-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcholesky_update.py
65 lines (51 loc) · 2.59 KB
/
cholesky_update.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import tensorflow as tf
import os
from tensorflow.python.ops import array_ops
from tensorflow.python.framework import ops
from tensorflow.python.ops import variable_scope
base = os.path.dirname(__file__)
#keep the ./ in case base is empty
try:
_lib = tf.load_op_library(os.path.join(base, "./build/libcholesky_update.so"))
except Exception as e:
print("didn't find libcholesky_update in build")
_lib = tf.load_op_library(os.path.join(base, "./libcholesky_update.so"))
_chol_update = _lib.chol_update
#taken from metrics_impl. Need custom init function
def _metric_variable(shape, dtype, initializer=None, validate_shape=True, name=None):
if initializer is None:
initializer = lambda: array_ops.zeros(shape, dtype)
# Note that synchronization "ON_READ" implies trainable=False.
return variable_scope.variable(
initializer,
collections=[
ops.GraphKeys.LOCAL_VARIABLES, ops.GraphKeys.METRIC_VARIABLES
],
validate_shape=validate_shape,
synchronization=variable_scope.VariableSynchronization.ON_READ,
aggregation=variable_scope.VariableAggregation.SUM,
name=name)
def cholesky_update(x, mask, init=1e-5, trainable=False):
"""Create a variable `L` that is the cholesky decomposition of a matrix `A = LL^T`
if `x` has dimensions `[b,dim]` then mask must have dimensions `[b]` and `L` will
have dimensions `[b,dim,dim]`.
Arguments:
x {[Tensor]} -- New sample with batch `b` and dimension `dim`
mask {[Tensor]} -- Vector mask of length `b` indicating
if the current element of `x` should be used in the update.
That is if `mask[i] == 0`, then `x[i]` is not used to update `L[i]`.
Keyword Arguments:
init {[float]} -- Init value for diagonal `L` matrix. Must be non zero for well conditioned updates
Note that this is essentially the initial value for the conjugate prior.
(default: {1e-5})
Returns:
L {[Variable]} -- The variable being updated. Use `tf.matmul(L,tf.transpose(L))` to recover `A`.
update_op -- Update operation that updates `L`
"""
input_shape = x.get_shape().as_list()
assert len(input_shape) == 2, "rank of x must be 2"
L_init = lambda: tf.eye(input_shape[1],batch_shape=[input_shape[0]])*init
L = _metric_variable(input_shape + [input_shape[1]], tf.float32, initializer=L_init, name="L")
#L = tf.get_variable("L", initializer=L_init, trainable=trainable)
update_op = _chol_update(L, x, mask)
return L, update_op