-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathutil.py
162 lines (131 loc) · 5.01 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
import torch.nn.functional as F
from torch.utils import data
from torch import nn, autograd
import os
import matplotlib.pyplot as plt
google_drive_paths = {
"GNR_checkpoint.pt": "https://drive.google.com/uc?id=1IMIVke4WDaGayUa7vk_xVw1uqIHikGtC",
"GNR_checkpoint_new.pt": "https://drive.google.com/uc?id=1PQ_SRLfFsXO_9z_OW5H9gKhhmIMn7H-p",
}
def ensure_checkpoint_exists(model_weights_filename):
if not os.path.isfile(model_weights_filename) and (
model_weights_filename in google_drive_paths
):
gdrive_url = google_drive_paths[model_weights_filename]
try:
from gdown import download as drive_download
drive_download(gdrive_url, model_weights_filename, quiet=False)
except ModuleNotFoundError:
print(
"gdown module not found.",
"pip3 install gdown or, manually download the checkpoint file:",
gdrive_url
)
if not os.path.isfile(model_weights_filename) and (
model_weights_filename not in google_drive_paths
):
print(
model_weights_filename,
" not found, you may need to manually download the model weights."
)
def shuffle_batch(x):
return x[torch.randperm(x.size(0))]
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(1 - decay, par2[k].data)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def d_logistic_loss(real_pred, fake_pred):
loss = 0
for real, fake in zip(real_pred, fake_pred):
real_loss = F.softplus(-real)
fake_loss = F.softplus(fake)
loss += real_loss.mean() + fake_loss.mean()
return loss
def d_r1_loss(real_pred, real_img):
grad_penalty = 0
for real in real_pred:
grad_real, = autograd.grad(
outputs=real.mean(), inputs=real_img, create_graph=True, only_inputs=True
)
grad_penalty += grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred, weights):
loss = 0
for fake, weight in zip(fake_pred, weights):
loss += weight*F.softplus(-fake).mean()
return loss / len(fake_pred)
def display_image(image, size=None, mode='nearest', unnorm=False, title=''):
# image is [3,h,w] or [1,3,h,w] tensor [0,1]
if image.is_cuda:
image = image.cpu()
if size is not None and image.size(-1) != size:
image = F.interpolate(image, size=(size,size), mode=mode)
if image.dim() == 4:
image = image[0]
image = image.permute(1, 2, 0).detach().numpy()
plt.figure()
plt.title(title)
plt.axis('off')
plt.imshow(image)
def normalize(x):
return ((x+1)/2).clamp(0,1)
def get_boundingbox(face, width, height, scale=1.3, minsize=None):
"""
Expects a dlib face to generate a quadratic bounding box.
:param face: dlib face class
:param width: frame width
:param height: frame height
:param scale: bounding box size multiplier to get a bigger face region
:param minsize: set minimum bounding box size
:return: x, y, bounding_box_size in opencv form
"""
x1 = face.left()
y1 = face.top()
x2 = face.right()
y2 = face.bottom()
size_bb = int(max(x2 - x1, y2 - y1) * scale)
if minsize:
if size_bb < minsize:
size_bb = minsize
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
# Check for out of bounds, x-y top left corner
x1 = max(int(center_x - size_bb // 2), 0)
y1 = max(int(center_y - size_bb // 2), 0)
# Check for too big bb size for given x, y
size_bb = min(width - x1, size_bb)
size_bb = min(height - y1, size_bb)
return x1, y1, size_bb
def preprocess_image(image, cuda=True):
"""
Preprocesses the image such that it can be fed into our network.
During this process we envoke PIL to cast it into a PIL image.
:param image: numpy image in opencv form (i.e., BGR and of shape
:return: pytorch tensor of shape [1, 3, image_size, image_size], not
necessarily casted to cuda
"""
# Revert from BGR
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Preprocess using the preprocessing function used during training and
# casting it to PIL image
preprocess = xception_default_data_transforms['test']
preprocessed_image = preprocess(pil_image.fromarray(image))
# Add first dimension as the network expects a batch
preprocessed_image = preprocessed_image.unsqueeze(0)
if cuda:
preprocessed_image = preprocessed_image.cuda()
return preprocessed_image
def truncate(x, truncation, mean_style):
return truncation*x + (1-truncation)*mean_style