-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathutil.py
245 lines (201 loc) · 7.45 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from matplotlib import pyplot as plt
import torch
import torch.nn.functional as F
import os
import cv2
from PIL import Image
import numpy as np
import math
import scipy
import scipy.ndimage
import torchvision
# Number of style channels per StyleGAN layer
style2list_len = [512, 512, 512, 512, 512, 512, 512, 512, 512, 512,
512, 512, 512, 512, 512, 256, 256, 256, 128, 128]
# for 1024 x 1024
#style2list_len = [512, 512, 512, 512, 512, 512, 512, 512, 512, 512,
# 512, 512, 512, 512, 512, 256, 256, 256, 128, 128,
# 128, 64, 64, 64, 32, 32]
# Layer indices of ToRGB modules
rgb_layer_idx = [1,4,7,10,13,16,19,22,25]
google_drive_paths = {
"church.pt": "https://drive.google.com/uc?id=1ORsZHZEeFNEX9HtqRutt1jMgrf5Gpcat",
"face.pt": "https://drive.google.com/uc?id=1dOBo4xWUwM7-BwHWZgp-kV1upaD6tHAh",
"landscape.pt": "https://drive.google.com/uc?id=1rN5EhwiY95BBNPvOezhX4SZ_tEOR0qe2",
"disney.pt": "https://drive.google.com/uc?id=1n2uQ5s2XdUBGIcZA9Uabz1mkjVvKWFeG",
}
@torch.no_grad()
def load_model(generator, model_file_path):
ensure_checkpoint_exists(model_file_path)
ckpt = torch.load(model_file_path, map_location=lambda storage, loc: storage)
generator.load_state_dict(ckpt["g_ema"], strict=False)
return generator.mean_latent(50000)
def ensure_checkpoint_exists(model_weights_filename):
if not os.path.isfile(model_weights_filename) and (
model_weights_filename in google_drive_paths
):
gdrive_url = google_drive_paths[model_weights_filename]
try:
from gdown import download as drive_download
drive_download(gdrive_url, model_weights_filename, quiet=False)
except ModuleNotFoundError:
print(
"gdown module not found.",
"pip3 install gdown or, manually download the checkpoint file:",
gdrive_url
)
if not os.path.isfile(model_weights_filename) and (
model_weights_filename not in google_drive_paths
):
print(
model_weights_filename,
" not found, you may need to manually download the model weights."
)
# given a list of filenames, load the inverted style code
@torch.no_grad()
def load_source(files, generator, device='cuda'):
sources = []
for file in files:
source = torch.load(f'./inversion_codes/{file}.pt')['latent'].to(device)
if source.size(0) != 1:
source = source.unsqueeze(0)
if source.ndim == 3:
source = generator.get_latent(source, truncation=1, is_latent=True)
source = list2style(source)
sources.append(source)
sources = torch.cat(sources, 0)
if type(sources) is not list:
sources = style2list(sources)
return sources
# convert a style vector [B, 9088] into a suitable format (list) for our generator's input
def style2list(s):
output = []
count = 0
for size in style2list_len:
output.append(s[:, count:count+size])
count += size
return output
# convert the list back to a style vector
def list2style(s):
return torch.cat(s, 1)
# flatten spatial activations to vectors
def flatten_act(x):
b,c,h,w = x.size()
x = x.pow(2).permute(0,2,3,1).contiguous().view(-1, c) # [b,c]
return x.cpu().numpy()
def show(imgs, title=None):
plt.figure(figsize=(5 * len(imgs), 5))
if title is not None:
plt.suptitle(title + '\n', fontsize=24).set_y(1.05)
for i in range(len(imgs)):
plt.subplot(1, len(imgs), i + 1)
plt.imshow(imgs[i])
