forked from Element-Research/rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBiSequencer.lua
71 lines (59 loc) · 2.43 KB
/
BiSequencer.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
------------------------------------------------------------------------
--[[ BiSequencer ]]--
-- Encapsulates forward, backward and merge modules.
-- Input is a sequence (a table) of tensors.
-- Output is a sequence (a table) of tensors of the same length.
-- Applies a forward rnn to each element in the sequence in
-- forward order and applies a backward rnn in reverse order.
-- For each step, the outputs of both rnn are merged together using
-- the merge module (defaults to nn.JoinTable(1,1)).
-- The sequences in a batch must have the same size.
-- But the sequence length of each batch can vary.
-- It is implemented by decorating a structure of modules that makes
-- use of 3 Sequencers for the forward, backward and merge modules.
------------------------------------------------------------------------
local BiSequencer, parent = torch.class('nn.BiSequencer', 'nn.AbstractSequencer')
function BiSequencer:__init(forward, backward, merge)
if not torch.isTypeOf(forward, 'nn.Module') then
error"BiSequencer: expecting nn.Module instance at arg 1"
end
self.forwardModule = forward
self.backwardModule = backward
if not self.backwardModule then
self.backwardModule = forward:clone()
self.backwardModule:reset()
end
if not torch.isTypeOf(self.backwardModule, 'nn.Module') then
error"BiSequencer: expecting nn.Module instance at arg 2"
end
if torch.type(merge) == 'number' then
self.mergeModule = nn.JoinTable(1, merge)
elseif merge == nil then
self.mergeModule = nn.JoinTable(1, 1)
elseif torch.isTypeOf(merge, 'nn.Module') then
self.mergeModule = merge
else
error"BiSequencer: expecting nn.Module or number instance at arg 3"
end
self.fwdSeq = nn.Sequencer(self.forwardModule)
self.bwdSeq = nn.Sequencer(self.backwardModule)
self.mergeSeq = nn.Sequencer(self.mergeModule)
local backward = nn.Sequential()
backward:add(nn.ReverseTable()) -- reverse
backward:add(self.bwdSeq)
backward:add(nn.ReverseTable()) -- unreverse
local concat = nn.ConcatTable()
concat:add(self.fwdSeq):add(backward)
local brnn = nn.Sequential()
brnn:add(concat)
brnn:add(nn.ZipTable())
brnn:add(self.mergeSeq)
parent.__init(self)
self.output = {}
self.gradInput = {}
self.module = brnn
-- so that it can be handled like a Container
self.modules[1] = brnn
end
-- multiple-inheritance
nn.Decorator.decorate(BiSequencer)