-
Notifications
You must be signed in to change notification settings - Fork 0
/
research.html
175 lines (159 loc) · 9.85 KB
/
research.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="X-UA-Compatible" content="ie=edge" />
<title>Martine Lokken - Research</title>
<link href="https://fonts.googleapis.com/css?family=Open+Sans:400" rel="stylesheet" />
<link href="css/templatemo-style.css" rel="stylesheet" />
</head>
<!--
Simple House
https://templatemo.com/tm-539-simple-house
-->
<body>
<div class="container">
<!-- Top box -->
<!-- Logo & Site Name -->
<div class="placeholder">
<div class="parallax-window" data-parallax="scroll" data-image-src="img/pp_1pt5E12_to_1E15_msun_halos_oneslice.png">
<div class="tm-header">
<div class="row tm-header-inner">
<div class="col-md-6 col-12">
<!-- <img src="img/simple-house-logo.png" alt="Logo" class="tm-site-logo" /> -->
<div class="tm-site-text-box">
<h1 class="tm-site-title">Martine Lokken</h1>
<h6 class="tm-site-description">Postdoc, Observational Cosmology</h6>
</div>
</div>
<nav class="col-md-6 col-12 tm-nav">
<ul class="tm-nav-ul">
<li class="tm-nav-li"><a href="index.html" class="tm-nav-link">Home</a></li>
<li class="tm-nav-li"><a href="about.html" class="tm-nav-link">About</a></li>
<li class="tm-nav-li"><a href="research.html" class="tm-nav-link active">Research</a></li>
<li class="tm-nav-li"><a href="contact.html" class="tm-nav-link">Contact</a></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<main>
<header class="row tm-welcome-section">
<h2 class="col-12 text-center tm-section-title">My Research</h2>
<p class="col-12 text-center"> My full list of publications can be found on the <a href="https://ui.adsabs.harvard.edu/search/q=%20author%3A%22Lokken%2C%20Martine%22&sort=date%20desc%2C%20bibcode%20desc&p_=0"> ADS.</a></p>
</header>
<div class="tm-section tm-container-inner">
<div class="row">
<!-- <div class="col-md-12">
<div class="tm-description-box">
<h4 class="tm-gallery-title">Thesis: Searching for new physics in the Cosmic Web</h4>
<p class="tm-mb-45">My thesis focuses on developing new methods to characterize the Cosmic Web and applying those methods to the intersection of simulations and observations in order to test cosmological models. In particular, I am developing techniques for measuring the signals of local anisotropy through various probes in a flexible, multi-scale manner and applying the techniques both to simulations and real data. My thesis will also assess how well these techniques can provide information on the nature of dark energy, by seeking to disentangle the effects of baryonic feedback. </p>
</div>
</div> -->
<div class="col-md-6">
<div class="tm-description-box">
<h4 class="tm-gallery-title">Oriented stacking of thermal Sunyaev-Zel'dovich maps <a id="oriented_stacking"></a> </h4>
<p class="tm-mb-45"> I am interested in the cosmological and astrophysical information held in extended, anisotropic structures such as cosmic filaments and superclusters. The multi-scale and asymmetric nature of such structures present a challenge for finding generalized descriptions. The thermal Sunyaev-Zel'dovich (tSZ) effect is a useful tracer of the distribution of thermal energy in the cosmic web. However, the relatively low pressure of inter-cluster filaments (compared to clusters) makes their tSZ signal weak -- in currently available Compton-y (tSZ) maps, the filament signal is far below the noise. I am working on new techniques which use stacking and combine multi-wavelength datasets to tease out the average signal from superclusters. Recently our group submitted <a href="https://arxiv.org/abs/2107.05523">a paper</a> in which we validate the method of 'oriented stacking' using simulations and apply it to Compton-y data from the Atacama Cosmology Telescope and galaxy data from the Dark Energy Survey. We detect thermal energy anisotropy surrounding DES redMaPPer clusters; demonstrate how the superclustering SZ signal depends on the cluster's location in the surrounding large-scale structure; and show how the method can be used to detect late-time non-Gaussianity from nonlinear structure growth.</p>
</div>
</div>
<div class="col-md-6">
<figure class="tm-description-figure">
<img src="img/unoriented_vis.png" alt="Image" class="img-fluid" />
<img src="img/oriented_vis.png" alt="Image" class="img-fluid" />
</figure>
</div>
<div class="col-md-6">
<figure class="tm-description-figure">
<img src="img/gal_numdens_comptony.png" alt="Image" class="img-fluid" width=50%/>
</figure>
</div>
