3/OrJlM9g0SyCJEIGxq2KGKCojIK4JtESn9CUjF60JBRIWrshQXbnu1erUo9CopFQq9haC1LxAEEUSWsATDliYQIJiEJSGQdZKZeX5/nGR0SAiJgpPI9/16zcvMc+Y8853nBOebZztQUgRR7Tw3METToE17OH0Mcg7CLQOvZ7MLIYS4QUmi0gxnv1Esex9cJgjpVoRmcmO/4GBg3gG65J/A31GJAf1mf5RVQ3XtMJDTDUYNnFeo+LtzVUwGHDYrCrA6qjl6cwdqzGY0BQYMaJZqLFV+HLuo8UiiH7fZrBQcPkDY//4X/ieyMZpMaJpBTzZqh32wWCAsAs6fgRoHGI1gNEFNNQQE6slLaYleHhwOZrPemxIZDeVl+hBQ8TmoqP25jtGo13++8Ho2uxBCiBuYJCrNsGOLm1IHYAFTYDUdT+dx1/F0Qh2lGJT6Nt9QQGUNmqb0m+togGYAze0Z5vFSN7FWA7fRQLndhr3KQU7HeHI6xutTXpSGwWkGczVBpy5x874NkJ6N9dhRErIPwqWLYLWCwQRuhz6U43bpwzoGg35cQ++50ZS+nhkFLhdYzFBVCSaT3pMSFaMPAV04r59rNIGzun6iUhe7yXydWlwIIcSNThKVJiovVRzYB+7amwdHlhczOGcPISfz0bLPwrlysBjhpnC0DqGeIRyUG9Any3qGWtyXzVXRQBkMKLORkzfFcqhbZ/Jj2nAuIhy3pg8HVdcYsOGgx8Z0On58kMQzJ6GyRE8wXC69bpMZqqr0HXBtNjDWbmvrckF5KVgttRN93fo+/JpBn7NiterBKg2qHeBy6j0lNQ4Ii4SLxbV3L7xszKraoScyMQnXr+GFEELc0CRRaaJqB1RU4FnR0+PcUUJ27sa4NRtKq2uXI2tgNkK7ILT7k8Bu0ctU7XyQup4VI/pwUC1l1HBaLZzpnkDaL0ZSabZQ1z+jALfSqHCY6b7nAF3/tZuQcxfxM6InJhYXOBx6QlLtqH0PDRzVemKCVrsH/3fXQ9fGgUvv4TEa9YTD7QRlrk2k3GDxg/BoOHUMqiv1eSyeBqmC/FOQ0Fl/CCGEENeBJCpNZLMDptq7DDsdDPq/97Dsy0Q5vx3yQUPfZS33AqTug7E9IcyvNrlRehJT49YTAZMBt9GIUuCyWym6qS2nu3Wk2vjtJXEpqHYbOV9iw1TmInZ7Nn6lbsLMCjNGvU6DUU803G79UVOjJx2q9nldD4rZTO2GLTqzRZ+jYjF9O3zjVrW3Za4BkwVCI/VzQyL0YaGiM3C+QD/faNJXAt0zRq9LCCGEuA4kUWkiP5tGdBzknIIB3/yd0EOZ4FLeC3gUeiJi0uCSAz4/hjb+Fn30x+FEuRWaUdOfK/3hDPGnuGM0F+MiORYVhUMz4HIbqHYbcbqNlFaauVjqT/vs83QsqSbG5MRkssGlEj0hwQTUDsEoVZu8GMBZO3NX0/SyoBB93onSant3tG+Tl8pyvffEYNCHqC6ch4hoKCrU7wvQfwj87F745oReZjBCdBzE3SxJihBCiOtKEpVm6NgZTuw9xwO5r+t7olyJU6EZ3HD6ElysRnUIhVIHVDlRLoUyG6m2+VEVFkhZVCjFgUEcCW7HelsSpaV+VNYYuVhq4VKRlfKLfgQ6TTygmYizGmt7RGonuCqlr+ipdnw7F0W59d4RV+2QkMUM/nZ93onbpc9bUeh7qfjZ9Ncrt94rE9kWEjrp81JCI/WJszd1gfYd9eMhET9SSwshhBA6SVSaIambgQrjDtpX5lz1tUopcLrQzpRDcjyOcDMuk5EaTaNGM+A0miix+nPcP5JdER3ICG5PZY2FikoT2SeDKC+14q4wYjdqpMRYGRZrhD3B+lLginLwD9BX6Gga2Pz1JKTu/kHVDj35sAdA23bQLlYvM5n0IR3l1CfcOKshNEJPTjp0gbiOENVe70URQgghWgBJVJohPh4qDUcxuK+0Icp3uBRuzYCzy71Yfz6X7VWFZFaep7jyIvnKTY3SKDP6UW7yw2Uy4FZQVWnicE4opZcsWBREWg38IsbMC11tRPrZodttkJcL7jK9h8MeqK/mMRj1IRizRR/OsfpBYhL8vycgsZu+wZufzXsyrNvd8EoeIYQQogWRRKUZDEYI7+JAmQxQffXXVwYFsO9nfRloMDDQP5oSk4VLfsEUVlTgMLgwGGpX4rigstzMqdNBlJda8DPC8DATo2OsPBRnxVK3rPmu+/RN277cqM8jqUs0qir0/4aEQZeecPswGDxCT05A73Gp92EM16xdhBBCiOtFEpVGKKXYW17A15Vf4dbKKcVMZJyT+wP9CCiqbnAnfM+5Bo3c/rewv1ci7VUFHQwB3G+JoKvRTlhNKWuLyilWLhwOA2WlVi5c8MPhNhBk1ngszsrTiTYirZclE0EhMG4KdEuGTf+Ekzn6XJTgUEi6BbreCt2T9edCCCHET4AkKldQ6rjIOscarFQQZQVQtAX8uxlwdAjDXlKG5nI3eK7S4EzHdqx6bSp+mos8VU4HArBoBrqa7HQNtXO3oYYlJxx8XlSDo0YRZILkYBPPJvoxKLyRlTT+dug/WH+43frcFINRekiEEEL8JEmi0gCHs4oN1X/Hj2r93j2ApaiMNp8d5uZ3P8N6oljfHr9287fvUhqUR4fyyYLJFMZFEo2b6gZumdwt2MybPU2cq1ZUOd2EWowEmps5X8RgkARFCCHET5okKg3IdO7CpKoxuF1Ya2oI232MuGU7CNudi8GpwN+iZyQVNbU7zOqJiLKYqIgN4WyfTiRlZpGb3ANXbAAhNHwvHE3TiLJqcPkQjxBCCCEASVTqUUpR4Mim7YVighwO/HKLCP9wJ7ZD+XqSAvrE1QAL2Ez6HZJdCowaKtCMMy4MS7WT4KKL3HQ4m4uxXelgCPDthxJCCCFaKUlULuNyVRB3/jQ2pxOUwv/AacxnSjFWNLDMx2gAW21viAYaGpaySqw2PzTlJqawmF6GNoRrsi+JEEII8X1IonKZ4qIt2KocUFOD5nBiPX4eQ7VLvw9OYxRobjDUuACwOKGHtS2xRlmBI4QQQnxfkqh8x/mze6jJ+4wQl8IAqKoaLNVONFW7OVoDk2IvpwwGzBYbCdYwLF37yYZqQgghxA8gszhrXSzJxnniQ6y1SQqAZjWh2gSimYy4/a6e0ykjWG3+hFoCsCT11Pc2EUIIIcT3JolKrYrj/4vp8g4TTaOma1vcwX5gt6AaaS2lgbKaMUS1hZ8NhV9O0O+1I4QQQojvTYZ+gJqacow1jgaPOW+OxDG4I34b/w1VTgyXqtAa2jvFFkTJqCnEPpwCnbrrNwAUQgghxA8i36aAs+rslbfDN2hUD+yAq10I5j2n4N/nMX1TgqnMgTIaqIoJ5v/aTWab/SkWzfX/dhWQEEIIIX4wSVQAg0kfoqm9RWADL9Bw3RRO9U3hnAkNpNJiRhlNVFYb+cuakXxzqDOv/kbDJkmKEEIIcU1JogJY/CJwa2C8yqKeGoOBYrOdktIQtu5M5vDBTpgd/vzXM5DcQ5pSCCGEuNbk2xV9K3tjcHdUycErDgEpoNDwOHu2x5NfCO2D4dHfaiR1bHh7fCGEEEL8cJKo1ArvNJmzma9iqDxXL1lRgLHNHfROuJnevXwRnRBCCHFjkkSllqZptOn5ApfO7qYyLw3NVQVoaH7hBCROwuYf4+sQhRBCiBuOJCqXCYrqS1BUX1+HIYQQQghkwzchhBBCtGCSqAghhBCixZJERQghhBAtliQqQgghhGixJFERQgghRIsliYoQQgghWixJVIQQQgjRYkmiIoQQQogWSxIVIYQQQrRYkqgIIYQQosVq1VvoK6UAuHTpko8jEUIIIURT1X1v132PN6ZVJyqlpaUAxMbG+jgSIYQQQjRXaWkpwcHBjb5GU01JZ1oot9tNfn4+gYGBaJrm63BajUuXLhEbG0teXh5BQUG+DqdVk7a8dqQtrx1py2tH2vLa+W5bBgYGUlpaSkxMDAZD47NQWnWPisFgoH379r4Oo9UKCgqSf3jXiLTltSNtee1IW1470pbXTl1bXq0npY5MphVCCCFEiyWJihBCCCFaLElUbkBWq5W5c+ditVp9HUqrJ2157UhbXjvSlteOtOW1833bslVPphVCCCHET5v0qAghhBCixZJERQghhBAtliQqQgghhGixJFERQgghRIslicoN5k9/+hMJCQn4+fnRr18/du/e7euQWqWtW7eSkpJCTEwMmqaxdu1aX4fUKr322mv06dOHwMBAoqKiGD16NFlZWb4Oq1V699136dmzp2czrQEDBrBu3Tpfh/WTsHDhQjRNY/r06b4OpdWZN28emqZ5Pbp06dKsOiRRuYGsWrWKGTNmMHfuXPbt28ctt9zC8OHDOXv2rK9Da3XKy8u55ZZb+NOf/uTrUFq1L774gieffJKdO3eyceNGampquOeeeygvL/d1aK1O+/btWbhwIXv37mXPnj3cfffdjBo1ikOHDvk6tFYtPT2dxYsX07NnT1+H0mp169aNgoICz+PLL79s1vmyPPkG0q9fP/r06cM777wD6PdKio2NZerUqcyaNcvH0bVemqaRlpbG6NGjfR1Kq3fu3DmioqL44osvuOOOO3wdTqsXFhbGH/7wByZPnuzrUFqlsrIykpOTWbRoES+//DK33norb775pq/DalXmzZvH2rVrycjI+N51SI/KDaK6upq9e/cydOhQT5nBYGDo0KHs2LHDh5EJ8a2LFy8C+hes+P5cLhcrV66kvLycAQMG+DqcVuvJJ59k5MiRXv/fFM2XnZ1NTEwMHTp0YPz48Zw6dapZ57fqmxKKpjt//jwul4s2bdp4lbdp04ajR4/6KCohvuV2u5k+fTqDBg2ie/fuvg6nVcrMzGTAgAFUVVUREBBAWloaXbt29XVYrdLKlSvZt28f6enpvg6lVevXrx+pqal07tyZgoIC5s+fz+23387BgwcJDAxsUh2SqAghWoQnn3ySgwcPNnv8Wnyrc+fOZGRkcPHiRf7xj38wYcIEvvjiC0lWmikvL49p06axceNG/Pz8fB1OqzZixAjPzz179qRfv37Ex8fz97//vclDkpKo3CAiIiIwGo2cOXPGq/zMmTO0bdvWR1EJoXvqqaf45JNP2Lp1K+3bt/d1OK2WxWIhMTERgF69epGens5bb73F4sWLfRxZ67J3717Onj1LcnKyp8zlcrF161beeecdHA4HRqPRhxG2XiEhIXTq1ImcnJwmnyNzVG4QFouFXr16sWnTJk+Z2+1m06ZNMoYtfEYpxVNPPUVaWhqbN2/mpptu8nVIPylutxuHw+HrMFqdIUOGkJmZSUZGhufRu3dvxo8fT0ZGhiQpP0BZWRnHjh0jOjq6yedIj8oNZMaMGUyYMIHevXvTt29f3nzzTcrLy5k0aZKvQ2t1ysrKvP4iyM3NJSMjg7CwMOLi4nwYWevy5JNPsmLFCj766CMCAwMpLCwEIDg4GJvN5uPoWpfZs2czYsQI4uLiKC0tZcWKFWzZsoVPP/3U16G1OoGBgfXmSdntdsLDw2X+VDPNnDmTlJQU4uPjyc/PZ+7cuRiNRsaNG9fkOiRRuYGMHTuWc+fOMWfOHAoLC7n11ltZv359vQm24ur27NnDXXfd5Xk+Y8YMACZMmEBqaqqPomp93n33XQDuvPNOr/KlS5cyceLEHz+gVuzs2bM8/PDDFBQUEBwcTM+ePfn0008ZNmyYr0MTN7DTp08zbtw4ioqKiIyM5Gc/+xk7d+4kMjKyyXXIPipCCCGEaLFkjooQQgghWixJVIQQQgjRYkmiIoQQQogWSxIVIYQQQrRYkqgIIYQQosWSREUIIYQQLZYkKkIIIYRosSRRES1OQkICb775pue5pmmsXbvWZ/GI+k6cOIGmaWRkZPg6lBvWxIkTGT169I/yXu+//z733HOPT967Ofr378/q1at9HYa4xiRRET+avLw8HnnkEWJiYrBYLMTHxzNt2jSKioq8Xpeens6UKVOaVXd6ejqDBg3CbrcTFRXFL3/5S5xOZ5POvXTpEi+99BLdunXDZrMRHh5Onz59+P3vf8+FCxeaFUdz3HnnnUyfPr1eeWpqKiEhIdftfa+F2NhYCgoKvvd24qmpqWia1ujjxIkT1zZoH9uyZQuaplFSUtKs866UFL711ls/yi7IVVVVvPTSS8ydO7fJ58ybN49bb731+gV1BS+++CKzZs3C7Xb/6O8trh9JVMSP4vjx4/Tu3Zvs7Gz+9re/kZOTw3vvvee5KWJxcbHntZGRkfj7+zer/rFjxxIYGMiePXv4/PPPvba3b0xxcTH9+/dn6dKlzJw5k127drFv3z5eeeUV9u/fz4oVK5oVx43CaDTStm1bTKbvdxeOsWPHUlBQ4HkMGDCARx991KssNjbW8/rq6uprFbpP1NTUXPM6g4ODf5SE9h//+AdBQUEMGjTour/XDzVixAhKS0tZt26dr0MR15IS4kdw7733qvbt26uKigqv8oKCAuXv76/+4z/+w1MWHx+v/vjHP3qeAyotLa3R+jt27KgWL17c7Lgee+wxZbfb1TfffNPgcbfb7fl52bJlqlevXiogIEC1adNGjRs3Tp05c8ZzvLi4WP3qV79SERERys/PTyUmJqoPPvjgiu89ePBgNW3atHrlS5cuVcHBwZ7nn3/+uerTp4/y9/dXwcHBauDAgerEiRNKKaVycnLU/fffr6KiopTdble9e/dWGzdu9KovPz9f3XfffcrPz08lJCSo5cuX12vjCxcuqMmTJ6uIiAgVGBio7rrrLpWRkXHF2HNzcxWg9u/f74kRUJ999pnq1auXstlsasCAAero0aNXrKOxtpgwYYIaNWqUevnll1V0dLRKSEhQSl39GjQljoyMDHXnnXeqgIAAFRgYqJKTk1V6erpX26elpanExERltVrVPffco06dOuUV76JFi1SHDh2U2WxWnTp1UsuWLfM6DqhFixaplJQU5e/vryZMmKAAr8eECROUUkqtW7dODRo0SAUHB6uwsDA1cuRIlZOT41XXdx+DBw/2aqM6VVVVaurUqSoyMlJZrVY1aNAgtXv37ma1TUNGjhypZs6c6VV2+Xvv3r1bRUREqIULF6qlS5fWi3np0qVKKaVOnjyp7r//fmW321VgYKAaM2aMKiws9Kp77dq16rbbblNWq1XddNNNat68eaqmpkYppf97nDt3roqNjVUWi0VFR0erqVOnep0/adIk9etf/7rRzyRaF+lREdddcXExn376KU888US9O+K2bduW8ePHs2rVKtQPuO3UqFGjePnll5s1XOB2u1m1ahW//vWviYmJafA1mqZ5fq6pqWHBggUcOHCAtWvXcuLECa8b57300kscPnyYdevWceTIEd59910iIiK+70cCwOl0Mnr0aAYPHszXX3/Njh07mDJliieusrIy7rvvPjZt2sT+/fu59957SUlJ4dSpU546Hn74YfLz89myZQurV69myZIlnD171ut9xowZw9mzZ1m3bh179+4lOTmZIUOGePV0NcULL7zA66+/zp49ezCZTDzyyCPf+7Nv2rSJrKwsNm7cyCeffAJc/Ro0JY7x48fTvn170tPT2bt3L7NmzcJsNnuOV1RU8Morr7Bs2TK2b99OSUkJDz30kOd4Wloa06ZN45lnnuHgwYM89thjTJo0ic8//9wrhnnz5vHAAw+QmZnJ/PnzPXMnsrKyKCgo4K233gKgvLycGTNmsGfPHjZt2oTBYOCBBx7wDF/s3r0bgM8++4yCggLWrFnTYHs999xzrF69mr/85S/s27ePxMREhg8fXu8aNvcaffnll/Tu3fuKxzdv3sywYcN45ZVXeP755xk7dizPPPMM3bp18/SOjR07FrfbzahRoyguLuaLL75g48aNHD9+nLFjx3rq2rZtGw8//DDTpk3j8OHDLF68mNTUVF555RUAVq9ezR//+EcWL15MdnY2a9eupUePHl7x9O3bl23btjX6mUQr4+tMSfz07dy5s9FekTfeeEMBnr+Mm9ujkpqaqsLCwtRrr72m4uLi1KFDhzzH/vu//1t169atwfMKCwsVoN544w2v8uTkZGW325XdblcPPfTQFd83PT1dAaq0tFQppVRKSoqaNGnSFV9/uab0qBQVFSlAbdmypcn1duvWTb399ttKKaWOHDmiAE+PgVJKZWdnK8DTxtu2bVNBQUGqqqrKq57Geqka61Gp869//UsBqrKy8qoxN9Sj0qZNG+VwOBo97/Jr0JQ4AgMDVWpqaoP11fUG7Ny501NW14a7du1SSik1cOBA9eijj3qdN2bMGHXfffd5ngNq+vTpXq+pi+3ChQuNfqZz584pQGVmZiql6rd1ne/2apSVlSmz2ayWL1/uOV5dXa1iYmLU73//+ya3zeUuXLigALV169YG33vNmjUqICBArVy50uv43Llz1S233OJVtmHDBmU0Gr16pw4dOqQAT8/PkCFD1Kuvvup13l//+lcVHR2tlFLq9ddfV506dVLV1dUNxquUUh999JEyGAzK5XJd8TWidZEeFfGjUdfhRt1ut5tZs2axYMECZs2axZw5c7jjjjvYuXMnAJmZmdx+++3NqjMtLY2MjAyGDx9OZWWlp3zv3r2kpKQQFxdHYGAggwcPBvD0Xjz++OOsXLmSW2+9leeee46vvvrqB3++sLAwJk6cyPDhw0lJSeGtt96ioKDAc7ysrIyZM2eSlJRESEgIAQEBHDlyxBNTVlYWJpOJ5ORkzzmJiYmEhoZ6nh84cICysjLCw8MJCAjwPHJzczl27Fiz4u3Zs6fn5+joaIB6vTdN1aNHDywWi1fZ1a5BU+KYMWMGv/nNbxg6dCgLFy6s9xlNJhN9+vTxPO/SpQshISEcOXIEgCNHjtSbrzFo0CDP8TqN9UJ8V3Z2NuPGjaNDhw4EBQWRkJDQ4GdqzLFjx6ipqfGKy2w207dv33pxNeca1f3++/n51Tu2a9cuxowZw1//+levXpErOXLkCLGxsV5zj7p27erVtgcOHOB3v/ud1+9h3dyliooKxowZQ2VlJR06dODRRx8lLS2t3qR5m82G2+3G4XBcNSbROkiiIq67xMRENE2r9z/MOkeOHCE0NJTIyMhm13327FkKCwu57bbbAJg8eTIvvvgiQ4cOZeXKlaxevZpJkyY1eG5kZCQhISFkZWV5lcfFxZGYmEhgYKCnrLy8nOHDhxMUFMTy5ctJT08nLS0N+Hai54gRIzh58iRPP/00+fn5DBkyhJkzZ14x9qCgIC5evFivvKSkhODgYM/zpUuXsmPHDgYOHMiqVavo1KmTJxGbOXMmaWlpvPrqq2zbto2MjAx69OjRrMmnZWVlREdHk5GR4fXIysri2WefbXI9gNcQSt3w1PddgWG3272eN+UaNCWOefPmcejQIUaOHMnmzZvp2rWrp55r6fL4ryQlJYXi4mL+/Oc/s2vXLnbt2gVcvwnEzblG4eHhaJrW4Oq3jh070qVLFz744INrNlm4rKyM+fPne/0eZmZmkp2djZ+fH7GxsWRlZbFo0SJsNhtPPPEEd9xxh9f7FxcXY7fb6w0zi9ZLEhVx3YWHhzNs2DAWLVrk1UMBUFhYyPLlyxk7dqzXfJCmCg0NxWazsXXrVk/Z9OnTef755xk3bhx33303ffv2bfBcg8HAgw8+yIcffkh+fn6j73P06FGKiopYuHAht99+O126dGnwr9DIyEgmTJjAhx9+yJtvvsmSJUuuWGfnzp3Zt29fvfJ9+/bRqVMnr7LbbruN2bNn89VXX9G9e3fPaqTt27czceJEHnjgAXr06EHbtm295ul07twZp9PJ/v37PWU5OTleXzzJyckUFhZiMplITEz0evzQOTbXUlOvQVN06tSJp59+mg0bNvDzn/+cpUuXeo45nU727NnjeZ6VlUVJSQlJSUkAJCUlsX37dq/6tm/fTteuXRt9z7reIZfL5SkrKioiKyuLF198kSFDhpCUlFQvKWjovMt17NgRi8XiFVdNTQ3p6elXjetqMXft2pXDhw/XOxYREcHmzZvJycnhwQcf9EoWLBZLvXiTkpLIy8sjLy/PU3b48GFKSko8MSYnJ5OVlVXv9zAxMRGDQf+6stlspKSk8D//8z9s2bKFHTt2kJmZ6anz4MGDnj9cxE+DJCriR/HOO+/gcDgYPnw4W7duJS8vj/Xr1zNs2DDatWvnmSzXXFarlWnTpjF//nzefvttsrOzPT0Ldrudbdu21esx+a5XX32Vdu3a0bdvXz744AO+/vprjh07RlpaGjt27MBoNAJ6L4vFYuHtt9/m+PHjfPzxxyxYsMCrrjlz5vDRRx+Rk5PDoUOH+OSTTzxfbg15/PHH+fe//81vf/tbvv76a7KysnjjjTf429/+xjPPPANAbm4us2fPZseOHZw8eZINGzaQnZ3tqffmm29mzZo1ZGRkcODAAX71q195/XXcpUsXhg4dypQpU9i9ezf79+9nypQp2Gw2T2I4dOhQBgwYwOjRo9mwYQMnTpzgq6++4oUXXvD6wva1plyDq6msrOSpp55iy5YtnDx5ku3bt5Oenu51ncxmM1OnTmXXrl3s3buXiRMn0r9/f0/C++yzz5Kamsq7775LdnY2b7zxBmvWrGm09wwgPj4eTdP45JNPOHfuHGVlZYSGhhIeHs6SJUvIyclh8+bNzJgxw+u8qKgobDYb69ev58yZMw32wtntdh5//HGeffZZ1q9fz+HDh3n00UepqKhg8uTJzWqjyw0fPpwvv/yywWNRUVFs3ryZo0ePMm7cOM8wTEJCArm5uWRkZHD+/HkcDgdDhw6lR48ejB8/nn379rF7924efvhhBg8e7BkmmzNnDsuWLWP+/PkcOnSII0eOsHLlSl588UVA33/n/fff5+DBgxw/fpwPP/wQm81GfHy8J6Zt27Z5bU4nfgJ8PUlG3DhOnDjhmSRpNptVbGysmjp1qjp//rzX65o7mdblcqn33ntPde/eXfn5+an27duradOmqXPnzqnhw4erjh07qnPnzl3x/JKSEjV79mzVpUsXZbValc1mUz179lQvvfSSKioq8rxuxYoVKiEhQVmtVjVgwAD18ccfe01yXLBggUpKSlI2m02FhYWpUaNGqePHjzfaJrt371bDhg1TkZGRKjg4WPXr18/rsxYWFqrRo0er6OhoZbFYVHx8vJozZ45nomBubq666667lM1mU7Gxseqdd96pNzE1Pz9fjRgxQlmtVhUfH69WrFihoqKi1Hvvved5zaVLl9TUqVNVTEyM59qMHz++3rLcOleaTPvdiaL79+9XgMrNzW20DZS68vLky13tGlwtDofDoR566CHP8taYmBj11FNPeSaT1k1kXr16terQoYOyWq1q6NCh6uTJk15xNGV5ckO/s7/73e9U27ZtlaZpnuXJGzduVElJScpqtaqePXuqLVu21Dv/z3/+s4qNjVUGg+GKy5MrKyvV1KlTVURERKPLk5t7jQ4dOqRsNpsqKSnxlF3+3vn5+apTp07qwQcfVE6nU1VVValf/OIXKiQkpNnLk9evX68GDhyobDabCgoKUn379lVLlixRSimVlpam+vXrp4KCgpTdblf9+/f3mhx8+vRpZTabVV5e3hU/j2h9NKWuwwxHIUSLdfr0aWJjY/nss88YMmSIr8NpUVJTU5k+fXqzd4/9qRszZgzJycnMnj3b16E06vnnn+fChQuNDrmK1uf7bSsphGg1Nm/eTFlZGT169KCgoIDnnnuOhIQE7rjjDl+HJlqJP/zhD/zzn//0dRhXFRUVVW/oTLR+kqgI8RNXU1PDf/7nf3L8+HECAwMZOHAgy5cv91r9IURjEhISmDp1qq/DuKq6uV3ip0WGfoQQQgjRYsmqHyGEEEK0WJKoCCGEEKLFkkRFCCGEEC2WJCpCCCGEaLEkURFCCCFEiyWJihBCCCFaLElUhBBCCNFiSaIihBBCiBZLEhUhhBBCtFj/H33t11yKCBCoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "colors = cm.rainbow(np.linspace(0, 1, len(df_merged_s)))\n", + "plt.scatter(x=df_merged_s[\"gas\"], y=df_merged_s[\"carbon\"], color=colors, alpha=0.5)\n", + "plt.title(\"Transportation Gas Usage vs Greenhouse Emissions\")\n", + "plt.xlabel(\"Oil & Gas Usage in Transportation (ktoes)\")\n", + "plt.ylabel(\"Greenhouse Emissions (ktonnes)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import r2_score" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "from numpy.linalg import det" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "np_remove = lambda a, i: np.concatenate([a[:i,], a[i + 1:,]])\n", + "lin_reg = lambda X, Y: np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, Y))\n", + "\n", + "def loo_cv_pred(X, Y):\n", + "\t\"\"\"\n", + "\tPredict Y values using leave one out cross validation\n", + "\n", + "\t:param X: The X features array (including bias column)\n", + "\t:param Y: The true Y values\n", + "\t:return: An array of the predicted Y-Vals\n", + "\t\"\"\"\n", + "\ty_pred = []\n", + "\tfor i in range(len(X)):\n", + "\t\tholdout_X = X[i]\n", + "\t\t\n", + "\t\tloo_X = np_remove(X, i)\n", + "\t\tloo_y = np_remove(Y, i)\n", + "\t\tloo_b = lin_reg(loo_X, loo_y)\n", + "\n", + "\t\ty_hat = np.matmul(holdout_X, loo_b)\n", + "\t\ty_pred.append(y_hat)\n", + "\t\n", + "\treturn y_pred" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n", + "(31,)\n" + ] + }, + { + "data": { + "text/plain": [ + "[9.312309954476866,\n", + " -3.319029950308874,\n", + " 0.40936063240213016,\n", + " -1.2318379599422562,\n", + " -1.6296754835627567,\n", + " -6.116470823215938,\n", + " 0.7901643333450394,\n", + " 2.6185385994553063,\n", + " 1.1634322574345237,\n", + " 0.8232133710834137,\n", + " 0.3000635551722315,\n", + " -2.761932447995645,\n", + " -0.06367480474389842,\n", + " 5.026412885412768,\n", + " -7.231512982910489,\n", + " -0.43386834078451253,\n", + " 1.844479083633165,\n", + " 8.13620446791802,\n", + " -14.886636570200494,\n", + " -2.7958639423266707,\n", + " 6.109786577763444,\n", + " 1.2671627819990139,\n", + " -4.776989436113844,\n", + " -1.7122694229302322,\n", + " 26.986701934447353,\n", + " -7.493957212583879,\n", + " -0.28498263627614584,\n", + " 1.2836118948656443,\n", + " 2.520208382140652,\n", + " 2.1589159692433135,\n", + " 0.939576871096933,\n", + " -11.29382841027843,\n", + " -0.5342812935414614,\n", + " 1.0123551457640687,\n", + " -22.539435302470906,\n", + " 8.787757817567584,\n", + " -1.038344681643749,\n", + " -22.824815211174595,\n", + " -26.423034750581166,\n", + " 2.400762019210572,\n", + " 2.1918197644724273,\n", + " -10.2061297722217,\n", + " -2.219064538014134,\n", + " 1.440897554066325,\n", + " -1.151874502207284,\n", + " -4.21866958827294,\n", + " -0.9008863131155858,\n", + " -32.828490826153605,\n", + " -0.9661049887271496,\n", + " -24.668389970263007,\n", + " 2.3609939640756608,\n", + " -1.9793162792690229,\n", + " 3.4059240062483394,\n", + " 0.6185075635576371,\n", + " 0.5286900275730639,\n", + " -3.1059985097028857,\n", + " -0.2667843514099877,\n", + " -2.7904409847404246,\n", + " -10.950037607405491,\n", + " 1.6439790980951865,\n", + " 6.089445146783589,\n", + " 52.109744246705986,\n", + " 111.59879458462365,\n", + " 2.784920384653006,\n", + " 20.56158064812321,\n", + " -6.725411379409707,\n", + " 1.6939629234887335,\n", + " 10.29301235541864,\n", + " 6.990375275221277,\n", + " 3.172387947265115,\n", + " 4.170765282977552,\n", + " 0.6629244093020912,\n", + " 2.8304457079901724,\n", + " -1.8664227483395828,\n", + " -20.102071933852073,\n", + " -2.945349208364391,\n", + " -1.7237620132780673,\n", + " 1.2282869635018203,\n", + " 3.841293032096047,\n", + " 3.0130515294704505,\n", + " -5.922363568360751,\n", + " 1.2620553064717512,\n", + " -93.92650234890675,\n", + " -6.222982731718728,\n", + " -1.8696534230688915,\n", + " -1.733543324543767,\n", + " -1.153659222484638,\n", + " 3.754739267970331,\n", + " 8.779258780211467,\n", + " -4.66039315017507,\n", + " -0.9157372264133998,\n", + " -0.08801394058957257,\n", + " 3.0454062729430653,\n", + " -1.3711251042216546,\n", + " -47.336897699903375,\n", + " 10.335607225261533,\n", + " -22.528862773467086,\n", + " 0.8679850780778207,\n", + " 11.285207959996733,\n", + " -1.087455698768296,\n", + " 0.9597528747870401,\n", + " -2.0607454150266022,\n", + " 2.438296642825693,\n", + " -0.44331372172789507,\n", + " -14.901423264279742,\n", + " 1.55834261750865,\n", + " -7.82564325691926,\n", + " 1.1189649482615582,\n", + " 4.3602416625831495,\n", + " 6.97318394066423,\n", + " 18.88058246053027,\n", + " 6.281069006699905,\n", + " -2.868130381951296,\n", + " 10.85914764979374,\n", + " 4.537262032266516,\n", + " 2.644285081528512,\n", + " -3.0771386403039074,\n", + " 2.015793104310827,\n", + " 13.808256951524104,\n", + " 51.93057029427298,\n", + " 5.222586661333407,\n", + " 60.792806678341805,\n", + " -0.7309324200512926,\n", + " 1.3947334446170405,\n", + " -1.844679897036519,\n", + " -0.0031017189846060944,\n", + " 