From 27fef0228b8855d26f5d457397e55441261f8fc5 Mon Sep 17 00:00:00 2001 From: npielawski Date: Mon, 30 Jul 2018 19:29:02 +0200 Subject: [PATCH] Added support of ground truth images for Keras generator --- Augmentor/Pipeline.py | 101 ++++++++++++++++++++++++++++++++---------- 1 file changed, 77 insertions(+), 24 deletions(-) diff --git a/Augmentor/Pipeline.py b/Augmentor/Pipeline.py index c7a58f8..251bd1e 100644 --- a/Augmentor/Pipeline.py +++ b/Augmentor/Pipeline.py @@ -100,7 +100,7 @@ def __call__(self, augmentor_image): :param augmentor_image: The image to pass through the pipeline. :return: """ - return self._execute(augmentor_image) + return self._execute(augmentor_image)[0] def _populate(self, source_directory, output_directory, ground_truth_directory, ground_truth_output_directory): """ @@ -239,9 +239,9 @@ def _execute(self, augmentor_image, save_to_disk=True, multi_threaded=True): # if multi_threaded: # return os.path.basename(augmentor_image.image_path) # else: - # return images[0] # Here we return only the first image for the generators. + # return images # Here we return all the images for the generators. - return images[0] + return images def _execute_with_array(self, image): """ @@ -322,7 +322,7 @@ def sample(self, n, multi_threaded=True): #while sample_count <= n: # for augmentor_image in self.augmentor_images: # if sample_count <= n: - # self._execute(augmentor_image) + # self._execute(augmentor_image)[0] # file_name_to_print = os.path.basename(augmentor_image.image_path) # # This is just to shorten very long file names which obscure the progress bar. # if len(file_name_to_print) >= 30: @@ -387,7 +387,7 @@ def sample_with_array(self, image_array, save_to_disk=False): a = AugmentorImage(image_path=None, output_directory=None) a.image_PIL = Image.fromarray(image_array) - return self._execute(a, save_to_disk) + return self._execute(a, save_to_disk)[0] @staticmethod def categorical_labels(numerical_labels): @@ -409,7 +409,11 @@ def categorical_labels(numerical_labels): def image_generator(self): while True: im_index = random.randint(0, len(self.augmentor_images)-1) # Fix for issue 52. - yield self._execute(self.augmentor_images[im_index], save_to_disk=False), \ + if self.process_ground_truth_images: + images = self._execute(self.augmentor_images[im_index], save_to_disk=False) + yield images[0], images[1:] + else: + yield self._execute(self.augmentor_images[im_index], save_to_disk=False)[0], \ self.augmentor_images[im_index].class_label_int # TODO: Fix: scaled=True results in an error. @@ -455,31 +459,62 @@ def keras_generator(self, batch_size, scaled=True, image_data_format="channels_l warnings.warn("To work with Keras, must be one of channels_first or channels_last.") while True: - # Randomly select 25 images for augmentation and yield the # augmented images. - # X = np.array([]) - # y = np.array([]) - # The correct thing to do here is to pre-allocate - # batch = np.ndarray((batch_size, 28, 28, 1)) - - X = [] - y = [] - for i in range(batch_size): + # We take a sample image to know its size and + # preallocate the batch + sample = self.augmentor_images[0] + sample_image = self._execute(sample, save_to_disk=False) + sample_array = np.asarray(sample_image[0]) + if self.process_ground_truth_images: + sample_label = np.asarray(sample_image[1]) + else: + sample_label = sample.categorical_label - # Pre-allocate - # batch[i:i+28] + if np.ndim(sample_array) == 2: + w, h, l = sample_array.shape + (1,) + else: + w, h, l = sample_array.shape + + # Preallocation of batches of X + X = None + if image_data_format == "channels_last": + X = np.empty((batch_size, w, h, l)) + elif image_data_format == "channels_first": + X = np.empty((batch_size, l, w, h)) + + # Preallocation of batches of y + y = None + if self.process_ground_truth_images: + if np.ndim(sample_array) == 2: + w, h, l = sample_label.shape + (1,) + else: + w, h, l = sample_label.shape + + if image_data_format == "channels_last": + y = np.empty((batch_size, w, h, l)) + elif image_data_format == "channels_first": + y = np.empty((batch_size, l, w, h)) + else: + y = np.empty((batch_size,) + sample_label.shape) + for i in range(batch_size): # Select random image, get image array and label random_image_index = random.randint(0, len(self.augmentor_images)-1) - numpy_array = np.asarray(self._execute(self.augmentor_images[random_image_index], save_to_disk=False)) + images = self._execute(self.augmentor_images[random_image_index], save_to_disk=False) + + numpy_array = np.asarray(images[0]) + if self.process_ground_truth_images: + label = np.asarray(images[1]) + else: label = self.augmentor_images[random_image_index].categorical_label - # Reshape + # Reshaping of images w = numpy_array.shape[0] h = numpy_array.shape[1] + # transforming 2d images in 3d tensor if np.ndim(numpy_array) == 2: l = 1 else: @@ -490,15 +525,33 @@ def keras_generator(self, batch_size, scaled=True, image_data_format="channels_l elif image_data_format == "channels_first": numpy_array = numpy_array.reshape(l, w, h) - X.append(numpy_array) - y.append(label) + # Reshaping of masks if ground truth is given + if self.process_ground_truth_images: + # Reshaping of images + w = label.shape[0] + h = label.shape[1] - X = np.asarray(X) - y = np.asarray(y) + # transforming 2d images in 3d tensor + if np.ndim(label) == 2: + l = 1 + else: + l = np.shape(numpy_array)[2] + + if image_data_format == "channels_last": + label = label.reshape(w, h, l) + elif image_data_format == "channels_first": + label = label.reshape(l, w, h) + + # The X and y are populated at the given index + X[i] = numpy_array + y[i] = label if scaled: X = X.astype('float32') - X /= 255 + X /= 255. + if self.process_ground_truth_images: + y = y.astype('float32') + y /= 255. yield (X, y)