-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathzipf.java
343 lines (296 loc) · 12.6 KB
/
zipf.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// Copyright 2003-2009 Bill Manaris, Dana Hughes, J.R. Armstrong, Thomas Zalonis, Luca Pellicoro,
// Chris Wagner, Chuck McCormick
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
package nevmuse.utilities;
import java.util.Arrays;
import java.util.Hashtable;
import java.util.Enumeration;
/**
* This class contains static methods that calculate the slope and R^2 of a trendline
* of a Zipf distribution (byRank or bySize).
* <br>
* <br>The byRank distribution plots the values (y-axis) against the ranks of the values from largest to smallest
* (x-axis) in log-log scale. The ranks are generated automatically.
* <br>
* <br>The bySize distribution plots the values (y-axis) against the supplied keys (x-axis) in log-log scale.
* <br>
* <br>
* <b>NOTE: </b> The provided methods are static, so call them as Zipf.byRank(values) or Zipf.bySize(keys, values).
* <br>
* <br>
* @author Luca Pellicoro, Chris Wagner, Bill Manaris (based on VB code by Chuck McCormick and Bill Manaris )
*
* @version 1.6 (October 19, 2009) Dana Hughes
* - Replaced IllegalArgumentException when no values are passed with slope = 0 and r2 = 0.
* This allows for batch processes to continue without exiting due to this exception.
* Also, numeric values may be more meaningful.
* @version 1.5 (November 3, 2009) Thomas Zalonis
* - Translated the latest zipf.py update (see zipf.py update message below) to Zipf.java
* zipf.py version 1.5 (December 24, 2008) J.R. Armstrong and Bill Manaris
* - Now we are differentiating between monotonous and random phenomena (vertical vs. horizontal trendlines).
* In the first case, we return slope = 0 and r2 = 0.
* In the second case, we return slope = 0 and r2 = 1.
* Also, some variable names have been updated.
*
* @version 1.2 (Jan 2007) Luca Pellicoro
* - Static Methods only (no more class instantiation)
* - Raising exceptions intead of Assert statements
* - Zero values and zero keys are considered erroneous input (raise IllegalArgumentException)
* @version 1.1 (July 30, 2005)
* @version 1.0 (May 10, 2003)
*/
public class Zipf
{
/*
public static void main(String[] args)
{
// numbers can be entered from the command line as "java Zipf 1 2 2 3 3 3 3" or
// any other sequence of numbers by uncommenting the code below.
//double[] phen = new double[args.length];
//for(int i = 0;i < args.length;i++)
//{
// phen[i] = (int)Double.parseDouble(args[i]);
//}
//double[] phen = {1, 1, 1}; // check monotonous
//double[] phen = {2, 2, 2, 3, 3, 3}; // check uniformly distributed (white noise)
//double[] phen = {1, 1, 2}; // check truly zipfian (pink noise)
//double[] phen = {1, 1, 1, 1, 2}; // check brown noise
double[] phen = {1, 2, 2, 3, 3, 3, 3}; // check general case
System.out.print("Given the sequence: ");
for(int i = 0;i < phen.length;i++)
{
System.out.print(phen[i] + ", ");
}
System.out.println();
// calculate frequency of occurrence of each symbol
Hashtable histogram = new Hashtable();
for(int i = 0;i < phen.length;i++)
{
if(histogram.containsKey(phen[i]))
{
int currentValue = ((Integer)histogram.get(phen[i])).intValue();
histogram.put(phen[i], new Integer(currentValue + 1));
}
else
{
histogram.put(phen[i], new Integer(1));
}
}
// next, extract the counts and calculate their rank-frequency (Zipfian) distribution
double[] counts = new double[histogram.size()];
int i = 0;
for (Enumeration e = histogram.keys(); e.hasMoreElements();)
{
counts[i] = (double)((Integer)histogram.get(e.nextElement())).intValue();
i++;
}
double[] result = byRank(counts);
double slope = result[0];
double r2 = result[1];
System.out.println("The byRank slope is " + slope + " and the R2 is " + r2);
// now, extract the sizes calculate their side-frequency (Zipfian) distribution
double[] sizes = new double[histogram.size()];
i = 0;
for (Enumeration e = histogram.keys(); e.hasMoreElements();)
{
sizes[i] = ((Double)e.nextElement()).doubleValue();
i++;
}
result = bySize(sizes, counts);
slope = result[0];
r2 = result[1];
System.out.println("The bySize slope is " + slope + " and the R2 is " + r2);
}
*/
/**
*
* Calculate the slope and R^2 of the rank-frequency distribution of the provided frequencies.
* Ranks will be automatically generated.
* <br>
* <br>
* '''NOTE:''' Caller does not need to sort the frequencies.
* <br>
* <br>
* @param frequencies The values whose rank-frequency distribution to calculate (y-axis).
*
* @return A double array containing slope (at index 0) and R^2 (at index 1).
*/
public static double[] byRank(double[] frequencies)
{
int numberOfValues = frequencies.length;
// Step 1 and 2: Sort the vals and create keys
// Copy vals so sort doesn't alter it.
double[] newValues = new double[numberOfValues];
double[] keys = new double[numberOfValues];
for(int i = 0; i < numberOfValues; i++)
{
keys[i] = numberOfValues - i;
newValues[i] = frequencies[i];
}
Arrays.sort(newValues);
checkKeysAndValues(keys, newValues);
// Step 3: Get Zipf Slope and R2 of keys/values.
return calculateSlopeR2(keys, newValues);
}
/**
* Calculate the slope and R^2 of the size-frequency distribution of the provided sizes and frequencies.
* <br>
* <br>
* '''NOTE:''' Caller does not need to sort the sizes or frequencies provided.
* <br>
* <br>
* @param sizes The sizes (x-axis).