plt.axis('off')
plt.gca().set_axis_off()
plt.subplots_adjust(top=1, bottom=0, right=1, left=0,
hspace=0, wspace=0.02)
def part_grid(target_image, refernce_images, part_images):
def proc(img):
return (img * 255).permute(1, 2, 0).squeeze().cpu().numpy().astype('uint8')
rows, cols = len(part_images) + 1, len(refernce_images) + 1
fig = plt.figure(figsize=(cols*4, rows*4))
sz = target_image.shape[-1]
i = 1
plt.subplot(rows, cols, i)
plt.imshow(proc(target_image[0]))
plt.axis('off')
plt.gca().set_axis_off()
plt.title('Source', fontdict={'size': 26})
for img in refernce_images:
i += 1
plt.subplot(rows, cols, i)
plt.imshow(proc(img))
plt.axis('off')
plt.gca().set_axis_off()
plt.title('Reference', fontdict={'size': 26})
for j, label in enumerate(part_images.keys()):
i += 1
plt.subplot(rows, cols, i)
plt.imshow(proc(target_image[0]) * 0 + 255)
plt.text(sz // 2, sz // 2, label.capitalize(), fontdict={'size': 30})
plt.axis('off')
plt.gca().set_axis_off()
for img in part_images[label]:
i += 1
plt.subplot(rows, cols, i)
plt.imshow(proc(img))
plt.axis('off')
plt.gca().set_axis_off()
plt.tight_layout(pad=0, w_pad=0, h_pad=0)
plt.subplots_adjust(wspace=0, hspace=0)
return fig
def display_image(image, size=None, mode='nearest', unnorm=False, title=''):
# image is [3,h,w] or [1,3,h,w] tensor [0,1]
if image.is_cuda:
image = image.cpu()
if size is not None and image.size(-1) != size:
image = F.interpolate(image, size=(size,size), mode=mode)
if image.dim() == 4:
image = image[0]
image = ((image.clamp(-1,1)+1)/2).permute(1, 2, 0).detach().numpy()
plt.figure()
plt.title(title)
plt.axis('off')
plt.imshow(image)
def get_parsing_labels():
color = torch.FloatTensor([[0, 0, 0],
[128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128],
[0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0],
[192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192,128,128],
[0, 64, 0], [0, 0, 64], [128, 0, 192], [0, 192, 128], [64,128,192], [64,64,64]])
return (color/255 * 2)-1
def decode_segmap(seg):
seg = seg.float()
label_colors = get_parsing_labels()
r = seg.clone()
g = seg.clone()
b = seg.clone()
for l in range(label_colors.size(0)):
r[seg == l] = label_colors[l, 0]
g[seg == l] = label_colors[l, 1]
b[seg == l] = label_colors[l, 2]
output = torch.stack([r,g,b], 1)
return output
def remove_idx(act, i):
# act [N, 128]
return torch.cat([act[:i], act[i+1:]], 0)
def interpolate_style(s, t, q):
if isinstance(s, list):
s = list2style(s)
if isinstance(t, list):
t = list2style(t)
if s.ndim == 1:
s = s.unsqueeze(0)
if t.ndim == 1:
t = t.unsqueeze(0)
if q.ndim == 1:
q = q.unsqueeze(0)
if len(s) != len(t):
s = s.expand(t.size(0), -1)
q = q.float()
return (1 - q) * s + q * t
def index_layers(w, i):
return [w[j][[i]] for j in range(len(w))]
def normalize_im(x):
return (x.clamp(-1,1)+1)/2
def l2(a, b):
return (a-b).pow(2).sum(1)
def cos_dist(a,b):
return -F.cosine_similarity(a, b, 1)
def downsample(x):
return F.interpolate(x, size=(256,256), mode='bilinear')
def normalize(x):
return (x+1)/2
def tensor2bbox_im(x):
return np.array(torchvision.transforms.functional.to_pil_image(normalize(x[0])))
def prepare_bbox(boxes):
output = []
for i in range(len(boxes)):
y1,x1,y2,x2 = boxes[i][0]
output.append((256*np.array([x1,y1, x2-x1, y2-y1])).astype(np.uint8))
return output