-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathtrain.py
executable file
·458 lines (363 loc) · 17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import argparse
import math
import random
import os
from util import *
import numpy as np
import torch
torch.backends.cudnn.benchmark = True
from torch import nn, autograd
from torch import optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms, utils
from tqdm import tqdm
from torch.optim import lr_scheduler
import copy
import kornia.augmentation as K
import kornia
import lpips
from model import *
from dataset import ImageFolder
from distributed import (
get_rank,
synchronize,
reduce_loss_dict,
reduce_sum,
get_world_size,
)
mse_criterion = nn.MSELoss()
def test(args, genA2B, genB2A, testA_loader, testB_loader, name, step):
testA_loader = iter(testA_loader)
testB_loader = iter(testB_loader)
with torch.no_grad():
test_sample_num = 16
genA2B.eval(), genB2A.eval()
A2B = []
B2A = []
for i in range(test_sample_num):
real_A = testA_loader.next()
real_B = testB_loader.next()
real_A, real_B = real_A.cuda(), real_B.cuda()
A2B_content, A2B_style = genA2B.encode(real_A)
B2A_content, B2A_style = genB2A.encode(real_B)
if i % 2 == 0:
A2B_mod1 = torch.randn([1, args.latent_dim]).cuda()
B2A_mod1 = torch.randn([1, args.latent_dim]).cuda()
A2B_mod2 = torch.randn([1, args.latent_dim]).cuda()
B2A_mod2 = torch.randn([1, args.latent_dim]).cuda()
fake_B2B, _, _ = genA2B(real_B)
fake_A2A, _, _ = genB2A(real_A)
colsA = [real_A, fake_A2A]
colsB = [real_B, fake_B2B]
fake_A2B_1 = genA2B.decode(A2B_content, A2B_mod1)
fake_B2A_1 = genB2A.decode(B2A_content, B2A_mod1)
fake_A2B_2 = genA2B.decode(A2B_content, A2B_mod2)
fake_B2A_2 = genB2A.decode(B2A_content, B2A_mod2)
fake_A2B_3 = genA2B.decode(A2B_content, B2A_style)
fake_B2A_3 = genB2A.decode(B2A_content, A2B_style)
colsA += [fake_A2B_3, fake_A2B_1, fake_A2B_2]
colsB += [fake_B2A_3, fake_B2A_1, fake_B2A_2]
fake_A2B2A, _, _ = genB2A(fake_A2B_3, A2B_style)
fake_B2A2B, _, _ = genA2B(fake_B2A_3, B2A_style)
colsA.append(fake_A2B2A)
colsB.append(fake_B2A2B)
fake_A2B2A, _, _ = genB2A(fake_A2B_1, A2B_style)
fake_B2A2B, _, _ = genA2B(fake_B2A_1, B2A_style)
colsA.append(fake_A2B2A)
colsB.append(fake_B2A2B)
fake_A2B2A, _, _ = genB2A(fake_A2B_2, A2B_style)
fake_B2A2B, _, _ = genA2B(fake_B2A_2, B2A_style)
colsA.append(fake_A2B2A)
colsB.append(fake_B2A2B)
fake_A2B2A, _, _ = genB2A(fake_A2B_1)
fake_B2A2B, _, _ = genA2B(fake_B2A_1)
colsA.append(fake_A2B2A)
colsB.append(fake_B2A2B)
colsA = torch.cat(colsA, 2).detach().cpu()
colsB = torch.cat(colsB, 2).detach().cpu()
A2B.append(colsA)
B2A.append(colsB)
A2B = torch.cat(A2B, 0)
B2A = torch.cat(B2A, 0)
utils.save_image(A2B, f'{im_path}/{name}_A2B_{str(step).zfill(6)}.jpg', normalize=True, range=(-1, 1), nrow=16)
utils.save_image(B2A, f'{im_path}/{name}_B2A_{str(step).zfill(6)}.jpg', normalize=True, range=(-1, 1), nrow=16)
genA2B.train(), genB2A.train()
def train(args, trainA_loader, trainB_loader, testA_loader, testB_loader, G_A2B, G_B2A, D_A, D_B, G_optim, D_optim, device):
G_A2B.train(), G_B2A.train(), D_A.train(), D_B.train()
trainA_loader = sample_data(trainA_loader)
trainB_loader = sample_data(trainB_loader)
G_scheduler = lr_scheduler.StepLR(G_optim, step_size=100000, gamma=0.5)
D_scheduler = lr_scheduler.StepLR(D_optim, step_size=100000, gamma=0.5)
pbar = range(args.iter)
if get_rank() == 0:
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.1)
loss_dict = {}
mean_path_length_A2B = 0
mean_path_length_B2A = 0
if args.distributed:
G_A2B_module = G_A2B.module
G_B2A_module = G_B2A.module
D_A_module = D_A.module
D_B_module = D_B.module
D_L_module = D_L.module
else:
G_A2B_module = G_A2B
G_B2A_module = G_B2A
D_A_module = D_A
D_B_module = D_B
D_L_module = D_L
for idx in pbar:
i = idx + args.start_iter
if i > args.iter:
print('Done!')
