forked from Element-Research/rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRecurrent.lua
215 lines (190 loc) · 7.42 KB
/
Recurrent.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
------------------------------------------------------------------------
--[[ Recurrent ]]--
-- Ref. A.: http://goo.gl/vtVGkO (Mikolov et al.)
-- B. http://goo.gl/hu1Lqm
-- Processes the sequence one timestep (forward/backward) at a time.
-- A call to backward only keeps a log of the gradOutputs and scales.
-- Back-Propagation Through Time (BPTT) is done when updateParameters
-- is called. The Module keeps a list of all previous representations
-- (Module.outputs), including intermediate ones for BPTT.
-- To use this module with batches, we suggest using different
-- sequences of the same size within a batch and calling
-- updateParameters() at the end of the Sequence.
-- Note that this won't work with modules that use more than the
-- output attribute to keep track of their internal state between
-- forward and backward.
------------------------------------------------------------------------
assert(not nn.Recurrent, "update nnx package : luarocks install nnx")
local Recurrent, parent = torch.class('nn.Recurrent', 'nn.AbstractRecurrent')
function Recurrent:__init(start, input, feedback, transfer, rho, merge)
parent.__init(self, rho)
local ts = torch.type(start)
if ts == 'torch.LongStorage' or ts == 'number' then
start = nn.Add(start)
elseif ts == 'table' then
start = nn.Add(torch.LongStorage(start))
elseif not torch.isTypeOf(start, 'nn.Module') then
error"Recurrent : expecting arg 1 of type nn.Module, torch.LongStorage, number or table"
end
self.startModule = start
self.inputModule = input
self.feedbackModule = feedback
self.transferModule = transfer or nn.Sigmoid()
self.mergeModule = merge or nn.CAddTable()
self.modules = {self.startModule, self.inputModule, self.feedbackModule, self.transferModule, self.mergeModule}
self:buildInitialModule()
self:buildRecurrentModule()
self.sharedClones[2] = self.recurrentModule
end
-- build module used for the first step (steps == 1)
function Recurrent:buildInitialModule()
self.initialModule = nn.Sequential()
self.initialModule:add(self.inputModule:sharedClone())
self.initialModule:add(self.startModule)
self.initialModule:add(self.transferModule:sharedClone())
end
-- build module used for the other steps (steps > 1)
function Recurrent:buildRecurrentModule()
local parallelModule = nn.ParallelTable()
parallelModule:add(self.inputModule)
parallelModule:add(self.feedbackModule)
self.recurrentModule = nn.Sequential()
self.recurrentModule:add(parallelModule)
self.recurrentModule:add(self.mergeModule)
self.recurrentModule:add(self.transferModule)
end
function Recurrent:updateOutput(input)
-- output(t) = transfer(feedback(output_(t-1)) + input(input_(t)))
local output
if self.step == 1 then
output = self.initialModule:updateOutput(input)
else
if self.train ~= false then
-- set/save the output states
self:recycle()
local recurrentModule = self:getStepModule(self.step)
-- self.output is the previous output of this module
output = recurrentModule:updateOutput{input, self.outputs[self.step-1]}
else
-- self.output is the previous output of this module
output = self.recurrentModule:updateOutput{input, self.outputs[self.step-1]}
end
end
self.outputs[self.step] = output
self.output = output
self.step = self.step + 1
self.gradPrevOutput = nil
self.updateGradInputStep = nil
self.accGradParametersStep = nil
return self.output
end
function Recurrent:_updateGradInput(input, gradOutput)
assert(self.step > 1, "expecting at least one updateOutput")
local step = self.updateGradInputStep - 1
local gradInput
if self.gradPrevOutput then
self._gradOutputs[step] = nn.rnn.recursiveCopy(self._gradOutputs[step], self.gradPrevOutput)
nn.rnn.recursiveAdd(self._gradOutputs[step], gradOutput)
gradOutput = self._gradOutputs[step]
end
local output = self.outputs[step-1]
if step > 1 then
local recurrentModule = self:getStepModule(step)
gradInput, self.gradPrevOutput = unpack(recurrentModule:updateGradInput({input, output}, gradOutput))
elseif step == 1 then
gradInput = self.initialModule:updateGradInput(input, gradOutput)
else
error"non-positive time-step"
end
return gradInput
end
function Recurrent:_accGradParameters(input, gradOutput, scale)
local step = self.accGradParametersStep - 1
local gradOutput = (step == self.step-1) and gradOutput or self._gradOutputs[step]
local output = self.outputs[step-1]
if step > 1 then
local recurrentModule = self:getStepModule(step)
recurrentModule:accGradParameters({input, output}, gradOutput, scale)
elseif step == 1 then
self.initialModule:accGradParameters(input, gradOutput, scale)
else
error"non-positive time-step"
end
return gradInput
end
function Recurrent:recycle()
return parent.recycle(self, 1)
end
function Recurrent:forget()
return parent.forget(self, 1)
end
function Recurrent:includingSharedClones(f)
local modules = self.modules
self.modules = {}
local sharedClones = self.sharedClones
self.sharedClones = nil
local initModule = self.initialModule
self.initialModule = nil
for i,modules in ipairs{modules, sharedClones, {initModule}} do
for j, module in pairs(modules) do
table.insert(self.modules, module)
end
end
local r = f()
self.modules = modules
self.sharedClones = sharedClones
self.initialModule = initModule
return r
end
function Recurrent:reinforce(reward)
if torch.type(reward) == 'table' then
-- multiple rewards, one per time-step
local rewards = reward
for step, reward in ipairs(rewards) do
if step == 1 then
self.initialModule:reinforce(reward)
else
local sm = self:getStepModule(step)
sm:reinforce(reward)
end
end
else
-- one reward broadcast to all time-steps
return self:includingSharedClones(function()
return parent.reinforce(self, reward)
end)
end
end
function Recurrent:maskZero()
error("Recurrent doesn't support maskZero as it uses a different "..
"module for the first time-step. Use nn.Recurrence instead.")
end
function Recurrent:__tostring__()
local tab = ' '
local line = '\n'
local next = ' -> '
local str = torch.type(self)
str = str .. ' {' .. line .. tab .. '[{input(t), output(t-1)}'
for i=1,3 do
str = str .. next .. '(' .. i .. ')'
end
str = str .. next .. 'output(t)]'
local tab = ' '
local line = '\n '
local next = ' |`-> '
local ext = ' | '
local last = ' ... -> '
str = str .. line .. '(1): ' .. ' {' .. line .. tab .. 'input(t)'
str = str .. line .. tab .. next .. '(t==0): ' .. tostring(self.startModule):gsub('\n', '\n' .. tab .. ext)
str = str .. line .. tab .. next .. '(t~=0): ' .. tostring(self.inputModule):gsub('\n', '\n' .. tab .. ext)
str = str .. line .. tab .. 'output(t-1)'
str = str .. line .. tab .. next .. tostring(self.feedbackModule):gsub('\n', line .. tab .. ext)
str = str .. line .. "}"
local tab = ' '
local line = '\n'
local next = ' -> '
str = str .. line .. tab .. '(' .. 2 .. '): ' .. tostring(self.mergeModule):gsub(line, line .. tab)
str = str .. line .. tab .. '(' .. 3 .. '): ' .. tostring(self.transferModule):gsub(line, line .. tab)
str = str .. line .. '}'
return str
end