7.800372296713311,\n", + " -1.4619197657669425,\n", + " 0.0012267707613524692,\n", + " -2.452760853707666,\n", + " -1.0035628464789061,\n", + " 1.685348819583064,\n", + " 6.26898781077503,\n", + " -0.2563048472165015,\n", + " -11.585934490692267,\n", + " 78.39419188336632,\n", + " -4.571812916807573,\n", + " -19.321679085396227,\n", + " 3.755095056960691,\n", + " -23.607037811020916,\n", + " -2.120684725555691,\n", + " 30.284194216445485,\n", + " 2.8198716815030904,\n", + " 16.15635520063846,\n", + " -1.8569294714357323,\n", + " 4.77090512835686,\n", + " 64.48327416093716,\n", + " -4.829409080691249,\n", + " -10.302728241893874,\n", + " 6.723312965716843,\n", + " -4.120472646120817,\n", + " 38.40081294915184,\n", + " -16.64299735182854,\n", + " -20.884692406534924,\n", + " 5.0647414538223146,\n", + " 4.271520827110059,\n", + " 40.68905143221966,\n", + " -30.266446559142878,\n", + " -13.886304684162127,\n", + " 7.405946689657327,\n", + " 8.945855382351109,\n", + " 2.1128416714244,\n", + " 1.8950374038728692,\n", + " -44.823964295860165,\n", + " -0.7203296890715833,\n", + " 46.01939590254652,\n", + " 0.3416364711598181,\n", + " -4.044464774842944,\n", + " 0.2382123808548915,\n", + " -16.75785720638858,\n", + " -1.1765973200673787,\n", + " 29.070450076758213,\n", + " 41.48439557842943,\n", + " 2.2101003380736177,\n", + " 1.2824360950578315,\n", + " -3.112676284937656,\n", + " -4.398256544994503,\n", + " 6.478427966845624,\n", + " 12.815059166981793,\n", + " 8.142994042635252,\n", + " -11.922626798286501,\n", + " -4.18078352473843,\n", + " -0.9887355483675115,\n", + " -1.6353691636387353,\n", + " 2.9668724524361565,\n", + " 2.9733895657726963,\n", + " -3.654965596140798,\n", + " 3.4749718319559655,\n", + " 3.38820790420408,\n", + " -1.0152922957679955,\n", + " 2.9703657251413276,\n", + " 5.803798784189709,\n", + " 7.53070457497742,\n", + " -5.590767480012243,\n", + " -5.119017568101675,\n", + " -0.3134507535822184,\n", + " -3.103863386252428,\n", + " 6.722944320504346,\n", + " -323.134465409054,\n", + " 15.30733998016558,\n", + " 9.355898585657165,\n", + " 8.80251739444045,\n", + " 26.74011688702056,\n", + " 4.131408862808556,\n", + " -2.956624242467722,\n", + " 3.8703536797663283,\n", + " -1.6392209600638,\n", + " 2.2941975592591124,\n", + " 0.5828657855114541,\n", + " -1.3558481304841612,\n", + " 28.32250153609982,\n", + " -8.821344505923427,\n", + " 36.80474153404356,\n", + " -3.580313702633269,\n", + " -2.424952204718487,\n", + " 26.470181890912556,\n", + " 159.54650096939525,\n", + " -0.43283872156206993,\n", + " 1.6261898947252718,\n", + " -0.8036680344414151,\n", + " -1.7672885883721219,\n", + " -8.407114149381627,\n", + " -5.763201154334425,\n", + " -10.126294047380643,\n", + " -3.786442961397237,\n", + " 4.5548119056673695,\n", + " 21.60842216976482,\n", + " -1.5676215890862455,\n", + " -3.9326568600678122,\n", + " -4.417456916099285,\n", + " 1.6377216538610657,\n", + " 1.9059494732479116,\n", + " -1.759958727115987,\n", + " -4.307263410879386,\n", + " -1.0934711859049813,\n", + " -0.6313772328388394,\n", + " 10.997845353574235,\n", + " -4.255199668746133,\n", + " -0.21662436364265503,\n", + " -1.0551874735631062,\n", + " 1.4809552783433517,\n", + " -0.16914446167793584,\n", + " -0.8333659491032606,\n", + " -2.689002877948957,\n", + " 14.845395948046388,\n", + " -2.0588368471645566,\n", + " -12.053808086141458,\n", + " 8.605794652852477,\n", + " -0.42825303036703133,\n", + " 3.3942733729923873,\n", + " 1.2443914699761107,\n", + " 8.89757309612195,\n", + " -0.7282367524696269,\n", + " 32.75349024948851,\n", + " -3.149450837181761,\n", + " 3.4271058378424204,\n", + " -1.1017603519363393,\n", + " -5.074432339048332,\n", + " -0.9371959618442496,\n", + " -1.2059793499226998,\n", + " 0.7644242687828786,\n", + " 22.616062523674955,\n", + " 2.91480688641726,\n", + " 0.11229389873576623,\n", + " 1.0121501692526529,\n", + " 3.071291838914613,\n", + " 0.9319818009786833,\n", + " 9.5129377148269,\n", + " 0.02156970957000759,\n", + " -0.9245758915765827,\n", + " 2.884033091345067,\n", + " 0.07959291161216697,\n", + " 3.132010852102951,\n", + " 1.2279345496950675,\n", + " -0.15859824107023002,\n", + " 1.6415014428682015,\n", + " -0.27938063174655525,\n", + " 2.7121625408641314,\n", + " -1.4072241944765764,\n", + " -1.6396475241521742,\n", + " -3.379027143368356,\n", + " -6.585683484614638,\n", + " 4.627055058872216,\n", + " 2.1994793535967254,\n", + " -4.070636259727401,\n", + " -2.4597314966092796,\n", + " 2.626823683047789,\n", + " -2.3678295687752797,\n", + " 3.061013786501775,\n", + " -43.4353005998456,\n", + " 3.4731271865525315,\n", + " 0.9277750346397333,\n", + " 1.6521935436958217,\n", + " 1136.6324883264751,\n", + " 0.26829141235593923,\n", + " 1.826111521433555,\n", + " 2.2746779840383518,\n", + " 1.8874782311839438,\n", + " 0.35914930449060734,\n", + " -17.200935965386712,\n", + " 3.0132726402727172,\n", + " -2.6874460156759206,\n", + " -1.490055592978667,\n", + " 17.029116777804564,\n", + " 0.055582048991594135,\n", + " -0.5162334689451846,\n", + " 5.501174779069544,\n", + " -0.9063143055849174,\n", + " 1.5185213867390992,\n", + " -2.927593254465638,\n", + " 1.5332591605564048,\n", + " -5.461679201829682,\n", + " -0.6175956579353006,\n", + " -3.4641342656864893,\n", + " 0.6998717974537119,\n", + " -9.195916927661147,\n", + " -2.7439408707523096,\n", + " -2.4255772730909264,\n", + " 2.7478742059501613,\n", + " 0.49705553950229664,\n", + " -0.9743572322300764,\n", + " -47.91467046657994,\n", + " -2.941478739540134,\n", + " 0.1512309368396263,\n", + " -5.011507258365128,\n", + " -0.4665421423547016,\n", + " -3.765413153751876,\n", + " -0.7432884336557142,\n", + " -0.49542319141974245,\n", + " 5.161964118370179,\n", + " 2.050913875730515,\n", + " -0.06385082902354,\n", + " -4.603081600819895,\n", + " 12.213436357510592,\n", + " 15.652070685456877,\n", + " -4.5415554528087085]" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds = loo_cv_pred(X, y)\n", + "preds" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.27723402, -0.29177478, -0.29010731, -0.30864156, -0.29642375,\n", + " -0.29061725, -0.27897853, -0.29450823, -0.28658073, -0.32742065,\n", + " -0.30926046, -0.32874506, -0.05559046, -0.07163672, -0.07229433,\n", + " -0.10074666, -0.07708621, -0.08533471, -0.08568578, -0.08009152,\n", + " -0.08555847, -0.14156679, -0.12239963, -0.15284303, -0.37748343,\n", + " -0.40394797, -0.43165662, -0.41621139, -0.39966733, -0.41268404,\n", + " -0.40297752, -0.42529177, -0.43227202, -0.46509686, -0.43328907,\n", + " -0.41008338, -0.66349004, -0.66639771, -0.67032842, -0.66840091,\n", + " -0.66829008, -0.6654112 , -0.66391396, -0.66423755, -0.66403264,\n", + " -0.66960282, -0.66737048, -0.66588213, 0.01337361, -0.007411 ,\n", + " -0.03598398, -0.0472147 , -0.03871345, -0.030544 , -0.0258242 ,\n", + " -0.03461044, -0.06498662, -0.12433246, -0.09589036, -0.10309541,\n", + " 4.07738829, 4.13992736, 4.23026902, 4.01556257, 4.05897024,\n", + " 4.04517657, 3.98246927, 3.84168823, 3.55647527, 3.13695674,\n", + " 3.30387888, 3.30108198, -0.39519102, -0.4186971 , -0.40998128,\n", + " -0.43066686, -0.44506166, -0.43370648, -0.44527809, -0.44547349,\n", + " -0.46534693, -0.49027408, -0.48366459, -0.48675293, -0.60585388,\n", + " -0.6113743 , -0.60186282, -0.60619208, -0.62200507, -0.61370295,\n", + " -0.60714207, -0.61117952, -0.63928817, -0.65635872, -0.64967767,\n", + " -0.64236226, -0.10065134, -0.11904655, -0.16850815, -0.18427129,\n", + " -0.20403395, -0.22192355, -0.20019252, -0.21470202, -0.24866424,\n", + " -0.31653511, -0.29925092, -0.29042366, 1.18678511, 1.14772173,\n", + " 1.00845353, 1.01898882, 1.07943438, 1.02632386, 1.1002143 ,\n", + " 1.07481362, 0.98002651, 0.71535517, 0.81824809, 0.88262121,\n", + " -0.35527159, -0.38426797, -0.38152858, -0.40329785, -0.42116116,\n", + " -0.40641689, -0.42024409, -0.41392279, -0.42994245, -0.46460913,\n", + " -0.46510224, -0.47074464, 1.85982557, 1.86559146, 1.86242846,\n", + " 1.69577007, 1.71975788, 1.72846358, 1.74324366, 1.64785468,\n", + " 1.60045399, 1.33959955, 1.45806707, 1.401589 , -0.56221722,\n", + " -0.57065007, -0.57648751, -0.57998304, -0.57750627, -0.57632931,\n", + " -0.57145621, -0.57659772, -0.57619829, -0.58389556, -0.58110047,\n", + " -0.57967552, -0.37660558, -0.39481598, -0.41034729, -0.40840454,\n", + " -0.39176561, -0.38885944, -0.37617587, -0.3755784 , -0.37688829,\n", + " -0.38987411, -0.38404581, -0.40363027, -0.40190008, -0.39801013,\n", + " -0.39776741, -0.39918208, -0.38476304, -0.37266118, -0.3732698 ,\n", + " -0.37042486, -0.38356712, -0.40569273, -0.3894304 , -0.38648528,\n", + " 1.96310763, 1.86123249, 1.67491885, 1.5637001 , 1.62097765,\n", + " 1.60686592, 1.57651459, 1.55967515, 1.50103945, 1.26278956,\n", + " 1.44494671, 1.45188351, -0.60583342, -0.60584566, -0.61156877,\n", + " -0.61197027, -0.61039977, -0.60984999, -0.60904607, -0.61037539,\n", + " -0.60929908, -0.61091664, -0.60993592, -0.6158878 , -0.64685763,\n", + " -0.64855501, -0.65122698, -0.65330411, -0.65492214, -0.65534627,\n", + " -0.65337743, -0.65119608, -0.65053434, -0.66013107, -0.65714265,\n", + " -0.6629243 , -0.65618187, -0.65709579, -0.65749222, -0.65813278,\n", + " -0.65798166, -0.65776006, -0.65730033, -0.65457639, -0.65521917,\n", + " -0.66014373, -0.65857168, -0.66073551, -0.69841351, -0.69755069,\n", + " -0.6990195 , -0.69886797, -0.70237863, -0.70378855, -0.7027048 ,\n", + " -0.70245825, -0.70171529, -0.70355548, -0.70321082, -0.70166125,\n", + " 0.37452258, 0.35011895, 0.34847411, 0.30795473, 0.34732247,\n", + " 0.3518586 , 0.33967573, 0.31347268, 0.28172347, 0.16886581,\n", + " 0.18582093, 0.12681505, -0.43054332, -0.43274621, -0.43102573,\n", + " -0.42853 , -0.42614416, -0.43084299, -0.43406111, -0.4327428 ,\n", + " -0.44221667, -0.45700646, -0.45817319, -0.45569058, 1.3887109 ,\n", + " 1.34894993, 1.3265508 , 1.26211542, 1.27560328, 1.33235534,\n", + " 1.41054233, 1.4133447 , 1.29764205, 1.21087837, 1.35702111,\n", + " 1.26571475, -0.35208136, -0.36248181, -0.37202806, -0.3717193 ,\n", + " -0.34934135, -0.35770181, -0.32858908, -0.3460527 , -0.36298178,\n", + " -0.40935933, -0.41405438, -0.40234048, -0.03013631, -0.04616381,\n", + " -0.10432682, -0.10260561, -0.10874691, -0.11820605, -0.10218515,\n", + " -0.10123692, -0.1178199 , -0.13917067, -0.11848158, -0.14705131,\n", + " -0.3944802 , -0.41003631, -0.4180442 , -0.4269596 , -0.42841344,\n", + " -0.42703199, -0.43063343, -0.43435417, -0.44214113, -0.47283123,\n", + " -0.46361596, -0.47212465, -0.61336908, -0.61663366, -0.62021221,\n", + " -0.62879618, -0.62781276, -0.62330975, -0.62284816, -0.62364294,\n", + " -0.62632137, -0.63290291, -0.63215571, -0.63434584, -0.48310933,\n", + " -0.49543109, -0.49714015, -0.5075253 , -0.50357197, -0.50126838,\n", + " -0.49540784, -0.4962518 , -0.50817206, -0.52297777, -0.50210547,\n", + " -0.52322675])" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-4476.691935155938" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "r2_score(y, preds)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-4.195576792520727" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(y - preds).mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Experiment: Model per country" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
carbonenergy_heatingenergy_coolingenergy_water_heatingenergy_cookingtotalgasgeo
0-0.055590.057893-0.567774-0.197473-0.477695-0.03357-0.334876BE
1-0.0716370.050019-0.549232-0.19523-0.477826-0.03976-0.343867BE
2-0.0722940.042145-0.53069-0.192987-0.477957-0.045951-0.344464BE
3-0.1007470.03427-0.512148-0.190744-0.478088-0.052141-0.319062BE
4-0.0770860.026396-0.493606-0.188501-0.478219-0.058331-0.296207BE
\n", + "
" + ], + "text/plain": [ + " carbon energy_heating energy_cooling energy_water_heating energy_cooking \\\n", + "0 -0.05559 0.057893 -0.567774 -0.197473 -0.477695 \n", + "1 -0.071637 0.050019 -0.549232 -0.19523 -0.477826 \n", + "2 -0.072294 0.042145 -0.53069 -0.192987 -0.477957 \n", + "3 -0.100747 0.03427 -0.512148 -0.190744 -0.478088 \n", + "4 -0.077086 0.026396 -0.493606 -0.188501 -0.478219 \n", + "\n", + " total gas geo \n", + "0 -0.03357 -0.334876 BE \n", + "1 -0.03976 -0.343867 BE \n", + "2 -0.045951 -0.344464 BE \n", + "3 -0.052141 -0.319062 BE \n", + "4 -0.058331 -0.296207 BE " + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_be = df_merged_s.loc[df_merged_s[\"geo\"] == \"BE\"]\n", + "df_be.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1. , -0.03356972],\n", + " [ 1. , -0.03976014]])" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_be = np.array(np.pad(df_be.iloc[:, 5:6].to_numpy(), ((0,0), (1,0)), mode=\"constant\", constant_values=1), dtype=np.float64)\n", + "y_be = np.array(df_be[\"carbon\"])\n", + "X_be[0:2,]" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "beta_be = lin_reg(X_be, y_be)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.015930055989496518 0.00401391599181232 0.007486432925308192\n", + " -0.016835780983615864 0.010954800460627176]\n" + ] + }, + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res_be = y_be - np.matmul(X_be, beta_be)\n", + "print(res_be[0:5])\n", + "round(sum(res_be), 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABR20lEQVR4nO3df1xUVcI/8M8MMDPAwIwoMIAoCSQopi2Iku7qColZW6auSrapYfZDrbQsLdNsn9a1ntLH/EG/VjNjNd221Mf1t2Upa4pmgWLqZiLIANIMv5kZ5nz/8Os8jcAVgWFm4PN+vea1ce45955z4eV89t5zz5UJIQSIiIiIqFFyZ3eAiIiIyJUxLBERERFJYFgiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWiIiIiCQwLBF1Uq+++ipkMlmz6spkMrz66qsO7c/w4cMxfPhwl90fSfvyyy8hk8nw5ZdfOrsrRG2OYYnIydavXw+ZTGb7eHp6IiwsDFOnTkVBQYGzu+dyIiIi7M5XUFAQfvvb3+Kf//xnm+y/uroar776qkt/6X/wwQeQyWT46KOPGmzLysqCXC7H888/32T7O+64Az169IDU266GDBmC4OBgWCyWNukzkTtjWCJyEa+99ho+/vhjZGRk4J577sHGjRsxbNgw1NbWOuR4CxcuRE1NjUP27WgDBgzAxx9/jI8//hjPP/88CgsLMXbsWGRkZLR639XV1ViyZIlLh6X09HQMHToUzz//PK5evWorN5vNmDFjBsLDw7FkyZIm20+ePBn5+fn4+uuvG91+8eJFZGVlYeLEifD09Gzz/hO5G4YlIhdxzz334OGHH8b06dPxwQcf4Pnnn8eFCxewbds2hxzP09MTKpXKIft2tLCwMDz88MN4+OGH8cILL+Dw4cPw9fXF8uXLnd21diGTyfDuu+/CaDTaXUF66623kJOTg1WrVsHX17fJ9g899BBkMhkyMzMb3f73v/8dQghMnjy5zftO5I4Ylohc1G9/+1sAwIULF+zK8/LyMH78eAQEBEClUiEhIaFBoDKbzViyZAmio6OhUqnQtWtXDB06FHv37rXVaWzOUl1dHebMmYPAwED4+fnh/vvvx+XLlxv0berUqYiIiGhQ3tg+161bhxEjRiAoKAhKpRJ9+vTB2rVrb+lc3IxOp0NsbCx++uknyXrFxcVIT09HcHAwVCoV+vfvb3cr6+LFiwgMDAQALFmyxHarr6n5WsePH2/ydtju3bshk8mwY8cOAEBFRQWeffZZREREQKlUIigoCHfffTdOnDjRojH36dMH8+bNw/r16/HVV1/hp59+wmuvvYaxY8fiD3/4g2Tb8PBw/O53v8PWrVthNpsbbM/MzERkZCQGDRqEn3/+GU899RR69+4Nb29vdO3aFX/84x9x8eLFm/YxIiICU6dObVDe2Hyyuro6LF68GFFRUVAqlQgPD8cLL7yAuro6u3p79+7F0KFDodVqoVar0bt3b7z00ks37QtRa/D6KpGLuv5l1KVLF1tZbm4uhgwZgrCwMMyfPx++vr749NNPMWbMGPzjH//Agw8+COBaaFm6dCmmT5+OxMRElJeX4/jx4zhx4gTuvvvuJo85ffp0bNy4EQ899BDuuusuHDhwAPfee2+rxrF27Vr07dsX999/Pzw9PbF9+3Y89dRTsFqtmDlzZqv2fZ3ZbEZ+fj66du3aZJ2amhoMHz4c58+fx6xZs3Dbbbdhy5YtmDp1KgwGA5555hkEBgZi7dq1ePLJJ/Hggw9i7NixAK7N8WlMQkICevXqhU8//RRTpkyx27Z582Z06dIFqampAIAnnngCW7duxaxZs9CnTx9cvXoV33zzDc6cOYPf/OY3LRr3woULsWnTJjz++OPo2bMnPD09sXLlyma1nTx5MmbMmIHdu3fjvvvus5X/8MMPyMnJwaJFiwAAx44dw5EjRzBp0iR0794dFy9exNq1azF8+HCcPn0aPj4+Ler7r1mtVtx///345ptvMGPGDMTGxuKHH37A8uXL8eOPP+Lzzz8HcO3v/7777sMdd9yB1157DUqlEufPn8fhw4db3QciSYKInGrdunUCgNi3b58oKSkR+fn5YuvWrSIwMFAolUqRn59vq5ucnCz69esnamtrbWVWq1XcddddIjo62lbWv39/ce+990oed/HixeLX/wR89913AoB46qmn7Oo99NBDAoBYvHixrWzKlCmiZ8+eN92nEEJUV1c3qJeamip69eplVzZs2DAxbNgwyT4LIUTPnj3FyJEjRUlJiSgpKRGnTp0SkyZNEgDE7Nmzm9zfihUrBACxceNGW5nJZBJJSUlCrVaL8vJyIYQQJSUlDcYrZcGCBcLLy0uUlZXZyurq6oRWqxWPPvqorUyj0YiZM2c2a5+3Yvfu3QKAACBWrFjR7HZlZWVCqVSKtLQ0u/L58+cLAOLs2bNCiMZ/f1lZWQKA2LBhg63s4MGDAoA4ePCgraxnz55iypQpDdrf+Lv5+OOPhVwuF19//bVdvYyMDAFAHD58WAghxPLlywUAUVJS0uxxErUF3oYjchEpKSkIDAxEeHg4xo8fD19fX2zbtg3du3cHAJSVleHAgQOYMGECKioqUFpaitLSUly9ehWpqak4d+6c7ek5rVaL3NxcnDt3rtnH37lzJwDg6aeftit/9tlnWzUub29v238bjUaUlpZi2LBh+M9//gOj0diife7ZsweBgYEIDAxE//79sWXLFvzpT3/CsmXLmmyzc+dO6HQ6pKWl2cq8vLzw9NNPo7KyEl999VWL+jJx4kSYzWZ89tlndv0zGAyYOHGirUyr1eLo0aMoLCxs0XGaEhAQALn82j/lI0eObHa7Ll26YPTo0di2bRuqqqoAAEIIbNq0CQkJCbj99tsB2P/+zGYzrl69iqioKGi12hbfQrzRli1bEBsbi5iYGNvfdWlpKUaMGAEAOHjwIIBr5xAAvvjiC1it1jY5NlFzMCwRuYjVq1dj79692Lp1K0aPHo3S0lIolUrb9vPnz0MIgVdeecUWFK5/Fi9eDODanBzg2pN1BoMBt99+O/r164d58+bh+++/lzz+zz//DLlcjsjISLvy3r17t2pchw8fRkpKCnx9faHVahEYGGibY9LSsDRo0CDs3bsX+/btw5EjR1BaWooNGzbYfbHf6Oeff0Z0dLQtWFwXGxtr294S/fv3R0xMDDZv3mwr27x5M7p162b7sgeAN954Azk5OQgPD0diYiJeffVV/Oc//2nRMa+rr6/HjBkzEBoaCq1W2yDo3szkyZNRVVWFL774AgBw5MgRXLx40W5id01NDRYtWoTw8HAolUp069YNgYGBMBgMLf793ejcuXPIzc1t8Hd9PbBd/7ueOHEihgwZgunTpyM4OBiTJk3Cp59+yuBEDsc5S0QuIjExEQkJCQCAMWPGYOjQoXjooYdw9uxZqNVq2xfC888/b5sHc6OoqCgAwO9+9ztcuHABX3zxBfbs2YMPPvgAy5cvR0ZGBqZPn97qvja1mGV9fb3dzxcuXEBycjJiYmLw9ttvIzw8HAqFAjt37sTy5ctb/CXXrVs3pKSktKitI0ycOBGvv/46SktL4efnh23btiEtLc3usfsJEybY1oPas2cP3nzzTSxbtgyfffYZ7rnnnhYd93/+539w8uRJfP755ygoKMDMmTORmZmJhx56qFnt77vvPmg0GlubzMxMeHh4YNKkSbY6s2fPxrp16/Dss88iKSkJGo0GMpkMkyZNuunvT+rvxMPDw/az1WpFv3798PbbbzdaPzw8HMC1q1yHDh3CwYMH8b//+7/YtWsXNm/ejBEjRmDPnj12+yRqU86+D0jU2V2fs3Ts2DG78utzQJYuXSqEEEKv1wsAYsGCBbd8jIqKCnHnnXeKsLAwW9mN84v+8pe/CAAiLy/Pru23337bYA7PnDlzhEajaXCcP/3pT3b7vD7H5Oeff7ar99JLLwkA4qeffrKV3cqcpZvNx2psfyNHjhQ6nU7U19fb1du0aZMAILZv3y6EEKK0tPSW5iwJIcTp06cFAJGRkSH++c9/Npi70xi9Xi/CwsLEkCFDmn2cX7t06ZJQq9XigQceEEIIUV9fLxITE0VwcLAwGAzN3k96errw8vISRUVFIjAwUNx999122zUajZg2bZpdWU1NjfDw8LCbj9TYnKU777zT1r9fCw8Pt/vdjB49WoSFhQmr1drsfl/3+uuvCwBi7969t9yWqLl4G47IRQ0fPhyJiYlYsWIFamtrERQUhOHDh+Pdd9/FlStXGtQvKSmx/fevFyoEALVajaioqAaPYf/a9asbNz5NtWLFigZ1IyMjYTQa7W7tXblypcEq2tf/n7741UrRRqMR69ata7IfjjJ69GgUFRXZ3S6zWCx45513oFarMWzYMACwPd1lMBiave/Y2Fj069cPmzdvxubNmxESEoLf/e53tu319fUNblkFBQUhNDTU7ndSWlqKvLw8VFdX3/SYs2fPhhAC77zzDgBALpcjIyMDpaWlt/Qo/eTJk2E2m/H444+jpKSkwdpKHh4eDVb6fueddxpcRWxMZGQk/v3vf8NkMtnKduzYgfz8fLt6EyZMQEFBAd5///0G+6ipqbHNqSorK2uwfcCAAQAg+bdN1Fq8DUfkwubNm4c//vGPWL9+PZ544gmsXr0aQ4cORb9+/fDYY4+hV69e0Ov1yMrKwuXLl3Hq1CkA19bgGT58OOLj4xEQEIDjx4/bHltvyoABA5CWloY1a9bAaDTirrvuwv79+3H+/PkGdSdNmoQXX3wRDz74IJ5++mlUV1dj7dq1uP322+0m/Y4cORIKhQJ/+MMf8Pjjj6OyshLvv/8+goKCGg18jjRjxgy8++67mDp1KrKzsxEREYGtW7fi8OHDWLFiBfz8/ABcu9XTp08fbN68GbfffjsCAgIQFxeHuLg4yf1PnDgRixYtgkqlQnp6ut3cqIqKCnTv3h3jx49H//79oVarsW/fPhw7dgxvvfWWrd6qVauwZMkSHDx4UPK9dv/85z/xxRdf4K233rLdogKAO++8EzNnzsSqVaswdepUDBw48KbnZdiwYejevTu++OILeHt725ZLuO6+++7Dxx9/DI1Ggz59+iArKwv79u2TXKbhuunTp2Pr1q0YNWoUJkyYgAsXLmDjxo0N5sX96U9/wqeffoonnngCBw8exJAhQ1BfX4+8vDx8+umn2L17NxISEvDaa6/h0KFDuPfee9GzZ08UFxdjzZo16N69O4YOHXrT/hC1mJOvbBF1ek3dhhPi2q2VyMhIERkZKSwWixBCiAsXLohHHnlE6HQ64eXlJcLCwsR9990ntm7damv3X//1XyIxMVFotVrh7e0tYmJixOuvvy5MJpOtTmOP+dfU1Iinn35adO3aVfj6+oo//OEPIj8/v9HbUnv27BFxcXFCoVCI3r17i40bNza6z23btok77rhDqFQqERERIZYtWyb+9re/tfttOCGu3fqaNm2a6Natm1AoFKJfv35i3bp1DdoeOXJExMfHC4VC0exbcufOnbM9wv/NN9/YbaurqxPz5s0T/fv3F35+fsLX11f0799frFmzxq7e9fMndQuvoqJCdO/eXQwYMMD2N/Fr5eXlIjQ0VPzmN79pdHtj5s2bJwCICRMmNNj2yy+/2M6ZWq0WqampIi8vr8GyAI3dhhNCiLfeekuEhYUJpVIphgwZIo4fP97o78ZkMolly5aJvn37CqVSKbp06SLi4+PFkiVLhNFoFEIIsX//fvHAAw+I0NBQoVAoRGhoqEhLSxM//vhjs8ZJ1FIyISTepEhERETUyXHOEhEREZEEhiUiIiIiCQxLRERERBLcLiytXr0aERERUKlUGDRoEL799lvJ+lu2bEFMTAxUKhX69etne6XDda+++ipiYmLg6+uLLl26ICUlBUePHnXkEIiIiMiNuFVY2rx5M+bOnYvFixfjxIkT6N+/P1JTU21L4d/oyJEjSEtLQ3p6Ok6ePIkxY8ZgzJgxyMnJsdW5/fbbsWrVKvzwww/45ptvEBERgZEjR9qtWUNERESdl1s9DTdo0CAMHDgQq1atAnBtifzw8HDMnj0b8+fPb1B/4sSJqKqqwo4dO2xlgwcPxoABA5CRkdHoMcrLy6HRaLBv3z4kJyc7ZiBERETkNtxmUUqTyYTs7GwsWLDAViaXy5GSkoKsrKxG22RlZWHu3Ll2Zampqfj888+bPMZ7770HjUaD/v37N9mXuro6u9VirVYrysrK0LVr1ybfhURERESuRQiBiooKhIaGNnjJ9q+5TVgqLS1FfX09goOD7cqDg4ORl5fXaJuioqJG6xcVFdmV7dixA5MmTUJ1dTVCQkKwd+9edOvWrcm+LF26FEuWLGnhSIiIiMiV5Ofno3v37k1ud5uw5Ei///3v8d1336G0tBTvv/8+JkyYgKNHjyIoKKjR+gsWLLC7YmU0GtGjRw/k5+fD39+/vbpNRERErVBeXo7w8HDb646a4jZhqVu3bvDw8IBer7cr1+v10Ol0jbbR6XTNqu/r64uoqChERUVh8ODBiI6Oxocffmh3y+/XlEollEplg3J/f3+GJSIiIjdzsyk0bvM0nEKhQHx8PPbv328rs1qt2L9/P5KSkhptk5SUZFcfAPbu3dtk/V/vl2+wJiIiIsCNriwBwNy5czFlyhQkJCQgMTERK1asQFVVFaZNmwYAeOSRRxAWFoalS5cCAJ555hkMGzYMb731Fu69915s2rQJx48fx3vvvQcAqKqqwuuvv477778fISEhKC0txerVq1FQUIA//vGPThsnERERuQ63CksTJ05ESUkJFi1ahKKiIgwYMAC7du2yTeK+dOmS3Wz2u+66C5mZmVi4cCFeeuklREdH4/PPP0dcXBwAwMPDA3l5efjoo49QWlqKrl27YuDAgfj666/Rt29fp4yRiIiIXItbrbPkqq6vzWQ0GjlniYiIyE009/vbbeYsERERETkDwxIRERGRBIYlIiIiIgkMS0REREQSGJaIiIiIJLjV0gFE1HFZrQIFhhpUmSzwVXgiTOsNuZwvpiYi52NYIiKnO19cgd05elwoqUStpR4qTw9EBqqRGheMqCDpdzYRETkawxIROdX54gqsO3wRZVUmhGhU8FF4o9pkQU6hEYXGGkwbEsHAREROxTlLROQ0VqvA7hw9yqpMiA5Sw0/lBQ+5DH4qL0QHqVFWZcKeXD2sVq6dS0TOw7BERE5TYKjBhZJKhGhUDd76LZPJEKJR4XxxJQoMNU7qIRERwxIROVGVyYJaSz18FI3PCPBWeKDOUo8qk6Wde0ZE9H8YlojIaXwVnlB5eqC6iTBUY6qH0tMDvk2EKSKi9sCwREROE6b1RmSgGleMtbjxnd5CCFwx1iIqSI0wrbeTekhExLBERE4kl8uQGheMAF8FzhVXoqLWDIvViopaM84VVyLAV4GRfYO53hIRORXDEhE5VVSQH6YNiUBcqAaGajMullbBUG1GvzANlw0gIpfAiQBE5HRRQX7oNVzNFbyJyCUxLBGRS5DLZQgP8HF2N4iIGuBtOCIiIiIJDEtEREREEhiWiIiIiCQwLBERERFJYFgiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJXMGbiMhFWK2Cr3whckEMS0RELuB8cQV25+hxoaQStZZ6qDw9EBmoRmpcMF8mTORkDEtERE52vrgC6w5fRFmVCSEaFXwU3qg2WZBTaEShsQbThkQwMBE5EecsERE5kdUqsDtHj7IqE6KD1PBTecFDLoOfygvRQWqUVZmwJ1cPq1U4u6tEnRbDEhGRExUYanChpBIhGhVkMvv5STKZDCEaFc4XV6LAUOOkHhIRwxIRkRNVmSyotdTDR9H4rAhvhQfqLPWoMlnauWdEdB3DEhGRE/kqPKHy9EB1E2GoxlQPpacHfJsIU0TkeAxLREROFKb1RmSgGleMtRDCfl6SEAJXjLWIClIjTOvtpB4SEcMSEZETyeUypMYFI8BXgXPFlaioNcNitaKi1oxzxZUI8FVgZN9grrdE5ERuF5ZWr16NiIgIqFQqDBo0CN9++61k/S1btiAmJgYqlQr9+vXDzp07bdvMZjNefPFF9OvXD76+vggNDcUjjzyCwsJCRw+DiMgmKsgP04ZEIC5UA0O1GRdLq2CoNqNfmIbLBhC5ALe6Cb5582bMnTsXGRkZGDRoEFasWIHU1FScPXsWQUFBDeofOXIEaWlpWLp0Ke677z5kZmZizJgxOHHiBOLi4lBdXY0TJ07glVdeQf/+/fHLL7/gmWeewf3334/jx487YYRE1FlFBfmh13A1V/AmckEyceNNchc2aNAgDBw4EKtWrQIAWK1WhIeHY/bs2Zg/f36D+hMnTkRVVRV27NhhKxs8eDAGDBiAjIyMRo9x7NgxJCYm4ueff0aPHj2a1a/y8nJoNBoYjUb4+/u3YGRERETU3pr7/e02t+FMJhOys7ORkpJiK5PL5UhJSUFWVlajbbKysuzqA0BqamqT9QHAaDRCJpNBq9U2Waeurg7l5eV2HyIiIuqY3CYslZaWor6+HsHBwXblwcHBKCoqarRNUVHRLdWvra3Fiy++iLS0NMmEuXTpUmg0GtsnPDz8FkdDRERE7sJtwpKjmc1mTJgwAUIIrF27VrLuggULYDQabZ/8/Px26iURERG1N7eZ4N2tWzd4eHhAr9fblev1euh0ukbb6HS6ZtW/HpR+/vlnHDhw4KbzjpRKJZRKZQtGQURERO7Gba4sKRQKxMfHY//+/bYyq9WK/fv3IykpqdE2SUlJdvUBYO/evXb1rwelc+fOYd++fejatatjBkBERERuyW2uLAHA3LlzMWXKFCQkJCAxMRErVqxAVVUVpk2bBgB45JFHEBYWhqVLlwIAnnnmGQwbNgxvvfUW7r33XmzatAnHjx/He++9B+BaUBo/fjxOnDiBHTt2oL6+3jafKSAgAAqFwjkDJSIiIpfhVmFp4sSJKCkpwaJFi1BUVIQBAwZg165dtkncly5dglz+fxfL7rrrLmRmZmLhwoV46aWXEB0djc8//xxxcXEAgIKCAmzbtg0AMGDAALtjHTx4EMOHD2+XcREREZHrcqt1llwV11kiIiJyPx1unSUiIiIiZ2BYIiIiIpLAsEREREQkgWGJiIiISALDEhEREZEEhiUiIiIiCQxLRERERBLcalFKIiIi6jysVoECQw2qTBb4KjwRpvWGXC5r934wLBEREZHLOV9cgd05elwoqUStpR4qTw9EBqqRGheMqCC/du0LwxIRERG5lPPFFVh3+CLKqkwI0ajgo/BGtcmCnEIjCo01mDYkol0DE+csERERkcuwWgV25+hRVmVCdJAafioveMhl8FN5ITpIjbIqE/bk6mG1tt/b2hiWiIiIyGUUGGpwoaQSIRoVZDL7+UkymQwhGhXOF1eiwFDTbn1iWCIiIiKXUWWyoNZSDx9F4zOFvBUeqLPUo8pkabc+MSwRERGRy/BVeELl6YHqJsJQjakeSk8P+DYRphyBYYmIiIhcRpjWG5GBalwx1kII+3lJQghcMdYiKkiNMK13u/WJYYmIiIhchlwuQ2pcMAJ8FThXXImKWjMsVisqas04V1yJAF8FRvYNbtf1lhiWiIiIyKVEBflh2pAIxIVqYKg242JpFQzVZvQL07T7sgEA11kiIiIiFxQV5Idew9VcwZuIiIioKXK5DOEBPs7uBm/DEREREUlhWCIiIiKSwLBEREREJIFhiYiIiEgCwxIRERGRBIYlIiIiIglcOoCIqBOyWoVLrF9D5A4YloiIOpnzxRXYnaPHhZJK1FrqofL0QGSgGqlxwe2+MjKRO2BYIiLqRM4XV2Dd4YsoqzIhRKOCj8Ib1SYLcgqNKDTWOOVVEkSujnOWiIg6CatVYHeOHmVVJkQHqeGn8oKHXAY/lReig9QoqzJhT64eVqu4+c6IOhGGJSKiTqLAUIMLJZUI0aggk9nPT5LJZAjRqHC+uBIFhhon9ZDINfE2HBFRJ1FlsqDWUg8fhXej270VHtCX16LKZGnnnrUvTm6nW8WwRETUSfgqPKHy9EC1yQI/lVeD7TWmeig9PeCr6LhfDZzcTi3B23BERJ1EmNYbkYFqXDHWQgj7eUlCCFwx1iIqSI0wbeNXntzd9cntOYVGaH280KubGlofL+QUGrHu8EWcL65wdhfJRTEsERF1EnK5DKlxwQjwVeBccSUqas2wWK2oqDXjXHElAnwVGNk3uEPekuLkdmoNhiUiok4kKsgP04ZEIC5UA0O1GRdLq2CoNqNfmKZDLxvAye3UGm4XllavXo2IiAioVCoMGjQI3377rWT9LVu2ICYmBiqVCv369cPOnTvttn/22WcYOXIkunbtCplMhu+++86BvScicr6oID88OTwSc+6+HbOTozHn7tvxxLDIDhuUgF9Pbm98Ppa3wgN1lvoOP7mdWsatwtLmzZsxd+5cLF68GCdOnED//v2RmpqK4uLiRusfOXIEaWlpSE9Px8mTJzFmzBiMGTMGOTk5tjpVVVUYOnQoli1b1l7DICJyOrlchvAAH8To/BEe4NMhb7392q8ntzemM0xup5aTiRtn+bmwQYMGYeDAgVi1ahUAwGq1Ijw8HLNnz8b8+fMb1J84cSKqqqqwY8cOW9ngwYMxYMAAZGRk2NW9ePEibrvtNpw8eRIDBgy4pX6Vl5dDo9HAaDTC39//1gdGREQOZbUKrP3yAnIKjYgOUtvdihNC4FxxJfqFafDEsMgOHxzp/zT3+9ttriyZTCZkZ2cjJSXFViaXy5GSkoKsrKxG22RlZdnVB4DU1NQm6xMRUcfUmSe3U+u5zfXG0tJS1NfXIzg42K48ODgYeXl5jbYpKipqtH5RUVGr+lJXV4e6ujrbz+Xl5a3aHxEROd71ye3X11nSl9dC6emBfmEajOzLdZaoaW4TllzJ0qVLsWTJEmd3g4iIblFUkB96DVdzBW+6JW5zG65bt27w8PCAXq+3K9fr9dDpdI220el0t1S/uRYsWACj0Wj75Ofnt2p/RETUfjrb5HZqPbcJSwqFAvHx8di/f7+tzGq1Yv/+/UhKSmq0TVJSkl19ANi7d2+T9ZtLqVTC39/f7kNEREQdk1vdhps7dy6mTJmChIQEJCYmYsWKFaiqqsK0adMAAI888gjCwsKwdOlSAMAzzzyDYcOG4a233sK9996LTZs24fjx43jvvfds+ywrK8OlS5dQWFgIADh79iyAa1elWnsFioiIiNyfW4WliRMnoqSkBIsWLUJRUREGDBiAXbt22SZxX7p0CXL5/10su+uuu5CZmYmFCxfipZdeQnR0ND7//HPExcXZ6mzbts0WtgBg0qRJAIDFixfj1VdfbZ+BERERkctyq3WWXBXXWSIiInI/zf3+dqsrS0RERNQ4q1XwKT8HYVgiIiJyc+eLK2zrR9Va6qHy9EBkoBqpcVw/qi0wLBEREbmx88UVWHf4IsqqTAjRqOCj8Ea1yYKcQiMKjTWYNiSCgamV3GbpACIiIrJntQrsztGjrMqE6CA1/FRe8JDL4KfyQnSQGmVVJuzJ1cNq5fTk1mBYIiIiclMFhhpcKKlEiEZl93JgAJDJZAjRqHC+uBIFhhon9bBjYFgiIiJyU1UmC2ot9fBRND6rxlvhgTpLPapMlnbuWcfCsEREROSmfBWeUHl6oLqJMFRjqofS0wO+TYQpah6GJSIicllWq0B+WTXyisqRX1bNuTc3CNN6IzJQjSvGWty4bKIQAleMtYgKUiNM6+2kHnYMjJpEROSS+Dj8zcnlMqTGBaPQWINzxdfmLnkrPFBjqscVYy0CfBUY2TeY6y21EsMSERG5HD4O33xRQX6YNiTCFiz15bVQenqgX5gGI/syWLYFhiUiInIpNz4Of/0pLz+VF9RKT5wrrsSeXD16dVPzisn/FxXkh17D1VzB20EYloiIyKXcyuPw4QE+Tuql65HLZTwfDsIJ3kRE5FL4ODy5GoYlIiJyKXwcnlwNwxIREbkUPg5ProZhiYiIXMr1x+EDfBU4V1yJilozLFYrKmrNOFdcycfhqd3xGiYREbkcPg7vuqxW0emeumNYIiIil8TH4V1PZ10olGGJiIhcFh+Hdx2deaFQzlkiIiIiSTcuFOqn8oKHXAY/lReig9QoqzJhT66+w767j2GJiIiIJN3KQqEdEcMSERERSersC4UyLBEREZGkzr5QKMMSERERSersC4UyLBEREZGkzr5QKMMSERER3dT1hULjQjUwVJtxsbQKhmoz+oVpOvSyAQDXWSIiIqJm6qwLhTIsERERUbN1xoVCeRuOiIiISALDEhEREZEEhiUiIiIiCQxLRERERBIYloiIiIgkMCwRERERSWBYIiIiIpLgdmFp9erViIiIgEqlwqBBg/Dtt99K1t+yZQtiYmKgUqnQr18/7Ny50267EAKLFi1CSEgIvL29kZKSgnPnzjlyCERERORG3Cosbd68GXPnzsXixYtx4sQJ9O/fH6mpqSguLm60/pEjR5CWlob09HScPHkSY8aMwZgxY5CTk2Or88Ybb2DlypXIyMjA0aNH4evri9TUVNTW1rbXsIiIiMiFycSNrw92YYMGDcLAgQOxatUqAIDVakV4eDhmz56N+fPnN6g/ceJEVFVVYceOHbaywYMHY8CAAcjIyIAQAqGhoXjuuefw/PPPAwCMRiOCg4Oxfv16TJo0qVn9Ki8vh0ajgdFohL+/fxuMlIiIiBytud/fbnNlyWQyITs7GykpKbYyuVyOlJQUZGVlNdomKyvLrj4ApKam2ur/9NNPKCoqsquj0WgwaNCgJvdJREREnYvbvBuutLQU9fX1CA4OtisPDg5GXl5eo22KiooarV9UVGTbfr2sqTqNqaurQ11dne3n8vLy5g+EiIiI3IrbXFlyJUuXLoVGo7F9wsPDnd0lIiIichC3CUvdunWDh4cH9Hq9Xbler4dOp2u0jU6nk6x//X9vZZ8AsGDBAhiNRtsnPz//lsdDRERE7sFtwpJCoUB8fDz2799vK7Nardi/fz+SkpIabZOUlGRXHwD27t1rq3/bbbdBp9PZ1SkvL8fRo0eb3CcAKJVK+Pv7232IiIioY3KbOUsAMHfuXEyZMgUJCQlITEzEihUrUFVVhWnTpgEAHnnkEYSFhWHp0qUAgGeeeQbDhg3DW2+9hXvvvRebNm3C8ePH8d577wEAZDIZnn32WfzXf/0XoqOjcdttt+GVV15BaGgoxowZ46xhEhERkQtxq7A0ceJElJSUYNGiRSgqKsKAAQOwa9cu2wTtS5cuQS7/v4tld911FzIzM7Fw4UK89NJLiI6Oxueff464uDhbnRdeeAFVVVWYMWMGDAYDhg4dil27dkGlUrX7+IiIiMj1uNU6S66K6ywRERG5nw63zhIRERGRMzAsEREREUlgWCIiIiKSwLBEREREJIFhiYiIiEgCwxIRERGRBIYlIiIiIgkMS0REREQSGJaIiIiIJDAsEREREUlgWCIiIiKSwLBEREREJIFhiYiIiEgCwxIRERGRBIYlIiIiIgkMS0REREQSGJaIiIiIJHi2prHJZEJxcTGsVqtdeY8ePVrVKSIiIiJX0aKwdO7cOTz66KM4cuSIXbkQAjKZDPX19W3SOSIiIiJna1FYmjp1Kjw9PbFjxw6EhIRAJpO1db+IiIiIXEKLwtJ3332H7OxsxMTEtHV/iIiIiFxKiyZ49+nTB6WlpW3dFyIiIiKX06KwtGzZMrzwwgv48ssvcfXqVZSXl9t9iIiIiDoKmRBC3GojufxaxrpxrlJnneBdXl4OjUYDo9EIf39/Z3eHiIiImqG5398tmrN08ODBFneMiIiIyJ20KCwNGzasrftBRERE5JJavCilwWDAhx9+iDNnzgAA+vbti0cffRQajabNOkdERETkbC2a4H38+HFERkZi+fLlKCsrQ1lZGd5++21ERkbixIkTbd1HIiIiIqdp0QTv3/72t4iKisL7778PT89rF6csFgumT5+O//znPzh06FCbd9SVcYI3ERGR+2nu93eLwpK3tzdOnjzZYFHK06dPIyEhAdXV1bfeYzfGsEREROR+mvv93aLbcP7+/rh06VKD8vz8fPj5+bVkl0REREQuqUVhaeLEiUhPT8fmzZuRn5+P/Px8bNq0CdOnT0daWlpb95GIiIjIaVr0NNx///d/QyaT4ZFHHoHFYgEAeHl54cknn8Rf//rXNu0gERERkTO1aM7SddXV1bhw4QIAIDIyEj4+Pm3WMXfCOUtERETux6EreF/n4+MDrVZr+28iIiKijqZFc5YsFgteeeUVaDQaREREICIiAhqNBgsXLoTZbG7rPhIRERE5TYvC0uzZs/Hee+/hjTfewMmTJ3Hy5Em88cYb+PDDD/H000+3dR8BAGVlZZg8eTL8/f2h1WqRnp6OyspKyTa1tbWYOXMmunbtCrVajXHjxkGv19vVefrppxEfHw+lUokBAwY4pO9ERETkvlo0Z0mj0WDTpk2455577Mp37tyJtLQ0GI3GNuvgdffccw+uXLmCd999F2azGdOmTcPAgQORmZnZZJsnn3wS//u//4v169dDo9Fg1qxZkMvlOHz4sK3O008/jd69e+Po0aP4/vvv8d13391y3zhniYiIyP04dM6SUqlEREREg/LbbrsNCoWiJbuUdObMGezatQvHjh1DQkICAOCdd97B6NGj8d///d8IDQ1t0MZoNOLDDz9EZmYmRowYAQBYt24dYmNj8e9//xuDBw8GAKxcuRIAUFJSgu+//77N+05ERETurUW34WbNmoU///nPqKurs5XV1dXh9ddfx6xZs9qsc9dlZWVBq9XaghIApKSkQC6X4+jRo422yc7OhtlsRkpKiq0sJiYGPXr0QFZWVqv6U1dXh/LycrsPERERdUzNvrI0duxYu5/37duH7t27o3///gCAU6dOwWQyITk5uW17CKCoqAhBQUF2ZZ6enggICEBRUVGTbRQKhe1pveuCg4ObbNNcS5cuxZIlS1q1DyIiInIPzQ5LGo3G7udx48bZ/RweHn7LB58/fz6WLVsmWefMmTO3vF9HW7BgAebOnWv7uby8vEXjJyIiItfX7LC0bt06AIAQAvn5+QgMDIS3t3erDv7cc89h6tSpknV69eoFnU6H4uJiu3KLxYKysjLodLpG2+l0OphMJhgMBrurS3q9vsk2zaVUKqFUKlu1DyIiInIPtzzBWwiBqKgo5ObmIjo6ulUHDwwMRGBg4E3rJSUlwWAwIDs7G/Hx8QCAAwcOwGq1YtCgQY22iY+Ph5eXF/bv32+7Cnb27FlcunQJSUlJrep3e7BaBQoMNagyWeCr8ESY1htyuczZ3SIiIup0bjksyeVyREdH4+rVq60OS80VGxuLUaNG4bHHHkNGRgbMZjNmzZqFSZMm2Z6EKygoQHJyMjZs2IDExERoNBqkp6dj7ty5CAgIgL+/P2bPno2kpCTbk3AAcP78eVRWVqKoqAg1NTW2pQP69OnjkCf7muN8cQV25+hxoaQStZZ6qDw9EBmoRmpcMKKC/JzSJyIios6qRUsH/PWvf8W8efOwdu1axMXFtXWfGvXJJ59g1qxZSE5Ohlwux7hx42yP/QOA2WzG2bNnUV1dbStbvny5rW5dXR1SU1OxZs0au/1Onz4dX331le3nO++8EwDw008/Nbo8gqOdL67AusMXUVZlQohGBR+FN6pNFuQUGlForMG0IREMTERERO2oRYtSdunSBdXV1bBYLFAoFA3mLpWVlbVZB91BWy1KabUKrP3yAnIKjYgOUkMm+7/bbkIInCuuRL8wDZ4YFslbckRERK3k0EUpV6xY0dJ+kYQCQw0ulFQiRKOyC0oAIJPJEKJR4XxxJQoMNQgP4IuLiYiI2kOLwtKUKVPauh8EoMpkQa2lHj6Kxp8y9FZ4QF9eiyqTpZ17RkRE1Hm1KCz9Wm1tLUwmk10Z34/WMr4KT6g8PVBtssBP5dVge42pHkpPD/gqWv1rIyIiomZq0etOqqqqMGvWLAQFBcHX1xddunSx+1DLhGm9ERmoxhVjLW6cSiaEwBVjLaKC1AjTtm59KyIiImq+FoWlF154AQcOHMDatWuhVCrxwQcfYMmSJQgNDcWGDRvauo+dhlwuQ2pcMAJ8FThXXImKWjMsVisqas04V1yJAF8FRvYN5uRuIiKidtSip+F69OiBDRs2YPjw4fD398eJEycQFRWFjz/+GH//+9+xc+dOR/TVZbXV03DX/XqdpTrLtVtvUUFqjOzLdZaIiIjaikOfhisrK0OvXr0AXJufdH2pgKFDh+LJJ59syS7pV6KC/NBruJoreBMREbmAFt2G69WrF3766ScAQExMDD799FMAwPbt2+3ew0YtJ5fLEB7ggxidP8IDfBiUiIiInKRFYWnatGk4deoUAGD+/PlYvXo1VCoVnn32WcybN69NO0hERETkTC2as3Sjn3/+GdnZ2YiOjka/fv3aol9upa3nLBEREZHjNff7+5auLB04cAB9+vRBeXm5XXnPnj2RnJyMSZMm4euvv25Zj4mIiIhc0C2FpRUrVuCxxx5rNH1pNBo8/vjjePvtt9usc0RERETOdkth6dSpUxg1alST20eOHIns7OxWd4qIiIjIVdxSWNLr9fDyavgajus8PT1RUlLS6k4RERERuYpbCkthYWHIyclpcvv333+PkJCQVneKiIiIyFXcUlgaPXo0XnnlFdTW1jbYVlNTg8WLF+O+++5rs84REREROdstLR2g1+vxm9/8Bh4eHpg1axZ69+4NAMjLy8Pq1atRX1+PEydOIDg42GEddkVcOoCIiMj9OOR1J8HBwThy5AiefPJJLFiwANdzlkwmQ2pqKlavXt3pghIRERF1bLf8briePXti586d+OWXX3D+/HkIIRAdHY0uXbo4on9ERERETtWiF+kCQJcuXTBw4MC27AsREVGHYrUKvhS9A2hxWCIiIqKmnS+uwO4cPS6UVKLWUg+VpwciA9VIjQtGVJCfs7tHt4BhiYiIqI2dL67AusMXUVZlQohGBR+FN6pNFuQUGlForMG0IREMTG7klpYOICIiImlWq8DuHD3KqkyIDlLDT+UFD7kMfiovRAepUVZlwp5cPazWVr/HntoJwxIREVEbKjDU4EJJJUI0Kshk9vOTZDIZQjQqnC+uRIGhxkk9pFvFsERERNSGqkwW1Frq4aNofKaLt8IDdZZ6VJks7dwzaimGJSIiojbkq/CEytMD1U2EoRpTPZSeHvBtIkyR62FYIiIiakNhWm9EBqpxxViLG1+SIYTAFWMtooLUCNN6O6mHdKsYloiIiNqQXC5DalwwAnwVOFdciYpaMyxWKypqzThXXIkAXwVG9g3mektuhGGJiIiojUUF+WHakAjEhWpgqDbjYmkVDNVm9AvTcNkAN8QbpkRERA4QFeSHXsPVXMG7A2BYIiIichC5XIbwAB9nd4NaibfhiIiIiCQwLBERERFJYFgiIiIiksCwRERERCTBbcJSWVkZJk+eDH9/f2i1WqSnp6OyslKyTW1tLWbOnImuXbtCrVZj3Lhx0Ov1tu2nTp1CWloawsPD4e3tjdjYWPzP//yPo4dCREREbsRtwtLkyZORm5uLvXv3YseOHTh06BBmzJgh2WbOnDnYvn07tmzZgq+++gqFhYUYO3asbXt2djaCgoKwceNG5Obm4uWXX8aCBQuwatUqRw+HiIiI3IRM3LgWuws6c+YM+vTpg2PHjiEhIQEAsGvXLowePRqXL19GaGhogzZGoxGBgYHIzMzE+PHjAQB5eXmIjY1FVlYWBg8e3OixZs6ciTNnzuDAgQPN7l95eTk0Gg2MRiP8/f1bMEIiIiJqb839/naLK0tZWVnQarW2oAQAKSkpkMvlOHr0aKNtsrOzYTabkZKSYiuLiYlBjx49kJWV1eSxjEYjAgICJPtTV1eH8vJyuw8RERF1TG4RloqKihAUFGRX5unpiYCAABQVFTXZRqFQQKvV2pUHBwc32ebIkSPYvHnzTW/vLV26FBqNxvYJDw9v/mCIiIjIrTg1LM2fPx8ymUzyk5eX1y59ycnJwQMPPIDFixdj5MiRknUXLFgAo9Fo++Tn57dLH4mIiKj9OfV1J8899xymTp0qWadXr17Q6XQoLi62K7dYLCgrK4NOp2u0nU6ng8lkgsFgsLu6pNfrG7Q5ffo0kpOTMWPGDCxcuPCm/VYqlVAqlTetR0RERO7PqWEpMDAQgYGBN62XlJQEg8GA7OxsxMfHAwAOHDgAq9WKQYMGNdomPj4eXl5e2L9/P8aNGwcAOHv2LC5duoSkpCRbvdzcXIwYMQJTpkzB66+/3gajIiIioo7ELZ6GA4B77rkHer0eGRkZMJvNmDZtGhISEpCZmQkAKCgoQHJyMjZs2IDExEQAwJNPPomdO3di/fr18Pf3x+zZswFcm5sEXLv1NmLECKSmpuLNN9+0HcvDw6NZIe46Pg1HRETkfpr7/e3UK0u34pNPPsGsWbOQnJwMuVyOcePGYeXKlbbtZrMZZ8+eRXV1ta1s+fLltrp1dXVITU3FmjVrbNu3bt2KkpISbNy4ERs3brSV9+zZExcvXmyXcREREZFrc5srS66MV5aIiIjcT4daZ4mIiIjIWRiWiIiIiCQwLBERERFJYFgiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWiIiIiCQwLBERERFJYFgiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWiIiIiCQwLBERERFJYFgiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWiIiIiCQwLBERERFJYFgiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEjyd3QEiouusVoECQw2qTBb4KjwRpvWGXC5zdreIqJNjWCIil3C+uAK7c/S4UFKJWks9VJ4eiAxUIzUuGFFBfs7uHhF1Ym5zG66srAyTJ0+Gv78/tFot0tPTUVlZKdmmtrYWM2fORNeuXaFWqzFu3Djo9Xrb9qtXr2LUqFEIDQ2FUqlEeHg4Zs2ahfLyckcPh4h+5XxxBdYdvoicQiO0Pl7o1U0NrY8XcgqNWHf4Is4XVzi7i0TUiblNWJo8eTJyc3Oxd+9e7NixA4cOHcKMGTMk28yZMwfbt2/Hli1b8NVXX6GwsBBjx461bZfL5XjggQewbds2/Pjjj1i/fj327duHJ554wtHDIaL/z2oV2J2jR1mVCdFBavipvOAhl8FP5YXoIDXKqkzYk6uH1Sqc3VUi6qRkQgiX/xfozJkz6NOnD44dO4aEhAQAwK5duzB69GhcvnwZoaGhDdoYjUYEBgYiMzMT48ePBwDk5eUhNjYWWVlZGDx4cKPHWrlyJd58803k5+c3u3/l5eXQaDQwGo3w9/dvwQiJOq/8smos3/sjtD5e8FN5NdheUWuGodqMOXffjvAAHyf0kIg6quZ+f7vFlaWsrCxotVpbUAKAlJQUyOVyHD16tNE22dnZMJvNSElJsZXFxMSgR48eyMrKarRNYWEhPvvsMwwbNkyyP3V1dSgvL7f7EFHLVJksqLXUw0fR+BRKb4UH6iz1qDJZ2rlnRETXuEVYKioqQlBQkF2Zp6cnAgICUFRU1GQbhUIBrVZrVx4cHNygTVpaGnx8fBAWFgZ/f3988MEHkv1ZunQpNBqN7RMeHn7rgyIiAICvwhMqTw9UNxGGakz1UHp6wLeJMEVE5GhODUvz58+HTCaT/OTl5Tm8H8uXL8eJEyfwxRdf4MKFC5g7d65k/QULFsBoNNo+t3LLjojshWm9ERmoxhVjLW6cFSCEwBVjLaKC1AjTejuph0TU2Tn1/6o999xzmDp1qmSdXr16QafTobi42K7cYrGgrKwMOp2u0XY6nQ4mkwkGg8Hu6pJer2/QRqfTQafTISYmBgEBAfjtb3+LV155BSEhIY3uW6lUQqlU3nyARHRTcrkMqXHBKDTW4FxxJUI0KngrPFBjqscVYy0CfBUY2TeY6y0RkdM4NSwFBgYiMDDwpvWSkpJgMBiQnZ2N+Ph4AMCBAwdgtVoxaNCgRtvEx8fDy8sL+/fvx7hx4wAAZ8+exaVLl5CUlNTksaxWK4Br85KIqH1EBflh2pAI2zpL+vJaKD090C9Mg5F9uc4SETmXWzwNBwD33HMP9Ho9MjIyYDabMW3aNCQkJCAzMxMAUFBQgOTkZGzYsAGJiYkAgCeffBI7d+7E+vXr4e/vj9mzZwMAjhw5AgDYuXMn9Ho9Bg4cCLVajdzcXMybNw8BAQH45ptvmt03Pg1H1Da4gjcRtafmfn+7zYzJTz75BLNmzUJycjLkcjnGjRuHlStX2rabzWacPXsW1dXVtrLly5fb6tbV1SE1NRVr1qyxbff29sb777+POXPmoK6uDuHh4Rg7dizmz5/frmMjomvkchmXByAil+M2V5ZcGa8sERERuZ8Otc4SERERkbMwLBERERFJYFgiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWiIiIiCQwLBERERFJYFgiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWiIiIiCQwLBERERFJYFgiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWiIiIiCQwLBERERFJYFgiIiIiksCwRERERCSBYYmIiIhIAsMSERERkQSGJSIiIiIJDEtEREREEhiWiIiIiCQwLBERERFJYFgiIiIikuA2YamsrAyTJ0+Gv78/tFot0tPTUVlZKdmmtrYWM2fORNeuXaFWqzFu3Djo9fpG6169ehXdu3eHTCaDwWBwwAiIiIjIHblNWJo8eTJyc3Oxd+9e7NixA4cOHcKMGTMk28yZMwfbt2/Hli1b8NVXX6GwsBBjx45ttG56ejruuOMOR3SdiIiI3JhMCCGc3YmbOXPmDPr06YNjx44hISEBALBr1y6MHj0aly9fRmhoaIM2RqMRgYGByMzMxPjx4wEAeXl5iI2NRVZWFgYPHmyru3btWmzevBmLFi1CcnIyfvnlF2i12mb3r7y8HBqNBkajEf7+/q0bLBEREbWL5n5/u8WVpaysLGi1WltQAoCUlBTI5XIcPXq00TbZ2dkwm81ISUmxlcXExKBHjx7IysqylZ0+fRqvvfYaNmzYALm8eaejrq4O5eXldh8iIiLqmNwiLBUVFSEoKMiuzNPTEwEBASgqKmqyjUKhaHCFKDg42Namrq4OaWlpePPNN9GjR49m92fp0qXQaDS2T3h4+K0NiIiIiNyGU8PS/PnzIZPJJD95eXkOO/6CBQsQGxuLhx9++JbbGY1G2yc/P99BPSQiIiJn83TmwZ977jlMnTpVsk6vXr2g0+lQXFxsV26xWFBWVgadTtdoO51OB5PJBIPBYHd1Sa/X29ocOHAAP/zwA7Zu3QoAuD59q1u3bnj55ZexZMmSRvetVCqhVCqbM0QiIiJyc04NS4GBgQgMDLxpvaSkJBgMBmRnZyM+Ph7AtaBjtVoxaNCgRtvEx8fDy8sL+/fvx7hx4wAAZ8+exaVLl5CUlAQA+Mc//oGamhpbm2PHjuHRRx/F119/jcjIyNYOj4iIiDoAp4al5oqNjcWoUaPw2GOPISMjA2azGbNmzcKkSZNsT8IVFBQgOTkZGzZsQGJiIjQaDdLT0zF37lwEBATA398fs2fPRlJSku1JuBsDUWlpqe14t/I0HBEREXVcbhGWAOCTTz7BrFmzkJycDLlcjnHjxmHlypW27WazGWfPnkV1dbWtbPny5ba6dXV1SE1NxZo1a5zRfSIiInJTbrHOkqvjOktERETup0Ots0RERETkLAxLRERERBIYloiIiIgkMCwRERERSWBYIiIiIpLAsEREREQkgWGJiIiISALDEhEREZEEhiUiIiIiCQxLRERERBIYloiIiIgkMCwRERERSWBYIiIiIpLAsEREREQkgWGJiIiISALDEhEREZEEhiUiIiIiCQxLRERERBI8nd0BIiIicn1Wq0CBoQZVJgt8FZ4I03pDLpc5u1vtgmGJiIiIJJ0vrsDuHD0ulFSi1lIPlacHIgPVSI0LRlSQn7O753AMS0RERNSk88UVWHf4IsqqTAjRqOCj8Ea1yYKcQiMKjTWYNiSiwwcmzlkiIiKiRlmtArtz9CirMiE6SA0/lRc85DL4qbwQHaRGWZUJe3L1sFqFs7vqUAxLRERE1KgCQw0ulFQiRKOCTGY/P0kmkyFEo8L54koUGGqc1MP2wbBEREREjaoyWVBrqYePovFZO94KD9RZ6lFlsrRzz9oXwxIRERE1ylfhCZWnB6qbCEM1pnooPT3g20SY6igYloiIiKhRYVpvRAaqccVYCyHs5yUJIXDFWIuoIDXCtN5O6mH7YFgiIiKiRsnlMqTGBSPAV4FzxZWoqDXDYrWiotaMc8WVCPBVYGTf4A6/3hLDEhERETUpKsgP04ZEIC5UA0O1GRdLq2CoNqNfmKZTLBsAcJ0lIiIiuomoID/0Gq7mCt5ERERETZHLZQgP8HF2N5yCt+GIiIiIJDAsEREREUlgWCIiIiKSwLBEREREJIFhiYiIiEiC24SlsrIyTJ48Gf7+/tBqtUhPT0dlZaVkm9raWsycORNdu3aFWq3GuHHjoNfr7erIZLIGn02bNjlyKERERORG3CYsTZ48Gbm5udi7dy927NiBQ4cOYcaMGZJt5syZg+3bt2PLli346quvUFhYiLFjxzaot27dOly5csX2GTNmjINGQURERO5GJm582YsLOnPmDPr06YNjx44hISEBALBr1y6MHj0aly9fRmhoaIM2RqMRgYGByMzMxPjx4wEAeXl5iI2NRVZWFgYPHgzg2pWlf/7zn60KSOXl5dBoNDAajfD392/xfoiIiKj9NPf72y2uLGVlZUGr1dqCEgCkpKRALpfj6NGjjbbJzs6G2WxGSkqKrSwmJgY9evRAVlaWXd2ZM2eiW7duSExMxN/+9rcGLwu8UV1dHcrLy+0+RERE1DG5xQreRUVFCAoKsivz9PREQEAAioqKmmyjUCig1WrtyoODg+3avPbaaxgxYgR8fHywZ88ePPXUU6isrMTTTz/dZH+WLl2KJUuWNChnaCIiInIf17+3b3aRxKlhaf78+Vi2bJlknTNnzji0D6+88ortv++8805UVVXhzTfflAxLCxYswNy5c20/FxQUoE+fPggPD3doX4mIiKjtVVRUQKPRNLndqWHpueeew9SpUyXr9OrVCzqdDsXFxXblFosFZWVl0Ol0jbbT6XQwmUwwGAx2V5f0en2TbQBg0KBB+POf/4y6ujoolcpG6yiVSrttarUa+fn58PPzg0zWvJcKlpeXIzw8HPn5+Zzn1MZ4bh2D59VxeG4dg+fVMTrSeRVCoKKiotG5z7/m1LAUGBiIwMDAm9ZLSkqCwWBAdnY24uPjAQAHDhyA1WrFoEGDGm0THx8PLy8v7N+/H+PGjQMAnD17FpcuXUJSUlKTx/ruu+/QpUuXJoNSY+RyObp3797s+r/m7+/v9n9srorn1jF4Xh2H59YxeF4do6OcV6krSte5xZyl2NhYjBo1Co899hgyMjJgNpsxa9YsTJo0yZYGCwoKkJycjA0bNiAxMREajQbp6emYO3cuAgIC4O/vj9mzZyMpKcn2JNz27duh1+sxePBgqFQq7N27F3/5y1/w/PPPO3O4RERE5ELcIiwBwCeffIJZs2YhOTkZcrkc48aNw8qVK23bzWYzzp49i+rqalvZ8uXLbXXr6uqQmpqKNWvW2LZ7eXlh9erVmDNnDoQQiIqKwttvv43HHnusXcdGRERErsttwlJAQAAyMzOb3B4REdFgNrtKpcLq1auxevXqRtuMGjUKo0aNatN+NpdSqcTixYtv6XYfNQ/PrWPwvDoOz61j8Lw6Rmc8r26xKCURERGRs7jFopREREREzsKwRERERCSBYYmIiIhIAsMSERERkQSGJQcqKyvD5MmT4e/vD61Wi/T0dFRWVkq2ee+99zB8+HD4+/tDJpPBYDA0Wbeurg4DBgyATCbDd99917add2GOOK8XL15Eeno6brvtNnh7eyMyMhKLFy+GyWRy4Ehci6P+Xluy346mJeegtrYWM2fORNeuXaFWqzFu3Djo9Xq7OseOHUNycjK0Wi26dOmC1NRUnDp1ypFDcSmOOq8AsH79etxxxx1QqVQICgrCzJkzHTUMl+TIcwsAV69eRffu3W/6PecqGJYcaPLkycjNzcXevXuxY8cOHDp0CDNmzJBsU11djVGjRuGll1666f5feOGFmy7R3hE54rzm5eXBarXi3XffRW5uLpYvX46MjIxm/R46Ckf9vbZkvx1NS87BnDlzsH37dmzZsgVfffUVCgsLMXbsWNv2yspKjBo1Cj169MDRo0fxzTffwM/PD6mpqTCbzY4ekktwxHkFgLfffhsvv/wy5s+fj9zcXOzbtw+pqamOHIrLcdS5vS49PR133HGHI7ruGIIc4vTp0wKAOHbsmK3sX//6l5DJZKKgoOCm7Q8ePCgAiF9++aXR7Tt37hQxMTEiNzdXABAnT55so567Nkef11974403xG233daa7roNR53X1u63I2jJOTAYDMLLy0ts2bLFVnbmzBkBQGRlZQkhhDh27JgAIC5dumSr8/333wsA4ty5cw4ajetw1HktKysT3t7eYt++fY4dgAtz1Lm9bs2aNWLYsGFi//79zf732Nl4ZclBsrKyoNVqkZCQYCtLSUmBXC7H0aNHW7VvvV6Pxx57DB9//DF8fHxa21W34sjzeiOj0YiAgIA23aerctR5bc/fl6tqyTnIzs6G2WxGSkqKrSwmJgY9evRAVlYWAKB3797o2rUrPvzwQ5hMJtTU1ODDDz9EbGwsIiIiHDomV+Co87p3715YrVYUFBQgNjYW3bt3x4QJE5Cfn+/YAbkQR51bADh9+jRee+01bNiwAXK5+0QQ9+mpmykqKkJQUJBdmaenJwICAlBUVNTi/QohMHXqVDzxxBN2f8idhaPO643Onz+Pd955B48//nib7dOVOeq8ttfvy5W15BwUFRVBoVBAq9XalQcHB9va+Pn54csvv8TGjRvh7e0NtVqNXbt24V//+hc8Pd3m5Qwt5qjz+p///AdWqxV/+ctfsGLFCmzduhVlZWW4++67O80cRked27q6OqSlpeHNN99Ejx49HNJ3R2FYukXz58+HTCaT/OTl5Tns+O+88w4qKiqwYMEChx3DGZx9Xn+toKAAo0aNwh//+Ee3f0+gK53XjsbZ57ampgbp6ekYMmQI/v3vf+Pw4cOIi4vDvffei5qaGocd19GcfV6tVivMZjNWrlyJ1NRUDB48GH//+99x7tw5HDx40GHHbQ/OPrcLFixAbGwsHn74YYcdw1E6/v/9aGPPPfccpk6dKlmnV69e0Ol0KC4utiu3WCwoKyuDTqdr8fEPHDiArKysBu/kSUhIwOTJk/HRRx+1eN/O5Ozzel1hYSF+//vf46677sJ7773X6v05m7PPq6N/X87kyHOr0+lgMplgMBjs/p+6Xq+3tcnMzMTFixeRlZVlu52RmZmJLl264IsvvsCkSZNaPjgncvZ5DQkJAQD06dPHtj0wMBDdunXDpUuXWjAi1+Hsc3vgwAH88MMP2Lp1KwDY3ufarVs3vPzyy1iyZEkLR9YOnD1pqqO6PkHu+PHjtrLdu3e3esLszz//LH744QfbZ/fu3QKA2Lp1q8jPz2/rYbgcR51XIYS4fPmyiI6OFpMmTRIWi6Utu+3yHHVeW7vfjqAl5+D6ZNmtW7fayvLy8uwmy65cuVLodDphtVptdcxms/D19RWffPKJg0bjOhx1Xs+ePSsA2E3wvnr1qpDL5WL37t0OGo1rcdS5PX/+vN3319/+9jcBQBw5ckTo9XrHDqqVGJYcaNSoUeLOO+8UR48eFd98842Ijo4WaWlptu2XL18WvXv3FkePHrWVXblyRZw8eVK8//77AoA4dOiQOHnypLh69Wqjx/jpp5861dNwQjjmvF6+fFlERUWJ5ORkcfnyZXHlyhXbp7Nw1N/rzfbbGbTk3D7xxBOiR48e4sCBA+L48eMiKSlJJCUl2bafOXNGKJVK8eSTT4rTp0+LnJwc8fDDDwuNRiMKCwvbdXzO4ojzKoQQDzzwgOjbt684fPiw+OGHH8R9990n+vTpI0wmU7uNzdkcdW5/7VaeTnY2hiUHunr1qkhLSxNqtVr4+/uLadOmiYqKCtv260Hn4MGDtrLFixcLAA0+69ata/QYnTEsOeK8rlu3rtHtneniq6P+Xm+2386gJee2pqZGPPXUU6JLly7Cx8dHPPjggw3C+549e8SQIUOERqMRXbp0ESNGjGjwmHZH5qjzajQaxaOPPiq0Wq0ICAgQDz74oN0SDZ2Bo87tr7lTWJIJ8f9vGhIRERFRA3wajoiIiEgCwxIRERGRBIYlIiIiIgkMS0REREQSGJaIiIiIJDAsEREREUlgWCIiIiKSwLBEREREJIFhiYg6hKlTpzb6FvVRo0Y5u2tE5OY8nd0BIqK2MmrUKKxbt86uTKlUOux4JpMJCoXCYfsnItfAK0tE1GEolUrodDq7T5cuXQAAMpkMH3zwAR588EH4+PggOjoa27Zts2ufk5ODe+65B2q1GsHBwfjTn/6E0tJS2/bhw4dj1qxZePbZZ9GtWzekpqYCALZt24bo6GioVCr8/ve/x0cffQSZTAaDwYCqqir4+/tj69atdsf6/PPP4evri4qKCgefFSJqLYYlIuo0lixZggkTJuD777/H6NGjMXnyZJSVlQEADAYDRowYgTvvvBPHjx/Hrl27oNfrMWHCBLt9fPTRR1AoFDh8+DAyMjLw008/Yfz48RgzZgxOnTqFxx9/HC+//LKtvq+vLyZNmtTgite6deswfvx4+Pn5OX7gRNQ6zn6TLxFRW5gyZYrw8PAQvr6+dp/XX39dCCEEALFw4UJb/crKSgFA/Otf/xJCCPHnP/9ZjBw50m6f+fn5AoA4e/asEEKIYcOGiTvvvNOuzosvviji4uLsyl5++WW7t6kfPXpUeHh4iMLCQiGEEHq9Xnh6eoovv/yy7U4AETkM5ywRUYfx+9//HmvXrrUrCwgIsP33HXfcYftvX19f+Pv7o7i4GABw6tQpHDx4EGq1usF+L1y4gNtvvx0AEB8fb7ft7NmzGDhwoF1ZYmJig5/79u2Ljz76CPPnz8fGjRvRs2dP/O53v2vBKImovTEsEVGH4evri6ioqCa3e3l52f0sk8lgtVoBAJWVlfjDH/6AZcuWNWgXEhJid4yWmD59OlavXo358+dj3bp1mDZtGmQyWYv2RUTti2GJiAjAb37zG/zjH/9AREQEPD2b/09j7969sXPnTruyY8eONaj38MMP44UXXsDKlStx+vRpTJkypdV9JqL2wQneRNRh1NXVoaioyO7z66fZpMycORNlZWVIS0vDsWPHcOHCBezevRvTpk1DfX19k+0ef/xx5OXl4cUXX8SPP/6ITz/9FOvXrwcAuytHXbp0wdixYzFv3jyMHDkS3bt3b9VYiaj9MCwRUYexa9cuhISE2H2GDh3arLahoaE4fPgw6uvrMXLkSPTr1w/PPvsstFot5PKm/6m87bbbsHXrVnz22We44447sHbtWtvTcDeu8ZSeng6TyYRHH3205YMkonYnE0IIZ3eCiKgjef3115GRkYH8/Hy78o8//hhz5sxBYWEhF7MkciOcs0RE1Epr1qzBwIED0bVrVxw+fBhvvvkmZs2aZdteXV2NK1eu4K9//Ssef/xxBiUiN8PbcERErXTu3Dk88MAD6NOnD/785z/jueeew6uvvmrb/sYbbyAmJgY6nQ4LFixwXkeJqEV4G46IiIhIAq8sEREREUlgWCIiIiKSwLBEREREJIFhiYiIiEgCwxIRERGRBIYlIiIiIgkMS0REREQSGJaIiIiIJDAsEREREUn4f4UHS7O9+YLJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# x values versus residuals\n", + "plt.scatter(X_be[:, 1:2], res_be, alpha=0.5)\n", + "plt.xlabel(\"Energy\")\n", + "plt.ylabel(\"Carbon\")\n", + "plt.title(\"Residual Plot vs. X Values\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOhElEQVR4nO3de1yUdf7//+cMMAxyGEI5SRgeaNUwLQhE2/QTJJUdTM3D2ic1O3tKrVY721astaUfV9Nsv1lu+sm1g2t+WpO07UjmIdvF1FU3E0VAIgY5H+b6/dHP2SZgQgSHkcf9dptbzvt6v695XQM6z67rPe/LZBiGIQAAADTK7OkCAAAA2jPCEgAAgBuEJQAAADcISwAAAG4QlgAAANwgLAEAALhBWAIAAHCDsAQAAOAGYQkAAMANwhKAX/TEE0/IZDI1q6/JZNITTzzRpvUMHTpUQ4cObbf764gmTZqkuLg4T5cBtAnCEuBFXn31VZlMJufD19dXMTExmjRpko4dO+bp8tqduLg4l/crIiJCv/71r/XOO++0yv4rKir0xBNP6O9//3ur7K8tff/993rggQf0q1/9SlarVWFhYcrIyNDGjRs9XRrQ7vl6ugAAp+/JJ59U9+7dVVVVpS+++EKvvvqqPv30U+Xk5Mhqtbb66z3yyCOaO3duq+/3bBgwYIDmzJkjScrLy9NLL72kkSNHatmyZbr77rvPaN8VFRWaP3++JLXrM1P79+9XWlqaTpw4ocmTJyspKUklJSVavXq1rr/+et1///167rnnPF0m0G4RlgAvdM011ygpKUmSdPvtt6tLly5asGCBNmzYoDFjxrT66/n6+srX1zv/uYiJidEtt9zifH7rrbeqV69eWrhw4RmHJW9QW1ur0aNH64cfftDHH3+slJQU57ZZs2ZpwoQJ+sMf/qCkpCSNHTu2yf1UVVXJYrHIbG77CxKGYaiqqkoBAQFt/lpAc3AZDjgH/PrXv5YkHTp0yKV93759Gj16tMLCwmS1WpWUlKQNGza49KmtrdX8+fMVHx8vq9Wqzp076/LLL1dWVpazT2NzlqqrqzVr1iyFh4crODhYN9xwg44ePdqgtqbmsjS2z5UrV+rKK69URESE/P391bdvXy1btuy03otfEhUVpT59+ujbb79126+wsFBTpkxRZGSkrFar+vfvr9dee825/fDhwwoPD5ckzZ8/33mpr6n5Wjt27JDJZHLZxynvv/++TCaT85LYyZMndd999ykuLk7+/v6KiIjQVVddpV27dp328b711lvKycnR3LlzXYKSJPn4+Oill15SaGioS91///vfZTKZ9MYbb+iRRx5RTEyMOnXqpNLSUknS+vXrlZCQIKvVqoSEhCYvazocDi1atEgXXXSRrFarIiMjddddd+mHH35w6RcXF6frrrtO77//vpKSkhQQEKCXXnrptI8VaCve+b+KAFwcPnxYknTeeec52/bs2aPBgwcrJiZGc+fOVWBgoP7yl79oxIgReuutt3TTTTdJ+jG0ZGZm6vbbb1dycrJKS0u1Y8cO7dq1S1dddVWTr3n77bfr9ddf129+8xsNGjRIW7du1fDhw8/oOJYtW6aLLrpIN9xwg3x9ffXuu+/q3nvvlcPh0NSpU89o36fU1tYqNzdXnTt3brJPZWWlhg4dqoMHD2ratGnq3r271q1bp0mTJqmkpEQzZ85UeHi4li1bpnvuuUc33XSTRo4cKUm6+OKLG91nUlKSevToob/85S+aOHGiy7a1a9fqvPPOU0ZGhiTp7rvv1ptvvqlp06apb9+++v777/Xpp59q7969uvTSS0/reN99911JP55Ra4zNZtONN96o1157TQcPHlSvXr2c2373u9/JYrHo/vvvV3V1tSwWizZv3qxRo0apb9++yszM1Pfff6/Jkyfr/PPPb7Dvu+66S6+++qomT56sGTNm6Ntvv9WSJUv01Vdf6bPPPpOfn5+z7/79+zV+/HjddddduuOOO/SrX/3qtI4TaFMGAK+xcuVKQ5LxwQcfGCdOnDByc3ONN9980wgPDzf8/f2N3NxcZ9+0tDSjX79+RlVVlbPN4XAYgwYNMuLj451t/fv3N4YPH+72dR9//HHjp/9c7N6925Bk3HvvvS79fvOb3xiSjMcff9zZNnHiROOCCy74xX0ahmFUVFQ06JeRkWH06NHDpW3IkCHGkCFD3NZsGIZxwQUXGMOGDTNOnDhhnDhxwvj666+NcePGGZKM6dOnN7m/RYsWGZKM119/3dlWU1NjpKamGkFBQUZpaalhGIZx4sSJBsfrzrx58ww/Pz+juLjY2VZdXW2EhoYat912m7PNZrMZU6dObdY+f8mAAQMMm83mts8LL7xgSDI2bNhgGIZhfPjhh4Yko0ePHg1+JgMGDDCio6ONkpISZ9vmzZsNSS4/508++cSQZKxevdpl/KZNmxq0X3DBBYYkY9OmTS08SqBtcRkO8ELp6ekKDw9XbGysRo8ercDAQG3YsMH5f/fFxcXaunWrxowZo5MnT6qoqEhFRUX6/vvvlZGRoQMHDji/PRcaGqo9e/bowIEDzX799957T5I0Y8YMl/b77rvvjI7rp3NU7Ha7ioqKNGTIEP373/+W3W5v0T43b96s8PBwhYeHq3///lq3bp3++7//WwsWLGhyzHvvvaeoqCiNHz/e2ebn56cZM2aorKxMH330UYtqGTt2rGpra/X222+71FdSUuIyXyg0NFTbtm1TXl5ei17np06ePKng4GC3fU5tP3WZ7ZSJEye6/EyOHz+u3bt3a+LEibLZbM72q666Sn379nUZu27dOtlsNl111VXO37+ioiIlJiYqKChIH374oUv/7t27O8+sAe0NYQnwQkuXLlVWVpbefPNNXXvttSoqKpK/v79z+8GDB2UYhh599FFnUDj1ePzxxyX9OCdH+vGbdSUlJbrwwgvVr18/PfDAA/rHP/7h9vW/++47mc1m9ezZ06X9TC+dfPbZZ0pPT1dgYKBCQ0MVHh6uhx56SJJaHJZSUlKUlZWlDz74QJ9//rmKioq0atUqt5OHv/vuO8XHxzeYzNynTx/n9pbo37+/evfurbVr1zrb1q5dqy5duujKK690tj377LPKyclRbGyskpOT9cQTT+jf//53i14zODhYJ0+edNvn1Pafh6ru3bu7PD913PHx8Q328fOf/YEDB2S32xUREdHgd7CsrMz5+9fUawHtCXOWAC+UnJzs/DbciBEjdPnll+s3v/mN9u/fr6CgIDkcDknS/fff3+T/rZ+am3LFFVfo0KFD+utf/6rNmzfrT3/6kxYuXKjly5fr9ttvP+Nam1rMsr6+3uX5oUOHlJaWpt69e+uFF15QbGysLBaL3nvvPS1cuNB5TKerS5cuSk9Pb9HYtjB27Fg9/fTTKioqUnBwsDZs2KDx48e7fNtwzJgxzvWgNm/erOeee04LFizQ22+/rWuuuea0Xq9Pnz7avXu3jhw5om7dujXa51Q4/vnZoTP5NprD4VBERIRWr17d6PZTk+Nb47WAtkZYArycj4+PMjMz9V//9V9asmSJ5s6dqx49ekj68dJRc4JCWFiYJk+erMmTJ6usrExXXHGFnnjiiSbD0gUXXCCHw6FDhw65nFHYv39/g77nnXeeSkpKGrT//OzMu+++q+rqam3YsMHlQ/3nl2vOhgsuuED/+Mc/5HA4XM4u7du3z7ldajoIujN27FjNnz9fb731liIjI1VaWqpx48Y16BcdHa17771X9957rwoLC3XppZfq6aefPu2wdN111+l///d/tWrVKj3yyCMNtpeWluqvf/2revfu7TK5uzGnjruxS7Y//9n37NlTH3zwgQYPHkwQgtfjMhxwDhg6dKiSk5O1aNEiVVVVKSIiQkOHDtVLL72k48ePN+h/4sQJ55+///57l21BQUHq1auXqqurm3y9Ux/YixcvdmlftGhRg749e/aU3W53ubR3/PjxBl839/HxkfTjGjun2O12rVy5ssk62sq1116r/Px8l8tldXV1+uMf/6igoCANGTJEktSpUydJajQMNqVPnz7q16+f1q5dq7Vr1yo6OlpXXHGFc3t9fX2DS44RERHq2rWry8+kqKhI+/btU0VFhdvXGz16tPr27avf//732rFjh8s2h8Ohe+65Rz/88IPz8qw70dHRGjBggF577TWXGrOysvTNN9+49B0zZozq6+v1u9/9rsF+6urqTus9AzyNM0vAOeKBBx7QzTffrFdffVV33323li5dqssvv1z9+vXTHXfcoR49eqigoEDZ2dk6evSovv76a0k/XnoZOnSoEhMTFRYWph07dji/tt6UAQMGaPz48XrxxRdlt9s1aNAgbdmyRQcPHmzQd9y4cfrtb3+rm266STNmzFBFRYWWLVumCy+80GXdoGHDhslisej666/XXXfdpbKyMr388suKiIhoNPC1pTvvvFMvvfSSJk2apJ07dyouLk5vvvmmPvvsMy1atMg5tycgIEB9+/bV2rVrdeGFFyosLEwJCQlKSEhwu/+xY8fqsccek9Vq1ZQpU1zOXp08eVLnn3++Ro8erf79+ysoKEgffPCBtm/frueff97Zb8mSJZo/f74+/PBDt6uHWywWvfnmm0pLS9Pll1/usoL3mjVrtGvXLs2ZM6fRs1uNyczM1PDhw3X55ZfrtttuU3Fxsf74xz/qoosuUllZmbPfkCFDdNdddykzM1O7d+/WsGHD5OfnpwMHDmjdunX6n//5H40ePbpZrwl4nKe/jgeg+U4tHbB9+/YG2+rr642ePXsaPXv2NOrq6gzDMIxDhw4Zt956qxEVFWX4+fkZMTExxnXXXWe8+eabznFPPfWUkZycbISGhhoBAQFG7969jaefftqoqalx9mnsa/6VlZXGjBkzjM6dOxuBgYHG9ddfb+Tm5jb6VfrNmzcbCQkJhsViMX71q18Zr7/+eqP73LBhg3HxxRcbVqvViIuLMxYsWGC88sorhiTj22+/dfY7naUDfmlZhKb2V1BQYEyePNno0qWLYbFYjH79+hkrV65sMPbzzz83EhMTDYvF0uxlBA4cOGBIMiQZn376qcu26upq44EHHjD69+9vBAcHG4GBgUb//v2NF1980aXfqffvww8//MXXMwzDKCwsNGbPnm306tXL8Pf3N0JDQ4309HTncgE/dWrpgHXr1jW6r7feesvo06eP4e/vb/Tt29d4++23m1wiYsWKFUZiYqIREBBgBAcHG/369TMefPBBIy8vz9mnuT8nwFNMhvGTc94AAABwwZwlAAAANwhLAAAAbhCWAAAA3PC6sLR06VLFxcXJarUqJSVFX375pdv+69atU+/evWW1WtWvXz/nbRpOeeKJJ9S7d28FBgbqvPPOU3p6urZt29aWhwAAALyIV4WltWvXavbs2Xr88ce1a9cu9e/fXxkZGQ2WzT/l888/1/jx4zVlyhR99dVXGjFihEaMGKGcnBxnnwsvvFBLlizRP//5T3366aeKi4vTsGHDXNahAQAAHZdXfRsuJSVFl112mZYsWSLpxwXVYmNjNX36dM2dO7dB/7Fjx6q8vFwbN250tg0cOFADBgzQ8uXLG32N0tJS2Ww2ffDBB0pLS2ubAwEAAF7DaxalrKmp0c6dOzVv3jxnm9lsVnp6urKzsxsdk52drdmzZ7u0ZWRkaP369U2+xooVK2Sz2dS/f/8ma6murnZZSdfhcKi4uFidO3du0e0PAADA2WcYhk6ePKmuXbs2uHH2T3lNWCoqKlJ9fb0iIyNd2iMjI533a/q5/Pz8Rvvn5+e7tG3cuFHjxo1TRUWFoqOjlZWVpS5dujRZS2ZmpubPn9/CIwEAAO1Jbm6uzj///Ca3e01Yakv/9V//pd27d6uoqEgvv/yyxowZo23btikiIqLR/vPmzXM5Y2W329WtWzfl5uYqJCTkbJUNAADOQGlpqWJjY523MGqK14SlLl26yMfHRwUFBS7tBQUFioqKanRMVFRUs/oHBgaqV69e6tWrlwYOHKj4+Hj9v//3/1wu+f2Uv7+//P39G7SHhIQQlgAA8DK/NIXGa74NZ7FYlJiYqC1btjjbHA6HtmzZotTU1EbHpKamuvSXfrw7dlP9f7pfd3dcBwAAHYfXnFmSpNmzZ2vixIlKSkpScnKyFi1apPLyck2ePFmSdOuttyomJkaZmZmSpJkzZ2rIkCF6/vnnNXz4cL3xxhvasWOHVqxYIUkqLy/X008/rRtuuEHR0dEqKirS0qVLdezYMd18880eO04AANB+eFVYGjt2rE6cOKHHHntM+fn5GjBggDZt2uScxH3kyBGX2eyDBg3SmjVr9Mgjj+ihhx5SfHy81q9fr4SEBEmSj4+P9u3bp9dee01FRUXq3LmzLrvsMn3yySe66KKLPHKMAACgffGqdZbaq1NrM9ntduYsAQDgJZr7+e01c5YAAAA8gbAEAADgBmEJAADADcISAACAG4QlAAAAN7xq6QAAABwOQ8dKKlVeU6dAi69iQgNkNnMTc7QdwhIAwGscLDyp93MKdOhEmarq6mX19VHP8CBlJESqV4T7+3sBLUVYAgB4hYOFJ7Xys8MqLq9RtM2qTpYAVdTUKSfPrjx7pSYPjiMwoU0wZwkA0O45HIbezylQcXmN4iOCFGz1k4/ZpGCrn+IjglRcXqPNewrkcLDOMlofYQkA0O4dK6nUoRNlirZZG9wh3mQyKdpm1cHCMh0rqfRQhTiXEZYAAO1eeU2dqurq1cnS+OyRAIuPquvqVV5Td5YrQ0dAWAIAtHuBFl9ZfX1U0UQYqqypl7+vjwKbCFPAmSAsAQDavZjQAPUMD9Jxe5V+fv93wzB03F6lXhFBigkN8FCFOJcRlgAA7Z7ZbFJGQqTCAi06UFimk1W1qnM4dLKqVgcKyxQWaNGwiyJZbwltgrAEAPAKvSKCNXlwnBK62lRSUavDReUqqahVvxgbywagTXFxFwDgNXpFBKvH0CBW8MZZRVgCAHgVs9mk2LBOni4DHQiX4QAAANwgLAEAALhBWAIAAHCDsAQAAOAGYQkAAMANwhIAAIAbhCUAAAA3CEsAAABuEJYAAADcYAVvAICTw2FwKxHgZwhLAABJ0sHCk3o/p0CHTpSpqq5eVl8f9QwPUkZCJDepRYdGWAIA6GDhSa387LCKy2sUbbOqkyVAFTV1ysmzK89eqcmD4whM6LCYswQAHZzDYej9nAIVl9coPiJIwVY/+ZhNCrb6KT4iSMXlNdq8p0AOh+HpUgGPICwBQAd3rKRSh06UKdpmlcnkOj/JZDIp2mbVwcIyHSup9FCFgGcRlgCggyuvqVNVXb06WRqfmRFg8VF1Xb3Ka+rOcmVA+0BYAoAOLtDiK6uvjyqaCEOVNfXy9/VRYBNhCjjXEZYAoIOLCQ1Qz/AgHbdXyTBc5yUZhqHj9ir1ighSTGiAhyoEPIuwBAAdnNlsUkZCpMICLTpQWKaTVbWqczh0sqpWBwrLFBZo0bCLIllvCR2W14WlpUuXKi4uTlarVSkpKfryyy/d9l+3bp169+4tq9Wqfv366b333nNuq62t1W9/+1v169dPgYGB6tq1q2699Vbl5eW19WEAQLvSKyJYkwfHKaGrTSUVtTpcVK6Silr1i7GxbAA6PK+6AL127VrNnj1by5cvV0pKihYtWqSMjAzt379fERERDfp//vnnGj9+vDIzM3XddddpzZo1GjFihHbt2qWEhARVVFRo165devTRR9W/f3/98MMPmjlzpm644Qbt2LHDA0cIAJ7TKyJYPYYGsYI38DMm4+cXqNuxlJQUXXbZZVqyZIkkyeFwKDY2VtOnT9fcuXMb9B87dqzKy8u1ceNGZ9vAgQM1YMAALV++vNHX2L59u5KTk/Xdd9+pW7duzaqrtLRUNptNdrtdISEhLTgyAABwtjX389trLsPV1NRo586dSk9Pd7aZzWalp6crOzu70THZ2dku/SUpIyOjyf6SZLfbZTKZFBoa2mSf6upqlZaWujwAAMC5yWvCUlFRkerr6xUZGenSHhkZqfz8/EbH5Ofnn1b/qqoq/fa3v9X48ePdJszMzEzZbDbnIzY29jSPBgAAeAuvCUttrba2VmPGjJFhGFq2bJnbvvPmzZPdbnc+cnNzz1KVAADgbPOaCd5dunSRj4+PCgoKXNoLCgoUFRXV6JioqKhm9T8VlL777jtt3br1F+cd+fv7y9/fvwVHAQAAvI3XnFmyWCxKTEzUli1bnG0Oh0NbtmxRampqo2NSU1Nd+ktSVlaWS/9TQenAgQP64IMP1Llz57Y5AAAA4JW85sySJM2ePVsTJ05UUlKSkpOTtWjRIpWXl2vy5MmSpFtvvVUxMTHKzMyUJM2cOVNDhgzR888/r+HDh+uNN97Qjh07tGLFCkk/BqXRo0dr165d2rhxo+rr653zmcLCwmSxWDxzoAAAoN3wqrA0duxYnThxQo899pjy8/M1YMAAbdq0yTmJ+8iRIzKb/3OybNCgQVqzZo0eeeQRPfTQQ4qPj9f69euVkJAgSTp27Jg2bNggSRowYIDLa3344YcaOnToWTkuAADQfnnVOkvtFessAQDgfc65dZYAAAA8gbAEAADgBmEJAADADcISAACAG4QlAAAANwhLAAAAbhCWAAAA3PCqRSk7EofD0LGSSpXX1CnQ4quY0ACZzSZPlwUAQIdDWGqHDhae1Ps5BTp0okxVdfWy+vqoZ3iQMhIi1Ssi2NPlAQDQoRCW2pmDhSe18rPDKi6vUbTNqk6WAFXU1Cknz648e6UmD44jMAEAcBYxZ6kdcTgMvZ9ToOLyGsVHBCnY6icfs0nBVj/FRwSpuLxGm/cUyOHgDjUAAJwthKV25FhJpQ6dKFO0zSqTyXV+kslkUrTNqoOFZTpWUumhCgEA6HgIS+1IeU2dqurq1cnS+NXRAIuPquvqVV5Td5YrAwCg4yIstSOBFl9ZfX1U0UQYqqypl7+vjwKbCFMAAKD1EZbakZjQAPUMD9Jxe5UMw3VekmEYOm6vUq+IIMWEBnioQgAAOh7CUjtiNpuUkRCpsECLDhSW6WRVreocDp2sqtWBwjKFBVo07KJI1lsCAOAsIiy1M70igjV5cJwSutpUUlGrw0XlKqmoVb8YG8sGAADgAUx+aYd6RQSrx9AgVvAGAKAdICy1U2azSbFhnTxdBgAAHR6X4QAAANwgLAEAALhBWAIAAHCDsAQAAOAGYQkAAMANwhIAAIAbLB0AAGeJw2GwfhrghQhLAHAWHCw8qfdzCnToRJmq6upl9fVRz/AgZSREsjI/0M4RlgCgjR0sPKmVnx1WcXmNom1WdbIEqKKmTjl5duXZK7mVEdDOMWcJANqQw2Ho/ZwCFZfXKD4iSMFWP/mYTQq2+ik+IkjF5TXavKdADofh6VIBNIGwBABt6FhJpQ6dKFO0zSqTyXV+kslkUrTNqoOFZTpWUumhCgH8Ei7DAfhFTExuufKaOlXV1auTJaDR7QEWHxWUVqm8pu4sVwaguQhLANxiYvKZCbT4yurro4qaOgVb/Rpsr6ypl7+vjwIt/HMMtFdchgPQpFMTk3Py7Art5KceXYIU2slPOXl2rfzssA4WnvR0ie1eTGiAeoYH6bi9SobhOi/JMAwdt1epV0SQYkIbP/MEwPMISwAaxcTk1mE2m5SREKmwQIsOFJbpZFWt6hwOnayq1YHCMoUFWjTsokguawLtGGEJQKOYmNx6ekUEa/LgOCV0tamkolaHi8pVUlGrfjE2lg0AvIDXhaWlS5cqLi5OVqtVKSkp+vLLL932X7dunXr37i2r1ap+/frpvffec9n+9ttva9iwYercubNMJpN2797dhtUD3uM/E5Mbn0sTYPFRdV09E5ObqVdEsO4Z2lOzrrpQ09PiNeuqC3X3kJ4EJcALeFVYWrt2rWbPnq3HH39cu3btUv/+/ZWRkaHCwsJG+3/++ecaP368pkyZoq+++kojRozQiBEjlJOT4+xTXl6uyy+/XAsWLDhbhwF4hZ9OTG4ME5NPn9lsUmxYJ/WOClFsWCcuvQFewmT8fMZhO5aSkqLLLrtMS5YskSQ5HA7FxsZq+vTpmjt3boP+Y8eOVXl5uTZu3OhsGzhwoAYMGKDly5e79D18+LC6d++ur776SgMGDDitukpLS2Wz2WS32xUSEnL6Bwa0Qw6HoWV/P6ScPLviI4JcLsUZhqEDhWXqF2PT3UN68qEPwCs19/Pba84s1dTUaOfOnUpPT3e2mc1mpaenKzs7u9Ex2dnZLv0lKSMjo8n+AP6DickA8COvOX9eVFSk+vp6RUZGurRHRkZq3759jY7Jz89vtH9+fv4Z1VJdXa3q6mrn89LS0jPaH9BenZqYfGqdpYLSKvn7+qhfjE3DLmKdJQAdg9eEpfYkMzNT8+fP93QZwFnRKyJYPYYGsYI3gA7Lay7DdenSRT4+PiooKHBpLygoUFRUVKNjoqKiTqt/c82bN092u935yM3NPaP9Ae0dE5MBdGReE5YsFosSExO1ZcsWZ5vD4dCWLVuUmpra6JjU1FSX/pKUlZXVZP/m8vf3V0hIiMsDAACcm7zqMtzs2bM1ceJEJSUlKTk5WYsWLVJ5ebkmT54sSbr11lsVExOjzMxMSdLMmTM1ZMgQPf/88xo+fLjeeOMN7dixQytWrHDus7i4WEeOHFFeXp4kaf/+/ZJ+PCt1pmegAACA9/OqsDR27FidOHFCjz32mPLz8zVgwABt2rTJOYn7yJEjMpv/c7Js0KBBWrNmjR555BE99NBDio+P1/r165WQkODss2HDBmfYkqRx48ZJkh5//HE98cQTZ+fAAABAu+VV6yy1V6yzBACA92nu57dXnVkCTpfDYfAtLgDAGSEs4Zx1sPCkc32gqrp6WX191DM8SBkJrA8EAGg+whLOSQcLT2rlZ4dVXF6jaJtVnSwBqqipU06eXXn2Su70DgBoNq9ZOgBoLofD0Ps5BSour1F8RJCCrX7yMZsUbPVTfESQistrtHlPgRwOpusBAH4ZYQnnnGMllTp0okzRNqvLzV8lyWQyKdpm1cHCMh0rqfRQhQAAb0JYwjmnvKZOVXX16mRp/CpzgMVH1XX1Kq+pO8uVAQC8EWEJ55xAi6+svj6qaCIMVdbUy9/XR4FNhCkAAH6KsIRzTkxogHqGB+m4vUo/X0bMMAwdt1epV0SQYkIDPFQh2oLDYSi3uEL78kuVW1zBnDQArYb/tcY5x2w2KSMhUnn2Sh0o/HHuUoDFR5U19Tpur1JYoEXDLopkvaVzCMtEAGhLhCWck3pFBGvy4DjnB2hBaZX8fX3UL8amYRfxAXouYZkIAG2NsIRzVq+IYPUYGsQK3uewny8Tcerbj8FWPwX5++pAYZk27ylQjy5B/NwBtBhhCec0s9mk2LBOni4DbeR0long9wBASzHBG4DXYpkIAGcDYQmA12KZCABnA2EJgNdimQgAZwNhCYDXOrVMRFigRQcKy3SyqlZ1DodOVtXqQGEZy0QAaBWcm0aLORwG3zSDx7FMBIC2RlhCi7AIINoTlokA0JYISzhtLAKI9ohlIgC0FeYs4bT8fBHAYKuffMwmBVv9FB8RpOLyGm3eU8B9uQAA5wzCEk7L6SwCCADAuYCwhNPCIoAAgI6GsITTwiKAAICOhrCE08IigACAjoawhNPCIoAAgI6GsITTdmoRwISuNpVU1OpwUblKKmrVL8bGsgEAgHMOE0vQIiwCCADoKAhLaDEWAQQAdARchgMAAHCDsAQAAOAGYQkAAMANwhIAAIAbhCUAAAA3CEsAAABuEJYAAADc8LqwtHTpUsXFxclqtSolJUVffvml2/7r1q1T7969ZbVa1a9fP7333nsu2w3D0GOPPabo6GgFBAQoPT1dBw4caMtDAAAAXsSrwtLatWs1e/ZsPf7449q1a5f69++vjIwMFRYWNtr/888/1/jx4zVlyhR99dVXGjFihEaMGKGcnBxnn2effVaLFy/W8uXLtW3bNgUGBiojI0NVVVVn67AAAEA7ZjJ+fuv4diwlJUWXXXaZlixZIklyOByKjY3V9OnTNXfu3Ab9x44dq/Lycm3cuNHZNnDgQA0YMEDLly+XYRjq2rWr5syZo/vvv1+SZLfbFRkZqVdffVXjxo1rVl2lpaWy2Wyy2+0KCQlphSMFAABtrbmf315zZqmmpkY7d+5Uenq6s81sNis9PV3Z2dmNjsnOznbpL0kZGRnO/t9++63y8/Nd+thsNqWkpDS5TwAA0LF4zb3hioqKVF9fr8jISJf2yMhI7du3r9Ex+fn5jfbPz893bj/V1lSfxlRXV6u6utr5vLS0tPkHAgAAvIrXnFlqTzIzM2Wz2ZyP2NhYT5cEAADaiNeEpS5dusjHx0cFBQUu7QUFBYqKimp0TFRUlNv+p/57OvuUpHnz5slutzsfubm5p308AADAO3hNWLJYLEpMTNSWLVucbQ6HQ1u2bFFqamqjY1JTU136S1JWVpazf/fu3RUVFeXSp7S0VNu2bWtyn5Lk7++vkJAQlwcAADg3ec2cJUmaPXu2Jk6cqKSkJCUnJ2vRokUqLy/X5MmTJUm33nqrYmJilJmZKUmaOXOmhgwZoueff17Dhw/XG2+8oR07dmjFihWSJJPJpPvuu09PPfWU4uPj1b17dz366KPq2rWrRowY4anDBAAA7YhXhaWxY8fqxIkTeuyxx5Sfn68BAwZo06ZNzgnaR44ckdn8n5NlgwYN0po1a/TII4/ooYceUnx8vNavX6+EhARnnwcffFDl5eW68847VVJSossvv1ybNm2S1Wo968cHAADaH69aZ6m9Yp0lAAC8zzm3zhIAAIAnEJYAAADcICwBAAC4QVgCAABwg7AEAADgBmEJAADADcISAACAG4QlAAAANwhLAAAAbhCWAAAA3Gi1sFRSUtJauwIAAGg3WhSWFixYoLVr1zqfjxkzRp07d1ZMTIy+/vrrVisOAADA01oUlpYvX67Y2FhJUlZWlrKysvS3v/1N11xzjR544IFWLRAAAMCTfFsyKD8/3xmWNm7cqDFjxmjYsGGKi4tTSkpKqxYIAADgSS06s3TeeecpNzdXkrRp0yalp6dLkgzDUH19fetVBwAA4GEtOrM0cuRI/eY3v1F8fLy+//57XXPNNZKkr776Sr169WrVAgEAADypRWFp4cKFiouLU25urp599lkFBQVJko4fP6577723VQsEAADwJJNhGIani/B2paWlstlsstvtCgkJ8XQ5AACgGZr7+d3sM0sbNmxo9ovfcMMNze4LAADQnjU7LI0YMaJZ/UwmE5O8AQDAOaPZYcnhcLRlHQAAAO0S94YDAABwo0XfhpOk8vJyffTRRzpy5Ihqampcts2YMeOMCwMAAGgPWhSWvvrqK1177bWqqKhQeXm5wsLCVFRUpE6dOikiIoKwBAAAzhktugw3a9YsXX/99frhhx8UEBCgL774Qt99950SExP1hz/8obVrBAAA8JgWhaXdu3drzpw5MpvN8vHxUXV1tWJjY/Xss8/qoYceau0aAQAAPKZFYcnPz09m849DIyIidOTIEUmSzWZz3jMOAADgXNCiOUuXXHKJtm/frvj4eA0ZMkSPPfaYioqK9Oc//1kJCQmtXSMAAIDHtOjM0jPPPKPo6GhJ0tNPP63zzjtP99xzj06cOKEVK1a0aoEAAACexL3hWgH3hgMAwPs09/ObRSkBAADcaNGcpe7du8tkMjW5/d///neLCwIAAGhPWhSW7rvvPpfntbW1+uqrr7Rp0yY98MADrVEXAABAu9CisDRz5sxG25cuXaodO3acUUEAAADtSavOWbrmmmv01ltvteYuAQAAPKpVw9Kbb76psLCw1twlAACAR7UoLF1yySW69NJLnY9LLrlE0dHReuihh9rsdifFxcWaMGGCQkJCFBoaqilTpqisrMztmKqqKk2dOlWdO3dWUFCQRo0apYKCApc+M2bMUGJiovz9/TVgwIA2qR0AAHivFs1ZGjFihMtzs9ms8PBwDR06VL17926NuhqYMGGCjh8/rqysLNXW1mry5Mm68847tWbNmibHzJo1S//3f/+ndevWyWazadq0aRo5cqQ+++wzl3633Xabtm3bpn/84x9tUjsAAPBeXrEo5d69e9W3b19t375dSUlJkqRNmzbp2muv1dGjR9W1a9cGY+x2u8LDw7VmzRqNHj1akrRv3z716dNH2dnZGjhwoEv/J554QuvXr9fu3btPuz4WpQQAwPs09/O72WeWSktLm/3irR0YsrOzFRoa6gxKkpSeni6z2axt27bppptuajBm586dqq2tVXp6urOtd+/e6tatW6Nh6XRUV1erurra+fx03hsAAOBdmh2WQkND3S5E+VP19fUtLqgx+fn5ioiIcGnz9fVVWFiY8vPzmxxjsVgUGhrq0h4ZGdnkmObKzMzU/Pnzz2gfAADAOzR7gveHH36orVu3auvWrXrllVcUERGhBx98UO+8847eeecdPfjgg4qMjNQrr7zS7BefO3euTCaT28e+fftadGBtad68ebLb7c5Hbm6up0sCAABtpNlnloYMGeL885NPPqkXXnhB48ePd7bdcMMN6tevn1asWKGJEyc2a59z5szRpEmT3Pbp0aOHoqKiVFhY6NJeV1en4uJiRUVFNTouKipKNTU1KikpcTm7VFBQ0OSY5vL395e/v/8Z7QMAAHiHFn0bLjs7W8uXL2/QnpSUpNtvv73Z+wkPD1d4ePgv9ktNTVVJSYl27typxMRESdLWrVvlcDiUkpLS6JjExET5+flpy5YtGjVqlCRp//79OnLkiFJTU5tdIwAA8AyHw9CxkkqV19Qp0OKrmNAAmc3NmxLUmloUlmJjY/Xyyy/r2WefdWn/05/+pNjY2FYp7Kf69Omjq6++WnfccYeWL1+u2tpaTZs2TePGjXN+E+7YsWNKS0vTqlWrlJycLJvNpilTpmj27NkKCwtTSEiIpk+frtTUVJfJ3QcPHlRZWZny8/NVWVnp/DZc3759ZbFYWv1YAADALztYeFLv5xTo0IkyVdXVy+rro57hQcpIiFSviOCzWkuLwtLChQs1atQo/e1vf3Oe2fnyyy914MCBNrvdyerVqzVt2jSlpaXJbDZr1KhRWrx4sXN7bW2t9u/fr4qKCpc6T/Wtrq5WRkaGXnzxRZf93n777froo4+czy+55BJJ0rfffqu4uLg2ORYAANC0g4UntfKzwyour1G0zapOlgBV1NQpJ8+uPHulJg+OO6uBqcXrLOXm5mrZsmXOCdh9+vTR3Xff3SZnlto71lkCAKB1OByGlv39kHLy7IqPCHL5Jr5hGDpQWKZ+MTbdPaTnGV+Sa/V1ln4uNjZWzzzzTEuHAwAANHCspFKHTpQp2mZtsGSRyWRStM2qg4VlOlZSqdiwTmelpmaHpX/84x9KSEiQ2Wz+xduCXHzxxWdcGAAA6HjKa+pUVVevTpaARrcHWHxUUFql8pq6s1ZTs8PSgAEDnItDDhgwQCaTSY1dwTOZTK2+KCUAAOgYAi2+svr6qKKmTsFWvwbbK2vq5e/ro0BLiy+OnbZmv9K3337r/Jr/t99+22YFAQCAjismNEA9w4OUk2dXkL9vgzlLx+1V6hdjU0xo42ee2kKzw9IFF1zQ6J8BAABai9lsUkZCpPLslTpQ+OPcpQCLjypr6nXcXqWwQIuGXRR5VtdbavbtTn7qtdde0//93/85nz/44IMKDQ3VoEGD9N1337VacQAAoOPpFRGsyYPjlNDVppKKWh0uKldJRa36xdjO+rIBUguXDvjVr36lZcuW6corr1R2drbS0tK0aNEibdy4Ub6+vnr77bfbotZ2i6UDAABofW29gnebLh2Qm5urXr16SZLWr1+v0aNH684779TgwYM1dOjQFhUMAADwU2az6awtD+C2jpYMCgoK0vfffy9J2rx5s6666ipJktVqVWVlZetVBwAA4GEtOrN01VVX6fbbb9cll1yif/3rX7r22mslSXv27OEWIQAA4JzSojNLS5cuVWpqqk6cOKG33npLnTt3liTt3LlT48ePb9UCAQAAPKnF94bDfzDBGwAA79Pcz+8WnVmSpE8++US33HKLBg0apGPHjkmS/vznP+vTTz9t6S4BAADanRaFpbfeeksZGRkKCAjQrl27VF1dLUmy2+3cXBcAAJxTWhSWnnrqKS1fvlwvv/yy/Pz+c9+WwYMHa9euXa1WHAAAgKe1KCzt379fV1xxRYN2m82mkpKSM60JAACg3WhRWIqKitLBgwcbtH/66afq0aPHGRcFAADQXrQoLN1xxx2aOXOmtm3bJpPJpLy8PK1evVpz5szRPffc09o1AgAAeEyLFqWcO3euHA6H0tLSVFFRoSuuuEL+/v564IEHdPvtt7d2jQAAAB7TojNLJpNJDz/8sIqLi5WTk6MvvvhCJ06ckM1mU/fu3Vu7RuCc5nAYyi2u0L78UuUWV8jhYOkzAGhPTuvMUnV1tZ544gllZWU5zySNGDFCK1eu1E033SQfHx/NmjWrrWoFzjkHC0/q/ZwCHTpRpqq6ell9fdQzPEgZCZHqFRHs6fIAADrNsPTYY4/ppZdeUnp6uj7//HPdfPPNmjx5sr744gs9//zzuvnmm+Xj49NWtQLnlIOFJ7Xys8MqLq9RtM2qTpYAVdTUKSfPrjx7pSYPjiMwAUA7cFphad26dVq1apVuuOEG5eTk6OKLL1ZdXZ2+/vprmUymtqoROOc4HIbezylQcXmN4iOCnH9/gq1+CvL31YHCMm3eU6AeXYJkNvN3CwA86bTmLB09elSJiYmSpISEBPn7+2vWrFkEJeA0HSup1KETZYq2WRv8/TGZTIq2WXWwsEzHSio9VCEA4JTTCkv19fWyWCzO576+vgoKCmr1ooBzXXlNnarq6tXJ0vjJ3QCLj6rr6lVeU3eWKwMA/NxpXYYzDEOTJk2Sv7+/JKmqqkp33323AgMDXfq9/fbbrVchcA4KtPjK6uujipo6BVv9GmyvrKmXv6+PApsIUwCAs+e0/iWeOHGiy/NbbrmlVYsBOoqY0AD1DA9STp5dQf6+LpfiDMPQcXuV+sXYFBMa4MEqAQDSaYallStXtlUdQIdiNpuUkRCpPHulDhT+OHcpwOKjypp6HbdXKSzQomEXRTK5GwDagRYtSgngzPWKCNbkwXFK6GpTSUWtDheVq6SiVv1ibCwbAADtCBMiAA/qFRGsHkODdKykUuU1dQq0+ComNIAzSgDQjhCWAA8zm02KDevk6TIAAE3gMhwAAIAbhCUAAAA3CEsAAABuEJYAAADc8JqwVFxcrAkTJigkJEShoaGaMmWKysrK3I6pqqrS1KlT1blzZwUFBWnUqFEqKChwbv/66681fvx4xcbGKiAgQH369NH//M//tPWhAAAAL+I1YWnChAnas2ePsrKytHHjRn388ce688473Y6ZNWuW3n33Xa1bt04fffSR8vLyNHLkSOf2nTt3KiIiQq+//rr27Nmjhx9+WPPmzdOSJUva+nAAAICXMBmGYXi6iF+yd+9e9e3bV9u3b1dSUpIkadOmTbr22mt19OhRde3atcEYu92u8PBwrVmzRqNHj5Yk7du3T3369FF2drYGDhzY6GtNnTpVe/fu1datW5tdX2lpqWw2m+x2u0JCQlpwhAAA4Gxr7ue3V5xZys7OVmhoqDMoSVJ6errMZrO2bdvW6JidO3eqtrZW6enpzrbevXurW7duys7ObvK17Ha7wsLC3NZTXV2t0tJSlwcAADg3eUVYys/PV0REhEubr6+vwsLClJ+f3+QYi8Wi0NBQl/bIyMgmx3z++edau3btL17ey8zMlM1mcz5iY2ObfzAAAMCreDQszZ07VyaTye1j3759Z6WWnJwc3XjjjXr88cc1bNgwt33nzZsnu93ufOTm5p6VGgEAwNnn0dudzJkzR5MmTXLbp0ePHoqKilJhYaFLe11dnYqLixUVFdXouKioKNXU1KikpMTl7FJBQUGDMd98843S0tJ055136pFHHvnFuv39/eXv7/+L/QAAgPfzaFgKDw9XeHj4L/ZLTU1VSUmJdu7cqcTEREnS1q1b5XA4lJKS0uiYxMRE+fn5acuWLRo1apQkaf/+/Tpy5IhSU1Od/fbs2aMrr7xSEydO1NNPP90KRwUAAM4lXvFtOEm65pprVFBQoOXLl6u2tlaTJ09WUlKS1qxZI0k6duyY0tLStGrVKiUnJ0uS7rnnHr333nt69dVXFRISounTp0v6cW6S9OOltyuvvFIZGRl67rnnnK/l4+PTrBB3Ct+GAwDA+zT389ujZ5ZOx+rVqzVt2jSlpaXJbDZr1KhRWrx4sXN7bW2t9u/fr4qKCmfbwoULnX2rq6uVkZGhF1980bn9zTff1IkTJ/T666/r9ddfd7ZfcMEFOnz48Fk5LgAA0L55zZml9owzSwAAeJ9zap0lAAAATyEsAQAAuEFYAgAAcIOwBAAA4AZhCQAAwA3CEgAAgBuEJQAAADcISwAAAG4QlgAAANwgLAEAALhBWAIAAHCDsAQAAOAGYQkAAMANwhIAAIAbhCUAAAA3CEsAAABuEJYAAADcICwBAAC4QVgCAABwg7AEAADgBmEJAADADcISAACAG4QlAAAANwhLAAAAbhCWAAAA3CAsAQAAuEFYAgAAcIOwBAAA4AZhCQAAwA3CEgAAgBuEJQAAADcISwAAAG4QlgAAANzw9XQBAACcaxwOQ8dKKlVeU6dAi69iQgNkNps8XRZaiLAEAEArOlh4Uu/nFOjQiTJV1dXL6uujnuFBykiIVK+IYE+XhxbwmstwxcXFmjBhgkJCQhQaGqopU6aorKzM7ZiqqipNnTpVnTt3VlBQkEaNGqWCggLn9u+//15XX321unbtKn9/f8XGxmratGkqLS1t68MBAJyDDhae1MrPDisnz67QTn7q0SVIoZ38lJNn18rPDutg4UlPl4gW8JqwNGHCBO3Zs0dZWVnauHGjPv74Y915551ux8yaNUvvvvuu1q1bp48++kh5eXkaOXKkc7vZbNaNN96oDRs26F//+pdeffVVffDBB7r77rvb+nAAAOcYh8PQ+zkFKi6vUXxEkIKtfvIxmxRs9VN8RJCKy2u0eU+BHA7D06XiNJkMw2j3P7W9e/eqb9++2r59u5KSkiRJmzZt0rXXXqujR4+qa9euDcbY7XaFh4drzZo1Gj16tCRp37596tOnj7KzszVw4MBGX2vx4sV67rnnlJub2+z6SktLZbPZZLfbFRIS0oIjBAB4u9ziCi3M+pdCO/kp2OrXYPvJqlqVVNRq1lUXKjaskwcqxM819/PbK84sZWdnKzQ01BmUJCk9PV1ms1nbtm1rdMzOnTtVW1ur9PR0Z1vv3r3VrVs3ZWdnNzomLy9Pb7/9toYMGeK2nurqapWWlro8AAAdW3lNnarq6tXJ0vh04ACLj6rr6lVeU3eWK8OZ8oqwlJ+fr4iICJc2X19fhYWFKT8/v8kxFotFoaGhLu2RkZENxowfP16dOnVSTEyMQkJC9Kc//cltPZmZmbLZbM5HbGzs6R8UAOCcEmjxldXXRxVNhKHKmnr5+/oosIkwhfbLo2Fp7ty5MplMbh/79u1r8zoWLlyoXbt26a9//asOHTqk2bNnu+0/b9482e125+N0LtkBAM5NMaEB6hkepOP2Kv18hothGDpur1KviCDFhAZ4qEK0lEfj7Zw5czRp0iS3fXr06KGoqCgVFha6tNfV1am4uFhRUVGNjouKilJNTY1KSkpczi4VFBQ0GBMVFaWoqCj17t1bYWFh+vWvf61HH31U0dHRje7b399f/v7+v3yAAIAOw2w2KSMhUnn2Sh0oLFO0zaoAi48qa+p13F6lsECLhl0UyXpLXsijYSk8PFzh4eG/2C81NVUlJSXauXOnEhMTJUlbt26Vw+FQSkpKo2MSExPl5+enLVu2aNSoUZKk/fv368iRI0pNTW3ytRwOh6Qf5yUBAHA6ekUEa/LgOOc6SwWlVfL39VG/GJuGXcQ6S97KK74NJ0nXXHONCgoKtHz5ctXW1mry5MlKSkrSmjVrJEnHjh1TWlqaVq1apeTkZEnSPffco/fee0+vvvqqQkJCNH36dEnS559/Lkl67733VFBQoMsuu0xBQUHas2ePHnjgAYWFhenTTz9tdm18Gw4A8FOs4O0dmvv57TWzzFavXq1p06YpLS1NZrNZo0aN0uLFi53ba2trtX//flVUVDjbFi5c6OxbXV2tjIwMvfjii87tAQEBevnllzVr1ixVV1crNjZWI0eO1Ny5c8/qsQEAzi1ms4nlAc4hXnNmqT3jzBIAAN7nnFpnCQAAwFMISwAAAG4QlgAAANwgLAEAALhBWAIAAHCDsAQAAOAGYQkAAMANwhIAAIAbhCUAAAA3CEsAAABuEJYAAADcICwBAAC4QVgCAABwg7AEAADgBmEJAADADcISAACAG4QlAAAANwhLAAAAbhCWAAAA3CAsAQAAuEFYAgAAcIOwBAAA4AZhCQAAwA3CEgAAgBuEJQAAADcISwAAAG4QlgAAANwgLAEAALhBWAIAAHCDsAQAAOAGYQkAAMANwhIAAIAbhCUAAAA3CEsAAABuEJYAAADc8JqwVFxcrAkTJigkJEShoaGaMmWKysrK3I6pqqrS1KlT1blzZwUFBWnUqFEqKChotO/333+v888/XyaTSSUlJW1wBAAAwBt5TViaMGGC9uzZo6ysLG3cuFEff/yx7rzzTrdjZs2apXfffVfr1q3TRx99pLy8PI0cObLRvlOmTNHFF1/cFqUDAAAvZjIMw/B0Eb9k79696tu3r7Zv366kpCRJ0qZNm3Tttdfq6NGj6tq1a4Mxdrtd4eHhWrNmjUaPHi1J2rdvn/r06aPs7GwNHDjQ2XfZsmVau3atHnvsMaWlpemHH35QaGhos+srLS2VzWaT3W5XSEjImR0sAAA4K5r7+e0VZ5ays7MVGhrqDEqSlJ6eLrPZrG3btjU6ZufOnaqtrVV6erqzrXfv3urWrZuys7Odbd98842efPJJrVq1SmZz896O6upqlZaWujwAAMC5ySvCUn5+viIiIlzafH19FRYWpvz8/CbHWCyWBmeIIiMjnWOqq6s1fvx4Pffcc+rWrVuz68nMzJTNZnM+YmNjT++AAACA1/BoWJo7d65MJpPbx759+9rs9efNm6c+ffrolltuOe1xdrvd+cjNzW2jCgEAgKf5evLF58yZo0mTJrnt06NHD0VFRamwsNClva6uTsXFxYqKimp0XFRUlGpqalRSUuJydqmgoMA5ZuvWrfrnP/+pN998U5J0avpWly5d9PDDD2v+/PmN7tvf31/+/v7NOUQAAODlPBqWwsPDFR4e/ov9UlNTVVJSop07dyoxMVHSj0HH4XAoJSWl0TGJiYny8/PTli1bNGrUKEnS/v37deTIEaWmpkqS3nrrLVVWVjrHbN++Xbfddps++eQT9ezZ80wPDwAAnAM8Gpaaq0+fPrr66qt1xx13aPny5aqtrdW0adM0btw45zfhjh07prS0NK1atUrJycmy2WyaMmWKZs+erbCwMIWEhGj69OlKTU11fhPu54GoqKjI+Xqn8204AABw7vKKsCRJq1ev1rRp05SWliaz2axRo0Zp8eLFzu21tbXav3+/KioqnG0LFy509q2urlZGRoZefPFFT5QPAAC8lFess9Tesc4SAADe55xaZwkAAMBTCEsAAABuEJYAAADcICwBAAC4QVgCAABwg7AEAADgBmEJAADADcISAACAG4QlAAAANwhLAAAAbhCWAAAA3CAsAQAAuEFYAgAAcIOwBAAA4AZhCQAAwA3CEgAAgBuEJQAAADcISwAAAG74eroAAABw9jkcho6VVKq8pk6BFl/FhAbIbDZ5uqx2ibAEAEAHc7DwpN7PKdChE2WqqquX1ddHPcODlJEQqV4RwZ4ur90hLAEA0IEcLDyplZ8dVnF5jaJtVnWyBKiipk45eXbl2Ss1eXAcgelnmLMEAEAH4XAYej+nQMXlNYqPCFKw1U8+ZpOCrX6KjwhScXmNNu8pkMNheLrUdoWwBABAB3GspFKHTpQp2maVyeQ6P8lkMinaZtXBwjIdK6n0UIXtE2EJAIAOorymTlV19epkaXwWToDFR9V19SqvqTvLlbVvhCUAADqIQIuvrL4+qmgiDFXW1Mvf10eBTYSpjoqwBABABxETGqCe4UE6bq+SYbjOSzIMQ8ftVeoVEaSY0AAPVdg+EZYAAOggzGaTMhIiFRZo0YHCMp2sqlWdw6GTVbU6UFimsECLhl0UyXpLP0NYAgCgA+kVEazJg+OU0NWmkopaHS4qV0lFrfrF2Fg2oAlclAQAoIPpFRGsHkODWMG7mQhLAAB0QGazSbFhnTxdhlfgMhwAAIAbhCUAAAA3CEsAAABuEJYAAADcICwBAAC44TVhqbi4WBMmTFBISIhCQ0M1ZcoUlZWVuR1TVVWlqVOnqnPnzgoKCtKoUaNUUFDg0sdkMjV4vPHGG215KAAAwIt4TViaMGGC9uzZo6ysLG3cuFEff/yx7rzzTrdjZs2apXfffVfr1q3TRx99pLy8PI0cObJBv5UrV+r48ePOx4gRI9roKAAAgLcxGT+/OUw7tHfvXvXt21fbt29XUlKSJGnTpk269tprdfToUXXt2rXBGLvdrvDwcK1Zs0ajR4+WJO3bt099+vRRdna2Bg4cKOnHM0vvvPPOGQWk0tJS2Ww22e12hYSEtHg/AADg7Gnu57dXnFnKzs5WaGioMyhJUnp6usxms7Zt29bomJ07d6q2tlbp6enOtt69e6tbt27Kzs526Tt16lR16dJFycnJeuWVVxrcXPDnqqurVVpa6vIAAADnJq9YwTs/P18REREubb6+vgoLC1N+fn6TYywWi0JDQ13aIyMjXcY8+eSTuvLKK9WpUydt3rxZ9957r8rKyjRjxowm68nMzNT8+fMbtBOaAADwHqc+t3/pJIlHw9LcuXO1YMECt3327t3bpjU8+uijzj9fcsklKi8v13PPPec2LM2bN0+zZ892Pj927Jj69u2r2NjYNq0VAAC0vpMnT8pmszW53aNhac6cOZo0aZLbPj169FBUVJQKCwtd2uvq6lRcXKyoqKhGx0VFRammpkYlJSUuZ5cKCgqaHCNJKSkp+t3vfqfq6mr5+/s32sff399lW1BQkHJzcxUcHCyTqfVuQlhaWqrY2Fjl5uYyF+oM8D62Dt7H1sH72Dp4H1tHR38fDcPQyZMnG537/FMeDUvh4eEKDw//xX6pqakqKSnRzp07lZiYKEnaunWrHA6HUlJSGh2TmJgoPz8/bdmyRaNGjZIk7d+/X0eOHFFqamqTr7V7926dd955TQalxpjNZp1//vnN7n+6QkJCOuQvcWvjfWwdvI+tg/exdfA+to6O/D66O6N0ilfMWerTp4+uvvpq3XHHHVq+fLlqa2s1bdo0jRs3zpkGjx07prS0NK1atUrJycmy2WyaMmWKZs+erbCwMIWEhGj69OlKTU11fhPu3XffVUFBgQYOHCir1aqsrCw988wzuv/++z15uAAAoB3xirAkSatXr9a0adOUlpYms9msUaNGafHixc7ttbW12r9/vyoqKpxtCxcudPatrq5WRkaGXnzxRed2Pz8/LV26VLNmzZJhGOrVq5deeOEF3XHHHWf12AAAQPvlNWEpLCxMa9asaXJ7XFxcg9nsVqtVS5cu1dKlSxsdc/XVV+vqq69u1Tpbk7+/vx5//PHTuiSIhngfWwfvY+vgfWwdvI+tg/exebxiUUoAAABP8YpFKQEAADyFsAQAAOAGYQkAAMANwhIAAIAbhKV2bOnSpYqLi5PValVKSoq+/PJLT5fkVTIzM3XZZZcpODhYERERGjFihPbv3+/psrza73//e5lMJt13332eLsUrHTt2TLfccos6d+6sgIAA9evXTzt27PB0WV6lvr5ejz76qLp3766AgAD17NlTv/vd737x3l4d3ccff6zrr79eXbt2lclk0vr16122G4ahxx57TNHR0QoICFB6eroOHDjgmWLbIcJSO7V27VrNnj1bjz/+uHbt2qX+/fsrIyOjwW1f0LSPPvpIU6dO1RdffKGsrCzV1tZq2LBhKi8v93RpXmn79u166aWXdPHFF3u6FK/0ww8/aPDgwfLz89Pf/vY3ffPNN3r++ed13nnnebo0r7JgwQItW7ZMS5Ys0d69e7VgwQI9++yz+uMf/+jp0tq18vJy9e/fv8mldJ599lktXrxYy5cv17Zt2xQYGKiMjAxVVVWd5UrbKQPtUnJysjF16lTn8/r6eqNr165GZmamB6vyboWFhYYk46OPPvJ0KV7n5MmTRnx8vJGVlWUMGTLEmDlzpqdL8jq//e1vjcsvv9zTZXi94cOHG7fddptL28iRI40JEyZ4qCLvI8l45513nM8dDocRFRVlPPfcc862kpISw9/f3/jf//1fD1TY/nBmqR2qqanRzp07lZ6e7mwzm81KT09Xdna2Byvzbna7XdKPC5zi9EydOlXDhw93+Z3E6dmwYYOSkpJ08803KyIiQpdccolefvllT5fldQYNGqQtW7boX//6lyTp66+/1qeffqprrrnGw5V5r2+//Vb5+fkuf79tNptSUlL4zPn/ec0K3h1JUVGR6uvrFRkZ6dIeGRmpffv2eagq7+ZwOHTfffdp8ODBSkhI8HQ5XuWNN97Qrl27tH37dk+X4tX+/e9/a9myZZo9e7Yeeughbd++XTNmzJDFYtHEiRM9XZ7XmDt3rkpLS9W7d2/5+Piovr5eTz/9tCZMmODp0rxWfn6+JDX6mXNqW0dHWEKHMHXqVOXk5OjTTz/1dCleJTc3VzNnzlRWVpasVquny/FqDodDSUlJeuaZZyRJl1xyiXJycrR8+XLC0mn4y1/+otWrV2vNmjW66KKLtHv3bt13333q2rUr7yPaDJfh2qEuXbrIx8dHBQUFLu0FBQWKioryUFXea9q0adq4caM+/PBDnX/++Z4ux6vs3LlThYWFuvTSS+Xr6ytfX1999NFHWrx4sXx9fVVfX+/pEr1GdHS0+vbt69LWp08fHTlyxEMVeacHHnhAc+fO1bhx49SvXz/993//t2bNmqXMzExPl+a1Tn2u8JnTNMJSO2SxWJSYmKgtW7Y42xwOh7Zs2aLU1FQPVuZdDMPQtGnT9M4772jr1q3q3r27p0vyOmlpafrnP/+p3bt3Ox9JSUmaMGGCdu/eLR8fH0+X6DUGDx7cYOmKf/3rX7rgggs8VJF3qqiokNns+tHl4+Mjh8PhoYq8X/fu3RUVFeXymVNaWqpt27bxmfP/4zJcOzV79mxNnDhRSUlJSk5O1qJFi1ReXq7Jkyd7ujSvMXXqVK1Zs0Z//etfFRwc7Lz2brPZFBAQ4OHqvENwcHCDOV6BgYHq3Lkzc79O06xZszRo0CA988wzGjNmjL788kutWLFCK1as8HRpXuX666/X008/rW7duumiiy7SV199pRdeeEG33Xabp0tr18rKynTw4EHn82+//Va7d+9WWFiYunXrpvvuu09PPfWU4uPj1b17dz366KPq2rWrRowY4bmi2xNPfx0PTfvjH/9odOvWzbBYLEZycrLxxRdfeLokryKp0cfKlSs9XZpXY+mAlnv33XeNhIQEw9/f3+jdu7exYsUKT5fkdUpLS42ZM2ca3bp1M6xWq9GjRw/j4YcfNqqrqz1dWrv24YcfNvrv4cSJEw3D+HH5gEcffdSIjIw0/P39jbS0NGP//v2eLbodMRkGy54CAAA0hTlLAAAAbhCWAAAA3CAsAQAAuEFYAgAAcIOwBAAA4AZhCQAAwA3CEgAAgBuEJQBww2Qyaf369Z4uA4AHEZYAnLMmTZrE7RoAnDHCEgAAgBuEJQAdwtChQzVjxgw9+OCDCgsLU1RUlJ544gmXPgcOHNAVV1whq9Wqvn37Kisrq8F+cnNzNWbMGIWGhiosLEw33nijDh8+LEnat2+fOnXqpDVr1jj7/+Uvf1FAQIC++eabtjw8AG2IsASgw3jttdcUGBiobdu26dlnn9WTTz7pDEQOh0MjR46UxWLRtm3btHz5cv32t791GV9bW6uMjAwFBwfrk08+0WeffaagoCBdffXVqqmpUe/evfWHP/xB9957r44cOaKjR4/q7rvv1oIFC9S3b19PHDKAVsCNdAGcsyZNmqSSkhKtX79eQ4cOVX19vT755BPn9uTkZF155ZX6/e9/r82bN2v48OH67rvv1LVrV0nSpk2bdM011+idd97RiBEj9Prrr+upp57S3r17ZTKZJEk1NTUKDQ3V+vXrNWzYMEnSddddp9LSUlksFvn4+GjTpk3O/gC8j6+nCwCAs+Xiiy92eR4dHa3CwkJJ0t69exUbG+sMSpKUmprq0v/rr7/WwYMHFRwc7NJeVVWlQ4cOOZ+/8soruvDCC2U2m7Vnzx6CEuDlCEsAOgw/Pz+X5yaTSQ6Ho9njy8rKlJiYqNWrVzfYFh4e7vzz119/rfLycpnNZh0/flzR0dEtLxqAxxGWAEBSnz59lJub6xJuvvjiC5c+l156qdauXauIiAiFhIQ0up/i4mJNmjRJDz/8sI4fP64JEyZo165dCggIaPNjANA2mOANAJLS09N14YUXauLEifr666/1ySef6OGHH3bpM2HCBHXp0kU33nijPvnkE3377bf6+9//rhkzZujo0aOSpLvvvluxsbF65JFH9MILL6i+vl7333+/Jw4JQCshLAGAJLPZrHfeeUeVlZVKTk7W7bffrqefftqlT6dOnfTxxx+rW7duGjlypPr06aMpU6aoqqpKISEhWrVqld577z39+c9/lq+vrwIDA/X666/r5Zdf1t/+9jcPHRmAM8W34QAAANzgzBIAAIAbhCUAAAA3CEsAAABuEJYAAADcICwBAAC4QVgCAABwg7AEAADgBmEJAADADcISAACAG4QlAAAANwhLAAAAbhCWAAAA3Pj/AJK+L+FM2X7JAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# residuals versus order\n", + "plt.scatter(range(len(X_be[:,1:2])), res_be, alpha=0.5)\n", + "plt.xlabel(\"Index\")\n", + "plt.ylabel(\"Residuals\")\n", + "plt.title(\"Residual Plot vs. Order\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hovertemplate": "total=%{x}