break
ori_A = next(trainA_loader)
ori_B = next(trainB_loader)
if isinstance(ori_A, list):
ori_A = ori_A[0]
if isinstance(ori_B, list):
ori_B = ori_B[0]
ori_A = ori_A.to(device)
ori_B = ori_B.to(device)
aug_A = aug(ori_A)
aug_B = aug(ori_B)
A = aug(ori_A[[np.random.randint(args.batch)]].expand_as(ori_A))
B = aug(ori_B[[np.random.randint(args.batch)]].expand_as(ori_B))
if i % args.d_reg_every == 0:
aug_A.requires_grad = True
aug_B.requires_grad = True
A2B_content, A2B_style = G_A2B.encode(A)
B2A_content, B2A_style = G_B2A.encode(B)
# get new style
aug_A2B_style = G_B2A.style_encode(aug_B)
aug_B2A_style = G_A2B.style_encode(aug_A)
rand_A2B_style = torch.randn([args.batch, args.latent_dim]).to(device).requires_grad_()
rand_B2A_style = torch.randn([args.batch, args.latent_dim]).to(device).requires_grad_()
# styles
idx = torch.randperm(2*args.batch)
input_A2B_style = torch.cat([rand_A2B_style, aug_A2B_style], 0)[idx][:args.batch]
idx = torch.randperm(2*args.batch)
input_B2A_style = torch.cat([rand_B2A_style, aug_B2A_style], 0)[idx][:args.batch]
fake_A2B = G_A2B.decode(A2B_content, input_A2B_style)
fake_B2A = G_B2A.decode(B2A_content, input_B2A_style)
# train disc
real_A_logit = D_A(aug_A)
real_B_logit = D_B(aug_B)
real_L_logit1 = D_L(rand_A2B_style)
real_L_logit2 = D_L(rand_B2A_style)
fake_B_logit = D_B(fake_A2B.detach())
fake_A_logit = D_A(fake_B2A.detach())
fake_L_logit1 = D_L(aug_A2B_style.detach())
fake_L_logit2 = D_L(aug_B2A_style.detach())
# global loss
D_loss = d_logistic_loss(real_A_logit, fake_A_logit) +\
d_logistic_loss(real_B_logit, fake_B_logit) +\
d_logistic_loss(real_L_logit1, fake_L_logit1) +\
d_logistic_loss(real_L_logit2, fake_L_logit2)
loss_dict['D_adv'] = D_loss
if i % args.d_reg_every == 0:
r1_A_loss = d_r1_loss(real_A_logit, aug_A)
r1_B_loss = d_r1_loss(real_B_logit, aug_B)
r1_L_loss = d_r1_loss(real_L_logit1, rand_A2B_style) + d_r1_loss(real_L_logit2, rand_B2A_style)
r1_loss = r1_A_loss + r1_B_loss + r1_L_loss
D_r1_loss = (args.r1 / 2 * r1_loss * args.d_reg_every)
D_loss += D_r1_loss
D_optim.zero_grad()
D_loss.backward()
D_optim.step()
#Generator
# adv loss
fake_B_logit = D_B(fake_A2B)
fake_A_logit = D_A(fake_B2A)
fake_L_logit1 = D_L(aug_A2B_style)
fake_L_logit2 = D_L(aug_B2A_style)
lambda_adv = (1, 1, 1)
G_adv_loss = 1 * (g_nonsaturating_loss(fake_A_logit, lambda_adv) +\
g_nonsaturating_loss(fake_B_logit, lambda_adv) +\
2*g_nonsaturating_loss(fake_L_logit1, (1,)) +\
2*g_nonsaturating_loss(fake_L_logit2, (1,)))
# style consis loss
G_con_loss = 50 * (A2B_style.var(0, unbiased=False).sum() + B2A_style.var(0, unbiased=False).sum())
# cycle recon
A2B2A_content, A2B2A_style = G_B2A.encode(fake_A2B)
B2A2B_content, B2A2B_style = G_A2B.encode(fake_B2A)
fake_A2B2A = G_B2A.decode(A2B2A_content, shuffle_batch(A2B_style))
fake_B2A2B = G_A2B.decode(B2A2B_content, shuffle_batch(B2A_style))
G_cycle_loss = 20 * (F.mse_loss(fake_A2B2A, A) + F.mse_loss(fake_B2A2B, B))
lpips_loss = 10 * (lpips_fn(fake_A2B2A, A).mean() + lpips_fn(fake_B2A2B, B).mean()) #10 for anime
# style reconstruction
G_style_loss = 5 * (mse_criterion(A2B2A_style, input_A2B_style) +\
mse_criterion(B2A2B_style, input_B2A_style))
