WORK IN PROGRESS
This guide outlines how to compile your YOLOv8 model for object detection using Hailo Model Zoo.
Put best.onnx
, dataset.yaml
and data.zip
in a folder and compile to files.zip
.
scp PATH_TO/files.zip USERNAME@EXTERNALIP:/home/USERNAME
Unzip the file
unzip files.zip
unzip data.zip
- Activate the hailo-dfs environment:
. hailo-dfc/bin/activate
- Clone the Hailo Model Zoo repository:
git clone https://github.com/hailo-ai/hailo_model_zoo.git
- cd into the folder and install all requirements:
cd hailo_model_zoo
pip install -e .
- cd back to you working directory
cd ..
- Adjust classes number accordingly to your model:
hailomz compile yolov8s --ckpt=best.onnx --hw-arch hailo8l --calib-path data/train/images --classes 3 --performance
You can run without --performance to test the command
2. Finally, use scp
from your local terminal to copy the yolov8s.hef
file from your VM to your local machine. Replace the placeholders with your VM username, and desired local path:
scp USERNAME@EXTERNALIP:yolov8s.hef /LOCAL_PATH
Continue with Deploy Model on Raspberry Pi 5.