carbon=%{y}", + "legendgroup": "", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "", + "orientation": "v", + "showlegend": false, + "type": "scatter", + "x": [ + -0.03356971850481728, + -0.039760144245446716, + -0.045950569986076266, + -0.052140995726705705, + -0.058331421467335255, + -0.06331003833140232, + -0.07293353186812225, + -0.0791001825014064, + -0.09418391315383401, + -0.09396666046429532, + -0.04021001256452511, + -0.1379475321253766 + ], + "xaxis": "x", + "y": [ + -0.05559045641183317, + -0.07163671999278103, + -0.07229432664254888, + -0.10074666413473658, + -0.07708620627375727, + -0.08533470577371326, + -0.08568577720560927, + -0.08009152239598367, + -0.08555847183280695, + -0.1415667909272685, + -0.12239963406542592, + -0.15284302965488766 + ], + "yaxis": "y" + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "total" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "carbon" + } + } + } + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "px.scatter(df_be, x=\"total\", y=\"carbon\")" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "preds_be = loo_cv_pred(X_be, y_be)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.19603744250668642" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "r2_score(y_be, preds_be)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "wafflers", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/eda/eda3_alpha_migration.ipynb b/eda/eda3_alpha_migration.ipynb new file mode 100644 index 0000000..a00d3a6 --- /dev/null +++ b/eda/eda3_alpha_migration.ipynb @@ -0,0 +1,311 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/homebrew/Caskroom/miniconda/base/envs/wafflers/lib/python3.11/site-packages/pandasdmx/remote.py:11: RuntimeWarning: optional dependency requests_cache is not installed; cache options to Session() have no effect\n", + " warn(\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import plotly.express as px\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "import pandasdmx as sdmx\n", + "from functools import reduce" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def melt_smdx_dataframe(df: pd.DataFrame) -> pd.DataFrame:\n", + "\t\"\"\"\n", + "\tGiven an ESTAT smdx dataframe, convert the datetimes to years and melt\n", + "\n", + "\t:param df: The raw SDMX parsed dataframe from ESTAT\n", + "\t:returns: A melted dataframe with the columns of:\n", + "\t\t`year` - the year of the observation\n", + "\t\t`geo` - the country of the observation\n", + "\t\t`value` - the value of the observation\n", + "\t\"\"\"\n", + "\tdf = df.reset_index()\n", + "\tdf[\"year\"] = df[\"TIME_PERIOD\"].dt.year\n", + "\tdf = df.drop(\"TIME_PERIOD\", axis=1)\n", + "\treturn pd.melt(df, id_vars=\"year\")\n", + "\n", + "def merge_dataframes(dataframes: list[pd.DataFrame]) -> pd.DataFrame:\n", + "\t\"\"\"\n", + "\t\"\"\"\n", + "\tfor i, df in enumerate(dataframes):\n", + "\t\tdf.columns = [\"geo\", \"year\", i]\n", + "\n", + "\tmerged_df = reduce(lambda l, r: pd.merge(l, r, left_on=[\"year\", \"geo\"], right_on=[\"year\", \"geo\"]), dataframes)\n", + "\treturn merged_df\n", + "\n", + "def fill_holes(df: pd.DataFrame) -> pd.DataFrame:\n", + "\t\"\"\"\n", + "\t\"\"\"\n", + "\tlin_reg = lambda X, Y: np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, Y))\n", + "\n", + "\tdfs = []\n", + "\n", + "\tfor name, group in df.groupby('geo'):\n", + "\t\tcols = [[name for _ in range(len(group.index))]]\n", + "\t\tfor i in range(1, len(group.columns)):\n", + "\t\t\td = group.iloc[:, i:i+1].to_numpy()\n", + "\n", + "\t\t\tmissing_mask = np.isnan(d) | (d == 0)\n", + "\t\t\tpresent_mask = ~missing_mask\n", + "\n", + "\t\t\tmissing_mask = missing_mask.reshape(1, -1)[0]\n", + "\t\t\tpresent_mask = present_mask.reshape(1, -1)[0]\n", + "\n", + "\t\t\tif not np.any(missing_mask):\n", + "\t\t\t\td = d.reshape(1, -1)[0]\n", + "\t\t\t\tcols.append(d)\n", + "\t\t\t\tcontinue\n", + "\n", + "\t\t\tif not np.any(present_mask):\n", + "\t\t\t\td = d.reshape(1, -1)[0]\n", + "\t\t\t\tcols.append(d)\n", + "\t\t\t\tcontinue\n", + "\n", + "\t\t\tx_present = np.pad(np.arange(len(d))[present_mask].reshape(-1, 1), ((0, 0), (1, 0)), mode=\"constant\", constant_values=1)\n", + "\t\t\ty_present = d[present_mask]\n", + "\n", + "\t\t\tw = lin_reg(x_present, y_present)\n", + "\n", + "\t\t\tx_missing = np.pad(np.arange(len(d))[missing_mask].reshape(-1, 1), ((0, 0), (1, 0)), mode=\"constant\", constant_values=1)\n", + "\t\t\ty_missing_pred = np.matmul(x_missing, w)\n", + "\n", + "\t\t\td[missing_mask] = y_missing_pred\n", + "\t\t\td = d.reshape(1, -1)[0]\n", + "\n", + "\t\t\tcols.append(d)\n", + "\t\t\t\n", + "\t\tdfs.append(pd.DataFrame(cols).T)\t\n", + "\t\t\n", + "\tdf_unswissed = pd.concat(dfs, axis=0)\n", + "\tdf_unswissed.columns = df.columns\n", + "\treturn df_unswissed\n", + "\n", + "def standardize(df: pd.DataFrame) -> pd.DataFrame:\n", + "\t\"\"\"\n", + "\t\"\"\"\n", + "\tdf_standard = pd.DataFrame()\n", + "\tfor feat in df.columns:\n", + "\t\tif feat == \"geo\": continue\n", + "\t\tdf_standard[f'{feat}'] = ((df[feat] - df[feat].mean()) / df[feat].std())\n", + "\tdf_standard[\"geo\"] = df[\"geo\"]\n", + "\n", + "\treturn df_standard" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-06-05 23:46:41,043 pandasdmx.reader.sdmxml - INFO: Use supplied dsd=… argument for non–structure-specific message\n", + "2024-06-05 23:46:41,240 pandasdmx.reader.sdmxml - INFO: Use supplied dsd=… argument for non–structure-specific message\n", + "/opt/homebrew/Caskroom/miniconda/base/envs/wafflers/lib/python3.11/functools.py:909: FutureWarning: 'A' is deprecated and will be removed in a future version, please use 'Y' instead.\n", + " return dispatch(args[0].__class__)(*args, **kw)\n", + "2024-06-05 23:46:41,456 pandasdmx.reader.sdmxml - INFO: Use supplied dsd=… argument for non–structure-specific message\n", + "/var/folders/jk/vqmr1l1d1dnflmyh1qdjmhk40000gn/T/ipykernel_97540/3566454452.py:46: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " df_dummies = df_dummies.fillna(0)\n" + ] + }, + { + "data": { + "text/plain": [ + "array([3.89988871e-17, 4.61239971e-01, 5.29738712e-01])" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "estat = sdmx.Request(\"ESTAT\")\n", + "resp = estat.data(\n", + "\t\"ENV_AIR_GGE\",\n", + "\tkey={\n", + "\t\t\"unit\": \"THS_T\",\n", + "\t\t\"freq\": \"A\",\n", + "\t\t\"src_crf\": \"TOTX4_MEMONIA\",\n", + "\t\t\"airpol\": \"GHG\"\n", + "\t}\n", + ")\n", + "emission_df = resp.to_pandas(datetime={'dim': 'TIME_PERIOD'}).droplevel(level=['unit', 'freq', 'src_crf', 'airpol'], axis=1)\n", + "melted_emissions_df = melt_smdx_dataframe(emission_df)\n", + "\n", + "resp = estat.data(\n", + "\t\t\"NRG_D_HHQ\",\n", + "\t\tkey={\n", + "\t\t\t\"siec\": \"TOTAL\",\n", + "\t\t\t\"unit\": \"TJ\",\n", + "\t\t\t\"nrg_bal\": \"FC_OTH_HH_E\",\n", + "\t\t\t\"freq\": \"A\",\n", + "\t\t}\n", + "\t)\n", + "household_energy_df = resp.to_pandas(datetime={'dim': 'TIME_PERIOD', 'freq': 'freq'}).droplevel(level=[\"siec\", \"unit\", \"nrg_bal\"], axis=1)\n", + "melted_household_energy_df = melt_smdx_dataframe(household_energy_df)\n", + "\n", + "resp = estat.data(\n", + "\t\"TEN00127\",\n", + "\tkey={\n", + "\t\t\"unit\": \"KTOE\",\n", + "\t\t\"freq\": \"A\",\n", + "\t\t\"siec\": \"O4652XR5210B\",\n", + "\t\t\"nrg_bal\": \"FC_TRA_ROAD_E\"\n", + "\t}\n", + ")\n", + "gas_df = resp.to_pandas(datetime={'dim': 'TIME_PERIOD'}).droplevel(level=['unit', 'freq', 'siec', \"nrg_bal\"], axis=1)\n", + "melted_gas_df = melt_smdx_dataframe(gas_df)\n", + "\n", + "merged_df = merge_dataframes([melted_emissions_df, melted_household_energy_df, melted_gas_df])\n", + "merged_df.columns = [\"year\", \"geo\", \"emissions\", \"energy\", \"gas\"]\n", + "merged_df = merged_df.drop(merged_df[(merged_df.geo == \"EU27_2020\") | (merged_df.geo == \"EU20\")].index)\n", + "merged_df = merged_df.drop(\"year\", axis=1)\n", + "merged_df = fill_holes(merged_df)\n", + "standard_df = standardize(merged_df)\n", + "\n", + "df_dummies = pd.get_dummies(standard_df, dtype=int, columns=[\"geo\"])\n", + "df_dummies = df_dummies.fillna(0)\n", + "\n", + "#X = np.pad(df_dummies.iloc[:, 1:].to_numpy(dtype=np.float64), ((0,0), (1,0)), mode=\"constant\", constant_values=1)\n", + "X = np.pad(standard_df.iloc[:,1:3].to_numpy(dtype=np.float64), ((0,0), (1,0)), mode=\"constant\", constant_values=1)\n", + "y = np.array(df_dummies[\"emissions\"], dtype=np.float64)\n", + "\n", + "m = np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, y))\n", + "m" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import r2_score" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "np_remove = lambda a, i: np.concatenate([a[:i,], a[i + 1:,]])\n", + "lin_reg = lambda X, Y: np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, Y))\n", + "\n", + "def loo_cv_pred(X, Y):\n", + "\t\"\"\"\n", + "\tPredict Y values using leave one out cross validation\n", + "\n", + "\t:param X: The X features array (including bias column)\n", + "\t:param Y: The true Y values\n", + "\t:return: An array of the predicted Y-Vals\n", + "\t\"\"\"\n", + "\ty_pred = []\n", + "\tfor i in range(len(X)):\n", + "\t\tholdout_X = X[i]\n", + "\t\t\n", + "\t\tloo_X = np_remove(X, i)\n", + "\t\tloo_y = np_remove(Y, i)\n", + "\t\tloo_b = lin_reg(loo_X, loo_y)\n", + "\n", + "\t\ty_hat = np.matmul(holdout_X, loo_b)\n", + "\t\ty_pred.append(y_hat)\n", + "\t\n", + "\treturn y_pred\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9607943812769059" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds = loo_cv_pred(X, y)\n", + "r2_score(y, preds)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.0002890124341005411" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(y - preds).mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "wafflers", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/eda/regression.ipynb b/eda/regression.ipynb deleted file mode 100644 index 93a92f3..0000000 --- a/eda/regression.ipynb +++ /dev/null @@ -1,51 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def standardize_feats(df: pd.DataFrame) -> pd.DataFrame:\n", - "\t\"\"\"\n", - "\tStandardize all numerical columns of the inputed dataframe\n", - "\t:param df: The dataframe to standardize\n", - "\t:returns: A new dataframe with all numerical columns standardized\n", - "\t\"\"\"\n", - "\tfor feat in df.columns:\n", - "\t\tpass" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "wafflers", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/eda/scraper.ipynb b/eda/scraper.ipynb deleted file mode 100644 index 1fc534e..0000000 --- a/eda/scraper.ipynb +++ /dev/null @@ -1,1417 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import requests\n", - "import numpy as np\n", - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "res = requests.get(\"https://ec.europa.eu/eurostat/api/dissemination/statistics/1.0/data/sdg_13_10?format=JSON&lang=EN\")\n", - "raw = res.json()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'version': '2.0',\n", - " 'class': 'dataset',\n", - " 'label': 'Net greenhouse gas emissions',\n", - " 'source': 'ESTAT',\n", - " 'updated': '2024-05-21T11:00:00+0200',\n", - " 'value': {'2871': 100.0,\n", - " '2872': 104.7,\n", - " '2873': 96.6,\n", - " '2874': 97.2,\n", - " '2875': 97.5,\n", - " '2876': 101.7,\n", - " '2877': 105.8,\n", - " '2878': 105.4,\n", - " '2879': 104.6,\n", - " '2880': 102.6,\n", - " '2881': 103.0,\n", - " '2882': 107.8,\n", - " '2883': 109.8,\n", - " '2884': 116.4,\n", - " '2885': 116.5,\n", - " '2886': 118.3,\n", - " '2887': 115.4,\n", - " '2888': 112.1,\n", - " '2889': 111.3,\n", - " '2890': 102.7,\n", - " '2891': 108.6,\n", - " '2892': 106.0,\n", - " '2893': 102.5,\n", - " '2894': 102.9,\n", - " '2895': 98.4,\n", - " '2896': 101.4,\n", - " '2897': 102.8,\n", - " '2898': 105.6,\n", - " '2899': 101.9,\n", - " '2900': 103.8,\n", - " '2901': 93.9,\n", - " '2902': 98.3,\n", - " '2903': 93.6,\n", - " '2244': 100.0,\n", - " '2245': 101.4,\n", - " '2246': 101.1,\n", - " '2247': 100.3,\n", - " '2248': 103.4,\n", - " '2249': 105.0,\n", - " '2250': 107.8,\n", - " '2251': 102.3,\n", - " '2252': 106.1,\n", - " '2253': 102.3,\n", - " '2254': 103.1,\n", - " '2255': 101.7,\n", - " '2256': 101.3,\n", - " '2257': 101.8,\n", - " '2258': 102.2,\n", - " '2259': 100.0,\n", - " '2260': 98.3,\n", - " '2261': 96.1,\n", - " '2262': 96.3,\n", - " '2263': 87.5,\n", - " '2264': 92.5,\n", - " '2265': 85.7,\n", - " '2266': 83.6,\n", - " '2267': 83.5,\n", - " '2268': 79.8,\n", - " '2269': 82.9,\n", - " '2270': 81.8,\n", - " '2271': 81.8,\n", - " '2272': 82.5,\n", - " '2273': 81.8,\n", - " '2274': 74.5,\n", - " '2275': 77.0,\n", - " '2276': 73.1,\n", - " '2277': 100.0,\n", - " '2278': 81.9,\n", - " '2279': 76.5,\n", - " '2280': 76.1,\n", - " '2281': 71.8,\n", - " '2282': 73.4,\n", - " '2283': 73.5,\n", - " '2284': 70.1,\n", - " '2285': 66.0,\n", - " '2286': 58.8,\n", - " '2287': 58.0,\n", - " '2288': 61.0,\n", - " '2289': 58.4,\n", - " '2290': 63.4,\n", - " '2291': 62.5,\n", - " '2292': 63.1,\n", - " '2293': 63.9,\n", - " '2294': 67.8,\n", - " '2295': 66.5,\n", - " '2296': 57.5,\n", - " '2297': 60.2,\n", - " '2298': 65.6,\n", - " '2299': 60.4,\n", - " '2300': 55.0,\n", - " '2301': 58.0,\n", - " '2302': 61.3,\n", - " '2303': 58.7,\n", - " '2304': 60.6,\n", - " '2305': 56.3,\n", - " '2306': 54.9,\n", - " '2307': 48.6,\n", - " '2308': 54.7,\n", - " '2309': 59.2,\n", - " '3201': 100.0,\n", - " '3202': 103.1,\n", - " '3203': 102.9,\n", - " '3204': 98.6,\n", - " '3205': 97.0,\n", - " '3206': 98.9,\n", - " '3207': 100.2,\n", - " '3208': 98.4,\n", - " '3209': 101.3,\n", - " '3210': 101.5,\n", - " '3211': 100.6,\n", - " '3212': 102.8,\n", - " '3213': 99.5,\n", - " '3214': 100.6,\n", - " '3215': 101.3,\n", - " '3216': 102.5,\n", - " '3217': 102.2,\n", - " '3218': 99.3,\n", - " '3219': 102.3,\n", - " '3220': 99.4,\n", - " '3221': 102.5,\n", - " '3222': 95.9,\n", - " '3223': 98.4,\n", - " '3224': 99.9,\n", - " '3225': 93.2,\n", - " '3226': 92.6,\n", - " '3227': 93.5,\n", - " '3228': 92.1,\n", - " '3229': 90.1,\n", - " '3230': 89.8,\n", - " '3231': 78.9,\n", - " '3232': 81.6,\n", - " '3233': 78.9,\n", - " '2640': 100.0,\n", - " '2641': 110.2,\n", - " '2642': 116.7,\n", - " '2643': 119.3,\n", - " '2644': 123.7,\n", - " '2645': 123.5,\n", - " '2646': 128.9,\n", - " '2647': 130.2,\n", - " '2648': 135.9,\n", - " '2649': 140.6,\n", - " '2650': 145.1,\n", - " '2651': 146.5,\n", - " '2652': 149.7,\n", - " '2653': 157.0,\n", - " '2654': 158.9,\n", - " '2655': 159.9,\n", - " '2656': 164.0,\n", - " '2657': 169.1,\n", - " '2658': 173.1,\n", - " '2659': 168.6,\n", - " '2660': 163.6,\n", - " '2661': 159.3,\n", - " '2662': 150.3,\n", - " '2663': 138.3,\n", - " '2664': 144.2,\n", - " '2665': 144.5,\n", - " '2666': 153.4,\n", - " '2667': 158.0,\n", - " '2668': 157.0,\n", - " '2669': 157.6,\n", - " '2670': 140.5,\n", - " '2671': 147.3,\n", - " '2672': 151.9,\n", - " '2310': 100.0,\n", - " '2311': 90.6,\n", - " '2312': 87.7,\n", - " '2313': 84.3,\n", - " '2314': 80.0,\n", - " '2315': 79.5,\n", - " '2316': 81.0,\n", - " '2317': 78.8,\n", - " '2318': 75.7,\n", - " '2319': 70.7,\n", - " '2320': 75.8,\n", - " '2321': 75.7,\n", - " '2322': 73.8,\n", - " '2323': 75.3,\n", - " '2324': 75.9,\n", - " '2325': 75.0,\n", - " '2326': 75.7,\n", - " '2327': 76.5,\n", - " '2328': 74.0,\n", - " '2329': 69.1,\n", - " '2330': 70.5,\n", - " '2331': 69.8,\n", - " '2332': 67.8,\n", - " '2333': 65.1,\n", - " '2334': 64.0,\n", - " '2335': 64.8,\n", - " '2336': 65.6,\n", - " '2337': 66.1,\n", - " '2338': 65.2,\n", - " '2339': 62.3,\n", - " '2340': 56.6,\n", - " '2341': 59.4,\n", - " '2342': 58.7,\n", - " '2376': 100.0,\n", - " '2377': 96.3,\n", - " '2378': 92.5,\n", - " '2379': 91.8,\n", - " '2380': 90.5,\n", - " '2381': 89.9,\n", - " '2382': 91.4,\n", - " '2383': 88.6,\n", - " '2384': 86.7,\n", - " '2385': 84.1,\n", - " '2386': 83.9,\n", - " '2387': 85.1,\n", - " '2388': 83.3,\n", - " '2389': 82.7,\n", - " '2390': 81.0,\n", - " '2391': 80.0,\n", - " '2392': 81.2,\n", - " '2393': 78.1,\n", - " '2394': 78.7,\n", - " '2395': 73.2,\n", - " '2396': 75.4,\n", - " '2397': 73.5,\n", - " '2398': 74.4,\n", - " '2399': 75.8,\n", - " '2400': 72.5,\n", - " '2401': 73.2,\n", - " '2402': 73.0,\n", - " '2403': 72.0,\n", - " '2404': 69.9,\n", - " '2405': 65.5,\n", - " '2406': 59.0,\n", - " '2407': 61.6,\n", - " '2408': 61.6,\n", - " '2343': 100.0,\n", - " '2344': 114.5,\n", - " '2345': 