G_loss = G_adv_loss + G_cycle_loss + G_con_loss + lpips_loss + G_style_loss
loss_dict['G_adv'] = G_adv_loss
loss_dict['G_con'] = G_con_loss
loss_dict['G_cycle'] = G_cycle_loss
loss_dict['lpips'] = lpips_loss
G_optim.zero_grad()
G_loss.backward()
G_optim.step()
G_scheduler.step()
D_scheduler.step()
accumulate(G_A2B_ema, G_A2B_module)
accumulate(G_B2A_ema, G_B2A_module)
loss_reduced = reduce_loss_dict(loss_dict)
D_adv_loss_val = loss_reduced['D_adv'].mean().item()
G_adv_loss_val = loss_reduced['G_adv'].mean().item()
G_cycle_loss_val = loss_reduced['G_cycle'].mean().item()
G_con_loss_val = loss_reduced['G_con'].mean().item()
lpips_val = loss_reduced['lpips'].mean().item()
if get_rank() == 0:
pbar.set_description(
(
f'Dadv: {D_adv_loss_val:.2f}; lpips: {lpips_val:.2f} '
f'Gadv: {G_adv_loss_val:.2f}; Gcycle: {G_cycle_loss_val:.2f}; GMS: {G_con_loss_val:.2f} {G_style_loss.item():.2f}'
)
)
if i % 1000 == 0:
with torch.no_grad():
test(args, G_A2B, G_B2A, testA_loader, testB_loader, 'normal', i)
test(args, G_A2B_ema, G_B2A_ema, testA_loader, testB_loader, 'ema', i)
if (i+1) % 2000 == 0:
torch.save(
{
'G_A2B': G_A2B_module.state_dict(),
'G_B2A': G_B2A_module.state_dict(),
'G_A2B_ema': G_A2B_ema.state_dict(),
'G_B2A_ema': G_B2A_ema.state_dict(),
'D_A': D_A_module.state_dict(),
'D_B': D_B_module.state_dict(),
'D_L': D_L_module.state_dict(),
'G_optim': G_optim.state_dict(),
'D_optim': D_optim.state_dict(),
'iter': i,
},
os.path.join(model_path, 'ck.pt'),
)
if __name__ == '__main__':
device = 'cuda'
parser = argparse.ArgumentParser()
parser.add_argument('--iter', type=int, default=300000)
parser.add_argument('--batch', type=int, default=4)
parser.add_argument('--n_sample', type=int, default=64)
parser.add_argument('--size', type=int, default=256)
parser.add_argument('--r1', type=float, default=10)
parser.add_argument('--lambda_cycle', type=int, default=1)
parser.add_argument('--path_regularize', type=float, default=2)
parser.add_argument('--path_batch_shrink', type=int, default=2)
parser.add_argument('--d_reg_every', type=int, default=16)
parser.add_argument('--g_reg_every', type=int, default=4)
parser.add_argument('--mixing', type=float, default=0.9)
parser.add_argument('--ckpt', type=str, default=None)
parser.add_argument('--lr', type=float, default=2e-3)
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--num_down', type=int, default=3)
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--d_path', type=str, required=True)
parser.add_argument('--latent_dim', type=int, default=8)
parser.add_argument('--lr_mlp', type=float, default=0.01)
parser.add_argument('--n_res', type=int, default=1)
args = parser.parse_args()
n_gpu = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
args.distributed = False
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
synchronize()
save_path = f'./{args.name}'
im_path = os.path.join(save_path, 'sample')
model_path = os.path.join(save_path, 'checkpoint')
os.makedirs(im_path, exist_ok=True)
os.makedirs(model_path, exist_ok=True)
args.n_mlp = 5
args.start_iter = 0
G_A2B = Generator( args.size, args.num_down, args.latent_dim, args.n_mlp, lr_mlp=args.lr_mlp, n_res=args.n_res).to(device)
