-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
lca.java
114 lines (99 loc) · 3.09 KB
/
lca.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import java.util.ArrayList;
import java.util.Scanner;
public class lca {
private final static int max = 100;
private final static int height_max = 7;
int n;
private int[][] parent = new int[max][height_max]; //parent[v][k]: (2^k)-th ancestor of v
private int[] level = new int[max]; //level counting from root
private int[] log = new int[max]; //log[i] := [log_2(i)]
//Incidence matrix of graph.
private ArrayList<ArrayList<Integer>> graph = new ArrayList<>(max);
//pre-calculate [log_2(i)] for all i<max
void updateLog() {
for (int i = 2; i < max; i++) {
log[i] = log[i / 2] + 1;
}
}
/* Set v as a parent of all the neighbors except p.
* Repeat the step with dfs
*/
void dfsForParentAndLevels(int v, int p) {
for (int sibling : graph.get(v)) {
if (sibling != p) {
//We are traversing away from the root.
level[sibling] = level[v] + 1;
//First(2^0-th) parent of sibling is v.
parent[sibling][0] = v;
dfsForParentAndLevels(sibling, v);
}
}
}
void updateParents() {
for (int k = 1; k <= log[n]; k++) {
for (int v = 1; v <= n; v++) {
parent[v][k] = parent[parent[v][k - 1]][k - 1];
//(2^k)-th parent of v: 2^(k-1)-th parent of {2^(k-1)-th parent of v}
}
}
}
//returns the lca of pair (u,v)
int lca(int u, int v) {
//We assume u is farther than v.
if (level[u] < level[v]) {
return lca(v, u);
}
//lca(u,v) is same as lca(u's 2^k-th parent, v),
//as long as that parent is sits lower level than v.
//so we can replace u with that parent.
//we start with as biggest jump as possible.
for (int k = log[n]; k >= 0; k--) {
if (level[u] - (1 << k) >= level[v]) {
u = parent[u][k];
}
}
if (u == v) {
//if we come to v after some possible jumps above
//that means v is a direct ancestor of u. So the lca is v.
return u;
}
//Now u and v are on the same level.
//Again we start with the biggest possible jump.
for (int k = log[n]; k >= 0; k--) {
if (parent[u][k] != parent[v][k]) {
//They must ascend together, until they have common parent.
u = parent[u][k];
v = parent[v][k];
}
}
return parent[u][0];
}
private void run() {
final Scanner scan = new Scanner(System.in);
updateLog();
int x, y;
System.out.println("Let's build the tree first.\nEnter number of vertices: ");
n = scan.nextInt();
for (int i = 0; i <= n ; i++) {
graph.add(new ArrayList<>());
}
System.out.println("\nEnter " + (n-1) + " edge information, with 1-indexed. (u v)");
for (int i = 1; i < n ; i++) {
x = scan.nextInt();
y = scan.nextInt();
graph.get(x).add(y);
graph.get(y).add(x);
}
//mark vertex 1 as a root.
//We set 1(itself) as its parent.
dfsForParentAndLevels(1, 1);
updateParents();
System.out.println("\nEnter the pair for lca: ");
x = scan.nextInt();
y = scan.nextInt();
System.out.println(lca(x, y) + "\n");
}
public static void main(String[] args) {
new lca().run();
}
}