106.5,\n", - " '2346': 109.6,\n", - " '2347': 115.2,\n", - " '2348': 111.3,\n", - " '2349': 129.3,\n", - " '2350': 116.3,\n", - " '2351': 111.1,\n", - " '2352': 107.5,\n", - " '2353': 101.7,\n", - " '2354': 103.8,\n", - " '2355': 102.7,\n", - " '2356': 109.6,\n", - " '2357': 101.9,\n", - " '2358': 96.1,\n", - " '2359': 106.5,\n", - " '2360': 100.2,\n", - " '2361': 95.4,\n", - " '2362': 91.1,\n", - " '2363': 91.4,\n", - " '2364': 84.4,\n", - " '2365': 78.2,\n", - " '2366': 80.5,\n", - " '2367': 75.1,\n", - " '2368': 71.3,\n", - " '2369': 74.3,\n", - " '2370': 71.2,\n", - " '2371': 71.2,\n", - " '2372': 65.9,\n", - " '2373': 59.3,\n", - " '2374': 61.1,\n", - " '2375': 60.3,\n", - " '2409': 100.0,\n", - " '2410': 92.9,\n", - " '2411': 67.5,\n", - " '2412': 54.0,\n", - " '2413': 55.1,\n", - " '2414': 49.8,\n", - " '2415': 52.1,\n", - " '2416': 51.5,\n", - " '2417': 47.1,\n", - " '2418': 44.3,\n", - " '2419': 43.4,\n", - " '2420': 44.4,\n", - " '2421': 42.9,\n", - " '2422': 47.8,\n", - " '2423': 48.2,\n", - " '2424': 47.7,\n", - " '2425': 46.1,\n", - " '2426': 55.0,\n", - " '2427': 49.9,\n", - " '2428': 41.1,\n", - " '2429': 52.5,\n", - " '2430': 52.5,\n", - " '2431': 49.8,\n", - " '2432': 54.4,\n", - " '2433': 52.3,\n", - " '2434': 44.7,\n", - " '2435': 48.7,\n", - " '2436': 51.9,\n", - " '2437': 49.9,\n", - " '2438': 36.5,\n", - " '2439': 28.3,\n", - " '2440': 31.5,\n", - " '2441': 35.0,\n", - " '2475': 100.0,\n", - " '2476': 99.7,\n", - " '2477': 101.0,\n", - " '2478': 100.7,\n", - " '2479': 103.6,\n", - " '2480': 105.4,\n", - " '2481': 108.2,\n", - " '2482': 112.6,\n", - " '2483': 117.9,\n", - " '2484': 118.2,\n", - " '2485': 121.3,\n", - " '2486': 122.2,\n", - " '2487': 122.2,\n", - " '2488': 126.5,\n", - " '2489': 127.1,\n", - " '2490': 130.9,\n", - " '2491': 127.8,\n", - " '2492': 130.4,\n", - " '2493': 127.2,\n", - " '2494': 120.3,\n", - " '2495': 114.4,\n", - " '2496': 111.7,\n", - " '2497': 108.4,\n", - " '2498': 99.4,\n", - " '2499': 96.5,\n", - " '2500': 92.9,\n", - " '2501': 89.7,\n", - " '2502': 93.6,\n", - " '2503': 91.0,\n", - " '2504': 84.8,\n", - " '2505': 72.5,\n", - " '2506': 75.6,\n", - " '2507': 77.2,\n", - " '2508': 100.0,\n", - " '2509': 102.9,\n", - " '2510': 106.3,\n", - " '2511': 102.8,\n", - " '2512': 108.4,\n", - " '2513': 114.1,\n", - " '2514': 111.4,\n", - " '2515': 116.4,\n", - " '2516': 119.8,\n", - " '2517': 129.1,\n", - " '2518': 134.5,\n", - " '2519': 134.1,\n", - " '2520': 140.3,\n", - " '2521': 142.8,\n", - " '2522': 148.5,\n", - " '2523': 153.9,\n", - " '2524': 152.1,\n", - " '2525': 156.0,\n", - " '2526': 144.5,\n", - " '2527': 130.7,\n", - " '2528': 125.7,\n", - " '2529': 126.1,\n", - " '2530': 123.5,\n", - " '2531': 114.2,\n", - " '2532': 114.9,\n", - " '2533': 118.9,\n", - " '2534': 115.4,\n", - " '2535': 120.3,\n", - " '2536': 118.6,\n", - " '2537': 112.4,\n", - " '2538': 94.8,\n", - " '2539': 101.6,\n", - " '2540': 105.9,\n", - " '2178': 100.0,\n", - " '2179': 97.8,\n", - " '2180': 94.8,\n", - " '2181': 93.3,\n", - " '2182': 92.9,\n", - " '2183': 94.0,\n", - " '2184': 95.9,\n", - " '2185': 94.5,\n", - " '2186': 93.8,\n", - " '2187': 92.4,\n", - " '2188': 92.2,\n", - " '2189': 93.2,\n", - " '2190': 92.9,\n", - " '2191': 94.4,\n", - " '2192': 94.5,\n", - " '2193': 94.3,\n", - " '2194': 94.5,\n", - " '2195': 93.6,\n", - " '2196': 91.8,\n", - " '2197': 85.2,\n", - " '2198': 86.8,\n", - " '2199': 84.7,\n", - " '2200': 83.2,\n", - " '2201': 81.4,\n", - " '2202': 78.5,\n", - " '2203': 79.6,\n", - " '2204': 79.6,\n", - " '2205': 80.3,\n", - " '2206': 78.8,\n", - " '2207': 75.5,\n", - " '2208': 68.0,\n", - " '2209': 71.7,\n", - " '2210': 70.8,\n", - " '3069': 100.0,\n", - " '3070': 97.0,\n", - " '3071': 95.0,\n", - " '3072': 98.0,\n", - " '3073': 105.7,\n", - " '3074': 100.6,\n", - " '3075': 109.0,\n", - " '3076': 107.2,\n", - " '3077': 102.1,\n", - " '3078': 101.3,\n", - " '3079': 98.5,\n", - " '3080': 105.9,\n", - " '3081': 109.2,\n", - " '3082': 119.8,\n", - " '3083': 114.8,\n", - " '3084': 98.2,\n", - " '3085': 114.1,\n", - " '3086': 112.1,\n", - " '3087': 101.0,\n", - " '3088': 95.7,\n", - " '3089': 106.6,\n", - " '3090': 96.3,\n", - " '3091': 88.6,\n", - " '3092': 89.3,\n", - " '3093': 83.5,\n", - " '3094': 78.7,\n", - " '3095': 82.7,\n", - " '3096': 79.0,\n", - " '3097': 80.6,\n", - " '3098': 76.4,\n", - " '3099': 67.1,\n", - " '3100': 67.0,\n", - " '3101': 65.4,\n", - " '2541': 100.0,\n", - " '2542': 104.6,\n", - " '2543': 103.0,\n", - " '2544': 99.1,\n", - " '2545': 97.7,\n", - " '2546': 98.8,\n", - " '2547': 102.2,\n", - " '2548': 100.9,\n", - " '2549': 103.6,\n", - " '2550': 102.9,\n", - " '2551': 102.0,\n", - " '2552': 103.0,\n", - " '2553': 101.8,\n", - " '2554': 102.6,\n", - " '2555': 102.8,\n", - " '2556': 103.1,\n", - " '2557': 101.3,\n", - " '2558': 99.6,\n", - " '2559': 98.6,\n", - " '2560': 94.5,\n", - " '2561': 95.2,\n", - " '2562': 90.8,\n", - " '2563': 91.0,\n", - " '2564': 90.9,\n", - " '2565': 85.0,\n", - " '2566': 85.9,\n", - " '2567': 86.2,\n", - " '2568': 86.7,\n", - " '2569': 83.3,\n", - " '2570': 81.7,\n", - " '2571': 72.5,\n", - " '2572': 76.6,\n", - " '2573': 74.6,\n", - " '2574': 100.0,\n", - " '2575': 78.8,\n", - " '2576': 73.0,\n", - " '2577': 73.3,\n", - " '2578': 70.8,\n", - " '2579': 72.9,\n", - " '2580': 74.4,\n", - " '2581': 78.7,\n", - " '2582': 79.3,\n", - " '2583': 83.4,\n", - " '2584': 82.2,\n", - " '2585': 85.9,\n", - " '2586': 89.3,\n", - " '2587': 93.8,\n", - " '2588': 93.8,\n", - " '2589': 95.5,\n", - " '2590': 96.9,\n", - " '2591': 101.5,\n", - " '2592': 99.0,\n", - " '2593': 92.5,\n", - " '2594': 91.6,\n", - " '2595': 91.1,\n", - " '2596': 86.1,\n", - " '2597': 82.6,\n", - " '2598': 80.5,\n", - " '2599': 82.0,\n", - " '2600': 82.7,\n", - " '2601': 85.6,\n", - " '2602': 82.5,\n", - " '2603': 82.8,\n", - " '2604': 78.2,\n", - " '2605': 79.9,\n", - " '2606': 80.7,\n", - " '2772': 100.0,\n", - " '2773': 93.4,\n", - " '2774': 83.0,\n", - " '2775': 83.4,\n", - " '2776': 83.1,\n", - " '2777': 81.9,\n", - " '2778': 84.3,\n", - " '2779': 82.7,\n", - " '2780': 82.2,\n", - " '2781': 82.6,\n", - " '2782': 79.7,\n", - " '2783': 81.6,\n", - " '2784': 79.8,\n", - " '2785': 82.9,\n", - " '2786': 81.8,\n", - " '2787': 81.7,\n", - " '2788': 80.1,\n", - " '2789': 78.4,\n", - " '2790': 76.2,\n", - " '2791': 69.7,\n", - " '2792': 70.4,\n", - " '2793': 68.6,\n", - " '2794': 64.9,\n", - " '2795': 61.8,\n", - " '2796': 62.2,\n", - " '2797': 65.5,\n", - " '2798': 66.1,\n", - " '2799': 68.7,\n", - " '2800': 68.8,\n", - " '2801': 68.5,\n", - " '2802': 65.9,\n", - " '2803': 67.1,\n", - " '2804': 63.1,\n", - " '2442': 100.0,\n", - " '2443': 101.6,\n", - " '2444': 101.4,\n", - " '2445': 103.3,\n", - " '2446': 105.5,\n", - " '2447': 108.1,\n", - " '2448': 111.8,\n", - " '2449': 114.7,\n", - " '2450': 119.4,\n", - " '2451': 122.1,\n", - " '2452': 126.4,\n", - " '2453': 130.9,\n", - " '2454': 127.8,\n", - " '2455': 128.6,\n", - " '2456': 127.1,\n", - " '2457': 130.9,\n", - " '2458': 130.7,\n", - " '2459': 129.0,\n", - " '2460': 127.6,\n", - " '2461': 116.3,\n", - " '2462': 115.6,\n", - " '2463': 107.7,\n", - " '2464': 109.1,\n", - " '2465': 109.2,\n", - " '2466': 108.7,\n", - " '2467': 113.6,\n", - " '2468': 117.8,\n", - " '2469': 117.6,\n", - " '2470': 118.6,\n", - " '2471': 114.0,\n", - " '2472': 106.4,\n", - " '2473': 112.0,\n", - " '2474': 113.0,\n", - " '3135': 100.0,\n", - " '3136': 94.6,\n", - " '3137': 92.3,\n", - " '3138': 94.2,\n", - " '3139': 92.9,\n", - " '3140': 96.8,\n", - " '3141': 99.1,\n", - " '3142': 103.7,\n", - " '3143': 108.7,\n", - " '3144': 114.9,\n", - " '3145': 116.8,\n", - " '3146': 112.6,\n", - " '3147': 113.8,\n", - " '3148': 113.6,\n", - " '3149': 117.6,\n", - " '3150': 115.0,\n", - " '3151': 131.5,\n", - " '3152': 139.7,\n", - " '3153': 147.4,\n", - " '3154': 137.4,\n", - " '3155': 135.7,\n", - " '3156': 131.4,\n", - " '3157': 131.7,\n", - " '3158': 133.1,\n", - " '3159': 135.5,\n", - " '3160': 140.0,\n", - " '3161': 145.1,\n", - " '3162': 153.3,\n", - " '3163': 158.4,\n", - " '3164': 146.2,\n", - " '3165': 123.1,\n", - " '3166': 130.5,\n", - " '3167': 139.7,\n", - " '2607': 100.0,\n", - " '2608': 100.4,\n", - " '2609': 100.2,\n", - " '2610': 99.0,\n", - " '2611': 97.9,\n", - " '2612': 103.0,\n", - " '2613': 102.0,\n", - " '2614': 103.5,\n", - " '2615': 106.0,\n", - " '2616': 107.3,\n", - " '2617': 108.1,\n", - " '2618': 108.5,\n", - " '2619': 109.5,\n", - " '2620': 113.4,\n", - " '2621': 114.4,\n", - " '2622': 114.7,\n", - " '2623': 112.9,\n", - " '2624': 111.9,\n", - " '2625': 109.3,\n", - " '2626': 98.6,\n", - " '2627': 100.9,\n", - " '2628': 98.4,\n", - " '2629': 94.7,\n", - " '2630': 87.8,\n", - " '2631': 83.8,\n", - " '2632': 85.9,\n", - " '2633': 85.3,\n", - " '2634': 84.2,\n", - " '2635': 83.6,\n", - " '2636': 81.5,\n", - " '2637': 72.7,\n", - " '2638': 79.4,\n", - " '2639': 79.6,\n", - " '2706': 100.0,\n", - " '2707': 104.2,\n", - " '2708': 64.3,\n", - " '2709': 51.5,\n", - " '2710': 48.7,\n", - " '2711': 46.6,\n", - " '2712': 48.5,\n", - " '2713': 47.6,\n", - " '2714': 49.4,\n", - " '2715': 43.6,\n", - " '2716': 40.2,\n", - " '2717': 41.9,\n", - " '2718': 42.6,\n", - " '2719': 43.0,\n", - " '2720': 44.6,\n", - " '2721': 46.5,\n", - " '2722': 47.2,\n", - " '2723': 51.3,\n", - " '2724': 49.5,\n", - " '2725': 41.0,\n", - " '2726': 43.0,\n", - " '2727': 43.7,\n", - " '2728': 43.7,\n", - " '2729': 41.5,\n", - " '2730': 41.3,\n", - " '2731': 41.9,\n", - " '2732': 42.1,\n", - " '2733': 42.5,\n", - " '2734': 41.9,\n", - " '2735': 42.4,\n", - " '2736': 41.7,\n", - " '2737': 42.1,\n", - " '2738': 39.7,\n", - " '2739': 100.0,\n", - " '2740': 104.9,\n", - " '2741': 103.0,\n", - " '2742': 104.2,\n", - " '2743': 98.6,\n", - " '2744': 81.0,\n", - " '2745': 81.9,\n", - " '2746': 77.9,\n", - " '2747': 72.3,\n", - " '2748': 76.7,\n", - " '2749': 80.8,\n", - " '2750': 85.3,\n", - " '2751': 91.8,\n", - " '2752': 95.7,\n", - " '2753': 106.9,\n", - " '2754': 109.0,\n", - " '2755': 107.1,\n", - " '2756': 103.3,\n", - " '2757': 102.5,\n", - " '2758': 97.9,\n", - " '2759': 102.6,\n", - " '2760': 101.0,\n", - " '2761': 98.5,\n", - " '2762': 94.6,\n", - " '2763': 91.5,\n", - " '2764': 89.1,\n", - " '2765': 88.5,\n", - " '2766': 91.4,\n", - " '2767': 94.6,\n", - " '2768': 95.6,\n", - " '2769': 81.4,\n", - " '2770': 85.8,\n", - " '2771': 77.3,\n", - " '2673': 100.0,\n", - " '2674': 93.1,\n", - " '2675': 74.1,\n", - " '2676': 61.0,\n", - " '2677': 53.5,\n", - " '2678': 48.3,\n", - " '2679': 48.6,\n", - " '2680': 46.5,\n", - " '2681': 44.5,\n", - " '2682': 41.5,\n", - " '2683': 39.1,\n", - " '2684': 41.3,\n", - " '2685': 41.2,\n", - " '2686': 42.1,\n", - " '2687': 42.0,\n", - " '2688': 42.7,\n", - " '2689': 44.6,\n", - " '2690': 46.4,\n", - " '2691': 44.9,\n", - " '2692': 42.3,\n", - " '2693': 46.6,\n", - " '2694': 43.6,\n", - " '2695': 42.9,\n", - " '2696': 42.6,\n", - " '2697': 42.1,\n", - " '2698': 42.2,\n", - " '2699': 42.4,\n", - " '2700': 42.7,\n", - " '2701': 44.8,\n", - " '2702': 44.3,\n", - " '2703': 40.7,\n", - " '2704': 41.8,\n", - " '2705': 40.2,\n", - " '2805': 100.0,\n", - " '2806': 94.4,\n", - " '2807': 97.7,\n", - " '2808': 119.2,\n", - " '2809': 113.5,\n", - " '2810': 107.0,\n", - " '2811': 110.1,\n", - " '2812': 111.8,\n", - " '2813': 110.4,\n", - " '2814': 112.8,\n", - " '2815': 108.9,\n", - " '2816': 116.9,\n", - " '2817': 116.9,\n", - " '2818': 124.8,\n", - " '2819': 121.7,\n", - " '2820': 115.4,\n", - " '2821': 116.7,\n", - " '2822': 120.5,\n", - " '2823': 117.7,\n", - " '2824': 112.5,\n", - " '2825': 115.4,\n", - " '2826': 116.0,\n", - " '2827': 121.9,\n", - " '2828': 111.9,\n", - " '2829': 112.9,\n", - " '2830': 88.8,\n", - " '2831': 79.2,\n", - " '2832': 86.6,\n", - " '2833': 88.3,\n", - " '2834': 93.4,\n", - " '2835': 80.8,\n", - " '2836': 83.1,\n", - " '2837': 93.8,\n", - " '2838': 100.0,\n", - " '2839': 103.6,\n", - " '2840': 104.1,\n", - " '2841': 104.5,\n", - " '2842': 104.9,\n", - " '2843': 105.4,\n", - " '2844': 110.2,\n", - " '2845': 106.7,\n", - " '2846': 107.0,\n", - " '2847': 101.8,\n", - " '2848': 101.1,\n", - " '2849': 101.5,\n", - " '2850': 100.7,\n", - " '2851': 100.9,\n", - " '2852': 101.9,\n", - " '2853': 99.5,\n", - " '2854': 97.3,\n", - " '2855': 96.6,\n", - " '2856': 96.6,\n", - " '2857': 93.7,\n", - " '2858': 98.9,\n", - " '2859': 92.8,\n", - " '2860': 90.7,\n", - " '2861': 90.6,\n", - " '2862': 87.1,\n", - " '2863': 90.5,\n", - " '2864': 90.9,\n", - " '2865': 89.8,\n", - " '2866': 87.6,\n", - " '2867': 84.9,\n", - " '2868': 75.3,\n", - " '2869': 76.7,\n", - " '2870': 71.7,\n", - " '3168': 100.0,\n", - " '3169': 95.4,\n", - " '3170': 92.5,\n", - " '3171': 96.2,\n", - " '3172': 99.9,\n", - " '3173': 100.6,\n", - " '3174': 106.4,\n", - " '3175': 106.5,\n", - " '3176': 106.7,\n", - " '3177': 108.9,\n", - " '3178': 107.7,\n", - " '3179': 109.9,\n", - " '3180': 107.2,\n", - " '3181': 108.4,\n", - " '3182': 109.3,\n", - " '3183': 107.3,\n", - " '3184': 107.6,\n", - " '3185': 111.0,\n", - " '3186': 108.0,\n", - " '3187': 103.1,\n", - " '3188': 108.0,\n", - " '3189': 106.2,\n", - " '3190': 105.4,\n", - " '3191': 106.0,\n", - " '3192': 106.9,\n", - " '3193': 107.8,\n", - " '3194': 106.1,\n", - " '3195': 104.9,\n", - " '3196': 105.4,\n", - " '3197': 101.8,\n", - " '3198': 96.3,\n", - " '3199': 95.9,\n", - " '3200': 96.8,\n", - " '2904': 100.0,\n", - " '2905': 97.5,\n", - " '2906': 94.8,\n", - " '2907': 94.7,\n", - " '2908': 93.6,\n", - " '2909': 93.9,\n", - " '2910': 96.9,\n", - " '2911': 94.7,\n", - " '2912': 88.3,\n", - " '2913': 85.8,\n", - " '2914': 83.0,\n", - " '2915': 82.8,\n", - " '2916': 80.7,\n", - " '2917': 83.4,\n", - " '2918': 84.6,\n", - " '2919': 84.6,\n", - " '2920': 87.7,\n", - " '2921': 87.6,\n", - " '2922': 86.1,\n", - " '2923': 82.2,\n", - " '2924': 85.8,\n", - " '2925': 85.5,\n", - " '2926': 83.9,\n", - " '2927': 83.0,\n", - " '2928': 80.3,\n", - " '2929': 80.9,\n", - " '2930': 83.2,\n", - " '2931': 86.4,\n", - " '2932': 86.5,\n", - " '2933': 81.8,\n", - " '2934': 78.3,\n", - " '2935': 84.2,\n", - " '2936': 80.5,\n", - " '2937': 100.0,\n", - " '2938': 103.2,\n", - " '2939': 109.7,\n", - " '2940': 106.9,\n", - " '2941': 108.6,\n", - " '2942': 116.5,\n", - " '2943': 112.8,\n", - " '2944': 118.3,\n", - " '2945': 126.6,\n", - " '2946': 140.4,\n", - " '2947': 139.4,\n", - " '2948': 138.5,\n", - " '2949': 145.5,\n", - " '2950': 137.4,\n", - " '2951': 142.9,\n", - " '2952': 146.1,\n", - " '2953': 138.2,\n", - " '2954': 134.7,\n", - " '2955': 130.7,\n", - " '2956': 125.2,\n", - " '2957': 118.4,\n", - " '2958': 116.2,\n", - " '2959': 112.9,\n", - " '2960': 109.8,\n", - " '2961': 109.9,\n", - " '2962': 117.1,\n", - " '2963': 114.4,\n", - " '2964': 123.7,\n", - " '2965': 118.2,\n", - " '2966': 112.7,\n", - " '2967': 97.9,\n", - " '2968': 96.4,\n", - " '2969': 100.1,\n", - " '2970': 100.0,\n", - " '2971': 81.9,\n", - " '2972': 75.9,\n", - " '2973': 71.8,\n", - " '2974': 70.7,\n", - " '2975': 73.4,\n", - " '2976': 74.5,\n", - " '2977': 72.0,\n", - " '2978': 65.4,\n", - " '2979': 58.5,\n", - " '2980': 55.4,\n", - " '2981': 56.8,\n", - " '2982': 57.5,\n", - " '2983': 59.8,\n", - " '2984': 59.2,\n", - " '2985': 58.6,\n", - " '2986': 59.2,\n", - " '2987': 60.3,\n", - " '2988': 59.0,\n", - " '2989': 50.8,\n", - " '2990': 48.6,\n", - " '2991': 51.5,\n", - " '2992': 50.3,\n", - " '2993': 45.9,\n", - " '2994': 46.1,\n", - " '2995': 45.6,\n", - " '2996': 44.9,\n", - " '2997': 46.1,\n", - " '2998': 46.2,\n", - " '2999': 44.9,\n", - " '3000': 43.3,\n", - " '3001': 44.9,\n", - " '3002': 42.7,\n", - " '3102': 100.0,\n", - " '3103': 99.8,\n", - " '3104': 99.1,\n", - " '3105': 99.8,\n", - " '3106': 103.4,\n", - " '3107': 102.7,\n", - " '3108': 108.1,\n", - " '3109': 101.5,\n", - " '3110': 102.2,\n", - " '3111': 98.2,\n", - " '3112': 96.5,\n", - " '3113': 97.5,\n", - " '3114': 98.0,\n", - " '3115': 98.4,\n", - " '3116': 97.7,\n", - " '3117': 94.0,\n", - " '3118': 93.6,\n", - " '3119': 92.3,\n", - " '3120': 89.4,\n", - " '3121': 83.0,\n", - " '3122': 91.3,\n", - " '3123': 85.5,\n", - " '3124': 81.4,\n", - " '3125': 79.2,\n", - " '3126': 76.9,\n", - " '3127': 76.5,\n", - " '3128': 76.9,\n", - " '3129': 75.9,\n", - " '3130': 74.9,\n", - " '3131': 72.8,\n", - " '3132': 64.6,\n", - " '3133': 67.1,\n", - " '3134': 64.8,\n", - " '3003': 100.0,\n", - " '3004': 92.7,\n", - " '3005': 92.7,\n", - " '3006': 94.0,\n", - " '3007': 96.2,\n", - " '3008': 100.3,\n", - " '3009': 103.4,\n", - " '3010': 106.3,\n", - " '3011': 104.1,\n", - " '3012': 100.9,\n", - " '3013': 99.8,\n", - " '3014': 106.5,\n", - " '3015': 108.0,\n", - " '3016': 106.2,\n", - " '3017': 108.2,\n", - " '3018': 109.6,\n", - " '3019': 110.6,\n", - " '3020': 111.7,\n", - " '3021': 115.6,\n", - " '3022': 103.9,\n", - " '3023': 105.1,\n", - " '3024': 104.7,\n", - " '3025': 101.3,\n", - " '3026': 97.7,\n", - " '3027': 88.9,\n", - " '3028': 89.9,\n", - " '3029': 94.5,\n", - " '3030': 95.0,\n", - " '3031': 94.2,\n", - " '3032': 91.4,\n", - " '3033': 84.6,\n", - " '3034': 85.4,\n", - " '3035': 83.2,\n", - " '3036': 100.0,\n", - " '3037': 87.4,\n", - " '3038': 80.0,\n", - " '3039': 75.1,\n", - " '3040': 71.7,\n", - " '3041': 72.4,\n", - " '3042': 72.2,\n", - " '3043': 71.9,\n", - " '3044': 70.9,\n", - " '3045': 69.2,\n", - " ...