-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDatasetHelper.py
139 lines (101 loc) · 4.91 KB
/
DatasetHelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import cv2
import torch
import numpy as np
from torch.utils.data import Dataset
from torchvision import transforms
import config
from utils.transforms.to_tensor import ToTensorOwn
from utils.transforms.normalize import Normalize
from utils.transforms.resize import PaddedResize
from utils.transforms.augmenter import Augmenter
class CatvsDogDataset(Dataset):
def __init__(self, img_paths, num_classes, augment=False, basic_transforms=None, augment_transforms=None):
self.img_paths = img_paths
np.random.shuffle(self.img_paths)
self.img_path_list = []
for img_path in self.img_paths:
if 'cat' in os.path.basename(img_path):
self.img_path_list.append([img_path, 0]) # For cat label is 0
elif 'dog' in os.path.basename(img_path):
self.img_path_list.append([img_path, 1]) # For dog label is 1
else:
print("Class not found")
exit()
self.num_classes = num_classes
self.basic_transforms = basic_transforms
self.augment_transforms = augment_transforms
self.augment = augment
def __len__(self):
return len(self.img_path_list)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_path, label = self.img_path_list[idx]
# label can be 0 or 1 based on Cat or Dog respectively
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
sample = {'image' : img, 'label' : label}
if self.augment:
sample = self.augment_transforms(sample)
# Mandatory transformations like resizing image to same size, normalizing the image and converting to tensor.
sample = self.basic_transforms(sample)
return sample
basic_transforms = transforms.Compose([
PaddedResize(size=config.input_size),
ToTensorOwn(), # Custom ToTensor transform, converts to CHW from HWC only
Normalize(config.model_type),
])
augment_transforms = Augmenter()
def get_train_loader():
train_set = CatvsDogDataset(config.train_files, num_classes=config.num_classes, \
augment=True, basic_transforms=basic_transforms, augment_transforms=augment_transforms)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=config.batch_size, \
shuffle=True, num_workers=4, pin_memory=True, \
drop_last=False, prefetch_factor=2, \
# persistent_workers=True)
persistent_workers=False)
# persistent_workers and pin_memory both cant be set to true at the same time due to some bug.
# Ref: https://github.com/pytorch/pytorch/issues/48370
# For windows num_workers should be set to 0 due to some know issue. In ubuntu it works fine.
# Ref: https://github.com/pytorch/pytorch/issues/4418#issuecomment-354614162
return train_loader
def get_test_loader():
test_set = CatvsDogDataset(config.test_files, num_classes=config.num_classes, \
augment=False, basic_transforms=basic_transforms)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=config.batch_size, \
shuffle=False, num_workers=0, pin_memory=True, \
drop_last=False, prefetch_factor=2, \
# persistent_workers=True)
persistent_workers=False)
# persistent_workers and pin_memory both cant be set to true at the same time due to some bug.
# Ref: https://github.com/pytorch/pytorch/issues/48370
# For windows num_workers should be set to 0 due to some know issue. In ubuntu it works fine.
# Ref: https://github.com/pytorch/pytorch/issues/4418#issuecomment-354614162
return test_loader
"""
# Below code is for debugging purpose only.
if __name__ == "__main__":
iterator = iter(train_loader)
for i in range(3):
batch = next(iterator)
train_img = batch['image']
train_label = batch['label']
print(type(train_img))
print(type(train_label))
print(train_img.shape)
print(train_label.shape)
for img, label in zip(train_img, train_label):
img = np.transpose(img, (1, 2, 0))
img = np.uint8(img * 255)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if label == 0:
label = 'cat'
else:
label = 'dog'
print("Label: ", label)
cv2.imshow('img', img)
cv2.waitKey()
cv2.destroyAllWindows()
#exit()
"""