-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
384 lines (277 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
import sys
import json
import numpy as np
import torch
from torch import nn
from torch.optim import lr_scheduler
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torch.nn.functional as F
import argparse
import random
import pickle
import scipy.misc
import models.videos.model_simple as models
from opts import parse_opts
from geotnf.transformation import GeometricTnf
from target_transforms import ClassLabel, VideoID
from target_transforms import Compose as TargetCompose
from dataset_utils import Logger
from datasets.hmdb51 import HMDB51
from train import train_epoch
from validation import val_epoch
import test
import eval_hmdb51
def partial_load(pretrained_dict, model):
model_dict = model.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.load_state_dict(pretrained_dict)
def get_params(opt):
params = {}
params['filelist'] = opt.list
params['imgSize'] = 256
params['imgSize2'] = 320
params['cropSize'] = 240
params['cropSize2'] = 80
params['offset'] = 0
state = {k: v for k, v in opt._get_kwargs()}
print('\n')
params['predDistance'] = state['predDistance']
print('predDistance: ' + str(params['predDistance']))
params['batch_size'] = state['batch_size']
print('batch_size: ' + str(params['batch_size']) )
print('temperature: ' + str(state['T']))
params['gridSize'] = state['gridSize']
print('gridSize: ' + str(params['gridSize']) )
params['n_classes'] = state['n_classes']
print('n_classes: ' + str(params['n_classes']) )
params['videoLen'] = state['videoLen']
print('videoLen: ' + str(params['videoLen']) )
return params, state
if __name__ == '__main__':
opt = parse_opts()
print("Gpu ID's:", opt.gpu_id)
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
print("Torch version:", torch.__version__)
print("Train, val, test, evaluate:", not opt.no_train, opt.no_val, not opt.no_test, not opt.no_eval)
if opt.root_path != '':
opt.video_path = os.path.join(opt.root_path, opt.video_path)
split_list = opt.list.split("_")[1][0]
split_annotation = opt.annotation_path.split("_")[1][0]
if split_list != split_annotation:
print("Please provide list and annotation for same split")
exit()
split = (opt.annotation_path.split(".")[0]).split("/")[-1]
print("Split of HMDB51:", split)
opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path)
opt.list = os.path.join(opt.root_path, opt.list)
folder = opt.result_path
opt.result_path = os.path.join(opt.root_path, opt.result_path + "_" + split)
if not os.path.isdir(opt.result_path):
os.mkdir(opt.result_path)
if opt.resume_path:
opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
if opt.pretrain_path:
opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)
params, state = get_params(opt)
print("Result path:", opt.result_path)
print("Resume path:", opt.resume_path)
print("Video path:", opt.video_path)
print("Annotation path:", opt.annotation_path)
opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
print("Architecture:", opt.arch)
# Random seed
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if not opt.no_cuda:
torch.cuda.manual_seed_all(opt.manualSeed)
print("\n")
print("Sample Size:", opt.sample_size)
print("Video Len:", opt.videoLen)
print("Frame Gap:", opt.frame_gap)
print("Pred Distance:", opt.predDistance)
print("Sample Duration:", opt.sample_duration)
print("TimeCycle weight:", opt.timecycle_weight)
print("Binary classification weight:", opt.binary_class_weight)
model = models.CycleTime(class_num=params['n_classes'],
trans_param_num=3,
frame_gap=opt.frame_gap,
videoLen=opt.videoLen,
sample_duration=opt.sample_duration,
pretrained=opt.pretrained_imagenet,
temporal_out=params['videoLen'],
T=opt.T,
hist=opt.hist,
batch_size=opt.batch_size)
if not opt.no_cuda:
model = model.cuda()
cudnn.benchmark = False
print(' Total params: %.2fM' % (sum(p.numel() for p in model.parameters())/1000000.0))
criterion = nn.CrossEntropyLoss()
if not opt.no_cuda:
criterion = criterion.cuda()
print('Weight_decay: ' + str(opt.weight_decay))
print('Beta1: ' + str(opt.momentum))
print("\n")
print("LOADING PRETRAIN/RESUME AND LOGGER")
print("\n")
optimizer = optim.Adam(model.parameters(),
lr=opt.learning_rate,
betas=(opt.momentum, 0.999),
weight_decay=opt.weight_decay)
print("\n")
print("Adam Optimizer made")
if opt.pretrain_path:
# Load checkpoint.
print('Loading pretrained model {}'.format(opt.pretrain_path))
assert os.path.isfile(opt.pretrain_path), 'No pretrain directory found'
checkpoint = torch.load(opt.pretrain_path)
partial_load(checkpoint['state_dict'], model)
del checkpoint
if opt.resume_path:
