forked from paperflight/ml_implementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
svm.py
executable file
·78 lines (55 loc) · 1.6 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
def hinge(x):
if 1 - x > 0:
return 1 - x
else:
0
def main():
print("Start training")
# [4, 5]
dataset = [[2.0, 3.0, 0.0, 5.0, 2.8], [3.0, 4.0, 5.0, 0.0, 0.0],
[0.5, 0.3, 0.7, 0.9, 0.0], [-2.0, 0.1, 0.2, 0.9, 0.0]]
# [4]
labels = [1, 1, -1, -1]
feature_size = len(dataset[0])
instance_number = len(dataset)
epoch_number = 1000
learning_rate = 0.01
# TODO: [6] which contains bias
weights = [1.0, 1.0, 1.0, 1.0, 1.0]
for epoch_index in range(epoch_number):
for i in range(instance_number):
wx = 0.0
instance = dataset[i]
label = labels[i]
# Hinge loss
grad = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
for j in range(feature_size):
wx += weights[j] * instance[j]
if 1 - wx * label > 0:
for j in range(feature_size):
grad[j] = weights[j] - instance[j] * label
else:
grad[j] = weights[j]
for j in range(feature_size):
weights[j] -= learning_rate * grad[j]
print("Current weights: {}".format(weights))
test_instance = [2.0, 3.0, 0.0, 5.0, 2.8]
predict(weights, test_instance)
test_instance = [0.5, 0.3, 0.7, 0.9, 0.0]
predict(weights, test_instance)
def predict(weights, instance):
# Example: [2.0, 3.0, 0.0, 5.0, 2.8]
feature_size = len(instance)
wx = 0.0
for i in range(feature_size):
wx += weights[i] * instance[i]
if wx > 0:
predict_value = 1
else:
predict_value = -1
print(
"Predict instance: {} and result is: {}".format(instance, predict_value))
return predict_value
if __name__ == "__main__":
main()