-
Notifications
You must be signed in to change notification settings - Fork 0
/
faces_train.py
52 lines (40 loc) · 1.34 KB
/
faces_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
from PIL import Image
import numpy as np
import cv2
import pickle
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
IMAGE_DIR = os.path.join(BASE_DIR, "images")
face_cascade = cv2.CascadeClassifier('cascades/data/haarcascade_frontalface_alt2.xml')
recognizer = cv2.face.LBPHFaceRecognizer_create()
# label ids
current_id = 0
label_ids = {}
# data set
x_train = []
y_labels = []
for root, dirs, files in os.walk(IMAGE_DIR):
for file in files:
if file.endswith("png") or file.endswith("jpg"):
path = os.path.join(root, file)
# label = os.path.basename(os.path.dirname(path)).replace(" ", "_").lower()
label = os.path.basename(root).replace(" ", "_").lower()
# generating labels
if label not in label_ids:
label_ids[label] = current_id
current_id += 1
id_ = label_ids[label]
# cread image using pillow and convert to numpy array
pil_image = Image.open(path).convert('L')
image_array = np.array(pil_image, "uint8")
# detecting faces
faces = face_cascade.detectMultiScale(image_array, scaleFactor=1.5, minNeighbors=5)
for (x, y, w, h) in faces:
roi = image_array[y:y+h, x:x+w]
# generating training data
x_train.append(roi)
y_labels.append(id_)
with open("labels.pt", "wb") as f:
pickle.dump(label_ids, f)
recognizer.train(x_train, np.array(y_labels))
recognizer.save("trainner.yml")