-
Notifications
You must be signed in to change notification settings - Fork 0
/
12.rb
76 lines (66 loc) · 1.45 KB
/
12.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Problem 12
# https://projecteuler.net/problem=12
#
# The sequence of triangle numbers is generated by adding
# the natural numbers. So the 7th triangle number
# would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first
# ten terms would be:
# 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
# Let us list the factors of the first seven triangle numbers:
# 1: 1
# 3: 1,3
# 6: 1,2,3,6
# 10: 1,2,5,10
# 15: 1,3,5,15
# 21: 1,3,7,21
# 28: 1,2,4,7,14,28
# We can see that 28 is the first triangle number
# to have over five divisors.
# What is the value of the first triangle number
# to have over five hundred divisors?
def factors(num)
factors = []
sqrt = Math.sqrt(num)
until num == 1
factor_founded = false
(2..sqrt).each do |i|
if (num % i).zero?
num /= i
factors << i
factor_founded = true
break
end
end
unless factor_founded
factors << num
num /= num
end
end
return factors
end
def dividors(num)
dividors = {}
factors = factors(num)
factors.each do |i|
dividors[i] ? dividors[i] += 1 : dividors[i] = 1
end
num_of_dividors = 1
dividors.each_value do |v|
num_of_dividors *= v+1
end
return num_of_dividors
end
sum = 1
max = 0
i = 2
loop do
sum += i
dividors = dividors(sum)
max = dividors if max < dividors
if max >= 500
puts sum
break
end
i += 1
end
puts 'max: '+max.to_s