D_A = Discriminator(args.size).to(device)
G_B2A = Generator( args.size, args.num_down, args.latent_dim, args.n_mlp, lr_mlp=args.lr_mlp, n_res=args.n_res).to(device)
D_B = Discriminator(args.size).to(device)
D_L = LatDiscriminator(args.latent_dim).to(device)
lpips_fn = lpips.LPIPS(net='vgg').to(device)
G_A2B_ema = copy.deepcopy(G_A2B).to(device).eval()
G_B2A_ema = copy.deepcopy(G_B2A).to(device).eval()
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
G_optim = optim.Adam( list(G_A2B.parameters()) + list(G_B2A.parameters()), lr=args.lr, betas=(0, 0.99))
D_optim = optim.Adam(
list(D_L.parameters()) + list(D_A.parameters()) + list(D_B.parameters()),
lr=args.lr, betas=(0**d_reg_ratio, 0.99**d_reg_ratio))
if args.ckpt is not None:
ckpt = torch.load(args.ckpt, map_location=lambda storage, loc: storage)
try:
ckpt_name = os.path.basename(args.ckpt)
args.start_iter = int(os.path.splitext(ckpt_name)[0])
except ValueError:
pass
G_A2B.load_state_dict(ckpt['G_A2B'])
G_B2A.load_state_dict(ckpt['G_B2A'])
G_A2B_ema.load_state_dict(ckpt['G_A2B_ema'])
G_B2A_ema.load_state_dict(ckpt['G_B2A_ema'])
D_A.load_state_dict(ckpt['D_A'])
D_B.load_state_dict(ckpt['D_B'])
D_L.load_state_dict(ckpt['D_L'])
G_optim.load_state_dict(ckpt['G_optim'])
D_optim.load_state_dict(ckpt['D_optim'])
args.start_iter = ckpt['iter']
if args.distributed:
G_A2B = nn.parallel.DistributedDataParallel(
G_A2B,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
D_A = nn.parallel.DistributedDataParallel(
D_A,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
G_B2A = nn.parallel.DistributedDataParallel(
G_B2A,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
D_B = nn.parallel.DistributedDataParallel(
D_B,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
D_L = nn.parallel.DistributedDataParallel(
D_L,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), inplace=True)
])
test_transform = transforms.Compose([
transforms.Resize((args.size, args.size)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), inplace=True)
])
aug = nn.Sequential(
K.RandomAffine(degrees=(-20,20), scale=(0.8, 1.2), translate=(0.1, 0.1), shear=0.15),
kornia.geometry.transform.Resize(256+30),
K.RandomCrop((256,256)),
K.RandomHorizontalFlip(),
)
d_path = args.d_path
trainA = ImageFolder(os.path.join(d_path, 'trainA'), train_transform)
trainB = ImageFolder(os.path.join(d_path, 'trainB'), train_transform)
testA = ImageFolder(os.path.join(d_path, 'testA'), test_transform)
testB = ImageFolder(os.path.join(d_path, 'testB'), test_transform)
trainA_loader = data.DataLoader(trainA, batch_size=args.batch,
sampler=data_sampler(trainA, shuffle=True, distributed=args.distributed), drop_last=True, pin_memory=True, num_workers=5)
trainB_loader = data.DataLoader(trainB, batch_size=args.batch,
sampler=data_sampler(trainB, shuffle=True, distributed=args.distributed), drop_last=True, pin_memory=True, num_workers=5)
testA_loader = data.DataLoader(testA, batch_size=1, shuffle=False)
testB_loader = data.DataLoader(testB, batch_size=1, shuffle=False)
train(args, trainA_loader, trainB_loader, testA_loader, testB_loader, G_A2B, G_B2A, D_A, D_B, G_optim, D_optim, device)