-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcosine_weighting.py
110 lines (90 loc) · 4.37 KB
/
cosine_weighting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import sys
import collections
import numpy
import math
import theano
floatX=theano.config.floatX
class SentenceSum(object):
def __init__(self, embeddings):
sentence_ids = theano.tensor.ivector('sentence')
neighbour_ids = theano.tensor.ivector('neighbour')
adversary_ids = theano.tensor.ivector('adversary')
learningrate = theano.tensor.fscalar('learningrate')
self.word_weights = theano.shared(numpy.ones((embeddings.shape[0],), dtype=floatX), 'word_weights')
embeddings = theano.shared(embeddings, 'embeddings')
def construct_vector(ids):
vectors = embeddings[ids]
vector = theano.tensor.dot(self.word_weights[ids].T, vectors)
vector = vector / vector.norm(2)
return vector
sentence_vector = construct_vector(sentence_ids)
neighbour_vector = construct_vector(neighbour_ids)
adversary_vector = construct_vector(adversary_ids)
cost = theano.tensor.maximum(theano.tensor.dot(sentence_vector, adversary_vector) - theano.tensor.dot(sentence_vector, neighbour_vector), 0.0)
params = [self.word_weights,]
gradients = theano.tensor.grad(cost, params, disconnected_inputs='warn')
updates = [(p, p - (learningrate * g)) for p, g in zip(params, gradients)]
self.train = theano.function([sentence_ids, neighbour_ids, adversary_ids, learningrate], [cost,], updates=updates, on_unused_input='warn', allow_input_downcast = True)
def sentence_to_ids(sentence, word2id):
ids = []
for word in sentence.strip().split():
if word in word2id:
ids.append(word2id[word])
return numpy.array(ids, dtype=numpy.int32)
def create_cosine_weights(embeddings_path, corpus_path, learningrate=0.1, epochs=500, datapoints_per_epoch=10000, neighbour_scale=2.5):
sentences = []
with open(corpus_path, 'r') as f:
for line in f:
sentences.append(line.strip())
word2id = collections.OrderedDict()
embeddings = None
with open(embeddings_path, 'r') as f:
line_parts = f.next().strip().split()
embeddings = numpy.zeros((100000, int(line_parts[1])), dtype=floatX)
for line in f:
#if "_" in line: #skipping phrase embeddings
# continue
line_parts = line.strip().split()
word_id = len(word2id)
word2id[line_parts[0]] = word_id
if word_id >= embeddings.shape[0]:
embeddings = numpy.concatenate((embeddings, numpy.zeros((100000, embeddings.shape[1]), dtype=floatX)), axis=0)
embeddings[word_id] = numpy.array([float(v) for v in line_parts[1:]])
embeddings = embeddings[:len(word2id)]
sentencesum = SentenceSum(embeddings)
numpy.random.seed(1)
for epoch in xrange(epochs):
print "epoch: " + str(epoch)
cost_sum = 0.0
count = 0
for i in xrange(datapoints_per_epoch):
position = numpy.random.randint(0, len(sentences)-1)
neighbour = position
while neighbour == position or neighbour < 0 or neighbour >= len(sentences):
neighbour = position + int(round(numpy.random.normal(loc=0.0, scale=neighbour_scale)))
adversary = numpy.random.randint(0, len(sentences)-1)
sentence_ids = sentence_to_ids(sentences[position], word2id)
neighbour_ids = sentence_to_ids(sentences[neighbour], word2id)
adversary_ids = sentence_to_ids(sentences[adversary], word2id)
if len(sentence_ids) == 0 or len(neighbour_ids) == 0 or len(adversary_ids) == 0:
continue
cost, = sentencesum.train(sentence_ids, neighbour_ids, adversary_ids, learningrate)
if math.isnan(cost):
sys.exit(1)
cost_sum += cost
count += 1
print "average_cost: " + str(cost_sum / float(count))
model_weights = sentencesum.word_weights.get_value()
weights = collections.OrderedDict()
for word in word2id:
weights[word] = model_weights[word2id[word]]
return weights
if __name__ == "__main__":
epochs = int(sys.argv[1])
embeddings_path = sys.argv[2]
corpus_path = sys.argv[3]
output_path = sys.argv[4]
weights = create_cosine_weights(embeddings_path, corpus_path, epochs=epochs)
with open(output_path, 'w') as f:
for word in weights:
f.write(word + "\t" + str(weights[word]) + "\n")