<div class="col-md-6">
<div class="tm-description-box">
<h4 class="tm-gallery-title">Anisotropic bias through oriented stacking <a id="oriented_stacking"></a></h4>
<p class="tm-mb-45"> As a follow up to our first paper, we are using the oriented stacking technique on maps of the galaxy number density from DES as well as Compton-y maps from ACT. By comparing the two, we are measuring the relationship between galaxies and gas in extended anisotropic structures -- a relationship which depends both on the cosmological model and small-scale baryonic feedback effects. We compare this measure of anistropic relative bias (of the galaxies and gas, with respect to the underlying dark matter field) with simulations run under certain cosmological and astrophysical assumptions. The paper is in-prep. </p>
</div>
</div>
<div class="col-md-6">
<div class="tm-description-box">
<h4 class="tm-gallery-title">Simulating Transients and their Host Galaxies <a id="hosts_transients"></a></h4>
<p class="tm-mb-45"> I also work with the LSST Dark Energy Science Collaboration in preparation for the Vera Rubin Observatory. Working with Alex Gagliano at the University of Illinois, we have developed an association pipeline which matches transients, simulated using the SNANA software, with realistic host galaxies from the CosmoDC2 simulation (Korytov+ 2015). Our pipeline extrapolates empirical relationships observed in the limited existing transient-host data to z=3. Teams will use our simulated data in the ElaSTiCC challenge (the follow-up to the <a href="https://plasticc.org/">PlasTiCC challenge</a>) to develop rapid classifiers for transients observed by Rubin. Our inclusion of host information, new in this iteration of the challenge, will allow teams to train classifiers to use host properties to aid classification. The paper is <a href="https://arxiv.org/abs/2206.02815">on the arXiv</a> and published in MNRAS. The Rubin Observatory's first light is expected in 2022/2023.</p>
</div>
</div>
<div class="col-md-6">
<figure class="tm-description-figure">
<img src="img/host_gals_larger.png" alt="Image" class="img-fluid" />
</figure>
</div>
<div class="col-md-6">
<figure class="tm-description-figure">
<img src="img/quijote_altcosmos.png" alt="Image" class="img-fluid" width=90%/>
<figcaption>Various cosmologies from the <a href="https://arxiv.org/abs/1909.05273">Quijote simulations</a>, Villaescusa-Navarro et al. 2019. </figcaption>
</figure>
</div>
<div class="col-md-6">
<div class="tm-description-box">
<h4 class="tm-gallery-title">Superclustering in Alternative Cosmologies <a id="alt_cosmo"></a></h4>
<p class="tm-mb-45"> I am using the Peak Patch simulation to generate large-scale structure for universes with different cosmological parameters. Specifically, I am investigating how the superclustering statistics we have developed depend on properties of the dark energy. I am interested in beyond-Λ models of dark energy such as time-varying and coupled dark energy.</p>
</div>
</div>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
<div class="col-md-6">
<div class="tm-description-box">
<h4 class="tm-gallery-title">Astrophysical Feedback in Hydrodynamical Simulations <a id="feedback"></a></h4>
<p class="tm-mb-45"> I am using simulations from the <a href="https://www.nottingham.ac.uk/~ppzfrp/The300/">300 cluster project</a> to examine how the anisotropic tSZ signal surrounding clusters varies with changes to the AGN feedback implemented via the <a href="http://simba.roe.ac.uk/">Simba code.</a></p>
</div>
</div>
<div class="col-md-6">
<figure class="tm-description-figure">
<img src="img/300.png" alt="Image" class="img-fluid" width=100%/>
<figcaption>Image of the most massive cluster in the 300 cluster simulations, from the <a href="https://arxiv.org/pdf/1809.04622.pdf">introduction paper</a> (Cui et al. 2018).</figcaption>
</figure>
</div>
</div>
</div>
</main>
<footer class="tm-footer text-center">
<p>Copyright © 2020 Martine Lokken
| Design: <a rel="nofollow" href="https://templatemo.com">TemplateMo</a></p>
</footer>
</div>
<script src="js/jquery.min.js"></script>
<script src="js/parallax.min.js"></script>
<script>
$(document).ready(function(){
// Handle click on paging links
$('.tm-paging-link').click(function(e){
e.preventDefault();
var page = $(this).text().toLowerCase();
$('.tm-gallery-page').addClass('hidden');
$('#tm-gallery-page-' + page).removeClass('hidden');
$('.tm-paging-link').removeClass('active');
$(this).addClass("active");
});
});
</script>
</body>
</html>