},\n", - " 'status': {'3354': 'b',\n", - " '3355': 'b',\n", - " '4311': 'b',\n", - " '3430': 'b',\n", - " '3431': 'b',\n", - " '3486': 'b',\n", - " '3523': 'b',\n", - " '3268': 'b',\n", - " '3275': 'b',\n", - " '3277': 'b',\n", - " '3278': 'b',\n", - " '3285': 'b',\n", - " '3287': 'b',\n", - " '3288': 'b',\n", - " '3289': 'b',\n", - " '3291': 'b',\n", - " '3292': 'b',\n", - " '3294': 'b',\n", - " '3295': 'e',\n", - " '3296': 'bep',\n", - " '3297': 'ep',\n", - " '3298': 'bep',\n", - " '3299': 'bep',\n", - " '3654': 'b',\n", - " '3659': 'p',\n", - " '3660': 'p',\n", - " '3661': 'p',\n", - " '3662': 'p',\n", - " '3663': 'e',\n", - " '3664': 'e',\n", - " '3665': 'e',\n", - " '3666': 'e',\n", - " '3667': 'e',\n", - " '3668': 'e',\n", - " '3669': 'e',\n", - " '3670': 'e',\n", - " '3671': 'e',\n", - " '3672': 'e',\n", - " '3673': 'e',\n", - " '3674': 'b',\n", - " '3883': 'b',\n", - " '3559': 'e',\n", - " '3560': 'e',\n", - " '3725': 'b',\n", - " '3850': 'b',\n", - " '3855': 'b',\n", - " '3895': 'b',\n", - " '4003': 'b',\n", - " '4013': 'b',\n", - " '4021': 'e',\n", - " '4022': 'e',\n", - " '4023': 'ep',\n", - " '4024': 'b',\n", - " '4057': 'bp',\n", - " '4058': 'bp',\n", - " '4088': 'e',\n", - " '4089': 'e',\n", - " '4090': 'e',\n", - " '4091': 'e',\n", - " '4110': 'b',\n", - " '1176': 'b',\n", - " '1177': 'b',\n", - " '2133': 'b',\n", - " '1252': 'b',\n", - " '1253': 'b',\n", - " '1308': 'b',\n", - " '1345': 'b',\n", - " '1090': 'b',\n", - " '1097': 'b',\n", - " '1099': 'b',\n", - " '1100': 'b',\n", - " '1107': 'b',\n", - " '1109': 'b',\n", - " '1110': 'b',\n", - " '1111': 'b',\n", - " '1113': 'b',\n", - " '1114': 'b',\n", - " '1116': 'b',\n", - " '1117': 'e',\n", - " '1118': 'bep',\n", - " '1119': 'ep',\n", - " '1120': 'bep',\n", - " '1121': 'bep',\n", - " '1476': 'b',\n", - " '1481': 'p',\n", - " '1482': 'p',\n", - " '1483': 'p',\n", - " '1484': 'p',\n", - " '1485': 'e',\n", - " '1486': 'e',\n", - " '1487': 'e',\n", - " '1488': 'e',\n", - " '1489': 'e',\n", - " '1490': 'e',\n", - " '1491': 'e',\n", - " '1492': 'e',\n", - " '1493': 'e',\n", - " '1494': 'e',\n", - " '1495': 'e',\n", - " '1496': 'b',\n", - " '1705': 'b',\n", - " '1381': 'e',\n", - " '1382': 'e',\n", - " '1547': 'b',\n", - " '1672': 'b',\n", - " '1677': 'b',\n", - " '1717': 'b',\n", - " '1825': 'b',\n", - " '1835': 'b',\n", - " '1843': 'e',\n", - " '1844': 'e',\n", - " '1845': 'ep',\n", - " '1846': 'b',\n", - " '1879': 'bp',\n", - " '1880': 'bp',\n", - " '1910': 'e',\n", - " '1911': 'e',\n", - " '1912': 'e',\n", - " '1913': 'e',\n", - " '1932': 'b'},\n", - " 'id': ['freq', 'airpol', 'src_crf', 'unit', 'geo', 'time'],\n", - " 'size': [1, 1, 2, 2, 33, 33],\n", - " 'dimension': {'freq': {'label': 'Time frequency',\n", - " 'category': {'index': {'A': 0}, 'label': {'A': 'Annual'}}},\n", - " 'airpol': {'label': 'Air pollutants and greenhouse gases',\n", - " 'category': {'index': {'GHG': 0},\n", - " 'label': {'GHG': 'Greenhouse gases (CO2, N2O in CO2 equivalent, CH4 in CO2 equivalent, HFC in CO2 equivalent, PFC in CO2 equivalent, SF6 in CO2 equivalent, NF3 in CO2 equivalent)'}}},\n", - " 'src_crf': {'label': 'Source sectors for greenhouse gas emissions (Common reporting format, UNFCCC)',\n", - " 'category': {'index': {'TOTXMEMONIA': 0, 'TOTX4_MEMONIA': 1},\n", - " 'label': {'TOTXMEMONIA': 'Total (excluding memo items, including international aviation)',\n", - " 'TOTX4_MEMONIA': 'Total (excluding LULUCF and memo items, including international aviation)'}}},\n", - " 'unit': {'label': 'Unit of measure',\n", - " 'category': {'index': {'I90': 0, 'T_HAB': 1},\n", - " 'label': {'I90': 'Index, 1990=100', 'T_HAB': 'Tonnes per capita'}}},\n", - " 'geo': {'label': 'Geopolitical entity (reporting)',\n", - " 'category': {'index': {'EU27_2020': 0,\n", - " 'EU28': 1,\n", - " 'BE': 2,\n", - " 'BG': 3,\n", - " 'CZ': 4,\n", - " 'DK': 5,\n", - " 'DE': 6,\n", - " 'EE': 7,\n", - " 'IE': 8,\n", - " 'EL': 9,\n", - " 'ES': 10,\n", - " 'FR': 11,\n", - " 'HR': 12,\n", - " 'IT': 13,\n", - " 'CY': 14,\n", - " 'LV': 15,\n", - " 'LT': 16,\n", - " 'LU': 17,\n", - " 'HU': 18,\n", - " 'MT': 19,\n", - " 'NL': 20,\n", - " 'AT': 21,\n", - " 'PL': 22,\n", - " 'PT': 23,\n", - " 'RO': 24,\n", - " 'SI': 25,\n", - " 'SK': 26,\n", - " 'FI': 27,\n", - " 'SE': 28,\n", - " 'IS': 29,\n", - " 'NO': 30,\n", - " 'CH': 31,\n", - " 'UK': 32},\n", - " 'label': {'EU27_2020': 'European Union - 27 countries (from 2020)',\n", - " 'EU28': 'European Union - 28 countries (2013-2020)',\n", - " 'BE': 'Belgium',\n", - " 'BG': 'Bulgaria',\n", - " 'CZ': 'Czechia',\n", - " 'DK': 'Denmark',\n", - " 'DE': 'Germany',\n", - " 'EE': 'Estonia',\n", - " 'IE': 'Ireland',\n", - " 'EL': 'Greece',\n", - " 'ES': 'Spain',\n", - " 'FR': 'France',\n", - " 'HR': 'Croatia',\n", - " 'IT': 'Italy',\n", - " 'CY': 'Cyprus',\n", - " 'LV': 'Latvia',\n", - " 'LT': 'Lithuania',\n", - " 'LU': 'Luxembourg',\n", - " 'HU': 'Hungary',\n", - " 'MT': 'Malta',\n", - " 'NL': 'Netherlands',\n", - " 'AT': 'Austria',\n", - " 'PL': 'Poland',\n", - " 'PT': 'Portugal',\n", - " 'RO': 'Romania',\n", - " 'SI': 'Slovenia',\n", - " 'SK': 'Slovakia',\n", - " 'FI': 'Finland',\n", - " 'SE': 'Sweden',\n", - " 'IS': 'Iceland',\n", - " 'NO': 'Norway',\n", - " 'CH': 'Switzerland',\n", - " 'UK': 'United Kingdom'}}},\n", - " 'time': {'label': 'Time',\n", - " 'category': {'index': {'1990': 0,\n", - " '1991': 1,\n", - " '1992': 2,\n", - " '1993': 3,\n", - " '1994': 4,\n", - " '1995': 5,\n", - " '1996': 6,\n", - " '1997': 7,\n", - " '1998': 8,\n", - " '1999': 9,\n", - " '2000': 10,\n", - " '2001': 11,\n", - " '2002': 12,\n", - " '2003': 13,\n", - " '2004': 14,\n", - " '2005': 15,\n", - " '2006': 16,\n", - " '2007': 17,\n", - " '2008': 18,\n", - " '2009': 19,\n", - " '2010': 20,\n", - " '2011': 21,\n", - " '2012': 22,\n", - " '2013': 23,\n", - " '2014': 24,\n", - " '2015': 25,\n", - " '2016': 26,\n", - " '2017': 27,\n", - " '2018': 28,\n", - " '2019': 29,\n", - " '2020': 30,\n", - " '2021': 31,\n", - " '2022': 32},\n", - " 'label': {'1990': '1990',\n", - " '1991': '1991',\n", - " '1992': '1992',\n", - " '1993': '1993',\n", - " '1994': '1994',\n", - " '1995': '1995',\n", - " '1996': '1996',\n", - " '1997': '1997',\n", - " '1998': '1998',\n", - " '1999': '1999',\n", - " '2000': '2000',\n", - " '2001': '2001',\n", - " '2002': '2002',\n", - " '2003': '2003',\n", - " '2004': '2004',\n", - " '2005': '2005',\n", - " '2006': '2006',\n", - " '2007': '2007',\n", - " '2008': '2008',\n", - " '2009': '2009',\n", - " '2010': '2010',\n", - " '2011': '2011',\n", - " '2012': '2012',\n", - " '2013': '2013',\n", - " '2014': '2014',\n", - " '2015': '2015',\n", - " '2016': '2016',\n", - " '2017': '2017',\n", - " '2018': '2018',\n", - " '2019': '2019',\n", - " '2020': '2020',\n", - " '2021': '2021',\n", - " '2022': '2022'}}}},\n", - " 'extension': {'lang': 'EN',\n", - " 'description': 'The indicator measures total national emissions (from both ESD and ETS sectors) including international aviation of the so called ‘Kyoto basket’ of greenhouse gases, including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and the so-called F-gases (hydrofluorocarbons, perfluorocarbons, nitrogen triflouride (NF3) and sulphur hexafluoride (SF6)) from all sectors of the GHG emission inventories (including international aviation and indirect CO2). The indicator is presented in two forms: as net emissions including land use, land use change and forestry (LULUCF) as well as excluding LULUCF. Using each gas’ individual global warming potential (GWP), they are being integrated into a single indicator expressed in units of CO2 equivalents. The GHG emission inventories are submitted annually by the EU Member States to the United Nations Framework Convention on Climate Change (UNFCCC).',\n", - " 'id': 'SDG_13_10',\n", - " 'agencyId': 'ESTAT',\n", - " 'version': '1.0',\n", - " 'datastructure': {'id': 'SDG_13_10', 'agencyId': 'ESTAT', 'version': '37.0'},\n", - " 'annotation': [{'type': 'CREATED', 'date': '2017-11-06T15:11:59+0100'},\n", - " {'type': 'DISSEMINATION_DOI_XML',\n", - " 'title': '10.2908/SDG_13_102023-01-23'},\n", - " {'type': 'DISSEMINATION_OBJECT_TYPE', 'title': 'DATASET'},\n", - " {'type': 'DISSEMINATION_PRESENTATIONS',\n", - " 'title': '[{\"names\":{\"de\":{\"locale\":\"de\",\"value\":\"Standardpräsentation\",\"html\":false},\"en\":{\"locale\":\"en\",\"value\":\"Default presentation\",\"html\":false},\"fr\":{\"locale\":\"fr\",\"value\":\"Présentation par défaut\",\"html\":false}},\"descriptions\":{},\"code\":\"default\",\"useAsDefault\":true,\"order\":0,\"defaultView\":\"view.table\",\"jsonFormat\":null,\"preselection\":[{\"code\":\"freq\",\"multipleSelection\":null,\"singleSelection\":\"A\"},{\"code\":\"airpol\",\"multipleSelection\":null,\"singleSelection\":\"GHG\"},{\"code\":\"src_crf\",\"multipleSelection\":null,\"singleSelection\":null},{\"code\":\"unit\",\"multipleSelection\":null,\"singleSelection\":null},{\"code\":\"geo\",\"multipleSelection\":null,\"singleSelection\":null}],\"preselectionTimeFilter\":{\"code\":\"time\",\"multipleSelection\":null,\"singleSelection\":null,\"mode\":\"ALL\",\"from\":null,\"to\":null,\"fixed\":null},\"layoutFormat\":{\"layoutAxes\":{\"y1\":\"time\",\"x1\":\"geo\"},\"fixedMinMax\":false,\"mapProjection\":null,\"mapShowAllGeo\":true,\"mapNumberOfColors\":0,\"rankingMode\":false,\"highlightMode\":false,\"labelOption\":null,\"businessRulesStrategy\":null,\"mapClassificartionMethode\":null}}]'},\n", - " {'type': 'DISSEMINATION_PRESENTATIONS_VERSION', 'title': 'v0_4_X'},\n", - " {'type': 'DISSEMINATION_SOURCE_DATASET', 'title': 'DEMO_GIND,ENV_AIR_GGE'},\n", - " {'type': 'ESMS_HTML',\n", - " 'title': 'Explanatory texts (metadata)',\n", - " 'href': 'https://ec.europa.eu/eurostat/cache/metadata/en/sdg_13_10_esmsip2.htm'},\n", - " {'type': 'ESMS_SDMX',\n", - " 'title': 'Explanatory texts (metadata)',\n", - " 'href': 'https://ec.europa.eu/eurostat/api/dissemination/files?file=metadata/sdg_13_10_esmsip2.sdmx.zip'},\n", - " {'type': 'OBS_COUNT', 'title': '4092'},\n", - " {'type': 'OBS_PERIOD_OVERALL_LATEST', 'title': '2022'},\n", - " {'type': 'OBS_PERIOD_OVERALL_OLDEST', 'title': '1990'},\n", - " {'type': 'SOURCE_INSTITUTIONS',\n", - " 'text': 'European Environment Agency (EEA)'},\n", - " {'type': 'UPDATE_DATA', 'date': '2024-05-21T11:00:00+0200'},\n", - " {'type': 'UPDATE_STRUCTURE', 'date': '2024-05-21T11:00:00+0200'}],\n", - " 'status': {'label': {'b': 'break in time series',\n", - " 'e': 'estimated',\n", - " 'bep': 'break in time series, estimated, provisional',\n", - " 'ep': 'estimated, provisional',\n", - " 'p': 'provisional',\n", - " 'bp': 'break in time series, provisional'}},\n", - " 'positions-with-no-data': {'freq': [],\n", - " 'airpol': [],\n", - " 'src_crf': [],\n", - " 'unit': [],\n", - " 'geo': [1, 32],\n", - " 'time': []}}}" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "raw" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "('TOTXMEMONIA', 'Total (excluding memo items, including international aviation)')\n", - "('I90', 'Index, 1990=100')\n", - "('T_HAB', 'Tonnes per capita')\n", - "('TOTX4_MEMONIA', 'Total (excluding LULUCF and memo items, including international aviation)')\n", - "('I90', 'Index, 1990=100')\n", - "('T_HAB', 'Tonnes per capita')\n" - ] - }, - { - "data": { - "text/plain": [ - "['TOTXMEMONIA_I90',\n", - " 'TOTXMEMONIA_T_HAB',\n", - " 'TOTX4_MEMONIA_I90',\n", - " 'TOTX4_MEMONIA_T_HAB']" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "t = []\n", - "for j in raw[\"dimension\"][\"src_crf\"][\"category\"][\"label\"].items():\n", - "\tfor k in raw[\"dimension\"][\"unit\"][\"category\"][\"label\"].items():\n", - "\t\tt.append(j[0] + \"_\" + k[0])\n", - "t" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "wafflers", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/eda/scraper.py b/eda/scraper.py deleted file mode 100644 index c3e8b93..0000000 --- a/eda/scraper.py +++ /dev/null @@ -1,129 +0,0 @@ -""" -Gets and parses data from Eurostat through their `statistics` API -""" - -import requests -import pandas as pd -import numpy as np - -def parse_df_from_eurostat(values: dict[str: str], tables: list[str], rows: list[str], cols: list[str], label:str="", col_label:str="") -> list[pd.DataFrame]: - """ - Given a dict of indexed scaler values and the label lists, parse into a list of dataframes - Note: Across all tables, the size (row x col) should be the same! - - :param values: A dict with indexed scaler values, ie {'572': 145.5} where the index is the cell that value occupies - :param tables: A list of the table labels - :param rows: A list of row labels - :param cols: A list of column labels - :param label: The optional column label for the row keys - :param col_label: The optional label for the column header group - :returns: A dataframe with multiindexes for each table - """ - calc_index = lambda i, j, k: k + (j * len(cols)) + (i * (len(cols) * len(rows))) - data_3d = [] - for i in range(len(tables)): - data_2d = [] - for j in range(len(rows)): - builder_row = [] - for k in range(len(cols)): - if str(calc_index(i, j, k)) in values: - builder_row.append(values[str(calc_index(i, j, k))]) - else: - builder_row.append(np.NaN) - data_2d.append(builder_row) - data_3d.append(data_2d) - - - dataframes = [] - for table in data_3d: - df = pd.DataFrame(table) - dataframes.append(df) - - df = pd.concat(dataframes, axis=1) - cols = [l[0] for l in cols] - df.columns = pd.MultiIndex.from_product([tables, cols], names=["table", col_label]) - if label: - df[label] = [i[0] for i in rows] - - return df - - -def get_eurostat_dataframe(dataset:str, tables:any) -> tuple[pd.DataFrame, list[str]]: - """ - Gets the eurostat dataframe from a given dataset id and tables function. - - :param dataset: The dataset id to scrape and parse - :param tables: A function that takes in the raw response and returns - a list of tables that the dataset contains - :returns: A tuple with the dataframe and an array of the tables - """ - url = "https://ec.europa.eu/eurostat/api/dissemination/statistics/1.0/data" - params = "format=JSON&lang=EN" - res = requests.get(f"{url}/{dataset}?{params}") - raw = res.json() - - values = raw["value"] - rows = list(raw["dimension"]["geo"]["category"]["label"].items()) - cols = list(raw["dimension"]["time"]["category"]["label"].items()) - tables = tables(raw) - - return parse_df_from_eurostat(values, tables, rows, cols, label="country", col_label="time"), tables - - -def scrape_sdg_07_40() -> tuple[pd.DataFrame, list[str]]: - """ - Scrapes the `sdg_07_40` dataset from eurostat. - - Title: Share of renewable energy in gross final energy consumption - by sector - Description: The indicator measures the share of renewable energy - consumption in gross final energy consumption according to the Renewable - Energy Directive. The gross final energy consumption is the energy used - by end-consumers (final energy consumption) plus grid losses and - self-consumption of power plants. - - :returns: A tuple with the dataframe and a list of tables - """ - dataset = "sdg_07_40" - tables = lambda raw: [i[0] for i in raw["dimension"]["nrg_bal"]["category"]["label"].items()] - - return get_eurostat_dataframe(dataset, tables) - - -def scrape_sdg_13_10() -> tuple[pd.DataFrame, list[str]]: - """ - Scrapes the `sdg_13_10` dataset from eurostat. - - Title: Net greenhouse gas emissions - Description: The indicator measures total national emissions (from both ESD - and ETS sectors) including international aviation of the so called - ‘Kyoto basket’ of greenhouse gases, including carbon dioxide (CO2), - methane (CH4), nitrous oxide (N2O), and the so-called F-gases - (hydrofluorocarbons, perfluorocarbons, nitrogen triflouride (NF3) and - sulphur hexafluoride (SF6)) from all sectors of the GHG emission - inventories (including international aviation and indirect CO2). - The indicator is presented in two forms: as net emissions including - land use, land use change and forestry (LULUCF) as well as excluding - LULUCF. Using each gas’ individual global warming potential (GWP), - they are being integrated into a single indicator expressed in units - of CO2 equivalents. The GHG emission inventories are submitted annually - by the EU Member States to the United Nations Framework Convention on - Climate Change (UNFCCC). - - :returns: A tuple with the dataframe and a list of tables - """ - dataset = "sdg_13_10" - def tables(raw:str) -> list[str]: - """ - Generates tables list from raw response - - :param raw: The raw response from eurostat - :returns: A list of the available tables - """ - t = [] - for j in raw["dimension"]["src_crf"]["category"]["label"].items(): - for k in raw["dimension"]["unit"]["category"]["label"].items(): - t.append(j[0] + "_" + k[0]) - return t - - return get_eurostat_dataframe(dataset, tables) \ No newline at end of file