* @param frequencies The frequencies (y-axis).
*
* @return An double array containing slope (at index 0) and R^2 (at index 1).
*/
public static double[] bySize(double[] sizes, double[] frequencies)
{
checkKeysAndValues(sizes, frequencies);
// NOTE: There is no need to sort the parallel arrays of keys and vals, since
// getSlopeR2() does not care if the keys are sorted in any particular order;
// it cares only that the association between keys[i] and vals[i] is correct.
return calculateSlopeR2(sizes, frequencies);
}
/*******************************
* SUPPORTING METHODS
*******************************/
/**
* Checks if provided data is relatively error free. In particular, it will raise exceptions if
* - a data array is empty
* - keys and values do not contain the same number of elements
* - a data array contains negative or zero elements
*/
private static void checkKeysAndValues(double[] keys, double[] values)
{
// NOTE: The first exception (keys or values contain no elements) has been replaced with
// setting the slope and r2 values to 0. This allows for batch operations to be
// performed without generating an Exception, or requiring the use of NaN's.
// if (keys.length == 0 || values.length == 0)
// throw new IllegalArgumentException ("Data (values and keys) must contain at least one element.");
if (keys.length != values.length)
throw new IllegalArgumentException("Keys and values must have the same length (keys length was " + keys.length + " and values length was " + values.length + ").");
for (int i = 0; i < values.length; i++)
if (keys[i] <= 0.0 || values[i] <= 0.0)
throw new IllegalArgumentException ("Data must be positive: keys[" + i + "] was " + keys[i] + " and values[" + i + "] was " + values[i] );
}
/**
* Calculates the linear regression (slope and R^2 (fit)) of a set of keys and values.
* If slope and/or R^2 cannot be calculated, zero is returned.
*
* @param keys The keys for the set
* @param vals The values for the set
*
* @return An array of doubles (slope is stored in index 0 and R^2 (fit) in index 1).
*/
private static double[] calculateSlopeR2(double[] keys, double[] vals)
{
// Log10(keys) is mapped to the X axis.
// Log10(vals) is mapped to the Y axis.
double sumX = 0; // holds the sum of X values.
double sumY = 0; // holds the sum of Y values.
double sumXY = 0; // holds the sum of X*Y values.
double sumX2 = 0; // holds the sum of X*X values.
double sumY2 = 0; // holds the sum of Y*Y values.
double[] sr2 = new double[2]; // holds the slope and r2 to be returned (slope is stored in index 0 and R^2 in index 1)
// one exterme case:
// if the phenomenon is monotonous (only one type of event, e.g., ['a', 'a', 'a']),
// then the slope is negative infinity (cannot draw a line with only one data point),
// so indicate this with slope = 0 AND r2 = 0
if (keys.length == 1)
{
sr2[0] = 0.0;
sr2[1] = 0.0;
}
// another extreme case (added 10/20/10):
// if the phenomenon contains no information (i.e., no statistical data exists),
// then the slope is undefined. Rather than causing an Exception, indicate this
// with a slope = 0 AND r2 = 0. Classes utilizing Zipf can always override this
// prior to calling and set these values to NaN, if desired.
else if (keys.length == 0)
{
sr2[0] = 0.0;
sr2[1] = 0.0;
}
else
{
// the other extreme case:
// if the phenomenon is uniformly distributed (several types of events,
// but all having the same number of instances, e.g., ['a', 'b', 'a', 'b', 'a', 'b']),
// then the slope = 0 and r2 = 1 (a horizontal line).
// check if all counts are equal
int i = 0;
boolean allCountsEqual = true; // assume they are all equal
while(allCountsEqual && i < (keys.length - 1))
{
allCountsEqual = (vals[i] == vals[i + 1]); // update hypothesis
i = i + 1;
}
if (allCountsEqual) // is phenomenon uniformly distributed?
{
sr2[0] = 0.0;
sr2[1] = 1.0;
}
else // general case, so caluclate actual slope and r2 values
{
// Sum up the values for the calculations.
for (i = 0; i < keys.length; i++)
{
//System.out.print(" " + i + " ");
sumX += log10(keys[i]);
sumY += log10(vals[i]);
sumXY += log10(keys[i]) * log10(vals[i]);
sumX2 += log10(keys[i]) * log10(keys[i]);
sumY2 += log10(vals[i]) * log10(vals[i]);
}
// calculate the slope
if ((keys.length * sumX2 - sumX * sumX) == 0) // check for division by zero (below)
sr2[0] = 0;
else
sr2[0] = ((keys.length * sumXY - sumX * sumY) / (keys.length * sumX2 - sumX * sumX));
// If you want to create the line: y = mx + b
// m = slope
// This calculates b.
// double b = (sumY - sr2[0] * sumX) / keys.length;
// calculate the R^2
if (Math.sqrt((keys.length * sumX2 - sumX * sumX) * (keys.length * sumY2 - sumY * sumY)) == 0) // check for division by zero (below)
sr2[1] = 0;
else
sr2[1] = (keys.length * sumXY - sumX * sumY) / Math.sqrt((keys.length * sumX2 - sumX * sumX) * (keys.length * sumY2 - sumY * sumY));
sr2[1] = sr2[1] * sr2[1]; // get the square
}
}
// return the result (slope is stored in index 0 and R^2 in index 1)
return sr2;
}
/**
* The natural log of 10
*/
private static final double LN_10 = 2.3025850929940456840179914546844;
/**
* Calculate the Log base 10 of a number.
* This is required because Math.log is not Log(10) but Ln (natural Log).
*
* Note: Log(b) n = Ln n / Ln b.
*
* @param n The original number.
*
* @return Log(10) n
*/
private static double log10(double n) {
return Math.log(n)/LN_10;
}
}