forked from paperflight/ml_implementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
logistic_regression.py
executable file
·80 lines (62 loc) · 2.11 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/usr/bin/env python
import numpy as np
def sigmoid(x):
return 1.0 / (1 + np.exp(-x))
def test_sigmoid():
x = 0
print("Input x: {}, the sigmoid value is: {}".format(x, sigmoid(x)))
def main():
# Prepare dataset
train_features = np.array([[1, 0, 26], [0, 1, 25]], dtype=np.float)
train_labels = np.array([1, 0], dtype=np.int)
test_features = np.array([[1, 0, 26], [0, 1, 25]], dtype=np.float)
test_labels = np.array([1, 0], dtype=np.int)
feature_size = 3
batch_size = 2
# Define hyperparameters
epoch_number = 10
learning_rate = 0.01
weights = np.ones(feature_size)
# Start training
for epoch_index in range(epoch_number):
print("Start the epoch: {}".format(epoch_index))
''' Implement with batch size
# [2, 3] = [3] * [2, 3]
multiple_weights_result = weights * train_features
# [2] = [2, 3]
predict = np.sum(multiple_weights_result, 1)
# [2] = [2]
sigmoid_predict = sigmoid(predict)
# [2] = [2]
predict_difference = train_labels - sigmoid_predict
# TODO: [2, 3, 1] = [2, 3] * [2]
batch_grad = train_features * predict_difference
# TODO: fix that
grad = batch_grad
# [3, 1] = [3, 1]
weights += learning_rate * grad
'''
# Train with single example
train_features = np.array([1, 0, 25], dtype=np.float)
train_labels = np.array([0], dtype=np.int)
# [3] = [3] * [3]
multiple_weights_result = train_features * weights
# [1] = [3]
predict = np.sum(multiple_weights_result)
# [1] = [1]
sigmoid_predict = sigmoid(predict)
# [1] = [1]
predict_difference = train_labels - sigmoid_predict
# [3] = [3] * [1]
grad = train_features * predict_difference
# [3] = [3]
weights += learning_rate * grad
print("Current weights is: {}".format(weights))
# TODO: Predict with validate dataset
predict_true_probability = sigmoid(np.sum(train_features * weights))
print("Current predict true probability is: {}".format(
predict_true_probability))
likehood = 1 - predict_true_probability
print("Current likehood is: {}\n".format(likehood))
if __name__ == "__main__":
main()