-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathsiamfcpp_alexnet-trn.yaml
227 lines (226 loc) · 6.11 KB
/
siamfcpp_alexnet-trn.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
test:
track:
exp_name: &TEST_NAME "siamfcpp_alexnet-got"
exp_save: &TEST_SAVE "logs"
model:
backbone:
name: "AlexNet"
AlexNet:
pretrain_model_path: ""
losses:
names: []
task_head:
name: "DenseboxHead"
DenseboxHead:
total_stride: 8
score_size: 17
x_size: 303
num_conv3x3: 3
head_conv_bn: [False, False, True]
task_model:
name: "SiamTrack"
SiamTrack:
pretrain_model_path: "snapshots/siamfcpp_alexnet-got/epoch-19.pkl"
pipeline:
name: "SiamFCppTracker"
SiamFCppTracker:
test_lr: 0.52
window_influence: 0.21
penalty_k: 0.04
num_conv3x3: 3
tester:
names: ["GOT10kTester",] # (VOTTester|GOT10kTester|LaSOTTester)
VOTTester:
exp_name: *TEST_NAME
exp_save: *TEST_SAVE
device_num: 1
dataset_names: ["VOT2018"]
GOT10kTester:
exp_name: *TEST_NAME
exp_save: *TEST_SAVE
subsets: ["val", "test"] # (val|test)
device_num: 1
LaSOTTester:
exp_name: *TEST_NAME
exp_save: *TEST_SAVE
subsets: ["test"] # (train_test|test)
train:
track:
exp_name: &TRAIN_NAME "siamfcpp_alexnet-got"
exp_save: &TRAIN_SAVE "snapshots"
num_processes: 1
model:
backbone:
name: "AlexNet"
AlexNet:
pretrain_model_path: "models/alexnet/alexnet-nopad-bn-md5_fa7cdefb48f41978cf35e8c4f1159cdc.pkl"
losses:
names: [
"FocalLoss",
#"SigmoidCrossEntropyRetina",
"SigmoidCrossEntropyCenterness",
"IOULoss",]
FocalLoss:
name: "cls"
weight: 1.0
alpha: 0.25
gamma: 2.0
SigmoidCrossEntropyRetina:
name: "cls"
weight: 1.0
alpha: 0.25
gamma: 2.0
SigmoidCrossEntropyCenterness:
name: "ctr"
weight: 1.0
IOULoss:
name: "reg"
weight: 3.0
task_head:
name: "DenseboxHead"
DenseboxHead:
total_stride: 8
score_size: 17
x_size: 303
num_conv3x3: 3
head_conv_bn: [False, False, True]
task_model:
name: "SiamTrack"
SiamTrack:
pretrain_model_path: ""
amp: & False # True to enable auto mixed precision training from pytorch>=1.6
# ==================================================
data:
exp_name: *TRAIN_NAME
exp_save: *TRAIN_SAVE
num_epochs: &NUM_EPOCHS 20
minibatch: &MINIBATCH 32 # 64
num_workers: 32
nr_image_per_epoch: &NR_IMAGE_PER_EPOCH 400000
pin_memory: false
datapipeline:
name: "RegularDatapipeline"
sampler:
name: "TrackPairSampler"
TrackPairSampler:
negative_pair_ratio: 0.1
submodules:
dataset:
names: ["GOT10kDataset",] # (GOT10kDataset|LaSOTDataset)
GOT10kDataset: &GOT10KDATASET_CFG
ratio: 1.0
max_diff: 100
dataset_root: "datasets/GOT-10k"
subset: "train"
GOT10kDatasetFixed: *GOT10KDATASET_CFG # got10k dataset with exclusion of unfixed sequences
LaSOTDataset:
ratio: 1.0
max_diff: 100
dataset_root: "datasets/LaSOT"
subset: "train"
filter:
name: "TrackPairFilter"
TrackPairFilter:
max_area_rate: 0.6
min_area_rate: 0.001
max_ratio: 10
transformer:
names: ["RandomCropTransformer", ]
RandomCropTransformer:
max_scale: 0.3
max_shift: 0.4
x_size: 303
target:
name: "DenseboxTarget"
DenseboxTarget:
total_stride: 8
score_size: 17
x_size: 303
num_conv3x3: 3
trainer:
name: "RegularTrainer"
RegularTrainer:
exp_name: *TRAIN_NAME
exp_save: *TRAIN_SAVE
max_epoch: *NUM_EPOCHS
minibatch: *MINIBATCH
nr_image_per_epoch: *NR_IMAGE_PER_EPOCH
snapshot: ""
monitors:
names: ["TextInfo", "TensorboardLogger"]
TextInfo:
{}
TensorboardLogger:
exp_name: *TRAIN_NAME
exp_save: *TRAIN_SAVE
# ==================================================
optim:
optimizer:
name: "SGD"
SGD:
# to adjust learning rate, please modify "start_lr" and "end_lr" in lr_policy module bellow
amp: *amp
momentum: 0.9
weight_decay: 0.00005
minibatch: *MINIBATCH
nr_image_per_epoch: *NR_IMAGE_PER_EPOCH
lr_policy:
- >
{
"name": "LinearLR",
"start_lr": 0.000001,
"end_lr": 0.08,
"max_epoch": 1
}
- >
{
"name": "CosineLR",
"start_lr": 0.08,
"end_lr": 0.000001,
"max_epoch": 19
}
lr_multiplier:
- >
{
"name": "backbone",
"regex": "basemodel",
"ratio": 0.1
}
- >
{
"name": "other",
"regex": "^((?!basemodel).)*$",
"ratio": 1
}
grad_modifier:
name: "DynamicFreezer"
DynamicFreezer:
schedule:
- >
{
"name": "isConv",
"regex": "basemodel\\.conv.\\.conv.*",
"epoch": 0,
"freezed": true
}
- >
{
"name": "isConv5",
"regex": "basemodel\\.conv5\\.conv.*",
"epoch": 5,
"freezed": false
}
- >
{
"name": "isConv4",
"regex": "basemodel\\.conv4\\.conv.*",
"epoch": 10,
"freezed": false
}
- >
{
"name": "isConv3",
"regex": "basemodel\\.conv3\\.conv.*",
"epoch": 15,
"freezed": false
}