# Load checkpoint.
print('Loading checkpoint {}'.format(opt.resume_path))
assert os.path.isfile(opt.resume_path), 'No checkpoint directory found'
checkpoint = torch.load(opt.resume_path)
assert opt.arch == checkpoint['arch']
opt.begin_epoch = checkpoint['epoch']
partial_load(checkpoint['state_dict'], model)
if not opt.no_train:
optimizer.load_state_dict(checkpoint['optimizer'])
train_log_file = 'train_resume_{}.log'.format(opt.begin_epoch)
train_batch_log_file = 'train_batch_resume_{}.log'.format(opt.begin_epoch)
val_log_file = 'val_resume_{}.log'.format(opt.begin_epoch)
opts_file = os.path.join(opt.result_path, 'opts_resume_{}.json'.format(opt.begin_epoch))
del checkpoint
else:
train_log_file = 'train.log'
train_batch_log_file = 'train_batch.log'
val_log_file = 'val.log'
opts_file = os.path.join(opt.result_path, 'opts.json')
if not opt.no_train:
# Save opts
print("\n")
print("Save opts at", opts_file)
with open(opts_file, 'w') as opt_file:
json.dump(vars(opt), opt_file)
print("\n")
print("TRAINING")
print("\n")
train_logger = Logger(
os.path.join(opt.result_path, train_log_file),
['epoch', 'loss', 'loss_hmdb_class', 'loss_timecycle', 'loss_bin_class', 'acc', 'acc_bin', 'lr', 'loss_sim', 'theta_loss', 'theta_skip_loss'])
train_batch_logger = Logger(
os.path.join(opt.result_path, train_batch_log_file),
['epoch', 'batch', 'iter', 'loss_hmdb_class', 'loss_timecycle', 'loss_bin_class', 'acc', 'acc_bin', 'lr', 'loss_sim', 'theta_loss', 'theta_skip_loss'])
target_transform = ClassLabel()
geometric_transform = GeometricTnf(
'affine',
out_h=params['cropSize2'],
out_w=params['cropSize2'],
use_cuda = False)
training_data = HMDB51(
params,
opt.video_path,
opt.annotation_path,
'training',
frame_gap=opt.frame_gap,
sample_duration=opt.sample_duration,
target_transform=target_transform,
geometric_transform=geometric_transform)
print("Training data obtained")
train_loader = torch.utils.data.DataLoader(
training_data,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_threads,
pin_memory=True)
print("Train loader made")
print("Learning rate:", opt.learning_rate)
print("Momentum:", opt.momentum)
print("Weight decay:", opt.weight_decay)
scheduler = lr_scheduler.ReduceLROnPlateau(
optimizer,
'min',
patience=opt.lr_patience)
print("Lr_patience", opt.lr_patience)
print("\n")
if not opt.no_val:
print("VALIDATION")
print("\n")
val_logger = Logger(
os.path.join(opt.result_path, val_log_file), ['epoch', 'loss', 'acc'])
target_transform = ClassLabel()
validation_data = HMDB51(
params,
opt.video_path,
opt.annotation_path,
'validation',
sample_duration=opt.sample_duration,
n_samples_for_each_video=opt.n_val_samples,
target_transform=target_transform)
print("Validation data loaded")
val_loader = torch.utils.data.DataLoader(
validation_data,
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.n_threads,
pin_memory=True)
print("Validation loader done")
#print("MODEL:", model.state_dict().keys())
print("\n")
print("RUNNING")
print("\n")
for i in range(opt.begin_epoch, opt.n_epochs + 1):
if not opt.no_train:
train_epoch(i, params, train_loader, model, criterion, optimizer, opt, train_logger, train_batch_logger)
if not opt.no_val:
validation_loss = val_epoch(i, params, val_loader, model, criterion, opt, val_logger)
if not opt.no_train and not opt.no_val:
scheduler.step(validation_loss)
if not opt.no_test:
print("\n")
print("TESTING")
target_transform = VideoID()
test_data = HMDB51(
params,
opt.video_path,
opt.annotation_path,
"validation",
sample_duration=opt.sample_duration,
n_samples_for_each_video=0,
target_transform=target_transform)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.n_threads,
pin_memory=True)
if not opt.no_train and not opt.no_val:
epoch = opt.n_epochs
else:
epoch = opt.begin_epoch - 1
val_json_name = str(epoch)
test.test(test_loader, model, opt, test_data.class_names, val_json_name)
if not opt.no_eval:
print("\n")
print("EVALUATING")
if not opt.no_train and not opt.no_val:
epoch = opt.n_epochs
else:
epoch = opt.begin_epoch - 1
eval_path = opt.result_path + '/' + "results" + '_' + str(epoch) + '.txt'
print("File:", eval_path)
prediction_file = os.path.join(opt.result_path, 'val_{}.json'.format(val_json_name))
subset = "validation"
epoch, accuracy, error = eval_hmdb51.eval_hmdb51(eval_path, opt.annotation_path, prediction_file, subset, opt.top_k, epoch)
print("Results for epoch ", epoch, "are: acc:", accuracy, "err@", opt.top_k, ":", error)